@phdthesis{BJHTUP11_1989__0252__P0_0, author = {Heurteaux, Yanick}, title = {In\'egalit\'es de {Harnack} \`a la fronti\`ere pour des op\'erateurs paraboliques}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e de Paris-Sud Centre d'Orsay}, number = {252}, year = {1989}, language = {fr}, url = {http://www.numdam.org/item/BJHTUP11_1989__0252__P0_0/} }
Heurteaux, Yanick. Inégalités de Harnack à la frontière pour des opérateurs paraboliques. Thèses d'Orsay, no. 252 (1989), 78 p. http://numdam.org/item/BJHTUP11_1989__0252__P0_0/
[1] Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien. Ann. Inst. Fourier 28 (1978), 162-213. | MR | Zbl | Numdam | DOI
[2] Une propriété de la compactification de Martin d'un domaine euclidien. Ann. Inst. Fourier 29 n°4 (1979). 71-90. | MR | Zbl | Numdam | DOI
[3] Régularité d'accès des bouts et frontière de Martin d'un domaine euclidien. J. Math. Pures & Appl. 63 (1984), 215-260. | MR | Zbl
[4] Comparaison des mesures harmoniques et des fonctions de Green pour des opérateurs elliptiques sur un domaine lipschitzien. C. R. Acad. Sc. Paris 294 (1982). | MR | Zbl
[5] Communication personnelle (1988).
[6] Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc. 73 (1967). 890-896. | MR | Zbl | DOI
[7] A general form of the covering principle and relative differentiation of additive functions. Proc. Cambridge Philos. Soc. 42 (1946), 1-10. | MR | Zbl | DOI
[8] On the existence of boundary values for harmonic functions of several variables. Ark. för Math. 4 (1962). | MR | Zbl
[9] Estimates of harmonic measure. Arch. Rational Mech. Anal. 65 n°3 (1978), 275-288. | MR | Zbl | DOI
[10] Classical potential theory and its probabilistic counterpart. New York, Springer-Verlag (1984). | MR | Zbl
[11] A new proof of Moser's parabolic Harnack inequality via the old idea of Nash. Arch. Rat. Mech. and Anal. 96 (1986), 326-338. | MR | Zbl
&[12] Partial differential equations of parabolic type. Prentice-Hall, Englewood cliffs, N. J. (1964). | MR | Zbl
[13] Recherches sur la théorie axiomatique des fonctions surharmoniques et du potentiel. Ann. Inst. Fourier 12 (1962), 415-471. | MR | Zbl | Numdam | DOI
[14] On the boundary values of harmonic functions. Trans. Amer. Math. Soc. 132 (1968), 307-322. | MR | Zbl | DOI
&[15] Positive harmonic functions on Lipschitz domains. Trans. Amer. Math. Soc. 147 (1970). 507-528. | MR | Zbl | DOI
&[16] Singularity of parabolic measures. Compositio Mathematica 40 n°2 (1980), 243-250. | MR | Zbl | Numdam
&[17] Temperatures in several variables : kernel functions, representations, and parabolic boundary values. Trans. Amer. Math. Soc. 167 (1972), 243-262. | MR | Zbl | DOI
[18] Extansion of range of functions. Bull. Amer. Math. Soc. 40 (1934), 837-842. | MR | Zbl | DOI
[19] Minimal positive harmonic functions. Trans. Amer. Math. Soc. 49 (1941), 137-172. | MR | JFM | DOI
[20] A Harnack inequality for parabolic differential equations. Comm. Pure & Appl. Math. 17 (1964), 101-134. | MR | Zbl | DOI
[21] Real and complex analysis. 2nd. ed. Mc Graw-Hill (1974). | MR | Zbl
[22] Theory of the integral. Stechert, New York (1937) | Zbl | JFM
[23] On the Harnack inequality for linear elliptic equations. J. Anal. Math. 4 (1956), 292-308. | MR | Zbl | DOI
[24] On the boundary behavior of solutions to a class of elliptic partial differential equations. Ark. för Math. 6 (1967), 485-533. | MR | Zbl | DOI
[25] On parabolic measures and subparabolic functions. Trans. Amer. Math. Soc. 251 (1979). 171-186. | MR | Zbl | DOI