Convergence faible de la statistique linéaire de rang pour des variables aléatoires faiblement dépendantes et non stationnaires
Thèses d'Orsay, no. 251 (1989) , 382 p.
@phdthesis{BJHTUP11_1989__0251__P0_0,
     author = {Harel, Michel},
     title = {Convergence faible de la statistique lin\'eaire de rang pour des variables al\'eatoires faiblement d\'ependantes et non stationnaires},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e Paris-Sud Centre d'Orsay},
     number = {251},
     year = {1989},
     language = {fr},
     url = {http://www.numdam.org/item/BJHTUP11_1989__0251__P0_0/}
}
TY  - BOOK
AU  - Harel, Michel
TI  - Convergence faible de la statistique linéaire de rang pour des variables aléatoires faiblement dépendantes et non stationnaires
T3  - Thèses d'Orsay
PY  - 1989
IS  - 251
PB  - Université Paris-Sud Centre d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_1989__0251__P0_0/
LA  - fr
ID  - BJHTUP11_1989__0251__P0_0
ER  - 
%0 Book
%A Harel, Michel
%T Convergence faible de la statistique linéaire de rang pour des variables aléatoires faiblement dépendantes et non stationnaires
%S Thèses d'Orsay
%D 1989
%N 251
%I Université Paris-Sud Centre d'Orsay
%U http://www.numdam.org/item/BJHTUP11_1989__0251__P0_0/
%G fr
%F BJHTUP11_1989__0251__P0_0
Harel, Michel. Convergence faible de la statistique linéaire de rang pour des variables aléatoires faiblement dépendantes et non stationnaires. Thèses d'Orsay, no. 251 (1989), 382 p. http://numdam.org/item/BJHTUP11_1989__0251__P0_0/

1. Harel, M. (1980), Convergence en loi pour la topologie de Shorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé. Lectures Notes in Mathematics. Springer Verlag n°821, 46-85. | MR | Zbl

2. Harel, M., Puri, M. L. (1987), Weak convergence of weighted multivariate empirical processes under mixing conditions. In Mathematical Statistics and Probability Theory, Volume A : Theoretical Aspects. Reidel Publication Company, Holland, 1987, 121-141. | MR | Zbl

2.bis Harel, M., Puri M. L. (1987), Convergence faible du processus empirique multidimensionnel corrigé en condition de mélange. C.R.A.S. 305, série 1, 93-95. | MR | Zbl

3. Harel, M., Puri, M. L. (1986), The space D ˜ k and weak convergence for the rectangle-indexed processes under mixing. Technical Report, Department of Mathematics, Indiana University, 40 p. | Zbl

3.bis Harel, M., Puri, M. L. (1988),L'espace Dk et la convergence faible du processus empirique indexé par rectangles en condition de mélange. C.R.A.S. t. 306, série I. 207-210. | MR | Zbl

4. Harel, M. (1984), Convergence en loi pour la topologie de Shorohod éclatée du processus empirique multidimensionnel normalisé tronqué éclaté et corrigé. Statistique et Analyse des données, n°2, Vol. 9, 68-91. | MR | Zbl | Numdam

5. Harel, M. (1988), Weak convergence of multidimensional rank statistics in ϕ mixing condition. Journal of Statistical Planning and Inference, 20, 41-63. | MR | Zbl | DOI

5.bis Harel, M. (1986), Convergence faible de la statistique de rang multidimensionnelle en condition de φ mélange C.R.A.S. t. 306, série I 433-436. | MR | Zbl

6. Harel, M. (1986), Convergence faible de la statistique de rang multidimensionnelle en condition de φ mélange ou mélange fort. Cahiers du C.E.R.O. Vol. 28, n°1, 2, 3, 131-142. | MR | Zbl

7. Harel, M., Puri, M. L. (1989), Weak convergence of the serial linear rank statistic under mixing conditions with applications to time series and Markov processes. A paraître dans Annals of Probability. | MR | Zbl

7.bis Harel, M., Puri, M. L. (1987), Convergence faible de la statistique sérielle linéaire de rang en condition de dépendance avec application aux séries chronologiques et processus de Markov, C.R.A.S. t. 304, série I, 583-586. | MR | Zbl

8. Harel, M., Puri, M. L. (1989), Weak convergence of the serial linear rank statistic with unbounded scores and regression constants under mixing conditions. A paraître dans Journal of Statistical Planning and inference. | MR | Zbl

8.bis Harel, M., Puri, M. L. (1988), Convergence faible de la statistique sérielle linéaire de rang avec des fonctions de scores et des constantes de régression non bornées en condition de mélange C.R.A.S. t. 307, série I. | MR | Zbl

9. Harel, M., Puri, M. L. (1988), Weak convergence of the simple linear rank statistic for a large class of score functions under mixing conditions in the non stationary case. Technical report, Department of Mathematics, Indiana University, 24 p.

10. Harel, M., Puri, M. L. (1989), Limiting behavior of U-statistics, V-statistics and one sample rank order statistics for non stationary absolutely regular processes. Journal of Multivariate Analysis, 30, 181-204. | MR | Zbl

10.bis Harel, M., Puri, M. L. (1988), Comportement limite de la U-statistique, de la V-statistique et d'une statistique de rang à un échantillon pour des processus absolument réguliers non stationnaires. C.R.A.S. t. 306, série I, 625-628. | MR | Zbl

11. Harel, M., Puri, M. L. (1989), Weak convergence of the U-statistic and weak invariance of the one-sample rank order statistic for Markov processes and ARMA models. Journal of Multivariate Analysis, 31, 258-265. | MR | Zbl | DOI

12. Harel, M., Puri, M. L. (1989), Limiting behaviour of one sample rank order statistics with unbounded scores for non stationary absolutely regular processes. A paraître dans Journal of Statistical Planning and Inference. | MR | Zbl

13. Harel, M., Puri, M. L. (1989), Weak invariance of generalized U-statistics for non stationary absolutely regular processes. A paraître dans Stochastic Processes and their Applications | MR | Zbl

13.bis Harel, M., Puri, M. L. (1989), Convergence faible de la U-statistique généralisée pour des processus non stationnnaires absolument réguliers. C.R.A.S. t. 309, série I, 135-138 | MR | Zbl

[1] Alexander, K. S., (1982), Some limit theorems for weighted and non-identically distributed empirical processes. Ph. D. Thesis. M.I.T. | MR

[2] Billingsley, P., (1968), Convergence of probability measures, New York. | MR | Zbl

[3] Denker, M. and Rösler, U., (1985), Some contributions to Chernoff-savage theorems. Statistical and Decisions 3, 49-75. | MR | Zbl

[4] Einmahl, J. H. J., Ruymgaart, F. H. and Wellner, J. A., (1984), Criteria for weak convergence of weighted multivariate empirical processes indexed by points or rectangles. Acta. Sci. Math. (Szeged).

[5] Hallin, M., Ingenbleek, J.-F. and Puri, M. L., (1985), Linear serial rank tests for randomness against ARMA alternatives. Ann. Stat. 13, 1156-1181. | MR | Zbl | DOI

[6] Massart, P., (1987), Quelques problèmes de vitesse de convergence pour des processus empiriques. Doctorat d'Etat.

[7] Mcleish, D. L., (1975), Invariance principles for dependent variables Z. Wahrsch 32, 165-178. | MR | Zbl

[8] Neuhaus, G., (1971), On weak convergence of stochastic processes with multidimensional time parameter. Ann. Statist. 42, 1285-1295. | MR | Zbl | DOI

[9] Rüschendorf, L., (1976), Asymptotic distributions of multivariate rank order statistics. Ann. Stat. 4, n°5, 912-923. | MR | Zbl | DOI

[10] Ruymgaart, F. H. and Zuijlen, M. C., (1978), Asymptotic normality of multivariate linear rank statistics in the non i.i.d. case. Ann. Stat. 6, n°3, 588-602. | MR | Zbl | DOI

[11] Shorack, G. R. and Wellner, J. A., (1982), Limit theorems and inequalities for the uniform empirical process indexed by intervals. Ann. Prob. 10, 639-652. | MR | Zbl

[12] Shorack, G. R. and Wellner, J. A., (1986), Empirical processes with applications to statistics. Wiley series in Probability, New York. | MR | Zbl

[13] Stone, C., (1963), Weak convergence of stochastic processes defined on semi-infinite time intervals. Proc. Amer. Math. Soc. 14, 694-696. | MR | Zbl | DOI

[14] Withers, C. S., (1975), Convergence of empirical processes of mixing rv's on [0, 1]. Ann. Statist. 3, n°5, 1101-1108. | MR | Zbl | DOI

[15] Yoshihara, K., (1976), Limiting behavior of U-statistics for stationary absolutely regular processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, 237-252. | MR | Zbl | DOI

[16] Yoshihara, K., (1978), Limiting behavior of one sample rank order statistics for absolutely regular processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 43, 101-127. | MR | Zbl | DOI

[1] L. Rüschendorf On the empirical Process of Multivariate, dependent Random Variables Journal of Multivariate Analysis 4, p. 469-478 (1974) | MR | Zbl | DOI

[2] L. Rüschendorf Asymptotic distributions of Multivariate Rank order Statistics Ann. of Stat. Vol. 4 N° 5 p. 912-923 (1976) | MR | Zbl | DOI

[3] T.R. Fears and K. Mehra Weak convergence of a two sample empirical processes and a Chernoff Savage theorem for ϕ mixing sequence Ann. of Stat. Vol. 2 N° 3 p. 586-596 (1974) | MR | Zbl | DOI

[4] S. Balacheff, G. Dupont, J.P. Raoult Application de résultats de convergence de processus multidimensionnels à l'étude des statistiques de rang Journées de Statistique des Processus Stochastiques. | Zbl

[5] S. Balacheff and G. Dupont Sur la convergence des suites de processus empiriques multidimensionnels normalisés tronqués et mélangeants. Thèse 3ème Cycle Université de ROUEN (1979)

[6] S. Balacheff and G. Dupont Normalité Asymptotique des Processus empiriques tronqués et des processus de rang (cas multidimentionnel mélangeant) en Statistique non paramètrique asymptotique Lecture notes on Statistics, Springer Verlag (1980) | MR | Zbl | DOI

[7] M. Harel Techniques de calculs à l'aide de l'opérateur différence Δ B Document de travail (1980) Equipe de Recherche de Probabilités et Statistiques Laboratoire de Mathématique de ROUEN.

[8] K.L. Mehra and M. Sudhakara Rao Weak convergence in dq-metries of multidimensionnel empirical processes,Preprint.

[9] P. Billingsley Convergence of Probability Measures, Wiley (1968) | MR | Zbl

[10] P.J. Bickel and J. Wichura Convergence criteria for multiparameter stochastic processes and some applications Ann. of Math. Stat. Vol. 42 N° 5 p. 1656-1670 (1971) | MR | Zbl | DOI

[11] M.L. Straf Weak convergence of stochastic processes with several parameters. Proc. Sixt. Berkley. Symp. Math. Prob. (1970). | MR | Zbl

[12] J.P. Raoult Sur la convergence faible pour la topologie de SKOROHOD des processus corrigés, Document de travail (1979). Equipe de Recherche de Probabilités et Statistiques, Laboratoire de Mathématique de ROUEN.

[13] G. Neuhaus On weak convergence of stochastic processes with multidimensional time parameter Ann. Math. Statist. 42, 4 1285-1295 (1971). | MR | Zbl | DOI

[14] J. Wellner Convergence of the sequential uniform empirical process with bounds for centered beta r.v.'s and a log-log law. Technical Report N° 31. Univ. of Washington, Seattle (1974). | MR

Ahmad, I. and Lin, P.E. (1980). On the Chernoff-Savage theorem for dependent random sequences. Ann. Inst. Stat. Math. 32, 211-222. | MR | Zbl | DOI

Balacheff, S. and Dupont, G. (1980). Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Mathematics. Springer Verlag 821. 19-45. | MR | Zbl

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. | MR | Zbl

Doukhan, P. and Portal, F. (1983). Moment de variables aléatoires mélangeantes. C.R. Acad. Sc. Paris 297. 129-132. | MR | Zbl

Einmahl, J.H.J., Ruymgaart, F.H. and Wellner, J.A. (1984). Criteria for weak convergence of weighted multivariate empirical processes indexed by points or rectangles. Acta. Sci. Math. (Szeged).

Fears, T.R. and Mehra, K. (1974). Weak convergence of a two sample empirical process and a Chernoff-Savage theorem for ϕ -mixing sequences. Ann Stat. 2, 586-596. | MR | Zbl | DOI

Harel, M. (1980). Convergence en loi pour la topologie de Skorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé. Lecture Notes in Mathematics. Springer Verlag, 821. 46-85. | MR | Zbl

Mehra, K.L. and Rao, M.S. (1975). Weak convergence in dq-metrics of multidimensional empirical processes. Preprint, University of Alberta. Edmonton. Canada.

Neuhaus, G. (1971). On weak convergence of stochastic processes with multidimensional time parameter. Ann Statist. 42. 1285-1295. | MR | Zbl | DOI

Neumann, N. (1982). Ein Schwaches Invarianzprinzip für den gewichteten empirischen Prozess von gleichmässig mischenden Zufallsvariablen. Ph.D. Thesis, Göttingen, W. Germany. | Zbl

Withers, C.S. (1975). Convergence of empirical processes of mixing rv's on [0,1]. Ann. Stat. 3, 1101-1108. | MR | Zbl | DOI

[1] I. Ahmad et P. E. Lin, On the Chernoff-Savage theorem for dependent random sequences, Ann. Inst. Stat. Math., 32, 1980, p. 211-222. | MR | Zbl | DOI

[2] S. Balacheff et G. Dupont, Normalité asymptotique des processus empiriques tronqués et des processus de rang, Lecture Notes in Mathematics, Springer Verlag, 821, 1980, p. 19-45. | MR | Zbl

[3] P. Doukhan et F. Portal, Moment de variables aléatoires mélangeantes, Comptes rendus, 297, série I, 1983, p. 129-132. | MR | Zbl

[4] J. H. J. Einmahl, F. H. Ruymgaart et J. A. Wellner, Criteria for weak convergence of weighted multivariate empirical processes indexed by points or rectangles, Acta. Sc. Math., Szeged, 1984.

[5] T. R. Fears et K. Mehra, Weak convergence of a two sample empirical process and a Chernoff-Savage theorem for φ -mixing sequences, Ann. Stat., 2, 1974, p. 586-596. | MR | Zbl | DOI

[6] M. Harel (1980) : Convergence en loi pour la topologie de Skorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé, Lecture Notes in Math., Springer Verlag, n° 821, 1980, p. 46-85. | MR | Zbl

[7] N. Neumann, Ein schwaches Invarianzprinzip für den gewichteten empirischen Prozess von gleichmässig mischenden Zufallsvariablen, Ph. D. Thesis, Göttingen, W. Germany, 1982. | Zbl

[8] C. S. Withers, Convergence of empirical processes of mixing rv's on [0,1], Ann. Stat., 3, 1975, p. 1101-1108. | MR | Zbl | DOI

Ahmad, I. and Lin, P.E. (1980). On the Chernoff-Savage theorem for dependent random sequences. Ann. Inst. Stat. Math. 32. 211-222. | MR | Zbl | DOI

Alexander, K.S. (1982). Some limit theorems for weighted and non-identically distributed empirical processes. Ph.D. Thesis, M.I.T. | MR

Balacheff, S. and Dupont, G. (1980). Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Mathematics. Springer Verlag 821. 19-45. | MR | Zbl

Bass, R.F. and Pyke, R. (1985). The space D(A) and weak convergence for set-indexed processes. Ann. of Prob. 13, 860-884. | MR | Zbl

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. | MR | Zbl

Doukhan, P. and Portal, F. (1987). Principe d'invariance faible pour la fonction de répartition empirique dans un cadre multidimensionnel et mélangeant. Prob. and Math Stat. Vol. 8. Fasc. 2. (to appear). | MR | Zbl

Einmahl, J.H.J, Ruymgaart, F.H. and Wellner, J.A. (1984). Criteria for weak convergence of weighted multivariate empirical processes indexed by points or rectangles. Acta. Sci. Math. (Szeged).

Fears, T.R. and Mehra, K. (1974). Weak convergence of a two sample empirical process and a Chernoff-Savage theorem for ϕ mixing sequence. Ann. of Stat. Vol. 2. No. 3. 586-596. | MR | Zbl | DOI

Harel, M. (1980). Convergence en loi pour la topologie de Skorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé. Lecture Notes in Mathematics. Springer Verlag, 821. 46-85. | MR | Zbl

Neuhaus, G. (1971). On weak convergence of stochastic processes with multidimensional time parameters. Ann. Math. Statist. 42. 1285-1295. | MR | Zbl

Neuhaus, G. (1975). Convergence of the reduced empirical process for non i.i.d. random vectors. Ann. of Stat. 3. 528-531. | MR | Zbl | DOI

Neumann, N. (1982). Ein Schwaches Invarianzprinzip für den gewichteten empirischen Prozess von gleichmässig mischenden Zufallsvariablen. Ph.D. Thesis, Göttingen, W. Germany. | Zbl

Pyke, R, and Shorack, G.R. (1968). Weak convergence of a two sample empirical process and a new approach to Chernoff-Savage theorems. Ann. Math. Stat. 39. 755-771. | MR | Zbl | DOI

Rüschendorf, L. (1974). On the empirical process of multivariate, dependent random variables. Journal of Multivariate Analysis 4, 469-478. | MR | Zbl | DOI

Rüschendorf, L. (1976). Asymptotic distributions of multivariate rank order statistics. Ann. Stat. 4. 912-923. | MR | Zbl | DOI

Shorack, G.R. and Wellner, J.A. (1982). Limit theorems and inequalities for the uniform empirical process indexed by intervals. Ann. Probability 10. 639-652. | MR | Zbl

Ruymgaart, F.M. and Wellner, J.A. (1984). Some properties of weighted multivariate empirical processes. Stat. and Decisions 2, 199-223. | MR | Zbl

Skorohod, A.V. (1956). Limit theorems for stochastic processes. Theory Probab. Appl 1, 289-319. | MR

Straf, M.L. (1972). Weak convergence of stochastic processes with several parameters. Proc. Sixth Berkeley Symp. Math. Statist. Probab. 2. 187-221. Univ. of California Press. | MR | Zbl

Withers, C.S. (1975). Convergence of empirical processes of mixing rv's on [0,1]. Ann. Stat. 3. 1101-1108. | MR | Zbl

[1] S. Balacheff et G. Dupont, Normalité asymptotique des processus empiriques tronqués et des processus de rang, Lecture Notes in Mathematics, n° 821, Springer Verlag, 1980, p. 19-45. | MR | Zbl

[2] P. Billingsley, Convergence of probability Measures, Wiley, New York, 1968. | MR | Zbl

[3] J. H. J. Einmahl, F. H. Ruymgaart et J. A. Wellner, Criteria for weak convergence of weighted multivariate empirical processes indexed by points or rectangles, Acta. Sci. Math. (Szeged) 1988 (à paraître). | MR | Zbl

[4] M. Harel, Convergence en loi pour la topoiogie de Skorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé, Lecture Notes in Mathematics, n° 821, Springer Verlag, 1980, p. 46-85. | MR | Zbl

[5] M. Harel et M. L. Puri, Weak convergence of Weighted Multivariate Empirical Processes under Mixing Conditions, Proceedings of the 6th Panonian Conference, Autriche, 1987. | Zbl

[6] G. Neuhaus, On weak convergence of stochastic processes with multidimensional time parameters, Ann. Math. Statist., 42, 1971, p. 1285-1295. | MR | Zbl

(1) S. Balacheff et G. Dupont Sur la convergence des suites de processus multidimensionnels normalisés tronqués et mélangeants. Thèse de 3ème Cycle Université de Rouen (1979)

(2) S. Balacheff et G. Dupont Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Mathematics Springer Verlag (1980), n° 821 pp. 19-45. | MR | Zbl

(3) P.J. Bickel and J. Wichura Convergence criteria for multiparameter stochastic processes and some applications. Ann. of Math. Stat. Vol. 42 n° 5 pp. 1656-1670 (1971) | MR | Zbl | DOI

(4) P. Billingsley Convergence of Probability Measures, Wiley (1968). | MR | Zbl

(5) R.M. Dudley Central Limit theorems for empirical measures. Ann. Probability, 6, pp. 899-929 (1978) | MR | Zbl

(6) M. Harel Convergence en loi pour la topologie de Skorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé Lectures Notes in Mathematics, Springer-Verlag (1980), n° 821 pp. 46-85. | MR | Zbl

(7) L. Rüschendorf On the empirical Process of Multivariate, dependent Random Variables Journal of Multivariate Analysis 4, pp. 469-478 (1974) | MR | Zbl | DOI

Ahmad, I. and P.E. Lin (1980). On the Chernoff-Savage theorem for dependent random sequences. Ann. Inst. Stat. Math. 32, 211-222. | MR | Zbl | DOI

Balacheff, S. and G. Dupont (1980). Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Mathematics No. 821. Springer, Berlin-New York. | MR | Zbl

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. | MR | Zbl

Denker, M. and U. Rösler (1985). Some contributions to Chernoff-Savage theorems. Statist. and Decision 3, 49-75. | MR | Zbl

Dudley, R.M. (1978). Central limit theorems for empirical measures. Ann. Probab. 6, 899-929. | MR | Zbl

Fears, T.R. and K. Mehra (1974). Weak convergence of two sample empirical processes and a Chernoff-Savage theorem for ϕ mixing sequence. Ann. Stat. 2 (3), 586-596. | MR | Zbl | DOI

Harel, M. (1980). Convergence en loi pour la topologie de Skorohod du processus empirique multi-dimensionnel normalisé tronqué et semi-corrigé. Lecture Notes in Mathematics No. 821. Springer, Berlin-New York. | MR | Zbl

Harel, M. (1983). Convergence pour les processus empiriques éclatés. Ann. Sci. Univ. Clermont Ferrand II. | MR | Zbl | Numdam

Harel, M. (1984). Convergence en loi pour la topologie de Skorohod éclatée du processus empirique multidimensionnel normalisé tronqué éclaté et corrigé. Statist. et Analyse des Données 9 (2), 68-91. | MR | Zbl | Numdam

Harel, M. (1986). A generalization of a theorem of Van Zuijlen to the ϕ mixing case. Technical report, U.A. C.N.R.S. 759, Rouen.

Harel, M. and M.L. Puri (1987). Weak convergence of weighted multivariate empirical processes under mixing conditions. Proceedings of the 6th Pannonian Symposium on Mathematical Statistics, Volume A: Mathematical Statistics and Probablity. Reidel, Dordrecht-Boston, 121-141. | MR | Zbl

Ibragimov, J.A. and Y.V. Linnik (1971). Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen. | MR | Zbl

Mehra, K.L. and M.S. Rao (1975). Weak convergence in dq-metrics of multidimensional empirical processes. Preprint, Univ. of Alberta, Edmonton, Canada.

Neumann, N. (1982). Ein Schwaches Invarianzprinzip für den gewichteten empirischen Prozess von gleichmässig mischenden Zufalsvariablen. Ph.D. Thesis, Göttingen. | Zbl

Pyke, R. and G. Shorack (1968). Weak convergence of two sample empirical processes and a new approach of Chernoff-Savage theorems. Ann. Math. Statist. 39, 755-771. | MR | Zbl | DOI

Rüschendorf, L. (1974). Of the empirical process of multivariate, dependent random variables. J. Multivariate Anal. 4, 469-478. | MR | Zbl | DOI

Rüschendorf, L. (1976). Asymptotic distributions of multivariate rank order statistics. Ann. Statist. 4 (5), 912-923. | MR | Zbl | DOI

Ruymgaart, F.H. (1974). Asymptotic normality of non-parametric tests for independence. Ann. Statist. 2 (5), 892-910. | MR | Zbl | DOI

Ruymgaart, F.H. and M.C. Van Zuijlen (1978). Asymptotic normality of multivariate linear rank statistics in the non-i.i.d. case. Ann. Statist. 6 (3), 588-602. | MR | Zbl | DOI

Van Zuijlen, M.C. (1976). Some properties of the empirical distribution function in the non-i.i.d. case. Ann. Statist. 4 (2), 406-408. | MR | Zbl

Withers, C.S. (1975). Convergence of empirical processes of mixing rv's on [0,1]. Ann. Statist. 3 (5), 1101-1108. | MR | Zbl | DOI

[1] S. Balacheff et G. Dupont, Normalité asymptotique des processus empiriques tronqués et de processus de rang, Lecture Notes in Mathematics, Springer Verlag, n° 821, 1980, p. 19-45. | MR | Zbl

[2] M. Harel, Convergence en loi pour la topologie de Skorohod du processus empirique multidimensionnel tronqué et semi-corrigé, Lecture Notes in Mathematics, Springer Verlag, n° 821, 1980, p. 46-85. | MR | Zbl

[3] M. Harel, Convergence en loi pour la topologie de Skorohod éclatée du processus empirique multidimensionnel tronqué éclaté et corrigé, Stat. et An. des données, 9, n° 2, 1984. | MR | Zbl | Numdam

Ahmad, I. and Lin, P.E. (1980). On the Chernoff-Savage theorem for dependent random sequences. Ann. Inst. Stat. Math. 32, 211-222. | MR | Zbl | DOI

Balacheff, S. and Dupont, G. (1980). Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lectures Notes In Mathematics. Springer Verlag, n° 821. | MR | Zbl

Billingsley, P. (1968). Convergence probability measures. Wiley. | MR | Zbl

Denker, M. and Rosler, U. Preprint (1983). Some contributions to Chernoff-Savage theorems. (to appear in Statistical and Decision (1985)). | MR | Zbl

Fears, T.R. and Mehra, K. (1974). Weak convergence of a two sample empirical processes and a Chernoff-Savage theorem for ϕ mixing sequence. Ann. of Stat. Vol. 2, n° 3, 586-596. | MR | Zbl | DOI

Harel, M. (1980). Convergence en loi pour la topologie de Shorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé. Lectures Notes In Mathematics. Springer Verlag n° 821. | MR | Zbl

Harel, M. (1983). Convergence pour les processus empirique éclatés. Ann. Scient. de l'Université de Clermont Ferrand II. | MR | Zbl | Numdam

Harel, M. (1984). Convergence en loi pour la topologie de Shorohod éclatée du processus empirique multidimensionnel normalisé tronqué éclaté et corrigé. Statistique et Analyse des données, n° 2, vol. 9. | MR | Zbl | Numdam

Harel, M. (1985). Weak convergence of multidimensional rank statistics in ϕ mixing condition. Submitted to Journal of Statistical Planning and Inference. | MR | Zbl

Ibragimov, J.A. and Linnik, Y.V. (1971). Independent and stationary sequences of randem variables. Wolters-Noordhoff Publ. Groningen. | MR | Zbl

Mehara, K.L. and Rao, M.S. (1975). Weak convergence in dq-metrics of multidimensionnal empirical processes. Preprint, Univ. of Alberta, Edmonton, Canada.

Meumann, N. (1982). Ein Schwaches Invarianzprizip für den gewichteten empirischen Prozess von gleichmässig mischenden Zufalsvariablen. Ph. D. Thesis. Göttingen, Germany, Fed. Rep. | Zbl

Pyke, R. and Shorack, G. (1968). Weak convergence of two sample empirical process and a new approach of Chernoff-Savage theorem. Ann. Math. Statist. 39, 755-771. | MR | Zbl | DOI

Rüschendorf, L. (1974). Of the empirical process of multivariate, dependent random variables. Journal of multivariate Analysis, 4, 469-478. | MR | Zbl | DOI

Rüschendorf, M. (1976). Asymptotic distributions of multivariate rank order statistics. Ann. of Stat. vol. 4, n° 5, 912-923. | MR | Zbl | DOI

Ruymgaart, F.H. (1974). Asymptotic normality of non parametric tests for independence. Ann. of Stat., Vol. 2, n° 5, 892-910. | MR | Zbl | DOI

Ruymgaart, F.H. and Van Zuijlen, M.C. (1978). Asymptotic normality of multivariate linear rank statistics in the non i.i.d. case. Ann. of Stat., vol. 6, n° 3, 588-602. | MR | Zbl | DOI

Van Zuijlen, M.C. (1976). Some properties of the empirical distribution function in the non i.i.d. case. Ann. of Stat., vol. 4, n° 2, 406-408. | MR | Zbl

Withers, C.S. (1975). Convergence of empirical processes of mixing r v's on [0,1]. Ann. of Stat., vol. 3, n° 5, 1101-1108. | MR | Zbl | DOI

Doukhan, P. et Portal, F. (1983). Moments de variables aléatoires mélangeantes. C.R. Acad. Sc. Paris t.297. Série I, 129-132. | MR | Zbl

[1] Balacheff, S. and Dupont, G. (1980). Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Mathematics. Springer Verlag 821 19-45. | MR | Zbl

[2] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. | MR | Zbl

[3] Collomb, G. and Doukhan, P. (1983). Estimation de la fonction d'autoregression d'un processus stationnaire et φ mélangeant : risque quadratique pour la méthode du noyau. C.R. Acad. Sc. Paris 296 859-862. | MR | Zbl

[4] Davydov, Yu. A. (1973). Mixing conditions for Markov chains. Theory of Probability and Its Applications 2 312-328. | Zbl | MR

[5] Doukhan, P. and Portal, F. (1987). Principe d'invariance faible pour la fonction de répartition empirique dans un cadre multidimensionnel et mélangeant. Probability and Mathematical Statistics 8 117-132. | MR | Zbl

[6] Dudley, R.M. (1978). Central limit theorems for empirical measures. Ann. Prob. 6 899-929. | MR | Zbl | DOI

[7] Gaenssler, P. and Stute, W. (1987). Seminar on Empirical Processes. Birkäuser Verlag, Boston. | MR | Zbl | DOI

[8] Gorodetskii, V.V. (1977). On the strong mixing property for linear sequences. Theory Probability Appl. 27 411-413. | Zbl

[9] Hallin M., Ingenbleek, J.-F. and Puri, M.L. (1985). Linear serial rank tests for randomness against ARMA alternatives. Ann. Stat. 13 1156-1181. | MR | Zbl | DOI

[10] Harel, M. (1980). Convergence en loi pour la topologie de Skorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé. Lecture Notes in Mathematics. Springer Verlag 821 46-85. | MR | Zbl

[11] Harel, M. and Puri, M.L. (1989a). Limiting behavior of U-statistics, V-statistics and one-sample rank order statistics for non-stationary absolutely regular processes. J. Multivariate Anal. 30 181-204. | MR | Zbl

[12] Harel, M. and Puri, M.L. (1989b). Weak convergence of the U-statistic and weak invariance of the one-sample rank order statistic for Markov processes and ARMA models. J. Multivariate Anal. 31 259-265. | MR | Zbl | DOI

[13] Harel, M. and Puri, M.L. (1989c). Weak invariance of generalized U-statistics for nonstationary absolutely regular processes. Stock. Processes Appl. (To appear). | MR | Zbl

[14] Ibragimov, J.A. and Linnik, Y.V. (1971). Independent and Stationary Sequences of Random Variables . Wolters-Nordhoff Publ., Groningen. | MR | Zbl

[15] Mokkadem, A. (1985). Le modèle non linéaire AR(1) général. Ergodicité et ergodicité géométrique. C.R. Acad. Sc. Paris 301 19 889-892. | MR | Zbl

[16] Neuhaus, G. (1971). On weak convergence of stochastic processes with multidimensional time parameter. Ann. Math. Statist. 42 1285-1295. | MR | Zbl | DOI

[17] Neumann, N. (1982). Ein Schwaches Invarianzprinzip für den gewichten empirischen Prozess von gleichmässig mischenden Zufallsvariablen. Ph.D. Thesis, Gottingen, W. Germany. | Zbl

[18] Nummelin, E. and Tuominen, P. (1982). Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory. Stoch. Proc. Appl. 12 187-202. | MR | Zbl | DOI

[19] Rosenblatt, M. (1971). Markov Processes : Structure and Asymptotic Behavior. Springer Verlag, Berlin. | MR | Zbl | DOI

[20] Rüschendorf, L. (1974). On the empirical process of multivariate, dependent random variables. Journal of Multivariate Analysis 4 469-478. | MR | Zbl | DOI

[21] Rüschendorf, L. (1976). Asymptotic distributions of multivariate rank order statistics. Ann. Stat. 4 912-923. | MR | Zbl | DOI

[22] Shorack, G.R. and Wellner, J.A. (1986). Empirical rocesses with Applications to Statistics. Wiley, New York. | MR | Zbl

[23] Skorohod, A.V. (1956). Limit theorems for stochastic processes. Theor. Probability Appl. 1 261-290. | MR | Zbl

[24] Wichura, M.J. (1970). On the construction of almost uniformly convergent random variables with given weakly convergent image laws. Ann. Math. Statist. 41 1101-1115. | MR | Zbl | DOI

[25] Withers, C.S. (1975). Convergence of empirical processes of mixing rv's on [0,1]. Ann. Stat. 3 1101-1108. | MR | Zbl | DOI

[26] Withers, C.S. (1981). Conditions for linear processes to be strong mixing. Z. Wahrscheinlich. verw. Gebiete 5 477-480. | MR | Zbl | DOI

[1] G. Collomb et P. Doukhan, Estimation de la fonction d'autoregression d'un processus stationnaire et cp mélangeant : risque quadratique par la méthode du noyau, Comptes rendus, 296, série I, 1983, p. 859-862. | MR | Zbl

[2] M. Hallin, J. F. Ingenbleek et M. L. Puri, Linear serial rank tests for randomnes against ARMA alternatives, Ann. Stat., 13, 1985, p. 1156-1181. | MR | Zbl | DOI

[3] M. Harel, Convergence en loi pour la topologie de Skorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé, Lecture Note in Math., Springer Verlag, n° 821, 1980, p. 46-85. | MR | Zbl

[4] A. Mokhadem, Le modèle non linéaire AR(1) général. Ergodicité et ergodicité géométrique, Comptes rendus, 301, série I, 1985, p. 889-892. | MR | Zbl

[5] L. Rüschendorf, Asymptotic distribution of multivariate rank order statistics, Ann. Stat., 4, 1976, p. 912-923. | MR | Zbl | DOI

Balacheff, S. and Dupont, G. (1980). Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Mathematics. Springer Verlag no. 821. | MR | Zbl

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. | MR | Zbl

Denker, M. and Rösler, U. (1985). Some contributions to Chernoff-Savage theorems. Statistics and Decision 3, 49-75. | MR | Zbl

Fears, T.R. and Mehra, K. (1974). Weak convergence of two sample empirical processes and a Chernoff-Savage theorem for ϕ mixing sequence. Ann. Stat. 2, 586-596. | MR | Zbl | DOI

Harel, M. (1988). Weak convergence of multidimensional rank statistics under φ mixing conditions. Journal of Stat. Plan. and Inf., 20, 41-63. | MR | Zbl | DOI

Harel, M. and Puri, M.L. (1987a). Weak convergence of weighted multivariate empirical processes under mixing conditions. In Mathematical Statistics and Probability Theory, Volume A: Theoretical Aspects. (M.L. Puri, P. Révész and W. Wertz, eds.) Reidel Publication Company, Holland, 1987, pp. 121-141. | MR | Zbl

Harel, M. and Puri, M.L. (1987b). Weak convergence of the serial linear rank statistic under mixing conditions with applications to time series and Markov processes. Technical report, Department of Mathematics, Indiana University.

Mehra, K.L. and Rao, M.S. (1975). Weak convergence in dq-metrics of multidimensional empirical processes. Preprint. Univ. of Alberta, Edmonton, Canada.

Neumann, N. (1982). Ein Schwaches Invarianzprinzip für den gewichteten empirischen Prozess von gleichmässig mischenden Zufalsvariablen. Ph.D. thesis, Gottingen, Germany. | Zbl

Pyke, R. and Shorack, G. (1968). Weak convergence of two sample empirical processes and a new approach of Chernoff-Savage theorems. Ann. Math. Statist. 39 755-771. | MR | Zbl | DOI

Rüschendorf, L. (1974). Of the empirical process of multivariate, dependent random variables. J. Mult. Anal. 4 469-478. | MR | Zbl | DOI

Rüschendorf, L. (1976). Asymptotic distributions of multivariate rank order statistics. Ann. Stat. 4, no. 5, 912-923. | MR | Zbl | DOI

Ruymgaart, F.H., Shorack, G.R., and Van Zwet, W.R. (1972). Asymptotic normality of nonparametric tests for independence. Ann. of Math. Stat., Vol. 43, No. 4, 1122-1135. | MR | Zbl | DOI

Ruymgaart, F.H. (1974). Asymptotic normality of non parametric tests for independence. Ann. Stat. 2, No. 5, 892-910. | MR | Zbl | DOI

Ruymgaart, F.H. and Zuijlen, M.C. (1978). Asymptotic normality of multivariate linear rank statistics in the non i.i.d. case. Ann. Stat. 6, No. 3 588-602. | MR | Zbl | DOI

Withers, C.S. (1975). Convergence of empirical processes of mixing rv's on [0,1]. Ann. Statist. 3, No. 5, 1101-1108. | MR | Zbl | DOI

[1] M. Harel et M. L. Puri, C. R. Acad. Sci. Paris, 304, série I, 1987, p. 583-586. | MR | Zbl

[2] M. Harel et M. L. Puri, Weak convergence of Weighted Multivariate Empirical Processes under Mixing Conditions, Proceedings of the 6th Pannonian Conference Symposium on Mathematical Statistics and Probability theory, A, 1987, p. 121-141. | MR | Zbl | DOI

Balacheff, S. and Dupont, G. (1980). Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Math. No. 821. Springer Verlag. | MR | Zbl

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. | MR | Zbl

Chernoff, H. and Savage, I.R. (1958). Asymptotic normality and efficiency of certain nonparametric test statistics. Ann. Math. Stat. 29 972-994. | MR | Zbl | DOI

Denker, M. and Rösler, U. (1985). Some contributions to Chernoff-Savage theorems. Stat. and Decision 3 49-75. | MR | Zbl

Doukhan, P. and Portal, F. (1987). Principe d'invariance faible pour la fonction de répartition empirique dans un cadre multidimensional et mélangeant. Prob. and Math. Stat. Vol 8 Fa. 2. | Zbl

Dupač, C. and Hajek, J. (1969). Asymptotic normality of simple linear rank statistics under alternatives II. Ann. of Math. Stat. 40 1992-2017. | Zbl | DOI

Fears, F. and Mehra, K.L. (1974). Weak convergence of a two-sample empirical process and a Chernoff-Savage theorem for ϕ -mixing sequences. Ann. Stat. 2 586-596 | Zbl | DOI

Govindarajulu, Z., Le Cam, L. and Raghavachari, M. (1966). Generalizations of theorems of Chernoff and Savage on the asymptotic normality of test statistics. Proc. Fifth Berkeley Symp. on Math. Stat. and Prob. 1 609-638. Univ. of California Press. | Zbl

Hájek, J. (1968). Asymptotic normality of simple linear rank statistics under alternatives. Ann. of Math. Stat. 39 325-346. | Zbl | DOI

Pyke, R. and Shorack, G. (1968). Weak convergence of a two-sample empirical process and a new approach to Chernoff-Savage theorems. Ann. of Math. Stat. 39 3 | Zbl | DOI

Withers, C.S. (1975). Convergence of empirical processes of mixing rv's on [0,1]. Ann. Statist. 3 5 1101-1108. | Zbl | DOI

[1] Balacheff, S., and Dupont, G. (1980). Normalité asymptotique des processus empiriques tronqués et des processus de rang. In Lecture Notes in Mathematics Vol. 82, Springer-Verlag, New York/Berlin. | Zbl

[2] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. | MR | Zbl

[3] Denker, M., and Keller, G. (1983). On U-statistics and V. Mises' statistics for weakly dependent processes. Z. Wahrsch. Verw. Gebiete 64 505-522. | Zbl | DOI

[4] Doukhan, P., and Portal, F. (1983). Moments de variables aléatoires mélangeantes. C.R. Acad. Sci. Paris Sér. I. 297 129-132. | Zbl

[5] Ibragimov, I. A. (1962). Some limit theorems for stationary processes. Theory Probab. Appl. 7, No. 4 349-382. | Zbl

[6] Withers, C. S. (1975). Convergence of empirical processes of mixing rv's on [0, 1]. Ann. Statist. 3, No. 5 1101-1108. | Zbl | DOI

[7] Yoshihara, K., and Negishi, H. (1975). Weak convergence theorems for a type of weighted sums of random variables. Sci. Rep. Yokohama Nat. Univ. Sect. 1 22 1-9. | Zbl

[8] Yoshihara, K. (1976). Limiting behavior of U-statistics for stationary absolutely regular processes. Z. Wahrsch. Verw. Gebiete 35 237-252. | Zbl | DOI

[9] Yoshihara, K. (1978). Limiting behavior of one sample rank order statistics for absolutely regular processes. Z. Wahrsch. Verw. Gebiete 43 101-127. | Zbl | DOI

[1] M. Denker et G. Keller, On U-statistics and V. Mises'statistics for weakly dependent processes, Z. Wahrsch. verw. Gebiete, 64, 1983, p. 505-522. | Zbl | DOI

[2] K. Yoshihara, Limiting behavior of U-statistics for stationary absolutely regular processes, Z. Wahrsch. verw. Gebiete, 35, 1976, p. 237-252. | Zbl | DOI

[3] K. Yoshihara, Limiting behavior of one sample rank order statistics for absolutely regular processes, Z. Wahrsch. verw. Gebiete, 43, 1978, p. 101-127. | Zbl | DOI

1. Collomb, G. and Doukhan, P. (1983). Estimation de la fonction d'autoregression d'un processus stationnaire et φ mélangeant : risque quadratique pour la méthode du noyau. C.R. Acad. Sc. Paris 296, 859-862. | Zbl

2. Davydov, Yu. A. (1973). Mixing conditions for Markov chains. Theory of Probability and Its Applications, 2, 312-328. | Zbl

3. Harel, M. And Puri, M.L. (1988). Limiting behavior U-statistics, V-statistics and one sample rank order statistics for nonstationary absolutely regular processes. Jour. Multiv. Anal. (To appear). | Zbl

4. Mokkadem, A. (1987). Sur un modèle autorégressif non linéaire. Ergodicité et ergodicité géométrique. Jour. of Time Series Anal. 8, 195-204. | Zbl | DOI

5. Nummelin, E. and Tuominen, P. (1982). Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory. Stock. Proc. Appl. 12, 187-202. | Zbl | DOI

Balacheff, S. and Dupont, G. (1980). Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Mathematics. Springer Verlag, No. 821. | Zbl

Bennett, G. (1962). Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc., 57, 33-45. | Zbl | DOI

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York | Zbl

Doukhan, P. and Portal, F. (1987). Principe d'invariance faible pour la fonction de répartition empirique dans un cadre multidimensionel et mélangeant. Prob. and Math. Stat., Vol. 8, Fa. 2. | Zbl

Hallin, Marc ; Ingenbleek, Jean-Francois and Puri, Madan L. (1985). Linear serial rank tests for randomness against ARMA alternatives. Ann. Statist., 13, 1156-1181. | Zbl

Hallin, Marc, and Puri, Madan L. (1988). Locally asymptotically rank based procedures for testing autoregressive moving average dependence. Proc. Natl. Acad. Sci., U.S.A., 85, 2031-2035. | Zbl | DOI

Harel, Michel and Puri, Madan L. (1989a). Limiting behavior of U-statistics, V-statistics and one sample rank order statistics for nonstationary absolutely regular processes. Jour. Multiv. Anal., 30, 181-204. | Zbl | DOI

Harel, Michel and Puri, Madan L. (1989b). Weak convergence of the U-statistic and weak invariance of the one-sample rank order statistic for Markov processes and ARMA models. Jour. Multiv. Anal., 31, 258-265. | Zbl | DOI

Harel, Michel and Puri, Madan L. (1989c). Weak convergence of serial rank statistics under dependence with applications in time series and Markov processes. Ann. Prob. (To appear in 1990). | Zbl

Yoshihara, K. (1978). Limiting behavior of one sample rank order statistics for absolutely regular processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 43, 101-127. | Zbl | DOI

[1] S. Balacheff and G. Dupont, Normalité asymptotique des processus empiriques tronqués et des processus de rang, Lecture Notes in Mathematics. Springer Verlag no. 821 (1980). | Zbl

[2] P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1986). | Zbl

[3] P. Doukhan and F. Portal, Principe d'invariance faible pour la fonction de répartition empirique dans un cadre multidimensionel et mélangeant, Prob. and Math. Stat. 8, 2 (1987) 117-132. | Zbl

[4] G. Neuhaus, On weak convergence of stochastic processes with multidimensional time parameter, Ann. Math. Stat. 42, 4 (1971) 1285-1295. | Zbl | DOI

[5] I.A. Ibragimov, Some limit theorems for stationary processes, Theor. Prob. and Appl. VII 4 (1962) 349-382. | Zbl

[6] C.S. Withers, Convergence of empirical processes of mixing rv's on [0,1], Ann. Statist. 3, No. 5 (1975) 1101-1108. | Zbl | DOI

[7] K. Yoshihara, Limiting behavior of U statistics for stationary absolutely regular processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete 35 (1976) 237-252. | Zbl | DOI

[1] S. Balacheff et G. Dupont, Normalité asymptotique des processus empiriques tronqués et des processus de rang, Lecture Notes in Mathematics, Springer-Verlag, n° 821, 1980, p. 19-45. | Zbl

[2] M. Harel et M. L. Puri, Comportement limite de la U-statistique de la V-statistique et d'une statistique de rang à un échantillon pour des processus absolument réguliers non stationnaires, C. R. Acad. Sci. Paris, 306, série I, 1988, p. 625-628. | Zbl

[3] M. Harel et M. L. Puri, Limiting behavior of U-statistics V-statistics and one sample rank order statistics for non stationary absolutely regular processes, J. Multivariate Analysis, 1989 (à paraître). | Zbl

[4] G. Neuhaus, On weak convergence of stochastic processes with multidimensional time parameter, Ann. Math. Stat., 42, n° 4, 1971, p. 1285-1295. | Zbl | DOI

[5] K. Yoshihara, Limiting behavior of U-statistics for stationary absolutely regular processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 35, p. 237-252. | Zbl | DOI