Formes de torsion analytique et familles de submersions
Thèses d'Orsay, no. 519 (1998) , 152 p.
@phdthesis{BJHTUP11_1998__0519__P0_0,
     author = {Ma, Xiaonan},
     title = {Formes de torsion analytique et familles de submersions},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {519},
     year = {1998},
     language = {fr},
     url = {http://www.numdam.org/item/BJHTUP11_1998__0519__P0_0/}
}
TY  - BOOK
AU  - Ma, Xiaonan
TI  - Formes de torsion analytique et familles de submersions
T3  - Thèses d'Orsay
PY  - 1998
IS  - 519
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_1998__0519__P0_0/
LA  - fr
ID  - BJHTUP11_1998__0519__P0_0
ER  - 
%0 Book
%A Ma, Xiaonan
%T Formes de torsion analytique et familles de submersions
%S Thèses d'Orsay
%D 1998
%N 519
%I Université de Paris-Sud Centre d'Orsay
%U http://www.numdam.org/item/BJHTUP11_1998__0519__P0_0/
%G fr
%F BJHTUP11_1998__0519__P0_0
Ma, Xiaonan. Formes de torsion analytique et familles de submersions. Thèses d'Orsay, no. 519 (1998), 152 p. http://numdam.org/item/BJHTUP11_1998__0519__P0_0/

[ABoP] Atiyah M.F., Bott R. et Patodi. V.K., On the heat equation and the Index Theorem, Invent. Math. 19 (1973), 279-330. | MR | Zbl

[BaFM] Baum P., Fulton W., Macpherson R., Riemann-Roch for singular varietes, Publ. Math. IHES., Vol. 45 (1975), 101-146. | MR | Zbl | Numdam | DOI

[BeGeV] Berline N., Getzler E. et Vergne M., Heat kernels and the Dirac operator, Grundl. Math. Wiss. 298, Springer, Berlin-Heidelberg-New York 1992. | MR | Zbl

[BerB] Berthomieu A., Bismut J.-M., Quillen metric and higher analytic torsion forms. J. Reine Angew. Math 457, 1994, 85-184. | MR | Zbl

[B1] Bismut J.-M., The index Theorem for families of Dirac operators: two heat equation proofs, Invent. Math., 83 (1986), 91-151. | MR | Zbl

[B2] Bismut J.-M., Superconnection currents and complex immersions, Invent. Math. 99 (1990), 59-113. | MR | Zbl

[B3] Bismut J.-M., Koszul complexes, harmonic oscillators and the Todd class, J.A.M.S. 3 (1990), 159-256. | MR | Zbl

[B4] Bismut J.-M., Families of immersions, and higher analytic torsion, Preprint, Orsay, 96-14. | Zbl | Numdam

[B5] Bismut J.-M., Familles d'immersions et formes de torsion analytique en degré supérieur. C.R.A.S. Paris, 320, série I (1995), 969-974. | MR | Zbl

[BCh] Bismut J.-M., Cheeger J., η -invariants and their adiabatic limits, J.A.M.S., 2 (1989), 33-70. | MR | Zbl

[BGS1] Bismut J.-M., Gillet H., Soulé C., Analytic torsion and holomorphic determinant bundles.I, Comm. Math. Phys. 115 (1988), 49-78. | MR | Zbl

[BGS2] Bismut J.-M., Gillet H., Soulé C., Analytic torsion and holomorphic determinant bundles.II, Comm. Math. Phys. 115 (1988), 79-126. | Zbl

[BGS3] Bismut J.-M., Gillet H., Soulé C., Analytic torsion and holomorphic determinant bundles.III, Comm. Math. Phys. 115 (1988), 301-351. | MR

[BKö] Bismut J.-M., Köhler K., Higher analytic torsion forms for direct images and anomaly formulas. J. of. Alg. Geom. 1 (1992), 647-684. | MR | Zbl

[BL] Bismut J.-M. et Lebeau G., Complex immersions and Quillen metrics. Publ. Math. IHES., Vol. 74, 1991. | Zbl | Numdam

[BS] Borel A., Serre J.P., Le théorème de Riemann-Roch, Bull. Soc. Math. France, 86 (1958), 97-136. | MR | Zbl | Numdam | DOI

[CE] Cartan H. et Eilenberg S., Homological Algebra, Princeton 1956. | MR | Zbl

[CP] Charazain J., Piriou A., Introduction à la théorie des équations aux dérivées partielles, Paris: Gauthier-villars 1981. | MR | Zbl

[D] Dai X., Adiabatic limits, non multiplicativity of signature and Leray spectal sequence, J.A.M.S. 4 (1991), 265-321. | MR | Zbl

[F] Faltings G., Lectures on the arithmetic Riemann-Roch theorem. Ann. of mathematical studies. Princeton. Princeton University Press 1992. | MR | Zbl | DOI

[Ge] Getzler E., A short proof of the Atiyah-Singer Index Theorem, Topology, 25 (1986), 111-117. | MR | Zbl | DOI

[Go] Godement R., Théorie des faisceaux, Hermann. Paris, 1958. | Zbl

[GrH] Griffiths P., Harris J., Principles of Algebraic Geometry, New-York, Wiley 1978. | MR | Zbl

[Grot] Grothendieck A., Sur quelques points d'algèbre homologique, Tôhoku Math. J. 9, 1957, 119-221. | MR | Zbl

[GS1] Gillet H., Soulé C., Arithmetic Intersection Theory, Publ. Math. IHES., Vol. 72, 1990, 93-174. | MR | Zbl | Numdam | DOI

[GS2] Gillet H., Soulé C., Characteristic classes of algebraic vector bundles with Hermitian metric, I, II, Ann. of Math., 131 (1990), 163-203, 205-238. | MR | Zbl

[GS3] Gillet H., Soulé C., Analytic torsion and the arithmetic Todd genus, Topology 30 (1991), 21-54. | MR | Zbl | DOI

[GS4] Gillet H., Soulé C., An arithmetic Riemann-Roch Theorem, Invent. Math., 110 (1992), 473-543. | MR | Zbl | DOI

[H] Hartshorne R., Algebraic Geometry, GTM 52, Springer, 1977. | MR | Zbl

[KM] Knudsen P.F., Mumford D., The projectivity of the moduli space of stable curves, I, Preliminaires on "det" and "div", Math. Scand. 39 (1976), 19-55. | MR | Zbl

[Ma] Ma Xiaonan., Formes de torsion analytique et familles de submersions, C.R.A.S. Paris, 324, série I (1997), 205-210. | MR | Zbl

[M] Malgrange B., Division des distributions: Exposé au Séminaire Bourbaki n° 203 (1960). | MR | Zbl | Numdam

[MKS] Mckean H., Singer I.M., Curvature and the eigenvalues of the Laplacian, J. Diff. Geom. 1 (1967), 43-69. | MR | Zbl

[Q1] Quillen D., Higher K-theories : I. SLNM 341, Springer, Berlin (1973), 85-147. | Zbl

[Q2] Quillen D., Superconnections and the Chern character, Topology, 24 (1986), 89-95. | MR | Zbl | DOI

[RS] Ray D.B., Singer I.M., Analytic torsion for complex manifolds, Ann. of Math. 98 (1973), 154-177. | MR | Zbl

[T] Taylor M., Pseudodifferential operators, Princeton Univ Press, Princeton 1981. | MR | Zbl

[1] Berthomieu A. et Bismut J.M., 1994. Quillen metrics and higher analytic torsion forms, J. Reine Angew. Math., 457, p. 85-184. | MR | Zbl

[2] Bismut J.-M., 1986. The index theorems for families of Dirac operators : two heat equation proofs, Invent. Math. 85, p. 91-151. | MR | Zbl

[3] Bismut J.-M. Families of immersions, and higher analytic torsion, Preprint, Orsay, 96-14. | Zbl | Numdam

[4] Bismut J.-M. et Cheeger J., 1989. η -invariant and their adiabatic limits. J. Amer. Math. Soc., 2, p. 33-70. | MR | Zbl

[5] Bismut J.-M., Gillet H. et Soulé C., 1988. Analytic torsion and holomorphic determinant bundles. Comm. Math. Phys., 115, p. 49-78, 79-126, 301-351. | MR | Zbl

[6] Bismut J.-M. et Köhler K., 1992. Higher analytic torsion forms and anomaly formulas, J. Algebraic Geom., 1, p. 647-684. | MR | Zbl

[7] Bismut J.-M. et Lebeau G., 1991. Complex immersions and Quillen metric, Publ. Math. Inst. Hautes Études Sci., 74, p. 1-297. | MR | Zbl | Numdam | DOI

[8] Cartan H. et Eilenberg S., 1956. Homological Algebra, Princeton. | MR | Zbl

[9] Dai X., 1991. Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence, J. Amer. Math. Soc., 4, p. 265-321. | MR | Zbl | DOI

[10] Gillet H. et Soulé C., 1991. Analytic torsion and the arithmetic Todd genus, Topology, 30, p. 21-54. | MR | Zbl | DOI

[11] Grothendieck A., 1957. Sur quelques points d'algèbre homologique, Tôhoku Math. J., 9, p. 119-221. | MR | Zbl

[12] Ma X. Formes de torsion analytique et familles de submersions (à paraître). | Zbl

[13] Quillen D. Superconnections and the Chern character, Topology, 24, p. 89-95. | MR | Zbl | DOI

[14] Ray D. B. et Singer I. M., 1971. R-torsion and the Laplacien on Riemannian manifolds, Adv. in Math., 7, p. 145-210. | MR | Zbl