Inverses et propriétés spectrales des matrices de Toeplitz à symbole singulier
Thèses d'Orsay, no. 608 (2001) , 98 p.
@phdthesis{BJHTUP11_2001__0608__P0_0,
     author = {Rinkel, Jean-Marc},
     title = {Inverses et propri\'et\'es spectrales des matrices de {Toeplitz} \`a symbole singulier},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {608},
     year = {2001},
     language = {fr},
     url = {http://www.numdam.org/item/BJHTUP11_2001__0608__P0_0/}
}
TY  - BOOK
AU  - Rinkel, Jean-Marc
TI  - Inverses et propriétés spectrales des matrices de Toeplitz à symbole singulier
T3  - Thèses d'Orsay
PY  - 2001
IS  - 608
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_2001__0608__P0_0/
LA  - fr
ID  - BJHTUP11_2001__0608__P0_0
ER  - 
%0 Book
%A Rinkel, Jean-Marc
%T Inverses et propriétés spectrales des matrices de Toeplitz à symbole singulier
%S Thèses d'Orsay
%D 2001
%N 608
%I Université de Paris-Sud Centre d'Orsay
%U http://www.numdam.org/item/BJHTUP11_2001__0608__P0_0/
%G fr
%F BJHTUP11_2001__0608__P0_0
Rinkel, Jean-Marc. Inverses et propriétés spectrales des matrices de Toeplitz à symbole singulier. Thèses d'Orsay, no. 608 (2001), 98 p. http://numdam.org/item/BJHTUP11_2001__0608__P0_0/

[BL] P. M. Bleher, Inversion of Toeplitz matrices Trans. Moscow Math. Soc. vol. 2, 201-224 (1981). | Zbl

[BS] A. Böttcher and B. Silbermann. Analysis of Toeplitz operators, Springer Verlag 1990. | MR | Zbl | DOI

[GS] U. Grenander and G. Szegö, Toeplitz forms and their applications 2nd ed. Chelsea, New York 1984. | MR | Zbl

[K] M. Kac, Random walk and the theory of Brownian motion Am. Math. Mon. 54, 369-391 (1947). | MR | Zbl

[KMS] M. Kac, W. L. Murdoch and G. Szegö, On the eigenvalues of certain hermitian forms J. rat. Mech. Analysis 2, 767-800 (1953). | MR | Zbl

[Kes] H. Kesten Random walk with absorbing barriers and Toeplitz forms Illinois J. of Math. 5 267-290 (1961). | MR | Zbl

[KS] D. Kateb and A. Seghier, Expansion of the inverse of positive definite Toeplitz operators over polytopes Asymptotic Analysis 22 205-234 (2000). | MR | Zbl

[SP] S. Parter, Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations. Trans. Amer. Math. Soc. 99 153-192 (1961). | MR | Zbl | DOI

[RRS] P. Rambour, J.-M. Rinkel and A. Seghier, Inverse asymptotique de la matrice de Toeplitz et noyau de Green CRAS 331 (2000) | MR | Zbl

[S] A. Seghier, Inversion asymptotique des matrices de Toeplitz en d-dimension. J. of funct. analysis 67 380-412 (1986). | Zbl | DOI

[S1] A. Seghier, Expansion of the inverse of positive definite Toeplitz operators over polytopes. Asymptotic Analysis 22 205-234 (2000). | MR | Zbl

[StSe] S. Serra On the extreme eigenvalues of hermitian Toeplitz matrices Linear Algebra and its applications 270 109-129 (1998). | MR | Zbl | DOI

[SpSt] F. L. Spitzer and C. J. Stone, A class of Toeplitz forms and their applications to probability theory Illinois J. Of Math. 4 253-277 (1960). | MR | Zbl | DOI

[Wat] T. Watanabe, On a theorem of Spitzer and Stone Proc. Japan Academy 37 341-351 (1961). | MR | Zbl

[W1] H. Widom. On the eigenvalues of certain hermitian operators Trans. Amer. Math. Soc. 88 (1958). | MR | Zbl | DOI

[W2] H. Widom. Toeplitz determinant with singular generating function Amer. J. Math. 95 (1973). | MR | Zbl | DOI

[W3] H. Widom. Extreme eigenvalues of N-dimensional convolution operators Trans. Amer. Math. Soc. 106 391-414 (1963). | MR | Zbl