@phdthesis{BJHTUP11_1991__0285__P0_0, author = {Castelle, Nathalie}, title = {Principes d'invariance et application \`a la statistique de mod\`eles censur\'es}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e de Paris-Sud Centre d'Orsay}, number = {285}, year = {1991}, language = {fr}, url = {http://www.numdam.org/item/BJHTUP11_1991__0285__P0_0/} }
Castelle, Nathalie. Principes d'invariance et application à la statistique de modèles censurés. Thèses d'Orsay, no. 285 (1991), 140 p. http://numdam.org/item/BJHTUP11_1991__0285__P0_0/
[1] Cox's regression model for counting processes : a large sample study. Annals of Statistics, vol 10, 4, 1100-1120. | MR | Zbl | DOI
and , 1982.[2] Probability inequalities for the sum of independants random variables. J. AM. Statis. Assoc., 57, 33-45. | Zbl | DOI
, 1962.[3] Approximation theorems for independent and weakly dependent random vectors. Annals of Probability, vol 7, 29-54. | MR | Zbl | DOI
and 1979[4] On some global measures of the deviations of density function estimates. Annals of Statistics, vol 1, 1071-1095. | MR | Zbl | DOI
and , 1973.[5] A large sample study of the life table and product limit estimates under random censorship. Annals of Statistics, vol 2, 437-453. | MR | Zbl | DOI
and , 1974.[6] Hungarian construction from the non asymptotic view point. Annals of Probability, vol 10, 239-256. | MR | Zbl
and , 1989.[7] The asymptotic representation of the sample distribution function. Bull. Amer. Math. Soc., vol 75, 545-547. | MR | Zbl | DOI
, 1969.[8] Strong approximations of some biometrie estimates under random censorship. Z. Warschein. Verw. Geb., 56, 87-112 | MR | Zbl | DOI
, and , 1981.[9] Analysis of survival data. Chapman and Hall. | MR
and , 1984.[10] Strong approximations in probability and statistics. Academic Press, New York, 133-134. | MR | Zbl
and , 1981.[11] The rate of strong uniform consistency for the product limit estimator. Z. Wahrschein. Verw. Geb., 62, 411-426. | MR | Zbl | DOI
and , 1983.[12] Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Stat., 33, 642-669. | MR | Zbl | DOI
, and , 1956.[13] Limits theorems for a general weighted process under random censoring with applications. Medical Informatics and Statistics Report, 24. (University of Limburg)
and 1989.[14] A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika, 52, 203-223. | MR | Zbl | DOI
, 1965.[15] Censoring and stochastic integrals. Mathematical Centre Tracts 124. Amsterdam: Mathematische Centre. | MR | Zbl
, 1980.[16] Large sample behaviour of the product-limit estimator on the whole line. Annals of Statistics, vol 11, 49-58. | MR | Zbl
, 1983.[17] A class of rank test procedures for censored survival data. Biometrika, 69, 3, 553-566. | MR | Zbl | DOI
and , 1982.[18] Nonparametric estimation from incomplete observations. J. AM. Statis. Assoc., 53, 457-481. | MR | Zbl | DOI
and , 1958.[19] On the deviations in the Skorohod-Strassen approximation scheme. Z. Wahrschein. Verw. Geb., 13, 321-332. | MR | Zbl | DOI
, 1969.[20] An approximation of partial sums of independent RV'- and the sample DF. I. Z. Warschein. Verw. Geb., 32, 111-131. | MR | Zbl | DOI
, , and , 1975.[21] On the maximal deviation of the kernel regression function estimate. Math. Operationsforsh. Statist., Ser Statistics, vol 13, nx2, 171-182. | MR | Zbl
, 1982.[22] The tight constant of the Dvorestsky-Kiefer-Wolfowitz inequality. A paraitre dans Annals of probability. | MR | Zbl | DOI
, 1990.[23] Asymptotically efficient rank invariant test procedures. J.R. Statist. Soc., 135, 185-206.
and , 1972.[24] Linear rank tests with right censored data. Biometrika, 65, 167-179. | MR | Zbl | DOI
, 1978.[25] Sur les applications de la théorie des martingales à l'étude statistique d'une famille de processus ponctuels. Springer Lect. Notes in Mathematics, 636, 27-70. | MR | Zbl | DOI
, 1978.[26] Central limit theorems for local martingales Z. Wahrsch. verw. Gebiete 51, 269-286. | MR | Zbl | DOI
, 1980.[27] A strong law of the empirical density function. Periodica Math. Hung., Vol 9 (4), 317-324. | MR | Zbl | DOI
, 1978.[28] Empirical processes with applications to statistics. Wiley and Sons. | MR | Zbl
and , 1986.[29] Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Annals of Statistics, vol 6, nx1, 177-184. | MR | Zbl | DOI
, 1978.[30] On a representation of random variables. Th. Proba. Appl., 628-632. | Zbl
, 1976.[31] A remark on the approximation of the sample DF in the multidimensional case. Periodica Math. Hung., Vol 8 (1) 53-55. | MR | Zbl | DOI
, 1977.[32] Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z. Warschein. Verw. Geb., 45, 73-88. | MR | Zbl | DOI
, 1978.[1] Probability inequalities for the sum of independants random variables. J. AM. Statis. Assoc., 57, 33-45 | Zbl | DOI
, 1962.[2] Hungarian constructions from the non asymptotic view point. Annals of probability, Vol 17, 239-256 | MR | Zbl | DOI
& , 1989.[3] Strong approximations in probability and statistics. Academic Press, New York, 133-134 | MR | Zbl
& , 1981.[4] Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Stat., 33, 642-669 | MR | Zbl | DOI
& & , 1956.[5] On the deviations in the Skorohod-Strassen approximation scheme. Z. Wahrschein. Verw. Geb., 13, 321-332 | MR | Zbl | DOI
, 1969.[6] An approximation of partial sums of independent RV'- and the sample DF. I. Z. warschein. Verw. Geb., 32, 111-131 | MR | Zbl | DOI
& & , 1975.[7] The tight constant of the Dvorestsky-Kiefer-Wolfowitz inequality. A paraitre dans Annals of probability | MR | Zbl | DOI
, 1990.[8] Empirical processes with applications to statistics. Wiley & Sons. | MR | Zbl
& , 1986.[9] On a representation of random variables. Th. Proba. Appl., 628-632 | Zbl
, 1976.[10] Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z.warschein. Verw. Geb., 45, 73-88 | MR | Zbl | DOI
, 1978.[1] Probability inequalities for the sum of independants random variables. J. AM. Statis. Assoc., 57, 33-45 | Zbl | DOI
,1962.[2] Hungarian constructions from the non asymptotic view point. Annals of probability, Vol 17, 239-256 | MR | Zbl | DOI
& , 1989.[3] Strong Approximations of Some Biometric Estimates under Random Censorship. Z. Warschein. Verw. Geb., 56, 87-112 | MR | Zbl | DOI
& & , 1981.[4] An approximation of partial sums of independent RV'- and the sample DF. I. Z. Warschein. Verw. Geb., 32, 111-131 | MR | Zbl | DOI
& & , 1975.[5] Empirical processes with applications to statistics. Wiley & Sons. | MR | Zbl
& , 1986.[6] Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z. Warschein. Verw. Geb., 45, 73-88 | MR | Zbl | DOI
, 1978[1] Cox's regression model for counting processes : a large sample study. Annals of Statistics, vol 10, 4, 1100-1120. | MR | Zbl | DOI
and (1982)[2] Probability inequalities for the sum of independants random variables. J. AM. Statis. Assoc., 57, 33-45. | Zbl | DOI
(1962)[3] Hungarian construction from the non asymptotic view point. Annals of Probability, vol 10, 239-256. | MR | Zbl
and (1989)[4] Strong Approximations of Some Biometric Estimates under Random Censorship. Z. Warschein. Verw. Geb., 56, 87-112. | MR | Zbl | DOI
, , (1981)[5] Approximation forte d'un vecteur de processus empiriques. Voir 1ère partie, chapitre deux de cette thèse.
[6] Analysis of Survival Data. Chapman & Hall. | MR
and (1984)[7] Asymptotic minimal character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Stat., 33, 642-669. | MR | Zbl | DOI
, and (1956)[8] Limits theorems for a general weighted process under random censoring with applications. Medical Informatics and Statistics Report, 24. (University of Limburg)
and (1989)[9] Censoring and Stochastic Integrals. Mathematical Centre Tracts 124. Amsterdam: Mathematische Centre. | MR | Zbl
(1980)[10] Large sample behaviour of the product-limit estimator on the whole line. Annals of Statistics, vol 11, 49-58. | MR | Zbl
(1983)[11] A class of rank test procedures for censored survival data. Biometrika, 69, 3, 553-566. | MR | Zbl | DOI
and (1982)[12] The tight constant of the Dvorestsky-Kiefer-Wolfowitz inequality. A paraitre dans Annals of probability. | MR | Zbl | DOI
, 1990.[13] Empirical processes with applications to statistics. Wiley & Sons. | MR | Zbl
& (1986)[14] Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z. Warschein. Verw. Geb., 45, 73-88. | MR | Zbl | DOI
(1978)