Structures différentielles en géométrie algébrique
Thèses d'Orsay, no. 573 (2000) , 86 p.

This thesis deals on the one hand with some differential structures on algebraic varieties and on the other hand with sheaves on cubic hypersurfaces in the four dimentional projective space.

In a first part, we give a complete description of non trivial quasi-regular Poisson structures on projective threefolds.

The second part is devoted to contact structures on toric varieties and the third one to contact structures on projective five dimensional manifolds. We show furthermore that a contact manifold has negative Kodaira dimension.

In the fourth part, we describe projective manifolds whose tangent bundle split as a direct sum of line bundles with the assumption that the direct summands are integrable.

Finally, in the fifth part, we show that the moduli space of rank two semistable sheaves on a cubic threefold, with trivial first and third Chern classes and with second Chern class twice the class of a line, is isomorphic to the blow up of the intermediate Jacobian of the aforesaid cubic along a smooth surface.

Classification : 14D20, 14F05, 14J10, 14J60, 14K30, 14M25, 53D10, 53D17
Mots-clés : Algebraic geometry, Poisson manifolds, Contact manifolds, Toric varieties, Mori theory, Vector bundles, Moduli spaces, Intermediate Jacobians
@phdthesis{BJHTUP11_2000__0573__A1_0,
     author = {Druel, St\'ephane},
     title = {Structures diff\'erentielles en g\'eom\'etrie alg\'ebrique},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud U.F.R. Scientifique d'Orsay},
     number = {573},
     year = {2000},
     language = {fr},
     url = {http://www.numdam.org/item/BJHTUP11_2000__0573__A1_0/}
}
TY  - BOOK
AU  - Druel, Stéphane
TI  - Structures différentielles en géométrie algébrique
T3  - Thèses d'Orsay
PY  - 2000
IS  - 573
PB  - Université de Paris-Sud U.F.R. Scientifique d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_2000__0573__A1_0/
LA  - fr
ID  - BJHTUP11_2000__0573__A1_0
ER  - 
%0 Book
%A Druel, Stéphane
%T Structures différentielles en géométrie algébrique
%S Thèses d'Orsay
%D 2000
%N 573
%I Université de Paris-Sud U.F.R. Scientifique d'Orsay
%U http://www.numdam.org/item/BJHTUP11_2000__0573__A1_0/
%G fr
%F BJHTUP11_2000__0573__A1_0
Druel, Stéphane. Structures différentielles en géométrie algébrique. Thèses d'Orsay, no. 573 (2000), 86 p. http://numdam.org/item/BJHTUP11_2000__0573__A1_0/

[Be1] A. Beauville, Fano Contact Manifolds and Nilpotent Orbits, Comment. Math. Helvet. 73 (1998), 566-583. | MR | Zbl | DOI

[Be2] A. Beauville, Complex manifolds with split tangent bundle dans Complex analysis and algebraic geometry, Vol. en mémoire de M.Schneider, 61-70, de Gruyter (2000). | MR | Zbl

[Bo] F. Bottacin, Poisson structures on moduli spaces of sheaves over Poisson surfaces, Invent. Math., 121 (1995), 421-436. | MR | Zbl | DOI

[De] J. P. Demailly, On the Frobenius integrability of certain holomorphic p-forms, AG/0004067. | Zbl | DOI

[D1] S. Druel, Structures de Poisson sur les variétés algébriques de dimension 3, Bull. Soc. Math. France 127 (1999), 229-253. | MR | Zbl | Numdam | DOI

[D2] S. Druel, Structures de contact sur les variétés toriques, Math. Ann. 313 (1999), 429-435. | MR | Zbl | DOI

[D3] S. Druel, Structures de contact sur les variétés algébriques de dimension 5, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), 365-368. | MR | Zbl

[D4] S. Druel, Variétés algébriques dont le fibré tangent est totalement décomposé, J. reine u. angew. Math. 522 (2000), 161-171. | MR | Zbl

[D5] S. Druel, Espace des modules des faisceaux de rang 2 semi-stables de classes de Chern c 1 = 0 , c 2 = 2 et c 3 = 0 sur la cubique de 𝐏 4 , à paraître dans Int. Math. Reser. Notices. | MR | Zbl

[IM] A. Iliev, D. Markushevich, The Abel-Jacobi map for a cubic threefold and periods of Fano threefolds of degree 14, Documenta Math. 5 (2000), 23-47. | MR | Zbl | DOI

[KPSW] S. Kebekus, T. Peternell, A. J. Sommese, J. Wisniewski, Projective contact manifolds, AG/9810102. | Zbl | DOI

[L] C. Lebrun, Fano manifolds, contact structures and quaternionic geometry, Int. journ. of Math., 6 (1995), 419-437. | MR | Zbl | DOI

[MT] D. Markushevich, A. S. Tikhomirov, The Abel-Jacobi map of a moduli component of vectors bundles on the cubic threefold, math. AG/9809140, à paraître dans J. Alg. Geom. | MR | Zbl

[W] A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom., 18 (1983), 523-557. | MR | Zbl

[Y] Y-G. Ye, A note on complex projective threefolds admitting holomorphic contact structures, Invent. Math., 121 (1995), 421-436. | MR | Zbl

[BPV] W. Barth, C. Peters, A. Van De Ven, Compact complex surfaces, Springer-Verlag (1984). | MR | Zbl | DOI

[Be1] A. Beauville, Surfaces algébriques complexes, Astérisque 54 (1978). | MR | Zbl | Numdam

[Be2] A. Beauville, Variétés de Prym et Jacobiennes intermédiaires, Ann. scient. Ec. Norm. Sup., 4ième série, 10 (1977), 309-391. | MR | Zbl | Numdam | DOI

[Be3] A. Beauville, Jp. Bourguignon, M. Demazure, Géométrie des surfaces K3 : modules et periodes, Astérisque 126 (1985). | MR | Zbl | Numdam

[F] T. Fujita, On Kähler fiber spaces over curves, J. Math. Soc. Japan, 30 (1978), 779-794. | MR | Zbl | DOI

[G] A. Grothendieck, Construction de l'espace de Teichmuller, Séminaire H.Cartan, 13, 1960-61.

[H] R. Hartshorne, Algebraic Geometry, Graduate Text in Mathematics, Springer-Verlag (1977). | MR | Zbl | DOI

[Ka1] Y. Kawamata, Minimal models and the Kodaira dimension of algebraic fiber spaces J. de Crelle, 363 (1985), 1-46. | MR | Zbl

[Ka2] Y. Kawamata, Pluricanonical systems on minimal algebraic varieties, Invent. Math., 79 (1985), 567-588. | MR | Zbl | DOI

[KO] S. Kobayashi, T. Ochiai, Holomorphic structures modeled after hyperquadrics, Tôhoku Math. J., 34 (1982), 587-629. | MR | Zbl | DOI

[Ko] J. Kollár, Higher direct images of dualizing sheaves, Ann. of Math., 123 (1986), 11-42. | MR | Zbl | DOI

[MP] Y. Miyaoka, T. Peternell, Geometry of Higher Dimensional Algebraic Varieties, DMV seminar, 26, Birkauser (1997). | MR | Zbl

[Mo] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math., 116 (1982), 133-176. | MR | Zbl | DOI

[Mu] S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math., 94 (1988), 183-221. | MR | Zbl | DOI

[R] M. Reid, Bogomolov's theorem c 1 2 4 c 2 , Int. Sympos. on Algebraic Geometry Kyoto (1977), 623-642. | MR | Zbl

[U] Y. Umezu, On normal projective surfaces with trivial dualizing sheaf, Tokyo J. Math, 4 (1981), 343-354. | MR | Zbl | DOI

[B] A. Beauville, Fano Contact Manifolds and Nilpotent Orbits, Comment. Math. Helvet. 73 (1998), 566-583. | MR | Zbl | DOI

[D] V.I. Danilov, The geometry of toric varieties, Russian Math. Surveys, 33 (1978), 97-154. | Zbl | MR | DOI

[Dru] S. Druel, Variétés algébriques dont le fibré tangent est totalement décomposé, J. reine u. angew. Math. 522 (2000). | MR | Zbl

[F] W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies, Princeton University Press, 131 (1993). | MR | Zbl

[K] A.A. Klyachko, Equivariant Bundles on Toral Varieties, Math. USSR Izv., 35 (1990), 337-375. | Zbl | MR | DOI

[L] C. Lebrun, Fano manifolds, contact structures and quaternionic geometry, Int. journ. of Math., 6 (1995), 419-437. | MR | Zbl | DOI

[M] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. Math., 116 (1982), 133-176. | MR | Zbl | DOI

[O1] T. Oda, Lectures on Torus Embeddings and Applications, Tata Inst. of Fund. Research, 58, Springer (1978). | MR | Zbl

[O2] T. Oda, Convex Bodies and Algebraic Geometry, 15, Springer-Verlag (1988). | MR | Zbl

[R] M. Reid, Decomposition of toric morphisms, dans Arithmetic and Geometry, papers dedicated to I.R. Shafarevitch on the occasion of his 60th birthday, Progress in Math. 36 (1983), Birkhauser, 395-418. | Zbl

[W1] J. Wisniewski, Length of extremal rays and generalized adjonction, Math. Z., 200 (1989), 409-427. | MR | Zbl | DOI

[W2] J. Wisniewski, On contractions of extremal rays on Fano manifolds, J. reine u. angew. Math. 417 (1991), 141-157. | MR | Zbl

[Y] Y-G. Ye, A note on complex projective threefolds admitting holomorphic contact structures, Invent. Math. 121 (1995), 421-436. | MR | Zbl

[A] T. Ando, On extremal rays of the higher dimensional varieties, Invent. Math. 81 (1985), 347-357. | MR | Zbl | DOI

[AW1] M. Andreatta, J. Wisniewski, A note on vanishing and applications, Duke Math. J. 72 (1993), 739-755. | MR | Zbl | DOI

[AW2] M. Andreatta, J. Wisniewski, A view on contractions of higher dimensional varieties., Proc. Sympos. Pure Math. 62, Part 1 (1997), 153-183. | MR | Zbl | DOI

[Be] A. Beauville, Fano Contact Manifolds and Nilpotent Orbits, Comment. Math. Helvet. 73 (1998), 566-583. | MR | Zbl | DOI

[Bo] W.M. Boothby, Homogeneous complex contact manifolds, Proc. Symp. Proc. Math. 3 (1959), 144-154. | MR | Zbl | DOI

[F1] T. Fujita, On the structure of polarized manifods with total deficiency one, I, J. Math. Soc. Japan 32 (1980), 709-725. | MR | Zbl | DOI

[F2] T. Fujita, On the structure of polarized manifods with total deficiency one II, J. Math. Soc. Japan 33 (1981), 415-434. | MR | Zbl | DOI

[F3] T. Fujita, On the structure of polarized manifods with total deficiency one III, J. Math. Soc. Japan 36 (1984), 75-89. | MR | Zbl | DOI

[KO] S. Kobayashi, T. Ochiai, Characterization of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13 (1973), 31-47. | MR | Zbl

[KMM] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem, Adv. Stud. Pure Math. 10 (1987), 283-360. | MR | Zbl | DOI

[L] C. Lebrun, Fano manifolds, contact structures and quatemionic geometry, Int. journ. of Math. 6 (1995), 419-437. | MR | Zbl | DOI

[Me] M. Mella, Existence of good divisors on Mukai varieties, J. Algebraic Geom. 8 (1999), 197-206. | MR | Zbl

[Mo] S. Mori, Projective manifolds with ample tangent bundles, Ann. of Math. 110 (1979), 593-606. | MR | Zbl | DOI

[Mu] S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Nat. Sci. USA 86 (1989), 3000-3002. | MR | Zbl | DOI

[W1] J. Wisniewski, Length of extremal rays and generalized adjonction, Math. Zeit. 200 (1989), 409-427. | MR | Zbl | DOI

[W2] J. Wisniewski, On contractions of extremal rays on Fano manifolds, J. reine u. angew Math. 417 (1991), 141-157. | MR | Zbl

[Y] Y-G. Ye, A note on complex projective threefolds admitting holomorphic contact structures, Invent. Math. 121 (1995), 421-436. | MR | Zbl

[B1] A. Beauville, Complex manifolds with split tangent bundle dans Complex analysis and algebraic geometry, Vol. en mémoire de M.Schneider, 61-70, de Gruyter (2000). | MR | Zbl

[B2] A. Beauville, Annulation du H1 pour les fibrés en droites plats, Lecture Notes in Math., 1507 (1992), 1-15. | MR | Zbl

[D] S. Druel, Structures de Poisson sur les variétés algébriques de dimension trois, Bulletin de la Société Math. de France, 127 (1999), 229-253. | MR | Zbl | Numdam | DOI

[KO] S. Kobayashi, T. Ochiai, Holomorphic structures modeled after hyperquadrics, Tôhoku Math. J., 34 (1982), 587-629. | MR | Zbl | DOI

[K] J. Kollár, Rational curves on algebraic varieties Springer, Berlin-Heidelberg-New-York-Tokyo, 32 (1996). | MR | Zbl

[Mi] Y. Miyaoka, The Chern classes and Kodaira dimension of minimal variety, Advanced Study in Pure Math., 10 (1987), 449-476. | MR | Zbl

[M1] S. Mori, Projective manifolds with ample tangent bundles, Ann. of Math., 110 (1979), 593-606. | MR | Zbl | DOI

[M2] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math., 116 (1982), 133-176. | MR | Zbl | DOI

[Mu] D. Mumford, Abelian Varieties, Oxford University Press (1970). | MR | Zbl

[S] C. Simpson, Subspaces of moduli spaces of rank one local systems, Ann. Sci. École Norm. Sup., 26 (1993), 361-401. | MR | Zbl | Numdam | DOI

[W] J. Wisniewski, Length of extremal rays and generalized adjunction, Math. Z., 200 (1989), 409-427. | MR | Zbl | DOI

[ACGH] E. Arbarello, M. Cornalba, P. Griffits, J. Harris, Geometry of Algebraic curves I, Grundleheren der math. Wissenschaften, vol. 267, Springer Verlag (1985). | MR | Zbl

[H1] R. Hartshorne, Stable vector bundles of rank 2 on P3, Math. Ann. 238 (1978), 229-280. | MR | Zbl | DOI

[H2] R. Hartshorne, Stable reflexives sheaves, Math. Ann. 254 (1980), 121-176. | MR | Zbl | DOI

[IM] A. Iliev, D. Markushevich, The Abel-Jacobi map for a cubic threefold and periods of Fano threefolds of degree 14, Documenta Math. 5 (2000), 23-47. | MR | Zbl | DOI

[La] Y. Laszlo, Local structure of the moduli space of vector bundles over curves, Comment. Math. Helvetici 71 (1996), 373-401. | MR | Zbl | DOI

[L] D. Luna, Slices étales, Mém. Soc. Math. France 33 (1973), 81-105. | MR | Zbl | Numdam | DOI

[Lu] Z. Luo, Factorization of birational morphisms of regular schemes, Math. Z. 212 (1993), 505-509. | MR | Zbl | DOI

[MT] D. Markushevich, A.S. Tikhomirov, The Abel-Jacobi map of a moduli component of vectors bundles on the cubic threefold, math. AG/9809140, à paraître dans J. Alg. Geom. | MR | Zbl

[M] M. Maruyama, Boundedness of semi-stable sheaves of small ranks, Nagoya Math. J. 78 (1980), 65-94. | MR | Zbl | DOI

[Mum] D. Mumford, Lectures on curves on an algebraic surface, Annals of Math. Sudies 59, Princeton university Press (1966). | MR | Zbl

[Mu] J.P. Murre, Some results on cubic threefolds dans Classification of algebraic varieties and compact complex manifolds, Springer-Verlag Lecture Notes 412 (1974), 140-164. | MR | Zbl

[O] K. O'Grady, Desingularized moduli spaces of sheaves on a K3, J. Reine Angew Math. 512 (1999), 49-117. | MR | Zbl | DOI

[S] C. Simpson, Moduli of representations of the fundamental group of a smooth variety, Publ. Math. IHES 79 (1994), 47-129. | MR | Zbl | Numdam | DOI

[T] A.N. Tyurin, The Fano surface of a nonsingular cubic in P4, Izv. Akad. Nauk. SSSR Ser. Mat. 34 (1970), 1200-1208. | MR | Zbl