Quelques problèmes concernant le comportement pour les grands temps des équations d'évolution dissipatives
Thèses d'Orsay, no. 245 (1989) , 116 p.
@phdthesis{BJHTUP11_1989__0245__P0_0,
     author = {Debussche, Arnaud},
     title = {Quelques probl\`emes concernant le comportement pour les grands temps des \'equations d'\'evolution dissipatives},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {245},
     year = {1989},
     language = {fr},
     url = {http://www.numdam.org/item/BJHTUP11_1989__0245__P0_0/}
}
TY  - BOOK
AU  - Debussche, Arnaud
TI  - Quelques problèmes concernant le comportement pour les grands temps des équations d'évolution dissipatives
T3  - Thèses d'Orsay
PY  - 1989
IS  - 245
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_1989__0245__P0_0/
LA  - fr
ID  - BJHTUP11_1989__0245__P0_0
ER  - 
%0 Book
%A Debussche, Arnaud
%T Quelques problèmes concernant le comportement pour les grands temps des équations d'évolution dissipatives
%S Thèses d'Orsay
%D 1989
%N 245
%I Université de Paris-Sud Centre d'Orsay
%U http://www.numdam.org/item/BJHTUP11_1989__0245__P0_0/
%G fr
%F BJHTUP11_1989__0245__P0_0
Debussche, Arnaud. Quelques problèmes concernant le comportement pour les grands temps des équations d'évolution dissipatives. Thèses d'Orsay, no. 245 (1989), 116 p. http://numdam.org/item/BJHTUP11_1989__0245__P0_0/

[1] J.K. Hale Asymptotic behaviour of dissipative systems, Mathematical Surveys and Monographs, Vol. 25, AMS, Providence. | MR | Zbl

[2] R. Temam Infinite dimensional dynamical systems in mechanics and physics, Applied mathematics Series, Vol.68, Springer-Verlag, New-York, 1988 | MR | Zbl

[3] D. Ruelle and F. Takens On the nature of turbulence, Comm. math. Phys., 20, 167-192, 1971. | MR | Zbl | DOI

[4] S. Smale Differentiable dynamical systems, Bull. Amer. Math. Soc., 73, 747-817, 1967. | MR | Zbl | DOI

[5] S. Wiggins Global bifurcation and chaos, Applied mathematics Series, Vol. 73, Springer-Verlag, New-York, 1988. | MR | Zbl

[6] R.J. Sacker A new approach to the perturbation theory of invariant surfaces, Comm. on Pure and Applied Math., Vol.XVIII, 717-732, 1965. | MR | Zbl | DOI

[7] M. Marion Approximate inertial manifolds for reaction diffusion equations in high space dimension, Dynamics and Differential Equations, to appear. | MR | Zbl

[8] M. Marion Approximate inertial manifolds for the pattern formation Cahn-Hilliard equation, Proc. Luminy Workshop on Dynamical Systems, 1987, to appear. | MR | Zbl | Numdam

[9] B. Nicolaenko, B. Scheurer and R. Temam Some global dynamical properties of a class of pattern formation equation, Comm. Partial Diff. Equ., 14 (2), 245-297, 1989. | MR | Zbl | DOI

[10] J.K. Hale and G. Raugel Upper semi continuity of the attractor for a singularly perturbed hyperbolic equation, J. Diff. Equ., 73, 197-214, 1988. | MR | Zbl | DOI

S.N. Chow and K. Lu [1] Invariant manifolds for flows in Banach spaces, Journal of differential equations 74, 285-317 (1988). | MR | Zbl | DOI

P. Constantin, C. Foias, B. Nicolaenko, R. Temam [1] Nouvaux résultats sur les variétés inertelles pour les équations différentielles dissipatives C.R. Acad. Sci. Paris, Ser. I, 302 375-378 (1986). | MR | Zbl

P. Constantin, C. Foias, B. Nicolaenko, R. Temam [2] Integral and Inertial Manifolds for dissipative partial differential equations, Springer-Verlag, New-York, to appear. | Zbl | DOI

P. Constantin, C. Foias, B. Nicolaenko, R. Temam [3] Spectral barriers and inertial manifolds for dissipative partial differential equations, to appear. | MR | Zbl | DOI

R. Courant et D. Hilbert [1] Methods of mathematical physics, Intersciences publishers, New-York (1953). | MR | Zbl

E. Fabes, M. Luskin and G. Sell [1] Construction of inertial manifolds by elliptic regularization, IMA preprint series # 459, Minneapolis, 1988. | MR | Zbl

C. Foias, B. Nicolaenko, G.R. Sell and R. Temam [1] Variétés inertielles pour l'équation de Kuramoto-Sivashinsky, C.R. Acad. Sci. Paris, Ser. I, 301 285-288 (1985). | MR | Zbl

C. Foias, B. Nicolaenko, G.R. Sell and R. Temam [2] Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, IMA preprint series # 279 (1986) | MR | Zbl

C. Foias, B. Nicolaenko, G.R. Sell and R. Temam [2] Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl., to appear (1988). | MR | Zbl

C. Foias, O. Manley and R. Temam [1] Sur l'interaction des petits et grands tourbillons dans les écoulements turbulents, C.R. Acad Sci. Paris, Série I, 305 497-500 (1987). | MR | Zbl

C. Foias, O. Manley and R. Temam [2] Modelization of the interaction of small and large eddies in turbulent flows, Math. Mod. and Num. Anal. M2AN (1988). | MR | Zbl | Numdam

C. Foias, G.R. Sell and R. Temam [1] Variétés inertielles des équations différentielles dissipatives, C.R. Acad. Sci. Paris, Série. I, 301 139-142 (1985). | MR | Zbl

C. Foias, G.R. Sell and R. Temam [2] Inertial manifols for nonlinear evolutionary equations, J. diff. equations, 73, 1988, p.309-353. | MR | Zbl | DOI

D. Gilbarg and N.S. Trudinger [1] Elliptic Partial Diffeerential Equations of Second Order, 2nd Ed., Springer-Verlag, New-York (1983). | MR | Zbl

J.K. Hale [1] Asymptotic Behavior of dissipative systems, Mathematical Surveys and Monographs, Vol. 25, AMS, Providence (1988). | MR | Zbl

M. Luskin and G. Sell [1] Approximation theories for inertial manifolds, M2AN, vol. 23, 1989. | MR | Zbl | Numdam | DOI

J. Mallet-Paret and G. Sell [1] Inertial manifols for reaction diffusion equation in higher space dimension, J. Americ math soc., Volume 1, Number 4, Octobre 1988, p.805-866. | MR | Zbl | DOI

M. Marion [1] Approximate inertial manifolds for reaction diffusion equations in high-space dimension, Dynamic and differential equations, to appear. | MR | Zbl

M. Marion [2] Approximate inertial manifolds for the pattern formation Cahn Hilliard equation, Infinite dimensional dynamical systems, J.C. Saut et R. Temam Eds. | Zbl | Numdam

R.J. Sacker [1] A new approach to the perturbation theory of invariant surfaces, Comm. on Pure and Applied Math., Vol. XVIII, 717-732 (1965). | MR | Zbl | DOI

R. Temam [1] Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New-York (1988). | MR | Zbl | DOI

R. Temam [2] Variété inertielle approchée pour les équations de Navier-Stokes bidimensionnelles, C.R. Acad. Sci. Paris, Ser. II, 306 399-402 (1988). | MR | Zbl

[1] A.V. Babin and M.I. Vishik, Attractors of partial differential equations and estimates of their dimension. Russ. Math. Surv. 38:4, 1983, 151-213. | Zbl | MR

[2] J.W. Cahn, Spinodal decomposition, Trans. Met. Soc. of AIME, 248, 1968, 166-180.

[3] J.W. Cahn and J.E. Hilliard, Free energy of a non uniform system I. Interfacial free energy, J. Chem. Phys. 28, 1958, 258-267. | Zbl | DOI

[4] P. Constantin, C. Foias, B. Nicolaenko, R. Temam, Spectral barriers and inertial manifolds for dissipative partial differential equations, J. Dynamics and Differential Equations, 1, 1989, 45-73. | MR | Zbl | DOI

[5] A. Debussche, Inertial manifolds and Sacker's equation, Differential and Integral Equations, to appear. | MR | Zbl

[6] E. Fabes, M. Luskin and G.R. Sell, Construction of inertial manifolds by elliptic regularization, IMA Preprint No. 459, 1988. | MR | Zbl

[7] C. Foias, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two dimensional turbulent flows, Math. Modelling Numerical Anal., 22, 1988, 93-118. | MR | Zbl | Numdam

[8] C. Foias, G.R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations, 73, 1988, 309-353. | MR | Zbl | DOI

[9] M.S. Jolly, I.G. Kevrekidis, and E.S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation : analysis and computations, Mathematical Sciences Institute Technical Report, Cornell University, 1989, Submitted to Physica D. | MR | Zbl

[10] N. Kopell and D. Ruelle, Bounds on complexity in reaction-diffusion systems, SIAM J. Appl. Math., 46, 1986, 68-80. | MR | Zbl | DOI

[11] J.S. Langer, Theory of spinodal decomposition in alloys, Ann. of Phys., 65, 1971, 53-86. | DOI

[12] J. Mallet-Paret and G.R. Sell, Inertial manifolds for reaction-diffusion equations in higher space dimension, J. Amer. Math. Soc. 1, 1989, 805-866. | MR | Zbl | DOI

[13] J. Mallet-Paret and G.R. Sell, (In preparation).

[14] M. Marion, Attractors for reaction-diffusion equations : existence and estimate of their dimension, Appl. Anal. , 25, 1987, 101-147. | MR | Zbl | DOI

[15] M. Marion, Approximate inertial manifolds for reaction-diffusion equations in high space dimension, J. Dynamics and Differential Equations, 1, 1989, 245-267. | MR | Zbl | DOI

[16] M. Marion, Approximate inertial manifolds for the pattern formation Cahn-Hilliard equation, Math. Modelling Numerical Anal, 23, 1989, 463-480. | MR | Zbl | Numdam

[17] M. Marion and R. Temam, Nonlinear Galerkin methods, SIAM J. Num. Anal. 26, 1989, 1139-1157. | MR | Zbl | DOI

[18] X. Mora and J. Sola-Morales, Existence and non-existence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations, Dynamics of Infinite Dimensional Systems, Springer-Verlag, New-York, 187-210. | MR | Zbl

[19] B. Nicolaenko and B. Scheurer, Low-dimensional behavior of the pattern formation Cahn-Hilliard equation, in Trends in the Theory and Practice of Nonlinear Analysis., V. Lakshmikantham ed., North-Holland, 1985. | MR | Zbl

[20] B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations, Comm. Partial Diff. Equ., | MR | Zbl

[21] A. Novick-Cohen and L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation, Physica D, 10, 1984, 277-298. | MR | DOI

[22] C. Rosier, Thesis, 1989, Université Paris-sud, Orsay, France.

[23] C. Rosier and R. Temam.

[24] G.R. Sell, Approximation dynamics : hyperbolic sets and inertial manifolds, University of Minnesota Supercolmputer Institute, 1989, Preprint No. 89/39.

[25] R. Temam, Attractors for the Navier-Stokes equations : localization and approximation, J. of the fac. of Sci. of Tokyo, to appear. | MR | Zbl

[26] E. Titi, Une variété approximante de I'attracteur universel des équations de Navier-Stokes, non linéaire, de dimension finie, C.R. Acad. Sci. , Série I., Paris, 307, 1988, 383-385. | MR | Zbl

J.M. Ghidaglia and R. Temam [1] Attractors for damped nonlinear hyperbolic equations, J. Math. Pures Appl., 66, 1987, 273-310. | MR | Zbl

J.K. Hale and G. Raugel [1] Upper semi-continuity of the attractor for a singularly perturbed hyperbolic equation, J. Diff. Equ., 73, 1988, 197-214. | MR | Zbl | DOI

J.K. Hale and G. Raugel [2] Lower semi-continuity of the attractor for a singularly perturbed hyperbolic equation, to appear. | MR | Zbl

J.L. Lions and E. Magenes [1] Nonhomogeneous boundary value problems and applicatoins, Springer Verlag, New-York, 1972. | Zbl

B. Nicolaenko, B. Scheurer and R. Temam [1] Some global dynamical properties of a class of pattern formation equations, Comm. Partial Differential Equ., 14(2), 1989, 245-297. | MR | Zbl | DOI

J.M. Ghidaglia [1] Comportement de dimension finie pour les équations de Schrödinger faiblement amorties. | Zbl

R. Temam [1] Infinite dimensional dynamical systems in mechanics and physics, Applied Mathematics Series, vol. 68, Springer-Verlag, New-York, 1988. | MR | Zbl

J.K. Hale [1] Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, AMS, Providence, 1988. | MR | Zbl