Étude théorique et numérique de l'évolution morphologique d'interfaces
Thèses d'Orsay, no. 391 (1994) , 174 p.
@phdthesis{BJHTUP11_1994__0391__P0_0,
     author = {Scheid, Jean-Fran\c{c}ois},
     title = {\'Etude th\'eorique et num\'erique de l'\'evolution morphologique d'interfaces},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {391},
     year = {1994},
     language = {fr},
     url = {http://www.numdam.org/item/BJHTUP11_1994__0391__P0_0/}
}
TY  - BOOK
AU  - Scheid, Jean-François
TI  - Étude théorique et numérique de l'évolution morphologique d'interfaces
T3  - Thèses d'Orsay
PY  - 1994
IS  - 391
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_1994__0391__P0_0/
LA  - fr
ID  - BJHTUP11_1994__0391__P0_0
ER  - 
%0 Book
%A Scheid, Jean-François
%T Étude théorique et numérique de l'évolution morphologique d'interfaces
%S Thèses d'Orsay
%D 1994
%N 391
%I Université de Paris-Sud Centre d'Orsay
%U http://www.numdam.org/item/BJHTUP11_1994__0391__P0_0/
%G fr
%F BJHTUP11_1994__0391__P0_0
Scheid, Jean-François. Étude théorique et numérique de l'évolution morphologique d'interfaces. Thèses d'Orsay, no. 391 (1994), 174 p. http://numdam.org/item/BJHTUP11_1994__0391__P0_0/

[1] F. Abergel, D. Hilhorst, F. Issard-Roch, On a dissolution-growth problem with surface tension in the neighborhood of a stationary solution, SIAM J. Math. Anal., Vol. 24, No. 2 (1993), p. 299-316. | MR | Zbl | DOI

[2] B.V. Bazaliĭ, S.P. Degtyarev, On classical solvability of the multidimensional Stefan problem for convective motion of a viscous incompressible fluid, Math. USSR Sbornik, Vol. 60 (1988), No. 1. | Zbl | DOI

[3] X. Chen, F. Reitich, Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling, J. Math. Anal. Appl. 164 (1992), p. 350-362. | MR | Zbl | DOI

[4] J. Duchon, R. Robert, Evolution d'une interface par capillarité et diffusion de volume I. Existence locale en temps, Ann. Inst. H. Poincaré, 1 (1984), p. 361-378. | MR | Zbl | Numdam | DOI

[5] T. Ikeda, R. Kobayashi, Numerical approach to interfacial dynamics, Proc. of Workshop on nonlinear PDE and appli. (1989)

[6] J. Jutard, Instabilités interfaciales morphologiques. Etude de l'évolution d'une electrode de cuivre soumise à une réaction electrochimique, Thèse de doctorat, 1993.

[7] O.A. Ladyženskaja, V.A. Solonnikov, N.N. Ural'Ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs Volume 23, Providence R.I, American Mathematical Society 1968. | MR | Zbl

[8] E. Radkevitch, The Gibbs-Thomson correction and conditions for the classical solution of the modified Stefan problem, Soviet Mathematics Doklady 43, No 1 (1991).

[9] A. Roosen, Modeling crystal growth in a diffusion field with fully-facetted crystals, Ph. D. thesis, University of New Jersey, 1993. | MR

[10] G. Santarini, Théorie de l'instabilité interfaciale morphologique. Cas des phénomènes de dissolution et de dépôt. Première partie, J. de Chimie Physique, 1985, 82, no1.

[11] G. Santarini, Théorie de l'instabilité interfaciale morphologique. Cas des phénomènes de dissolution et de dépôt. Deuxième partie, J. de Chimie Physique, 1985, 82, no4.

[12] J. Taylor, J. Cahn, A. Handwerker, I- Geometric models of crystal growth, Acta metall. mater. Vol. 40, No 7, p. 1443-1474, 1992.

[13] J. Taylor, J. Cahn, A. Handwerker, II- Mean curvature and weighted mean curvature, Acta metall. mater. Vol. 40, No 7, p. 1475-1485, 1992.

[1] F. Abergel, D. Hilhorst et F. Issard-Roch, On a dissolution-growth problem with surface tension in the neighborhood of a stationary solution, SIAM J. Math. Anal., Vol. 24, No. 2 (1993), p. 299-316. | MR | Zbl

[2] B.V. Bazaliĭ et S.P. Degtyarev, On classical solvability of the multidimensional Stefan problem for convective motion of a viscous incompressible fluid, Math. USSR Sbornik, Vol. 60, No. 1 (1988), p. 1-17. | Zbl

[3] F. Kaleydjian and M. Cournil, Stability of steady states in some solid-liquid systems, React. Solids, 2 (1986), p. 1-21. | DOI

[4] O.A. Ladyženskaja, V.A. Solonnikov et N.N. Ural'Ceva, Linear and Quasi- linear Equations of Parabolic Type, Translations of Mathematical Monographs Volume 23, Providence R.I, American Mathematical Society 1968. | MR | Zbl

[1] F. Abergel, D. Hilhorst, F. Issard-Roch, On a dissolution-growth problem with surface tension in the neighborhood of a stationary solution, SIAM J. Math. Anal., Vol. 24, No. 2 (1993), p. 299-316. | MR | Zbl | DOI

[2] B.V. Bazaliĭ, S.P. Degtyarew, On classical solvability of the multidimensional Stefan problem for convective motion of a viscous incompressible fluid, Math. USSR Sbornik, Vol. 60 (1988), No. 1. | Zbl | DOI

[3] W.K. Burton, N. Cabrera, F. Frank, Philo. Trans. R. Soc. London, Ser. A, 243 (1951) 299. | MR | Zbl

[4] X. Chen, F. Reitich, Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling, J. Math. Anal. Appl. 164 (1992), p. 350-362. | MR | Zbl | DOI

[5] B. Doubrovine, S. Novikov, A. Fomenko, Géométrie contemporaine, Méthodes et applications, Tome I, Edition Mir, Moscou, 1982.

[6] F. Kaleydjian, M. Cournil, Stability of steady states in some solid- liquid systems, React. Solids, 2 (1986), p. 1-21.. | DOI

[7] O.A. Ladyženskaja, V.A. Solonnikov, N.N. Ural'Ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs Volume 23, Providence R.I, American Mathematical Society 1968. | MR | Zbl

[8] I. Prigogine, R. Defay, Tension superficielle et adsorption, Edition Desoer, Liège, 1951.

[1] W.K. Burton, N. Cabrera and F. Frank, Philo. Trans. R. Soc. London, Ser. A, 243 (1951) 299. | MR | Zbl

[2] T. Ikeda and R. Kobayashi, Numerical approach to interfacial dynamics, Proc. of Workshop on nonlinear PDE and appli. (1989)

[3] I. Progogine, R. Defay, Tension superficielle et adsorption, Edition Desoer, Liège, 1951.

[4] A. Roosen, Modeling crystal growth in a diffusion field with fully-facetted crystals, Ph. D. thesis, 1993. | MR

[5] Y. Saad and M. Schultz, GMRES : a generalized minimal residual algorithm for solving nonsymetric linear systems, SIAM Jurnal Sci. Stat. Comput. Vol.10, pp36-52 (1989)

[6] T. I. Seidman, Private communication.

[7] J. Taylor, J. Cahn and A. Handwerker, I- Geometric models of crystal growth, Acta metall. mater. Vol. 40, No 7, pp 1443-1474, 1992

[8] J. Taylor, J. Cahn and A. Handwerker, II- Mean curvature and weighted mean curvature, Acta metall. mater. Vol. 40, No 7, pp 1475-1485, 1992

[9] J. Van Der Vorst and P. Sonneveld, CGSTAB : a more smoothly converging variant of CG-S, Delft University of Technology, Delft. Netherlands, May 21, 1990