@phdthesis{BJHTUP11_2003__0633__P0_0, author = {Banica, Manuela Valeria}, title = {Equation de {Schr\"odinger} en milieu inhomog\`ene}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e de Paris-Sud U.F.R. Scientifique d'Orsay}, number = {633}, year = {2003}, language = {fr}, url = {http://www.numdam.org/item/BJHTUP11_2003__0633__P0_0/} }
Banica, Manuela Valeria. Equation de Schrödinger en milieu inhomogène. Thèses d'Orsay, no. 633 (2003), 106 p. http://numdam.org/item/BJHTUP11_2003__0633__P0_0/
[1] Lower bounds for the minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Diff. Integral Eq. 15 (2002), no. 6, 749-768. | MR | Zbl
,[2] Contrôlabilité exacte, homogénéisation et localisation d'ondes dans un milieu non-homogène, Asymptotic Analysis 5 (1992), no. 6, 481-494. | MR | Zbl
, and ,[3] Equations d'ondes quasi-linéaires et estimations de Strichartz, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 9, 803-806. | MR | Zbl
, ,[4] Contre-exemples aux inégalités de Strichartz pour des équations d'évolution à coefficients singuliers, mémoire de DEA, Université de Paris Sud (1999).
,[5] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I.Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107-156. | MR | Zbl | DOI
,[6] Nonlinear Schrödinger evolution equation, Nonlinear Analysis, Theory Methods Appl. 4 (1980), no. 4, 677-681. | MR | Zbl | DOI
, ,[7] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, to appear in Amer. J. Math.. | MR | Zbl
, , ,[8] An instability property of the nonlinear Schrödinger equation on , Math. Res. Lett. 9 (2002), no. 2-3, 323-335. | MR | Zbl | DOI
, , ,[9] Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal. 13 (2003), 1-19. | MR | Zbl | DOI
, , ,[10] Inégalités de Sogge bilinéaires et équation de Schrödinger non-linéaire, Séminaire Equations aux Dérivées partielles, Ecole Polytechnique, Palaiseau, mars 2003. | MR | Numdam | Zbl
, , ,[11] Concentration and lack of observability of waves in highly heterogeneous media, Arch. Ration. Mech. Anal. 164 (2002), no. 1, 39-72. | MR | Zbl | DOI
, ,[12] An introduction to nonlinear Schrödinger equations, Textos de Métodos Matemáticos 26, Instituto de Matemática-UFRJ, Rio de Janeiro, RJ (1996).
,[13] Equation de Schrödinger non-linéaire en dimension deux, Proc. Roy. Soc. Edinburg, 84A, 327-346. | MR | Zbl | DOI
,[14] The Cauchy problem for the nonlinear Schrödinger equation in , Manuscripta Math. 61 (1988), no. 4, 477-494. | MR | Zbl | DOI
, ,[15] Asymptotic, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, to appear in Amer. J. Math.. | MR | Zbl
, , ,[16] Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math. 48 (1995), no. 8, 769-860. | MR | Zbl | DOI
, , ,[17] Remarks on the Cauchy problem for Schrödinger-type equations, Comm. Partial Differential Equations 21 (1996), no. 1-2, 163-178. | MR | Zbl
,[18] Introduction aux equations de Schrödinger non linéaires, Editions Paris XI (1994).
,[19] On a class of Schrödinger equations. I. The Cauchy problem, a general case, J. Funct. Anal. 32 (1979), no. 1, 1-32. | MR | Zbl
, ,[20] The global Cauchy problem for the nonlinear Schrödinger equation, Ann. I. H. P. Analyse non-linéaire 2 (1985), no. 4, 309-327. | MR | Zbl | Numdam
, ,[21] Generalized Strichartz Inequalities for the Wave Equation, J. Funct. Analysis 133 (1995), no. 1, 50-68. | MR | Zbl | DOI
, ,[22] On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), no. 9, 1794-1797. | MR | Zbl | DOI
,[23] Some generalisations of the Strichartz-Brenner inequality, Leningrad Math. J. 1 (1990), 693-726. | Zbl | MR
,[24] A Parametrix for the Nonstationary Schrödinger Equation, Differential Operators and Spectral Theory ; Amer. Math. Soc. Transl. Ser. 2, 189, (1999), 139-148. | MR | Zbl
, ,[25] Dispersive smoothing for Schrödinger equations, Math. Res. Lett. 3 (1996), no. 1, 77-91. | MR | Zbl | DOI
, ,[26] On nonlinear Schrödinger equations, Ann. I. H. P. Physique Théorique 46 (1987), no. 1, 113-129. | MR | Zbl | Numdam
,[27] A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987), no. 1, 193-203. | MR | Zbl
,[28] Endpoint Strichartz Estimates, Amer. J. Math. 120 (1998), no. 5, 955-980. | MR | Zbl | DOI
, ,[29] Smoothing Effects and Local Existence Theory for the Generalized Nonlinear Schrödinger Equations, Invent. Math. 134 (1998), no. 3, 489-545. | MR | Zbl | DOI
, , ,[30] On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no. 3, 617-633. | MR | Zbl | DOI
, , ,[31] Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), no. 9, 1221-1268. | MR | Zbl | DOI
, ,[32] On the local well-posedness on the Benjamin-Ono equation, to appear in I. M. R. N.. | MR | Zbl
, ,[33] Uniqueness of positive solutions of in , Arch. Rat. Mech. Ann. 105 (1989), no. 3, 243-266. | MR | Zbl
,[34] Non linear optic and supercritical wave equation. Hommage à Pascal Laubin, Bull. Soc. Roy. Sci. Liège 70 (2001), no. 4-6, 267-306 (2002). | MR | Zbl
,[35] The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109-145. | MR | Zbl | Numdam | DOI
,[36] The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincare Anal. Non Linéaire 1 (1984), no. 4, 223-283. | MR | Zbl | Numdam | DOI
,[37] Existence of nonstationary bubbles in higher dimensions, J. Math. Pures. Appl. 81 (2002), 1207-1239. | MR | Zbl | DOI
,[38] Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power, Duke Math. J. 69 (1993), no. 2, 427-454. | MR | Zbl | DOI
,[39] Blow-up dynamic and upper bound on blow-up rate for critical non linear Schrödinger equation, Université de Cergy-Pontoise, prépublication (2003). | MR | Zbl
, ,[40] On blow-up profile for critical non linear Schrödinger equation, Université de Cergy-Pontoise, prépublication (2003).
, ,[41] Exemples d'instabilités pour des équations d'ondes non linéaires [d'après G. Lebeau], Séminaire Bourbaki, 55ème année, 2002-2003, no. 911. | MR | Zbl | Numdam
,[42] Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations, Duke Math. J. 91 (1998), no. 2, 393-408. | MR | Zbl | DOI
,[43] Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger equations, J. Math. Anal. Appl. 155 (1991), no. 2, 531-540. | MR | Zbl | DOI
, ,[44] Blow-up solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary conditions, Springer Lecture Notes in Math. 1450 (1990), 236-251. | MR | Zbl
, ,[45] Methods of Modern Mathematical Physics, IV : Analysis of Operators, Academic Press, New York (1978). | MR
, ,[46] A parametrix construction for wave equation with coefficients, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 3, 797-835. | MR | Zbl | Numdam | DOI
,[47] On Strichartz and eigenfunction estimates for low regularity metrics, Math. Res. Lett. 1 (1994), no. 6, 729-737. | MR | Zbl | DOI
, ,[48] On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc. 8 (1995), no. 4, 879-916. | MR | Zbl | DOI
, ,[49] Fourier integrals in classical analysis, Cambridge tracts in mathematics (1993). | MR | Zbl
,[50] Oscillatory integrals and spherical harmonics, Duke Math. J. 53 (1986), no. 1, 43-65. | MR | Zbl | DOI
,[51] Strichartz Estimates for a Schrödinger Operator with nonsmooth Coefficients, Comm. Partial Differential Equations 27 (2002), no. 7-8, 1337-1372. | MR | Zbl | DOI
, ,[52] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705-714. | MR | Zbl | DOI
,[53] The nonlinear Schrödinger equation. Self-focusing and wave collapse, Applied Math. Sciences, 139, Springer-Verlag, New York (1992). | MR | Zbl
, ,[54] Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math. 122 (2000), no. 2, 349-376. | MR | Zbl | DOI
,[55] A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 177-178. | MR | Zbl | DOI
,[56] On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR 275 (1984), no. 4, 780-783. | MR | Zbl
,[57] Nonlinear Schrödinger equations and sharp interpolate estimates, Comm. Math. Phys. 87 (1983), no. 4, 567-576. | MR | Zbl | DOI
,[58] On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Part. Diff. Eq. 11 (1986), no. 5, 545-565. | MR | Zbl | DOI
,[59] Modulation stability of ground states of nonlinear Schrödinger equations, Siam. J. Math. Anal. 16 (1985), no. 3, 472-491. | MR | Zbl | DOI
,[60] Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (1987), no. 3, 415-426. | MR | Zbl | DOI
,[61] Collapse of Lagmuir waves, Sov. Phys. JETP 35 (1972), 908-914.
,[1] Contrôlabilité exacte, homogénéisation et localisation d'ondes dans un milieu non-homogène, Asymptot. Anal. 5 (1992), no. 6, 481-494. | MR | Zbl
, , ,[2] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., to appear. | MR | Zbl
, , ,[3] Analytic functions of absolutely convergent generalized trigonometric sums, Duke Math. J. 3 (1937), 682-688. | MR | Zbl | DOI
,[4] Concentration and lack of observability of waves in highly heterogeneous media, Arch. Ration. Mech. Anal. 164 (2002), no. 1, 30-72. | MR | Zbl | DOI
, ,[5] Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math. 48 (1995), no. 8, 769-860. | MR | Zbl | DOI
, , ,[6] Remarks on the Cauchy problem for Schrödinger-type equations, Comm. Partial Differential Equations 21 (1996), no. 1-2, 163-178. | MR | Zbl
,[7] Les anneaux normés commutatifs, Monographies internationales de mathématiques modernes, Gauthier-Villars Paris (1964). | Zbl
, and ,[8] Generalized Strichartz Inequalities for the Wave Equation, J. Funct. Anal. 133 (1995), no. 1, 50-68. | MR | Zbl | DOI
, ,[9] Dispersive smoothing for Schrödinger equations, Math. Res. Lett. 3 (1996), no. 1, 77-91. | MR | Zbl | DOI
, ,[10] Smoothing Effects and Local Existence Theory for the Generalized Nonlinear Schrödinger Equations, Invent. Math. 134 (1998), no. 3, 489-545. | MR | Zbl | DOI
, , ,[11] Hill's equation, Interscience tracts in pure and applies mathematics (1966). | MR | Zbl
, ,[12] A theorem on absolutely convergent trigonometric series, J. Math. Phys. 16 (1938), 191-195. | Zbl | JFM | DOI
,[13] Strichartz Estimates for a Schrödinger Operator with nonsmooth Coefficients, Comm. Partial Differential Equations 27 (2002), no. 7-8, 1337-1372. | MR | Zbl | DOI
and ,[14] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705-714. | MR | Zbl | DOI
,[15] A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 177-178. | MR | Zbl | DOI
,[1] Fourier transformation restriction phenomena for certain lattice subsets and application to the nonlinear evolution equations I. Schrödinger equations, Geom. and Funct. Anal. 3 (1993), no. 2, 107-156. | MR | Zbl | DOI
,[2] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, to appear in Amer. J. Math.. | MR | Zbl
, , ,[3] An instability property of the nonlinear Schrödinger equation on , Math. Res. Lett. 9 (2002), no. 2-3, 323-335. | MR | Zbl | DOI
, , ,[4] Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal. 13 (2003), 1-19. | MR | Zbl | DOI
, , ,[5] Inégalités de Sogge bilinéaires et équation de Schrödinger non-linéaire, Séminaire Equations aux Dérivées partielles, École Polytechnique, Palaiseau, mars 2003. | MR | Zbl
, , ,[6] The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Analysis 14 (1990), no. 10, 807-836. | MR | Zbl | DOI
, ,[7] Asymptotic, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, to appear in Amer. J. Math.. | MR | Zbl
, , ,[8] The global Cauchy problem for the nonlinear Schrödinger equation, Ann. I. H. P. Ann. non-lin. 2 (1985), no. 4, 309-327. | MR | Zbl | Numdam
, ,[9] The theory of spherical and ellipsoidal harmonics, Cambridge University Press (1955). | MR | JFM
,[10] On nonlinear Schrödinger equations, Ann. I. H. P. Phys. Th. 46 (1987), no. 1, 113-129. | MR | Zbl | Numdam
,[11] On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no. 3, 617-633. | MR | Zbl | DOI
, , ,[12] On the local well-posedness on the Benjamin-Ono equation, to appear in I. M. R. N.. | MR | Zbl
, ,[13] Optique non linéaire et ondes sur critiques, Séminaire Equations aux Dérivées partielles, 1999-2000, Exp. No. IV, 13 pp., Sémin. Équ. Dériv. Partielles, Ecole Polytechnique, Palaiseau (2000). | MR | Zbl
,[14] Exemples d'instabilités pour des équations d'ondes non linéaires [d'après G. Lebeau], Séminaire Bourbaki, 55ème année, 2002-2003, no. 911. | MR | Zbl | Numdam
,[15] Fourier integrals in classical analysis, Cambridge tracts in mathematics (1993). | MR | Zbl
,[16] Oscillatory integrals and spherical harmonics, Duke Math. J. 53 (1986), no. 1, 43-65. | MR | Zbl | DOI
,[17] The nonlinear Schrödinger equation. Self-focusing and wave collapse, Applied Math. Sciences, 139, Springer-Verlag, New York (1992). | MR | Zbl
, ,[18] Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705-714. | MR | Zbl | DOI
,[19] Existence of solutions for Schrödinger evolution equation, Comm. Math. Phys. 110 (1987), no. 3, 415-426. | MR | Zbl | DOI
,[1] Lower bounds for the minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Diff. Integral Eq. 15 (2002), no. 6, 749-768. | MR | Zbl
,[2] Nonlinear Schrödinger evolution equation, Nonlinear Analysis, Theory Methods Appl. 4 (1980), no. 4, 677-681. | MR | Zbl | DOI
, ,[3] Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal. 13 (2003), 1-19. | MR | Zbl | DOI
, , ,[4] An introduction to nonlinear Schrödinger equations, Textos de Métodos Matemáticos 26, Instituto de Matemática-UFRJ, Rio de Janeiro, RJ (1996).
,[5] Profile decomposition for the wave equation outside a convex obstacle, J. Math. Pures Appl. (9) 80 (2001), no. 1, 1-49. | MR | Zbl | DOI
, ,[6] On a class of Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. 32 (1979), no. 1, 1-71. | MR | Zbl
, ,[7] On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), no. 9, 1794-1797. | MR | Zbl | DOI
,[8] On nonlinear Schrödinger equations, Ann. I. H. P. Physique Théorique 46 (1987), no. 1, 113-129. | MR | Zbl | Numdam
,[9] A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987), no. 1, 193-203. | MR | Zbl
,[10] Uniqueness of positive solutions of in , Arch. Rat. Mech. Ann. 105 (1989), no. 3, 243-266. | MR | Zbl
,[11] The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109-145. | MR | Zbl | Numdam | DOI
,[12] The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223-283. | MR | Zbl | Numdam | DOI
,[13] Nemytskij operators in Sobolev spaces, Arch. Rat. Mech. Anal. 51 (1973), 347-370. | MR | Zbl | DOI
, ,[14] Existence of nonstationary bubbles in higher dimensions, J. Math. Pures. Appl. 81 (2002), 1207-1239. | MR | Zbl | DOI
,[15] Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power, Duke Math. J. 69 (1993), no. 2, 427-454. | MR | Zbl | DOI
,[16] Asymptotics for minimal blow-up solutions of critical nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 5, 553-565 | MR | Zbl | DOI | Numdam
,[17] Blow-up dynamic and upper bound on blow-up rate for critical non linear Schrödinger equation, Université de Cergy-Pontoise, preprint (2003). | MR | Zbl
, ,[18] On blow-up profile for critical non linear Schrödinger equation, Université de Cergy-Pontoise, preprint (2003).
, ,[19] On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa 3 (1959), no. 13, 115-162. | MR | Zbl | Numdam
,[20] Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger equations, J. Math. Anal. Appl. 155 (1991), no. 2, 531-540. | MR | Zbl | DOI
, ,[21] Blow-up solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary conditions, Springer Lecture Notes in Math. 1450 (1990), 236-251. | MR | Zbl
, ,[22] Methods of modern mathematical Physics IV : Analysis of Operators, Academic Press, New York (1978). | MR
, ,[23] The nonlinear Schrödinger equation. Self-focusing and wave collapse, Applied Math. Sciences, 139, Springer-Verlag, New York (1992). | MR | Zbl
, ,[24] On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR 275 (1984), no. 4, 780-783. | MR | Zbl
,[25] Nonlinear Schrödinger equations and sharp interpolate estimates, Comm. Math. Phys. 87 (1983), no. 4, 567-576. | MR | Zbl | DOI
,[26] On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Part. Diff. Eq. 11 (1986), no. 5, 545-565. | MR | Zbl | DOI
,[27] Modulation stability of ground states of nonlinear Schrödinger equations, Siam. J. Math. Anal. 16 (1985), no. 3, 472-491. | MR | Zbl | DOI
,[28] Collapse of Lagmuir waves, Sov. Phys. JETP 35 (1972), 908-914.
,