@phdthesis{BJHTUP11_1997__0477__P0_0, author = {Durot, C\'ecile}, title = {Asymptotique fine pour l'estimateur isotonique en r\'egression et m\'ethodes de jackknife}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e de Paris-Sud Centre d'Orsay}, number = {477}, year = {1997}, language = {fr}, url = {http://www.numdam.org/item/BJHTUP11_1997__0477__P0_0/} }
TY - BOOK AU - Durot, Cécile TI - Asymptotique fine pour l'estimateur isotonique en régression et méthodes de jackknife T3 - Thèses d'Orsay PY - 1997 IS - 477 PB - Université de Paris-Sud Centre d'Orsay UR - http://www.numdam.org/item/BJHTUP11_1997__0477__P0_0/ LA - fr ID - BJHTUP11_1997__0477__P0_0 ER -
Durot, Cécile. Asymptotique fine pour l'estimateur isotonique en régression et méthodes de jackknife. Thèses d'Orsay, no. 477 (1997), 114 p. http://numdam.org/item/BJHTUP11_1997__0477__P0_0/
[1] Statistical Inference under Order Restrictions. Wiley, 1972. | Zbl
, , , and .[2] On the nonparametric estimation of regression functions. Journ. Roy. Statist. Soc., 39:248-253, 1977. Series B. | Zbl
.[3] Convergence of probability measures. Wiley, 1968. | Zbl
.[4] The grenander estimator: a nonasymptotic approach. Ann. Statist., 17(4):1532-1549, 1989. | Zbl | DOI
.[5] On the estimation of parameters restricted by inequalities. Ann. Math. statist., pages 437-454, 1958. | Zbl | DOI
.[6] Estimation of isotonic regression. Non parametric techniques in Statistical Inference, pages 177-195, 1970.
.[7] Evaluation of an unknown distribution density from observations. Soviet Math. Dokl., 3:1559-1562, 1962. | Zbl
.[8] Nonparametric estimation of a regression functions. Z. Wahrscheinlichkeitstheorie verw. Geb., 57:223-233, 1981. | Zbl | DOI
and .[9] Techniques statistiques des modèles linéaires, volume 1. Aspects théoriques. Les cours du C.I.M.P.A., 1980. | Zbl
.[10] Central limit theorems for -norms of density estimators. Probab. Th. Rel. Fields, 80:269-291, 1988. | Zbl
and .[11] 2. Problèmes à temps mobile. Masson, Paris, 1983. | Zbl
and . Probabilités et Statistiques, volume[12] An empirical study of jackknife-constructed confidence regions in nonlinear models. Technometrics, 20(2): 123-129, 1978. | Zbl | DOI
.[13] The jackknife, the bootstrap, and other resampling plans. Philadelphia: Society of industrial and applied mathematics, 1992. | Zbl
.[14] Jackknifing in nonlinear regression. Technometrics, 22(1):29-33, 1980. | Zbl | DOI
, , and .[15] The generalized jackknife statistics. M. Dekker, INC. New York, 1972. | Zbl
and .[16] On the theory of mortality measurement ii. Skand. Aktuarietidskr, 39:125-153, 1956. | Zbl
.[17] Estimating a monotone density. In Richard A. Olsen Lucien Le Cam, editor, Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, volume 2, pages 539-554, Wadsworth, 1985. | Zbl
.[18] Brownian motion with parabolic drift and airy functions. Probab. Th. Rel. Fields, pages 79-109, 1989.
.[19] Asymptotic normality of the -error of the grenander estimator. Technical report, Delft University of Technology, 1996. | Zbl
, , and .[20] Jackknifing in unbalanced situations. Technometrics, 19(3):285-292, 1977. | Zbl | DOI
.[21] Asymptotic properties of non-linear least squares estimators. Ann. Math. Statist., 40(2):633-643, 1969. | Zbl | DOI
.[22] Cube root asymptotics. Annals of Statistics, 18:191-219, 1990. | Zbl
and .[23] Asymptotically optimal cells for a histogram. Ann. Statis, 15:1023-1030, 1987. | Zbl | DOI
.[24] The consistency of nonlinear regressions. Ann. Math. Statist., 41:956-969, 1969. | Zbl | DOI
.[25] The jackknife - a review. Biometrika, 61(1):1-15, 1974. | Zbl
.[26] An unbalanced jackknife. Ann. Statis., 2(5):880-891, 1974. | Zbl | DOI
.[27] On the mesurability and consistancy of minimum contrats estimates. Metrika, 14:249-272, 1969. | Zbl | DOI
.[28] The berry-essen bound for minimum of contraste estimates. Metrika, 17:82-91, 1971. | Zbl | DOI
.[29] Nonparametric function fitting. Journ. Roy. Statist. Soc., 34:385-392, 1972. series B. | Zbl
and .[30] Estimation of a unimodal density. Sankhya Ser, 31:23-36, 1969. | Zbl
.[31] Asymptotic theory of the least squares estimator in a nonregular nonlinear regression model. Statist. Probab. Lett., 3:15-18, 1985. | Zbl
.[32] Remarks on some nonparametric estimates of a density function. Annals of Mathematical Statistics, 37:642-669, 1956. | Zbl
.[33] On the subspace of , spanned by sequences of independent random variables. Israel J. Math., 8:273-303, 1970. | Zbl | DOI
.[34] Estimates in the variance principle. Trudy. Inst. Mat. Sibirsk. Otdel, pages 27-44, 1972. | Zbl
.[35] Nonlinear regression. Wiley, 1989. | Zbl
and .[36] On resamplig methods for variance and bias estimation in linear models. Ann. Statist., 16(3):986-1008, 1988. | Zbl | DOI
.[37] Consistency of the least-squares estimator and its jackknife variance estimator in nonlinear models. Canadian J. Statist., 20(4):415-428, 1992. | Zbl | DOI
.[38] Jackknifing in generalized linear models. Ann. Inst. Statist. Math., 44(4):673-686, 1992. | Zbl | DOI
.[39] Bias and confidence in not quite large samples. Ann. Math. Statist, 29:614, 1958.
.[40] Jackknifing the general linear model. Austral. J. Statist., 25(3):425-436, 1983. | Zbl | DOI
and .[41] Monotone regression estimates. Annals of statistics, 9(2):449-452, 1981. | DOI
.[42] Asymptotic theory of nonlinear least squares estimation. Ann. Statist., 9:501-513, 1981. | Zbl
.