@phdthesis{BJHTUP11_1989__0251__P0_0, author = {Harel, Michel}, title = {Convergence faible de la statistique lin\'eaire de rang pour des variables al\'eatoires faiblement d\'ependantes et non stationnaires}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e Paris-Sud Centre d'Orsay}, number = {251}, year = {1989}, language = {fr}, url = {http://www.numdam.org/item/BJHTUP11_1989__0251__P0_0/} }
TY - BOOK AU - Harel, Michel TI - Convergence faible de la statistique linéaire de rang pour des variables aléatoires faiblement dépendantes et non stationnaires T3 - Thèses d'Orsay PY - 1989 IS - 251 PB - Université Paris-Sud Centre d'Orsay UR - http://www.numdam.org/item/BJHTUP11_1989__0251__P0_0/ LA - fr ID - BJHTUP11_1989__0251__P0_0 ER -
%0 Book %A Harel, Michel %T Convergence faible de la statistique linéaire de rang pour des variables aléatoires faiblement dépendantes et non stationnaires %S Thèses d'Orsay %D 1989 %N 251 %I Université Paris-Sud Centre d'Orsay %U http://www.numdam.org/item/BJHTUP11_1989__0251__P0_0/ %G fr %F BJHTUP11_1989__0251__P0_0
Harel, Michel. Convergence faible de la statistique linéaire de rang pour des variables aléatoires faiblement dépendantes et non stationnaires. Thèses d'Orsay, no. 251 (1989), 382 p. http://numdam.org/item/BJHTUP11_1989__0251__P0_0/
1. Convergence en loi pour la topologie de Shorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé. Lectures Notes in Mathematics. Springer Verlag n°821, 46-85. | MR | Zbl
(1980),2. Weak convergence of weighted multivariate empirical processes under mixing conditions. In Mathematical Statistics and Probability Theory, Volume A : Theoretical Aspects. Reidel Publication Company, Holland, 1987, 121-141. | MR | Zbl
, (1987),2.bis Convergence faible du processus empirique multidimensionnel corrigé en condition de mélange. C.R.A.S. 305, série 1, 93-95. | MR | Zbl
, (1987),3. The space and weak convergence for the rectangle-indexed processes under mixing. Technical Report, Department of Mathematics, Indiana University, 40 p. | Zbl
, (1986),3.bis L'espace Dk et la convergence faible du processus empirique indexé par rectangles en condition de mélange. C.R.A.S. t. 306, série I. 207-210. | MR | Zbl
, (1988),4. Convergence en loi pour la topologie de Shorohod éclatée du processus empirique multidimensionnel normalisé tronqué éclaté et corrigé. Statistique et Analyse des données, n°2, Vol. 9, 68-91. | MR | Zbl | Numdam
(1984),5. Weak convergence of multidimensional rank statistics in mixing condition. Journal of Statistical Planning and Inference, 20, 41-63. | MR | Zbl | DOI
(1988),5.bis Convergence faible de la statistique de rang multidimensionnelle en condition de mélange C.R.A.S. t. 306, série I 433-436. | MR | Zbl
(1986),6. Convergence faible de la statistique de rang multidimensionnelle en condition de mélange ou mélange fort. Cahiers du C.E.R.O. Vol. 28, n°1, 2, 3, 131-142. | MR | Zbl
(1986),7. Weak convergence of the serial linear rank statistic under mixing conditions with applications to time series and Markov processes. A paraître dans Annals of Probability. | MR | Zbl
, (1989),7.bis Convergence faible de la statistique sérielle linéaire de rang en condition de dépendance avec application aux séries chronologiques et processus de Markov, C.R.A.S. t. 304, série I, 583-586. | MR | Zbl
, (1987),8. Weak convergence of the serial linear rank statistic with unbounded scores and regression constants under mixing conditions. A paraître dans Journal of Statistical Planning and inference. | MR | Zbl
, (1989),8.bis Convergence faible de la statistique sérielle linéaire de rang avec des fonctions de scores et des constantes de régression non bornées en condition de mélange C.R.A.S. t. 307, série I. | MR | Zbl
, (1988),9. Weak convergence of the simple linear rank statistic for a large class of score functions under mixing conditions in the non stationary case. Technical report, Department of Mathematics, Indiana University, 24 p.
, (1988),10. Limiting behavior of U-statistics, V-statistics and one sample rank order statistics for non stationary absolutely regular processes. Journal of Multivariate Analysis, 30, 181-204. | MR | Zbl
, (1989),10.bis Comportement limite de la U-statistique, de la V-statistique et d'une statistique de rang à un échantillon pour des processus absolument réguliers non stationnaires. C.R.A.S. t. 306, série I, 625-628. | MR | Zbl
, (1988),11. Weak convergence of the U-statistic and weak invariance of the one-sample rank order statistic for Markov processes and ARMA models. Journal of Multivariate Analysis, 31, 258-265. | MR | Zbl | DOI
, (1989),12. Limiting behaviour of one sample rank order statistics with unbounded scores for non stationary absolutely regular processes. A paraître dans Journal of Statistical Planning and Inference. | MR | Zbl
, (1989),13. Weak invariance of generalized U-statistics for non stationary absolutely regular processes. A paraître dans Stochastic Processes and their Applications | MR | Zbl
, (1989),13.bis Convergence faible de la U-statistique généralisée pour des processus non stationnnaires absolument réguliers. C.R.A.S. t. 309, série I, 135-138 | MR | Zbl
, (1989),[1] Some limit theorems for weighted and non-identically distributed empirical processes. Ph. D. Thesis. M.I.T. | MR
, (1982),[2] Convergence of probability measures, New York. | MR | Zbl
, (1968),[3] Some contributions to Chernoff-savage theorems. Statistical and Decisions 3, 49-75. | MR | Zbl
and , (1985),[4] Criteria for weak convergence of weighted multivariate empirical processes indexed by points or rectangles. Acta. Sci. Math. (Szeged).
, and , (1984),[5] Linear serial rank tests for randomness against ARMA alternatives. Ann. Stat. 13, 1156-1181. | MR | Zbl | DOI
, and , (1985),[6] Quelques problèmes de vitesse de convergence pour des processus empiriques. Doctorat d'Etat.
, (1987),[7] Invariance principles for dependent variables Z. Wahrsch 32, 165-178. | MR | Zbl
, (1975),[8] On weak convergence of stochastic processes with multidimensional time parameter. Ann. Statist. 42, 1285-1295. | MR | Zbl | DOI
, (1971),[9] Asymptotic distributions of multivariate rank order statistics. Ann. Stat. 4, n°5, 912-923. | MR | Zbl | DOI
, (1976),[10] Asymptotic normality of multivariate linear rank statistics in the non i.i.d. case. Ann. Stat. 6, n°3, 588-602. | MR | Zbl | DOI
and , (1978),[11] Limit theorems and inequalities for the uniform empirical process indexed by intervals. Ann. Prob. 10, 639-652. | MR | Zbl
and , (1982),[12] Empirical processes with applications to statistics. Wiley series in Probability, New York. | MR | Zbl
and , (1986),[13] Weak convergence of stochastic processes defined on semi-infinite time intervals. Proc. Amer. Math. Soc. 14, 694-696. | MR | Zbl | DOI
, (1963),[14] Convergence of empirical processes of mixing rv's on [0, 1]. Ann. Statist. 3, n°5, 1101-1108. | MR | Zbl | DOI
, (1975),[15] Limiting behavior of U-statistics for stationary absolutely regular processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, 237-252. | MR | Zbl | DOI
, (1976),[16] Limiting behavior of one sample rank order statistics for absolutely regular processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 43, 101-127. | MR | Zbl | DOI
, (1978),[1] On the empirical Process of Multivariate, dependent Random Variables Journal of Multivariate Analysis 4, p. 469-478 (1974) | MR | Zbl | DOI
[2] Asymptotic distributions of Multivariate Rank order Statistics Ann. of Stat. Vol. 4 N° 5 p. 912-923 (1976) | MR | Zbl | DOI
[3] Weak convergence of a two sample empirical processes and a Chernoff Savage theorem for mixing sequence Ann. of Stat. Vol. 2 N° 3 p. 586-596 (1974) | MR | Zbl | DOI
and[4] Application de résultats de convergence de processus multidimensionnels à l'étude des statistiques de rang Journées de Statistique des Processus Stochastiques. | Zbl
, ,[5] Sur la convergence des suites de processus empiriques multidimensionnels normalisés tronqués et mélangeants. Thèse 3ème Cycle Université de ROUEN (1979)
and[6] Normalité Asymptotique des Processus empiriques tronqués et des processus de rang (cas multidimentionnel mélangeant) en Statistique non paramètrique asymptotique Lecture notes on Statistics, Springer Verlag (1980) | MR | Zbl | DOI
and[7] Techniques de calculs à l'aide de l'opérateur différence Document de travail (1980) Equipe de Recherche de Probabilités et Statistiques Laboratoire de Mathématique de ROUEN.
[8] Weak convergence in dq-metries of multidimensionnel empirical processes,Preprint.
and[9] Convergence of Probability Measures, Wiley (1968) | MR | Zbl
[10] Convergence criteria for multiparameter stochastic processes and some applications Ann. of Math. Stat. Vol. 42 N° 5 p. 1656-1670 (1971) | MR | Zbl | DOI
and[11] Weak convergence of stochastic processes with several parameters. Proc. Sixt. Berkley. Symp. Math. Prob. (1970). | MR | Zbl
[12] Sur la convergence faible pour la topologie de SKOROHOD des processus corrigés, Document de travail (1979). Equipe de Recherche de Probabilités et Statistiques, Laboratoire de Mathématique de ROUEN.
[13] On weak convergence of stochastic processes with multidimensional time parameter Ann. Math. Statist. 42, 4 1285-1295 (1971). | MR | Zbl | DOI
[14] Convergence of the sequential uniform empirical process with bounds for centered beta r.v.'s and a log-log law. Technical Report N° 31. Univ. of Washington, Seattle (1974). | MR
On the Chernoff-Savage theorem for dependent random sequences. Ann. Inst. Stat. Math. 32, 211-222. | MR | Zbl | DOI
and (1980).Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Mathematics. Springer Verlag 821. 19-45. | MR | Zbl
and (1980).Convergence of Probability Measures. Wiley, New York. | MR | Zbl
(1968).Moment de variables aléatoires mélangeantes. C.R. Acad. Sc. Paris 297. 129-132. | MR | Zbl
and (1983).Criteria for weak convergence of weighted multivariate empirical processes indexed by points or rectangles. Acta. Sci. Math. (Szeged).
, and (1984).Weak convergence of a two sample empirical process and a Chernoff-Savage theorem for -mixing sequences. Ann Stat. 2, 586-596. | MR | Zbl | DOI
and (1974).Convergence en loi pour la topologie de Skorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé. Lecture Notes in Mathematics. Springer Verlag, 821. 46-85. | MR | Zbl
(1980).Weak convergence in dq-metrics of multidimensional empirical processes. Preprint, University of Alberta. Edmonton. Canada.
and (1975).On weak convergence of stochastic processes with multidimensional time parameter. Ann Statist. 42. 1285-1295. | MR | Zbl | DOI
(1971).Ein Schwaches Invarianzprinzip für den gewichteten empirischen Prozess von gleichmässig mischenden Zufallsvariablen. Ph.D. Thesis, Göttingen, W. Germany. | Zbl
(1982).Convergence of empirical processes of mixing rv's on [0,1]. Ann. Stat. 3, 1101-1108. | MR | Zbl | DOI
(1975).[1] On the Chernoff-Savage theorem for dependent random sequences, Ann. Inst. Stat. Math., 32, 1980, p. 211-222. | MR | Zbl | DOI
et ,[2] Normalité asymptotique des processus empiriques tronqués et des processus de rang, Lecture Notes in Mathematics, Springer Verlag, 821, 1980, p. 19-45. | MR | Zbl
et ,[3] Moment de variables aléatoires mélangeantes, Comptes rendus, 297, série I, 1983, p. 129-132. | MR | Zbl
et ,[4] Criteria for weak convergence of weighted multivariate empirical processes indexed by points or rectangles, Acta. Sc. Math., Szeged, 1984.
, et ,[5] Weak convergence of a two sample empirical process and a Chernoff-Savage theorem for -mixing sequences, Ann. Stat., 2, 1974, p. 586-596. | MR | Zbl | DOI
et ,[6] Convergence en loi pour la topologie de Skorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé, Lecture Notes in Math., Springer Verlag, n° 821, 1980, p. 46-85. | MR | Zbl
(1980) :[7] Ein schwaches Invarianzprinzip für den gewichteten empirischen Prozess von gleichmässig mischenden Zufallsvariablen, Ph. D. Thesis, Göttingen, W. Germany, 1982. | Zbl
,[8] Convergence of empirical processes of mixing rv's on [0,1], Ann. Stat., 3, 1975, p. 1101-1108. | MR | Zbl | DOI
,On the Chernoff-Savage theorem for dependent random sequences. Ann. Inst. Stat. Math. 32. 211-222. | MR | Zbl | DOI
and (1980).Some limit theorems for weighted and non-identically distributed empirical processes. Ph.D. Thesis, M.I.T. | MR
(1982).Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Mathematics. Springer Verlag 821. 19-45. | MR | Zbl
and (1980).The space D(A) and weak convergence for set-indexed processes. Ann. of Prob. 13, 860-884. | MR | Zbl
and (1985).Convergence of Probability Measures. Wiley, New York. | MR | Zbl
(1968).Principe d'invariance faible pour la fonction de répartition empirique dans un cadre multidimensionnel et mélangeant. Prob. and Math Stat. Vol. 8. Fasc. 2. (to appear). | MR | Zbl
and (1987).Criteria for weak convergence of weighted multivariate empirical processes indexed by points or rectangles. Acta. Sci. Math. (Szeged).
, and (1984).Weak convergence of a two sample empirical process and a Chernoff-Savage theorem for mixing sequence. Ann. of Stat. Vol. 2. No. 3. 586-596. | MR | Zbl | DOI
and (1974).Convergence en loi pour la topologie de Skorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé. Lecture Notes in Mathematics. Springer Verlag, 821. 46-85. | MR | Zbl
(1980).On weak convergence of stochastic processes with multidimensional time parameters. Ann. Math. Statist. 42. 1285-1295. | MR | Zbl
(1971).Convergence of the reduced empirical process for non i.i.d. random vectors. Ann. of Stat. 3. 528-531. | MR | Zbl | DOI
(1975).Ein Schwaches Invarianzprinzip für den gewichteten empirischen Prozess von gleichmässig mischenden Zufallsvariablen. Ph.D. Thesis, Göttingen, W. Germany. | Zbl
(1982).Weak convergence of a two sample empirical process and a new approach to Chernoff-Savage theorems. Ann. Math. Stat. 39. 755-771. | MR | Zbl | DOI
, and (1968).On the empirical process of multivariate, dependent random variables. Journal of Multivariate Analysis 4, 469-478. | MR | Zbl | DOI
(1974).Asymptotic distributions of multivariate rank order statistics. Ann. Stat. 4. 912-923. | MR | Zbl | DOI
(1976).Limit theorems and inequalities for the uniform empirical process indexed by intervals. Ann. Probability 10. 639-652. | MR | Zbl
and (1982).Some properties of weighted multivariate empirical processes. Stat. and Decisions 2, 199-223. | MR | Zbl
and (1984).Limit theorems for stochastic processes. Theory Probab. Appl 1, 289-319. | MR
(1956).Weak convergence of stochastic processes with several parameters. Proc. Sixth Berkeley Symp. Math. Statist. Probab. 2. 187-221. Univ. of California Press. | MR | Zbl
(1972).Convergence of empirical processes of mixing rv's on [0,1]. Ann. Stat. 3. 1101-1108. | MR | Zbl
(1975).[1] Normalité asymptotique des processus empiriques tronqués et des processus de rang, Lecture Notes in Mathematics, n° 821, Springer Verlag, 1980, p. 19-45. | MR | Zbl
et ,[2] Convergence of probability Measures, Wiley, New York, 1968. | MR | Zbl
,[3] Criteria for weak convergence of weighted multivariate empirical processes indexed by points or rectangles, Acta. Sci. Math. (Szeged) 1988 (à paraître). | MR | Zbl
, et ,[4] Convergence en loi pour la topoiogie de Skorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé, Lecture Notes in Mathematics, n° 821, Springer Verlag, 1980, p. 46-85. | MR | Zbl
,[5] Weak convergence of Weighted Multivariate Empirical Processes under Mixing Conditions, Proceedings of the 6th Panonian Conference, Autriche, 1987. | Zbl
et ,[6] On weak convergence of stochastic processes with multidimensional time parameters, Ann. Math. Statist., 42, 1971, p. 1285-1295. | MR | Zbl
,(1) Sur la convergence des suites de processus multidimensionnels normalisés tronqués et mélangeants. Thèse de 3ème Cycle Université de Rouen (1979)
et(2) Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Mathematics Springer Verlag (1980), n° 821 pp. 19-45. | MR | Zbl
et(3) Convergence criteria for multiparameter stochastic processes and some applications. Ann. of Math. Stat. Vol. 42 n° 5 pp. 1656-1670 (1971) | MR | Zbl | DOI
and(4) Convergence of Probability Measures, Wiley (1968). | MR | Zbl
(5) Central Limit theorems for empirical measures. Ann. Probability, 6, pp. 899-929 (1978) | MR | Zbl
(6) Convergence en loi pour la topologie de Skorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé Lectures Notes in Mathematics, Springer-Verlag (1980), n° 821 pp. 46-85. | MR | Zbl
(7) On the empirical Process of Multivariate, dependent Random Variables Journal of Multivariate Analysis 4, pp. 469-478 (1974) | MR | Zbl | DOI
On the Chernoff-Savage theorem for dependent random sequences. Ann. Inst. Stat. Math. 32, 211-222. | MR | Zbl | DOI
and (1980).Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Mathematics No. 821. Springer, Berlin-New York. | MR | Zbl
and (1980).Convergence of Probability Measures. Wiley, New York. | MR | Zbl
(1968).Some contributions to Chernoff-Savage theorems. Statist. and Decision 3, 49-75. | MR | Zbl
and (1985).Central limit theorems for empirical measures. Ann. Probab. 6, 899-929. | MR | Zbl
(1978).Weak convergence of two sample empirical processes and a Chernoff-Savage theorem for mixing sequence. Ann. Stat. 2 (3), 586-596. | MR | Zbl | DOI
and (1974).Convergence en loi pour la topologie de Skorohod du processus empirique multi-dimensionnel normalisé tronqué et semi-corrigé. Lecture Notes in Mathematics No. 821. Springer, Berlin-New York. | MR | Zbl
(1980).Convergence pour les processus empiriques éclatés. Ann. Sci. Univ. Clermont Ferrand II. | MR | Zbl | Numdam
(1983).Convergence en loi pour la topologie de Skorohod éclatée du processus empirique multidimensionnel normalisé tronqué éclaté et corrigé. Statist. et Analyse des Données 9 (2), 68-91. | MR | Zbl | Numdam
(1984).A generalization of a theorem of Van Zuijlen to the mixing case. Technical report, U.A. C.N.R.S. 759, Rouen.
(1986).Weak convergence of weighted multivariate empirical processes under mixing conditions. Proceedings of the 6th Pannonian Symposium on Mathematical Statistics, Volume A: Mathematical Statistics and Probablity. Reidel, Dordrecht-Boston, 121-141. | MR | Zbl
and (1987).Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen. | MR | Zbl
and (1971).Weak convergence in dq-metrics of multidimensional empirical processes. Preprint, Univ. of Alberta, Edmonton, Canada.
and (1975).Ein Schwaches Invarianzprinzip für den gewichteten empirischen Prozess von gleichmässig mischenden Zufalsvariablen. Ph.D. Thesis, Göttingen. | Zbl
(1982).Weak convergence of two sample empirical processes and a new approach of Chernoff-Savage theorems. Ann. Math. Statist. 39, 755-771. | MR | Zbl | DOI
and (1968).Of the empirical process of multivariate, dependent random variables. J. Multivariate Anal. 4, 469-478. | MR | Zbl | DOI
(1974).Asymptotic distributions of multivariate rank order statistics. Ann. Statist. 4 (5), 912-923. | MR | Zbl | DOI
(1976).Asymptotic normality of non-parametric tests for independence. Ann. Statist. 2 (5), 892-910. | MR | Zbl | DOI
(1974).Asymptotic normality of multivariate linear rank statistics in the non-i.i.d. case. Ann. Statist. 6 (3), 588-602. | MR | Zbl | DOI
and (1978).Some properties of the empirical distribution function in the non-i.i.d. case. Ann. Statist. 4 (2), 406-408. | MR | Zbl
(1976).Convergence of empirical processes of mixing rv's on [0,1]. Ann. Statist. 3 (5), 1101-1108. | MR | Zbl | DOI
(1975).[1] Normalité asymptotique des processus empiriques tronqués et de processus de rang, Lecture Notes in Mathematics, Springer Verlag, n° 821, 1980, p. 19-45. | MR | Zbl
et ,[2] Convergence en loi pour la topologie de Skorohod du processus empirique multidimensionnel tronqué et semi-corrigé, Lecture Notes in Mathematics, Springer Verlag, n° 821, 1980, p. 46-85. | MR | Zbl
,[3] Convergence en loi pour la topologie de Skorohod éclatée du processus empirique multidimensionnel tronqué éclaté et corrigé, Stat. et An. des données, 9, n° 2, 1984. | MR | Zbl | Numdam
,On the Chernoff-Savage theorem for dependent random sequences. Ann. Inst. Stat. Math. 32, 211-222. | MR | Zbl | DOI
and (1980).Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lectures Notes In Mathematics. Springer Verlag, n° 821. | MR | Zbl
and (1980).Convergence probability measures. Wiley. | MR | Zbl
(1968).Some contributions to Chernoff-Savage theorems. (to appear in Statistical and Decision (1985)). | MR | Zbl
and Preprint (1983).Weak convergence of a two sample empirical processes and a Chernoff-Savage theorem for mixing sequence. Ann. of Stat. Vol. 2, n° 3, 586-596. | MR | Zbl | DOI
and (1974).Convergence en loi pour la topologie de Shorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé. Lectures Notes In Mathematics. Springer Verlag n° 821. | MR | Zbl
(1980).Convergence pour les processus empirique éclatés. Ann. Scient. de l'Université de Clermont Ferrand II. | MR | Zbl | Numdam
(1983).Convergence en loi pour la topologie de Shorohod éclatée du processus empirique multidimensionnel normalisé tronqué éclaté et corrigé. Statistique et Analyse des données, n° 2, vol. 9. | MR | Zbl | Numdam
(1984).Weak convergence of multidimensional rank statistics in mixing condition. Submitted to Journal of Statistical Planning and Inference. | MR | Zbl
(1985).Independent and stationary sequences of randem variables. Wolters-Noordhoff Publ. Groningen. | MR | Zbl
and (1971).Weak convergence in dq-metrics of multidimensionnal empirical processes. Preprint, Univ. of Alberta, Edmonton, Canada.
and (1975).Ein Schwaches Invarianzprizip für den gewichteten empirischen Prozess von gleichmässig mischenden Zufalsvariablen. Ph. D. Thesis. Göttingen, Germany, Fed. Rep. | Zbl
(1982).Weak convergence of two sample empirical process and a new approach of Chernoff-Savage theorem. Ann. Math. Statist. 39, 755-771. | MR | Zbl | DOI
and (1968).Of the empirical process of multivariate, dependent random variables. Journal of multivariate Analysis, 4, 469-478. | MR | Zbl | DOI
(1974).Asymptotic distributions of multivariate rank order statistics. Ann. of Stat. vol. 4, n° 5, 912-923. | MR | Zbl | DOI
(1976).Asymptotic normality of non parametric tests for independence. Ann. of Stat., Vol. 2, n° 5, 892-910. | MR | Zbl | DOI
(1974).Asymptotic normality of multivariate linear rank statistics in the non i.i.d. case. Ann. of Stat., vol. 6, n° 3, 588-602. | MR | Zbl | DOI
and (1978).Some properties of the empirical distribution function in the non i.i.d. case. Ann. of Stat., vol. 4, n° 2, 406-408. | MR | Zbl
(1976).Convergence of empirical processes of mixing r v's on [0,1]. Ann. of Stat., vol. 3, n° 5, 1101-1108. | MR | Zbl | DOI
(1975).Moments de variables aléatoires mélangeantes. C.R. Acad. Sc. Paris t.297. Série I, 129-132. | MR | Zbl
et (1983).[1] Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Mathematics. Springer Verlag 821 19-45. | MR | Zbl
and (1980).[2] Convergence of Probability Measures. Wiley, New York. | MR | Zbl
(1968).[3] Estimation de la fonction d'autoregression d'un processus stationnaire et mélangeant : risque quadratique pour la méthode du noyau. C.R. Acad. Sc. Paris 296 859-862. | MR | Zbl
and (1983).[4] Mixing conditions for Markov chains. Theory of Probability and Its Applications 2 312-328. | Zbl | MR
(1973).[5] Principe d'invariance faible pour la fonction de répartition empirique dans un cadre multidimensionnel et mélangeant. Probability and Mathematical Statistics 8 117-132. | MR | Zbl
and (1987).[6] Central limit theorems for empirical measures. Ann. Prob. 6 899-929. | MR | Zbl | DOI
(1978).[7] Seminar on Empirical Processes. Birkäuser Verlag, Boston. | MR | Zbl | DOI
and (1987).[8] On the strong mixing property for linear sequences. Theory Probability Appl. 27 411-413. | Zbl
(1977).[9] Linear serial rank tests for randomness against ARMA alternatives. Ann. Stat. 13 1156-1181. | MR | Zbl | DOI
, and (1985).[10] Convergence en loi pour la topologie de Skorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé. Lecture Notes in Mathematics. Springer Verlag 821 46-85. | MR | Zbl
(1980).[11] Limiting behavior of U-statistics, V-statistics and one-sample rank order statistics for non-stationary absolutely regular processes. J. Multivariate Anal. 30 181-204. | MR | Zbl
and (1989a).[12] Weak convergence of the U-statistic and weak invariance of the one-sample rank order statistic for Markov processes and ARMA models. J. Multivariate Anal. 31 259-265. | MR | Zbl | DOI
and (1989b).[13] Weak invariance of generalized U-statistics for nonstationary absolutely regular processes. Stock. Processes Appl. (To appear). | MR | Zbl
and (1989c).[14] Independent and Stationary Sequences of Random Variables . Wolters-Nordhoff Publ., Groningen. | MR | Zbl
and (1971).[15] Le modèle non linéaire AR(1) général. Ergodicité et ergodicité géométrique. C.R. Acad. Sc. Paris 301 19 889-892. | MR | Zbl
(1985).[16] On weak convergence of stochastic processes with multidimensional time parameter. Ann. Math. Statist. 42 1285-1295. | MR | Zbl | DOI
(1971).[17] Ein Schwaches Invarianzprinzip für den gewichten empirischen Prozess von gleichmässig mischenden Zufallsvariablen. Ph.D. Thesis, Gottingen, W. Germany. | Zbl
(1982).[18] Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory. Stoch. Proc. Appl. 12 187-202. | MR | Zbl | DOI
and (1982).[19] Markov Processes : Structure and Asymptotic Behavior. Springer Verlag, Berlin. | MR | Zbl | DOI
(1971).[20] On the empirical process of multivariate, dependent random variables. Journal of Multivariate Analysis 4 469-478. | MR | Zbl | DOI
(1974).[21] Asymptotic distributions of multivariate rank order statistics. Ann. Stat. 4 912-923. | MR | Zbl | DOI
(1976).[22] Empirical rocesses with Applications to Statistics. Wiley, New York. | MR | Zbl
and (1986).[23] Limit theorems for stochastic processes. Theor. Probability Appl. 1 261-290. | MR | Zbl
(1956).[24] On the construction of almost uniformly convergent random variables with given weakly convergent image laws. Ann. Math. Statist. 41 1101-1115. | MR | Zbl | DOI
(1970).[25] Convergence of empirical processes of mixing rv's on [0,1]. Ann. Stat. 3 1101-1108. | MR | Zbl | DOI
(1975).[26] Conditions for linear processes to be strong mixing. Z. Wahrscheinlich. verw. Gebiete 5 477-480. | MR | Zbl | DOI
(1981).[1] Estimation de la fonction d'autoregression d'un processus stationnaire et cp mélangeant : risque quadratique par la méthode du noyau, Comptes rendus, 296, série I, 1983, p. 859-862. | MR | Zbl
et ,[2] Linear serial rank tests for randomnes against ARMA alternatives, Ann. Stat., 13, 1985, p. 1156-1181. | MR | Zbl | DOI
, et ,[3] Convergence en loi pour la topologie de Skorohod du processus empirique multidimensionnel normalisé tronqué et semi-corrigé, Lecture Note in Math., Springer Verlag, n° 821, 1980, p. 46-85. | MR | Zbl
,[4] Le modèle non linéaire AR(1) général. Ergodicité et ergodicité géométrique, Comptes rendus, 301, série I, 1985, p. 889-892. | MR | Zbl
,[5] Asymptotic distribution of multivariate rank order statistics, Ann. Stat., 4, 1976, p. 912-923. | MR | Zbl | DOI
,Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Mathematics. Springer Verlag no. 821. | MR | Zbl
and (1980).Convergence of Probability Measures. Wiley, New York. | MR | Zbl
(1968).Some contributions to Chernoff-Savage theorems. Statistics and Decision 3, 49-75. | MR | Zbl
and (1985).Weak convergence of two sample empirical processes and a Chernoff-Savage theorem for mixing sequence. Ann. Stat. 2, 586-596. | MR | Zbl | DOI
and (1974).Weak convergence of multidimensional rank statistics under mixing conditions. Journal of Stat. Plan. and Inf., 20, 41-63. | MR | Zbl | DOI
(1988).Weak convergence of weighted multivariate empirical processes under mixing conditions. In Mathematical Statistics and Probability Theory, Volume A: Theoretical Aspects. (M.L. Puri, P. Révész and W. Wertz, eds.) Reidel Publication Company, Holland, 1987, pp. 121-141. | MR | Zbl
and (1987a).Weak convergence of the serial linear rank statistic under mixing conditions with applications to time series and Markov processes. Technical report, Department of Mathematics, Indiana University.
and (1987b).Weak convergence in dq-metrics of multidimensional empirical processes. Preprint. Univ. of Alberta, Edmonton, Canada.
and (1975).Ein Schwaches Invarianzprinzip für den gewichteten empirischen Prozess von gleichmässig mischenden Zufalsvariablen. Ph.D. thesis, Gottingen, Germany. | Zbl
(1982).Weak convergence of two sample empirical processes and a new approach of Chernoff-Savage theorems. Ann. Math. Statist. 39 755-771. | MR | Zbl | DOI
and (1968).Of the empirical process of multivariate, dependent random variables. J. Mult. Anal. 4 469-478. | MR | Zbl | DOI
(1974).Asymptotic distributions of multivariate rank order statistics. Ann. Stat. 4, no. 5, 912-923. | MR | Zbl | DOI
(1976).Asymptotic normality of nonparametric tests for independence. Ann. of Math. Stat., Vol. 43, No. 4, 1122-1135. | MR | Zbl | DOI
, , and (1972).Asymptotic normality of non parametric tests for independence. Ann. Stat. 2, No. 5, 892-910. | MR | Zbl | DOI
(1974).Asymptotic normality of multivariate linear rank statistics in the non i.i.d. case. Ann. Stat. 6, No. 3 588-602. | MR | Zbl | DOI
and (1978).Convergence of empirical processes of mixing rv's on [0,1]. Ann. Statist. 3, No. 5, 1101-1108. | MR | Zbl | DOI
(1975).[1] C. R. Acad. Sci. Paris, 304, série I, 1987, p. 583-586. | MR | Zbl
et ,[2] Weak convergence of Weighted Multivariate Empirical Processes under Mixing Conditions, Proceedings of the 6th Pannonian Conference Symposium on Mathematical Statistics and Probability theory, A, 1987, p. 121-141. | MR | Zbl | DOI
et ,Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Math. No. 821. Springer Verlag. | MR | Zbl
and (1980).Convergence of Probability Measures. Wiley, New York. | MR | Zbl
(1968).Asymptotic normality and efficiency of certain nonparametric test statistics. Ann. Math. Stat. 29 972-994. | MR | Zbl | DOI
and (1958).Some contributions to Chernoff-Savage theorems. Stat. and Decision 3 49-75. | MR | Zbl
and (1985).Principe d'invariance faible pour la fonction de répartition empirique dans un cadre multidimensional et mélangeant. Prob. and Math. Stat. Vol 8 Fa. 2. | Zbl
and (1987).Asymptotic normality of simple linear rank statistics under alternatives II. Ann. of Math. Stat. 40 1992-2017. | Zbl | DOI
and (1969).Weak convergence of a two-sample empirical process and a Chernoff-Savage theorem for -mixing sequences. Ann. Stat. 2 586-596 | Zbl | DOI
and (1974).Generalizations of theorems of Chernoff and Savage on the asymptotic normality of test statistics. Proc. Fifth Berkeley Symp. on Math. Stat. and Prob. 1 609-638. Univ. of California Press. | Zbl
, and (1966).Asymptotic normality of simple linear rank statistics under alternatives. Ann. of Math. Stat. 39 325-346. | Zbl | DOI
(1968).Weak convergence of a two-sample empirical process and a new approach to Chernoff-Savage theorems. Ann. of Math. Stat. 39 3 | Zbl | DOI
and (1968).Convergence of empirical processes of mixing rv's on [0,1]. Ann. Statist. 3 5 1101-1108. | Zbl | DOI
(1975).[1] Normalité asymptotique des processus empiriques tronqués et des processus de rang. In Lecture Notes in Mathematics Vol. 82, Springer-Verlag, New York/Berlin. | Zbl
, and (1980).[2] Convergence of Probability Measures. Wiley, New York. | MR | Zbl
(1968).[3] On U-statistics and V. Mises' statistics for weakly dependent processes. Z. Wahrsch. Verw. Gebiete 64 505-522. | Zbl | DOI
, and (1983).[4] Moments de variables aléatoires mélangeantes. C.R. Acad. Sci. Paris Sér. I. 297 129-132. | Zbl
, and (1983).[5] Some limit theorems for stationary processes. Theory Probab. Appl. 7, No. 4 349-382. | Zbl
(1962).[6] Convergence of empirical processes of mixing rv's on [0, 1]. Ann. Statist. 3, No. 5 1101-1108. | Zbl | DOI
(1975).[7] Weak convergence theorems for a type of weighted sums of random variables. Sci. Rep. Yokohama Nat. Univ. Sect. 1 22 1-9. | Zbl
, and (1975).[8] Limiting behavior of U-statistics for stationary absolutely regular processes. Z. Wahrsch. Verw. Gebiete 35 237-252. | Zbl | DOI
(1976).[9] Limiting behavior of one sample rank order statistics for absolutely regular processes. Z. Wahrsch. Verw. Gebiete 43 101-127. | Zbl | DOI
(1978).[1] On U-statistics and V. Mises'statistics for weakly dependent processes, Z. Wahrsch. verw. Gebiete, 64, 1983, p. 505-522. | Zbl | DOI
et ,[2] Limiting behavior of U-statistics for stationary absolutely regular processes, Z. Wahrsch. verw. Gebiete, 35, 1976, p. 237-252. | Zbl | DOI
,[3] Limiting behavior of one sample rank order statistics for absolutely regular processes, Z. Wahrsch. verw. Gebiete, 43, 1978, p. 101-127. | Zbl | DOI
,1. Estimation de la fonction d'autoregression d'un processus stationnaire et mélangeant : risque quadratique pour la méthode du noyau. C.R. Acad. Sc. Paris 296, 859-862. | Zbl
and (1983).2. Mixing conditions for Markov chains. Theory of Probability and Its Applications, 2, 312-328. | Zbl
(1973).3. Limiting behavior U-statistics, V-statistics and one sample rank order statistics for nonstationary absolutely regular processes. Jour. Multiv. Anal. (To appear). | Zbl
And (1988).4. Sur un modèle autorégressif non linéaire. Ergodicité et ergodicité géométrique. Jour. of Time Series Anal. 8, 195-204. | Zbl | DOI
(1987).5. Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory. Stock. Proc. Appl. 12, 187-202. | Zbl | DOI
and (1982).Normalité asymptotique des processus empiriques tronqués et des processus de rang. Lecture Notes in Mathematics. Springer Verlag, No. 821. | Zbl
and (1980).Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc., 57, 33-45. | Zbl | DOI
(1962).Convergence of Probability Measures. Wiley, New York | Zbl
(1968).Principe d'invariance faible pour la fonction de répartition empirique dans un cadre multidimensionel et mélangeant. Prob. and Math. Stat., Vol. 8, Fa. 2. | Zbl
and (1987).Linear serial rank tests for randomness against ARMA alternatives. Ann. Statist., 13, 1156-1181. | Zbl
; and (1985).Locally asymptotically rank based procedures for testing autoregressive moving average dependence. Proc. Natl. Acad. Sci., U.S.A., 85, 2031-2035. | Zbl | DOI
, and (1988).Limiting behavior of U-statistics, V-statistics and one sample rank order statistics for nonstationary absolutely regular processes. Jour. Multiv. Anal., 30, 181-204. | Zbl | DOI
and (1989a).Weak convergence of the U-statistic and weak invariance of the one-sample rank order statistic for Markov processes and ARMA models. Jour. Multiv. Anal., 31, 258-265. | Zbl | DOI
and (1989b).Weak convergence of serial rank statistics under dependence with applications in time series and Markov processes. Ann. Prob. (To appear in 1990). | Zbl
and (1989c).Limiting behavior of one sample rank order statistics for absolutely regular processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 43, 101-127. | Zbl | DOI
(1978).[1] Normalité asymptotique des processus empiriques tronqués et des processus de rang, Lecture Notes in Mathematics. Springer Verlag no. 821 (1980). | Zbl
and ,[2] Convergence of Probability Measures (Wiley, New York, 1986). | Zbl
,[3] Principe d'invariance faible pour la fonction de répartition empirique dans un cadre multidimensionel et mélangeant, Prob. and Math. Stat. 8, 2 (1987) 117-132. | Zbl
and ,[4] On weak convergence of stochastic processes with multidimensional time parameter, Ann. Math. Stat. 42, 4 (1971) 1285-1295. | Zbl | DOI
,[5] Some limit theorems for stationary processes, Theor. Prob. and Appl. VII 4 (1962) 349-382. | Zbl
,[6] Convergence of empirical processes of mixing rv's on [0,1], Ann. Statist. 3, No. 5 (1975) 1101-1108. | Zbl | DOI
,[7] Limiting behavior of U statistics for stationary absolutely regular processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete 35 (1976) 237-252. | Zbl | DOI
,[1] Normalité asymptotique des processus empiriques tronqués et des processus de rang, Lecture Notes in Mathematics, Springer-Verlag, n° 821, 1980, p. 19-45. | Zbl
et ,[2] Comportement limite de la U-statistique de la V-statistique et d'une statistique de rang à un échantillon pour des processus absolument réguliers non stationnaires, C. R. Acad. Sci. Paris, 306, série I, 1988, p. 625-628. | Zbl
et ,[3] Limiting behavior of U-statistics V-statistics and one sample rank order statistics for non stationary absolutely regular processes, J. Multivariate Analysis, 1989 (à paraître). | Zbl
et ,[4] On weak convergence of stochastic processes with multidimensional time parameter, Ann. Math. Stat., 42, n° 4, 1971, p. 1285-1295. | Zbl | DOI
,[5] Limiting behavior of U-statistics for stationary absolutely regular processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 35, p. 237-252. | Zbl | DOI
,