Mesure de Yang-Mills sur les surfaces compactes
Thèses d'Orsay, no. 584 (2000) , 136 p.
@phdthesis{BJHTUP11_2000__0584__A1_0,
     author = {L\'evy, Thierry},
     title = {Mesure de {Yang-Mills} sur les surfaces compactes},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud U.F.R. Scientifique d'Orsay},
     number = {584},
     year = {2000},
     language = {fr},
     url = {http://www.numdam.org/item/BJHTUP11_2000__0584__A1_0/}
}
TY  - BOOK
AU  - Lévy, Thierry
TI  - Mesure de Yang-Mills sur les surfaces compactes
T3  - Thèses d'Orsay
PY  - 2000
IS  - 584
PB  - Université de Paris-Sud U.F.R. Scientifique d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_2000__0584__A1_0/
LA  - fr
ID  - BJHTUP11_2000__0584__A1_0
ER  - 
%0 Book
%A Lévy, Thierry
%T Mesure de Yang-Mills sur les surfaces compactes
%S Thèses d'Orsay
%D 2000
%N 584
%I Université de Paris-Sud U.F.R. Scientifique d'Orsay
%U http://www.numdam.org/item/BJHTUP11_2000__0584__A1_0/
%G fr
%F BJHTUP11_2000__0584__A1_0
Lévy, Thierry. Mesure de Yang-Mills sur les surfaces compactes. Thèses d'Orsay, no. 584 (2000), 136 p. http://numdam.org/item/BJHTUP11_2000__0584__A1_0/

[Al] Albeverio, S., Høegh-Krohn, R., and Holden, H. Stochastic Lie group-valued measures and their relations to stochastic curve integrals, gauge fields and Markov cosurfaces. In Stochastic processes-mathematics and physics (Bielefeld, 1984). Springer, Berlin, 1986, pp. 1-24. | MR | Zbl

[AL] Ashtekar, A., and Lewandowski, J. Projective techniques and functional integration for gauge theories. J. Math. Phys. 36, 5 (1995), 2170-2191. | MR | Zbl | DOI

[AB] Atiyah, M. F., and Bott, R. The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A 308, 1505 (1983), 523-615. | MR | Zbl

[Au] Aubin, T. Some nonlinear problems in Riemannian geometry. Springer-Verlag, Berlin, 1998. | MR | Zbl

[Be] Becker, C. Wilson loops in two-dimensional space-time regarded as white noise. J. Fund. Anal. 134, 2 (1995), 321-349. | MR | Zbl | DOI

[BS] Becker, C., and Sengupta, A. Sewing Yang-Mills measures and moduli spaces over compact surfaces. J. Fund. Anal. 152, 1 (1998), 74-99. | MR | Zbl | DOI

[BG] Berger, M., and Gostiaux, B. Géométrie différentielle. Librairie Armand Colin, Paris, 1972. Maîtrise de mathématiques, Collection U/Série "Mathématiques". | MR | Zbl

[Bl] Bleecker, D. Gauge theory and variational principles. Addison-Wesley Publishing Co., Reading, Mass., 1981. | MR | Zbl

[B1] Bourbaki, N. Éléments de mathématique. I : Les structures fondamentales de l'analyse. Fascicule VIII. Livre III : Topologie générale. Chapitre 9 : Utilisation des nombres réels en topologie générale. Hermann, Paris, 1958. Deuxième édition revue et augmentée. Actualités Scientifiques et Industrielles, No. 1045. | MR | Zbl

[B2] Bourbaki, N. Éléments de mathématique. Fasc. XXVI. Groupes et algèbres de Lie. Chapitre I : Algèbres de Lie. Hermann, Paris, 1971. Seconde édition. Actualités Scientifiques et Industrielles, No. 1285. | MR | Zbl

[Br] Bröcker, T., and Tom Dieck, T. Representations of compact Lie groups. Springer-Verlag, New York, 1995. Translated from the German manuscript, Corrected reprint of the 1985 translation. | MR | Zbl

[Ch] Chern, S.-S. An elementary proof of the existence of isothermal parameters on a surface. Proc. Amer. Math. Soc. 6 (1955), 771-782. | MR | Zbl | DOI

[Ck] Choksi, J. R. Inverse limits of measure spaces. Proc. London Math. Soc. (3) 8 (1958), 321-342. | MR | Zbl | DOI

[DM] Dellacherie, C., and Meyer, P.-A. Probabilities and potential. C. North-Holland Publishing Co., Amsterdam, 1988. | MR | Zbl

[dC] Do Carmo, M. P. A. Riemannian geometry. Birkhäuser Boston Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. | MR | Zbl

[Dr1] Driver, B. K. Two-dimensional Euclidean quantized Yang-Mills fields. In Probability models in mathematical physics (Colorado Springs, CO, 1990). World Sci. Publishing, Teaneck, NJ, 1991, pp. 21-36. | MR

[Dr2] Driver, B. K. YM2 : continuum expectations, lattice convergence, and lassos. Comm. Math. Phys. 123, 4 (1989), 575-616. | MR | Zbl | DOI

[Fi1] Fine, D. S. Quantum Yang-Mills on the two-sphere. Comm. Math. Phys. 134, 2 (1990), 273-292. | MR | Zbl | DOI

[Fi2] Fine, D. S. Quantum Yang-Mills on a Riemann surface. Comm. Math. Phys. 140, 2 (1991), 321-338. | MR | Zbl | DOI

[Fo] Forman, R. Small volume limits of 2-d Yang-Mills. Comm. Math. Phys. 151, 1 (1993), 39-52. | MR | Zbl | DOI

[Gy] Gray, A. Tubes. Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1990. | MR | Zbl

[Gr] Gross, L. A Poincaré lemma for connection forms. J. Fund. Anal. 63, 1 (1985), 1-46. | MR | Zbl | DOI

[GKS] Gross, L., King, C., and Sengupta, A. Two-dimensional Yang-Mills theory via stochastic differential equations. Ann. Physics 194, 1 (1989), 65-112. | MR | Zbl | DOI

[IW] Ikeda, N., and Watanabe, S. Stochastic differential equations and diffusion processes, second ed. North-Holland Publishing Co., Amsterdam, 1989. | MR | Zbl

[KS] King, C., and Sengupta, A. The semiclassical limit of the two-dimensional quantum Yang-Mills model. J. Math. Phys. 35, 10 (1994), 5354-5361. Topology and physics. | MR | Zbl | DOI

[KN] Kobayashi, S., and Nomizu, K. Foundations of differential geometry. Vol. I. John Wiley & Sons Inc., New York, 1996. Reprint of the 1963 original, A Wiley-Interscience Publication. | MR

[Ku] Kuratowski, K. Topology. Vol. I. Academic Press, New York, 1966. New edition, revised and augmented. Translated from the French by J. Jaworowski. | MR | Zbl

[Liu] Liu, K. Heat kernel and moduli space. Math. Res. Lett. 3, 6 (1996), 743-762. | MR | Zbl | DOI

[Ma] Massey, W. S. A basic course in algebraic topology. Springer-Verlag, New York, 1991. | MR | Zbl

[Mi] Migdal, A. A. Recursion equations in gauge field theories. Sov. Phys. JETP 42, 3 (1975), 413-418.

[Se1] Sengupta, A. The Yang-Mills measure for S2. J. Fund. Anal. 108, 2 (1992), 231-273. | MR | Zbl | DOI

[Se2] Sengupta, A. Gauge theory on compact surfaces. Mem. Amer. Math. Soc. 126, 600 (1997), viii+85. | MR | Zbl

[Se3] Sengupta, A. Yang-Mills on surfaces with boundary: quantum theory and symplectic limit. Comm. Math. Phys. 183, 3 (1997), 661-705. | MR | Zbl | DOI

[Si] Simon, B. Representations of finite and compact groups. American Mathematical Society, Providence, RI, 1996. | MR | Zbl

[Va] Varopoulos, N. T., Saloff-Coste, L., and Coulhon, T. Analysis and geometry on groups. Cambridge University Press, Cambridge, 1992. | MR | Zbl

[Wi] Witten, E. On quantum gauge theories in two dimensions. Comm. Math. Phys. 141, 1 (1991), 153-209. | MR | Zbl | DOI