@phdthesis{BJHTUP11_2000__0572__P0_0, author = {Del Castillo, Pierre}, title = {\'Etude de champs critiques en th\'eorie de {Ginzburg-Landau}}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e de Paris-Sud Centre d'Orsay}, number = {572}, year = {2000}, language = {fr}, url = {http://www.numdam.org/item/BJHTUP11_2000__0572__P0_0/} }
Del Castillo, Pierre. Étude de champs critiques en théorie de Ginzburg-Landau. Thèses d'Orsay, no. 572 (2000), 172 p. http://numdam.org/item/BJHTUP11_2000__0572__P0_0/
[1] On the solutions of the one-dimensional Ginzburg-Landau equations for superconductivity. Physica D 132, No. 1-2, p. 214-232, 1999. | MR | Zbl | DOI
et .[2] Uniqueness of solutions of the Ginzburg-Landau system for thin films. Preprint LMENS, 1999. | MR | Zbl
et .[3] Vortices for a variational problem related to superconductivity. Amn. Inst. Henri Poincaré, Anal, non linéaire 12, No. 3, p. 243-303, 1993. | MR | Zbl | Numdam | DOI
et .[4] Existence and uniqueness for the half-space Ginzburg-Landau model. A paraître dans Nonlinear Analysis, Theory, Methods and Applications. | MR | Zbl
et[5] Rigorous results for the Ginzburg-Landau equations associated to a superconducting film in the weak limit. Reviews in Mathematical Physics, vol. 8, No. 1, p. 43-83, 1996. | MR | Zbl | DOI
et .[6] Rigorous results on the Ginzburg-Landau models in a film submitted to an exterior magnetic field. Part I. Nonlinear Studies No. 3, p. 1-29, 1996. | MR | Zbl
et .[7] Upper bound for the solution of the Ginzburg-Landau equations in a semi-infinite superconducting field and applications to the superheating field in the large regime. European Journal of Applied Mathematics, Vol. 8, p. 347-367, 1997. | MR | Zbl | DOI
et .[8] Proof of the De Gennes formula for the superheating field in the weak limit. Annales de l'Institut Henri Poincaré (section analyse non linéaire), Vol. 14, No. 5, p. 597-613, 1997. | MR | Zbl | Numdam | DOI
et .[9] Superheating field in a semi-infinite film in the weak limit : numerical results an approximate models. Mathematical modelling and numerical analysis, Vol. 31, No 1, p. 121-165, Novembre 1997. | MR | Zbl | Numdam
et .[10] Superheating field for the Ginzburg-Landau equations in the case of a large bounded interval. A paraître dans J. Math. Phys. (2000) . | MR | Zbl
, et .[11] Asymptotic analysis of the Ginzburg-Landau model of superconductivity : Reduction to a free boundary model. Lakshmikantham, 5. (ed), World congress of nonlinear analysts'92. Proceedings of the first world congress, Tampa, FL, USA, August 19-26, 1992. | MR | Zbl
.[12] Superheating field of type II superconductors. Siam J. Appl. Math., Vol. 55, No 5, p. 1233-1258, 1995. | MR | Zbl | DOI
.[13] Superconductivity : selected topics in solid state physics and theoretical Physics. Proc. of 8 th Latin american school of physics, Caracas, 1966.
.[14] On the theory of superconductivity". Nuovo Cimento 2, p. 1234, 1955. | Zbl | DOI
. "[15] On the destruction and the onset of superconductivity in a magnetic field. Soviet Physics JETP 7, 78, 1958. | Zbl
.[16] On the theory of superconductivity". Zh. Eksperim. i teor. Fiz. 20 1950, p. 1064-1082 English translation in Men of Physics : L. D. Landau, I, Ed. by D. Ter Harr, Pergamon oxford, 1965, p. 138-167., 1965.
et . "[17] Quantum Fluids. ed. D. F. Brewer, p. 26, Amsterdam, North Holland, 1966.
.[18] First and second order phase transitions of moderately small superconductor in a magnetic field. North-Holland, 1978.
, et .[19] Superheating fields of superconductors : Asymptotic analysis and numerical results. Physical Review B, vol. 53, No 9, 1996. Erratum : Vol. 56, No. 5, 1997.
, et .[20] On the one-dimensional Ginzburg-Landau BVPs. Diff. Int. Equations 8, p. 1395-1405, 1995. | MR | Zbl
.[21] Superconductive superheating field for finite . Z. Physik B 25, p. 359-361, 1976. | DOI
.[22] Uniqueness of symmetric vortex solutions in the Ginzburg-Landau model of superconductivity. J. Funct. Anal. 167, No. 2, p. 399-424, 1999 | MR | Zbl | DOI
, et .[23] Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field. Annales de l'Institut Henri Poincare, Analyse non linéaire | MR | Zbl | Numdam
et .[24] Stable configurations in superconductivity : uniqueness, multiplicity, and vortex-nucleation. Archive for Rational Mechanics and Analysis 149, No. 4, p. 329-365, 1999 | MR | Zbl | DOI
.[25] Local minimizers for the Ginzburg-Landau energy near critical magnetic field : Part I. Commun. Contemp. Math. 1, No. 2, p. 213-254, 1999 | MR | Zbl
.[26] Local minimizers for the Ginzburg-Landau energy near critical magnetic field : Part II. Archive for rational mechanics and analysis, November 1998. | Zbl
.[27] Variational methods. Springer, Berlin, 1990. | MR | Zbl | DOI
.[28] Perturbation methods in fluid mechanics. Academic Press, Stanford CA, 1975. | MR | Zbl
.[1] On the solutions of the one-dimensionnal Ginzburg-Landau equations for superconductivity. Physica D 132, No. 1-2, p. 214-232, 1999. | MR | Zbl | DOI
et .[2] Existence and uniqueness for the half-space Ginzburg-Landau model. A paraître dans Nonlinear Analysis, Theory, Methods and Applications. | MR | Zbl
et[3] Superheating field for the Ginzburg-Landau equations in the case of a large bounded interval. A paraître dans J. Math. Phys. (2000). | MR | Zbl
., et[4] Rigorous results for the Ginzburg-Landau equations associated to a superconducting film in the weak limit. Reviews in Mathematical Physics, Vol. 8, No. 1, p. 43-83, 1996. | MR | Zbl | DOI
et .[5] Upper bound for the solution of the Ginzburg-Landau equations in a semi-infinite superconducting field and applications to the superheating field in the large regime. European Journal of Applied Mathematics, Vol. 8, p. 347-367, 1997. | MR | Zbl | DOI
et .[6] Rigorous results on the Ginzburg-Landau models in a film submitted to an exterior magnetic field. Part I. Nonlinear Studies No. 3, p. 1-29, 1996. | MR | Zbl
et .[7] Rigorous results on the Ginzburg-Landau models in a film submitted to an exterior parallel magnetic field. Part II. Nonlinear Studies, Vol. 3, No. 1, p. 43-83, 1996. | Zbl
et .[8] Superheating field in a semi-infinite film in the weak limit : numerical results and approximate models. Mathematical modelling and numerical analysis, Vol. 31, No. 1, p. 121 à 165, Novembre 1997. | MR | Zbl | Numdam | DOI
et .[9] A priori estimates for Ginzburg-Landau solutions. Contribution pour Cargèse, 1999. A paraître dans NATO Science Series. | Zbl
et .[10] On the one-dimensional Ginzburg-Landau BVPs. Diff. Int. Equations 8, p. 1395-1405, 1995. | MR | Zbl
.[1] Rigorous results for the Ginzburg-Landau equations associated to a superconducting film in the weak limit. Reviews Mathematical Physics, Vol. 8, No.1, p. 43-83, 1996. | MR | Zbl | DOI
et .[2] Rigorous results on the Ginzburg-Landau models in a film submitted to an exterior magnetic field. Part I. Nonlinear Studies No. 3, p. 1-29, 1996. | MR | Zbl
et .[3] Proof of the De Gennes formula for the superheating field in the weak limit. Annales de l'Institut Henri Poincaré (section analyse non linéaire), Vol. 14, No. 5, p. 597-613, 1997. | MR | Zbl | Numdam | DOI
et .[4] On a family of solutions of the second painlevé equation related to superconductivity. European Journal of Applied Mathematics, Vol. 9, No. 3, p. 223-243, 1998. | MR | Zbl | DOI
et .[5] Upper bound for the solution of the Ginzburg-Landau equations in a semi-infinite superconducting field and applications to the superheating field in the large regime. European Journal of Applied Mathematics, Vol. 8, p. 347-367, 1997. | MR | Zbl | DOI
et .[6] A priori estimates for Ginzburg-Landau solutions. Contribution pour Cargèse, 1999. A paraître dans NATO Science Series. | Zbl
et .[7] Asymptotic analysis of the Ginzburg-Landau model of superconductivity : Reduction to a free boundary model. Lakshmikantham, 5. (ed), World congress of nonlinear analysts'92. Proceedings of the first world congress, Tampa, FL, USA, August 19-26, 1992. | MR | Zbl
.[8] Superheating field of type ii superconductors. Siam J. Appl. Math., vol. 55, No. 5, p. 1233-1258, 1995. | MR | Zbl | DOI
.[9] Superconductivity : selected topics in solid state physics and theoretical Physics. Proc. of 8 th Latin american school of physics, Caracas, 1966.
.[10] Quantum Fluids. ed. D. F. Brewer, p. 26, Amsterdam, North Holland, 1966.
.[11] First and second order phase transitions of moderately small superconductor in a magnetic field. North-Holland, 1978.
, et .[12] Superheating fields of superconductors : Asymptotic analysis and numerical results. Physical Review B, vol. 53, No. 9, 1996.
, et .[13] Erratum : Superheating fields of superconductors: Asymptotic analysis and numerical results. Physical Review B, vol. 56, No. 5, 1997.
, et .[14] Superconductive superheating field for finite . Z. physik B25, p. 359-361, 1976. | DOI
.[15] Perturbation Methods in fluid mechanics. Academic Press, Stanford CA, 1975. | MR | Zbl
.[1] Rigorous results for the Ginzburg-Landau equations associated to a superconducting film in the weak limit. Reviews in Mathematical Physics, Vol. 8, No. 1, p. 43-83, 1996. | MR | Zbl | DOI
et .[2] Rigorous results on the Ginzburg-Landau models in a film submitted to an exterior magnetic field. Part I. Nonlinear Studies No. 3, p. 1-29, 1996. | MR | Zbl
et .[3] Rigorous results on the Ginzburg-Landau models in a film submitted to a exterior parallel magnetic field. Part II. Nonlinear Studies, Vol. 3, No. 1, p. 43-83, 1996. | Zbl
et .[4] Superheating field in a semi-infinite film in the weak limit : numerical results an approximate models. Mathematical modelling and numerical analysis, Vol. 31, No. 1, p. 121-165, Novembre 1997. | MR | Zbl | Numdam | DOI
et .[5] Superheating field for the Ginzburg-Landau equations in the case of a large bounded interval. A paraître dans J. Math. Phys. (2000) . | MR | Zbl
, et .[6] Superheating in a semi-infinite film in the weak limit : numerical results and approximate models Mathematical modelling and numerical analysis, Vol. 31, No. 1, p. 121-165, 1997. | MR | Zbl | Numdam | DOI
et .[7] Uniqueness of symmetric vortex solutions in the Ginzburg-Landau model of superconductivity. J. Funct. Anal. 167, No. 2, p. 399-424, 1999 | MR | Zbl | DOI
, et .[8] Variational methods. Springer, Berlin, 1990. | MR | Zbl | DOI
.[1] Rigorous results for the Ginzburg-Landau equations associated to a superconducting film in the weak limit. Reviews in Mathematical Physics, Vol. 8, No. 1, p. 43-83, 1996. | MR | Zbl | DOI
et .[2] Rigorous results on the Ginzburg-Landau models in a film submitted to an exterior magnetic field. Part I. Nonlinear Studies No. 3, p. 1-29, 1996. | MR | Zbl
et .[3] Rigorous results on the Ginzburg-Landau models in a film submitted to an exterior parallel magnetic field. Part II. Nonlinear Studies, Vol. 3, No. 1, p. 43-83, 1996. | Zbl
et .[4] Proof of the De Gennes formula for the superheating field in the weak limit. Annales de l'Institut Henri Poincaré (section analyse non linéaire), Vol. 14, No. 5, p. 597-613, 1997. | MR | Zbl | DOI | Numdam
et .[5] A priori estimates for Ginzburg-Landau solutions. Contribution pour Cargèse, 1999. | Zbl
et .[6] Superheating field in a semi-infinite film in the weak limit : numerical results and approximate models. Mathematical modelling and numerical analysis, Vol. 31, No. 1, p. 121-165, Novembre 1997. | MR | Zbl | DOI | Numdam
et .[7] On the theory of superconductivity". Zh. Eksperim. i teor. Fiz. 20 1950, p. 1064-1082 English translation in Men of Physics : L. D. Landau, I, Ed. by D. Ter Harr, Pergamon Oxford, 1965, p. 138-167, 1965.
et . "[8] Superheating fields of superconductors: Asymptotic analysis and numerical results. Physical Review B, Vol. 53, No. 9, 1996.
, et .[9] Superconductive superheating field for finite . Z. Physik B25, p. 359-361, 1976. | DOI
.[10] Perturbation Methods in fluid mechanics. Academic Press, Stanford CA, 1975. | MR | Zbl
.