Some questions related to the large time approximation, by wavelets and finite elements, of the solutions of dissipative evolution equations
[Quelques aspects de l'approximation pour les grands temps des solutions d'équations d'évolution dissipatives, par ondelettes et éléments finis]
Thèses d'Orsay, no. 314 (1992) , 88 p.
@phdthesis{BJHTUP11_1992__0314__P0_0,
     author = {Goubet, Olivier},
     title = {Some questions related to the large time approximation, by wavelets and finite elements, of the solutions of dissipative evolution equations},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {314},
     year = {1992},
     language = {en},
     url = {http://www.numdam.org/item/BJHTUP11_1992__0314__P0_0/}
}
TY  - BOOK
AU  - Goubet, Olivier
TI  - Some questions related to the large time approximation, by wavelets and finite elements, of the solutions of dissipative evolution equations
T3  - Thèses d'Orsay
PY  - 1992
IS  - 314
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_1992__0314__P0_0/
LA  - en
ID  - BJHTUP11_1992__0314__P0_0
ER  - 
%0 Book
%A Goubet, Olivier
%T Some questions related to the large time approximation, by wavelets and finite elements, of the solutions of dissipative evolution equations
%S Thèses d'Orsay
%D 1992
%N 314
%I Université de Paris-Sud Centre d'Orsay
%U http://www.numdam.org/item/BJHTUP11_1992__0314__P0_0/
%G en
%F BJHTUP11_1992__0314__P0_0
Goubet, Olivier. Some questions related to the large time approximation, by wavelets and finite elements, of the solutions of dissipative evolution equations. Thèses d'Orsay, no. 314 (1992), 88 p. http://numdam.org/item/BJHTUP11_1992__0314__P0_0/

[DM] A. Debussche and M. Marion ; On the construction of families of approximate inertial manifolds, J. Diff. Equ., to appear. | MR | Zbl

[DJMT] T. Dubois, F. Jauberteau, M. Marion and R. Temam ; Subgrid modelling and the interaction of small and large wavelenghts in turbulent flows, Computer Physics Communications, 65 (1991) 100-106. | MR | Zbl | DOI

[DJT] T. Dubois, F. Jauberteau and R. Temam ; The nonlinear Galerkin method for the two and three dimensional Navier-Stokes equations, Proceedings of the 12th International Conference on Numerical Methods in Fluids Dynamics, Oxford, July 1990, edited by K.W. Morton, Lectures Notes in Physics, Springer Verlag. | MR

[FI] I. Flahaut ; Approximate inertial manifolds for the Sine-Gordon equation, J. Diff. and Integ. Equ., vol. 4, 6, 1991, 1169-1193. | MR | Zbl

[FJoKSTi] C. Foias, M.S. Jolly, I.G. Kevrekidis, G.R. Sell and E.S. Titi ; On the computation of inertial manifolds, Physics Letters, 131, 1988, 433-436. | MR | DOI

[FMT] C. Foias, O. Manley and R. Temam ; Modelling of the interaction of small and large eddies in two dimensional turbulent flows, Math. Mod. and Num. Anal., vol. 22, 1, 1988. | MR | Zbl | Numdam | DOI

[FST] C. Foias, G. Sell and R. Temam ; Inertial manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73, 309-353, 1988. | MR | Zbl | DOI

[JRT] F. Jauberteau, C. Rosier and R. Temam ; A nonlinear Galerkin method for the Navier-Stokes equation, Comput. Meth. Appl. Mech. Eng. 80, 1990, 245. | MR | Zbl

[MT] M. Marion and R. Temam ; Nonlinear Galerkin methods ; the finite-elements case, Numer. Math., 57, 1-22, 1990. | MR | Zbl | DOI

[Me] Y. Meyer ; Ondelettes et opérateurs, Hermann, 1990. | Zbl

[Tl] R. Temam ; Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New-York, Applied Mathematical Science Series, vol. 68, 1988. | MR | Zbl

[T2] R. Temam ; Attractors for the Navier-Stokes equations, Localization and Approximation, J. Fac. Sci. Tokyo, Sec. 1A, 629-647, 1989. | MR | Zbl

[T3] R. Temam ; Inertial manifolds and multigrid methods, SIAM J.Math. Anal., 21, 154-178, 1990. | MR | Zbl | DOI

[B] G. Battle, A block spin construction of ondelettes, Part I : Lemarié functions, Comm. Math. Phys, 110, p. 601-615, (1987). | MR | DOI

[D] I. Daubechies, Orthonormal basis of compactly supported wavelets, Comm. on Pure and Applied Math., Vol. XLI, p. 909-996, (1988). | MR | Zbl

[DeMa] A. Debussche and M. Marion, On the construction of families of approximate inertial manifolds, J. Diff. Eq., to appear. | MR | Zbl

[FI] I. Flahaut, Approximate inertial manifolds for the Sine-Gordon equation, J. Diff. and Int. Eq., 1169-1194, vol 4 (6), 1991. | MR | Zbl

[FMT] C. Foias, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows, Math. Mod. and Num. Anal. (M2AN), 22, p. 93-114, (1988). | MR | Zbl | Numdam

[FNST] C. Foias, B. Nicolaenko, G. Sell and R. Temam, Inertial Manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures et Appl., 67, p. 197-226, (1988). | MR | Zbl

[FST] C. Foias, G. Sell and R. Temam, Inertial Manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73, p. 309-353, (1988). | MR | Zbl | DOI

[FSTi] C. Foias, G. Sell and E. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dyn. Diff. Eq., 1, 199-244 (1989). | MR | Zbl | DOI

[FT] C. Foias and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures et Appl., 58, p. 339-368, (1979). | MR | Zbl

[JM] S. Jaffard et Y. Meyer, Bases d'ondelettes dans des ouverts de n , J. Math. Pures et Appl., 68, p. 95-108, (1989). | MR | Zbl

[L] P. G. Lemarié, Ondelettes à localisation exponentielle, J. Math. Pures et Appl., 67, p. 227-236, (1988). | MR | Zbl

[LM] P. G. Lemarié et Y. Meyer, Ondelettes et bases hilbertiennes, Revista Matematica Iberoamericana, Vol. 2, p. 1-18, (1986). | MR | Zbl | DOI

[M] Y. Meyer, Ondelettes et Operateurs I : Ondelettes, Hermann 1990. | MR | Zbl

[MT] M. Marion and R. Temam, Nonlinear Galerkin Methods : The finite elements case, Numer. Math., 57, 205-226 (1990). | MR | Zbl | DOI

[P] K. Promislow, Time analycity and Gevrey regularity for solutions of a class of dissipative partial differential equations, J. Nonlinear Anal.: Theory, Methods and Applications, vol. 16, No 11, 959-980. | MR | Zbl | DOI

[T1] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, Springer-Verlag, Berlin, New York, (1988). | MR | Zbl

[T2] R. Temam, Induced Trajectories and Approximate Inertial Manifolds, Math. Mod. and Num. Anal. (M2AN), 23, p. 541-561, (1989). | MR | Zbl | Numdam

[T3] R. Temam, Inertial Manifolds and Multigrid Methods, SIAM J. Math. Anal., 21, p. 154-178 (1990). | MR | Zbl | DOI

[T4] R. Temam, Attractors for the Navier-Stokes equations, localization and approximation, J. Fac. Sci. Tokyo, Sec 1a, 36, 629-647 (1989). | MR | Zbl

[A] P. Auscher ; thesis, CEREMADE 1989.

[B] H. Brezis ; Analyse Fonctionnelle, Masson, Paris, 1983. | MR | Zbl

[CT] M. Chen and R. Temam ; The incremental unknowns method I, II, Applied Mathematics Letters, 1991. | MR | Zbl

[DM] A. Debussche and M. Marion ; On the construction of families of approximate inertial manifolds, J. Diff. Equ., to appear. | MR | Zbl

[F] I. Flahaut ; Approximate inertial manifolds for the Sine Gordon equation, J. Diff. and Integ. Equ., to appear. | MR | Zbl

[FST] C. Foias, G. Sell and R. Temam ; Inertial manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73, 309-353, 1988. | MR | Zbl | DOI

[O] O. Goubet ; Construction of approximate inertial manifolds using wavelets, submitted to SIAM J. Math. Anal. | MR | Zbl

[J1] S. Jaffard ; Construction of wavelets on open sets ; in Wavelets : Time-Frequencies Methods and Phases Spaces, Springer-Verlag, Berlin, Heidelberg, 1989. | MR | Zbl | DOI

[J2] S. Jaffard ; Wavelet methods for fast resolution of elliptic problems, LAMM Prépublication 90/5. | Zbl | DOI

[JM] S. Jaffard and Y. Meyer ; Bases d'ondelettes dans des ouverts de n , J. Math. Pures Appl., 68, 95-108, 1989. | MR | Zbl

[L] P.G. Lemarié ; La propriété de support minimal dans les analyses multi-résolution, C. R. Acad. Sci Paris, t. 312, Série I, 773-776, 1991. | MR | Zbl

[LM] J.L. Lions and E. Magenes ; Nonhomogeneous Boundary Value Problems and Applications, Springer-Verlag, New York, 1972. | MR | Zbl

[Ma] M. Marion ; Attractors for reaction-diffusion equations : existence and estimate of their dimension, Appl. Anal., 25, 101-147, 1987. | MR | Zbl

[MT1] M. Marion and R. Temam ; Nonlinear Galerkin methods, SIAM J. Num. Anal., 26, 1139-1157, 1989. | MR | Zbl | DOI

[MT2] M. Marion and R. Temam ; Nonlinear Galerkin methods ; the finite-elements case, Numer. Math., 57, 1-22, 1990. | MR | Zbl | DOI

[M] Y. Meyer ; Ondelettes et opérateurs, (I) Ondelettes, (II) Opérateurs de Calderon-Zygmund, Hermann, 1990. | MR | Zbl

[PT] K. Promislov and R. Temam ; Localization and approximation of attractors for the Ginzburg-Landau equation, J. Dynamic and Diff. Equ., to appear. | MR | Zbl

[T1] R. Temam ; Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, Applied Mathematical Science Series, vol. 68, 1988. | MR | Zbl

[T2] R. Temam ; Attractors for the Navier-Stokes equations, Localization and Approximation, J. Fac. Sci. Tokyo, Sec. IA, 629-647, 1989. | MR | Zbl

[T3] R. Temam ; Inertial manifolds and multigrid methods, SIAM J. Math. Anal., 21, 154-178, 1990. | MR | Zbl | DOI

[T4] R. Temam ; Analyse Numérique, PUF, 1970. | Zbl

[Y] H. Yserentant ; On the multilevel splitting of finite elements spaces, Numer. Math., 49, 379-412, 1986. | MR | Zbl | DOI