@phdthesis{BJHTUP11_1999__0539__P0_0, author = {Ben Hariz, Samir}, title = {Th\'eor\`emes limites pour des processus faiblement ou fortement d\'ependants : applications statistiques}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e de Paris-Sud U.F.R. Scientifique d'Orsay}, number = {539}, year = {1999}, language = {fr}, url = {http://www.numdam.org/item/BJHTUP11_1999__0539__P0_0/} }
TY - BOOK AU - Ben Hariz, Samir TI - Théorèmes limites pour des processus faiblement ou fortement dépendants : applications statistiques T3 - Thèses d'Orsay PY - 1999 IS - 539 PB - Université de Paris-Sud U.F.R. Scientifique d'Orsay UR - http://www.numdam.org/item/BJHTUP11_1999__0539__P0_0/ LA - fr ID - BJHTUP11_1999__0539__P0_0 ER -
%0 Book %A Ben Hariz, Samir %T Théorèmes limites pour des processus faiblement ou fortement dépendants : applications statistiques %S Thèses d'Orsay %D 1999 %N 539 %I Université de Paris-Sud U.F.R. Scientifique d'Orsay %U http://www.numdam.org/item/BJHTUP11_1999__0539__P0_0/ %G fr %F BJHTUP11_1999__0539__P0_0
Ben Hariz, Samir. Théorèmes limites pour des processus faiblement ou fortement dépendants : applications statistiques. Thèses d'Orsay, no. 539 (1999), 152 p. http://numdam.org/item/BJHTUP11_1999__0539__P0_0/
[1] Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22, No.4, 2242-2274 (1994). | MR | Zbl
,[2] Limit theorems for U-processes. Ann. Probab. 21, No.3, 1494-1542 (1993). | MR | Zbl
and ,[3] Noncentral limit theorems and Appell polynomials.", Ann. Probab. 15, 767-775 (1987). | MR | Zbl
and[4] estimation for linear processes. Preprint (1998).
,[5] Central Limit Theorem for the Local Time of a Gaussian Process. Preprint (1997). To appear in Ascona Proceeding. | MR | Zbl
[6] Uniform Central Limit Theorem for empirical processes indexed by classes of functions. C. R. Acad. Sci., Paris, Ser. I 326, No.4, 301-306, (1998). | MR | Zbl
[7] Lois limites du bootstrap de certaines fonctionnelles. Ann. Inst. Henri Poincare, Sect. B 19, 281-296 (1983). | MR | Zbl | Numdam
[8] Estimation des densites: risque minimax. Z. Wahrscheinlichkeitstheor. verw. Geb. 47, 119-137 (1979). | MR | Zbl | DOI
and[9] Local times of stochastic processes with positive definite bivariate densities. Stoch. Proc. and their Appl. 21, 1-26. | MR | Zbl
(1982)[10] Central limit Theorems for nonlinear functional of stationary Gaussian processes. Probab. Th. Rel. Fields 80, 323-349, 1989. | MR | DOI
[11] Density estimation under long-range dependence. Ann. Stat. 23, No.3, 990-999 (1995). | MR | Zbl | DOI
and ,[12] The empirical process of a short-range dependent stationary sequence under Gaussian subordination. Probab. Theory Relat. Fields 104, No.1, 15-25, 1996. | MR | Zbl | DOI
,[13] Non-central limit theorems for non-linear functional of Gaussian fields. Wahrscheinlichkeitstheorie verw. Gebiete 50, 27-52 (1979). | MR | Zbl | DOI
,[14] Invariance principles for absolutely regular empirical processes. Ann. Inst. Henri Poincare, Probab. Stat. 31, No.2, 393-427 (1995). | MR | Zbl | Numdam
and and[15] Decoupling and limit theorems for U-statistics and U- processes.Bernard, Pierre (ed.), Lectures on probability theory and statistics. Ecole d'ete de probabilités de Saint-Flour XXVI-1996. Lect. Notes Math. 1665, 1-35 (1997). | MR | Zbl
,[16] Convergence rates in density estimation for data from infinite-order moving average processes. Probab. Theory Relat. Fields 87, No.2, 253-274 (1990). | MR | Zbl | DOI
and ,[17] The change-point problem for dependent observations. J. Stat. Plann. Inference 53, No.3, 297-310 (1996). | MR | Zbl | DOI
and and .[18] Asymptotics of the empirical process of a long memory linear sequence. Beitraege zur Statistik 24, Univ. Heidelberg (1994)].
and .[19] Asymptotic expansion of M-estimators with long-memory errors.", Ann. Stat. 25, No.2, 818-850 (1997). | MR | Zbl
and[20] A central limit theorem under metric entropy with bracketing. Ann. Probab. 15, No.3, 897-919 (1987). | MR | Zbl | DOI
[21] Empirical processes: theory and applications. Regional Conference Series in Probability and Statistics. Hayward, Alexandria: IMS-ASA, (1990). | MR | Zbl | DOI
[22] Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence. Z. Wahrsch. Verw. Gebiete 40, no. 3, 203-238. | MR | Zbl | DOI
(1977)[23] Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50, no. 1, 53-83. | MR | Zbl | DOI
(1979)[1] Local times of stochastic processes with positive definite bivariate densities. Stoch. Proc. and their Appl. 21, 1-26. | MR | Zbl
(1982)[2] Sojourns and extremes of stochastic processes. WSP. Wadworth (Belmont). | MR | Zbl
(1992)[3] Convergence of probability measures. SPM. Wiley (New York) | MR | Zbl
, (1968)[4] Central Limit Theorems for Non-linear functional of Gaussian Fields. J. of Multiv. Anal. Vol. 13, 425-441. | MR | Zbl | DOI
, (1983)[5] Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50, no. 1, 27-52. | MR | Zbl | DOI
, (1979)[6] Asymptotics for the Local Time of Gaussian Random Fields. Acta. Math. Hungar. 70, 329-351. | MR | Zbl
, (1996)[7] Occupation densities. Ann. Probab. 8, no.1, 1-67. | MR | Zbl | DOI
, (1980)[8] Multivariate Appel polynomials and the Central Limit Theorem, in: Dependence in Probability and Statistics, 27-50. Ed. E. Eberlein and M. Taqqu, Boston. | MR | Zbl
, (1986)[9] Chaos expansions of double intersection local time of Brownian motion in and renormalization. Stoch. Proc. and their Appl. 56, no.1, 1-34. | MR | Zbl | DOI
, , , (1995)[10] Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence. Z. Wahrsch. Verw. Gebiete 40, no.3, 203-238. | MR | Zbl | DOI
(1977)[11] Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50, no.1, 53-83. | MR | Zbl | DOI
(1979)[1] Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22, No.4, 2242-2274 (1994). | MR | Zbl
[2] Sojourns and extremes of stochastic processes. Wadworth (Belmont) 1992. | MR | Zbl
[3] Convergence of probability measures. Wiley j. (New York) 1968. | MR | Zbl
[4] Central limit theorems for non-linear functional of Gaussian fields. J. Multivariate Anal. 13, 425-441 (1983). | MR | Zbl | DOI
,[5] Central limit Theorems for nonlinear functional of stationary Gaussian processes. Probab. Th. Rel. Fields 80, 323-349, 1989. | MR | DOI
[6] The empirical process of a short-range dependent stationary sequence under Gaussian subordination. Probab. Theory Relat. Fields 104, No.1, 15-25, 1996. | MR | Zbl | DOI
,[7] Non-central limit theorems for non-linear functional of Gaussian fields. Wahrscheinlichkeitstheorie verw. Gebiete 50, 27- 52 (1979). | MR | Zbl | DOI
,[8] Invariance principles for absolutely regular empirical processes. Ann. Inst. Henri Poincare, Probab. Stat. 31, No.2, 393-427 (1995). | MR | Zbl | Numdam
and and[9] Multivariate Appel polynomials and the Central Limit Theorem. In: Dependence in probability and statistics, A survey of recent results. Eberlein, E Ed Taqqu, M S. Col: Progress in probability and statistics. 1986. | MR | Zbl | DOI
,[10] Martingale limit theory and its application. Academic Press (New York) 1980. | MR | Zbl
,[11] Independent and stationary sequences of variables random. Wolters (Groninger) 1971. | MR | Zbl
[12] Sums of independent random variables. Springer (Berlin) 1975. | MR | Zbl
[13] Weak convergence for weighted empirical processes of dependent sequences. Ann. Probab. Vol.24 n 4 2098-2127 (1996). | MR | Zbl | DOI
[14] Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence. Z. Wahrscheinlichkeitstheorie verw. Gebiete 40, 203-238 (1977). | MR | Zbl | DOI
[15] Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50, 53-83 (1979). | MR | Zbl | DOI
,[1] Limit theorems for nonlinear functional of a stationary Gaussian sequence of vectors. Ann. Probab. 22, No.4, 2242-2274 (1994). | MR | Zbl
[2] Asymptotics for semiparametric econometric models via stochastic equicontinuity. Econometrica 62, No.1, 43-72 (1994). | MR | Zbl | DOI
[3] An introduction to functional central limit theorems for dependent stochastic processes. Int. Stat. Rev. 62, No.1, 119-132 (1994). | Zbl | DOI
and ,[4] Central limit theorems for non-linear functional of Gaussian fields. J. Multivariate Anal. 13, 425-441 (1983). | MR | Zbl | DOI
,[5] The empirical process of a short-range dependent stationary sequence under Gaussian subordination. Probab. Theory Relat. Fields 104, No.1, 15-25, (1996). | MR | Zbl | DOI
,[6] Invariance principles for absolutely regular empirical processes. Ann. Inst. Henri Poincare, Probab. Stat. 31, No.2, 393-427 (1995). | MR | Zbl | Numdam
, ,[7] The functional central limit theorem for strongly mixing processes. Ann. Inst. Henri Poincare, Probab. Stat. 30, 63.82 (1995). | MR | Zbl | Numdam
, ,[8] Invariance principles for empirical processes: the weakly dependent case. Chapter 1B of Ph.D. dissertation. University of Paris South. (1987)
[9] central limit theorem under metric entropy with bracketing. Ann. Probab. 15, No.3, 897-919 (1987). | MR | Zbl | DOI
[10] On the central limit theorem for -mixing sequenses of random variables. Ann. Probab. 15, No.4, 1387-1394 (1987). | MR | Zbl | DOI
[11] Empirical processes: theory and applications. Regional Conference Series in Probability and Statistics. Hayward, Alexandria: IMS-ASA, (1990). | MR | Zbl | DOI
[12] Théorèmes limites pour des variables aléatoires faiblement dépendentes. Preprint, Orsay n°97/81. (1997).
[13] Maximal inequalities for partial sums of -mixing sequences.", Ann. Probab. 23, No.2, 948-965 (1995). | MR | Zbl | DOI
[14] Weak convergence for weighted empirical processes of dependent sequences. Ann. of Proba. Vol.24 n 4 2098-2127 (1996). | MR | Zbl
[15] Weak Convergence and Empirical Processes. Springer, Berlin. (1996). | MR | Zbl | DOI
, and[1] Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22, No.4, 2242-2274 (1994). | MR | Zbl
[2] Convergence rates in the law of large numbers, language English, Trans. Am. Math. Soc. 120, 108-123 (1965). | MR | Zbl | DOI
and ,[3] Convergence of probability measures. Wiley j. (New York) 1968. | MR | Zbl
[4] Central limit theorems for non-linear functional of Gaussian fields. J. Multivariate Anal. 13, 425-441 (1983). | MR | Zbl | DOI
,[5] Inegalites de melange fort utilisant des normes d'Orlicz. (Strong mixing moment inequalities using Orlicz norms)., C. R. Acad. Sci., Paris, Ser. I 305, 827-830 (1987)., | MR | Zbl
and[6] Central limit Theorems for nonlinear functional of stationary Gaussian processes. Probab. Th. Rel. Fields 80, 323-349, 1989. | MR | DOI
[7] The empirical process of a short-range dependent stationary sequence under Gaussian subordination. Probab. Theory Relat. Fields 104, No.1, 15-25, 1996. | MR | Zbl | DOI
,[8] Non-central limit theorems for non-linear functional of Gaussian fields. Wahrscheinlichkeitstheorie verw. Gebiete 50, 27-52 (1979). | MR | Zbl | DOI
,[9] Moments de variables aléatoires mélangeantes. C. R. Acad. Sci., Paris, Ser. I 297, (1983)., | MR | Zbl
and[10] Multivariate Appel polynomials and the Central Limit Theorem. In: Dependence in probability and statistics, A survey of recent results. Eberlein E, Ed Taqqu, M S. Col: Progress in probability and statistics. 1986. | MR | Zbl | DOI
,[11] Moment inequalities for order and record statistics under restrictions on their distributions., language English, Ann. Univ. Mariae Curie-Sklodowska, Sect. A 47, 27-35 (1993). | MR | Zbl
and ,[12] Sums of independent random variables. Springer (Berlin) 1975. | MR | Zbl
[13] Optimum bounds for the distributions of martingales in Banach spaces., language English, Ann. Probab. 22, No.4, 1679-1706 (1994). | MR | Zbl
,[14] Inegalites de moments pour les suites stationnaires et fortement melangeantes. Moment inequalities for stationary and strongly mixing sequences)., C. R. Acad. Sci., Paris, Ser. I 318, No.4, 355-360 (1994)., | MR | Zbl
,[15] Weak convergence for weighted empirical processes of dependent sequences. Ann. Probab. Vol.24 n 4 2098-2127 (1996). | MR | Zbl | DOI
[16] Cumulants and moment inequalities., Theory Probab. Appl. 34, No.4, 742-747 (1989); translation from Teor. Veroyatn. Primen. 34, No.4, 810-815 (1989) | Zbl | DOI
,[17] Moment inequalities., Stat. Probab. Lett. 8, No.1, 9-16 (1989)., | MR | Zbl | DOI
,[18] Moment inequalities for mixing sequences of random variables., Stochastic Anal. Appl. 5, 61-120 (1987). | MR | Zbl | DOI
and ,[19] Moment inequalities for the maximum cumulative sum. Ann. math. Statistics 41, 1227-1234 (1970). | MR | Zbl | DOI
,[20] Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence. Z. Wahrscheinlichkeitstheorie verw. Gebiete 40, 203-238 (1977). | MR | Zbl | DOI
[21] Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50, 53-83 (1979). | MR | Zbl | DOI
,[22] Sums of random variables with -mixing. Sib. Adv. Math. 1, No.3, 124-155 (1991); translation from Tr. Inst. Mat. 13, 78-100 (1989). | MR | Zbl
,[23] Optimum bounds on moments of sums of independent random vectors., language English, Sib. Adv. Math. 5, No.3, 141-150 (1995). | MR | Zbl
,[24] A new look at independence., language English, Ann. Probab. 24, No.1, 1-34 (1996). | MR | Zbl | DOI
, ,[25] Isoperimetry and integrability of the sum of independent Banach-space valued random variables. Ann. Probab. 17, No.4, 1546-1570 (1989). | MR | Zbl
[26] Central limit theorems for dependent variables. Z. Wahrscheinlichkeitstheor. Verw. Geb. 57, 509-534 (1981). | Zbl | DOI
,[1] Estimating functionals of probability density for uniform mixing processes Sankhya, Ser. A 54, No.1, 40-52 (1992) | MR | Zbl
[2] Strong uniform consistency of random kernel-type density estimates. C. R. Acad. Sci., Paris, Ser. I 303, No.15, 761-764 (1986) | Zbl | MR
and[3] Estimation fonctionnelle de series temporelles melangeantes. (Functional estimation for mixing time series) C. R. Acad. Sci., Paris, Ser. I 317, No.4, 405-408 (1993) | MR | Zbl
and[4] Density estimation for linear processes. Preprint (1998)
[5] On a class of M-estimators for Gaussian long-memory models Biometrika 81, No.4, 755-766 (1994) | MR | Zbl | DOI
[6] Nonparametric statistics for stochastic processes. Lecture Notes in Statistics (Springer) (1996). | MR | Zbl
[7] Density estimation for linear processes. Ann. Inst. Stat. Math. 35, 439-446 (1983). | MR | Zbl | DOI
,[8] Density estimation under long-range dependence. Ann. Stat. 23, No.3, 990-999 (1995). | MR | Zbl | DOI
and ,[9] Functional central limit theorem for the empirical process of short memory linear processes. C.R. Acad. Sci Paris, T. 326. (1997). | MR | Zbl
,[10] Nonparametric curve estimation from time series Lecture Notes in Statistics, 60. Berlin etc.: Springer-Verlag (1989) | MR | Zbl
and and and[11] A central limit theorem for the empirical process of a long memory linear sequence. Preprint (1994). | MR | Zbl
[12] Convergence rates in density estimation for data from infinite-order moving average processes. Probab. Theory Relat. Fields 87, No.2, 253-274 (1990). | MR | Zbl | DOI
and , ,[13] Asymptotic expansion of M-estimators with long-memory errors.", Ann. Stat. 25, No.2, 818-850 (1997). | MR | Zbl
and[14] On the central and the non-central limit theorem... Stochastic Processes Appl. 63 (1996), 153-174. | MR | Zbl | DOI
[15] On the asymptotic expansion of the empirical process of long-memory moving averages. Ann. Stat. 24, No.3, 992-1024 (1996). | MR | Zbl
and ,[16] Limit theorems for functionals of moving averages. Ann. Probab. 25, No.4, 1636-1669 (1997). | MR | Zbl
and ,[17] On the asymptotic expansion of the empirical process of long-memory moving averages. Ann. Stat. 24, No.3, 992-1024 (1996). | MR | Zbl
and ,[18] Data-driven bandwidth choice for density estimation based on dependent data. Ann. Stat. 18, No.2, 873-890 (1990) | MR | Zbl
and[19] Multivariate probability density deconvolution for stationary random processes IEEE Trans. Inf. Theory 37, No.4, 1105-1115 (1991) | MR | Zbl | DOI
[20] Asymptotic behaviour of the mean integrated squared error of kernel density estimators for dependent observations. Can. J. Stat. 18, No.3, 205-211 (1990) | MR | Zbl | DOI
[21] Properties of uniform consistency of the kernel estimators of density and of regression functions under dependence assumptions Stochastics Stochastics Rep. 40, No.3/4, 147-168 (1992) | MR | Zbl | DOI
[22] Stability of nonparametric procedures against dependence Theory Probab. Appl. 37, No.2, 353-355 (1992); translation from Teor. Veroyatn Primen. 37, No.2, 383-386 (1992) | Zbl | MR | DOI
[23] Kernel density estimation under a locally mixing condition Nonparametric functional estimation and related topics, NATO ASI Ser., Ser. C 335, 419-430 (1991) | MR | Zbl
and[24] Rates of convergence and optimal spectral bandwidth for long range dependence Probab. Theory Relat. Fields 99, No.3, 443-473 (1994) | MR | Zbl | DOI
[25] Log-periodogram regression of time series with long range dependence. Ann. Stat. 23, No.3, 1048-1072 (1995) | MR | Zbl | DOI
[26] Asymptotic normality of the kernel estimate under dependence conditions: Application to hazard rate J. Stat. Plann. Inference 25, No.1, 81-104 (1990)) | MR | Zbl | DOI
[27] Kernel density estimation under dependence Stat. Probab. Lett. 10, No.3, 193-201 (1990) | MR | Zbl | DOI
[28] Hazard rate estimation under dependence conditions. J. Stat. Plann. Inference 22, No.1, 81-93 (1989) | MR | Zbl | DOI