Etude qualitative d'équations d'ondes dispersives
Thèses d'Orsay, no. 365 (1994) , 146 p.
@phdthesis{BJHTUP11_1994__0365__A1_0,
     author = {Bid\'egaray, Brigitte},
     title = {Etude qualitative d'\'equations d'ondes dispersives},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {365},
     year = {1994},
     language = {fr},
     url = {http://www.numdam.org/item/BJHTUP11_1994__0365__A1_0/}
}
TY  - BOOK
AU  - Bidégaray, Brigitte
TI  - Etude qualitative d'équations d'ondes dispersives
T3  - Thèses d'Orsay
PY  - 1994
IS  - 365
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_1994__0365__A1_0/
LA  - fr
ID  - BJHTUP11_1994__0365__A1_0
ER  - 
%0 Book
%A Bidégaray, Brigitte
%T Etude qualitative d'équations d'ondes dispersives
%S Thèses d'Orsay
%D 1994
%N 365
%I Université de Paris-Sud Centre d'Orsay
%U http://www.numdam.org/item/BJHTUP11_1994__0365__A1_0/
%G fr
%F BJHTUP11_1994__0365__A1_0
Bidégaray, Brigitte. Etude qualitative d'équations d'ondes dispersives. Thèses d'Orsay, no. 365 (1994), 146 p. http://numdam.org/item/BJHTUP11_1994__0365__A1_0/

[1] H. Added, S. Added Equations of Langmuir Turbulence and Nonlinear Schrödinger Equation : Smoothness and Approximation. J. Funct. Anal., 79, 183-210 (1988) | MR | Zbl | DOI

[2] J. Bourgain On the Cauchy and Invariant measure problem for the periodic Zakharov system. IHES/M/93 | Zbl

[3] T. Cazenave An introduction to nonlinear Schrödinger equations. Textos de métodos matemáticos, Rio de Janeiro (1990)

[4] T. Colin On the Cauchy Problem for a Nonlocal nonlinear Schrödinger equation occuring in Plasma Physics. Diff. and Int. Equations, 6, 1413-1450 (1993) | MR | Zbl

[5] L. Glangetas, F. Merle Existence of self-similar blow-up solutions for Zakharov Equation in dimension two. preprint | MR | Zbl

[6] L. Glangetas, F. Merle Concentration properties of blow-up solutions and instability results for Zakharov Equation in dimension two. preprint | MR | Zbl | DOI

[7] T. Kato On nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, 46, 113-129 (1987) (Physique théorique). | MR | Zbl | Numdam

[8] A.C. Newell, J.V. Moloney Nonlinear Optics. Addison-Wesley (1992) | MR

[9] T. Ozawa, Y. Tsutsumi Existence and Smoothing Effect of Solutions for the Zakharov Equations. RIMS (1990) | MR | Zbl

[10] J. Moser Ann. Math. Studies, 77, Princeton Univ. Press (1973) | Zbl

[11] K. Rachid Simulation numérique des systèmes de Davey-Stewartson. Sur un système d'interaction ondes courtes-ondes longues. Thèse, Paris Sud, 9.12.1993 (article en préparation)

[12] S.H. Schochet, M.I. Weinstein The Nonlinear Schrödinger Limit of the Zakharov Equations Governing Langmuir Turbulence. Commun. Math. Phys., 106, 569-580 (1986) | MR | Zbl | DOI

[13] C. Sulem, P.L. Sulem Quelques résultats de régularité pour les équations de la turbulence de Langmuir. CRAS Paris 289, 173-176 (1979) | MR | Zbl

[14] H.C. Yuen, W.E. Ferguson Jr. Fermi-Pasta-Ulam récurrence in the two-space dimensional nonlinear Schrödinger equation. Phys. Fluids, 21, 2116-2118 (1978) | DOI

[15] V.E. Zakharov Collapse of Langmuir Waves. Soviet Physics JETP., 35, 908-914 (1972)

[16] P.E. Zhidkov On invariant measures for some infinite-dimensional dynamical systems. JINR, E5-92-395 (1992) | Zbl | Numdam

1. T. Colin, Sur une équation de Schrödinger non linéaire et non locale intervenant en physique des plasmas. C.R.A.S. Paris, 314, série I, (1992) 449-453. | MR | Zbl

2. T. Colin, On a nonlocal, nonlinear Schrödinger equation occuring in plasma Physics. Publication CMLA, ENS Cachan, 9208 (1992).

3. T. Ozawa, Y. Tsutsumi, Existence and Smoothing Effect of Solutions for the Zakharov Equations. 1990. | MR | Zbl

4. S.H. Schochet, M.I. Weinstein, The Nonlinear Schrödinger Limit of the Zakharov Equations Governing Langmuir Turbulence. Commun. Math. Phys., 106, (1986) 569-580. | MR | Zbl | DOI

5. V.E. Zakharov, Collapse and Self-Focusing of Langmuir Waves, in Basic Plasma Physics II, ed. A.A. Galeev and R.N. Sudan, (North Holland, 1984).

7. B. Bidégaray, On a nonlocal Zakharov equation, to appear | MR | Zbl | DOI

[1] H. Added, S. Added Equations of Langmuir Turbulence and Nonlinear Schrödinger Equation: Smoothness and Approximation. J. Funct. Anal., 79, 183-210 (1988) | MR | Zbl | DOI

[2] H. Added, S. Added Existence globale de solutions fortes pour les équations de la turbulence de Langmuir en dimension 2. CRAS Paris, 299, série I, 551-554 (1984) | MR | Zbl

[3] S. Alinhac, P. Gérard Opérateurs pseudodifférentiels et théorème de Nash-Moser. Orsay Plus, 1989 | MR | Zbl

[4] T. Colin Sur une équation de Schrödinger non linéaire et non locale intervenant en physique des plasmas. CRAS Paris, 314, série I, 449-453 (1992) | MR | Zbl

[5] T. Colin On a nonlocal, nonlinear Schrödinger equation occuring in plasma Physics. Publication CMLA, ENS Cachan 9208 (1992)

[6] J. Ginibre, G. Velo On a class of nonlinear Schrödinger equations I : the Cauchy problem. J. Funct. Anal., 32, 1-32 (1979) | MR | Zbl | DOI

[7] J. Ginibre, G. Velo Scattering theory in the energy spacefor a class of nonlinear Schrödinger equations. J. Math Pures Appl., 64, 363-401 (1985) | MR | Zbl

[8] T. Kato Nonlinear Schrödinger equations. Lecture Notes for Physics, vol. 345 | MR | Zbl

[9] T. Ozawa, Y. Tsutsumi Existence and Smoothing Effect of Solutions for the Zakharov Equations. 1990 | MR | Zbl

[10] S.H. Schochet, M.I. Weinstein The Nonlinear Schrödinger Limit of the Zakharov Equations Governing Langmuir Turbulence. Commun. Math. Phys., 106, 569-580 (1986) | MR | Zbl | DOI

[11] R.S. Strichartz Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44, 705-714 (1977) | MR | Zbl | DOI

[12] C. Sulem, P.L. Sulem Quelques résultats de régularité pour les équations de la turbulence de Langmuir. CRAS Paris, 289, 173-176 (1979) | MR | Zbl

[13] K. Yajima Existence of solutions for Schrödinger evolution equations. Comm. Math. Phys., 110, 415-426 (1987) | MR | Zbl | DOI

[14] V.E. Zakharov Collapse and Self-Focusing of Langmuir Waves. Basic Plasma Physics II, ed. A.A. Galeev and R.N. Sudan, North Holland, 1984

[15] V.E. Zakharov Collapse of Langmuir Waves. Soviet Physics JETP, 35, 908-914 (1972)

[1] V.I. Arnold Mathematical Methods of Classical Mechanics. Springer, New York, 1978 | MR | Zbl | DOI

[2] J. Bourgain Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations. Part I : Schrödinger Equations. GAFA, 3, 107-156 (1993) | MR | Zbl

[3] J. Bourgain Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations. Part II : The KdV-Equation. GAFA, 3, 209-262 (1993) | MR | Zbl

[4] J. Bourgain Periodic Nonlinear Schrödinger Equation and Invariant Measure. Preprint, IHES | MR | Zbl | DOI

[5] Yu. L. Dalecky, S.V. Fomin Measures and Differential Equations in Infinite-Dimensional Space. Kluwer Academic Publishers, 1991 | MR | Zbl

[6] L. Friedlander An invariant measure for the equation u t t - u x x + u 3 = 0 . Commun. Math. Phys., 98, 1-16 (1985) | MR | Zbl | DOI

[7] R.T. Glassey Convergence of an Energy-preserving scheme for the Zakharov equations in one space dimension. Prepr. Indiana-Univ. Bloomington | Zbl

[8] B.M. Herbst, M.J. Ablowitz On the numerical chaos in the nonlinear Schrödinger Equation. | Zbl | DOI

[9] J.M. Hyman Time Evolution of almost periodic solutions of the KdV equation. Rocky Mountain J. of Math., 8, 95-104 (1978) | MR | Zbl | DOI

[10] E. Infeld Quantitive theory of the Fermi-Pasta-Ulam Recurrence in the Nonlinear Schrödinger Equation. Phys. Rev. Letters, 47, 717-718 (1981) | MR | DOI

[11] P.A.E.M. Janssen Modulational instability and the Fermi-Pasta-Ulam recurrence. Phys. Fluids, 24, 23-26 (1981) | Zbl | DOI

[12] P.D. Lax Periodic Solutions of the KdV Equation. Commun, in Pure and Appl. Math., 28, 141-188 (1975) | MR | Zbl | DOI

[13] P.D. Lax Almost Periodic Behavior of Nonlinear Waves. Advances in Math., 16, 368-379 (1975) | MR | Zbl | DOI

[14] J.L. Lebowitz, H.A. Rose, E.R. Speer Statistical Mechanics of the Nonlinear Schrödinger Equation. J. of Stat. Phys., 50, 657-687 (1988) | MR | Zbl | DOI

[15] H.P. Mckean, E. Trubowitz Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math. 29, 143-226 (1976) | MR | Zbl | DOI

[16] D.U. Martin, H.C. Yuen Quasi-recurring energy leakage in the two-space-dimensional nonlinear Schrödinger Equation. Phys. Fluids, 23, 881-883 (1980) | DOI

[17] K. Rachid Simulation numérique des systèmes de Davey-Stewartson. Thèse de l'Université Paris-Sud, 1993

[18] Y. Tsutsumi L 2 -solutions for non linear Schrödinger equations and nonlinear Groups. Funkcialaj Ekvac., 30, 115-125 (1987) | MR | Zbl

[19] J.A.C. Weideman, B.M. Herbst Recurrence in semidiscrete approximations of the nonlinear Schrödinger Equation. SIAM J. on Scient, and Stat. Comp., 8, 98-1004 (1987) | MR | Zbl

[20] H.C. Yuen, W.E. Ferguson Jr. Relationship between Benjamin-Feir instabïlity and recurrence in the nonlinear Schrödinger equation. Phys. Fluids, 21, 1275-1278 (1978) | DOI

[21] H.C. Yuen, W.E. Ferguson Jr. Fermi-Pasta-Ulam recurrence in the two-space dimensional nonlinear Schrödinger equation. Phys. Fluids, 21, 2116-2118 (1978) | DOI

[22] H.C. Yuen, B.M. Lake, W.E. Ferguson The significance of Nonlinearity in the Natural Science. Plenum, New York, 67ff. (1977)

[23] V.E. Zakharov Collapse of Langmuir Waves. Soviet Physics JETP., 35, 908-914 (1972)

[24] P.E. Zhidkov On the invariant measure for the nonlinear Schrödinger equation. JINR, E5-91-174 (1991)

[25] P.E. Zhidkov On an invariant measure for a nonlinear Schrödinger equation. Sov. Math. Dokl., 43 (1991) | Zbl

[26] P.E. Zhidkov A remark on the invariant measure for the nonlinear Schrödinger equation. JINR, E5-92-23 (1992)

[27] P.E. Zhidkov An invariant measure for a nonlinear wave equation. JINR, E5- 92-305 (1992) | MR | Zbl

[28] P.E. Zhidkov On invariant measures for some infinite-dimensional dynamical systems. JINR, E5-92-395 (1992) | Zbl | Numdam

[1] M.J. Ablowitz, D.J. Kaup, A.C. Newell Coherent puise propagation, a dispersive, irreversible phenomenon. J. Math. Phys., 15, 1852-1858 (1974) | DOI

[2] G.P. Agrawal Optical solitons. in Contemporary Nonlinear Optics, Agrawal and Boyd éd., Academic Press (1992) | DOI

[3] T. Cazenave, F.B. Weissler Some Remarks on the nonlinear Schrödinger equation in the critical case. Preprint Paris 6 | MR | Zbl | DOI

[4] P. Constantin, C. Foias, J.D. Gibbon Finite-dimensional attractor for the laser equations. Nonlinearity, 2, 241-269 (1989) | MR | Zbl | DOI

[5] Q. Feng, J.V. Moloney, A.C. Newell Amplitude Instabilities of Transverse Travelling Waves in Lasers. Phys. Rev. Lett., 71, 1705-1708 (1993) | DOI

[6] J. Ginibre, G. Velo The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. Inst. H. Poincaré, Anal. Non Linéaire, 2, 309-402 (1985) | MR | Zbl | Numdam | DOI

[7] K. Ikeda, K. Otsuka, K. Matsumoto Maxwell-Bloch Turbulence. Prog. of Theor. Phys., Supp 99, 295-324 (1989) | MR | DOI

[8] A.C. Newell, J.V. Moloney Nonlinear Optics. Addison-Wesley (1992) | MR

[9] R.S. Strichartz Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44, 705-714 (1977) | MR | Zbl | DOI