Liens entre la géométrie et la dynamique des ensembles de Julia
Thèses d'Orsay, no. 471 (1997) , 102 p.
@phdthesis{BJHTUP11_1997__0471__P0_0,
     author = {Carette, Jacques},
     title = {Liens entre la g\'eom\'etrie et la dynamique des ensembles de {Julia}},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {471},
     year = {1997},
     language = {fr},
     url = {http://www.numdam.org/item/BJHTUP11_1997__0471__P0_0/}
}
TY  - BOOK
AU  - Carette, Jacques
TI  - Liens entre la géométrie et la dynamique des ensembles de Julia
T3  - Thèses d'Orsay
PY  - 1997
IS  - 471
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_1997__0471__P0_0/
LA  - fr
ID  - BJHTUP11_1997__0471__P0_0
ER  - 
%0 Book
%A Carette, Jacques
%T Liens entre la géométrie et la dynamique des ensembles de Julia
%S Thèses d'Orsay
%D 1997
%N 471
%I Université de Paris-Sud Centre d'Orsay
%U http://www.numdam.org/item/BJHTUP11_1997__0471__P0_0/
%G fr
%F BJHTUP11_1997__0471__P0_0
Carette, Jacques. Liens entre la géométrie et la dynamique des ensembles de Julia. Thèses d'Orsay, no. 471 (1997), 102 p. http://numdam.org/item/BJHTUP11_1997__0471__P0_0/

[1] Z. Balogh and A. Volberg, Géométrie localization, uniform John property and seperated semihyperbolic dynamics, Preprint, 1994. | MR | Zbl

[2] Alan F. Beardon, Itération of rational functions, Springer-Verlag, 1992. | MR | Zbl

[3] J. Becker and C. Pommerenke, Hölder continuity of conformal mappings and non-quasiconformal Jordan curves, Comment. Math. Helvetici 57 (1982), 221-225. | MR | Zbl | DOI

[4] B. Branner and J.H. Hubbard, The iteration of cubic polynomials, Part ii: patterns and parapattems, Acta Math., to be published. | MR | Zbl

[5] B. Branner and J.H. Hubbard, The itération of cubic polynomials, Part i: the global topology of parameter space, Acta Math. 160 (1988), 143-206. | MR | Zbl

[6] L. Carleson and T.W. Gamelin, Complex dynamics, Springer-Verlag, 1993. | MR | Zbl | DOI

[7] L. Carleson and P.W. Jones, On coefficient problems for univalent functions and conformal dimension, Duke Math. J. 66 (1992), no. 2, 169-206. | MR | Zbl | DOI

[8] L. Carleson, P.W. Jones, and J.-Ch. Yoccoz, Julia and John, Bol. Soc. Bras. Mat. 25 (1994), no. 1, 1-30. | MR | Zbl | DOI

[9] P. Collect and J.-P. Eckmann, Positive Liapunov exponents and absolute continuity for maps of the interval, Erg. Th. Dyn. Sys. 3 (1983), 13-46. | MR | Zbl | DOI

[10] A. Douady and J.H. Hubbard, Etude dynamique de polynômes complexes, Publications Mathématiques d'Orsay #84-02 #85-04. | MR | Zbl

[11] P. Fatou, Sur les équations fonctionelles, Bull. Soc. Math. France 48 (1920), 208-314. | MR | Numdam | JFM | DOI

[12] F.W. Gehring and O. Martio, Lipschitz classes and quasiconformal mappings, Ann. Acad. Scien. Fenn. 10 (1985), 203-219. | MR | Zbl

[13] F.W. Gehring and B.G. Osgood, Uniform domains and the quasi-hyperbolic metric, J. Analyse Math. 36 (1979), 50-74. | MR | Zbl | DOI

[14] J. Graczyk and S. Smirnov, Collet, Eckmann & Hölder, Preprint, 1996. | MR

[15] D.H Hamilton, On the Poincaré inequality, Complex Variables: Theory and Appl. (1986), 265-270. | MR | Zbl

[16] J.H. Hubbard, Local Connectivity of Julia set and Bifurcation Loci: Three Theorems of J.-C. Yoccoz, Topological Methods in Modem Mathematics, Publish or Perish, 1993, pp. 467-512. | MR | Zbl

[17] P.W. Jones, On removable sets for Sobolev spaces in the plane, Conférence in honor of E.M. Stein, Princeton University Press, 1993. | MR | Zbl

[18] G. Levin and S. Van Strien, Local connectivity of Julia sets of real polynomials, SUNY preprint 1995/5, 1995.

[19] M. Lyubich, Dynamics of quadratic polynomials. I. combinatorics and geometry of the Yoccoz puzzle, MSRI preprint, 1995. | MR

[20] R. Mañé and L.F. Da Rocha, Julia sets are uniformly perfect, Proc. of the A.M.S (1992), 251-257. | MR | Zbl | DOI

[21] R. Mañé, On a Theorem of Fatou, Bol. Soc. Bras. Mat. 24 (1993), no. 1, 1-11. | MR | Zbl | DOI

[22] M. Masumoto, Integrability of superharmonic functions on Hölder domains of the plane, Proc. of the A.M.S 117 (1993), no. 4, 1083-1088. | MR | Zbl

[23] C.T. Mcmullen, Self-similarity of Siegel disks and Hausdorff dimension of Julia sets, preprint, 1995. | MR | Zbl

[24] J. Milnor, Dynamics in one complex variable: introductory lectures, SUNY Stony Brook, Institue for Mathematical Sciences, preprint #1990/5. | MR | Zbl

[25] R. Näkki and J. Väisälä, John disks, Expositiones Mathematicae 9 (1991), 3-43. | MR | Zbl

[26] T. Nowicki, Some dynamical properties of S-unimodal maps, Fund. Math. (1993), no. 1, 45-57. | MR | Zbl | DOI

[27] T. Nowicki and F. Przytycki, Topological invariance of the Collet-Eckmann property for S-unimodal maps, Preprint, 1996. | MR | Zbl

[28] T. Nowicki and D. Sands, Non-uniform hyperbolicity and universal bounds for S-unimodal maps, Preprint, 1996. | MR | Zbl

[29] R. Perez-Marco, Solution complète au problème de Siegel de linéarisation d'une application holomorphe au voisinage d'un point fixe, Séminaire Bourbaki 753 (1992). | Numdam | Zbl | MR

[30] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag, 1992. | MR | Zbl | DOI

[31] F. Przytycki, Iteration of holomorphic Collet-Eckmann maps: conformal and invariant measures, Preprint, 1995. | Zbl | MR

[32] F. Przytycki, On measure and Hausdorff dimension of Julia sets for holomorphic Collet-Eckmann maps, Preprint, 1995. | MR | Zbl

[33] F. Przytycki, Hölder implies CE, Preprint, 1997.

[34] F. Przytycki and S. Rohde, Porosity of Collet-Eckmann Julia sets, Preprint, 1996. | MR | Zbl

[35] M. Rees, Ergodic rational maps with dense critical point forward orbit, Erg. Th. & Dy. Sy. 4 (1984), 311-322. | MR | Zbl | DOI

[36] M. Rees, Positive measure sets of ergodic rational maps, Ann. Sci. École Norm. Sup. (4) 19 (1986), 383-407. | MR | Zbl | Numdam | DOI

[37] M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. Ec. Norm. Sup. 20 (1987), 1-29. | MR | Zbl | Numdam | DOI

[38] W. Smith and D. Stegenga, A geometric Characterization of Hölder Domains, J. London Math. Soc. (2) 35 (1987), 471-480. | MR | Zbl | DOI

[39] W. Smith and D. Stegenga, Poincaré domains in the plane, Proceedings of the R. Nevanlinna Colloq. (1987), 312-326. | MR | Zbl

[40] W. Smith and D. Stegenga, Hölder Domains and Poincaré Domains, Trans. of the A.M.S. 319 (1990), no. 1, 67-100. | MR | Zbl

[41] W. Smith and D. Stegenga, Exponential integrability of the quasi-hyperbolic metric on Hölder domains, Ann. Acad. Scien. Fenn. 17 (1991), 345-360. | MR | Zbl

[42] S.G. Staples, L 2 averaging domains and the Poincaré inequality, Ann. Acad. Scien. Fenn. (1989), 103-127. | MR | Zbl

[43] E.M. Stein, Singular intégrals and differentiability properties of functions, Princeton University Press, 1970. | MR | Zbl

[44] N. Steinmetz, Rational iteration: complex analytic dynamical systems, Studies in Mathematics, vol. 16, Walter de Gruyter, 1993. | MR | Zbl

[45] J. Väisälä, Uniform domains, Tôhuku Math. J. (1988), 101-118. | MR | Zbl

[46] J.-Ch. Yoccoz, Linéarisation de germes de difféomorphismes holomorphes de (C,0), C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 55-58. | MR | Zbl

[47] J.-Ch. Yoccoz, Petits diviseurs en dimension 1, Astérisque, vol. 231, Société Mathématiques de France, 1995. | Zbl | Numdam