Topologie des variétés de basse dimension
Thèses d'Orsay, no. 290 (1991) , 152 p.
@phdthesis{BJHTUP11_1991__0290__P0_0,
     author = {Guillou, Lucien},
     title = {Topologie des vari\'et\'es de basse dimension},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {290},
     year = {1991},
     language = {fr},
     url = {http://www.numdam.org/item/BJHTUP11_1991__0290__P0_0/}
}
TY  - BOOK
AU  - Guillou, Lucien
TI  - Topologie des variétés de basse dimension
T3  - Thèses d'Orsay
PY  - 1991
IS  - 290
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_1991__0290__P0_0/
LA  - fr
ID  - BJHTUP11_1991__0290__P0_0
ER  - 
%0 Book
%A Guillou, Lucien
%T Topologie des variétés de basse dimension
%S Thèses d'Orsay
%D 1991
%N 290
%I Université de Paris-Sud Centre d'Orsay
%U http://www.numdam.org/item/BJHTUP11_1991__0290__P0_0/
%G fr
%F BJHTUP11_1991__0290__P0_0
Guillou, Lucien. Topologie des variétés de basse dimension. Thèses d'Orsay, no. 290 (1991), 152 p. http://numdam.org/item/BJHTUP11_1991__0290__P0_0/

Freedman M., The topology of four-dimensional manifolds, J. Diff. Geometry17 (1982), 357-453. | MR | Zbl

Haefliger A., Lissage des immersions, II (preprint 1967, non publié).

Kirby R., 4-manifold problems, in 4-manifolds, Contemp. Math.35 (1984), 513-528. | MR | Zbl

Kneser H., Ein Topologisches Zerlegungssatz, Proc. Royal Acad. Amsterdam, 27 (1924), 606-616.

Milnor J. and Kervaire M., Bernoulli numbers, homotopy groups and a theorem of Rohlin, Proc. Internat. Congr. Math. Edinburgh, 1958, 454-458. | MR | Zbl

Pontriaguine L.S., On the classification of four-dimensional manifolds, Uspehi Mat. Nank., 4 (1949), 157-158 (Russian).

Quinn F., Ends of maps. III :dimensions 4 and 5, J. Diff. Geometry17 (1982), 503-521. | MR | Zbl

Rohlin V., New results in the theory of 4-dimensional manifolds, Dokl. Akad. Nauk SSSR, 84 (1952), 221-224 (Russian) ; traduction francaise ici au debut de la premiere partie. | MR

Rohlin V., Proof of Gudkov's hypothesis, Funktional anal. i Prilōzen, 6 (1972), 62-64 (Russian) ; English translation : Functional Anal. Appl. 6 (1972), 136-138. | Zbl | MR

Serre J.P., Homologie singuliere des espaces fibrés. III : applications homotopiques, C.R. Acad. Sci.Paris, 232 (1951), 142-144. | MR | Zbl

Siebenmann L.C., D ¯ isruption of low-dimensional handlebody theory by Rohlin's theorem, Topology of Manifolds, Markham, 111. (1970), 57-76. | MR | Zbl

Wall C.T.C., On simply connected 4-manifolds, J. London Math. Soc.39 (1964), 141-149. | MR | Zbl | DOI

Wall C.T.C., Locally flat PL submanifolds with codimension two, Proc. Camb. Phil. Soc.63 (1967), 5-8. | MR | Zbl | DOI

Brouwer L.E.J., Beweis des ebenen Translationssatzes, Math. Ann., 72 (1912), 37-54. | MR | JFM | DOI

Brouwer L.E.J., Uber einendentige Stetige Transformationen von Flächen in sich, Math. Ann., 69 (1910), 176-180. | MR | JFM | DOI

Franks J., A variation on the Poincaré-Birkhoff theorem, Contemporary Math., 81 (1988), 111-117. | MR | Zbl | DOI

De Kérékjàrtò B., The plane translation theorem of Brouwer and the last geometric theorem of Poincaré, Acta Sci. Math. Szeged, 4 (1928-29), 86-102. | JFM

[1] Blakers A.L., Massey W.S., The homotopy groups of a triad, I, Ann. Math., 53 (1951), 161-205. | MR | Zbl | DOI

[2] Cairns S.S., Introduction of a Riemannian geometry on a triangulable 4-manifold, Ann. Math., 45 (1944), 218-219. | MR | Zbl | DOI

[3] Freudenthal H., Uber die Klassen der Sphärenabbildungen, I, Compos. Math., 5 (1938), 299-314. | MR | Zbl | JFM | Numdam

[4] Hopf H., Uber die Abbildungen der dreidimensionalen Späre auf die Kugelfläche, Math. Ann., 104 (1931), 637-666. | MR | JFM | Zbl | DOI

[5] Hopf H., Uber die Abbildungen von Spären au Spären niedrigerer Dimenson, Fund. Math., 25 (1935), 427-440. | JFM | Zbl | DOI

[6] Hurewicz W., Beiträge zur Topologie der Deformationen, Proc. Kon. Ned. Akad. Wetensch., 38 (1935), 112-119. | Zbl | JFM

[7] Hurewicz W., Steenrod N.E., Homotopy relations in fiber spaces, Proc. Nat. Acad. Sci. USA, 27 (1941), 60-64. | MR | JFM | Zbl | DOI

[8] Kneser H., Ein topologisches Zerlegungssatz, Proc. Kon. Ned. Akad. Wetensch., 27 (1924), 601-616.

[9] Korkine A., Zolotareff G., Sur les formes quadratiques, Math. Ann., 6 (1873), 366-389. | MR | JFM | DOI

[10] Massey W.S., Whitehead G.W., The Eilenberg-MacLane groups and homotopy groups of spheres, Bull. AMS, 57 (1951), 491.

[11] Pontryagin L. ( = Pontriaguine L.S.), A classification of continuous transformations of a complex into a sphere, I, Comptes-rendus (Doklady) de l'Acad. Sci. URSS, 19 (1938), 147-179. | JFM | Zbl

[12] Pontryagin L.S., Characteristic cycles on differentiable manifolds, Mat. Sbornik, 21 (1947), 233-284. | MR | Zbl

[13] Pontryagin L.S., Vector fields on manifolds, Mat. Sbornik, 24 (1949), 129-162. | MR | Zbl

[14] Pontryagin L.S., On the classification of four-dimensional manifolds, Uspehi. Mat. Nauk., 4 (1949), 157-158. | MR

[15] Pontryagin L.S., Homotopy classification of the mappings of an (n+2)-dimensional sphere on an n-dimensional one, Doklady Akad. Nauk. SSSR, 70 (1950), 957-959. | MR | Zbl

[16] Serre J.-P., Homologie singulière des espaces fibrés, III, Applications homotopiques, C.R. Acad. Sci. Paris, 232 (1951), 142-144. | MR | Zbl

[17] Stiefel E.L., Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten, Comment. Math. Helv. 8 (1936), 305-353. | Zbl | MR | DOI

[18] Whitehead G.W., A generalisation of the Hopf invariant, Ann. Math., 51 (1950), 192-237. | MR | Zbl | DOI

[19] Whitehead J.H.C., On simply connected, 4-dimensional polyhedra, Comment. Math. Helv., 22 (1949), 48-92. | MR | Zbl | DOI

[20] Whitney H., On the topology of differentiable manifolds, Lectures in Topology, pp. 101-141, University of Michigan Press, Ann Arbor, Mich., USA, 1941. | MR | Zbl

[21] Whitney H., The singularities of a smooth n-manifold in (2n-1)-space, Ann. Math., 45 (1944), 247-293. | MR | Zbl | DOI

[22] Wu Wen-Tsun, Classes caractéristiques et i-carrés d'une variété, C.R. Acad. Sci. Paris, 230 (1950), 508-511. | MR | Zbl

[FP] Frankl F. und Pontryagin L., Ein Knotensatz mit Anwendung auf die Dimensionstheorie, Math. Ann. 102 (1930), p. 785-789. | MR | JFM | DOI

[H] Haefliger A., Lissage des immersions II, à paraître (depuis 1967 !).

[K] Kneser H., Ein Topologisches Zerlegungssatz, Proc. Royal Acad. Amsterdam, 27 (1924), p. 601-616.

[M] Munkres J., Concordance is equivalent to smoothability ; Topology 5 (1966), p. 371-389. | MR | Zbl | DOI

[R] Rohlin V.A., Toute variété de dimension trois borde une variété de dimension quatre, Dokl. Akad. Nauk SSSR 81 (1951), p. 355-357 (en russe) ; traduction dans ce volume.

[S] Seifert H., Über das Geschlecht von Knoten, Math. Ann. 110 (1934), p. 571-592. | MR | Zbl | DOI

[W] Wall C.T.C., Locally flat PL submanifolds with codimension two, Proc. Camb. Phil. Soc. 63 (1967), P. 5-8. | MR | Zbl | DOI

[A'] N. A'Campo, Sur la première partie du 16e problème de Hilbert, Séminaire Bourbaki, n° 537 (1979). | MR | Zbl | Numdam

[A] V.I. Arnold, The arrangement of the ovals of real plane algebraic curves, involutions of four dimensional manifolds and the arithmetic of integral quadratic forms, Funkt. Analiz. i ego Pril. 5.3 (1971), 1-9 ; translation : Funct. Anal. Appl. 5 (1971), 169-176.

[BLLV] J. Barge, J. Lannes, F. Latour et P. Vogel, -sphères, Ann. Scient. Ec. Norm. Sup., 7, fasc. 4 (1974), 463-506. | MR | Zbl | Numdam

[B] E.H. Brown Jr., Generalizations of the Kervaire invariant, Ann. of Math. 95 (1972), 368-384. | MR | Zbl | DOI

[D] S.K. Donaldson, An application of gauge theory to four dimensional topology, J. Diff. Geom. 18 (1983), 279-315. | MR | Zbl

[Fi] T. Fiedler, Eine kongruenz für gitter und ihre anwendung auf 2k-mannigfaltigkeiten in 4k-mannigfaltigkeiten, Manuscripta Math. 46 (1984), 215-227. | MR | Zbl | DOI

[Fr] M. Freedman, The topology of four dimensional manifolds, J. Diff. Geom. 17 (1983), 357-454. | MR | Zbl

[FK] M. Freedman and R. Kirby, Geometric proof of Rohlin's theorem, Proc. Sympos. Pure Math., vol. 32, A.M.S. (1978), 85-97. | MR | Zbl | DOI

[GM1] L. Guillou et A. Marin, Une extension d'un théorème de Rohlin sur la signature, C.R. Acad. Sci. Paris, Ser. A-B 285 (1977), A95-A98. | MR | Zbl

[GM2] L. Guillou et A. Marin, Une extension d'un théorème de Rohlin sur la signature, Publ. Math. Univ. Paris VII, 9 (1980), 69-80. | MR | Zbl

[GM3] L. Guillou et A. Marin, Commentaires sur les articles de Rohlin, ce volume.

[K] N. Kuiper, The quotient space of CP(2) by complex conjugation is the 4-sphere, Math. Ann. 208 (1974), 175-177. | MR | Zbl | DOI

[Mar1] A. Marin, Quelques remarques sur les courbes algébriques planes réelles, Publ. Math. Univ. Paris VII, 9 (1980), 51-68. | MR | Zbl

[Mar2] A. Marin, P 2 / σ ou Kuiper et Massey au pays des coniques, ce volume.

[Mas1] W. Massey, Proof of a conjecture of Whitney, Pacific J. Math 31 (1969), 143-156. | MR | Zbl | DOI

[Mas2] W. Massey, The quotient space of the complex projective plane under conjugation is a 4-sphere, Geom. Dedicata 2 (1973), 371-374. | MR | Zbl | DOI

[Mat] Y. Matsumoto, An elementary proof of Rohlin's signature theorem and its extension by Guillou and Marin, ce volume.

[MH] J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer-Verlag, New-York (1973). | MR | Zbl | DOI

[R1] V.A. Rohlin, New results in the theory of 4-dimensional manifolds, Dokl. Akad. Nauk SSSR, 84 (1952), 221-224 ; traduction dans ce volume. | MR

[R2] V.A. Rohlin, Proof of a conjecture of Gudkov, Funkt. Analiz. i ego Pril. 6.2 (1972), 62-64 ; translation : Funct. Anal. Appl. 6 (1972), 136-138. | MR

[S] N.E. Steenrod, Topology of fiber bundles, Princeton Univ. Press, Princeton, N.J. (1951). | Zbl

[T] V.G. Turaev, Cohomology rings, linking forms and invariants of spin structures of three dimensional manifolds, Math. Sbornik Tom. 120 (162), 1983, n° 1, 68-83 ; translation : Math. USSR Sbornik, vol. 48 (1984), n° 1, 65-79. | MR | Zbl

[W] H. Whitney, On the topology of differentiable manifolds, in Lectures on topology, Univ. of Michigan Press (1941), 101-141. | MR | Zbl

[A1] S.A. Andrea, On homeomorphisms of the plane, and their embedding in flows, Bull. AMS, 71 (1965), 381-383. | MR | Zbl | DOI

[A2] S.A. Andrea, On homeomorphisms of the plane which have no fixed points, Abh. Math. Sem. Univ. Hamburg, 30 (1967), 61-74. | MR | Zbl | DOI

[A3] S.A. Andrea, The plane is not compactly generated by a free mapping, Trans. AMS, 151 (1970), 481-498. | MR | Zbl | DOI

[Ba] R.B. Barrar, Proof of the fixed point theorems of Poincaré and Birkhoff, Cand. J. of Math. 19 (1967), 333-343. | MR | Zbl | DOI

[Bi1] G.D. Birkhoff, Proof of Poincaré geometric theorem, Trans. AMS, 14 (1913), 14-22. | MR | JFM

[Bi2] G.D. Birkhoff, An extension of Poincaré's last geometric theorem, Acta Math., 47 (1925), 297-311. | MR | JFM | DOI

[Bo] S. Boyles, A counterexample to the bounded orbit conjecture, Trans. AMS, 266 (1981), 415-422. | MR | Zbl | DOI

[Br1] L.E.J. Brouwer, Die Theorie der endlichen kontinuirlichen Gruppen, unabhängig von den Axiomen von Lie, I, Math. Ann., 67 (1909), 246-267. | MR | JFM | DOI

[Br2] L.E.J. Brouwer, Continuous one-one transformation of surfaces in themselves, II, Nederl. Akad. Wetensch. Proc., 12 (1909), 286-297.

[Br3] L.E.-J. Brouwer, Zur Analysis Situs, Math. Ann., 68 (1910), 422-434. | MR | JFM | DOI

[Br4] L.E.J. Brouwer, Über einendentige Stetige Transformationen von Flächen in sich, Math. Ann., 69 (1910), 176-180. | MR | JFM | DOI

[Br5] L.E.J. Brouwer, Die Theorie den endlichen kontinuirlichen Gruppen, unabhängig von den Axiomen von Lie, II, Math. Ann., 69 (1910), 181-203. | MR | JFM | DOI

[Br6] L.E.J. Brouwer, Continuous one-one transformation of surfaces in themselves, II, Nederl. Akad. Wetensch. Proc., 13 (1911), 767-777.

[Br7] L.E.J. Brouwer, Beweis des ebenen Translationssatzes, Math. Ann., 72 (1912), 37-54. | MR | JFM | DOI

[Br8] L.E.J. Brouwer, Continuous one-one transformation of surfaces in themselves, V, Nederl. Akad. Wetensch. Proc., 15 (1912), 352-360.

[Br9] L.E.J. Brouwer, Remark on the plane translation theorem, Nederl. Akad. Wetensch. Proc., 15 (1912), 935-936.

[Br10] L.E.J. Brouwer, Collected Works, vol. 2 (H. Freudenthal ed.), North-Holland, 1976. | MR

[Bn1] M. Brown, A new proof of Brouwer's lemma on translation arcs, Houston J. of Math., 10 (1984), 35-41. | MR | Zbl

[Bn2] M. Brown, Homeomorphisms of two-dimensional manifolds, Houston J. of Math., 11 (1985), 455-469. | MR | Zbl

[BnN] M. Brown and W.D. Neumann, Proof of the Poincaré-Birkhoff fixed point theorem, Mich. Math. J., 24 (1977), 21-31. | MR | Zbl | DOI

[C] P.H. Carter, An improvement of the Poincaré-Birkhoff fixed point theorem, Trans. AMS, 269 (1982), 285-299. | MR | Zbl

[CZ] C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of Arnold, Invent. Math. 73 (1983), 33-49. | MR | Zbl | DOI

[Fa] A. Fathi, An orbit closing proof of Brouwer's lemma on translation arcs, L'enseignement Math., 33 (1987), 315-322. | MR | Zbl

[Fr1] J. Franks, Recurrence and fixed points of surface homeomorphisms, Ergod. Th. and Dynam. Sys., 8* (1988), 99-107. | MR | Zbl | DOI

[Fr2] J. Franks, Generalizations of the Poincaré-Birkhoff theorem, Annals of Math., 128 (1988), 139-151. | MR | Zbl | DOI

[Fr3] J. Franks, A variation on the Poincaré-Birkhoff theorem, Contemporary Math., 81 (1988), 111-117. | MR | Zbl | DOI

[H] M. Herman, Proceedings, Rio de Janeiro 1976, Springer Lecture Notes in Math., 652, p.251.

[J] G. Johnson, An example infixed point theory, Proc. AMS, 44 (1974), 511-514. | MR | Zbl | DOI

[K1] B. De Kerekjarto, On a geometrical theory of continuous groups I, Annals of Math., 27 (1925), 105-117. | MR | JFM | DOI

[K2] B. De Kerekjarto, The plane translation theorem of Brouwer and the last geometric theorem of Poincaré, Acta Sci. Math. Szeged, 4 (1928-29), 86-102. | JFM

[K3] B. De Kerekjarto, Note on the general translation theorem of Brouwer, Atti d. Congresso Internaz. d. Mat., Bologna 1928, 4 (1931), 235-238. | JFM

[K4] B. De Kerekjarto, Ueber die fixpuntfrein Abbildunger der Ebene, Acta Sci. Math. Szeged, 6 (1934), 226-234. | JFM | Zbl

[Sc] W. Scherrer, Translationen über einfach zusammenhängende Gebiet, Viertelkschr. Naturf. Ges. Zurich, 70(1925), 77-84. | JFM

[Sl1] E.E. Slaminka, A Brouwer translation theorem for free homeomorphisms, Trans. AMS, 306 (1988), 277-291. | MR | Zbl | DOI

[Sl2] E.E. Slaminka, Area preserving homeomorphisms of two manifolds, Contemporary Math., 81 (1988), 153-167. | MR | Zbl | DOI

[Sp] E. Sperner, Über die fixpunktfreien abbildungen der Ebene, Hamburger Math. Einzelschr., 14 (1933), 1-47. | Zbl | JFM

[T] H. Terasaka, Ein Beweis des Brouwerschen ebenen Translationssatzes, Japan J. of Math., 7 (1930), 61-69. | JFM | DOI

[W1] H.E. Winkelnkemper, Twist maps, coverings and Brouwer's translation theorem, Trans. AMS, 267 (1981), 585-593. | MR | Zbl

[W2] H.E. Winkelnkemper, A generalization of the Poincaré-Birkhoff theorem, Proc. AMS, 102 (1988), 1028-1030. | MR | Zbl

[W3] H.E. Winkelnkemper, Fixed points with rotation as obstructions to topological transitivity, I, Topology, 27 (1988), 393-400. | MR | Zbl | DOI

[Y] C.T. Yang, Hilbert fifth problem and related problems on transformation groups, Proceedings of Symposia in Pure Mathematics, vol.28, part 1 (1976), 142-146. | MR | Zbl | DOI