THÈSES D'ORSAY

MARIE COTTRELL

Modélisation de réseaux de neurones par des chaînes de Markov et autres applications

Thèses d'Orsay, 1988

<http://www.numdam.org/item?id=BJHTUP11_1988_0229_A1_0>

L'accès aux archives de la série « Thèses d'Orsay » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Thèse numérisée par la bibliothèque mathématique Jacques Hadamard - 2016 et diffusée dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ORSAY n° d'ordre : 3502

UNIVERSITE PARIS SUD

Centre d'Orsay

THESE

De Doctorat d'Etat Es Sciences Mathématiques

présentée pour obtenir le grade de

DOCTEUR ES-SCIENCES

par

Marie COTTRELL

<u>Sujet</u>: MODELISATION DE RESEAUX DE NEURONES PAR DES CHAINES DE MARKOV ET AUTRES APPLICATIONS.

Soutenue le 23 septembre 1988 devant le Jury composé de :

MM.	AZENCOTT	Robert
	ANCONA	Alano
	BRETAGNOLLE	Jean
	DEMONGEOT	Jacques
	HERAULT	Jeanny
	METIVIER	Michel
	RUGET	Gabriel

ABSTRACT

The first part of the thesis consists of a paper published in IEEE Trans. Aut. Control (vol. AC-28, n° 9, 1983), with J.C. Fort and G. Malgouyres. It gives two methods of calculating the exit time of a Markov chain from an attraction domain : this time is extremely long, so we use an exponential change of probability (that of large deviations theory), for a fast simulation and a non-standard approximation by diffusion.

The second part includes two papers published with J.C. Fort in the Annales de l'IHP, Probabilités et Statistiques (vol. 23,^{\bullet} n° 1, 1987), and in Biological Cybernetics (n° 53, 1986). In the first one, we prove the convergence of Kohonen's self-organizing algorithm, in dimension 1. In the second one, we define another self-organizing algorithm, which is a simplified variant of Kohonen's, and we prove its convergence in dimensions 1 and 2.

In the third part, published in Biological Cybernetics (n° 58, 1988), we solve the problem of the connection matrix calculus for a Mac-Culloch or Hopfield neural network, so as to get the largest attractivity for the deterministic algorithm and non-orthogonal patterns. Then we calculate the attractivity of each memorized pattern, for a given connection matrix.

The last part is devoted to the study of the role of inhibition in a nearest-neighbours-connected neural network. The model closely ressembles the biological reality of the young animal's cerebellar cortex. We prove that, when inhibition is smaller than a certain threshold, the network is ergodic and works in a stationary way. Conversely, when inhibition increases, striped or moiré responses appear, whose form and width depend on the considered neighbourhood size.

KEYWORDS : Large deviations, Approximation by diffusion, Markov chains, self-organization, Associative memory, Neural networks, Inhibitory coupling, Attractivity.

A.M.S. CODE : 60 F 10 - 60 J 27 - 60 J 60 - 60 J 20 - 60 k 35 - 94 C 99 - 92 A 90

Je voudrais tout d'abord remercier Jean-Claude Fort avec lequel j'ai cosigné 3 des articles de cette thèse. Qu'il trouve ici l'expression de toute mon amitié.

Je remercie Jean Bretagnolle, mon directeur de thèse, Robert Azencott et Gabriel Ruget pour m'avoir proposé des sujets de recherche, encouragée et aidée au cours de nombreuses discussions. Je les remercie d'avoir accepté d'être membres du jury et tout particulièrement Robert Azencott d'en assurer la présidence.

Je tiens à remercier Michel Métivier et Jacques Demongeot, rapporteurs pour la commission des thèses et Jeanny Herault de marquer par leur participation au jury la pluridisciplinarité qui caractérise mon travail.

Merci à Alano Ancona pour avoir bien voulu me proposer un sujet de deuxième thèse et m'avoir guidée dans la découverte de l'analyse complexe et de la mesure harmonique.

Merci à Herbert Axelrad qui a suggéré à partir de ses propres études de neurophysiologiste le modèle étudié dans la dernière partie de ma thèse.

Plus globalement je remercie tous les membres de l'équipe de statistique appliquée d'Orsay pour l'amitié qu'ils m'ont témoignée, pour leurs conseils et encouragements de toute sorte.

Je remercie plus particulièrement Didier Dacunha-Castelle qui m'a accueillie dans son équipe et permis ainsi une reconversion réussie après plusieurs années d'enseignement à plein temps, Roger Astier, Gérard Malgouyres avec qui j'ai collaboré au tout début, Bernard Prum, Xavier Guyon, Paul Doukhan, Christian Léonard avec qui j'ai eu de fructueuses discussions, Valentine Genon-Catalot dont les marques d'amitié ont rendu très agréable l'ambiance de notre bureau commun, Yves Misiti et Patrick Jakubowicz qui ont facilité mes rapports quelquefois conflictuels avec les micro-ordinateurs, Patrice Assouad pour les performances et les beautés de son traitement de texte.

Merci d'une façon générale à tous ceux (universitaires ou non), qui pendant ces dernières années ont encouragé et facilité mon travail.

Enfin, un grand merci à Mmes Anne-Marie Baillet et Nicole Parvan pour le soin et le talent avec lesquels elles ont mécanographié tout mon travail, dans ses différentes versions, et Mmes Andrée Zielinsky et Raymonde Fercoq pour la belle impression de l'ensemble.

Que tous et toutes trouvent ici l'expression de ma gratitude et la preuve que la solidarité et l'entraide en matière scientifique sont des atouts essentiels.

MOTS-CLEFS

PREMIERE PARTIE	•	Temps de sortie
		Approximation-diffusion
		Système ALOHA
		Processus de Markov
		Grandes déviations
		Evénements rares
DEUXIEME PARTIE	:	Rétinotople
		Processus d'auto-organisation
		Algorithme de Kohonen
TROISIEME PARTIE	:	Réseaux de neurones
		Mémoire associative
		Matrice de connexion
		Réseau d'automates
		Capacité de mémoire
QUATRIEME PARTIE	:	Cortex cérébelleux

Cortex cérébelleux Liaisons inhibitrices Réponses à des stimuli Processus de Markov.

TABLE DES MATIERES

I. <u>GRANDES DEVIATIONS ET EVENEMENTS RARES DANS L'ETUDE</u> D'ALGORITHMES STOCHASTIQUES.

- 1. Grandes déviations
- 2. Méthode de simulation rapide
- 3. Approximation par une diffusion
- 4. Exemples

II. ETUDE D'UN PROCESSUS D'AUTO-ORGANISATION.

- 1. Algorithme de Kohonen en dimension un
- 2. Démonstration du théorème 1.1. (Mise en ordre)
- Démonstration du théorème 1.2. (Existence d'une distribution stationnaire)
- 4. Quelques propriétés complémentaires.

III. UN MODELE STOCHASTIQUE DE LA RETINOTOPIE : UN PROCESSUS D'AUTO-ORGANISATION.

- 1. Le modèle
- 2. Le cas à une dimension
- 3. Le cas à deux dimensions
- 4. Effet d'adaptation décroissant avec le temps
- 5. Conclusion.

IV. STABILITE ET ATTRACTIVITÉ DANS LES RESEAUX DE MEMOIRE ASSOCIATIVE.

- 1. Introduction
- 2. Stabilité Attractivité
- 3. Cas des patrons orthogonaux
- 4. Recherche de la matrice des connexions
- 5. Taille des domaines d'attraction des patrons
- 6. Matrice optimale

7. Cas des patrons orthogonaux (bis)

8. Domaines d'attraction de tailles égales

```
9. Energie
```

10. Conclusions provisoires.

APPENDICES : Exemples et simulations.

V. ANALYSE MATHEMATIOUE D'UN MODELE DU CORTEX CEREBELLEUX : I. EFFET DE L'ACTION INHIBITRICE DES COLLATERALES RECURRENTES.

1.	Modélisation du cortex cérébelleux
2.	Modèle mathématique du réseau
з.	Chaîne extraite - Irréductibilité - Apériodicité -
	Temps de retour
4.	Récurrence - Régime stationnaire - $\theta < \theta_0$
5.	Divergence : Cas de deux neurones
6.	Divergence : Cas général
7.	Conclusion.
AP	PENDICES - Exemples et simulations.

II. EFFET DE L'ACTION INHIBITRICE DES COLLATERALES RECURRENTES EN PRESENCE DE STIMULI.

1.	Introduction
2.	Modèle mathématique du réseau de neurones avec excitation
з.	Conclusion.
AP	PENDICES - Exemples et simulations.

INTRODUCTION

Cette thèse comporte 5 articles. Les quatre premiers sont publiés. Le dernier est une prépublication d'ORSAY-PARIS-SUD.

PREMIERE PARTIE.

GRANDES DEVIATIONS ET EVENEMENTS RARES DANS L'ETUDE D'ALGORITHMES STOCHASTIQUES.

(A fait l'objet d'une publication dans IEEE Trans. on Aut. Control, en collaboration avec J.C. FORT et G. MALGOUYRES) [6].

Pour estimer des probabilités extrêmement petites, une méthode a été fréquemment utilisée : la méthode de l'échantillonnage préférentiel ([8]). Cette méthode est fondée sur la remarque suivante : Si P et \tilde{P} sont deux lois de probabilité telles que P soit absolument conti-

nue par rapport à \tilde{P} , de densité $\frac{dP}{\sim}$, et si X est une v.a.,

dP̃

$$E_{P}(X) = \int_{\Omega} X(\omega) dP(\omega) = \int_{\omega} X(\omega) \frac{dP}{dP}(\omega) d\tilde{P}(\omega) .$$

Si X est la v.a. indicatrice d'un événement A rare sous la loi P, événement presque impossible à observer au cours d'une simulation de loi P, on simule un n-échantillon sous une loi \tilde{P} favorisant l'apparition de l'événement A, et on estime $E_p(X) = P(A)$, par $\frac{1}{n}\sum_{i=1}^{n} \frac{dP}{d\tilde{P}}(\omega_i) \mathbf{1}_A(\omega_i)$. Cet estimateur est sans biais et convergent mais

sa variance $(\frac{1}{n} [E_{\tilde{p}} (X \frac{dP}{d})^2 - (E_{p} (X))^2])$ n'est pas contrôlée, et peut $d\tilde{p}$

être grande et ôter tout intérêt à cet estimateur.

Pour des événements A du type "franchissement" d'une barrière positive a pour un processus de Markov ayant O pour attracteur et équilibre asymptotiquement stable, nous avons montré que le changement de probabilité exponentiel utilisé pour démontrer les théorèmes dits de grandes déviations ([2], [4], [11]) fournit un estimateur optimal. Il est en effet de variance minimum parmi tous les changements de probabilité exponentiels, c'est-à-dire obtenus en remplaçant la loi partant de x, $d\mu_x(y)$ par $d\tilde{\mu}_x(y) = C \exp(v(x) y) d\mu_x(y)$. Le changement de probabilité optimal est défini par $v(x) = \lambda_x$ avec $\ell_x(\lambda_x) = 0$, pour ℓ_x log-Laplace de μ_x .

Son interprétation est simple : si, par exemple, le processus de Markov est défini par

 $d\mu_{x}(x+1) = p(x) = 1 - d\mu_{x}(x-1), \text{ avec } p(x) < \frac{1}{2}$

le changement de probabilité correspond à l'échange de p(x) et de 1 - p(x).

Ce changement de probabilité recentre le processus autour du "chemin de sortie" optimum (celui qui minimise l'intégrale d'action

$$I(\phi) = \int_{0}^{a} \frac{h_{x}(\dot{x})}{\dot{x}} dx, \text{ avec } h_{x} \text{ transformée de Cramer de la loi } \mu_{x}).$$

Nous avons utilisé aussi ce changement de probabilité optimal pour obtenir une formule approchée du temps d'atteinte de la barrière a > 0, en utilisant une approximation diffusion non standard.

Soit $0 < y < x_0 << n_b < a$.

On évalue d'abord la probabilité, partant de x_o , d'arriver en n_b avant d'arriver en y. Cette probabilité est très faible, elle est calculée au moyen d'une approximation-diffusion du processus \tilde{X} transformé par le changement de probabilité défini ci-dessus. On écrit ensuite des conditions frontières en x_o pour évaluer la probabilité, partant de 0, d'arriver en n_b , au moyen d'une approximation-diffusion du processus X lui-même, considéré au voisinage de 0 comme un processus de Orstein-Ulhenbeck. On répète enfin cette opération entre n_b et a.

On associe toujours au processus de Markov étudié X(t), le processus à petits gains $X^{e}(t) = eX(\frac{t}{e})$ comme par exemple dans [3], et les résultats obtenus sont des résultats asymptotiques quand $e \Rightarrow 0$.

Nous avons appliqué les deux méthodes (simulation et calcul approché) pour calculer le temps de fonctionnement prévisible d'un canal de communication ALOHA, ([1], [9], [10]) : il s'agit d'un canal partagé entre un très grand nombre d'utilisateurs, géré par une procédure aléatoire.

Lorsque deux utilisateurs cherchent à émettre simultanément, ils sont bloqués. Si l'on note N(t) le nombre d'utilisateurs bloqués à l'instant t, le temps de fonctionnement du canal est le temps d'atteinte d'une valeur critique n_c après laquelle N(t) tend rapidement vers + ∞ .

Depuis la publication de notre article, plusieurs auteurs ont appliqué ou généralisé ces techniques qui se sont révélées utiles : par exemple DUPUIS et KUSHNER [7] ou de CAMBRY [5].

DEUXIEME PARTIE.

ETUDE D'UN PROCESSUS D'AUTO-ORGANISATION.

(A fait l'objet d'une publication dans les Annales de l'Institut Poincaré, en collaboration avec J.C. FORT) [1].

et UN MODELE STOCHASTIQUE DE LA RETINOTOPIE.

(A fait l'objet d'une publication dans Biol. Cybern., en collaboration avec J.C. FORT) [2].

Dans de multiples réseaux de neurones réels, on constate certaines propriétés d'<u>ordre</u> porteuses de sens : <u>correspondances ordonnées</u> entre zones réceptrices dans le cortex visuel et orientations spatiales des stimuli, <u>rétinotopie</u>, c'est-à-dire que des zones voisines de la rétine sont en correspondance avec des zones voisines du cortex visuel, <u>mêmes</u> <u>constatations</u> en ce qui concerne le cortex sensoriel ou auditif...

Cet ordre n'est pas entièrement programmé génétiquement. Il se met en place au cours d'une période d'apprentissage, pendant laquelle les synapses se modifient suivant la règle de Hebb : l'efficacité d'une synapse se modifie de façon à augmenter le produit de l'activité préet post-synaptique ([4]).

Une disposition spatiale, une <u>auto-organisation</u>, se met en place sous le contrôle de l'information reçue. Il y a "reproduction" conforme des relations d'ordre, de voisinage, de ressemblance entre les stimuli.

T. KOHONEN ([6], [7], [8], [9]) a défini un algorithme d'autoorganisation simple, basé sur la règle de Hebb et spectaculairement efficace :

On dispose de N unités i = 1, ..., N, qui réagissent à un stimulus ω à n coordonnées $(\omega_1, ..., \omega_n)$, en fournissant une réponse $\sum_{j=1}^{n} \mu_{ij} \omega_j$. L'unité i est donc caractérisée par son "image", le vecteur $m_i = (\mu_{i1}, ..., \mu_{in})$. On place $m_1, m_2, ..., m_N$ dans le même espace que les stimuli et on les normalise. Un système de voisinage $\{V(i) / i = 1, ..., N\}$ est défini. Au temps t=0, les $m_i(0)$ sont aléatoires et indépendants. Si $(m_i(t))$ est l'état au temps t, on présente au temps (t+1) un stimulus ω^{t+1} , tiré suivant une loi p. On détermine alors i_0 , numéro de l'unité appelée par ω (unité de meilleure réponse) par

$$\|\omega^{t+1} - m_{i_0}(t)\| = \min_i \|\omega^{t+1} - m_i(t)\|$$

et on renforce l'ajustement <u>en</u> i_o <u>et en ses voisins</u>, en posant

$$\begin{cases} \mu_{ij}^{t+1} = \mu_{ij}^{t} + \varepsilon(t) \ (\omega_{j}^{t+1} - \mu_{ij}^{t}) & \text{si } i \in V \ (i_{o}) \cup \{i_{o}\} \\ \\ \mu_{ij}^{t+1} = \mu_{ij}^{t} , & \text{sinon} \end{cases}$$

avec & petit et positif.

(On applique une homothétie de rapport 1- ε et de centre ω^{t+1} au point i_o et à ses voisins : on les rapproche entre eux et aussi de ω^{t+1}).

Cet algorithme (en version discrète ou continue) définit un processus de Markov, convergent vers un maillage $(m_i (\infty))$, qui reproduit la densité p des stimuli ω et leurs ressemblances mutuelles.

T. KOHONEN a présenté de nombreuses applications de cet algorithme. Mais il n'a pas donné de démonstration explicite de la convergence de l'algorithme, même s'il en a esquissé quelques arguments.

Dans le premier article de cette partie (Etude d'un processus d'auto-organisation), nous avons démontré la convergence en loi du processus m(t), pour des unités alignées, en dimension 1, avec p uniforme et ε fixe, (contrairement à ce qu'annonçait T. KOHONEN, il n'est pas nécessaire que $\varepsilon(t)$ tende vers 0).

On montre que la convergence se fait en deux phases : une phase de mise en ordre correspondant à l'entrée dans une des deux classes absorbantes (dispositions monotones) et une phase de convergence proprement dite. Pour cela, nous montrons que la mise en ordre s'effectue en un temps fini et que la chaîne est Doeblin, en prouvant l'existence d'un entier m et d'une constante C > 0, tels que, pour tout x ordonné, et tout ensemble E de mesure de Lebesgue $\lambda(E) > 0$, $P^{\rm m}$ (x, E) > C λ (E).

Il est facile de mettre en évidence une fonctionnelle décroissante au sens large du temps : c'est un indice de désordre, mesuré par le nombre de triplets (m_{i-1} , m_i , m_{i+1}) non ordonnés, c'est-à-dire vérifiant ($m_{i+1} - m_i$) ($m_i - m_{i-1}$) < 0. Mais il faut démontrer que cet indice décroît strictement en temps <u>fini</u> et avec une probabilité strictement positive.

Il est donc nécessaire de construire "à la main" cette minoration, la chaîne étant non classique et à états dans [0,1]^N.

Nous avons enfin étudié le cas où $\varepsilon(t) > 0$: si $\sum \varepsilon(t) = +\infty$ et $\sum \varepsilon^2(t) < +\infty$, (conditions classiques des algorithmes de Robbins et Monro), la chaîne converge presque sûrement vers une situation constante m^* , solution d'un système linéaire explicite, qui avait été écrit par T. KOHONEN à partir de raisonnements en moyenne. On constate que chaque point m_1^* est le centre de gravité de la densité p sur la région d'influence de i, c'est-à-dire l'ensemble des ω dont le tirage "appelle" i .

Malheureusement, la démonstration des mêmes résultats en dimension 2 s'avère à peu près inextricable bien que la démarche soit semblable. Ce qui cause la complexité des démonstrations (mais aussi l'efficacité de l'algorithme), c'est le fait que le stimulus ω soit tiré au hasard et qu'il appelle un indice i_o (l'unité la plus proche) sans qu'il soit facile d'expliciter cette v.a. i_o.

On peut alors penser à tirer des stimuli qui soient eux-mêmes des points du réseau, mais alors l'ensemble des (m_i) se concentre en un seul point, puisqu'à chaque présentation, on contracte les distances mutuelles.

Ceci nous a amené à proposer, dans le 2° article de cette partie, une variante de l'algorithme de KOHONEN : on tire un stimulus ω qui correspond directement à une unité i : si (m_i^t) est la situation à

l'instant t et $\omega = i_0$, on définit $m_1^{t+1} = m_1^t$ si i n'est pas voisin de i_0 et

$$\mathbf{m_i^{t+1}} = \mathbf{m_i^t} (1 - |\mathbf{V}|/\epsilon) + \epsilon \sum_{\substack{i' \in \mathbf{V}(i_0)}} \mathbf{m_i^t}$$

si $i \in \mathcal{V}(i_0)$.

Pour $i \in V(i_0)$, m_i^{t+1} est le centre de gravité de m_i^t et de $\{m_{i'}^t, i' \in V(i_0)\}$ pondérés respectivement par $1 - |V| \in et \in .$ Cet algorithme obéit lui aussi à la règle de Hebb.

Pour éviter la dégénérescence du réseau vers un seul point, <u>on</u> <u>fixe les bords</u>, c'est-à-dire que par exemple en dimension 1, m_1^t et m_N^t sont constamment égaux à 0 et à 1.

Alors nous démontrons, en dimension 1 ou 2, avec ε fixe et suffisamment petit, la convergence en loi de m(t) vers un maillage aléatoire indépendant de m(0), "ordonné". Nous calculons l'espérance de m(∞) et bien sûr montrons que lorsque $\varepsilon = \varepsilon(t)$ tend vers 0 (avec $\sum \varepsilon(t) = +\infty$, $\sum \varepsilon^2(t) < +\infty$), m(t) tend vers E (m(∞)) p.s.

Les démonstrations sont plus simples dans ce cas, car on dispose d'une écriture de m(t+1) en fonction de m(t), de la forme $m(t+1) = Z^{t+1} m(t) + W^{t+1}$, où Z^{t+1} , W^{t+1} sont des matrices aléatoires explicites. On utilise des résultats de KESTEN [5].

L'algorithme de KOHONEN a de nombreuses applications dans tous les domaines où s'effectue une auto-organisation : rétinotopie, reconnaissance et classification de phonèmes, construction de maillages (de dim 1 ou 2 principalement) pour "remplir" des figures de dimension supérieure, etc...

On trouve dans FORT [3] une intéressante application à la solution du problème du voyageur de commerce. Une autre jolie illustration a été donnée par RITTER et SCHULTEN [11] : si après stabilisation d'un maillage de KOHONEN, on change la loi de présentation d'un stimulus ω , il y a déformation et convergence vers un autre maillage adapté à la nouvelle loi. Cela modélise de manière particulièrement simple la réorganisation du cortex sensoriel après un traumatisme affectant une zone externe, comme le décrit par exemple MERZENICH [10].

On peut poursuivre l'étude de cet algorithme dans deux directions la démonstration de la convergence en dimension > 1, son application dans des domaines variés (tous ceux où l'on utilise des maillages adaptatifs).

TROISIEME PARTIE.

STABILITE ET ATTRACTIVITE DANS DES RESEAUX DE MEMOIRE ASSOCIATIVE.

(A fait l'objet d'une publication dans Biological Cybernetics) [1].

Ce travail porte sur les réseaux de neurones, domaine de recherche très vivant et en pleine expansion en ce moment.

Les automates cellulaires ont été introduits il y a 40 ans (MAC CULLOCH et PITTS, 1943 [5]). Mais depuis les années 1970, les recherches sur les réseaux se sont considérablement développées en informatique d'une part, (calculateurs parallèles) et biologie et physique d'autre part (réseaux de neurones, problèmes d'apprentissage, de mémoire et de reconnaissance, utilisation des outils de la mécanique statistique). La bibliographie en est très importante.

Dans un réseau de neurones, il n'y a pas correspondance bijective entre objet à mémoriser et neurone. Les neurones sont connectés les uns aux autres. Rappelons que dans le cerveau humain, on compte 10^{12} cellules nerveuses et que chacune est reliée à environ mille à dix mille autres cellules. Au cours de la présentation d'un objet à mémoriser (un patron), un certain nombre de cellules sont excitées et chaque cellule du réseau est alors codée par les réponses de toutes les autres. On suppose, en général, dans ces modèles que les connexions sont totales. Elles sont définies pendant la période d'apprentissage suivant la règle de HEBB [2] : une connexion est consolidée chaque fois que les deux cellules qu'elle relie sont dans le même état. L'apprentissage consiste en la présentation séquentielle d'une suite de patrons et aboutit à la formation d'une <u>matrice de connexion</u> qui caractérise alors le réseau.

La mémoire est donc <u>distribuée</u> : c'est tout le réseau qui participe à la reconnaissance d'un patron, et on veut qu'elle soit <u>asso-</u> <u>ciative</u>, c'est-à-dire qu'on puisse retrouver un patron à partir d'une présentation d'un objet déformé.

Beaucoup d'auteurs ont contribué à progresser dans la définition de tels réseaux : VON NEUMANN [10], ROSENBLATT et son Perceptron [9], etc... On trouve dans le livre de KOHONEN [4], outre une présentation de ses propres travaux, un bon panorama de ces recherches.

A partir de 1982, l'apport des physiciens (HOPFIELD [3]) a permis des progrès très intéressants. On considère N automates à deux états :

+ 1 (actif), - 1 (inactif), des connexions complètes et symétriques, calculées à partir des patrons à mémoriser ($\in \{-1, +1\}^N$) selon la règle de HEBB [2]. L'utilisation des outils de la mécanique statistique, des notions d'énergie et de température ont permis de grandes avancées et de multiples travaux ont été publiés. Voir la bibliographie de l'article.

En général, les patrons à mémoriser sont aléatoires, les connexions également et l'évolution du réseau est commandée par des règles déterministes ou aléatoires suivant les auteurs, consistant à favoriser l'alignement de l'état du neurone i sur ce qu'il reçoit en provenance de tous les autres soit $V_i = \sum_j C_{ij} \sigma_j$ (C_{ij} représente l'efficacité de la connexion de j vers i, et $\sigma_j = \pm 1$ est l'état du neurone j). Les résultats obtenus sont asymptotiques, quand N > ∞ .

Cependant comme l'ont remarqué PERSONNAZ et al. [8], les patrons ne sont pas nécessairement des points stables de l'algorithme, ce qui explique, entre autres, la capacité assez faible de ces réseaux : on peut stocker de manière fiable environ 0.14 × N patrons.

Ils ont proposé dans [8] un calcul des connexions qui correspond à la règle de Hebb dans le cas orthogonal, et assure la stabilité des patrons quels qu'ils soient (on les suppose seulement linéairement indépendants).

Leur article a été le point de départ de mon travail. J'étudie l'algorithme déterministe et pour améliorer la capacité de mémoire du réseau, je propose une méthode de calcul de la matrice des connexions qui rend les patrons non seulement stables, mais attracteurs et d'une attractivité maximale. Je calcule alors cette attractivité. J'utilise pour cela une interprétation géométrique simple des inégalités qui définissent l'attractivité à distance k .

Bien sûr l'utilisation d'une température décroissante, de patrons tirés au hasard de façon à être pratiquement orthogonaux, de connexions avec effacement progressif des patrons les plus anciens [6], de multiconnexions [7], et d'autres raffinements, permettent d'améliorer les performances de ces réseaux.

OUATRIEME PARTIE.

ANALYSE MATHEMATIQUE D'UN MODELE DU CORTEX CEREBELLEUX.

La dernière partie est consacrée à l'étude d'un réseau de neurones proche de la biologie : nous sommes partis de la modélisation du cortex cérébelleux qui a été particulièrement étudié depuis CAJAL [2], jusqu'à CHAUVET [3] par exemple, en raison de sa structure plus simple que celle d'autres réseaux de neurones.

Le but est d'étudier le rôle des <u>collatérales inhibitrices récur-</u> <u>rentes</u> qui relient les cellules de Purkinjie, cellules de base du cervelet. La modélisation proposée est fondée sur des travaux de physiologie (par exemple [4]) et provient du modèle établi par H. AXELRAD [1], modèle qui est trop complexe pour être analysé mathématiquement.

Le modèle étudié consiste à attribuer à chaque neurone à l'instant t un état X_i^t , de sorte que (X_i^t) est un processus de Markov. Au cours du temps X_i^t décroît linéairement, et la décharge du neurone i a lieu quand $X_i^t = 0$; cela alors provoque la surcharge de ses voisins d'une certaine quantité θ qui représente un effet inhibiteur, et la réinitialisation en i suivant une v.a. de loi donnée \mathcal{F} . On peut interpréter l'état du neurone comme le complèment au seuil de décharge de son potentiel.

On étudie les propriétés mathématiques du processus de Markov (X^{t}) . Il est récurrent tant que θ est plus petit qu'un certain seuil θ_{o} (inversement proportionnel à la taille des voisinages considérés), il est transient quand $\theta > \theta_{o}$.

Les difficultés viennent du fait que l'ensemble des états possibles est dense dans $(\mathbb{R}^+)^N$ et que toutes les composantes de (X^t) sont interdépendantes. La démonstration de la récurrence utilise des arguments techniques adaptés à la définition même de la chaîne. On démontre d'abord l'irréductibilité et l'apériodicité du processus. Puis on établit une majoration de l'état en i par l'état qui serait observé si le neurone i était inhibé par des voisins eux-mêmes non inhibés. On associe alors en chaque point voisin de i une marche aléatoire de loi \mathcal{F} correspondant à l'activité "propre" en ce site. On peut utiliser la loi des grands nombres, des inégalités type grandes déviations et des arguments de renouvellement pour ces marches aléatoires. On calcule ensuite quand la chaîne est ergodique, la fréquence moyenne de décharge de chaque neurone. Dans ce cas, l'inhibition provoque simplement un ralentissement général de l'activité. Dans le cas transient, on observe toujours une récurrence sur un sous-réseau, tandis que sur le complémentaire les états tendent vers +∞. Il apparaît alors une réponse périodique du réseau, une sorte d'échantillonnage spatial dont la période est liée à la taille du voisinage et à la force de l'inhibition.

C'est donc en augmentant l'inhibition, qu'on provoque des réponses en bandes ou en moirures, réponses qui sont caractéristiques des réseaux neuronaux biologiques [7].

Si de plus on superpose au réseau des stimuli (en excitant certains neurones, c'est-à-dire en les réinitialisant après chaque décharge par une v.a. de loi \mathfrak{F}' avec $\mathbb{E}(\mathfrak{F}') < \mathbb{E}(\mathfrak{F})$, on observe les mêmes phénomènes. Bien sûr, l'échantillonnage spatial s'adapte alors à la forme des zones excitées.

Ces démonstrations sont illustrées par les nombreuses simulations faites et sont en accord avec les résultats expérimentaux obtenus par simulation par J. HERAULT [6] en traitement du signal et avec les résultats de neuro-physiologie : cartes d'orientation préférentielle, de dominance occulaire du cortex visuel par exemple... [7].

Cette étude "de l'intérieur du réseau" apporte une meilleure compréhension du rôle de l'inhibition, et en particulier du fait que l'inhibition latérale (zone inhibée au voisinage immédiat d'un neurone excité) éclate quand l'inhibition augmente.

Les techniques de chaînes de Markov de grandes dimensions utilisées permettent de décrire le comportement du réseau dans sa globalité. Jusqu'à ces dernières années, on ne mesurait l'activité électrique que d'un ou deux neurones. Mais la possibilité d'enregistrer simultanément l'activité de populations nombreuses de neurones donne toute sa place à une modélisation globale [5]. Ces modèles n'en sont probablement qu'à leurs débuts.

De plus il me semble que ce modèle est riche d'interprétations et d'applications dans d'autres contextes que celui du cervelet, en cristallographie par exemple. La forme des réponses divergentes obtenues dans le cas transient peut sans doute être mise en rapport avec la théorie des graphes.

BIBLIOGRAPHIE

PREMIERE PARTIE

[1]	N. ABRAHAMSON : "The ALOHA system-another alternative for computer communications" Proc. Fall Joint Computer Conf. AFIPS Press, Vol. 37, p. 281-285 (1970).
[2]	R. AZENCOTT et G. RUGET : "Mélanges d'équations différentielles et grands écarts à la loi des grands nombres". Z. Wahrscheinlich keitstheorie, vol. 38, p. 1-54 (1977).
[3]	A. BENVENISTE, M. GOURSAT et G. RUGET : "Analysis of stochastic approximations schemes with discontinuous and dependent forcing terms with applications to data communication algorithms" IEEE Trans. Aut. Control. Vol. AC-25, p. 1042-1058 (1980).
[4]	J. BRETAGNOLLE : "Grandes déviations et applications statis- tiques" Astérisque 68, Soc. Math. France, p. 19-25 (1979).
[5]	O. de CAMBRY : "A general method for constructing statistical failure detection test" A paraître dans IEEE Trans. Aut. Control.
[6]	M. COTTRELL, J.C. FORT et G. MALGOUYRES : "Large deviations and rare events in the study of stochastic algorithms" IEEE Trans. Aut. Control . Vol. AC-28, n° 9, p. 907-920 (1983).
[7]	P. DUPUIS et H.J. KUSHNER : "Stochastic approximations via large deviations : Asymptotic properties" SIAM J. on Control and Optimisation, <u>23</u> , p. 675-696 (1985).
[8]	D. GAUER et G. THOMSON : "Programming and probability models in operations research" Monterey, CA, Brookds/Cole (1972).
[9]	L. KLEINROCK et S.J. LAM : "Packet switching in a multiaccess broadcast channel : performance evaluation" IEEE Trans. Comm. Vol. COM-23, n° 4, p. 410-423 (1984).
[10]	S. LAM : "Packet switching in a multiaccess broadcast channel" SEAS, Univ. Calif. (1964).

[11] A.D. VENTSEL et M.I. FREIDLIN : "Random perturbations of dynamical systems" Springer-Verlag, New York (1984)

DEUXIEME PARTIE.

[1]	M. CO	OTTRELL	et J	.C. FORT	:	"Etude	d'un	pro	oces	ssus	d'auto-	
	Ann.	Inst.	Henri	Poincar	é,	vol. 2	3, n°	1,	p.	1-20	(1987)	•

- [2] M. COTTRELL et J.C. FORT : "A stochastic model of retinotopy: A self organizing process". Biol. Cybern. <u>53</u>, p. 405-411 (1986).
- [3] J.C. FORT : "Solving a combinatorial problem via self-organizing process : an application of the Kohonen algorithme to the traveling salesman problem" A paraître dans Biol. Cybern. (1988).
- [4] D.O. HEBB : "The organization of behaviour" Wiley, New York (1949).
- [5] H. KESTEN *: "Random difference equations and renewal theory for products of random matrices" Acta. Math. 131, p. 207-248 (1973).
- [6] T. KOHONEN : "Self-organized formation of topologically correct feature maps" Biol. Cybern. <u>43</u>, p. 59-69 (1982 a)

- [7] T. KOHONEN : "Clustering, taxonomy and topological maps of patterns" Proc. of the 6th Intern. Conf. on Pattern Recognition, p. 114-128 (1982 b).
- [8] T. KOHONEN : "Analysis of a simple self-organizing process" Biol. Cybern. <u>44</u>, p. 135-140 (1982 c).
- [9] T. KOHONEN : "Self-organization and associative memory" Springer, Berlin-Heidelberg-New York-Tokyo (1984).
- [10] M.M. MERZENICH : "Development and maintenance of cortical somatosensory representations : Functional "maps" and neuroanatomical repertoires" Touch, K. Barnard and T.B. Brazelton, eds, Intern. Univ. Press. New York (1985).
- [11] H. RITTER et K. SCHULTEN : "On the stationary state of Kohonen's self-organizing sensory mapping" Biol. Cybern. <u>54</u>, p. 99-106 (1986).

TROISIEME PARTIE.

- [1] M. COTTRELL : "Stability and attractivity in associative memory networks" Biol. Cybern. <u>58</u>, p. 123-139 (1988).
- [2] D.O. HEBB : "The organization of behavior" John Wiley & Sons, New York (1949).
- [3] J.J. HOPFIELD : "Neural networks and physical system with emergent collective computational abilities" Proc. Natl. Acad. Sci. USA, <u>79</u>, p. 2554-2558 (1982).
- [4] T. KOHONEN : "Self-organization and associative memory" Springer, Berlin-Heidelberg, New York-Tokyo (1984).
- [5] W.W. MAC CULLOCH et W. PITTS : "A logical calculus of the ideas immanent in nervous activity" Bull. Math. Biophys. <u>5</u>, p. 115-133 (1943).
- [6] J.P. NADAL, G. TOULOUSE, J.P. CHANGEUX et S. DEHAENE : "Networks of formal neurons and memory palimpsets" Europhys. Lett. <u>1</u> (10), p. 535-542 (1986).
- [7] P. PERETTO et J.J. NIEZ : "Long term memory storage capacity of multiconnected neural networkds" Biol. Cybern. <u>54</u>, p. 53-63 (1986).
- [8] L. PERSONNAZ, I. GUYON et G. DREYFUS : "Information storage and retrieval in spinglass like neural networks" J. Phys. Lett. <u>46</u>, p. 359-365 (1985).
- [9] F. ROSENBLATT : "Principles on neuro dynamics" Psych. Rev. <u>65</u>, p. 386 (1958).
- [10] J. VON NEUMANN : "Theory of self-reproducing a automate" A. W. Burks, Univ. of Illinois Press. Urbana (1966).

OUATRIEME PARTIE.

- [1] H. AXELRAD, C. BERNARD, M. COTTRELL et B. GIRAUD : "The use of an artificial neural network to analyse the informational transfer properties of a simplified model of the cerebellar cortex" Proc. of the First ICNN . A paraître (1987).
- [2] S.R. y CAJAL : "Histologie du système nerveux de l'Homme et des Vertébrés" II. Maloine, Paris (1911).
- [3] G. CHAUVET : "Habituation rules for a theory of the cerebellar cortex" Biol. Cybern. <u>55</u>, p. 201-209 (1986).

- [4] F. CREPEL, N. DELHAYE-BOUCHAUD, J.L. DUPONT et C. SOTE LO : Neuroscience, vol. 5, p. 333-347 (1980)
- [5] G. GERSTEIN, D. PERKEL et J. DAYHOFF : "Cooperative firing activity in simultaneously recorded populations of neurons : Detection and measurement" J. of Neuroscience, vol. 5, n° 4, p. 881-889 (1985).
- [6] J. HERAULT : "Le traitement de l'information dans les structures nerveuses" Thèse de Doctorat d'Etat. Université de Grenoble (1980).
- [7] D.H. HUBEL et T.N. WIESEL : "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex" J. Physiol. (Lond.), <u>160</u>, p. 106-154 (1962).

PREMIERE PARTIE

GRANDES DEVIATIONS ET EVENEMENTS RARES DANS L'ETUDE D'ALGORITHMES STOCHASTIQUES

Large Deviations and Rare Events in the Study of Stochastic Algorithms

1

MARIE COTTRELL, JEAN-CLAUDE FORT, AND GÉRARD MALGOUYRES

Abstract -- New asymptotics formulas for the mean exit time from an almost stable domain of a discrete-time Markov process are obtained.

An original fast simulation method is also proposed. The mathematical background involves the large deviation theorems and approximations by a diffusion process. We are chiefly concerned with the classical Robbins-Monroe algorithm. The validity of the results are tested on examples from the ALOHA system (a satellite type communication algorithm).

INTRODUCTION

I N this paper we study the exit time from an almost stable domain of a discrete-time Markov process. This belongs to the reliability theory and we will develop such applications. But one can encounter the same problems in population dynamics and in the physical theory of metastability (in the work of Penrose and Lebowitz in a much more complex context [19]; for population dynamics, see [18]).

We have chosen to restrict our domain of investigation but to explore it with some accuracy. We will only consider Markov chains with discrete time, making "small" jumps over R". Typically, this is the case of the well-known Robbins-Monroe algorithm with constant gain ϵ : $X_{n+1} = X_n + \epsilon V(X_n, \omega)$, where ϵ is small and $V(x, \cdot)$ is a random increment at x. Our purpose is to describe the behavior of such an algorithm which is claimed convergent after looking at the mean-differential equation (ODE); for example, let b(x) be the mean value of $V(x, \cdot)$ and assume that b(x) has the opposite sign of x. Then 0 is a stable equilibrium point of the ODE dx/dt = b(x). However, in almost all cases $(V(x, \cdot))$ is Gaussian or Poisson distributed, etc.), fixing a barrier a > 0, there is a probability 1 that X_n passes through after a sufficiently large time. So it is of interest to know how long it takes to reach a well-chosen barrier, and to know how it happens. This is what we solve in simple cases and give the tools to solve in more general cases. (Note that the same methods could be used when there is dependence between the successive $V(X_n, \cdot)$ (see [20]) or when X is a continuous time process.)

Working on some problems about transmission algorithms we give applications in an ALOHA system. We will describe ALOHA later on. But let us show another possible application: the phaselocked loop [3].

Messages are emitted from a source; each message is a sequence $(a_n)_{n \in \mathbb{Z}}$ with $a_n = e^{i\phi_n}$, $\phi_n \in \{(2\pi/N) + (2k\pi/N), k \in \mathbb{Z}\}$. This means that the phase ϕ_n contains all the information. The received messages are sequences $(y_n)_{n \in \mathbb{Z}}$ with $y_n = \sum_{k \in \mathbb{Z}} s_k a_{n-k}$ $+ v_n$ where the channel characteristics $S = (s_k)_{k \in \mathbb{Z}}$ and the noise sequence $(v_n)_{n \in \mathbb{Z}}$ take complex values; that is to say that y_n is a

Manuscript received June 15, 1981; revised March 29, 1982 and June 7, 1982. Paper recommended by S. I. Marcus, Past Chairman of the Stochastic Control Committee. M. Cottrell and G. Malgouyres are with the Universite Paris-Sud,

Orsay, France. J.-C. Fort is with the Université de Nancy, Nancy Cedex, France. mixing of the signal $a_n, a_{n-1}, a_{n-2}, \cdots$. The problem is to estimate $(\phi_n)_{n \in \mathbb{Z}}$, the phases of $(a_n)_{n \in \mathbb{Z}}$. A classical estimator (Boucle de Costas [3]) is (Im z is the imaginary part of z)

$$\hat{\phi}_{n+1} = \hat{\phi}_n - \epsilon V_n(\hat{\phi}_n)$$

$$V_n(\phi) = \mathcal{T}_m(y_n^N e^{-iN\phi})$$

the corresponding ODE is (assuming stationarity) $d\phi/dt = -b(\phi)$ where $b(\phi)$ is the mean value of $\mathfrak{T}_m(y^N e^{-iN\phi})$.

The right-hand side of the ODE is derived from a periodic potential with a minimum value in each interval $[(2k-1)\pi/N]$. So when the phase ϕ_{π} is in one of the darkened domains of Fig. 1 there is a large probability of erroneous interpretation and we observe a packet of errors.

We are interested in the mean exit time from φ_1^* to the next attraction domain. An immediate application of this work gives an explicit formula (when $s_k = 0$ except s_o) closer to reality than those given by a standard diffusion approximation.

A possible extension would give such a formula in more general cases, assuming good properties of ergodicity.

The content of each section is as follows. Section I contains some asymptotic well-known statements describing at different degree of precision the behavior of the Robbins-Monroe algorithm as $\epsilon \to 0$. The two main results are exposed in Sections II and III. In Section II we give the principle of a probability change used for quick simulation (importance sampling) and prove its best optimality among a large class. This solves an important problem which is encountered in simulation practice. Section III provides an analytic formula for the mean exit time from a quasi-stable domain using an approximation by a diffusion process, following the previously mentioned probability change. Finally, in Section IV we apply the two preceding results to sharing time algorithms issued from the study of the ALOHA system. We submit that the numerical results are quite conclusive. Two appendexes complete this paper. In Appendix I we present the definitions and the basic mathematical theory useful to understand the text. In Appendix II we give indications about the proofs of the theorem of Section II.

I. LARGE DEVIATIONS

We examine algorithms with discrete-time small constant gain defined by

$$\begin{split} X_0^\epsilon &= x_0 \in \mathbb{R}^m \\ X_{n+1}^\epsilon &= X_n^\epsilon + \epsilon V_n \big(X_n^\epsilon, \omega \big). \end{split}$$

 $X_n^{\epsilon} \in \mathbf{R}^m$, that is to say X_n^{ϵ} is a time homogeneous Markov chain, with small increments (see [4]).

0018-9286/83/0900-0907\$01.00 ©1983 IEEE

The mathematical results will be asymptotic when $\epsilon \rightarrow 0$. Let μ_x be the distribution of V_n if $X_n^{\epsilon} = x$, and b(x) = $EV_n(x,\omega) = E(\mu_x) = \int y d\mu_x(y)$ be the expectation of μ_x (Note that b(x) does not depend upon n because of the homogeneity of the process.)

A. General Hypotheses

908

In all this work, we need some general hypotheses about the process (X_n^{ϵ}) ; the distribution μ_x must vary slowly between the instant *n* and the instant n + 1. More precisely, we need the following.

1) $E(\exp(\langle t, y \rangle) d\mu_x(y) < +\infty$ for each x, i.e., μ_x has a finite Laplace transform (see Appendix I-A-1).

2) $d(\mu_y, \mu_x) \le C||y - x||$ where d is the Prohorov distance [5], i.e., μ_x is a Lipschitz function of x. These hypotheses are currently true in many usual recursive

algorithms (see [3]).

The space Ω is the space of the right-continuous functions with left-hand limits (cad-lag) $\mathbf{R}^+ \to \mathbf{R}^m$, endowed with the Borel σ -algebra for the Skorohod topology [5] and the probability **P**. We denote by P' the probability associated with the process (X_n^{ϵ}) . See [4] for a more precise definition.

The first result is a law of large numbers.

1) Law of Large Numbers: Let x°(t) be the deterministic trajectory solution of the ordinary (or mean) differential equation (ODE)

$$\frac{dx^{o}(t)}{dt} = b(x^{o})$$
$$x^{o}(0) = x_{o}$$

if $X_o^c = x_o$, then

$$\forall \eta > 0, \ \forall T < +\infty, \ \mathbf{P}\Big(\max_{0 \le n \le T} |X_n^{\epsilon} - x^{\circ}(\epsilon n)| > \eta\Big) \to 0$$

when $\epsilon \rightarrow 0$ (see [7] for technical assumptions).

Since the space scale is small (the increments are multiplied by ϵ), we get a result where two scales of time appear: n for X_n^{ϵ} , and $n \in$ for $x^{\circ}(t)$. So let us contract the time, considering that the process jumps at instants $t = n\epsilon$, and denote $X^{\epsilon}(t) = X^{\epsilon}_{t/\epsilon}$. Then this first result means that the process $X^{\epsilon}(t)$ converges uniformly in each interval [0, T] to the deterministic process $x^{o}(t)$. The equivalence $t \leftrightarrow n\epsilon$ defines the change of time, "n corresponds to t" means that X_n^{ϵ} is the point near $x^{\circ}(t)$.

This result allows the application of the ODE method [4].

A first evaluation of the deviation between the (contracted in time) process $X^{\epsilon}(t)$ and its deterministic limit is given by the next theorem.

2) Central Limit Theorem: Let us define $Y^{\epsilon}(t) = (X^{\epsilon}(t) - t)$ $x^{o}(t))/\sqrt{\epsilon}$. Then, with some technical assumptions (see [7]), the process $Y^{\epsilon}(t)$ converges weakly when $\epsilon \to 0$, on [0, T] to $Y^{o}(t)$, the solution of the stochastic differential equation

$$dY^{o}(t) = \frac{\partial b}{\partial x}(x^{o}(t))Y^{o}(t) dt + \Gamma(x^{o}(t)) dW(t)$$

where W(t) is the Brownian motion and $\Gamma(x^{o}(t))$ is the variance-covariance matrix at instant t of the distribution $\mu_{x^{\circ}(t)}$ (see [15]).

Even if these theorems indicate the convergence of $X^{\epsilon}(t)$ to $x^{o}(t)$, it is possible to observe rare trajectories where $X^{c}(t)$ is far from $x^{\circ}(t)$. These are very small probability events, explained by the distribution tails, which are systematically replaced by normal tails in the central limit theorem.

3) Large Deviation Results: We recall in Appendix I the main definitions and results we need.

We denote by $\hat{\mu}_x$ the Laplace transform of the law μ_x , l_x its logarithm, and h_x its Cramer transform, $h_x(u) = \sup_x (\langle s, u \rangle$ $l_x(s)$).

Let \mathcal{C}_T (resp. \mathcal{C}) be the set of the continuously piecewise differentiable applications φ : [0, T] (resp. \mathbb{R}^+) $\rightarrow \mathbb{R}^m$, such that $\varphi(0) = x_o$ fixed. The elements of \mathcal{C}_T (and \mathcal{C}) are called *paths*.

If $\varphi \in \mathcal{C}_T$, the action integral along φ is

$$I(\varphi) = \int_{0}^{T} h_{\varphi(t)}(\dot{\varphi}(t)) dt$$

where $\dot{\varphi}(t)$ is the derivative of φ at the point t.

First we give an equivalent (when $\epsilon \rightarrow 0$) of the probability to stay inside a tube along a path φ .

Theorem 1 [21], [22]: Let $\delta > 0$, φ be a path of \mathcal{C}_T . Let $T^{\epsilon}_{\delta}(\varphi)$ be a tube around φ , with diameter δ ; that is, the set of the trajectories of $X^{\epsilon}(t)$, issued from x_{o} , such that

$$\forall t \in [0, T], \qquad |X^{\epsilon}(t) - \varphi(t)| < \delta.$$

Then, there exists δ_0 such that for $0 < \delta < \delta_0$, we have

$$\lim_{\epsilon \to 0} \left(-\epsilon \log P^{\epsilon}(T^{\epsilon}_{\delta}(\varphi)) \right) = I(\varphi) + \alpha(\delta)$$

with

$$\lim_{\delta\to 0} \alpha(\delta) = 0.$$

This result does not permit us to calculate $P^{\epsilon}(T^{\epsilon}_{\delta}(\varphi))$, even for a small ϵ , but it permits us to discriminate the tubes: as soon as $I(\varphi)$ is different for two tubes, their probabilities are very different for small ϵ . The value $\exp(-I(\varphi)/\epsilon)$ is a measure of the resistance of the process to follow the path φ ; if φ is the solution of the mean differential equation (ODE), then $\dot{\phi}(t) = E(\mu_x) = b(x)$ and $h_{\varphi(t)}(\dot{\varphi}(t)) = 0$ for each t, so $I(\varphi) = 0$. For establishing Theorem 1, some assumptions are necessary.

One can find them in [7], but the following are of interest.

The Cramer transform must slowly vary between two close points x_1 and x_2 (it is nearly the same as the second one of the general hypotheses).

The Cramer transform $h_x(u)$ increases at infinity faster than $\|u\|$. This expresses that the tail of the distribution μ_x is not too big.

A complete proof can be found in [21], [2].

Corollary 1 [21], [2]: With the same assumptions, let B be a measurable set of trajectories such that $\inf\{I(\varphi)/\varphi \in B \cap \mathcal{C}_T\} =$ $\inf\{I(\varphi)/\varphi \in \overline{B} \cap \mathcal{C}_T\}, \text{ then }$

$$\lim_{\epsilon \to 0} \left(-\epsilon \log P^{\epsilon}(B) \right) = \inf_{\varphi \in B \cap \mathcal{C}_{T}} I(\varphi).$$

Let us comment on this corollary. Generally, we apply it to events B such as exists from an attraction pool, reaching an exterior region &. (See Fig. 2.)

The exit probability is the sum of the probability of different exit tubes, approximately

$$\sum_{k} \exp(-I(\varphi_k)/\epsilon)$$

but only the smallest coefficient $I(\varphi_k)$ is important (because of

COTTRELL et al.: LARGE DEVIATIONS AND RARE EVENTS

the exponential). So the exit will follow approximately some optimal path φ_{opt} , whose action integral is minimum. Optimal Path and Probability Change: To determine the opti-

Optimal Path and Probability Change: To determine the optimal exit path φ_{opt} (starting from x_o) is therefore to minimize the action integral $\int_o^T h_{\varphi(t)}(\dot{\varphi}(t)) dt$ among the paths φ such that $\varphi(0) = x_o, \varphi(T) \in \mathcal{E}$ (T is free). It is a dynamical programming problem to solve.

The main tool of these demonstrations is a probability change: if we want to reach δ with the greatest probability, we need to follow φ_{opt} , and for that, transform the probability measure μ_x into $\bar{\mu}_x$ in such a way that the transformed mean field will be tangent to φ_{opt} .

More precisely, $\tilde{\mu}_x$ is defined by $d\tilde{\mu}_x(y) = (e^{\lambda_x y} d\mu_x(y))$ / $(\hat{\mu}_x(\lambda_x))$, λ_x being chosen in such a way that if $x = \varphi_{opt}(t)$, $\tilde{b}(x) = E(\tilde{\mu}_x) = \dot{\varphi}_{opt}(t)$; that is to say

$$\frac{\int y e^{\lambda_x y} d\mu_x(y)}{\hat{\mu}_x(\lambda_x)} = \frac{\hat{\mu}'_x(\lambda_x)}{\hat{\mu}_x(\lambda_x)} = l'(\lambda_x) = \phi_{\text{opt}}(t).$$

The path φ is a solution of the new ODE $dx/dt = \tilde{b}(x)$.

Further, we will denote by $\tilde{\mu}_x$, $\tilde{X}^{\epsilon}(t)$, \tilde{P}^{ϵ} , and \tilde{P} the transformed form of μ_x , $X^{\epsilon}(t)$, P^{ϵ} , and P, respectively.

4) The One-Dimensional Case: In the one-dimensional case it is very easy to find the optimal path φ_{opt} .

Let be m = 1, $X^{\epsilon}(0) = 0$, and $E(\mu_x) = b(x)$ with the sign of (-x) for each x. Thus, in Fig. 3 the point 0 is an attractor. Let a > 0, and B be the set of trajectories ω starting from 0, reaching a before coming back to 0.

In this case, the exit point is necessarily a. And by Corollary 1, we have

$$\lim_{\sigma \to 0} \left(-\epsilon \log P^{\epsilon}(B) \right) = \inf_{T, \infty} \left\{ I(\varphi) / \varphi(0) = 0, \varphi(T) = a, \varphi \in B \right\}.$$

To find this minimum, we can restrict ourselves to injective φ ($h \ge 0$). Then the variable change $x = \varphi(t)$ leads to

$$I(\varphi) = \int_0^T h_{\varphi(t)}(\dot{\varphi}(t)) dt = \int_0^a \frac{h_x(\dot{x})}{\dot{x}} dx$$

where $\dot{x} = \dot{\varphi}(\varphi^{-1}(x)).$

The minimum of $I(\varphi)$ is obtained by a point-by-point minimization of $h_x(\dot{x})/\dot{x}$. Hence, the optimal path φ_{opt} is defined by

$$\frac{h_{\varphi_{\text{opt}}(t)}(\dot{\varphi}_{\text{opt}}(t))}{\dot{\varphi}_{\text{opt}}(t)} = \inf_{u>0} \frac{h_{\varphi(t)}(u)}{u}$$

which is the slope of the tangent Δ issued from 0 to the graph of $u \to h_{\varphi(t)}(u)$. (See Appendix I-A-3-a.)

If $\chi(\varphi(t))$ is the point where $h_{\varphi(t)}(\chi(\varphi(t)))/\chi(\varphi(t))$ is minimum, and equal to $\lambda_{\varphi(t)}$, the optimal path is hence the

solution of

$$\frac{d\varphi}{dt} = \chi(\varphi), \qquad \varphi(0) = 0.$$

Then $I(\varphi_{opt}) = \int_0^a \lambda_x dx$ and λ_x satisfies the equation $h'_x(\chi(x)) = \lambda_x$, thus

$$l_x(\lambda_x) = h'_x(\chi(x)) \cdot \chi(x) - h_x(\chi(x))$$

(because of the reciprocity of the Cramer transformation (Appendix I-A-3-a), l_x is h_x transformed), hence $l_x(\lambda_x) = 0$, by definition of $\chi(x)$ because the tangent passes through 0. So we get

So we get

$$\lim_{x \to 0} -\epsilon \log P^{\epsilon}(B) = \int_0^a \lambda_x \, dx$$

where λ_x is a solution of $l_x(\lambda_x) = 0$ and $\lambda_x > 0$. We actually have $l'_x(\lambda_x) = l'_x(h'_x(\chi(x))) = \chi(x)$ (property of the convex duality: Appendix I-A-3-d), and $l'_x(\lambda_x) = \phi_{opt}(t)$.

The probability change $\mu_x \mapsto \tilde{\mu}_x$, defined by the coefficient λ_x is therefore that one which centers the measure "around" the optimal path.

II. QUICK SIMULATION METHOD

If A is a rare event in relation with some Markov chain, it is quite impossible to estimate P(A) by a direct simulation, for the length of the trajectories would require a frightfully large time of computation. Moreover, the time of simulation would be larger than the period of the pseudorandom numbers generator (generally $\approx 2^{32}-5.10^{9}$). For example, if P(A) is estimated from an *n*-sample (X_1, \dots, X_n) of Bernouilli distributed variables $(X_i$ are computed from Markov chain trajectories) by

$$\widehat{P(A)} = \frac{1}{n} \sum_{i=1}^{n} X_i,$$

its standard deviation is $\sqrt{P(A)(1-P(A))/n}$. To have a 20 percent error on P(A) with 95 percent of confidence, we must take $\sqrt{1-P(A)}/\sqrt{nP(A)} \le 0, 1$ and then for $P(A) \simeq 10^{-4}$, we need a 10^6 sample.

So our idea is to use the probability change exhibited in the proof of Theorem 1 to realize a fast simulation. First, we recall the principle of the *importance sampling* method of simulation [13]: if P is absolutely continuous with respect to a probability P^* , we observe that $P(A) = \int_A dP/dP^*(\omega) dP^*(\omega)$. Thus, we can carry out an n-sample $\omega_1, \dots, \omega_n$ of distribution P^* such that $P^*(A) \gg P(A)$ and take the estimator (unbiased and convergent)

$$\widehat{P(A)} = \frac{1}{n} \left(\sum_{i=1}^{n} \frac{dP}{dP^*}(\omega_i) \mathbf{1}_{\mathcal{A}}(\omega_i) \right)$$

whose standard deviation is $(\int_A (dP/dP^*)^2(\omega) dP^*(\omega) - P(A)^2)^{1/2}$ which is smaller than the preceding if $dP/dP^*(\omega)$ is <1 on A. In fact, the problem is how to choose the new probability P^* . If it is badly chosen it can give a very bad estimator, that means with a great variance.

We solved this problem in a particular situation (we keep the notations of the previous section): $X^{\epsilon}(t)$ is a Markov chain over **R** and $\epsilon \mu_x$ is the jump distribution at x, b(x) is the mean value of μ_x . We suppose that b(x) has the sign of (-x), so that x = 0 is a stable equilibrium point of the ODE. We define A by (a is a real positive barrier)

910

A = {

$$\omega \in \Omega | \omega(0) = 0, (\forall t \in \mathbb{R}^*_+) \omega(t) > 0,$$
$$(\exists t \in \mathbb{R}^*_+) \omega(t) \ge a).$$

A is the event (X passes through a before coming back to 0). Our result (Theorem 2) is that the probability change used in the large deviation theory is asymptotically ($\epsilon \rightarrow 0$) the best. To prove it we apply the results of Section I. So let us summarize the natural conditions required for a good approximation of $\epsilon \rightarrow 0$ by ϵ fixed as follows.

" μ_x is a Lipschitz function of x": the jump distribution has slow variations in the time. For example, the variation is small from x to $x + \epsilon b(x) \pm \sqrt{\epsilon} \sigma(x)$. ($\sigma(x)$ is the standard deviation of μ_x .) ϵ is "small": the ODE is a good first approximation of $X^{\epsilon}(t)$:

 ϵ is "small": the ODE is a good first approximation of $X^{\epsilon}(t)$: the ratio $\sqrt{\epsilon \sigma(x)/a}$ is sufficiently small ($\sigma(x)$ has slow variations).

Note that the choice of the probability change of the large deviations $P \to \tilde{P}$ is quite natural, for we know that $P^{\epsilon}(A)$ is exponentially (as $\epsilon \to 0$) concentrated near φ_{opt} which gives the minimum of $I(\varphi), \varphi \in \tilde{A}$, and that $P \to \tilde{P}$ turns φ_{opt} into the solution of the new (for \tilde{P}) ODE (starting from any x > 0).

Thus, we are sure that $\tilde{P}(A) \gg P(A)$.

This remark is still valid in any case, and the change $P \rightarrow \tilde{P}$ is always asymptotically optimal (even if we do not write it down in a more general situation) (see another use in [7]). We give a definition and Theorem 2.

Definition: An exponential change of probability of a Markov chain over **R** (we can easily extend to \mathbf{R}^m) X(t) is defined by a bounded continuous function $x \to v_x$ from **R** to **R**. The transformed chain $X^*(t)$ is given by its jump distribution at x, μ_x^*

$$d\mu_x^*(y) = \frac{e^{v_x \cdot y}}{\hat{\mu}_x(v_x)} d\mu_x(y)$$

 P^* is the corresponding probability on Ω .

In that sense the transformation $P \to \tilde{P}$ is obtained for $v_x = \lambda_x$, where $l_x(\lambda_x) = 0$, and $\lambda_x \neq 0$ for $x \in [0, a[$. Theorem 2: Among all the exponential changes of probability

Theorem 2: Among all the exponential changes of probability the transformation $P \rightarrow \tilde{P}$ is asymptotically optimal in the sense of the variance:

$$\lim_{\epsilon \to 0} \int_{A} \left[\frac{dP^{\epsilon}}{d\tilde{P}^{\epsilon}}(\omega) \right]^{2} d\tilde{P}^{\epsilon}(\omega)$$

is minimum. (A is the event we defined above.)

This result solves the difficult problem of the right choice for the change of probability in the fast simulation practice.

Concerning the optimality of this transformation, we want to emphasize the following points.

1) One only needs to compute the λ_x 's, the solutions of $l_x(\lambda_x) = 0$. In general, this is not a big problem, even if $\hat{\mu}_x$ is not known. In the example of a process which jumps of +1 or -1 with probability p(x), 1-p(x), $\lambda_x = \log 1 - p(x)/p(x)$, thus we just have to evaluate the parameter of a Bernouilli distribution which is a very simple task and not too expensive.

2) Even if the computation of λ_x is not very precise, we hope the simulation will be greatly accelerated (but be careful: a large λ_x gives an illusory feeling of acceleration).

3) Finally, one last remark: in the actual simulation we must not forget that the tails of the jump distributions are very important.

We put the proof of Theorem 2 in Appendix II.

III. APPROXIMATION BY DIFFUSION

A. Introduction

The simulation methods are of much interest because of their accuracy.

However, if an approximate value is sufficient (for example, with an error < 20 percent), we are tempted to use simple and quickly computable formulas.

First we expose the general concept of our approximation by diffusion in a general context too. Then we derive analytical formulas in the one-dimensional case (as in Section II).

Thus, suppose that the ODE dx/dt = b(x) derives from a potential V, with V(0) minimum (see Fig. 4). Let D be the attraction domain of 0. Its boundary ∂D is supposed sufficiently regular. The large deviation theorems tell us that to exit from D starting from 0 is almost the same as to follow the path minimizing $I(\varphi)$ with $\varphi(0) = 0$ and $\varphi(T) \in \partial D$, T is free. At this step, we only get an evaluation of the logarithm of the probability to exit from D without returning near 0 (see Section I). We want to overcome this difficulty using a good diffusion approximation, in contrast to what we will call a standard one. Recall that our goal is to give an analytical formula for the mean exit time from D. We propose to proceed as in the simulation, except that we must take into account that we use continuous approximations. So let U and U' be small neighborhoods of 0, and ∂U and $\partial U'$ their boundaries, respectively, with $U' \subset U$. (See Fig. 5.)

First we estimate the probability p(x), starting from $x \in \partial U$ to pass through ∂D before $\partial U'$ (as we do by simulation for the probability of passing through *a* without returning to 0). Here in fact we obtain equivalence when $\partial U' \rightarrow \partial U$.

Second, in U we approximate our process by a simple diffusion process, such as (OU) the Ornstein-Ulhenbeck process (see [11]), which is very close to the real process.

Then, noting that the time spent in U is very large compared to the time spent in $D \setminus U$, we neglect the sojourn time in $D \setminus U$.

We can now give a condition on the behavior of the OU process at the boundary ∂U ; at $x \in \partial U$ the process is reflected with a probability 1 - p(x) and absorbed with a probability p(x). The mean exit time from D is thus approximated by the mean time before extinction (or absorption).

Let us now give actual calculations in the one-dimensional case.

COTTRELL et al.: LARGE DEVIATIONS AND RARE EVENTS

The notations are still the same except for small modifications. We write $\hat{\mu}(x,s)$ for $\hat{\mu}_x(s)$ and the subscripts indicate partial derivatives. We recall that

$$b(x) = E(\mu_x) = \hat{\mu}_s(x,0) = \frac{\partial}{\partial s} \hat{\mu}(x,0)$$

$$\sigma^2(x) = \operatorname{var}(\mu_x) = \hat{\mu}_{ss}(x,0) - [\hat{\mu}_s(x,0)]^2.$$

Let us put n_o for 0 (stable equilibrium point of the ODE) and let us suppose that n_c is an unstable equilibrium point, and that b(x) has the same sign as $(x - n_o)(x - n_c)$. (These notations will be used in Section IV.)

The problem we examine is very close to the one of Section II, so we introduce the probability change of large deviations and the corresponding process \tilde{X}^{ϵ} with jump distributions $\tilde{\mu}_{x}$

$$\tilde{b}(x) = E(\tilde{\mu}_x) = \tilde{\mu}_s(x,0) = \hat{\mu}_s(x,\lambda(x))$$
$$\tilde{\sigma}^2(x) = \operatorname{var}(\tilde{\mu}_x) = \hat{\mu}_{ss}(x,\lambda(x)) - [\hat{\mu}_s(x,\lambda(x))]^2$$

where $\lambda(x)$, for $x \in [n_o, n_c]$ is the nonnull solution of $\hat{\mu}(x, \lambda(x)) = 1$ and is 0 for $x \notin [n_o, n_c]$. (See Fig. 6.) We use the Landau notations o and 0. First we introduce the principle of a diffusion approximation of the process $X^{\epsilon}(t)$ in a direct way.

B. Approximation of a Process by a Diffusion

If the process $X^{\epsilon}(t)$ verifies the assumptions of the law of large numbers, it converges, when $\epsilon \to 0$, to the deterministic process x° which is the solution of the ODE. Also if $x \mapsto b(x)$ is C^{2} and $x \mapsto \sigma_{x}^{2}$ is Lipchitz

$$\frac{X^{\epsilon}(t) - x^{o}(t)}{\sqrt{\epsilon}} \xrightarrow[\epsilon \to 0]{\text{weakly}} Y_{o}(t)$$

on each interval [0, T], where $Y_o(t)$ is the solution of the stochastic differential equation

$$dY_o(t) = b'(x^o(t))Y_o(t) dt + \sigma(x^o(t)) dW(t).$$

(*W* is the Brownian motion on \mathbf{R} .) (For a proof see [15], which proves a more general result.)

Thus, for ϵ sufficiently small, we can consider the process $X^{\epsilon}(t)$ as an approximate solution of the differential equation

$$dX^{\epsilon}(t) = b'(x^{o}(t))(\dot{X}^{\epsilon}(t) - x^{o}(t)) dt + b(x^{o}(t)) dt + \sqrt{\epsilon} \sigma(x^{o}(t)) dW(t). \quad (1)$$

Note that many people approximate the process X^{ϵ} by diffusion with the same drift and variance (2)

$$dX^{\epsilon}(t) = b(X^{\epsilon}(t)) dt + \sqrt{\epsilon} \sigma(X^{\epsilon}(t)) dW(t).$$
(2)

This is not exactly (1), but the law of large numbers allows us to replace $b'(x^o(t))(X^{\epsilon}(t) - x^o(t))$ by $b(X^{\epsilon}(t))$, and the difference between the solutions of (1) and (2) converges weakly to 0 as $\epsilon \to 0$. Further, the calculations are much easier with (2) and we use (as many people do) that kind of approximation when we want computable formulas: for the accuracy we need, this is quite sufficient. To approximate $X^{\epsilon}(t)$ by the solution of (1) or (2) is what we call a standard diffusion approximation, in this context: if we compute the mean exit time from n_o to n_c , $T_{\epsilon}(n_o, n_c)$, with these approximations we find a wrong value (as we show with the numerical results).

So our idea is to replace our process by a diffusion process only when we evaluate "sufficiently" large probabilities, that is to say, when the event we consider occurs in a time interval of order $[0, 1/\sqrt{\epsilon}]$. Actually, the diffusion approximation is valid only for these times [22].

C. Calculations

First we put $n_o = 0$ for simplicity and assert an elementary lemma, useful in all the following computations.

Lemma: In the neighborhood of 0, if $b'(0) \neq 0$, we have

$$\lambda(x) = -\frac{2b(x)}{\sigma^2(x)} + 0(x^3)$$
$$\tilde{b}(x) = -b(x) + 0(x^2)$$
$$\tilde{\sigma}^2(x) = \sigma^2(0) + 0(x).$$

(For a proof, see [7].)

We will follow the way mentioned in the introduction of this section. In this one-dimensional case we distinguish four steps to calculate $T_{\epsilon}(0, n_c)$, the mean exit time from 0 to n_c .

1) An evaluation of the direct exit probability, starting from x_o close to 0: x_o plays the role of ∂U .

2) Boundary conditions at x_o for the OU approximation near 0. For this purpose we introduce y which plays the role of $\partial U'$.

3) Classical calculation of the mean exit time with the OU approximation, including the boundary condition. But, at first, we do not find $T_{\epsilon}(0, n_c)$, but $T_{\epsilon}(0, n_b)$ for some $n_b < n_c$ because the speed $b(n_c)$ is null.

4) Repeating, these operations near n_c we find $T_c(0, n_c)$.

a) The First Step: We choose x_o and y close to $n_o = 0$, depending upon ϵ , such that

$$x_o = a(\epsilon)\sqrt{\epsilon} \text{ and } a(\epsilon) \to +\infty \text{ when } \epsilon \to 0$$

 $\frac{x_o^2}{\sqrt{\epsilon}} \to 0 \text{ when } \epsilon \to 0$
 $x_o - y = 0(\epsilon).$

(It is sufficient to take $a(\epsilon) = \epsilon^{-(1/4)+\delta}$ with $0 < \delta < \frac{1}{4}$, and thus $x_o = \epsilon^{(1/4)+\delta}$.)

In Fig. 7 let n_b be fixed such that $n_o < n_b < n_c$. Although x_o and y depend upon ϵ , we do not indicate it. These conditions mean that x_o is far from 0, with respect to the jump law at 0, but not too much.

Let A be the set of the trajectories which, starting from n_o , reach n_b before y; R^c and \tilde{R}^c are, respectively, the probabilities that $X^c(t)$ and $\tilde{X}^c(t)$ belong to A.

To estimate the probability R^{ϵ} , we begin by calculating \tilde{R}^{ϵ} , using the diffusion approximation for \tilde{X}^{ϵ} . Then we evaluate $dP/d\tilde{P}(\tilde{X}^{\epsilon})$; here we show that $dP/d\tilde{P}(\tilde{X}^{\epsilon})$ is almost constant on the event A. More precisely, it is constituted of one term which does not depend upon the form of the trajectories of \tilde{X}^{ϵ} : this is

$$\frac{1}{0} = n_0 \quad y \quad x_0 \qquad n_b \quad n_c$$
Fig. 7.

the large deviation term. The other term only depends upon the form of the trajectories of A, but is convergent when $\epsilon \rightarrow 0$ by the law of large numbers.

We have approximately the following (this is the same as [2]):

$$d\tilde{X}^{\epsilon}(t) = \tilde{b}(\tilde{X}^{\epsilon}(t)) dt + \sqrt{\epsilon} \,\tilde{\sigma}(\tilde{X}^{\epsilon}(t)) dW(t). \tag{3}$$

Identifying $\tilde{X}^{\epsilon}(t)$ as the solution of (3) we have, putting

$$\psi(z) = \int_{y}^{z} \frac{2\dot{b}(u)}{\tilde{\sigma}^{2}(u)} du$$

the evaluation

$$\tilde{R}^{\epsilon} = \frac{\int_{y}^{x_{o}} \exp{-\frac{1}{\epsilon}\psi(z) dz}}{\int_{y}^{n_{o}} \exp{-\frac{1}{\epsilon}\psi(z) dz}}$$

(see, for example, [14]).

1

We find

$$\tilde{R}^{\epsilon} \underset{\epsilon \to 0}{\sim} \frac{2\tilde{b}(x_o)(x_o - y)}{\epsilon \tilde{\sigma}^2(x_o)}$$

From the lemma, we deduce, putting $b_o = -b'(0) = \tilde{b}'(0)$, and $\sigma_o^2 = \sigma^2(0),$

$$\tilde{R}^{\epsilon}_{\epsilon \to 0} \sim \frac{2b_o x_o (x_o - y)}{\epsilon \sigma_o^2}.$$
 (4)

From this equivalent of \tilde{R}^{ϵ} (probability that the diffusion which approximates $\tilde{X}^{\epsilon}(t)$ reaches n_b before y, starting from x_o) we try to calculate an equivalent of R^{ϵ} .

Let $I(z) = \int_{0}^{z} \lambda(u) du$, applying the Taylor formula to I(z), we get

$$I(\tilde{X}^{\epsilon}(t)) - I(x_{o}) = \int_{o}^{t} \lambda(\tilde{X}^{\epsilon}(u)) d\tilde{X}^{\epsilon}(u) + \frac{\epsilon}{2} \int_{o}^{t} \lambda'(\tilde{X}^{\epsilon}(u)) \tilde{m}^{2}(\tilde{X}^{\epsilon}(u)) du + 0(\epsilon^{2})$$
(5)

where $\bar{m}^2(x) = \int y^2 d\bar{\mu}(x, y)$. We define T_{n_b} as the reaching time of n_b by the deterministic motion \bar{x}^c , the solution of the ODE:

$$\frac{d\tilde{x}^o}{dt} = \tilde{b}(\tilde{x}^o)$$

By definition of the probability change, given at each point by $\lambda(x)$, we have along a trajectory ω which reaches n_h before y

$$\epsilon \log \frac{d\tilde{P}^{\epsilon}}{dP^{\epsilon}}(\omega) = \int_{o}^{\pi_{n}} \lambda \left(\tilde{X}^{\epsilon}(u) \right) d\tilde{X}^{\epsilon}(u) \tag{6}$$

where τ_{n_b} is the reaching time of n_b by ω . When $\epsilon \to 0$, τ_n , $\lambda'(\tilde{X}^{\epsilon}(u))$, and $\tilde{m}^2(\tilde{X}^{\epsilon}(u))$ converge, respectively, to T_{n_b} , $\lambda'(\tilde{X}^{\circ}(u))$, and $\tilde{m}^2(\tilde{X}^{\circ}(u))$ in virtue of the law of large numbers.

Hence, using (5) and (6) we have

$$\frac{dP^{\epsilon}}{d\tilde{P}^{\epsilon}}(\omega) \underset{\epsilon \to 0}{\sim} \exp\left(\frac{I(x_{o}) - I(n_{b})}{\epsilon}\right)$$
$$\cdot \exp\left(\frac{1}{2}\int_{o}^{T_{u}}\lambda'(\tilde{x}^{o}(u))\tilde{m}^{2}(\tilde{x}^{o}(u))\right) du. \tag{7}$$

Using the variable change $x = x^{o}(u)$, replacing $\tilde{m}^{2}(x)$ and $\tilde{b}(x)$ by their expressions as functions of $\hat{\mu}_x$, and observing that

$$\lambda'(x) = -(\hat{\mu}_x/\hat{\mu}_s)(x,\lambda(x))$$

we get that

$$\int_{o}^{T_{\bullet}}\lambda'(\tilde{x}^{o}(u))\tilde{m}^{2}(\tilde{x}^{o}(u))\,du=\int_{x_{o}}^{n_{b}}-\left[\hat{\mu}_{x}\cdot\frac{\hat{\mu}_{ss}}{\hat{\mu}_{s}^{2}}\right](x,\lambda(x))\,dx$$
(8)

 $\frac{b_o x_o}{\tilde{b}(n_b)} \sim \sup_{\epsilon \to 0} \exp - \int_{x_o}^{n_b} \frac{\tilde{b}'(x)}{\tilde{b}(x)} dx$ (9)

and

$$\frac{\tilde{b}'(x)}{\tilde{b}(x)} = \frac{1 \times (\hat{\mu}_{sx}(x,\lambda(x)) + \hat{\mu}_{ss}(x,\lambda(x))\lambda'(x))}{\hat{\mu}_{s}(x,\lambda(x))}$$
$$= \left(\frac{\hat{\mu}_{sx}}{\hat{\mu}_{s}} - \frac{\hat{\mu}_{sx} \times \hat{\mu}_{x}}{\hat{\mu}_{s}^{2}}\right)(x,\lambda(x)).$$
(10)

Finally,

1

$$R^{\epsilon} = P^{\epsilon}(A) = \int_{A} \frac{dP^{\epsilon}}{d\tilde{P}^{\epsilon}}(\omega) d\tilde{P}^{\epsilon}(\omega).$$

The restriction to A of $dP^{\epsilon}/d\tilde{P}^{\epsilon}$ does not depend (asymptotically) upon $\tilde{X}^{\epsilon}(t)$, but only on \tilde{x}^{o} , thus using (4), we obtain

$$\frac{2\epsilon}{\epsilon \to 0} \frac{2b_o x_o(x_o - y)}{\epsilon \sigma_o^2} \exp \frac{I(x_o) - I(n_b)}{\epsilon} \\ \cdot \exp \frac{1}{2} \int_0^{n_b} - \left[\hat{\mu}_x \cdot \frac{\hat{\mu}_{ss}}{\hat{\mu}_s^2}\right] dx$$

and by (9) and (10),

$$R^{\epsilon}_{\epsilon \to 0}(x_o - y)q_{\epsilon} \qquad (11)$$

where

$$q_{\epsilon} = \frac{2\tilde{b}(n_b)\exp\frac{I(x_o)}{\epsilon}}{\epsilon \sigma_o^2 \exp\frac{I(n_b)}{\epsilon}} \exp K(n_b)$$

with

$$K(n_b) = \int_0^{n_b} \left[-\frac{\hat{\mu}_{sx}}{\hat{\mu}_s} + \frac{1}{2}\hat{\mu}_x \cdot \frac{\hat{\mu}_{sx}}{\hat{\mu}_s^2} \right] (x, \lambda(x)) \, dx. \quad (12)$$

The derivatives are calculated at the point $(x, \lambda(x))$.

b) The Second Step: Let $T_{\epsilon}(a, b)$ be the expectation of the time necessary to reach b, starting from a.

Putting $F_{\epsilon}(x_o, n_b)$ = mean time to reach n_b , starting from x_o ,

but

COTTRELL et al.: LARGE DEVIATIONS AND RARE EVENTS

given that it does not pass through y, $H_{\epsilon}(x_o, y)$ = mean time to reach y, starting from x_o , given that it does not pass through n_b , we have

$$T_{\epsilon}(x_o, n_b) = (1 - R^{\epsilon}) (H_{\epsilon}(x_o, y) + T_{\epsilon}(y, n_b)) + R^{\epsilon} F_{\epsilon}(x_o, y). \quad (13)$$

Observing that, when $\epsilon \to 0$, $H_{\epsilon}(x_o, y)$ is negligible relative to $T_{\epsilon}(y, x_o)$ and that $F_{\epsilon}(x_o, n_b)$ is negligible relative to $T_{\epsilon}(y, n_b)$, we get

$$T'_{\epsilon}(x_o, n_b) \underset{\epsilon \to 0}{\sim} - q_{\epsilon} T_{\epsilon}(x_o, n_b).$$
(14)

 $(T'_{t}(x_o, n_b)$ is the derivative of $T_{c}(x, n_b)$ with respect to x.) This is the reflection-extinction condition on the "boundary" of U.

c) The Third Step: The approximation of $X^{\epsilon}(t)$ by a diffusion is simpler in a neighborhood of $n_o = 0$ (we take $[-x_o, x_o]$); if we start from 0, $x^{o}(t) = 0$ for each t, and the equation (1) allows us to write

$$dX^{\epsilon}(t) = -b_{\rho}X^{\epsilon}(t) dt + \sqrt{\epsilon}\sigma_{\rho}dW(t).$$
(15)

Then the time $T_{\epsilon}(x, n_b)$ ($x \in [-x_o, x_o]$) verifies the differential equation

$$\frac{\epsilon}{2}\sigma_o^2 u_{\epsilon}'' - b_o \times u_{\epsilon}' = -1$$

with the boundary condition

$$u'_{\epsilon}(x_o) \sim -q_{\epsilon}u_{\epsilon}(x_o)$$

and $u'_{\epsilon}(-x_o) = 0$ (reflection in $-x_o$). (The choice of $(-x_o)$ is not very important because $-x_o/\sqrt{\epsilon} \rightarrow -\infty$ as $\epsilon \rightarrow 0$.)

Integrating one time we have

$$u_{\epsilon}'(x) = \frac{-2}{\epsilon \sigma_{o}^{2}} \exp \frac{b_{o} x^{2}}{\epsilon \sigma_{o}^{2}} \times \int_{-x_{o}}^{x} \exp \frac{-b_{o} v^{2}}{\epsilon \sigma_{o}^{2}} dv$$
$$\frac{u_{\epsilon}'(x_{o})}{u_{\epsilon}(x_{o})} \sim -q_{\epsilon}.$$
(16)

We easily see that, when $\epsilon \to 0$, $u_{\epsilon}(x_{\rho})$ and $u_{\epsilon}(0)$ are equivalents. So we have

$$T_{\epsilon}(0, n_{b}) = u_{\epsilon}(0) \underset{\epsilon \to 0}{\sim} - \frac{u_{\epsilon}(x_{o})}{q_{\epsilon}}$$

$$\tilde{\iota}_{\epsilon \to 0} - \frac{2\sqrt{\pi}}{\sqrt{\epsilon} \sigma_{o} \sqrt{b_{o}}} \exp \frac{b_{o} x_{o}^{2}}{\epsilon \sigma_{o}^{2}}$$

$$\cdot \frac{\epsilon \sigma_{o}^{2} \exp \frac{I(n_{b})}{\epsilon} \exp - K(n_{b})}{2\tilde{b}(n_{b}) \exp \frac{I(x_{o})}{\epsilon}}$$
(17)

. . 、

by (12) and (15). Noting that

$$\frac{I(x_o)}{\epsilon} = \frac{b_o x_o^2}{\epsilon \sigma^2} + \frac{1}{\epsilon} O(x_o^2)$$

and choosing x_o such that $x_o^3/\epsilon \to 0$ when $\epsilon \to 0$, $(x_o = \epsilon^{(1/4)+\delta})$ and $\frac{1}{12} < \delta < \frac{1}{4}$, it holds that

$$\exp\frac{b_o x_o^2}{\epsilon \sigma_o^2} \exp-\frac{I(x_o)}{\epsilon} \to 1$$

when $\epsilon \rightarrow 0$.

Finally, we get an equivalent of $T_{\epsilon}(0, n_b)$ (the expression does not depend upon x_{o})¹

$$T_{\epsilon}(0,n_b) \underset{\epsilon \to 0}{\sim} \frac{\sqrt{\pi} \sqrt{\epsilon} \sigma_o}{\sqrt{b_o}} \frac{\exp \frac{I(n_b)}{\epsilon}}{\tilde{b}(n_b)} \exp - K(n_b) \quad (18)$$

where $K(n_b)$ is defined by (12).

d) Crossing n_c : As in the neighborhood of n_o , we can repeat the same calculation, without probability change in the neighborhood of n_c . Using (18), and supposing $b_c = b'(n_c) > 0$ and $\sigma_c^2 =$ $\sigma^2(n_c)$, we get

$$T_{\epsilon}(n_b, n_c) \underset{\epsilon \to 0}{\sim} \frac{\pi}{\sqrt{b_o b_c}} \frac{\sigma_o}{\sigma_c} \exp \frac{I(n_c)}{\epsilon} \exp - K(n_c)$$

where

$$-K(n_{c}) = \int_{0}^{n_{c}} \left[\frac{\hat{\mu}_{sx}}{\hat{\mu}_{s}} - \frac{1}{2} \hat{\mu}_{x} \cdot \frac{\hat{\mu}_{ss}}{\hat{\mu}_{s}^{2}} \right] (x, \lambda(x)) \, dx \qquad (19)$$

and

$$I(n_c) = \int_0^{n_c} \lambda(x) \, dx.$$

The time $T_{\epsilon}(n_o, n_c)$ is the sum of $T_{\epsilon}(n_o, n_b)$ and of $T_{\epsilon}(n_b, n_c)$, since the process $X^{\epsilon}(t)$ is Markovian, but

$$T_{\epsilon}(n_o, n_b) = 0 \left(\frac{\sqrt{\epsilon}}{b_c(n_b - n_c)} \exp \frac{I(n_b)}{\epsilon} \right).$$

So, the final result is

$$T_{\epsilon}(n_o, n_c) \underset{\epsilon \to 0}{\sim} \frac{\pi}{\sqrt{b_o b_c}} \frac{\sigma_o}{\sigma_c} \exp \frac{I(n_c)}{\epsilon} \exp - K(n_c) \quad (20)$$

where $I(n_c)$ and $K(n_c)$ are as in (12).

This formula gives an accuracy of 10 percent when we apply it with $\epsilon = 1$ to some examples.

D. Some Numerical Results

Here we test the validity of formulas (18) for $\tau(0, n_b)$ and (20) for $\tau(0, n_{c})$ on some examples.

This is a very simple example where we can compare the result to the analytical one. It is a Markov chain N(t), with transition probabilities.

$$p_{i,i-1} = r(i), \quad p_{i,i+1} = 1 - r(i) \quad \text{if } -10 < i < n_c$$

 $p_{-10,-9} = p_{n_c,n_c} = 1.$

We took $r(i) = 0.5 + \rho i(n_c - i)$ for different values of ρ and n_c . Table I shows the results for $n_c = 50$. The first number is the exact result, the second is provided by the standard diffusion approximation, and the third is derived from formula (20), by our diffusion approximation.

¹D. Ludwig in [18] has obtained, for diffusions only, a similar expression for this time, using quite a different method.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-28, NO. 9, SEPTEMBER 1983

TABLE I

no '	10 ⁻⁴	2.10 ⁻⁴	3.10 ⁻⁴	4.10 ⁻⁴	5.10 ⁻⁴
20	2.8 10 ³ 2.8 10 ³ 2.8 10 ³ 2.8 10 ³	2. 10 ⁴ 2.3. 10 ⁴ 2. 10 ⁴	2.3 10 ⁵ 3.7, 10 ⁵ 2.4 10 ⁵	3.8 10 ⁶ 13 10 ⁶ 4.3 10 ⁶	0.9 10 ⁸ 17 10 ⁸ 1.1 10 ⁸
25	9.1 10 ³ 9.4 10 ³ 9.3 10 ³	2.3 10 ⁵ 2.9 10 ⁵ 2.4 10 ⁵	1 10 ⁷ 2.4 10 ⁷ 1.1 10 ⁷	8 10 ⁸ 8.5 10 ⁹ 9.1 10 ⁸	1.1 10 ¹¹ 337 10 ¹¹ 1.4 10 ¹¹
30	$\begin{array}{r} 3.1 & 10^4 \\ 3.2 & 10^4 \\ 3.3 & 10^4 \end{array}$	2.9 10 ⁵ 4.0 10 ⁶ 3.0 10 ⁶	5 10 ⁸ 1.8 10 ⁹ 5.7 10 ⁸	$\begin{array}{rrrr} 1.8 & 10^{11} \\ 60 & 10^{11} \\ 2.1 & 10^{11} \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
n _c = 50	1.4 10 ⁶ 1.5 10 ⁶ 1.3 10 ⁶	3.7 10 ⁸ 60 10 ⁸ 3.5 10 ⁸	$ \begin{array}{r} 1.9 & 10^{13} \\ 12 & 10^{13} \\ 1.8 & 10^{13} \end{array} $	$\begin{array}{r} 2.2 & 10^{17} \\ 323 & 10^{17} \\ 2.1 & 10^{17} \end{array}$	8.9 10 ²¹ 11 10 ²⁶ 8.3 10 ²¹

IV. EXAMPLES

A. Aloha System

The ALOHA system is a radio channel shared by many users who want to transmit messages called packets. The channel time is divided into slots equal to the packet duration (the packets are supposed to be of a constant size about 10^{-4} s). The beginning of the packet transmission and of the slots are coincident. Whenever two packets are simultaneously emitted, there is a conflict, they are lost, and the corresponding users are blocked. They must emit again at random to avoid another conflict.

Let us present the mathematical model.

1) Not Controlled System: When a conflict occurs, each involved user flips a coin (with a fixed common bias p) to see if it is going to retransmit or not.

We define the process N(t) as the number of blocked users, at time t. Assuming the global source is a Poisson process with parameter α , N(t) is a transient homogeneous Markov chain over N for every value of α and p (see [1] and [17]).

The transition probabilities are (for $i \ge 0$, $j \ge 0$),

$$p_{ij} = P(N(t+1) = j/N(t) = i)$$

$$= \begin{cases} 0 & \text{for } j \le i-2 \\ ip(1-p)^{i-1}e^{-\alpha} & \text{for } j = i-1 \\ (1-p)^{i}\alpha e^{-\alpha} \\ + [1-ip(1-p)^{i-1}]e^{-\alpha} & \text{for } j = i \\ \alpha e^{-\alpha} [1-(1-p)^{i}] & \text{for } j = i+1 \\ \frac{\alpha^{j-1}}{(j-i)!}e^{-\alpha} & \text{for } j \ge i+2. \end{cases}$$

Let μ_i be the jump distribution at i, $b(i) = E(\mu_i)$ and $\sigma^2(i) = var(\mu_i)$. If $\alpha < 1/e$, we can observe that N(t) remains for a very long time period near a value n_o , and as soon as it reaches (or overtakes) a value n_c (critical point corresponding to the channel saturation), it increases quickly to infinity.

The points n_o and n_c are mean equilibrium points, one stable (n_o) , the other unstable (n_c) , defined by the fact that the sign of E(N(t+1)-N(t)/N(t)=i) changes between i and i+1.

So in Fig. 8 we have b(i) > 0 for $0 \le i < n_o$ or $n_c < i$, and b(i) < 0 for $n_o < i < n_c$.

A good measure of the system's "stability" is in the mean time of reaching n_c , starting from n_o .

For a good choice of the parameters a and p, this time can be very long, and it is during this time that the channel works. We call it *exit time*, denoted by τ .

2) Controlled System: For stabilizing the system, we choose a retransmission probability p(i), common to every user, but depending upon the number *i* of blocked users, for example $p(i) = (1-\alpha)/(i-\alpha)$. Then N(t) is a positive recurrent chain iff $0 \le \alpha \le 1/e$ (see [10]).

The probability that a given user remains blocked during a time greater than a fixed bound is a good evaluation test of different retransmission politics (for the same source rate). As the event "a given user is still in the system" has measure 0,

As the event "a given user is still in the system" has measure 0, to keep up with a given user it is necessary to consider a conditional distribution, and to define a new process M(t), which is the number of blocked users, observed by a marked one, that is conditionally on the fact that he is still waiting. It is also a Markov chain, with a death probability different from 0: the death is the event "the marked user can emit successfully."

When the number of blocked users is *i*, the death probability is

$$e^{-\alpha}p(i)(1-p(i))^{i-1}=1-\int d\nu_i$$

if v_i is the jump distribution at *i* for the new process M(t).

We are interested in studying the distribution of the survival time of the marked user, i.e., the time before the death of the process M(t).

B. Estimating Exit Time for the Not Controlled Aloha System

The jump distribution μ_i does not vary too much as a function of *i*, and the jumps are small, so it is interesting to consider the process N(t) as an element of a family of processes $X^{\epsilon}(t)$.

We write N(t+1) = N(t) + V(N(t)) where V(N(t)) has the distribution $\mu_{N(t)}$. We define the family $X^{\epsilon}(t)$ by

$$X^{\epsilon}(t+1) = X^{\epsilon}(t) + \epsilon V(X(t))$$

and we have $N(t) = X^{\epsilon}(t)$ for $\epsilon = 1$.

So we can apply the results of Sections II and III.

1) Application of Theorem 2 of Section II: Let β be the probability P(A), where A is the event "starting from n_o , the process comes directly to n_o , without returning to n_o ."

Every trajectory of N(t), starting from n_o , can be cut into sections. A great number of sections come back to n_o , we call them sections of the first kind. The last section reaches n_c and goes out. It is a section of second kind.

So the number of sections in a trajectory before the exit is a geometric random variable, with parameter β and mean value $1/\beta$.

As the durations of the sections of the first kind are random variables iid (by strong Markov property), calling τ_o their common expectation, and neglecting the duration of the last part of the trajectory, we have an evaluation of the mean exit time τ as

τ≈τ₀/β.

For estimating τ_o , we merely simulate the chain N(t), with transition probabilities p_{ij} , and take the average as the estimator $\hat{\tau}_i$.

Applying Theorem 2, of Section II we use the quick simulation method to estimate the very small probability β , considering in the sections space the event A = "the section ω belongs to the second kind."

So we simulate *n* sections $\omega_1, \omega_2, \dots, \omega_n$ using the transformed

COTTRELL et al.: LARGE DEVIATIONS AND RARE EVENTS

transition probabilities

$$\tilde{p}_{ij} = e^{\lambda_i (j-i)}$$

with $\hat{\mu}_i(\lambda_i) = 1$ and $\lambda_i > 0$ for $n_o < i < n_c$ and $\tilde{p}_{ij} = p_{ij}$ for $i \le n_o$ or $i \ge n_{i}$.

And we take the following unbiased and convergent estimator of β :

$$\hat{\boldsymbol{\beta}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\mathcal{A}}(\omega_i) \frac{dP}{d\tilde{P}}(\omega_i).$$

The Radon-Nikodym derivative is calculated along a section by

$$\frac{dP}{d\tilde{P}}(\omega_i) = \exp\left(-\sum_{t} \lambda_{\omega_i(t)}(\omega_i(t+1) - \omega_i(t))\right).$$

On the other hand, we can use the diffusion approximation formula presented in Section III to calculate the mean exit time starting from n_{o} .

So we present below numerical results obtained by the two methods

Here we take as examples $\alpha = 0.27$ and 0.30 for different values

of p. The simulation results are calculated with an accuracy of 10 percent and are compared to both results given by the formula (20) of Section III, and those obtained by a standard diffusion approximation. The expected exit time is the solution of the boundary value problem

$$\frac{1}{2}\sigma^2(x)u''+b(x)u'=-1, \qquad u(n_c)=0, \ u'(0)=0.$$

In Table II it clearly appears that the standard diffusion approximation greatly overestimates the exit time, and that the formula (20) is much closer to the real values.

Note About the Acceleration of the Simulation: In Table III are some examples of the acceleration of the simulation, achieved by our method.

C. Controlled Aloha System

Here we present a second example of best asymptotically change of probability for fast simulation.

In many cases, one can apply the large deviation results to obtain the functional whose minimization gives the best change of probability, and the problem is then to determine the solution minimizing this functional.

1) The Large Deviations Result: Let $X^{\epsilon}(t)$ be a Markov chain with jump distribution at $x, \epsilon \cdot v_x$, where $\int dv_x(y) < 1$. That is to say that our chain has positive probability to die at each point x.

Let \mathcal{T} be the death time of this process. For T and x_o , we denote by A_{T,x_o} the event "starting from x_o the process is still alive at time T"

$$A_{T,x_o} = \{ \omega \in \Omega / \omega(o) = x_o, \mathfrak{T}(\omega) \ge T \}$$
(1)

We have the large deviation results (with always the same hypotheses on the measure ν_x). Set $\rho_{T,x_o}^{\epsilon} = P^{\epsilon}(A_{T,x_o})$

$$\lim_{\epsilon \to 0} -\epsilon \log \rho_{T,x_o}^{\epsilon} = \inf_{\varphi} \{ I(x_o, T, \varphi), \varphi(o) = x_o, \varphi \in \mathcal{C}_T \}$$
(2)

where $I(x_o, T, \varphi)$ is the action integral along φ defined by

$$I(x_o, T, \varphi) = \int_0^T h_{\varphi(t)}(\dot{\varphi}(t)) dt$$

(h is the Cramer transformed of v_x) and changing of notations in the continuation

TABLE II

	p	n.,	n _c	τ _ο	3	î	Diffusion	Standard diff.
a=0.30	0.049	4	30	8.75	1.8 10-4	4.8 104	4.6 104	5.3 104
	0.039	5	37	9.0	6.0 10-5	1.5 10 ⁵	1.6 10 ⁵	1.9 10 ⁵
	0.032	6	45	10.5	1.9 10-5	5.5 105	5.8 105	7.5 10 ⁵
	0.028	7.	52	11.0	6.0 10-6	1.8 10 ⁶	1.8 10 ⁶	2.6 10 ⁶
	0.024	8	60	11.3	1.9 10-6	5.9 106	6.2 10 ⁶	9.2 10 ⁶
	0.022	9	67	11.8	6.7 10 ⁻⁷	1.8 107	2 107	3. 10 ⁷
	0.019	10	75	13.1	2.2 10-7	5.9 107	6.4 10 ⁷	10. 10 ⁷
a=0.27	0.064	2	26	5.6	3.3 10 ⁻⁵	1.7 10 ⁵	1.6 10 ⁵	2.2 10 ⁵
1.9	0.049	3	35	7.1	4.3 10-6	1.6 10 ⁶	1.7 106	2.6 10 ⁶
	0.039	4	44	8.2	5.5 10-7	1.6 107	1.6 107	2.8 107
	0.032	4	52	8.6	6.8 10-8	1.2 10 ⁸	1.1 10 ⁸	2.5 108
	0.028	5	61	9.4	9.5 10-9	1.0 109	1.0 109	2.5 109
-	0.024	6	70	10.7	1.3 10 ⁻⁹	8.2 10 ⁹	8.9 10 ⁹	23. 10 ⁹

TABLE III

	Ť	Trajectory duration in simulation	Acceleration
<u>a = 0.30</u> p = 0.049 p = 0.039 p = 0.028	4.8 10 ⁴ 1.5 10 ⁵ 1.8 10 ⁶	682 787 115	18 times 48 403
<u>a = 0.27</u> p = 0.064 p = 0.049	1.7 10 ⁵ 1.6 10 ⁶	372 539	114 744

$$=\int_{o}^{T}h(\varphi(t),\dot{\varphi}(t))\,dt.$$

First we determine the path φ minimizing $I(x_o, T, \varphi)$ and then we apply to a fast simulation method.

Let us introduce

$$\psi(x,s) = \inf\left\{\int_{s}^{T} h(\varphi(t), \dot{\varphi}(t)) dt \middle/ \varphi \in \mathcal{C}_{T}, \varphi(s) = x\right\}$$
(3)

and let φ_{opt} be the path which gives the minimum. Assuming that ψ is C^2 , ψ verifies the dynamical programing equation (see [9]), i.e., for $\varphi \in \mathcal{C}$, $x = \varphi(s)$, $dx/ds = \dot{\varphi}(s) = v$,

$$\frac{\partial \psi}{\partial s}(x,s) = -\inf_{v} \left(h(x,v) + \frac{\partial \psi}{\partial x}(x,s)v \right)$$
$$= \sup_{v} \left(-h(x,v) - \frac{\partial \psi}{\partial x}(x,s)v \right). \tag{4}$$

We recognize the transform of $h(x, \cdot)$ by the convex duality at the point $-\partial \psi / \partial x(x,s)$ (see Appendix I-A-3). We put

$$\lambda(x,s) = -\frac{\partial \psi}{\partial x}(x,s)$$

v(x, s) is the point providing the sup in (4), i.e., the speed at time s, point x, along the optimal path φ_{opt} . Then $\partial \psi / \partial s(x, s) = l(x, \lambda(x, s))$ by reciprocity of the convex

duality, and $v(x,s) = \frac{\partial l}{\partial s}(x,\lambda(x,s))$ (reciprocity of the h's and l's derivatives).
Thus, we want to determine φ_{opt} and λ , along φ_{opt} . We have

$$\frac{\partial \lambda}{\partial s}(x,s) = -\frac{\partial}{\partial x}l(x,\lambda(x,s)) - \left(\frac{\partial l}{\partial s}(x,\lambda(x,s))\frac{\partial \lambda}{\partial x}(x,s)\right)$$

and

$$d\lambda = v(x,s)\frac{\partial \lambda}{\partial x} \left(-\frac{\partial l}{\partial x}(x,\lambda(x,s)) - v(x,s)\frac{\partial \lambda}{\partial x}(x,s) \right) ds$$
$$= -\frac{\partial l}{\partial x}(x,\lambda(x,s)) ds.$$

21

Along φ_{opt} , it holds that $(x = \varphi_{opt}(s))$

$$d\lambda = -\frac{\partial l}{\partial x}(x,\lambda(x,s)) ds$$
$$dx = \frac{\partial l}{\partial s}(x,\lambda(x,s)) ds.$$
(5)

Furthermore, φ_{opt} is determined by the boundary conditions $\varphi_{opt}(0) = x_o$, $\partial \psi / \partial x(x, s) = 0$ if s > T, in such a way that

$$\psi(x,0) = I(x_o, T, \varphi_{oot})$$

is minimum.

Hence the pair $(x - \varphi_{opt}(s), \lambda - \lambda(x, s))$ is the solution of the system

$$l(x, \lambda) = C = Cste \quad (\text{level curves of } l)$$

$$x(0) = x_o$$

$$\lambda(x(T), T) = 0. \quad (6)$$

Along the trajectory φ_{opt} , it holds that

$$\frac{\partial l}{\partial s}(x,\lambda(x,s))=\frac{dx}{ds}.$$

So the coefficient $\lambda(x, s)$ is the rate of probability change which centers the process around the path φ_{opt} . We use this remark in the next section.

2) Simulation of the Controlled ALOHA System: For the Markov chain M(t) defined in Section IV-A-2, we denote \mathfrak{T} the survival time, and we want to estimate for each value of T,

$$\rho_T = P(\mathfrak{T} \ge T) = \sum_{x_o=0}^{\infty} \rho_{T,x_o} P_{x_o}$$

where P_{x_o} is the probability to find x_o blocked users, at equilibrium.

As in the uncontrolled ALOHA case we apply the previous results of large deviations when $\epsilon - 1$. We hope the conditions for application are still good. However, since we only simulate, the approximation $\epsilon - 1 \sim \epsilon - 0$ is not dangerous: if this approximation is not valid, the simulation is not greatly accelerated, and there is no other trouble.

For each x_o , we simulate *n* trajectories $\omega_1, \dots, \omega_n$ of a transformed process with distribution \tilde{P} to determine and we take

$$\hat{\rho}_{T,x_o} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{A_{T,x_o}}(\omega_k) \frac{dP}{d\tilde{P}}(\omega_k).$$

Choice of the Transformed Process:

a) Asymptotically Optimal Probability Change: For each time t and initial point x, an optimal trajectory φ_{opt} , denoted by $\varphi_{t,x}$,

COTTRELL et al.: LARGE DEVIATIONS AND RARE EVENTS

is associated. Putting $\Lambda(x, t) = \lambda(\varphi_{t,x}(0), 0)$, when a time t is spent, we choose the exponential probability change defined by $\Lambda(x, T-t)$.

b) A Simpler Choice: Instead of taking care of the real evolution of the trajectory to choose the probability change, we can take, as an approximation, the optimal path starting from x_o for the time T. This trajectory is determined by an equation

$$l(x,\lambda) = C. \tag{1}$$

For each x, the new probability distribution $\tilde{r}(x, \cdot)$ is defined by the exponential change with parameter $\lambda(x)$ solution of (1). So the total weight of $\tilde{r}(x, \cdot)$ is $\hat{r}(x, \lambda) = e^{C}$; therefore we simulate trajectories with constant death probability.

For T = 40, 60, 80, 100, we estimate $\rho_{T,0}$ and compare the relative standard error σ_R obtained after 5000 simulations by both a) and b) methods. (See Table IV.) The two last columns represent the Bernouilli parameter for which we obtain the same accuracy after 5000 simulations and the acceleration due to the probability change.

The results a) and b) are actually almost the same: here the simplified method is as efficient as the optimal method. Below we present some results.

c) Approximation by Diffusion: As in Section III we have a corresponding asymptotical formula using approximations by diffusions. We proceed as follows. We note that

$$\tilde{P}(A_{T,x_o}) = e^{cT/\epsilon}$$

and we evaluate $dP'/d\hat{P}'$ on $A_{T,x}$ by Ito's formula. We obtain two terms. The first is the large deviation term

$$\exp-\frac{1}{\epsilon}\int_{o}^{T}\lambda\big(\varphi_{opt}(t),t\big)\,dt$$

The second depends upon the most likely trajectory, but not on ϵ

$$\exp\frac{1}{2}\int_{o}^{T}\lambda_{x}(\varphi_{opt}(t),t)\tilde{m}^{2}(\varphi_{opt}(t),t)\,dt$$

where λ_x is the derivative of λ with respect to the first variable and $\tilde{m}^2(\varphi_{opt}(t))$ is the 2^d moment of the probability measure $\tilde{v}(\varphi_{opt}(t), \cdot)/e^C$.

Fig. 9 shows the form of the curve $l(x,\lambda) = C$. The equation $l(x,\lambda) = C$ has two solutions in general, we put $\lambda_1(x)$ [resp. $\lambda_2(x)$] the largest one (resp. the smallest).

Thus we get

P

$$f(A_{T,x_o}) = \exp \frac{CT}{\epsilon}$$

$$\cdot \exp - \frac{1}{\epsilon} \left[\int_{x_o}^{x_B} \lambda_1(x) \, dx + \int_{x_B}^{x_F} \lambda_2(x) \, dx \right]$$

$$\cdot \exp \frac{1}{2} \left[\int_{x_o}^{x_B} - \left[\hat{y}_x \cdot \frac{\hat{y}_{ss}}{\hat{y}_s^2} \right] (x, \lambda_1(x)) \, dx \right]$$

$$\cdot \exp \frac{1}{2} \left[\int_{x_B}^{x_F} - \left[\hat{y}_x \cdot \frac{\hat{y}_{ss}}{\hat{y}_s^2} \right] (x, \lambda_2(x)) \, dx \right].$$

(The two last integrals are divergent, but the sum is convergent.) For instance, we studied numerically the distribution of the survival time of the controlled ALOHA system, and we get

> $\rho_{40} = P (\mathfrak{T} \ge 40) = 40.10^{-3} \pm 5 \text{ percent}$ $\rho_{60} = P (\mathfrak{T} \ge 60) = 20.10^{-3} \pm 5 \text{ percent}$ $\rho_{80} = P (\mathfrak{T} \ge 80) = 10.10^{-3} \pm 5 \text{ percent}.$

LEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-28, NO. 9, SEPTEMBER 1983

			TAB	LE IV			
ſ	T	^ρ τ,ο	σ _R a)	σ _R b)	P	Ρ/ρ _τ ,0	
	40	41 10-4	5.4 1	4.6 \$	86 10-3	21	
i	60	15 10-4	6.5 \$	7.0 %	40 10 ⁻³	26	
-	80	6 10-4	7.9 8	7.9 1	30 10-3	50	
	100	3 10-4	11.3 •	11.1 \$	16 10 ⁻³	55	

APPENDIX I

A. Laplace Transform - Cramer Transform

Let μ be a finite positive measure on \mathbf{R}^n (it is not necessarily a probability) and $b = \int x d\mu(x)$ its mean value. 1) Laplace Transform: $\hat{\mu}$ of the measure μ is the application

$$s\mapsto \hat{\mu}(s) = \int e^{\langle s,x\rangle} d\mu(x)$$

from R^m to R.

Let U be the interior of the set $\{s \in \mathbb{R}^m/\hat{\mu}(s) < +\infty\}$. We assume that U is an open set containing 0. One easily checks that

$$\hat{\mu}(0) = \mu(\mathbb{R}^m) \qquad \hat{\mu}'(0) = b$$

and that $\hat{\mu}$ is a convex infinitely derivable function. 2) Log-Laplace Transform: *l* of the measure μ is the application $s \rightarrow l(s) = \log \hat{\mu}(s)$. It is a convex real-valued infinitely derivable function, and $l'(0) = b/\mu(\mathbb{R}^m)$, i.e., the barycenter of the measure μ

If μ is a probability, $\hat{\mu}(0) = 1$ and l(0) = 0. 3) Cramer Transform: The function l being convex real-valued, B. Kullbach Information and Probability Change we can define a function h, from \mathbb{R}^m to $[0, +\infty]$ by

$$h(u) = \sup (\langle s, u \rangle - l(s)).$$

The function h is called Cramer transform of the measure μ . Let V be the interior of the set $\{u/h(u) < +\infty\}$.

Let us give some classical properties of h.

a) The function h is convex. The transformation $l \mapsto h$ is called convex duality and is involutive

$$l(s) = \sup (\langle s, u \rangle - h(u)).$$

b) For each $u \in V$, the point of U where $\sup_{s}(\langle s, u \rangle - l(s))$ is reached is denoted s(u) and

$$l'(s(u)) = \frac{\hat{\mu}'(s(u))}{\hat{\mu}(s(u))} = u.$$

Since *l* is convex, the point s(u) is unique and $s(u) = l'^{-1}(u)$.

c) The closed set \overline{V} is the closure of the convex envelope of the support of the measure μ : in fact, if $s \in U$

$$l'(s) = \frac{\hat{\mu}'(s)}{\hat{\mu}(s)} = \int \frac{x e^{\langle s, x \rangle} d\mu(x)}{\int e^{\langle s, x \rangle} d\mu(x)}$$

is the barycenter of the probability measure » defined by

$$d\nu(x) = \frac{e^{\langle s, x \rangle} d\mu(x)}{\int e^{\langle s, x \rangle} d\mu(x)}$$

which has the same support as the measure μ . d) The derivative h' and l' are reciprocal, i.e.,

$$h'(l'(s)) = s$$
 for $s \in U$

and

$$l'(h'(u)) = u$$
 for $u \in V$.

e) The function h is minimum for $b/\mu(\mathbb{R}^m) = l'(0)$. If μ is a probability, this minimum is 0. f) We have

$$h_{\mu+\nu}(u) = h_{\mu}(u-\nu)$$
$$h_{\mu^{\bullet*}}(nu) = nh_{\mu}(u)$$

for $u, v \in \mathbb{R}$.

g) The ratio $h(u)/||u|| \to +\infty$ when $||u|| \to \infty$ iff $\hat{\mu}(s) < \infty$ for every $s \in \mathbb{R}^{m}$; particular case m = 1. h) Minimizing h(u)/u: Let

$$b=E(\mu)=\int x\,d\mu(x)=0.$$

Then we have

$$\lambda = \min_{u>0} \frac{h(u)}{u} \Leftrightarrow l(\lambda) = 0, \quad \lambda > 0.$$
 (A1)

Actually, h(u)/u is the slope of the straight line joining 0 to the point of abscissa u, and $\lambda = \min_{\lambda > 0} h(u) / u = h'(n_0)$ is the slope of the tangent to the graph of h, issued from 0. Hence, (A1) holds because of the properties a) and i). Moreover.

$$l'(\lambda) = U_o = \frac{\hat{\mu}'(\lambda)}{\hat{\mu}(\lambda)}.$$

1) Exponential Change: Let μ be a probability measure, on **R** and let us define $\hat{\mu}$, *l*, *h* as in Section I.

If $s \in U$, let us define a new probability measure μ^s by

$$d\mu^{s}(x)=\frac{e^{sx}\,d\mu(x)}{\hat{\mu}(s)}.$$

We say that μ^s is transformed of μ by the exponential change of parameter s. We see that

$$E(\mu^s) = \int x \, d\mu^s(x) = \frac{\hat{\mu}'(s)}{\hat{\mu}(s)} = l'(s).$$

So for every $u \in U$, it is possible to find s = s(u) (with l'(s(u))) = u) in such a way that the mean of the probability $\mu^{s(u)}$ becomes u.

.2) Kullbach Information: Let μ_1, μ_2 be two probabilities such that μ_1 is absolutely continuous with respect to μ_2 , i.e., μ_1 has a density $d\mu_1/d\mu_2$ with respect to μ_2 . In this case, we denote $\mu_1 \ll \mu_2$.

The Kullbach information (see [16]) of μ_1 with respect to μ_2 is

$$K(\mu_1,\mu_2) = \int \log\left(\frac{d\mu_1}{d\mu_2}(x)\right) d\mu_1(x).$$

Note that $K(\mu_1, \mu_2) = 0$ iff $\mu_1 = \mu_2$. We have the following result which links the Cramer transform and the Kullbach information (see [6], for instance).

Theorem: If $u \in U$ is a probability measure, h its Cramer transformation, then

$$\inf \left\{ \frac{K(\nu,\mu)}{\nu} \ll \mu, \int x \, d\nu(x) = u \right\} = K(\mu^{s(u)},\mu)$$
$$= h(u).$$

It means that the measure which minimizes the Kullbach information with respect to μ of all the probabilities with fixed mean u, is the probability $\mu^{s(u)}$ obtained from μ by the exponential change of parameter s(u) [defined by u = l'(s(u))].

C. Chernoff's Theorems

We give some propositions in \mathbf{R} , but it is not difficult to generalize them in \mathbf{R}^m . The more classical Chernoff's theorem is as follows.

Let (X_i) be a sequence of real-valued iid random variable with distribution μ , such that its Laplace transform is finite in an open interval containing 0. Let *h* be its Cramer transform.

Let $a > EX_1$, and $S_n = X_1 + \cdots + X_n$ the associated random walk, with $S_o = 0$.

Then

$$\lim_{n \to +\infty} -\frac{1}{n} \log P\left(\frac{S_n}{n} > a\right) = h(a).$$

The reader can find a complete proof, for instance, in [8]. Empirical Laws, Chernoff's Theorem: Let (X_i) be a sequence of real-valued iid random variables with distribution μ .

Let L_n be the empirical measure associated with X_1, \dots, X_n defined by

$$L_n=\frac{1}{n}\left(\delta_{X_1}+\cdots+\delta_{X_n}\right)$$

where δ_{X_i} is the Dirac measure at point X_i : if A is a Borelien in \mathbb{R} , $L_n(A)$ is the number of observed values in the *n*. Sample X_1, \dots, X_n which belong to A. Let \mathcal{C} be an open set of the set of probability measures on \mathbb{R}

Let C be an open set of the set of probability measures on **R** (endowed with weak topology), then

$$\liminf \frac{1}{n} \log P_{\mu}(L_n \in \mathcal{C}) \ge -\inf\{K(\nu, \mu) / \nu \in \mathcal{C}\}$$
(1)

$$\limsup \frac{1}{n} \log P_{\mu} (L_n \in \overline{\mathcal{C}}) \leqslant -\inf \{ K(\nu, \mu) / \nu \in \overline{\mathcal{C}} \}$$
(2)

where $K(r, \mu)$ is the Kullbach information of r with respect to μ (see [6]).

APPENDIX II PROOF OF THEOREM 2

First we prove an extension of Corollary 1 in Section I. Theorem 1 BIS: The assumptions are those of Theorem 1. In addition let ϕ be a linear functionnal of the increments of X': there exist two bounded and continuous functions u and r such that COTTRELL et al.: LARGE DEVIATIONS AND RARE EVENTS

$$\phi(X^{\epsilon}) = \sum_{t \in [0, T], t \in \epsilon \mathbb{N}} \left[\left(u(X^{\epsilon}(t)) \left[X^{\epsilon}(t+\epsilon) - X^{\epsilon}(t) \right] + \epsilon r(X^{\epsilon}(t)) \right] \\ = \int_{0}^{T} u(X^{\epsilon}(t)) dX^{\epsilon}(t) + \int_{0}^{T} r(X^{\epsilon}(t)) dt.$$

Remark: Here ϕ replaces

$$\left\{\sum_{t \in [0,T]} \left[v_{X^{\epsilon}(t)} \left[X^{\epsilon}(t+\epsilon) - X^{\epsilon}(t) \right] - \epsilon l_{X^{\epsilon}(t)}(v_{X^{\epsilon}(t)}) \right] \right\}$$
$$= \epsilon \log \left[\frac{dP^{\epsilon}}{d\tilde{P}^{\epsilon}}(X^{\epsilon}) \right]$$

or some other functional of this kind.

Let B be a measurable set in Ω , satisfying

$$S(B) = \inf \{ I(\varphi) - \phi(\varphi) | \varphi \in \dot{B} \cap \mathcal{C}_T \}$$
$$= \inf \{ I(\varphi) - \phi(\varphi) | \varphi \in \overline{B} \cap \mathcal{C}_T \}.$$

Then

$$\lim_{\epsilon \to 0} -\epsilon \log \int_{B} \exp\{\phi(\omega)/\epsilon\} dP^{\epsilon}(\omega) = S(B).$$

The proof can be found in [12]. We can now carry out the proof of Theorem 2.

Proof of Theorem 2: (See Section II for the notations.) Let P^* be the new probability defined by the mapping $x \mapsto v_x$, bounded and continuous. We denote $X^{\epsilon}(t), X^{*\epsilon}(t)$ the processes with distributions P^{ϵ} and $P^{*\epsilon}$.

As $\epsilon \rightarrow 0$, we evaluate

$$\log \int_{\mathcal{A}} \left(\frac{dP^{\epsilon}}{dP^{\epsilon\epsilon}}\right)^2 dp^{\epsilon\epsilon} = \log \int_{\mathcal{A}} \frac{dp^{\epsilon}}{dP^{\epsilon\epsilon}} dP^{\epsilon}.$$

We apply Theorem 1 bis to the functional

$$\phi(\omega) = \epsilon \log \left(\frac{dP^{\epsilon}}{dP^{+\epsilon}}(\omega) \right)$$

with

$$\phi(\omega) = \sum_{\substack{t \in \epsilon \\ t \in [0, T]}} \left(v_{\omega(t)} \left[\omega(t + \epsilon) - \omega(t) \right] - \epsilon l_{\omega(t)}(v_{\omega(t)}) \right)$$

If φ is a differentiable path, we set

$$\phi(\varphi) = \int_o^T v_{\varphi(t)} \dot{\varphi}(t) dt - \int_o^T l_{\varphi(t)}(v_{\varphi(t)}) dt.$$

Since A is a measurable set of trajectories, satisfying the conditions of Theorem 1 bis; we have

$$\log \int_{\mathcal{A}} \left(\frac{dP^{\epsilon}}{dP^{+\epsilon}} \right) dP^{\epsilon} \underset{\epsilon \to 0}{\sim} - \frac{1}{\epsilon} \inf_{T, \varphi \in \mathcal{A} \cap \mathcal{C}_{T}} \{ I(\varphi) - \phi(\varphi) \}$$

with

$$I(\varphi) = \int_{o}^{T} h_{\varphi(t)}(\dot{\varphi}(t)) dt.$$

Hence, we get

$$\log \int_{\mathcal{A}} \left(\frac{dP^{\epsilon}}{dP^{\epsilon \epsilon}}\right)^2 dP^{\epsilon \epsilon} \underset{\epsilon \to 0}{\sim} -\frac{1}{\epsilon} \inf_{T, \, \varphi \in \bar{\mathcal{A}} \cap \mathcal{C}_T} \left[\int h_{\varphi}(\dot{\varphi}) \, dt - \int l_{\varphi}(v_{\varphi}) \, dt + \int v_{\varphi} \dot{\varphi} \, dt \right]$$

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-28, NO. 9, SEPTEMBER 1983

Fig. 10.

We put

$$J_{v}(A) = \inf_{T, \varphi \in \overline{A} \cap \mathcal{C}_{T}} \left[\int h_{\varphi}(\dot{\varphi}) dt - \int l_{\varphi}(v_{\varphi}) dt + \int v_{\varphi} \dot{\varphi} dt \right]$$

and we seek the function $x \to v_x$, which minimizes $J_v(\varphi)$. We have

$$J_{v}(\varphi) = \inf_{\varphi \in \overline{\mathcal{A}} \cap \mathcal{C}} \int_{x_{\sigma}}^{a} \left(\frac{h_{\varphi}(\dot{\varphi}) - l_{\varphi}(v_{\varphi})}{\dot{\varphi}} + v_{\varphi} \right) d\varphi.$$

Let $x = \varphi(t)$ be fixed, then

$$U(x) = \inf_{u} \left[\frac{h_x(u) - l_x(v_x)}{u} + v_x \right]$$

is achieved for \bar{u} such that $\bar{u}h'_x(\bar{u}) - l_x(v_x) + h_x(\bar{u})$, i.e., $l_x(v_x) =$ $\bar{u}h'_x(\bar{u}) - h_x(\bar{u}).$

Because of the reciprocity of the Cramer transformation, we have

$$l_x(v_x) = \sup (v_x w - h_x(w)) = v_x \overline{w} - h_x(\overline{w})$$

where \overline{w} is unique, and satisfies $h'_x(\overline{w}) = v_x$, hence

$$l_{x}(v_{x}) = h'_{x}(\overline{w})\overline{w} - h_{x}(\overline{w}).$$
(1)

Comparing to the relation (1), we deduce that \bar{u} is the point satisfying $h'_x(\bar{u}) = v^1_x$, where v^1_x is such that $l_x(v^1_x) = -l_x(v_x)$. Generally we obtain two solutions described in Fig. 10.

In each case, α_1 corresponds to $\bar{u} > 0$, and α_2 to $\bar{u} < 0$. Thus the path $\varphi_o \in \mathcal{C}$, which gives the minimum $\mathfrak{T}_o(\varphi)$, satisfies $h'_{\varphi(t)}(\dot{\varphi}(t)) = v_x^1$, v_x^1 being α_1 or α_2 . In all the cases above, we have

$$J_{v}(\varphi_{v}) = \int \left(v_{\varphi_{v}(t)}^{1} + v_{\varphi_{v}(t)} \right) d\varphi_{v}(t)$$

and thus

$$\log \int_{A} \left(\frac{dP^{\epsilon}}{dP^{*\epsilon}} \right) dP^{*\epsilon} \sum_{\epsilon \to 0} - \frac{1}{\epsilon} \int \left(v_{\varphi_{\epsilon}(t)}^{1} + v_{\varphi_{\epsilon}(t)} \right) d\varphi_{\epsilon}(t) d\varphi_$$

But the function l_x is convex, and for each x, $l_x(v_x^1) + l_x(v_x) = 0$ implies that $(v_x^1 + v_x)/2 \le \lambda_x$ with $l_x(\lambda_x) = 0$. So for each x, $v_x^1 + v_x$ is maximum where $v_x^1 = v_x = \lambda_x$. This achieves the proof.

ACKNOWLEDGMENT

The authors would like to thank Pr. Ruget who has suggested this work, and has guided them by stimulating discussions.

References

- N. Abramson, "The throughput of packets broadcasting channels," *IEEE Trans. Commun.*, vol. COM-25, Jan. 1977.
 R. Azencott and G. Ruget, "Mélanges d'équations différentielles, grands écarts à la loi des grands nombres," Z. Wahrschein-lichkeitstheorie verm. Gebiete, vol. 38, pp. 1-54, 1977.
 A. Benveniste, "Outils et modèles mathématiques pour l'analyse des systèmes," presented at the Seminaire des Techniques Probabilistes
- systèmes," presented at the Seminaire des Techniques Probabilistes

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-28, NO. 9, SEPTEMBER 1983

en automatique et télécommunications, Paris, France, Mar. 20-21, 1980, RCP 567, pp. 13-51. A. Benveniste, M. Goursat, and G. Ruget, "Analysis of stochastic

- [4] A. bervenste, M. Coursat, and O. Ruget, "Analysis of stochastic approximation schemes with discontinuous and dependent forcing terms with applications to data communication algorithms," *IEEE Trans. Automat. Contr.*, vol. AC-25, pp. 1042–1058, Dec. 1980. P. Billingsley, *Convergence of Probability Measures*. New York: Within 106
- [5] Wiley, 1968.
- J. Bretagnolle, Astérisque 68, Soc. Math. France, 1979, pp. 33-53. M. Cottrell, J. C. Fort, and G. Malgouyres, "Evénements rares pour l'étude de certains algorithms stochastiques," l'Univ. Paris-Sud, Orsay, France, Prepubl. 80 T 35. D. Dacunha-Castelle, Astérisque 68, Soc. Math. France, 1979, pp. 101
- [8] 19-25.
- 19-25.
 [9] S. Dreyfus, Dynamic Programming and the Calculus of Variation. New York: Academic, 1965.
 [10] G. Fayolle, E. Gelenbe, and J. Labetoulle, "Stability and optimal control of the packet switching broadcast channels," JACM.
 [11] W. Feller, An Introduction to Probability and its Applications, Vol. II. New York: Wiley, 1971.
 [12] J. C. Fort, These de 3ème cycle, Univ. Paris-Sud, Orsay, France, 1965.

- 1980.

- [130] D. Gaver and G. Thompson, Programming and Probability Models in Operations Research. Monterey, CA: Brooks/Cole, 1972.
 [14] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations. New York: Springer-Verlag, 1972.
 [15] H. J. Kushner and Haihuang, "On the weak convergence of a sequence of general stochastic difference equations to a diffusion," Lefschetz Center for Dynam. Syst., Division of Appl. Math., Brown Univ. Providence RI 1979. Univ., Providence, RI, 1979. S. Kullbach, Information Theory and Statistics. New York: Dover,
- [16] 1968.
- S. Lam, "Packet switching in a multiaccess broadcast channel," S.E.A.S., Univ. Calif., 1964.
 D. Ludwig, "Persistence of dynamical system under random per-turbation," SIAM Rev., vol. 17, pp. 605-640, 1975.
 O. Penrose and L. Lebowitz, Fluctuations Phenomena: Studies in Studies in

- O. Penrose and L. Lebowitz, Fluctuations Phenomena: Studies in Statistical Mechanics, J. L. Lebowitz and E. W. Montroll, Eds. Amsterdam, The Netherlands: North-Holland.
 D. Perriot-Mathonna, "Stopping times for cumulative sums of mixtures and approach by the large deviations theory," presented at the 20th CDC, 1981.
 A. D. Ventsel, "Rough limit theorems on large deviations for Markov stochastic processes II," Theory Prob. Appl. (USSR), vol. 21, pp. 499-512, 1976.
 A. D. Ventsel and Freidlin, Fluktnacii v dinamicheskikh sistemakh malykh sluchainykh vozmushchenii. Moscow, USSR: Nauka, 1979.

Marie Cottrell was born in Béthune, France, on December 12, 1943. She was a student at the Ecole Normale Supérieure de Jeunes Filles from 1961 to 1964 and received the Agregation de Mathématiques degree in 1964, and the Pure Mathematics DEA in 1969.

From 1964 to 1967, she was a High School Teacher, and from 1968 to 1969 she was Assistant at the University of Paris, Paris, France, and the Université Paris-Sud, Orsay, France. From 1970 to 1973, she was Professor at the University

of Habana, Cuba. Currently, she is Maitre-Assistante at the Université Paris-Sud. Her research interests include stochastic algorithms, rare events, large deviations, biometry, and biomathematics.

Jean-Claude Fort was born in Lyon, France, in November 1953. He received the "Agregation de Mathématiques" degree in 1976 and the "thèse de 3eme cycle" degree in 1980, from the Uni-versite Paris-Sud, Orsay, France.

He is currently Assistant at the Université de Nancy, Nancy Cedex, France. His present research interests are stochastic population dynamic and stochastic algorithms.

Gérard Malgouyres was born in Toulouse, France, in 1942. He studied in the University of Toulouse, Toulouse, France.

Presently, he is Maitre-Assistant at the Universite Paris-Sud, Orsay, France, where his research includes large deviation and the Ising-model.

14

DEUXIEME PARTIE

ETUDE D'UN PROCESSUS D'AUTO-ORGANISATION

ET

•

UN MODELE STOCHASTIQUE DE LA RETINOTOPIE : UN PROCESSUS D'AUTO-ORGANISATION

Étude d'un processus d'auto-organisation

par

Marie COTTRELL

Université Paris-Sud U. A. 743 C. N. R. S. Mathématiques, Statistique Appliquée Bât. 425 F-91405 Orsay (France) Jean-Claude FORT Université Paris V Laboratoire de Statistiques Médicales 45, rue des Saints-Pères F-75270 Paris Cedex 06 (France)

Résumé. — T. Kohonen a défini en [2] un algorithme pour modéliser le phénomène biologique appelé rétinotopie : il s'agit de l'établissement de relations structurées entre la rétine et le cortex, qui préservent la topologie de la rétine. Il a observé la convergence de l'algorithme par simulation et proposé en [4] un schéma de démonstration avec quelques éléments de preuves. Dans cet article, nous démontrons la convergence vers une distribution stationnaire, dans le cas uni-dimensionnel.

Mots-clés : Chaînes de Markov, distribution invariante, rétinotopie.

ABSTRACT. — T. Kohonen defined in [2] a mathematical algorithm in order to modelize the biological phenomena called retinotopy: that is the self-organized formation of maps between retina and cortex preserving the topological structure of the retina. He observed the convergence of the algorithm by simulation and presented in [4] a sketch of proof. In this paper we prove the convergence toward an invariant distribution in the one dimensional case.

Key-words: Markov chains, invariant distribution, retinotopy.

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques - 0246-0203 Vol. 23/87/01/1/20/\$ 4,00/© Gauthier-Villars

INTRODUCTION

T. Kohonen (1982) a proposé un modèle qui décrit l'établissement de relations structurées entre les cellules du cortex et de la rétine.

Initialement, la liaison rétine-cortex est anarchique. Au cours de la vie embryonnaire, et par l'activité visuelle, s'établit une relation qui conserve la topologie de la rétine.

Le principe de Hebb affirme que la variation de l'efficacité de la liaison synaptique entre un neurone de la rétine et un neurone du cortex est proportionnelle au produit de l'activité pré-synaptique (stimulus) et postsynaptique (excitation d'une cellule du cortex et de ses voisines).

En conséquence, si une cellule de la retine est excitée, elle transmet cette excitation à une zone du cortex et les cellules excitées dans le cortex renforcent alors leur liaison avec la cellule « émettrice ».

Kohonen (dans [2] [3]) a proposé l'algorithme suivant :

La rétine est représentée par le carré $[0, 1]^2$. Le cortex est un réseau discret bidimensionnel : $\{1, ..., n\}^2$. Ses cellules sont notées (i, j). Il est clair qu'une cellule du cortex est contactée par plusieurs cellules de la rétine, et réciproquement.

Par souci de simplification, on suppose qu'une cellule du cortex (i, j) est reliée à une cellule de la rétine notée x_{ij} centre de gravité des cellules de la rétine reliées à (i, j) pondérées par les efficacités synaptiques.

A l'instant *i*, on note $X' = (X_{ij}^{i}, (i, j) \in [1, n]^2)$ l'état des liaisons. Initialement X^0 correspond au tirage de n^2 variables aléatoires uniformes indépendantes.

A chaque instant t = 1, ..., n, on excite la rétine en un point ω^{t+1} (tiré suivant une loi uniforme). On détermine ainsi, presque sûrement, l'indice « appelé » (i_0, j_0) tel que X_{i_0,j_0} soit le point le plus proche de ω^{t+1} .

L'excitation est alors transmise à la cellule (i_0, j_0) du cortex, et à une zone voisine.

Le renforcement des liaisons se traduit par une homothétie de centre ω^{t+1} et de rapport $(1 - \varepsilon)$, ε étant petit, compris entre 0 et 1, qui rapproche de ω^{t+1} et entre elles les liaisons concernées.

Cet algorithme se généralise immédiatement en dimension quelconque finie.

Ce type d'algorithme d'auto-organisation est utilisé pour des applica-

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

tions variées : reconnaissance de la parole, choix de la dimension d'une représentation réduite d'un ensemble de points de \mathbb{R}^n , construction de représentations hiérarchisées (Kohonen (1984) [4]).

Les simulations.

Kohonen dans [2] a exposé les résultats des simulations faites à partir de cet algorithme, pour $(i, j) \in [1, 8]^2$ et 8 voisins. On constate effectivement la convergence de l'algorithme lorsque $t \rightarrow +\infty$, non pas vers une disposition constante, mais vers une configuration aléatoire reproduisant la disposition du carré des (i, j).

FIG. 1. — $(i, j) \in \{1, 2, 3\}^2$, $\varepsilon = 0.05$.

En dimension 1, on obtient une configuration (aléatoire) monotone, application de $\{1, 2, ..., n\}$ dans [0, 1].

Dans cet article, nous démontrons la convergence de la chaîne X' dans le cas unidimensionnel.

1. ALGORITHME DE KOHONEN EN DIMENSION 1

En dimension 1, l'algorithme est défini par :

a) Un scalaire ε compris entre 0 et 1.

b) Une suite $\omega^1, \omega^2, \ldots, \omega^i, \ldots$ de v. a. *iid*, de loi uniforme sur [0, 1].

c) La chaîne de Markov (X') à valeurs dans $[0, 1]^n$, de loi initiale la loi uniforme, vérifiant

 $\begin{aligned} \mathbf{X}_{i}^{t+1} &= \mathbf{X}_{i}^{t} + \epsilon \big(\omega^{t+1} - \mathbf{X}_{i}^{t} \big) \quad \text{pour} \quad i \in \{i_{0} - 1, i_{0}, i_{0} + 1\} \cap [1, n] \\ \mathbf{X}_{i}^{t+1} &= \mathbf{X}_{i}^{t} \quad \text{pour} \quad i \notin \{i_{0} - 1, i_{0}, i_{0} + 1\} \cap [1, n], \end{aligned}$

où $i_0 = i(X^t, \omega^{t+1})$ est défini presque sûrement par

$$\left|\omega^{t+1} - X_{i_0}^t\right| = \inf \left|\omega^{t+1} - X_i^t\right|$$

On note $X^{t+1} = H(X^t, \omega^{t+1})$, on remarque que H est définie sur l'ensemble E où

$$\mathbf{E} = \{ (x, \omega) | x \in [0, 1]^n, \omega \in [0, 1], x_i \neq x_j \quad \forall i \neq j, i(x, \omega) \text{ unique} \}$$

Il est commode de représenter une réalisation de X' par un graphe

Pour bien faire comprendre le fonctionnement de l'algorithme, nous commençons par faire les observations suivantes :

Définition 1.1. — Le nombre d'inversions de X^t est

 $N_{t} = Card \{ i \in \{2, ..., n-1\} / (X_{i+1}^{t} - X_{i}^{t})(X_{i}^{t} - X_{i-1}^{t}) < 0 \}.$

PROPOSITION 1.1. — Le nombre d'inversions du graphe X^t est une fonction décroissante (au sens large) du temps.

Démonstration. — Supposons $X^{t} = (x_1, \ldots, x_n)$ et $X^{t+1} = (x'_1, \ldots, x'_n)$

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

et pour envisager le cas général $i_0 = i(\omega^{t+1}, X^t)$ avec $i_0 \in [4, n-3]$. Posons pour plus de commodité $\omega^{t+1} = z$. Si

$$S'(i_0 - 1, i_0, i_0 + 1) = Signe(x_{i_0} - x_{i_0-1})(x_{i_0+1} - x_{i_0})$$

il est bien clair que $S^{i+1}(i_0 - 1, i_0, i_0 + 1) = S^i(i_0 - 1, i_0, i_0 + 1)$.

Le nombre des inversions n'est jamais modifié en i_0 . Donc seules nous intéressent les inversions possibles en $i_0 - 2$, $i_0 - 1$ (ou $i_0 + 2$, $i_0 + 1$, ce qui se traite de la même manière).

En tenant compte des symétries, seuls 4 cas se présentent :

FIG. 3. — Pas d'inversion en $i_0 - 1$.

Dans tous les cas $x'_{i_0-3} = x_{i_0-3}$ et $x'_{i_0-2} = x_{i_0-2}$.

 \bigcirc 1 et 2 :

 $x'_{i_0-2} - x'_{i_0-1} = (x_{i_0-2} - x_{i_0-1}) - \varepsilon(z - x_{i_0-1})$ reste > 0, car dans ce cas $x_{i_0-1} > z$.

Donc $N^{t+1} = N^t$.

⊙ 3 et 4 :

a) Si $x_{i_0-1} - x_{i_0-2} < \epsilon(x_{i_0-1} - z)$ alors $x'_{i_0-2} - x'_{i_0-1} > 0$, alors dans le cas 3, $S^{t+1}(i_0 - 3, i_0 - 2, i_0 - 1) < 0$ mais $S^{t+1}(i_0 - 2, i_0 - 1, i_0) > 0$ donc $N^{t+1} = N^t$: la pointe se déplace de $i_0 - 1$ à $i_0 - 2$.

Dans le cas 4, $S^{t+1}(i_0 - 3, i_0 - 2, i_0 - 1) > 0$ et également $S^{t+1}(i_0 - 2, i_0 - 1, i_0) > 0$ donc $N^{t+1} = N^t - 2$: 2 pointes s'effacent simultanément.

b) Si $x_{i_0-1} - x_{i_0-2} \ge \varepsilon(x_{i_0-1} - z)$ comme précédemment $N^{t+1} = N^t$.

Les cas particuliers $i_0 = 1, 2, 3, n - 2, n - 1, n$ se traitent de la même manière avec cependant la possibilité d'avoir $N^{t+1} = N^t - 1$: une pointe « tombe » au bord du graphe.

La fonction N^t n'est pas strictement décroissante et de ce fait ne peut pas être utilisée directement comme fonction de Lyapounov associée au problème.

Toutefois on en déduit que l'ensemble des graphes strictement mono-

FIG. 4. — Une inversion en $i_0 - 1$.

tones est absorbant pour X'. Il est constitué de deux classes absorbantes qui ne communiquent pas : A, les graphes strictement croissants, A', les graphes strictement décroissants.

Dans la suite, nous démontrons deux résultats essentiels.

Théorème 1.1. — Soit $\tau_{A \cup A'}$ le temps d'entrée dans $A \cup A'$. Soit \mathbb{P}_x la loi de la chaîne de Markov X', partant de l'état x à coordonnées toutes distinctes, alors

$$\mathbb{P}_{\mathbf{x}}(\tau_{\mathbf{A}\cup\mathbf{A}'}<+\infty)=1.$$

La démonstration de ce théorème fait l'objet du §2.

THÉORÈME 1.2. — Conditionnellement à l'entrée dans A (resp. A'), la chaîne (X') converge en loi vers une distribution stationnaire unique $*\pi$ qui possède une partie absolument continue par rapport à la mesure de Lebesgue.

Ce résultat est démontré au § 3.

Le §4 est consacré à quelques propriétés complémentaires.

2. DÉMONSTRATION DU THÉORÈME 1.1. (MISE EN ORDRE)

Tout d'abord, on peut mettre en évidence une conséquence de la proposition 1.1 :

LEMME 2.1. — Si les deux inégalités suivantes sont réalisées

$$\begin{aligned} X_{i_0}^t < X_{i_0-2}^t < X_{i_0-1}^t \\ X_{i_0-1}^t - X_{i_0-2}^t < \varepsilon (X_{i_0-1}^t - X_{i_0}^t) \end{aligned}$$

alors un tirage de ω^{t+1} très proche de $X_{i_0}^t$ réordonne le triplet dans l'ordre décroissant.

On a
$$A = \{ x = (x_1, ..., x_n)/0 < x_1 < ... < x_n < 1 \}$$

 $A' = \{ x = (x_1, ..., x_n)/0 < x_n < ... < x_1 < 1 \}$

On note $x_0 = 0$, $x_{n+1} = 1$.

Le théorème 1.1 est un corollaire immédiat du résultat suivant.

THÉORÈME 2.1. — Soit $\tau_{A\cup A'}$ le temps d'entrée dans $A \cup A'$. Il existe $T < +\infty$ et $\alpha(n, \varepsilon) > 0$ tels que

 $\forall x^{0} \in [0, 1]^{n}, \ a \ coordonn \ es \ toutes \ distinctes \qquad \mathbb{P}_{x^{0}}(\tau_{A \cup A'} \leqslant T) \geqslant \alpha(n, \varepsilon).$

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

Nous décomposons la preuve du Théorème 2.1 en deux lemmes dans les démonstrations desquels nous laisserons quelques détails techniques au lecteur.

DÉFINITION 2.1. — On dit que $x \in [0, 1]^n$ contient une (k, η) chaîne de début p et de fin q si p < q, q - p + 1 = k, et $\eta > 0$ avec

i)
$$x_p < x_{p+1} < ... < x_q$$
 (1)
ou $x_p > x_{p+1} > ... > x_q$ (2)
ii) $\inf \{ |x_{i+1} - x_i| / i = p, p+1, ..., q-1 \} \ge \eta$
iii) $\forall j = 1, ..., p-1, q+1, ..., \eta$
 $x_j < x_p - \eta$ ou $x_j > x_q + \eta$ dans le cas (1)
 $x_j > x_p + \eta$ ou $x_j < x_q - \eta$ dans le cas (2)

 η est le module de la (k, η) chaîne.

En notant B_{k, η} l'ensemble des x contenant une (k, η) chaîne, il est clair que

$$\mathbf{A}\cup\mathbf{A}'=\bigcup_{\eta>0}\mathbf{B}_{n,\eta}.$$

Soit $\tau_{\mathbf{B}_{k,\eta}}$ le temps d'entrée dans $\mathbf{B}_{k,\eta}$.

LEMME 2.1. — Construction d'une 3-chaîne. — Il existe $T_3 < +\infty$, $\eta > 0$ et $\alpha(\varepsilon, n)$ tels que quel que soit x de $[0, 1]^n$ à coordonnées toutes distinctes, $\mathbb{P}_{x_0}(\tau_{B_{3,n}} \leq T_3) \ge \alpha(\varepsilon, n) > 0$.

Démonstration. — a) Soit $x^0 = (x_1^0, \ldots, x_n^0)$ un point quelconque de $[0, 1]^n$, à coordonnées toutes distinctes. Il existe nécessairement un couple de points écartés de plus de 1/n.

On peut trouver i_0 , $p \neq i_0 - 1$ et $i_0 + 1$, $q \neq i_0 - 1$, $i_0 + 1$ tels que

$$x_{i_0}^0 - x_p^0 \ge \frac{1}{n}$$

 x_p^0 est le point le plus proche sur la gauche de x_{i_0} , avec $p \neq i_0 \pm 1$. x_q^0 est le point le plus proche sur la droite de x_{i_0} , avec $q \neq i_0 \pm 1$. On note $y = \frac{1}{2}(x_p^0 + x_{i_0}^0)$.

Soit T un entier > 0. Pour α et β positifs tels que

$$\beta(1-(1-\varepsilon)^{\mathrm{T}}) < \alpha < \beta < \frac{(1-\varepsilon)^{\mathrm{T}}}{2n}$$

et si $\omega^1, \ldots, \omega^T$ appartiennent à] $y + \alpha, y + \beta$ [, on a pour tout $t = 1, \ldots, T$,

i)
$$X_{i_0}^t > (1 - \varepsilon)^T x_{i_0}^0 + (1 - (1 - \varepsilon)^T) y$$

et comme

8

$$X_{i_0}^t > (1 - \varepsilon)^T \left(\frac{x_{i_0}^0 - x_p^0}{2} \right) + y > \beta + y$$

et de même que

$$\frac{1}{2}(X_{i_0}^t + X_p^t) < (1 - \varepsilon)^{\mathrm{T}}y + (1 - (1 - \varepsilon)^{\mathrm{T}})(y + \beta)$$

(car le déplacement du point X_{i_0} est maximum pour $\omega^t = y + \alpha$), on a

$$\frac{1}{2}(\mathbf{X}_{i_0}^t + \mathbf{X}_p^0) < y + (1 - (1 - \varepsilon)^{\mathrm{T}})\beta < y + \alpha$$

et par conséquent

ii)
$$i(X^{t-1}, \omega^t) = i_0 \text{ pour } t = 1, ..., T$$
.

Après T tirages dans $]y + \alpha, y + \beta$ [on a :

iii)
$$\sup \left(\left| X_{i_0}^{\mathsf{T}} - X_{i_0-1}^{\mathsf{T}} \right|, \left| X_{i_0}^{\mathsf{T}} - X_{i_0+1}^{\mathsf{T}} \right| \right) \leq (1-\varepsilon)^{\mathsf{T}}$$

iv)
$$X_{i_0}^{\mathsf{T}} \in \left] y + \beta, \ y + \beta + (1-\varepsilon)^{\mathsf{T}} \right[.$$

D'où
$$\begin{cases} X_{i_0}^{T}, X_{i_0-1}^{T}, X_{i_0+1}^{T} \in] y + \beta - (1-\varepsilon)^{T}, y + \beta + 2(1-\varepsilon)^{T} [\\ et \quad \forall j \neq i_0, i_0 - 1, i_0 + 1, X_j^{T} = x_j^{0}. \end{cases}$$

La probabilité de cet événement est $\ge (\beta - \alpha)^{T}$. Au temps T, on se trouve donc dans l'une des 6 configurations suivantes :

b) Avec une probabilité minorée, on peut ramener les situations (3) et (5) à la situation (1) (resp. (4) et (6) à (2)), au temps T + 1 (en choisissant T convenablement).

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

Prenons par exemple le cas de la situation (3).

Si l'on choisit $\omega^{T+1} \in]u + \alpha, u + \beta [$ avec $u = \frac{1}{2}(x_p^0 + y)$, l'indice « appelé » est $i_0 - 1$ et X_{i_0} est déplacé.

On peut alors appliquer le lemme 2.1 en imposant $4n(1 - \varepsilon)^T \le \varepsilon$, et on est ramené à la situation (1).

Pour les calculs qui suivent, on prend en réalité T défini par

$$15n(1-\varepsilon)^{\mathrm{T}} \leq \varepsilon < 15n(1-\varepsilon)^{\mathrm{T}-1}$$

Au temps T + 1, on se retrouve donc dans l'un des cas (1) ou (2). On suppose dans la suite qu'il s'agit du cas (1).

c) Module d'espacement de la 3-chaîne.

On a au temps T + 1

$$u = \frac{1}{2} (x_p^0 + y) < X_{i_0-1}^{T+1} < X_{i_0}^{T+1} < X_{i_0+1}^{T+1} < \frac{1}{2} (y + x_{i_0}^0) = v,$$

avec $v - u \ge \frac{1}{2n}$ et $X_{i_0}^{T+1} - X_{i_0-1}^{T+1} \ge \frac{\varepsilon}{5n}$.

Alors on vérifie qu'il existe a > 0 indépendant de x^0 , tel que si $\omega^{T+2} \in]u, u + a [$ et $\omega^{T+3} \in]v - a, v [$, on obtient au temps T + 3, une 3-chaîne $(i_0 - 1, i_0, i_0 + 1)$ de module d'espacement indépendant de x^0 . \Box

LEMME 2.2. — Pour $k \ge 3$, il existe une fonction h continue de \mathbb{R}^+ dans \mathbb{R}^+ , vérifiant h(0) = 0, un entier $T_{k+1} > 0$, et $\alpha_{k+1}(n, \varepsilon, \eta) > 0$ tels que

$$\forall x^0 \in \mathbf{B}_{k,\eta}, \quad \mathbb{P}_{x^0}(\tau_{\mathbf{B}_{k+1,h(\eta)}} \leq \mathbf{T}_{k+1}) \geq \alpha_{k+1}(n,\varepsilon,\eta)$$

Ce lemme donne une minoration uniforme de la probabilité de passer d'une k-chaîne ordonnée à une k + 1-chaîne, en conservant un module d'espacement pouvant être différent, mais que l'on sait calculer.

Démonstration. — Il n'y a rien à démontrer si $n \leq 3$. On se borne au cas d'une chaîne croissante, lorsque n > 3.

On cherche à déterminer un β non nul, tel que si $\omega^t \in]x_q^0, x_q^0 + \beta[$ pour tout *t* moindre que T, on ait $i(x^{t-1}, \omega t) = q$, de manière à « attirer

au plus vite x_{q+1} » et constituer une (k + 1) chaîne de module $h(\eta)$ calculable, cela en majorant le temps T nécessaire.

So it T tel que $(1-\varepsilon)^{\mathrm{T}} \leq \frac{\eta}{2} < (1-\varepsilon)^{\mathrm{T}-1}$ et $\beta = \inf\left\{\frac{\eta}{2}(1-\varepsilon)^{\mathrm{T}}, \frac{\eta}{2} - \frac{\eta^{2}}{2}(1-\varepsilon)\right\}$.

Alors on voit, par récurrence, que si pour $t \leq T$, $x_q^0 < \omega^t < x_q^0 + \beta$, on a pour tout t = 1, ..., T,

$$x_q^0 < X_q^t < x_q^0 + \beta$$

$$i(X^{t-1},\omega^t)=q$$

et que X' contient une $(k + 1, h(\eta))$ chaîne de début p et de fin q + 1, avec $h(\eta) \frac{\eta^2}{2}(1 - \varepsilon)$. D'où le résultat avec $T_{k+1} = T$ et $\alpha_{k+1}(n, \varepsilon, \eta) = \beta^T$.

On traite le cas symétrique $x_{p-1}^0 < x_p^0$ de la même façon. Reste donc le

$$2^e \ cas$$
 : $x_{q+1}^0 < x_p^0$ et $x_{p-1}^0 > x_q^0$

a) Soit $a = \frac{\varepsilon^2 \eta}{2(1+\varepsilon)}$, T défini par $(1-\varepsilon)^T \le a < (1-\varepsilon)^{T-1}$, et $\beta \le \frac{\eta}{2}(1-\varepsilon)^T$. Alors si pour t = 1, ..., T, $\omega' \in]x_q^0 - \beta, x_q^0[$, on a

i) $i(X^{t-1}, \omega^{t}) = q$ pour t = 1, ..., T, et ii) $X_{q}^{T} - X_{q+1}^{T} < a$. b) En choisissant $\omega^{T+1} \in \left[x_{q-2}^{0} - \frac{\eta}{2}, x_{q-2}^{0} \right]$, on a i) $i(X^{T}, \omega^{T+1}) = q - 2$ et ii) $X_{q-1}^{T+1} < X_{q}^{T+1} - \frac{\varepsilon \eta}{\varepsilon + 1} < x_{q}^{0} - a$.

c) Enfin pour $\omega^{T+2} \in \left[X_{q-1}^{T+1} - \frac{(1-\varepsilon)\eta}{2}, X_{q-1}^{T+1} \right]$ on a $i(X^{T+1}, \omega^{T+2}) = q-1$

et on obtient alors une (k + 1) chaîne de début p et de fin q + 1. On peut vérifier que son module d'espacement est minoré par $\frac{(1-\varepsilon)^2 \varepsilon^2 \eta^2}{2(1+\varepsilon)}$.

De ces deux lemmes, découlent par récurrence immédiate le théorème 2.1 et son corollaire le théorème 1.1.

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

3. DÉMONSTRATION DU THÉORÈME 1.2. (EXISTENCE D'UNE DISTRIBUTION STATIONNAIRE)

Nous étudions l'existence d'une distribution stationnaire sur A (resp. sur A'). Pour cela, nous montrons que la chaîne est Doeblin [1].

Nous pouvons déjà remarquer que la transition $\mathbb{P}(.,.)$ de \mathbb{R}^n dans \mathbb{R}^n possède un support de dimension 1 et est donc singulière par rapport à la mesure de Lebesgue. La plus petite itérée de \mathbb{P} susceptible de posséder une partie absolument continue par rapport à la mesure de Lebesgue est donc \mathbb{P}^n , nous allons voir que c'est effectivement le cas.

La démonstration est faite pour l'ensemble absorbant A.

Nous démontrons tout d'abord le

THÉORÈME 3.1. — Pour tout x de A, il existe un borélien C_x , deux réels strictement positifs a et δ tels que

- i) C_x soit de mesure de Lebesgue strictement positive;
- ii) Uniformément sur le voisinage $\prod_{i=1}^{n} \left[x_i \frac{a}{2}, x_i + \frac{a}{2} \right]$ on ait :

$$\mathbb{P}^{n}(\xi, d\zeta) \geq \delta \mathbb{1}_{C_{x}}(\zeta) d\zeta.$$

Bien entendu C, a, δ dépendent aussi de *n* et du rapport d'homothétie $1 - \varepsilon$.

Démonstration. — Soit $x \in A$. Si $X^0 = x$, nous construisons une suite d'intervalles I_1, I_2, \ldots, I_n telle que

 $(\forall \omega^j \in \mathbf{I}_j) \ i(\mathbf{X}^{j-1}, \omega^j) = j \ \mathrm{si} \ n \equiv 0 \ \mathrm{ou} \ 1 \ \mathrm{modulo} \ 3.$

 $(\forall \omega^j \in \mathbf{I}_j) \ i(\mathbf{X}^{j-1}, \omega^j) = j+1 \ \text{et} \ i(\mathbf{X}^{n-1}, \omega^n) = 1 \ \text{si} \ n \equiv 2 \ \text{modulo} \ 3.$

1) Supposons une telle suite d'intervalles construite. On a $X^n = H(..., H(H(x, \omega^1), \omega^2)..., \omega^n)$ (notations du § 1).

a) Si $n \equiv 0$ ou 1 modulo 3, en notation matricielle :

$$X^{n} = \operatorname{diag} \begin{bmatrix} (1-\varepsilon)^{2} \\ (1-\varepsilon)^{3} \\ \vdots \\ (1-\varepsilon)^{3} \\ (1-\varepsilon)^{2} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \end{bmatrix} + D_{n} \begin{bmatrix} \omega^{1} \\ \omega^{2} \\ \vdots \\ \omega^{n-1} \\ \omega^{n} \end{bmatrix} = C_{n}x + D_{n}\omega$$

et on vérifie det $D_n \neq 0$.

b) Si $n \equiv 2 \mod 3$:

$$X^{n} = \operatorname{diag} \begin{bmatrix} (1-\varepsilon)^{2} \\ (1-\varepsilon)^{3} \\ \vdots \\ (1-\varepsilon)^{3} \\ (1-\varepsilon)^{2} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \end{bmatrix} + D_{n} \begin{bmatrix} \omega^{n} \\ \omega^{1} \\ \vdots \\ \omega^{n-1} \end{bmatrix} = C_{n}x + D_{n}\omega$$

où

et là encore Det $D_n \neq 0$.

Soit \mathcal{D}_n l'opérateur associé à D_n et \mathcal{C}_n l'opérateur associé à Cⁿ.

 $(\forall (\omega^1, \ldots, \omega^n) \in \mathbf{I}_1 \times \ldots \times \mathbf{I}_n) \quad (\forall \mathbf{X}^0 \in \mathbf{V}_x) \left| \mathbf{X}_j^n - \mathbf{X}_j^{n,x} \right| \leq (1-\varepsilon)^2 \left| \mathbf{X}_j^0 - x_j \right|$

où $X^{n,x}$ est la position à l'instant *n* partant précisément de x et V_x un voisinage de x.

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

Si donc $V_x \subset J_1 \times \ldots \times J_n$ où les J_k sont des intervalles centrés sur x_k inclus strictement dans I_k , l'ensemble

$$\mathbf{C}_{x} = \bigcap_{\mathbf{X}^{0} \in \mathbf{V}_{x}} \left[\mathscr{D}_{n} (\mathbf{I}_{1} \times \mathbf{I}_{2} \ldots \times \mathbf{I}_{n}) + \mathscr{C}_{n} \mathbf{X}^{0} \right]$$

est de mesure de Lebesgue non nulle et on a :

$$(\forall X^0 \in V_x)$$
 $\mathbb{P}^n(X^0, d\zeta) \ge \frac{1}{|\det D_n|} \mathbf{1}_{C_x}(\zeta) d\zeta.$

2) Il reste donc à prouver l'existence des I_j . Il est facile de montrer que la restriction de la fonction H à l'ensemble $(A \times [0, 1]) \cap E$ (resp. $(A' \times [0, 1] \cap E)$ est continue.

On en déduit le lemme suivant (la norme choisie est $||x|| = \sup |x_i|$).

LEMME 3.1. — Soit z_1, \ldots, z_l , appartenant à [0, 1]. Soit $x \in A$. On pose $x^0 = x, x^j = H(x^{j-1}, z_j)$ pour $j = 1, \ldots, l$. Pour tout $\gamma > 0$, il existe $\beta > 0$, tel que $||X^0 - x^0|| < \beta$ et $\omega^k \in]z_k - \beta, z_k + \beta$ [pour $k = 1, \ldots, l$, impliquent $||X^k - x^k|| < \gamma$ pour $k = 1, \ldots, l$ et on a donc

$$||X^0 - x^0|| < \beta \Rightarrow \mathbb{P}_{X^0}(||X^k - x^k|| < \gamma, k = 1, \ldots, l) \ge (2\beta)^l.$$

Preuve. — Soit $\gamma > 0$. La continuité de H sur (A × [0, 1]) \cap E entraîne que l'on peut choisir $\beta > 0$ tel que $||X^0 - x^0|| < \beta$ et $|\omega^1 - z| < \beta \Rightarrow ||X^1 - x^1|| < \gamma$, c'est-à-dire que

$$\|X^0 - x^0\| < \beta \Rightarrow \mathbb{P}_{\mathbf{X}^0}(\|X^1 - x^1\| < \gamma) > 2\beta.$$

Par récurrence, en appliquant l fois la propriété de Markov, on obtient le résultat. \Box

Ce lemme étant démontré, on construit les intervalles I_1, \ldots, I_n , en se bornant au cas $n \neq 2$ modulo 3, la démonstration étant similaire pour $n \equiv 2$ modulo 3.

On sait que $x = (x_1, \ldots, x_n) \in A$.

On définit par récurrence

$$x^{0} = x,$$
 $x^{j} = H(x^{j-1}, x^{j-1}_{j})$ et $z_{j} = x^{j-1}_{j},$

pour $j = 1, \ldots, n$, de manière à ce que $i(x^{j-1}, z_j) = j$.

Alors d'après le lemme 3.1, on sait que pour tout $\gamma > 0$, il existe $\beta > 0$ tel que

$$||X^{0} - x^{0}|| < \gamma \implies \mathbb{P}_{X^{0}}(||X^{j} - x^{j}|| < \gamma, j = 1, \ldots, n) \ge (2\beta)^{n}.$$

Il est alors clair que si γ est suffisamment petit, les intervalles $I_j =]z_j - \beta, z_j + \beta [$ conviennent. D'où le théorème 3.1, avec $a = 2\gamma$ ne dépendant que de ε , n, x, et $\delta = \frac{1}{|\operatorname{Det} D_n|}$.

Pour compléter ce premier résultat, nous allons prouver le

THÉORÈME 3.2. — $(\forall \varepsilon \in]0, 1 [)$, il existe $x^{\varepsilon} \in A$, a_0 réel > 0, tels que pour tout voisinage $V_{x^{\varepsilon}}$ de x^{ε} de largeur $a < a_0$, il existe $T(n, \varepsilon, a)$ et $\gamma(n, \varepsilon, a)$ tels que :

 $(\forall x \in A)$ $\mathbb{P}_x(\tau_{\mathbf{V}_x^{\varepsilon}} = \mathbf{T}(n, \varepsilon, a)) \ge \gamma(n, \varepsilon, a) > 0.$

Nous commençons par démontrer deux lemmes.

LEMME 3.2. — Pour tout a > 0, il existe un temps $T_0(n, \varepsilon, a)$ et une probabilité $\alpha(n, \varepsilon, a)$ tels que si $E_1 = \prod_{i=1}^n [1 - a, 1]$ $(\forall x \in A) \quad \mathbb{P}_x \{ \tau_{E_1} \leq T_0(n, \varepsilon, a) \} \ge \alpha(n, \varepsilon, a) > 0.$ Preuve. — Soit $z_1 = 1, z_2 = 1 - \frac{a}{n}, z_3 = 1 - \frac{2a}{n}, \dots, z_{n-1} = 1 - \frac{(n-2)a}{n}.$ Soit $x \in A$, soit T tel que : $(1 - \varepsilon)^T \le \frac{d}{4n} < (1 - \varepsilon)^{T-1}.$ On prend : $\omega^1, \dots, \omega^{T_1(x)}$ dans $[z_1, z_1 + \gamma]$ $\omega^{T_1(x)}, \dots, \omega^{T_1(x) + T_2(x)}$ dans $[z_2, z_2 + \gamma]$ \vdots $\omega^{T_1(x) + \dots + T_{n-2}(x)}, \dots, \omega^{T_1(x) + T_2(x) + \dots + T_{n-1}(x)}$ dans $[z_{n-1}, z_{n-1} + \gamma]$ où $\gamma = \frac{a}{2n} \left[\frac{(1 - \varepsilon)^T}{1 - (1 - \varepsilon)^T} \right]$

et $T_1(x)$ est le premier instant t où partant de x, X_n^t et $X_{n-1}^t > 1 - \frac{a}{4n}$

 $T_1(x) + \ldots + T_i(x)$ est le premier instant t où partant de x,

$$X_{n-i}^{t} > 1 - \frac{i-1}{n} - \frac{a}{4n}$$

Avec un tel choix des ω^t on a :

 $t \in [0, T_1(x)], i(X^{t-1}, \omega^t) = n \quad (\text{on a attiré } n \text{ et } n-1)$ $t \in [T_1(x) + \ldots + T_{k-1}(x), T_1(x) + \ldots + T_k(x)], i(X^{t-1}, \omega^t) = n - k$

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

 $T_k(x) \leq T$ pour $k = 1, \ldots, n-1$.

Par conséquent : $\mathbb{P}_{x}(\tau_{E_{1}} \leq (n-1)T) \geq \gamma^{(n-1)T}$ d'où $T_{0}(n, \varepsilon, a) = (n-1)T$. \Box

LEMME 3.3 (Lemme d'attente). — Soit $x \in A$. Supposons $X_1^0 \in [x_1, x_1 + a]$, a > 0 et $t_0 \in \mathbb{N}^*$. Il existe alors β et γ , $\beta > \gamma > 0$ tels que ($\forall t \leq t_0$), $\omega^t \in [x_1 - \beta, x_1 - \gamma]$.

On a

et

- i) $i(\mathbf{X}^{t}, \omega^{t+1}) = 1, \quad \forall t \leq t_0$
- ii) $\mathbf{X}_1^t \in [x_1 a, x_1 + a], \quad \forall t \leq t_0$

Preuve. — On a $X_1^{t+1} = (1 - \varepsilon)X_1^t + \varepsilon \omega^{t+1} \ge (1 - \varepsilon)X_1^t + \varepsilon(x_1 - \beta)$, par conséquent $X_1^{t+1} - (x_1 - \gamma) \ge (1 - \varepsilon)(X_1^t - (x_1 - \gamma)) - \varepsilon(\beta - \gamma)$, en posant $u_t = X_1^t - (x_1 - \gamma)$ on obtient

$$u_t \ge (1-\varepsilon)^t [u_0 + \beta - \gamma] - (\beta - \gamma)$$
 et $u_0 \ge \gamma$.

Il suffit donc que $\frac{\beta}{\gamma} \ge 1 + (1 - \varepsilon)^{t_0}$ pour que $u_{t_0} \ge 0$ et pour assurer

 $X_1^t \ge x_1 - a$. On choisit donc $\beta \le a$ et $\gamma \le (1 + (1 - \varepsilon))^{-t_0}\beta$. Ce lemme permet de remplacer l'inégalité du Lemme 3.2 par une égalité

puisque l'on peut prendre patience jusqu'au temps $T(n, \varepsilon, a)$ en tirant le point n° 1, mais tout en restant dans un voisinage qu'on s'est fixé à l'avance. Une fois ces deux lemmes acquis, la démonstration comprend deux

étapes.

Démonstration (Théorème 3.2). — 1) La première étape consiste à placer X_1^i et X_2^i , X_3^i et X_4^i , X_5^i , ..., X_n^i respectivement dans des voisinages de points y_1 , y_4 , y_5 , ..., y_n ($y_1 < y_4 < ... < y_n$) fixés, de demi-largeur a, en un temps fixé fini, avec une probabilité minorée. On procède de la manière suivante :

On applique le lemme 3.2 pour attirer tous les points « en 1 ».

On applique ce même lemme (ou son frère jumeau) pour attirer tous les points en y_n , puis on recommence en prenant pour point d'attraction y_{n-1} en évitant cependant d'attirer X'_n hors du voisinage de y_n . Il suffit de s'arrêter lorsqu'on a fait rentrer X'_{n-1} dans le voisinage de y_{n-1} et ainsi de suite, en laissant à chaque fois X'_i au voisinage de y_i , jusqu'à ce que seuls se trouvent au voisinage de y_4 les points X'_1 , X'_2 , X'_3 , X'_4 . On recommence encore, mais cette fois en laissant sur place X'_3 , X'_4 , ceci en s'arrêtant dès que X'_2 (entraîné par X'_1) est entré dans le voisinage de y_1 .

Le temps nécessaire pour effectuer ces opérations peut être rendu indé-

Vol. 23, nº 1-1987.

pendant du point initial x, en appliquant à chaque fois le lemme 3.3. Notons-le $T_1(n, \varepsilon, a)$.

Nous avons donc la situation suivante, avec une probabilité minorée indépendamment du point initial x:

2) La deuxième étape beaucoup plus courte, consiste à séparer X_1 de X_2 et X_3 de X_4 . Nous commençons par décrire une procédure déterministe : Choisissons z_1 et z_2 tels que :

$$y_1 < z_1 < \frac{(1-\varepsilon)y_1 + \varepsilon z_1 + y_4}{2} < z_2 < y_4$$

Si $X_1^0 = X_2^0 = y_1$ et $X_3^0 = X_4^0 = y_4$, alors si $(\omega^1, \omega^2) = (z^1, z^2)$, on a à l'instant 2 (seuls les quatre premiers points bougent) :

$$\begin{aligned} X_2^2 - X_1^2 &\ge \varepsilon(z_2 - \varepsilon z_1), & idem \text{ pour } X_3^2, X_4^2, \\ X_3^2 - X_2^2 &\ge (1 - \varepsilon)^2 (y_4 - y_1) \end{aligned}$$

et pour *a* assez petit, on applique le lemme 3.1, pour trouver un intervalle où tirer ω^1 et ω^2 tout en préservant les positions obtenues à *a* près.

Ces deux étapes conduisent donc au théorème 3.2 avec :

$$T(n, \varepsilon, a) = T_1(n, \varepsilon, a) + 2,$$

$$x_1^{\varepsilon} = (1 - \varepsilon)y_1 + \varepsilon z_1$$

$$x_2^{\varepsilon} = (1 - \varepsilon)^2 y_1 + \varepsilon (1 - \varepsilon)z_1 + \varepsilon z_2$$

$$x_3^{\varepsilon} = (1 - \varepsilon)^2 y_4 + \varepsilon (1 - \varepsilon)z_1 + \varepsilon z_2$$

$$x_4^{\varepsilon} = (1 - \varepsilon)y_4 + \varepsilon z_2$$

$$x_j = y_j \quad \text{pour} \quad j \ge 5.$$

Le point x^e appartient à A et la probabilité de rentrer dans un voisinage de x^e , de demi-largeur *a* est minorée indépendamment du point initial *x*. On a alors le

THÉORÈME 3.3. — La chaîne (X') restreinte à A (resp. A') est Doeblin pour la mesure de Lebesgue.

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

Preuve. — On a

$$\mathbb{P}^{T(n,\varepsilon,a)+n}(\zeta,d\zeta) \ge \int_{\mathbf{V}_{x^{\varepsilon}}} \mathbb{P}^{T(n,\varepsilon,a)}(\zeta,du) \mathbb{P}^{n}(u,d\zeta)$$

$$\ge \gamma(n,\varepsilon,a) \frac{1}{|\det \mathbf{D}_{n}|} \mathbf{1}_{C_{x^{\varepsilon}}}(\zeta)d\zeta.$$

D'où le théorème 1.2.

4. QUELQUES PROPRIÉTÉS COMPLÉMENTAIRES

Notons ${}^{\epsilon}m = ({}^{\epsilon}m_1, \ldots, {}^{\epsilon}m_n)$ l'espérance de la loi stationnaire ${}^{\epsilon}\pi(.)$.

a) Équations sur les moments de ${}^{\epsilon}\pi(.)$.

So it $x \in A$, $x = (x_1, ..., x_n)$.

En prenant les espérances pour la loi ${}^{\varepsilon}\pi$, on a

 $E(X_{i+2} + X_{i+1} - X_{i-1} - X_{i-2})(X_{i+2} + X_{i+1} + X_{i-1} + X_{i-2} - 4X_i) = 0$ pour $i \neq 1, 2, n - 1, n$.

$$E(X_{j+2} + X_{j+1})(X_{j+2} + X_{j+1} - 4X_j) = 0$$
 pour $j = 1, 2$

 $E(2 - X_{j-1} - X_{j-2})(2 + X_{j-2} + X_{j-1} - 4X_j) = 0 \text{ pour } j = n - 1, n.$

Ces équations portent sur les moments d'ordre 2 de la loi ${}^{e}\pi(.)$ et ne permettent pas de déterminer l'espérance ${}^{e}m$.

Remarque. — Si X⁰ suit la loi stationnaire ${}^{\epsilon}\pi$, on a

$${}^{\varepsilon}m = \mathrm{E}\mathrm{X}^{1} = \mathrm{E}(\mathrm{E}\mathrm{X}^{1}/\mathrm{X}^{0}) = \int d^{\varepsilon}\pi(x)\int yd\mathbb{P}_{x}(y) = \int d^{\varepsilon}\pi(x)h(x).$$

Si h(x) était linéaire en x, h(x) = Hx, on obtiendrait l'espérance ^em par la résolution d'un système linéaire. Ce n'est pas le cas ici.

b) Convergence de l'algorithme lorsque ε dépend du temps.

On impose $X^0 \in A$ et ε dépendant du temps avec les conditions classiques des algorithmes de Robbins-Monro :

$$\varepsilon_t \ge 0$$
; $\sum_{0}^{\infty} \varepsilon_t = +\infty$; $\sum_{0}^{\infty} \varepsilon_t^2 < +\infty$.

(Voir par exemple Métivier [5]). On écrit

$$\mathbf{X}^{t+1} = \mathbf{X}^t + \varepsilon_t \mathbf{V}(\mathbf{X}^t, \omega^{t+1})$$

Vol. 23, nº 1-1987.

avec

$$E(V(X^{t}, \omega^{t+1})/X^{t} = x) = \frac{1}{4}H(x)$$

H(x) = C(x)(Mx - a)

où ($\S4.a$) H(x) s'écrit

avec

On obtient par exemple

$$n = 3 \qquad x^* = \left(\frac{3}{10}, \frac{5}{10}, \frac{7}{10}\right)$$

$$n = 4 \qquad x^* = \left(\frac{5}{20}, \frac{7}{20}, \frac{13}{20}, \frac{15}{20}\right)$$

$$n = 5 \qquad x^* = \left(\frac{2}{10}, \frac{3}{10}, \frac{5}{10}, \frac{7}{10}, \frac{8}{10}\right)$$

$$n = 7 \qquad x^* = (0.15 \quad 0.22 \quad 0.37 \quad 0.5 \quad 0.63 \quad 0.78 \quad 0.85) \text{ etc.}$$

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

La fonction H(x) s'écrit donc

$$H(x) = C(x)M(x - x^*) = B(x)(x - x^*)$$

D'après le théorème de Gerschgorin (cf. [6]), toutes les valeurs propres de la matrice B(x) ont leur partie réelle strictement négatives puisque

 $\sum_{i=1}^{i} |b_{ij}(x)| + b_{ii}(x) \le 0$ quel que soit *i* et que ces valeurs propres sont

différentes de 0 (Kohonen fait cette remarque pour la matrice M dans [3]).

Théorème 4.1. — Supposons
$$\varepsilon_t \ge 0$$
, $\sum_{0}^{\infty} \varepsilon_t = +\infty$, $\sum_{0}^{\infty} \varepsilon_t^2 < +\infty$. Alors

si $X^0 \in A$, le processus X' converge p. s. et dans L^2 vers x^* unique solution de Mx = a. (Un résultat analogue s'obtient si $X^0 \in A'$.)

Démonstration. — Le système différentiel déterministe

$$\frac{dx}{dt} = \mathbf{H}(x)$$

admet la solution $x = x^*$ comme solution uniformément exponentiellement stable au sens large, car toutes les valeurs propres de B(x) ont leur partie réelle strictement négative.

On remarque ensuite que les dérivées premières et secondes de H(x) sont bornées sur A et on conclut à la convergence p. s. et dans L^2 du processus X(t) vers x^* , lorsque $t \to +\infty$ (cf. Nevelson et Khaminski [7], § IV.4.3).

CONCLUSION

Bien que l'algorithme étudié soit simple à définir (et à simuler) quelle que soit la dimension, en démontrer la convergence en dimension 1, a nécessité beaucoup de calculs très spécifiques, et longs à expliciter (§ 2 et 3).

Il nous semble qu'il resterait trois points à vérifier :

— que lorsque ε tend vers 0 comme $\frac{1}{\log t}$, le processus réordonne les points (x_1, \ldots, x_n) . Les minorations de probabilités et les majorations de temps d'attente du §2 permettent d'avancer ce résultat;

-- que les mesures stationnaires (sur A et A') sont absolument continues par rapport à la mesure de Lebesgue;

— que le point x^* (cf. §4.b) est l'espérance de la mesure stationnaire quel que soit ε .

REMERCIEMENTS

Nous remercions chaleureusement J. Bretagnolle pour l'aide qu'il nous a apportée.

RÉFÉRENCES

- [1] J. L. DOOB, Stochastic Processes, Wiley, 1956.
- [2] T. KOHONEN, Self-organized formation of topologically correct feature maps, Biol. Cybern., t. 43, 1982, p. 59 à 69.
- [3] T. KOHONEN, Analysis of a simple self-organizing process, Biol. Cybern., t. 44, 1982, p. 135-140.
- [4] T. KOHONEN, Self-organization and associative memory, Springer-Verlag, 1984.

[5] M. MÉTIVIER, Semi-martingales, de Gruyter, 1982.

[6] A. CODDINGTON et N. LEVINSON, Theory of Ordinary Differential Equations, Mc Graw-Hill, 1955.

- [7] M. B. NEVEL'SON et R. Z. HAS'MINSKII, Stochastic approximation and recursive estimation. A. M. S. Translations, t. 47, 1973.
- [8] G. W. STEWART, Introduction to matrix computations. Academic Press, 1973.

(Manuscrit reçu le 15 janvier 1985)

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

A Stochastic Model of Retinotopy: A Self Organizing Process

M. Cottrell¹ and J. C. Fort²

¹ Université Paris-Sud, UA 743 C.N.R.S., Statistique Appliquée, Bâtiment 425 Mathématique, F-91405 Orsay, France
 ² Université Paris V, Laboratoire de Statistiques Médicales, 45, Rue des Saints Pères, F-75006 Paris, France

Abstract. Following Kohonen and using the Hebb principle, we define a self organizing stochastic process, which is a simple modelization of the retinotopy, i.e. the establishment of well-ordered connexions between the retina and the cortex.

We give some mathematical results about convergence of this process. These results are illustrated by computer simulations.

Introduction

Many papers have been published about the modelization of the retinotopy; i.e. the self-building of a bijective and bicontinuous mapping from the retina to some part of the brain cortex. Some are oriented towards the analysis of theoretical models proposed on biological grounds (Willshaw and Malsburg 1979; Overton and Arbib 1982). Others are further from biological reality but try to highlight some simple mechanisms of self-organization (Kohonen 1982, Erdi and Barna 1984). This paper belongs to the latter category.

Here we construct a stochastic algorithm by combining two points of view: we use the Hebb principle (or one of its possible expressions) together with an algorithm similar to that proposed by Kohonen (1982).

In Sect. I, we present the mathematical formalization of the model.

In Sect. II, we study this model in a simplified case: the one-dimensional case.

In Sect. III, we indicate which results are preserved from the one-dimensional to the two-dimensional case.

The last section is devoted to the description of the behavior of the model when the adaptation parameter decreases with time.

I The Model

Notations. The retina R is modelized by a twodimensional network: $\{0, 1, ..., n+1\}^2$ (resp. in Sect. II an integer interval $\{0, 1, ..., N+1\}$). Its cells are denoted by (i, j) (resp. i).

The relevant part of the cortex C is represented by the square $[0, 1]^2$ (resp. the interval [0, 1]). Its cells are denoted by x.

Each cell (i, j) is mainly related to a cortex cell x_{ij} . However, a density of synaptic weights is present around the cell x_{ij} . We denote this density by $f_{ij}(x)$. That means that there are many connexions from (i, j)to the cells in C, but we essentially consider the center of gravity of these connexions with respect to the synaptic weights. We suppose that $f_{ij}(x) = f(||x - x_{ij}||)$ with f decreasing, positive and f(0) = 1.

If we stimulate the retina, by illuminating the cells of a part σ of R the cells $(x_{ij}, (i, j) \in \sigma)$ are excited and the total postsynaptic activity in a point of C is:

$$\varphi^{\sigma}(x) = \sum_{(i,j)\in\sigma} f_{ij}(x).$$

We enounce the Hebb principle in the form: "The variation of f_{ij} is proportional to the product of the post- and pre-synaptic activities", which is resumed in:

for every $(i, j) \notin \sigma$ f_{ij} does not change

for every $(i, j) \in \sigma$ f_{ij} is changed to $\overline{f_{ij}}$, with

$$\overline{f_{ij}(x)} = \frac{f_{ij}(x) + \varepsilon \varphi^{\sigma}(x) f_{ij}(x_{ij})}{\int \{f_{ij}(x) + \varepsilon \varphi^{\sigma}(x) f_{ij}(x_{ij})\} dx}, \quad (\varepsilon \text{ small}, >0)$$

for which the center of gravity is

$$\overline{x_{ij}} = \frac{x_{ij} + \varepsilon \int x \varphi^{\sigma}(x) dx}{1 + \varepsilon \int \varphi^{\sigma}(x) dx}$$
$$= \frac{1}{1 + \varepsilon |\sigma|} x_{ij} + \frac{\varepsilon}{1 + \varepsilon |\sigma|} \sum_{(k,l) \in \sigma} x_{kl},$$

where $|\sigma|$ is the cardinal of σ .

Thus $\overline{x_{ij}}$ is a weighted average of x_{ij} and the average of $\{x_{k,l}, (k,l) \in \sigma\}$. We naturally choose $\overline{x_{ij}}$ as the new cell in C mainly connected with the retina cell (i, j), after the effect of the stimulation σ .

We note that the global post-synaptic activity of the image in C of the stimulation σ has been increased:

$$\sum_{(i,j),(k,l)\in\sigma}\overline{f_{ij}}(\overline{x_{kl}}) \ge \sum_{(i,j),(k,l)\in\sigma}f_{ij}(x_{kl})$$

However, if the same stimulation σ is iterated successively many times, the points $\{(x_{ij}), (i, j) \in \sigma\}$ become closer and closer. To avoid this effect, we must force the points x_{ij} to occupy all the free place in $[0, 1]^2$. A suitable assumption having this effect is to suppose that the cells of the boundary of R are connected to the corresponding cells of the boundary of C: that means that the boundary relations between R and C are well defined before the process starts, and will not change with time.

We now set this hypothesis in a mathematical algorithm:

Let $X^{t} = (X_{ij}^{t})_{(i,j)\in[0,...,n+1]^{2}}$ [resp. $(X_{i}^{t})_{i\in[0,...,n+1]}$ in the simplified case] denote the positions of the main connexions of the cells (i, j). It is a mapping from R to C.

The initial mapping X^0 , at time t=0, may be random, or deterministic.

The stimulations σ are randomly chosen: a stimulation σ is defined by its center (i, j) and the closest neighbours of (i, j). We study the simplest case: $\sigma(i, j)$ = {(i-1, j), (i, j-1), (i, j), (i+1, j), (i, j+1)} [resp. $\sigma(i)$ = {i-1, i, i+1}].

One can take larger stimulations without modifying the main mathematical results.

Thus stimulations are defined by their centers and we assume that for all $t \ge 1$ they are independent random variables with probability distribution μ given by $(p_{ij})_{(i,j)\in\{1,...,n\}^2}$, $p_{ij} > 0$ (resp. $p_i, p_i > 0$). In the numerical applications we have chosen $p_{ij} = \frac{1}{n^2}$ (resp.

 $p_i = \frac{1}{n}$. Note that (i, j) can't be chosen on the boundary of R.

If at time t the application from R to C is X', at time t+1 one picks at random a stimulation with center (i_0, j_0) , denoted by $\sigma(i_0, j_0)$ giving

$$\begin{aligned} X_{ij}^{t+1} &= X_{ij}^{t} \quad \text{if} \quad (i,j) \notin \sigma(i_{0},j_{0}) \\ X_{ij}^{t+1} &= (1 - |\sigma(i_{0},j_{0})| \cdot \lambda) X_{ij}^{t} + \lambda \left(\sum_{\substack{(i,j) \notin \sigma(i_{0},j_{0}) \\ (i,j) \notin \sigma(i_{0},j_{0})} \right) \\ \text{resp.} \qquad \text{if} \qquad (i,j) \notin \sigma(i_{0},j_{0}) \\ X_{i}^{t+1} &= X_{i}^{t} \quad \text{if} \qquad i \notin \sigma(i_{0}) \end{aligned}$$

$$X_i^{t+1} = (1 - |\sigma(i_0)| \cdot \lambda) X_i^t + \lambda \left(\sum_{i \in \sigma(i_0)} X_i^t\right).$$

Here $|\sigma(i_0, j_0)| = 5$ [resp. $|\sigma(i_0)| = 3$] and we must have $\lambda < \frac{1}{5}$ (resp. $\frac{1}{3}$); λ plays the role of $\frac{\varepsilon}{1 + \varepsilon |\sigma|}$.

The boundary conditions are given by: for every t,

$$\begin{aligned} X_{0,j}^{i} &= \left(\frac{j}{n+1}, 0\right) \quad X_{i,0}^{i} &= \left(0, \frac{i}{n+1}\right) \\ &i, j \in \{0, \dots, n+1\} \\ X_{n+1,j}^{i} &= \left(\frac{j}{n+1}, 1\right) \quad X_{i,n+1}^{i} &= \left(1, \frac{i}{n+1}\right) \end{aligned}$$

(resp. $X_0^t = 0, X_{n+1}^t = 1$).

Disregarding the fixed boundary values the above mechanism is a Markov chain taking its values in $([0, 1]^2)^n$ (resp. $[0, 1]^n$).

Our goal in Sects. II and III is to prove the convergence of this Markov chain to a stationary distribution which establishes the retinotopy. We begin with the one-dimensional case, the simplest. There the retinotopy is equivalent to the convergence of X' toward an increasing mapping from $\{0, 1, ..., n+1\}$ to [0, 1].

II The One-Dimensional Case

The algorithm previously defined in Sect. I, is a Markov chain on [0, 1]^a.

1 Matrix Notation

We denote by I_p the identity matrix. To choose an integer $i_0 \in \{1, ..., n\}$ according to the distribution μ is equivalent to choosing a pair (A_{i_0}, B_{i_0}) , where A_{i_0} is a $n \times n$ -matrix in $M_n[0, 1]$, i.e. with elements in [0, 1] and B_{i_0} a vector in [0, 1]ⁿ, with

$$A_{1} = \begin{pmatrix} 1-2\lambda & \lambda \\ \lambda & 1-2\lambda & 0 \\ \hline 0 & I_{n-2} \end{pmatrix}, \quad B_{1} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix},$$

$$A_{i} = \begin{pmatrix} I_{i-2} & 0 & 0 \\ 1 - 2\lambda & \lambda & \lambda \\ 0 & \lambda & 1 - 2\lambda & \lambda & 0 \\ \lambda & \lambda & 1 - 2\lambda & \\ 0 & 0 & I_{n-i-1} \end{pmatrix}, B_{i} = \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix}$$

for 1 < i < n and

Xip

$$A_{n} = \begin{pmatrix} \frac{I_{n-2}}{2} & 0\\ 0 & \lambda & 1-2\lambda \end{pmatrix}, \quad B_{n} = \begin{pmatrix} 0\\ \vdots\\ 0\\ 0\\ \lambda\\ \lambda \end{pmatrix}.$$

Then we can define a sequence of independent $(Z^t, W^t),$ variables random with range $\{(A_1, B_1), ..., (A_n, B_n)\}$, and distribution $\mu = (p_1, ..., p_n)$ and the process X' can be described by

$$\begin{cases} X^{t+1} = Z^{t+1} X^{t} + W^{t+1} \\ X^{0}. \end{cases}$$

In the following, the matrices and the corresponding linear mappings, in canonical base (e_1, \ldots, e_n) in \mathbb{R}^n , are identified.

2 Order Stability

Proposition 1. Let A be the set of non-decreasing functions from R to C. Then \mathcal{A} is an absorbing set for the process X^t.

Proof.
$$\mathscr{A} = \{x \in [0, 1]^{n/0} \le x_1 \le \dots \le x_n \le 1\}.$$

For i=1,...,n and $x \in \mathcal{A}$, it is easily verified that $A_i x \in \mathcal{A}$. Furthermore, $B_i \in \mathcal{A}$ for every *i*. \Box

3 Weak Convergence of the Process X^t

For $X^0 = x$, we may write

$$X^{t} = Z^{t}Z^{t-1}...Z^{1}x + \sum_{j=1}^{t-1} Z^{t}...Z^{j+1}W^{j} + W^{t},$$

which has the same distribution as

$$Y^{i} = Z^{1}Z^{2}...Z^{i}x + \sum_{j=1}^{t-1} Z^{1}...Z^{j}W^{j+1} + W^{1},$$

since the variables (Z^t, W^t) are *iid*.

We study the behavior of products $Z^1 Z^2 \dots Z^t$ when $t \rightarrow +\infty$.

We first show:

Proposition 2. Let \mathbb{R}^n be endowed with the norm ||x||

$$= \sum_{i=1}^{n} |x_i|, \text{ and } M_n(\mathbb{R}) \text{ with the associated norm for}$$

linear functions $\left(\|A\| = \sup_{x} \frac{\|Ax\|}{\|x\|} \right)$. Then there exists

 $c \in [0, 1[$ such that $||A_1 \dots A_n|| \leq c$.

Proof. We have $||A_i|| = 1$ for i = 2, ..., n-1, so we need some calculations to prove that $||A_1...A_n|| < 1$.

For $i \neq 1$, n and j > i+1 or j < i-1, $A_j e_i = e_i$ and $A e = \lambda e + (1 - 2\lambda)e + \lambda e \dots$

$$A_{1} = A_{1} = A_{1} = A_{1} = A_{2} = A_{2$$

$$A_{i-1}e_i = \lambda e_{i-2} + \lambda e_{i-1} + (1 - 2\lambda)e_i$$

$$A_{i+1}e_i = (1-2\lambda)e_i + \lambda e_{i+1} + \lambda e_{i+2}$$
.

For 1 < i < n - 1,

$$A_2...A_{i+1}e_i = \alpha_1e_1 + f_1$$
 with $\alpha_1 > 0$

and f_1 a positive linear combination of $(e_2, ..., e_{i+2})$. It is easily shown that $\alpha_1 \ge \lambda^{i-1} (1-2\lambda)$ and $||f_1|| \le 1-\alpha_1$.

Thus

 $\|A_1...A_n e_i\| = \|A_1...A_{i+1}e_i\| \le 1 - \lambda^i (1 - 2\lambda). \quad (*)$ Moreover, (*) is true also for i = 1, 2, n-1 and n. Thus for $x \in [0, 1]^n$, we have

$$||A_1...A_n x|| \le c ||x||$$
 $(c = 1 - \lambda^n (1 - 2\lambda) < 1)$. \Box

We deduce the

Theorem 1. The process X^t converges weakly to a random variable Y, independent of X^0 ; Y is supported by A. Consequently the reaching time $\tau(n, \lambda)$ of A is finite.

That means that the algorithm reorders the points x_1, \ldots, x_n in a finite time.

Proof. We have:

$$P((Z^1,...,Z^n) = (A_1,...,A_n)) = p_1...p_n = a > 0.$$

By the law of large numbers we get, with N_{k} defined in the second term,

$$\frac{1}{k} N_k = \frac{1}{k} \sum_{j=1}^k \mathbf{1}_{\{(Z^{(j-1)n+1}, ..., Z^{jn}) = (A_1, ..., A_n)\}}$$
$$\xrightarrow{a \cdot s}_{k \to \infty} a$$

which implies that for almost all ω , and all $\varepsilon > 0$ sufficiently small, there exists $k_0(\omega)$ such that:

$$k \ge k_0(\omega) \Rightarrow \frac{1}{k} N_k(\omega) \ge a - \varepsilon.$$

Applying proposition 2, it follows that

$$\|Z^1...Z^{nk}(\omega)\| \leq c^{[k(a-\varepsilon)]}$$

(where [] is the integer part). Thus putting $k_t = \begin{bmatrix} t \\ n \end{bmatrix}$, we have for almost all ω : $\exists T_0(\omega), T_0(\omega) = nk_0(\omega)$ such that:

$$t \ge T_0(\omega) \Rightarrow \|Z^1 \dots Z^t\| \le c^{[k_t(a-\varepsilon)]}$$

from which we deduce (following Kesten 1973): $\forall x \in [0, 1]^n$

i) $Z^1 \dots Z^t x \rightarrow 0$ a.s.

ii) Since W^t is bounded, the serie

 $W^{t} + Z^{t}W^{t-1} + \ldots + Z^{t} \ldots Z^{j+1}W_{i}$ converges a.s.

Consequently Y' converges a.s. toward a random variable Y independent of X^0 and X' converges weakly toward Y.

Since \mathcal{A} is an absorbing class for X' and by taking X^0 in \mathcal{A} , we conclude that Y is supported by \mathcal{A} . \Box

408

4 X' Does not Converge in Probability

As the distribution of Y is not concentrated on the diagonal of \mathbb{R}^n (which is quite obvious) then:

Proposition 3. The process X^t does not converge in probability.

Proof. There exist a point x and a neighborhood V(x) of x such that:

$$\sup |x_{i+1}-x_i| = \alpha > 0$$
 and $P(Y \in V(x)) \ge \delta > 0$

(we can choose V(x) included in $\left\{ \|y - x\| < \frac{\alpha}{4} \right\}$). Then: for all X^0 , there exists a time T such that

$$(\forall t \ge T) \quad P(X^t \in V(x)) \ge \frac{\delta}{2}$$

because X' converges weakly to Y. We also have

$$P(X^t \in V(x) \cap \{Z^t = A_{i_0}, W^t = B_{i_0}\}) \geq \frac{\delta}{2u},$$

if we choose i_0 such that $x_{i_0+1} - x_{i_0} = \alpha$. It is then easily verified that

$$P(||X^{t+1}-X^t|| \ge \varepsilon_0) \ge \frac{\delta}{2u}$$
 where $\varepsilon_0 = \frac{\alpha\lambda}{2}$,

and we have proved that X^t cannot converge in probability. \Box

5 Mean and Variance of the Limit Distribution

We denote by π the distribution of Y and m its mean value. If X^0 has distribution π then X^1 has too. Thus m = (EZ)m + EW, Z and W having the same distribution as (Z^1, W^1) .

We remark that this equation does not depend on λ .

For example: if
$$p_1 = ... = p_n = \frac{1}{n}$$
, m is solution of (S):

for

n=3	$m = (\frac{2}{5}, \frac{1}{2}, \frac{3}{5})$
n=4	$m = \left(\frac{77}{217}, \frac{91}{217}, \frac{126}{217}, \frac{140}{217}\right)$
n =5	m = 0.31, 0.37, 0.5, 0.63, 0.69
n=6	m = 0.28, 0.34, 0.45, 0.55, 0.66, 0.72
n=7	m = 0.25, 0.30, 0.41, 0.5, 0.59, 0.70, 0.75
n=8	m=0.23, 0.28, 0.37, 0.46, 0.54, 0.63, 0.72, 0.77
n=9	m=0.21, 0.26, 0.34, 0.42, 0.5, 0.58, 0.66, 0.74, 0.79
n=10	m = 0.20, 0.24, 0.32, 0.40, 0.46, 0.54, 0.60, 0.68, 0.76, 0.80
n = 20	m = 0.12, 0.14, 0.19, 0.23, 0.27, 0.31, 0.35, 0.39, 0.44, 0.48, 0.52, 0.56, 0.61, 0.65, 0.69, 0.73, 0.77, 0.81, 0.86, 0.88.

In the same way we obtain an equation for the variance of the distribution π . Putting $A_{ij} = E(Y_iY_j)$, the A_{ij} are solutions of the following linear system:

$$A_{ij} = \sum_{k,l} A_{kl} E(z_{ik} z_{lj})$$

+ $\sum_{k} m_k E(z_{ik} w_j)$
+ $\sum_{l} m_l(w_l z_{lj})$
+ $E(w_l w_j),$

where z_{ij} is the (i,j)-element of Z, w_i is the *i*-element of W.

6 Simulations

We have made some computer simulations in order to study the reaching time of the set \mathcal{A} , i.e. the time before X^{t} becomes a non-decreasing function.

As could be guessed, $\tau_{n,\lambda}$ is almost exponentially distributed and we have for example:

$$(S) \begin{pmatrix} -4 & 2 & 1 & 0 & \dots & \ddots & \ddots & \ddots \\ 2 & -6 & 2 & 1 & \dots & & \ddots & \ddots \\ 1 & 2 & -6 & 2 & \dots & & \ddots & \ddots \\ 0 & 1 & 2 & -6 & \dots & & \ddots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & 2 & -6 & 2 \\ 0 & 0 & 0 & 1 & 2 & -4 \end{pmatrix} \begin{pmatrix} m_1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ m_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ \vdots \\ 0 \\ -1 \\ -1 \end{pmatrix}$$

Table 1. $\lambda = 0.1$

n	10	20	30	40	50	60	70	80
Mean reaching time	63,7	336	866	1939	3284	5646	8210	13 508
Standard deviation	66,6	358	934	2067	3470	6004	8662	14 468
						q = 0		
Table 2. $\lambda = 0$.	3							
n	10	20	30	40	50	60	70	80
Mean reaching time	25.3	101	294	616	1195	1791	2730	2911
Standard deviation	27.7	109	316	6,50	1273	1890	4223	4432

III The Two-Dimensional Case

It is not easy to generalize the results of Sect. II. The process still converges in distribution, but the support of the limit distribution is not easy to describe any more, since there is no natural order in \mathbb{R}^2 . Up to now, we have not been able to show that this distribution is supported by a "well-ordered" set, but we know that its mean value is represented by a well-ordered network and every simulation we have done leads to a "well-ordered" network, in which the neighborhood relations in R are preserved in C. In Sect. IV we prove that if the adaptation parameter λ goes to zero as $t \to \infty$, X^t converges toward the mean value and retinotopy is achieved.

1 Asymptotic Behavior

Again we can write:

 $X^{t+1} = Z^{t+1}X^{t} + W^{t+1},$

where the pair (Z^{t+1}, W^{t+1}) has distribution μ in $\{(A_{11}, B_{11}), \dots, (A_{nn}, B_{nn})\}$ $A_{ij} \in (M_n[0, 1])^2$, $B_{ij} \in ([0, 1]^n)^2$. We omit the details of this description, these being straight forward generalizations of the representation in Part II. The same argument as in Sect. II leads to:

Theorem 2. The process X^t converges weakly as $t \to \infty$ toward Y, whose distribution is independent of X^0 . It does not converge in probability.

Here we can't describe the support of Y. However, we can calculate its mean value.

2 Mean Value (For simplicity we put
$$p_{ij} = \frac{1}{n^2}$$
)

Let m be the mean value of Y. Thus m is the solution of the linear system:

$$m = (EZ)m + EW$$
.

The coefficients of the system can be computed explicitely.

For $i \neq 1, n$ and $j \neq 1, n$, we have

$$m_{ij}=m_{ij}\left(\frac{5}{n^2}\left(1-4\lambda\right)+\left(1-\frac{5}{n^2}\right)\right)+\frac{\lambda}{n^2}\Sigma,$$

where Σ is obtained by summing the m_{kl} (belonging to the neighbor set represented below), weighted with the coefficients 1 or 2 according to the following scheme:

$$i \downarrow^{j} & \cdot 1 \\ \cdot 2 & \cdot 2 & \cdot 2 \\ 1 \cdot & \cdot 2 & (i,j) & \cdot 2 & \cdot 1 \\ & \cdot 2 & \cdot 2 & \cdot 2 \\ & \cdot 2 & \cdot 2 & \cdot 2 \\ & \cdot 1 \end{bmatrix}$$

For other points we proceed in a similar way. Thus we have a method to construct this linear system and to compute the value of (m_{ij}) . Again *m* does not depend on λ . For instance we obtain:

Fig. 1. For n=5

Fig. 2. For n = 10

IV Adaptation Effect Decreasing with Time

We first prove a technical Lemma (in the case where

$$p_{ij} = \frac{1}{n^2} \left(\text{resp. } p_i = \frac{1}{n} \right) \right).$$

Lemma. Let $V = \frac{1}{\lambda} (EZ - I)$. The matrix V has all its eigenvalues real and negative.

Proof. In the one-dimensional case V verifies:

- i) all the diagonal terms are negative.
- ii) the other terms are non negative.

iii) all row sums are non positive and, in particular for i=1, 2, n-1 and n, negative.

In the two-dimensional case, V is a $n^2 \times n^2$ matrix and we have a) for $i \neq 1$, n and $j \neq 1$, n, the line (i, j) of the system (S) is

 $-20m_{ij}+2(\Sigma_1)+\Sigma_2$

and Σ_1 contains $8m_{kl}$ -terms and $\Sigma_2 4m_{kl}$ -terms.

b) for i = 1 or n, or j = 1 or n, some of the terms in Σ_1 and Σ_2 are missing;

thus V verifies i), ii), and iii).

Moreover, in the two cases V is symmetric. Consequently (see Gantmacher 1959) V admits only negative eigenvalues (this justifies "a posteriori" that the system S is an inversible system). \Box

Now we can prove that when the parameter λ decreases with time, the process X^{t} converges to the mean value of the limit distributions of Sects. II and III. As this mean value is a "regular" network, the limit of X^{t} achieves the retinotopy: it preserves the topological order of the net (i, j).

Theorem. Suppose that $\lambda = \lambda(t)$ is a function of time, such that $\sum_{t \in \mathbb{N}} \lambda(t) = +\infty$, $\sum_{t \in \mathbb{N}} \lambda(t)^2 < +\infty$. Then X^t converges in L^2 and a.s. to m, the mean value of the limit distribution of the process.

Proof. We have

$$X^{t+1} = Z^{t+1}X^t + W^{t+1}$$

and

 $E[X^{t+1}|X^{t}] = X^{t} + \lambda(t)VX^{t} + EW$

(keeping the previous notations). Thus

 $E(X^{t+1}-m|X^{t})=(X^{t}-m)+\lambda(t)V(X^{t}-m).$

Applying a classical result for the Robbins-Monro algorithm, we get the convergence of X^t to m in L^2 and a.s. since 0 is the only solution of Vy=0 and is asymptotically stable as a consequence of the Lemma. \Box

V Conclusion

The model we have presented here is a self-organizing system based upon two principles: one is the Hebb principle which ensures the reinforcement of a connexion when it is used. The other is the assumption that the boundary is predetermined.

In Sect. IV we saw that if the process has a decreasing power of adaptation $(\lambda(t) \rightarrow 0)$, it results in a topologically correct map from $\{0, 1, ..., n+1\}^2$ on $[0, 1]^2$.

Even when the power of adaptation does not vary with time, in the one-dimensional case, such a map is attained in a finite time (more precisely, a distribution over such maps). In the two-dimensional case we could

Fig. 3. Convergence to the mean value when $\lambda(t) = 1/(1 + t/1000)$, with n = 10. The graph is obtained by joining each point to its neighbours. Initial state

Fig. 4. After 3000 steps

not prove the same result essentially because we have not defined appropriately the notion of a topologically correct map. However, we have observed from simulations that, after a finite time, a "well-ordered" situation is attained which also seems stable. For future work, there remains to introduce a suitable notion of "well-ordering" and prove that the limit distribution is supported by topologically correct maps.

Acknowledgements. We warmly thank Prof. R. Azencott for his helpful comments and stimulating discussions.

Fig. 5. After 20000 steps

References

- Erdi P, Barna G (1984) Self organizing mechanism for the formation of ordered neural mappings. Biol Cybern 51:93-101
- Gantmacher F.R. (1959) The theory of matrices, vol. 1 and 2. Chelsea Publishing Company, New York
- Kesten H (1973) Random difference equations and renewal theory for products of random matrices. Acta Math 131:207-248
- Kohonen T (1982) Self-organized formation of topogically correct feature maps. Biol Cybern 43:59-69
- Kohonen T (1984) Self-organization and associative memory. Springer, Berlin Heidelberg New York Tokyo
- Overton K, Arbib M (1982) The extended Branch-Arrow model of the formation of retinotectal connexions. Biol Cybern 45:157-175
- Willshaw DJ, Malsburg C von der (1979) A marker induction for the establishment of ordered neural mapping: its application to the retino-tectal problem. Philos Trans R Soc London 287:B1021

Received: November 8, 1985

Madame Marie Cottrell Université Paris-Sud UA 743 C.N.R.S. Statistique Appliquée Bâtiment 425 Mathématique F-91405 Orsay France
TROISIEME PARTIE

STABILITE ET ATTRACTIVITE DANS DES RESEAUX DE MEMOIRE ASSOCIATIVE.

Stability and Attractivity in Associative Memory Networks

M. Cottrell

UA 743 CNRS Statistique Appliquée, Laboratoire de Mathématique Bât. 425, Université Paris XI, F-91405 Orsay Cedex, France

Abstract. We focus on stable and attractive states in a network having two-state neuron-like elements. We calculate the connection matrix which guarantees the stability and the strongest attractivity of p memorized patterns. We present an analytical evaluation of the patterns' attractivity. These results are illustrated by some computer simulations.

1 Introduction

The ability to recall memorized patterns is a very important human feature. Many models of neural networks include it, and the capacity of memory is usually spatially distributed throughout the network. It is exactly contained in the "efficiencies" of synaptic junctions.

The study of Distributed Associative Memory Networks was initiated in the fifties. We refer e.g. to Rosenblatt (1958); Caianiello (1961); Kohonen (1970, 1972, 1976); Nakano (1972); Kohonen et al. (1974, 1977) etc.

In these models, the state of each neuron is represented by output spike frequencies. The memorization of patterns relies upon changes in the synaptic efficiencies according to the presentation of patterns. The further presentation of a perturbed pattern (or a part of it) leads to its recollection. This is the property of selective recall.

This theory is largely developed in Kohonen (1984).

This kind of models can also be used for constructing some associative memory which need not be a realistic model of neural network. They can be conceived for memorization and retrieval of patterns in another context, e.g. error corrections in transmissions. In this case, the like-neuron automata may have continuous – or discrete-valued states. They must just work as required. The simplest networks with twostate threshold "neurons" were studied by many authors: Little (1974), Hopfield (1982), Peretto (1984), Amit et al. (1985a, b), Weichbuch and Fogelman-Soulié (1985), Personnaz et al. (1985), etc.

The use of conceptual tools of statistical mechanics, especially spin glasses models, has allowed a good advance in understanding their behavior, and led to asymptotic results, when the number of units grows to infinity (Amit et al. 1985a, b).

In all these papers, the networks are used for recognizing, i.e. retrieving a given set of configurations referred to as patterns. However *these patterns*, whether deterministically or stochastically chosen, *are not always attractors, and not even stable states*, in the network defined by the classical connections suggested by Hebb (1949) and advocated by Cooper et al. (1978).

On the other hand, these connections are symmetric, and this is an unpleasant restriction, even if it allows to define one Hamiltonian whose local minima contain the patterns (Hopfield 1982; Peretto and Niez 1985).

All contributions have studied either a deterministic algorithm, with temperature T=0 (Hopfield 1982; Personnaz et al. 1985; Weichbuch and Fogelman-Soulié 1985) or a stochastic one with temperature T>0(Amit et al. 1985a, b; Peretto 1984).

In this paper we shall study the deterministic algorithm. We consider a network consisting of N twostate units. We define a configuration or network state as an element $S = (S_1, S_2, ..., S_N)$ of the hypercube $\{-1, +1\}^N$, with $S_i = +1$ (or -1) if the *i*-th unit is active (or inactive). The configuration at time t is denoted by S^t.

The collective behavior of such a network is entirely specified by the strengths of the connections C_{ip} between the source *j* and the receiver *i*, and by the threshold values. The $N \times N$ matrix $C = (C_{ij})$ acts as a decoding machine and will be called *connection matrix*.

Each unit receives inputs from all the others weighted by the strengths of connections. Like in

neural networks, the sum of the weighted inputs represents the "membrane potential of the neuron": it becomes (or remains) active if this potential is higher than the threshold, and it becomes (or remains) inactive if this potential is smaller than the threshold.

There are *p* learned, previously known configurations referred to as *the patterns*, denoted by S^1, \ldots, S^p . We wish, starting from a configuration *S*, which contains some errors, to retrieve one of the S^m , $m=1,\ldots,p$, which is to be the nearest one.

Thus it is necessary to determine how to choose the (C_{ij}) matrix in order to get the patterns as attractive as possible. Moreover we have to use an iteration mode, either the serial one, or the parallel one.

Dynamic Description

At time 0, the initial configuration in S^0 , issued from one of the patterns, but containing some errors (transmission errors, miscellaneous disturbances).

We call $S^{t} = (S_{i}^{t})$ the configuration at time t.

At time t, the unit i receives the signal $\sum_{j} C_{ij}\left(\frac{S_{j}^{i}+1}{2}\right)$, the variable $\frac{S_{j}+1}{2}$ is equal to +1 if the unit j is active, 0 if not. If unit i receives a signal greater (resp. smaller) than the threshold, then it becomes active (resp. inactive). We shall choose, as usual, the threshold $\theta_{i} = \frac{1}{2} \sum_{j} C_{ij}$, for this choice implies that:

$$\sum_{j} C_{ij} \left(\frac{S_{j}^{i} + 1}{2} \right) > \theta_{i} \Leftrightarrow \sum_{j} C_{ij} S_{j}^{i} > 0.$$

Then the two types of algorithm are:

a) Sequential Iteration Algorithm. At time t, pick at random a unit $i \in \{1, ..., N\}$, with uniform distribution, or in any case, in such a way that all the units can be selected. Then

if
$$\sum_{j} C_{ij} S_{j}^{t} > 0$$
, $S_{i}^{t+1} = +1$
if $\sum_{j} C_{ij} S_{j}^{t} < 0$, $S_{i}^{t+1} = -1$
if $\sum_{i} C_{ij} S_{j}^{t} = 0$, $S_{i}^{t+1} = S_{i}^{t}$.

At each step, only one unit is checked.

b) Parallel Iteration Algorithm. At time t, calculate all the sums $\sum_{j} C_{ij}S_{j}^{i}$ and set $S_{i}^{i+1} = +1, -1$, or S_{i}^{i} as $\sum_{j} C_{ij}S_{j}^{i} > 0, <0$, or = 0.

The system evolves by lining up the state S_i with the local field defined as $\frac{1}{2}\sum_i C_{ij}$.

For the two kinds of dynamics, two notions are interesting:

The stability. A configuration S^0 is stable iff $S^t = S^0$ for every t.

The attractivity. A configuration S^0 is a k-attractor (for $1 \le k \le N$) iff starting from a configuration S which presents k errors with respect to S^0 , the dynamic leads to S^0 .

Obviously the stability and the attractivity of a configuration S are defined for each kind of iteration mode and for each given matrix.

In this paper we attempt to solve the following problem: Given patterns $S^1, ..., S^p$, build a matrix C (i.e. an algorithm) in such a way that the $S^1, ..., S^p$ are stable and k-attractors with k as great as possible.

The paper is organized as follows:

In Sect. 2, we give exact definitions of stability, attractivity, domain of attraction of a configuration.

Section 3 is devoted to the study of orthogonal patterns.

In Sect. 4, following Personnaz et al. (1985), we give the general formulation of the connection matrix Cwhich provides stability to patterns S^1, \ldots, S^p . Then in Sect. 5, we get the mathematical expression of patterns attractivity for a given matrix C.

Section 6 describes a construction of the matrix C, that maximizes all the patterns attractivity.

In Sect. 7, we come back to the case where all patterns are pairwise orthogonal, and stress the interest of that situation.

In Sect. 8, we solve the settled problem, by considering the situation where all the patterns have the same degree of attractivity.

In Sect. 9, we introduce the usual notion of configuration energy, which is only defined when the matrix C is symmetric, and we give the relations between energy minima and attractors.

Section 10 is devoted to a discussion.

In Appendix 1, some properties of the Hamming distance are recalled, and in Appendices 2 and 3, numerical examples illustrate our results and show that it is impossible to get a better estimate of the attractivity than the given one.

2 Stability-Attractivity

Let C be a connection matrix, and $S = (S_i)$ a configuration. We consider each of the two kinds of algorithms (sequential or parallel ones).

We denote by $\delta(S, S')$ the Hamming distance of two configurations S and S', i.e. the number of components where S and S' differ, and by d(S, S') the Euclidian distance of S and S', viewed as elements of \mathbb{R}^{N} .

One has $d(S, S') = 2/\delta(S, S')$ (see Appendix 1 for properties of the Hamming distance).

Definition 2.1. A configuration S is stable (with respect to C) iff starting from S, the network state remains S, i.e. iff

$$\forall i \in \{1, \dots, N\}, \quad S_i\left(\sum_j C_{ij}S_j\right) \ge 0.$$
(2.1)

The set of stable configurations is denoted by E_0 .

Definition 2.2. Let k be an integer. A configuration S is a k-attractor (with respect to C) iff starting from S' with $\delta(S, S') = k$, the network state evolves in one step towards S'' with $\delta(S, S'') \le k - 1$ or leaves S' invariant (only in the sequential algorithm). This is equivalent to the condition:

 $\forall i, \forall j_1, \dots, j_k \text{ (with } j_1, \dots, j_k \text{ all different)}$

$$S_{i}\left(\sum_{j}C_{ij}S_{j}-2\sum_{l=1}^{k}C_{ijl}S_{jl}\right)>0.$$
 (2.2)

The set of k-attractors is denoted by E_k .

Proof of the Above Equivalence. Let $S = (S_i)$ be a configuration which is a k-attractor and S' such that $\delta(S, S') = k$. Thus $S' = (S'_i)$ with

$$S'_{i} = -S_{i} \text{ for } i \in \{j_{1}, \dots, j_{k}\}$$

$$S'_{i} = S_{i} \text{ otherwise.}$$

We start from S'. For i integer picked at random (sequential algorithm) or for every i (parallel algorithm) we compute

$$\alpha_i = \sum_j C_{ij} S_j = \sum_j C_{ij} S_j - 2 \sum_{l=1}^k C_{ijl} S_{jl}$$

If $\alpha_i > 0$, (resp. $\alpha_i < 0$) we set the component *i* to be +1 (resp. -1).

The condition $\alpha_i S_i > 0$ means that we line up the spin *i* with the corresponding value of *S*, and therefore at the next time for the sequential algorithm, the new configuration will be S'' with $\delta(S, S'') = k - 1$ if $i \in \{j_1, \ldots, j_k\}$ or *S'* if not. For the parallel algorithm the new configuration will be *S*.

Remarks 2.3. 1) S and -S satisfy the same inequalities.

2) S is stable (resp. k-attractor) for the sequential algorithm iff it is for the parallel algorithm. Indeed, for both algorithms, the inequalities to check for every integer i picked at random are the same. This will appear as a consequence of the following proposition which ensures that the Definitions 2.1 and 2.2 are coherent.

Proposition 2.4. For
$$k < \frac{N}{2}$$
, one has $E_k \subset E_{k-1} \subset \ldots \subset E_1 \subset E_0$.

Proof. Adding up the inequalities defining E_k , over all integers j_1, \ldots, j_k , we obtain that $E_k \subset E_0$. Then adding

Fig. 1. Hamming radius

up over any subset of (k-1) integers taken among $\{j_1, \ldots, j_k\}$, we get $E_k \subset E_{k-1}$, under the condition that N > 2k. This last condition is obvious if we note that $\delta(S, -S) = N$, and that $S \in E_k$ iff $-S \in E_k$: indeed if $2k \ge N$, there would exist a state S' with $\delta(S', S) = k = \delta(S', -S)$, which is impossible since the spheres $B_d(S, k)$, $B_d(-S, k)$ are disjoined when $S \in E_k$ [sphere $B_d(S, k)$ is the set of configurations whose distance of S is less than k].

Moreover, note that the inequalities defining E_k are N

incompatible for
$$k \ge \frac{1}{2}$$
.

Let us now to define the domain of attraction of a configuration.

Definition 2.5. The domain of attraction (DA) of a configuration S is the (maybe empty) set of configurations S' such that, starting from S', the algorithm leads to S.

However, it is convenient to consider only circular domains, i.e. spheres for the Hamming distance.

Definition 2.6. The Hamming radius of the DA of a configuration S is the Hamming radius of the greatest sphere included in it.

Consequently, if $S \in E_k$, the radius of its domain of attraction is $\geq k$.

Note that a Hamming sphere with center S and radius k, $B_d(S, k)$, is the intersection of the Euclidian sphere with center S and radius $2\sqrt{k}$, $B_d(S, 2\sqrt{k})$, and the hypercube $\{-1, +1\}^N$.

Remark 2.7. The maximal size of the DA of the patterns is necessarily bounded by the mutual Hamming distances of the patterns (and their opposite), since $S \in E_k$ and $S' \in E_k$ require $k+k' < \delta(S, S')$ and k+k' $< \delta(S, -S') = N - \delta(S, S')$.

3 Case of Orthogonal Patterns

Two configurations S and S' are orthogonal iff their Euclidian product $\langle S, S' \rangle = \sum_{i} S_{i}S'_{i} = 0$. (Thus orthogonality is defined as usual in the Euclidian space \mathbb{R}^{N} .)

The case of pairwise orthogonal patterns is well known, and easy to study (see Hopfield 1982; Peretto 1984; Personnaz et al. 1985) especially because of the following properties:

First, all the mutual Hamming distances between the patterns (and their opposite) are equal to $\frac{N}{2}$, so the patterns are well separated.

Furthermore, this case corresponds to the spin glasses one, in which case values S_i^m are picked at random, independently, with $\frac{1}{2} = \mathbb{P}(S_i^m = +1)$ = $\mathbb{P}(S_i^m = -1)$ for all i=1,...,N and m=1,...,p. The mean value of the Euclidian product = $\sum_i S_i^m, S_i^{m'}$ is then 0, (for $m \neq m'$) and the patterns are on average orthogonal, because the mean values of the number of

components equal to +1 or to -1 are equal. The usual connections (Hebbian connections) are then

$$C_{ij} = \frac{1}{N} \sum_{m=1}^{p} S_{i}^{m} S_{j}^{m}.$$
(3.1)

They are suggested by the principle of Hebb. In neural networks, following Hebb (1949), the synaptic efficacies are modified according to the neural activity, the strength of a synapse being proportional to the correlated activities of the neurons it connects. Here each coincidence of values for the patterns S^m in units *i* and *j* increases C_{ij} , and conversely.

With the above definition of matrix (C_{ij}) , in the orthogonal case, numerical simulations show strong attractivity of patterns, thus good efficiency of information retrieval. In fact, we prove that:

Proposition 3.2. If the patterns $S^1, ..., S^p$ are pairwise orthogonal, these configurations are k-attractors at least up to $k = \left[\frac{N}{2p}\right] \left(\text{integer part of } \frac{N}{2p}\right)$, for the Hebbian connection matrix.

Proof. According to (2.2) and (3.1), for $m = 1, ..., p, S^m$ is a k-attractor for C iff

$$\frac{1}{N}S_{l}^{m}\left(\sum_{j=1}^{N}\left(\sum_{l=1}^{p}S_{l}^{l}S_{j}^{l}\right)S_{j}^{m}-2\sum_{\theta=1}^{k}\left(\sum_{l=1}^{p}S_{l}^{l}S_{j_{\theta}}^{l}\right)S_{j_{\theta}}^{m}\right)>0$$

for every i = 1, ..., N, and distinct $j_1, ..., j_k$ in $\{1, ..., N\}$. Or iff

$$\frac{1}{N} \left[\sum_{i=1}^{p} S_{i}^{i} S_{i}^{m} \left(\sum_{j=1}^{N} S_{j}^{i} S_{j}^{m} \right) - 2 \sum_{\theta=1}^{k} \sum_{i=1}^{p} S_{i}^{i} S_{j\theta}^{i} S_{\theta}^{m} S_{i}^{m} \right] > 0.$$

The patterns $S^1, ..., S^p$ being pairwise orthogonal, $\sum_{j=1}^{N} S_j^l S_j^m = 0 \text{ if } l \neq m, \text{ and } = N \text{ if } l = m. \text{ So the condition}$ becomes

$$\frac{1}{N}\left[N-2\sum_{\theta=1}^{k}\sum_{i=1}^{p}S_{i}^{i}S_{j_{\theta}}^{i}S_{j_{\theta}}^{m}S_{i}^{m}\right]>0.$$

Now

$$\begin{aligned} &2\sum_{\theta=1}^{k}\sum_{l=1}^{p}S_{l}^{l}S_{j\theta}^{l}S_{j\theta}^{m}S_{j}^{m} \\ &\leq 2\sum_{\theta=1}^{k}\sum_{l=1}^{p}|S_{l}^{l}||S_{j\theta}^{l}||S_{j\theta}^{m}||S_{l}^{m}| \leq 2\mathbf{k}\mathbf{p}\,, \end{aligned}$$

since $|S_i^l| = |S_{j_0}^l| = |S_{j_0}^m| = |S_i^m| = 1$. The condition is satisfied if N - 2kp > 0.

Since $2\left[\frac{N}{2p}\right] < \frac{N}{2}$ - Hamming distance of two orthogonal patterns – as soon as p > 2, we see that each pattern is k-attractor at least for $k = \left[\frac{N}{2p}\right]$.

4 Searching the Matrix C

We denote by A' the transposed of the matrix A, and we identify a vector of \mathbb{R}^N with the column matrix of its components in the canonical basis. We denote by \langle , \rangle the usual Euclidian product, and $\| \cdot \|$ the associated norm. For a linear subspace E, we denote by E^{\perp} the subspace of all vectors which are orthogonal to every vector in E.

We may express the stability of the patterns S^1, \ldots, S^p (see Definition 2.1) by

$$\sum_{i} C_{ij} S_i^m S_j^m = \langle C_i, D_i^m \rangle > 0$$
(4.1)

for every i=1,...,N and every m=1,...,p, where C_i is the *i*-th row of C, viewed as a vector of \mathbb{R}^N , and $D_i^m = S_i^m S^m$. The vector D_i^m is $\pm S^m$, so that its *i*-th component is equal to +1.

Thus, we want to determine N vectors C_1, \ldots, C_N of \mathbb{R}^N , such that, for all *i*, the *p* vectors D_i^m are on the same side of hyperplane H_i , defined as the orthogonal space of C_i .

Such an hyperplane is not unique: more important is the volume left around each D_i^m , more performing will be the choice of C_i (and of H_i).

Fig. 2. Choice of hyperplane H_i

We see immediately that for $C_i = \frac{1}{p} \sum_{m=1}^{p} D_i^m$ (natural choice which corresponds to $C_{ij} = \frac{1}{p} \sum_{m=1}^{p} S_i^m S_j^m$, i.e. to Hebbian connections (3.1),

apart from constant $\frac{N}{p}$, the S^m may not be stable, as can be observed by numerical simulations. (See also

Personnaz et al. 1985.) However this choice is often convenient, especially when the S^m are chosen at random, for then they are

almost orthogonal (see Sect. 3). In Personnaz et al. (1985), one can find the general expression for the matrix C ensuring stability of patterns S^1, \ldots, S^p , under the condition that they are linearly independent.

Their formula is

$$C = (A_1 S^1, \dots, A_p S^p) (\Sigma' \Sigma)^{-1} \Sigma' + \widetilde{C}, \qquad (4.2)$$

where Σ is the $(N \times p)$ matrix with columns $S^1, ..., S^p$, $A_1, ..., A_p$ are arbitrary positive diagonal N-matrices and \tilde{C} is a $(N \times N)$ -matrix such that $\tilde{C}\Sigma = 0$. Indeed, the system to be solved is $\langle C_i, S_i^m S^m \rangle > 0$ (i = 1, ..., N;m = 1, ..., p) or equivalently:

$$\langle C_i, S^m \rangle = \alpha_i^m S_i^m$$
 for arbitraries $\alpha_i^m > 0$. (4.3)

A more condensed form is: $CS^m = A_m S^m$, for m = 1, ..., p, where A_m is an arbitrary positive diagonal N-matrix.

The general expression of C_i is

$$C_i = ((\alpha_i^1 S_i^1, \dots, \alpha_i^p S_i^p) (\Sigma' \Sigma)^{-1} \Sigma'))' + \tilde{C}_i, \qquad (4.4)$$

where $\alpha_i^1, \ldots, \alpha_i^p$ are arbitrary positive scalars and \tilde{C}_i is orthogonal to S^1, \ldots, S^p . We notice that C_i is the sum of a linear combination of S^1, \ldots, S^p , and of an orthogonal vector, and that it is defined up to a positive multiplicative constant.

We must determine how to choose the $N \times p$ constants α_i^m , and the vectors \tilde{C}_i to optimize the attractivity of S^1, \ldots, S^p . So, we shall study the size of the domain of attraction of the S^m , as a function of arbitrary coefficients of matrix C.

5 Size of the Domains of Attractivity (DA) of S^1, \ldots, S^p

If we denote by k_m the radius of the DA of S^m (Definition 2.6), we have $k_m + k_{m'} < \inf(\delta(S^m, S^m'), N - \delta(S^m, S^m'))$ for any pair m, m', with $m \neq m'$ (see Remark 2.7).

Furthermore k_m is limited by the "free room" around S^m , i.e. the subset of \mathbb{R}^N which contains S^m and none of the other patterns.

$$T_{j_1,...,j_k}(S) = S^*$$
with
$$S_i^* = S_i \quad \text{for} \quad i \notin \{j_1,...,j_k\}$$

$$S_i^* = -S_i \text{ for } i \in \{j_1, \dots, j_k\}.$$

Thus $S^m \in E_k$ (S^m is a k-attractor) iff

$$\langle C_i, T_{j_1,\dots,j_k}(D_i^m) \rangle > 0 \tag{5.1}$$

for every $i \in \{1, ..., N\}$ and for every subset $\{j_1, ..., j_k\}$ of distinct integers of $\{1 ... N\}$. [Notations of (4.1) and Definition 2.2.]

We may interpret these inequalities in a geometric way: we denote by a_i^m , (resp. b) the endpoints of the vectors D_i^m [resp. $T_{j_1,...,j_k}(D_i^m)$].

The condition (5.1) means that S^m is a k-attractor iff for all *i*, the Hamming sphere with center a_i^m and radius *k* is entirely on the same side of $H_i = C_i^1$ (orthogonal space of vector C_i) see Fig. 3. It means that

$$d(a_i^m, b) = 2 | \sqrt{\delta(D_i^m, T_{j_1, \dots, j_k}(D_i^m))} \quad \text{(by Appendix 1)}$$
$$= 2 | \sqrt{k}$$
$$< d(a_i^m, H_i) = \frac{\langle C_i, D_i^m \rangle}{\|C_i\|}.$$

More precisely,

$$\begin{aligned} |\langle C_i, T_{j_1, \dots, j_k}(D_i^m) \rangle - \langle C_i, D_i^m \rangle| \\ = |\langle C_i, O\mathbf{b} \rangle - \langle C_i, O\mathbf{a}_i^m \rangle| \\ = |\langle C_i, O\mathbf{b} - O\mathbf{a}_i^m \rangle| \\ = 2\sum_{l=1}^k |C_{ij_l}| \le 2k \max_i |C_{ij}|, \end{aligned}$$

(because only k components differ). So (5.1) holds true as soon as

Fig. 3. Hamming sphere $B_{\delta}(a_i^m, k)$

Hence

Proposition 5.2. For a connection matrix $C = (C_{ij})$, whose rows are $C_1, ..., C_N$, each pattern S^m is k-attractor at least up to any k such that

$$k < \frac{1}{2} \inf_{i} \frac{\langle C_{i}, D_{i}^{m} \rangle}{\max_{i} |C_{ij}|} = \gamma_{m}, \qquad (5.2)$$

where $D_i^m = S_i^m S^m$.

So if k and k' are two integers satisfying (5.2), w.r.t. S^{m} (for k) and $S^{m'}$ (for k'), $S^{m} \in E_{k}$, $S^{m'} \in E_{k'}$, and $k+k' \leq \inf(\delta(S^{m}, S^{m'}), N - \delta(S^{m}, S^{m'}))$.

Now we proceed to simplify the expression of γ_m [in (5.2)] when C is given by (4.2), (ensuring patterns stability).

The choice of the C_i 's, in (4.4) has to ensure that $d(a_i^m, H_i)$ or γ_m are as big as possible.

First, we see that in (4.4) $\tilde{C}_i = 0$ is the best choice. Indeed if $C_i = \hat{C}_i + \tilde{C}_i$ with \hat{C}_i in the subspace \mathscr{V} spanned by $\{S^1, \ldots, S^p\}$ and \tilde{C}_i in \mathscr{V}^{\perp} , we have

$$\langle C_i, D_i^m \rangle = \langle \hat{C}_i, D_i^m \rangle$$

and

$$\|C_i\|^2 = \|\hat{C}_i\|^2 + \|\tilde{C}_i\|^2$$
, so $d(a_i^m, H_i) = \frac{\langle C_i, D_i^m \rangle}{\|C_i\|}$

will be greater for $\tilde{C}_i = 0$. Using (4.3),

$$\langle C_i, D_i^{\mathsf{m}} \rangle = S_i^{\mathsf{m}} \langle C_i, S^{\mathsf{m}} \rangle = S_i^{\mathsf{m}} (\alpha_i^{\mathsf{m}} S_i^{\mathsf{m}}) = \alpha_i^{\mathsf{m}} \,.$$
(5.3)

As to the vector C_{i} , we write, from (4.4),

$$C_{i} = \Sigma(\Sigma'\Sigma)^{-1} \begin{pmatrix} \alpha_{i}^{1} & S_{i}^{1} \\ \vdots \\ \alpha_{i}^{p} & S_{i}^{p} \end{pmatrix}$$
(5.4)

and

$$\|C_i\|^2 = C_i C_i = (\alpha_i^1 S_i^1, \dots, \alpha_i^p S_i^p) (\Sigma' \Sigma)^{-1} \begin{pmatrix} \alpha_i^1 & S_i^1 \\ \vdots \\ \alpha_i^p & S_i^p \end{pmatrix}$$
$$= (\alpha_i^1, \dots, \alpha_i^p) \operatorname{diag}(S_i^1, \dots, S_i^p) (\Sigma' \Sigma)^{-1}$$
$$\times \operatorname{diag}(S_i^1, \dots, S_i^p) \begin{pmatrix} \alpha_i^1 \\ \vdots \\ \alpha_i^p \end{pmatrix}$$

[where diag($S_i^1 \dots S_i^p$) is the matrix whose diagonal elements are S_i^1, \dots, S_i^p and others are 0]

 $= \alpha'_i W_i \alpha_i$ (obvious notations).

We remark that if we denote by $D_i = (D_i^1, ..., D_i^n) = (S_i^1 S^1, ..., S_i^n S^n)$, i.e. the matrix of the patterns nor-

malized to +1 in the *i*-th component, we have

$$W_i = (D'_i D_i)^{-1}$$

So

1

$$d^{2}(a_{i}^{m},H_{i}) = \frac{(\alpha_{i}^{m})^{2}}{\alpha_{i}^{\prime}W_{i}\alpha_{i}}$$
(5.5)

and

$$\gamma_m = \frac{1}{2} \inf_{i} \frac{\alpha_i^m}{\max_j |C_{ij}|}.$$
 (5.6)

The inequality (5.2) does not give exact values of the sizes k_1, \ldots, k_p of the domains of attraction (DA) of S^1, \ldots, S^p , because it is only a sufficient condition.

However, the pattern S^m is attractive at least up to y_m , for m = 1, ..., p.

Using geometric notations let us consider patterns S^1, S^2 . Let us assume that $\delta(S^1, S^2)$ is small with respect to N. Since for every *i* such that $S_i^1 = S_i^2$, the distance $d(a_i^m, H_i)$ is "great", whereas the sizes of the DA of S^1 and S^2 are small, [since less than $\delta(S^1, S^2)$] this seems contradiction. But we must notice that on the contrary, for *i* such that $S_i^1 = -S_i^2$, we have $D_i^1 = -S^1$ or $D_i^2 = -S^2$ and $d(a_i^m, H_i)$ small, which leads to a small value of γ_m for m = 1, 2.

Now, Proposition 5.2 can be completed by:

Proposition 5.7. For a connection matrix $C = (C_{ij})$, whose rows $C_1, ..., C_N$ are given by (4.4) with $\tilde{C}_i = 0$, each pattern S^m is attractor at least up to Hamming distance

$$\gamma_{m} = \frac{1}{2} \inf_{i} \frac{\alpha_{i}^{m}}{\max_{i} |C_{ij}|}.$$
(5.7)

6 Optimal Matrix

Let us start from an initial configuration S^0 , obtained by distorting one of the patterns, e.g. S^{m_0} . There will not be any identification error if S^0 belongs to the domain of attraction (DA) of S^{m_0} .

Hence the next definition:

Definition 6.1. A matrix C for which the patterns S^1, \ldots, S^p are attractors, is *optimal* if it maximizes the minimum radius (Definition 2.6) of the DAs of the patterns.

Since we have not the exact value of these radii, we try to determine a matrix C, called semi-optimal, and which maximizes the minimum distance $d(a_i^m, H_i)$ (Fig. 3).

Thus we look for positive constants $\alpha_i^m, m=1, ..., p$, i=1, ..., N, which maximize for each *i*, $\inf d^2(\alpha_i^m, H_i)$

 $= \inf_{m} \frac{(\alpha_i^m)^2}{\alpha_i' W_i \alpha_i}$ [by (5.5)]. Let us sketch a construction of the α_i^m for fixed *i*.

a) We look for a vector $\alpha_i = (\alpha_i^1, ..., \alpha_i^p)$ in $(\mathbb{R}^+)^p$, with $\alpha'_i W_i \alpha_i = 1$.

b) We cut out $(\mathbb{R}^+)^p$ into quadrants Q_j defined by $\alpha_i^j = \min(\alpha_i^m)$, for j = 1, ..., p.

In each quadrant Q_p , we want to maximize $(\alpha_i^2)^2$, i.e. α_i^2 . For instance, if p = 2, we consider the ellipse whose equation is $\alpha_i' W_i \alpha_i = 1$,

c) We compute the p points $P_j = (\alpha_i^1, ..., \alpha_i^p)$, j=1,...,p, solutions of $\alpha'_i W_i \alpha_i = 0$ and $\frac{\partial \alpha_i^p}{\partial \alpha_i^m}$ $= -\frac{(W_i \alpha_i)_m}{(W_i \alpha_i)_i} = 0$ for $m \neq j$, and keep the points P_j

belonging to the corresponding quadrant Q_j . We have

$$\max_{\alpha_i} \left(\min_{m} \frac{\langle u_i \rangle}{\alpha'_i W_i \alpha_i} \right) = \max_j \left\{ (\alpha_i^1)^2 / P_j = (\alpha_i^1, \dots, \alpha_i^p) \in Q_j \right\}$$

under the condition that the above set is not empty.

d) If for all $j, P_j \notin Q_j$ (case 3), we restrict ourselves in the quadrants of $(\mathbb{R}^+)^{p-1}$, $(\mathbb{R}^+)^{p-2}$, etc.... defined by inequalities such as:

 $\alpha_i^j = \alpha_i^{j'} = \min(\alpha_i^m)$ $\alpha_i^j = \alpha_i^{j'} = \alpha_i^{j''} = \min(\alpha_i^m) \dots \text{ and so on }.$

If none of the P_i s successively found belongs to the convenient domain, we get the solution $\alpha_i^1 = \alpha_i^2 = \ldots = \alpha_i^p$ (see Sect. 8).

We can sum up the results as follows:

Proposition 6.2. By iterating this approach for every i = 1, ..., N, we construct a matrix semi-optimal C, which leaves as much volume as possible, around each point a_i^m , for every i, with

$$C_i = \Sigma(\Sigma'\Sigma)^{-1} \left(\alpha_i^1 S_i^1 \dots \alpha_i^p S_i^p \right)'$$
(6.2)

for $\Sigma = (S^1, ..., S^p)$ and $(\alpha_i^1, ..., \alpha_i^p)$ positive yielding the maximum of $\min_{m} \frac{(\alpha_i^m)^2}{\alpha_i^r W_i \alpha_i}$, with $W_i = (D'_i D_i)^{-1}$ and $D_i = (S_i^1 S^1, ..., S_i^p S^p)$.

7 Case of Orthogonal Patterns

In this section we assume that the patterns $S^1, ..., S^p$ are pairwise orthogonal.

In this case, $\Sigma'\Sigma = N \operatorname{Id}_p$, and for every *i*, $D'_iD_i = N \operatorname{Id}_p$, since the vectors D^m_i are also pairwise orthogonal.

So the ellipses of equations $\alpha'_i W_i \alpha_i = 1$ are spheres and the research of the semi-optimal α^m_i , leads to the solution $\alpha^1_i = \ldots = \alpha^n_i$, (see the two-dimensioned example, case 3, in Sect. 6).

Since the α_i^m are defined (for each *i*) up to a positive multiplicative constant, we may choose $\alpha_i^m = 1$ for every *i* and every *m*.

So from (5.4),

$$C_i = \Sigma \left(\frac{1}{N} \operatorname{Id}_p\right) (S_i^1 \dots S_i^p)' \text{ and } C_{ij} = \frac{1}{N} \sum_{m=1}^p S_i^m S_j^m.$$
(7.1)

In other words, in the orthogonal case, the semioptimal solution corresponds to the equality of the α_i^m , and to the classical Hebbian connections. [In that case C is the projection matrix introduced by Kohonen (1970).]

Thus, we may compute γ_m and $\inf_i d^2(a_i^m, H_i)$, using (5.5) and (5.6)

$$d^2(a_i^m, H_i) = \frac{(\alpha_i^m)^2}{\alpha_i' W_i \alpha_i} = \frac{N}{p},$$
(7.2)

and

$$y_{m} = \frac{1}{2} \inf_{i} \frac{\alpha_{i}^{m}}{\max_{j} |C_{ij}|} = \frac{N}{2} \inf_{i} \frac{1}{\max_{j} \left| \sum_{m=1}^{p} S_{i}^{m} S_{j}^{m} \right|}.$$

But $\max_{j} \left| \sum_{m} S_{j}^{m} S_{j}^{m} \right| = p$ is obtained for j = i, since all terms of the sum are then equal to +1.

Hence we get

$$\gamma_m = \frac{N}{2p}$$
 (independent of m). (7.3)

So we find again the result of Sect. 3, which we now enounce as follows:

Proposition 7.4. In the case of pairwise orthogonal patterns, the Hebbian connection matrix (3.1) is at least semi-optimal and ensures the attractivity of the patterns

at least up to the Hamming distance $\frac{N}{2n}$

In the not orthogonal case, we remark that if $\delta(S^m, S^m') > \frac{N}{2}$ for some (m, m'), then $\delta(S^m, -S^m') < \frac{N}{2}$; therefore the volume "winned" by the component *i* will be "lost" by component *i* such that $D_{i'}^m = D_i^m$ and $D_{i''}^m = -D_{i''}^m$.

The sizes of the domains of attraction depend on the minima over *i*; we see that the favourable case is the orthogonal one.

Hence the practical interest of

- picking at random [with $\mathbb{P}(S_i^m = +1) = \mathbb{P}(S_i^m = -1) = \frac{1}{2}$], as in spin glasses, ensuring, on average, orthogonality.

- a deterministic encoding of the objects to be recognized, by means of pairwise orthogonal patterns.

8 Domains of Attraction with Equal Sizes

The research of the optimal matrix C sketched in Sect. 6 is tedious. We shall simplify it by taking all constants $\alpha_i^m = +1$ (Personnaz et al.'s method), which is equivalent to equal attractivity of each pattern.

We need now a geometric interpretation and a lower bound of the common size of the domains of attraction (DA).

Since $\alpha_i^m = \langle C_i, D_i^m \rangle$, by (5.3), in the case $\alpha_i^m = 1$ for every m = 1, ..., p, we have to determine a hyperplane H_i , orthogonal to C_i at equal distance of all the points α_i^m for m = 1, ..., p (see Figs. 2 and 3). The vector C_i is orthogonal to the affine space containing all points $a_i^1, ..., a_i^p$.

We write, from (5.4),

$$C_{i} = \Sigma (\Sigma' \Sigma)^{-1} \begin{pmatrix} S_{i}^{1} \\ \vdots \\ S_{i}^{p} \end{pmatrix} \quad \text{i.e.} \quad C = \Sigma (\Sigma' \Sigma)^{-1} \Sigma', \qquad (8.1)$$

which is the orthogonal projection matrix of \mathbb{R}^N on the vector space \mathscr{V} , spanned by S^1, \ldots, S^p (introduced by Kohonen 1970). The matrix C is symmetric, and its columns (equal to its rows) are images of the vectors e_1, \ldots, e_N (canonical basis of \mathbb{R}^N) by this projection.

So we have $C_i = \operatorname{proj}_{\mathscr{V}}(e_i)$, $D_i^m \in \mathscr{V}$, and $\langle C_i, D_i^m \rangle = \langle e_i, D_i^m \rangle = +1$ by the definition of the vectors D_i^m , whose *i*-th component is equal to +1.

Hence, noting that $\max_{i,j} |C_{ij}| = \max_i (C_{ii})$ = $\max_i ||C_i||^2$ since C is a projection matrix ($C^2 = C$), we get

Proposition 8.2. For the matrix $C = \Sigma(\Sigma'\Sigma)^{-1}\Sigma'$ with $\Sigma = (S^1, ..., S^p)$, each pattern S^m is attractor at least up to Hamming distance

$$y = \frac{1}{2} \frac{1}{\max \|C_i\|^2} = \frac{1}{2} \frac{1}{\max C_{ii}}.$$
 (8.2)

See numerical examples of evaluation of γ in Appendix 2.

Remark 8.3. The matrix C obtained when $\alpha_i^m = 1$, for every *i*, *m*, is symmetric. However for what concerns the algorithm, it is equivalent to the matrix obtained by multiplying each row by a positive arbitrary constant: this matrix is no more symmetric.

Neither it is in the optimal case of Sect. 6.

9 Energy

The patterns S^1, \ldots, S^p span the subspace \mathscr{V} , and the matrix

$$C = \Sigma(\Sigma'\Sigma)^{-1}\Sigma' \quad [\text{see } (8.1)]$$

is the symmetric projection matrix on \mathscr{V} , whose elements are in interval [-1, +1], with $C = C^2 = C'C$, hence

$$C_{ij} = \langle C_i, C_j \rangle = \langle \operatorname{proj}_{\mathscr{V}}(e_i), \operatorname{proj}_{\mathscr{V}}(e_j) \rangle.$$

In that case, we define an energy function

$$E(S) = -\frac{1}{2}H(S)$$
(9.1)

with

$$H(S) = \sum_{i,j} C_{ij} S_i S_j.$$
(9.2)

We have the following theorem (with C symmetric).

Theorem 9.3. i) H(S) increases when the system evolves (in sequential or parallel algorithm).

ii) The k-attractor states are local maxima of H. More precisely, if S is k-attractor, and $S^* = T_{j_1,...,j_k}(S)$ (notations of Sect. 5), then

$$H(S) > H(S^*)$$
.

iii) The learned patterns are absolute maxima of H and any absolute maximum is a stable state.

Demonstration. i) is clear. We prove ii) noting that $H(S) - H(S^*) = 4 \sum_{i \in I} S_i \left(\sum_{j \neq I} C_{ij} S_j \right)$ for $I = \{j_1, \dots, j_k\}$. Since S is k-attractor, it is stable and for all i,

136

 $S_i\left(\sum_j C_{ij}S_j\right) > 0 \quad (2.1) \text{ and } S_i\left(\sum_{j \notin I} C_{ij}S_j - \sum_{j \in I} C_{ij}S_j\right) > 0$ (2.2), hence $H(S) > H(S^*)$. For *iii*), we write H(S) = S'CS $= (CS)'CS = ||CS||^2 = ||proj_{*}(S)||^2$ for all configuration $S \in \{-1, +1\}^N$.

Since $||S||^2 = N$, $H(S) \leq N$ for all S with equality iff $S \in \mathscr{V} = \operatorname{Vect}(S^1, ..., S^p)$. So patterns $S^1, ..., S^p$ are absolute maxima, and also the opposite $-S^1, ..., -S^p$.

Any linear combination of the learned patterns, element of $\{-1, +1\}^N$, (if exists) will be absolute maxima and spurious stable state: H(S) = N iff $S \in \mathscr{V}$, i.e. iff CS = S which is the stability. \Box

Note that if the patterns S^1, \ldots, S^p are orthogonal,

$$H(S) = \sum_{m=1}^{p} \|\text{proj}_{S^{m}}(S)\|^{2} = \frac{1}{N} \sum_{m=1}^{p} \langle S, S^{m} \rangle^{2}$$

See in Appendix 3 examples of spurious stable and attractor states, which are local maxima of H. At temperature T=0 (studied here) the algorithm may reach some of these states, but when T>0 using the annealing method, only the absolute maxima of H will be reached, i.e. the spurious stable states belonging to \mathscr{V} .

10 Provisional Conclusions

1) To choose the sizes of the domains of attraction (DA) in such a way they are equal for all patterns S^1, \ldots, S^p enables us to give no preference to any pattern.

Assume that we start from an initial configuration S^0 distorted from S^{m_0} . We modelize this disturbance: an error occurs in each component i = 1, ..., N, independently with a small probability q. The number of errors $\delta(S^0, S^{m_0})$ is a Binomial distribution $\mathscr{B}(N, q)$.

Starting from S^0 , the algorithm acts and the probability that it gives a good answer (S^{m_0}) , is bounded from below by the probability that S^0 belongs to the DA of S^{m_0} , with radius k_{m_0} , i.e. by $\mathbb{P}(\delta(S^0, S^{m_0}) \leq k_{m_0})$.

Of course, we can approximate this probability, by substituting the Normal Distribution $\mathcal{N}(Nq, Nq)$ to the Binomial distribution. (N is great and q small.)

So selecting an algorithm, i.e. a matrix C such that all the k_m are equal, does yield the same lower bounds for all the probabilities of correct identification, whatever is the configuration S^m to identify.

2) Now let us assume that the choice of the configuration S^m to identify, is made with a probability $(p_m)\left(\sum_{m} p_m = 1\right)$. Then the probability of wrong identification is less than $\varepsilon = \sum_{m} p_m \mathbb{P}(\delta(S^0, S^m) > k_m/S^0$ arises from S^m) and if an identification error for S^m costs g_m ,

the mean error cost is less than $G = \sum_{m} g_{m} p_{m} \mathbb{P}(\delta(S^{0}, S^{m}) > k_{m}/S^{0} \text{ arises from } S^{m}).$

In that case, the choice of the semi-optimal matrix C, described in Sect. 6, yields a reasonable lower bound ε and G.

It remains that these calculations are approximations (apart from the fact we cannot calculate the exact size k_m of the DA of the patterns S^m , w.r.t. a given matrix C).

3) If $\delta(S^0, S^m) > k_m$, there is an error if S^0 falls in the DA of another configuration, but we do not know what happens if S^0 does not belong to a DA of the S^m . So S^0 may be attracted by one of the spurious configurations made attractive by the matrix C, for instance a configuration $-S^m$, or other linear combination of the S^m . (See Appendix for numerical examples.)

4) The complete study of the deterministic algorithm (Temperature T=0) enables us to see that only the spurious stable state belonging to the subspace \mathscr{V} spanned by the patterns, remain when the temperature T>0 using the annealing method. This result confirms the results of Amit et al. (1985a, b), and shows it is true for all N, and not only when $N \rightarrow +\infty$.

5) The algorithm ensures a perfect retrieval of patterns if the initial state S^0 satisfies $\delta(S^0, S^m) < \gamma$ [defined in (8.2)] for some S^m . But, of course, the algorithm ensures a very good retrieval if S^0 is more distant from the patterns. Let be \mathscr{B} the set of initial states which lead to some pattern. The simulations show that \mathscr{B} occupies a great portion of the hypercube [see numerical evaluations in Peretto and Niez (1985), which agree with examples of Appendix 3]. Of course, the size of \mathscr{B} decreases when p increases, for a fixed N, like the attractivity γ .

Appendix 1: Hamming Distance

For $S, S' \in \{-1, +1\}^N$, we denote by $\delta(S, S')$ the number of distinct components of S and S': it is the Hamming distance of S and S'.

The following properties are easy to check

1)
$$\delta$$
 is a distance in $\{-1, +1\}^n$,

2) $\delta(S, -S) = N$; if $\sum_{i=1}^{N} S_i S'_i = 0$, i.e. if S and S' are orthogonal (only with N pair), $\delta(S, S') = \frac{N}{N}$.

y with N pair),
$$o(3,3) = \frac{1}{2}$$
.

3)
$$\delta(S, -S') = N - \delta(S, S').$$

If d is the Euclidian distance in \mathbb{R}^{N} , $\langle \cdot \rangle$ the Euclidian product, $\|\cdot\|$ the Euclidian norm, cos and sin the usual trigonometric functions, we have

4)
$$||S|| = \sqrt{N}$$
, $\delta(S, S') = \frac{1}{2}(N - \langle S, S' \rangle) = N \sin^2 \frac{(S, S')}{2}$ and $d(S, S') = 2\sqrt{\delta(S, S')}$.

Appendix 2: Evaluation of Gamma

For different values of N and p, we compare γ in various cases

a) orthogonal case $\gamma = N/2p$

b) random choice of patterns

c) random choice of $(S^2, ..., S^p)$ and $S^1 = (1, ..., 1)$

d) a non orthogonal case.

N = 20	a	b	с	d	N = 30	a	b	с	d
p=3	3.3	1.9	2.4	1.5	p=3	5	3.7	3.8	2
p=4	2.5	1.4	1.9	1.1	p=4	3.7	2.6	2.7	1
p=5	2	1.2	1.5	0.7	p=5	3	1.8	1.9	0.7

N = 40	a	b	с	d	N = 50	a	b	с	d
p=3	6.7	5.3	4.9	3.1	p=4	6.3	5.8	5.1	1.4
p=4	5	4	3.9	1.2	p=5	5	3.8	3.9	0:9
p=5	4	3.1	3.1	0.8	p=6	4.2	3.0	3.1	0.8
p=6	3.3	2.3	2.4	0.7	<u> </u>				12.5

Note that if we want to retrieve exactly a pattern transmitted with 10% errors at most, we must choose $p \ll N$, approximately $p \sim 0.10 N$ (for random case). This agrees with numerical results of Hopfield (1982) or Amit et al. (1985a, b) for instance. (Take account they use a connection matrix which does not ensure the stability of all patterns.)

Appendix 3

We indicate numerical results of various simulations.

We determine all the stable states, their order of attractivity, their Hamming distance from patterns, and their energy. In each case, 1000 trials are performed with initial state at random. The system evolves very quickly (at most 4 parallel iteration steps) to one of the stable states. We indicate the number of trials ending into each stable states. See that the value of y above calculated is not subestimated, and gives a good estimation of the BA' size.

Example 1

N = 20, p = 3, $\gamma = 2.4$ (case c of Appendix 2)

$S^1 = 1 = 1$	1	1	1	1	1	1	1	1	1	1	1	1	1.	1	1	1	1	1
$S^2 = 1 1$	1 -	-1	1	-1	-1	-1	-1	1	1 -	-1	1	-1	1 ·	-1	-1	-1	1	-1
$S^3 = -1 - 1$	1	1.	-1	1	-1	1	1	1.	-1 -	-1	-1	1 .	-1	-1	-1	-1	1	1

Example 2

 $N = 20, p = 3, \gamma = 1.9$

 S^1, S^2, S^3 are random (case b)

Example 3

 $N = 20, p = 4, \gamma = 1.4$

 S^1, S^2, S^3, S^4 are random (case b)

Example 4

 $N = 20, p = 4, \gamma = 1.1$

 S^1, S^2, S^3, S^4 are not orthogonal $(\delta(S^1, S^3) = \delta(S^1, S^4) = 3)$

Example 1	Nb of trials ending into one of the patterns (or opposite) = 67%													
State	S ¹	-S1	S ²	-S ²	S ³	-S ³	S 7	S ₈	S ₉	S ₁₀	S ₁₁	S ₁₂	S ₁₃	S14
Att. order	2	2	2	2	2	2	1	1	0	0	0	0	0	0
ð(S''') {	0 11 11	20 9 9	11 0 12	9 20 8	11 12 0	9 8 20	15 14 14	5 6 6	17 6 6	3 14 14	14 15 3	.6 5 17	6 17 5	14 3 15
H(S)	20	20	20	20	20	20	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4
% n.b. trials ending	11.7	10.7	10.2	11.6	11.1	12.2	6.7	5.8	5.4	4.0	1.9	3.1	3.3	2.3

Example 2	Nb of trials ending into one of the patterns (or opposite) =: 54%													
State	S ¹	-S1	S ²	-S ²	S ³	-S ³	S 7	S ₈	S,	S ₁₀	<i>S</i> ₁₁	S ₁₂	S ₁₃	S ₁₄
Att. order	1	1	1	1	1	1	2	2	0	0	0	0	0	0
δ(S ^m) {	0 12	20 8	12 0	8 20	12 12	8	14 14	6 6	18 6	6 18	6	2 14	14 2	14 14
H(S)	12 20	8 20	12 20	8 20	0 20	20 20	14 16	6 16	6 16	6 16	18 16	14 16	14 16	2 16
% n.b. trials ending	9.6	8.8	9.9	8.1	8.3	9.6	9.9	8.2	4.7	6.0	4.3	5.0	2.8	4.8

Example 3. In that case S^1 , S^2 , S^3 , S^4 and their opposite are 1-attractors (compare with $\gamma = 1.4$). And there are 40 stable states whose energy are 14.1, 15.1, 15.2, 15.6 or 16. The Hamming distance between a pattern and a spurious stable state can be 2, and that shows that the evaluation of γ is exact.

Among 1000 trials, the system ends into one of the pattern in 52% of the cases

Example 4. There are 8 1-attractors, S^1 , S^2 , S^3 , S^4 , their opposites and 4 configurations more which have the same energy (H(S) = 20). There are 4 stable states, and 4 1-attractors,

State	S1	-S1	S ²	- S ²	S ³	-S ³	S ⁴	-S ⁴	S,	S10	S 11	S12	S ₁₃	Š ₁₄	S15	S16
Att. order	1	1	1	1	1	1	1	1	1-	1	1	1	0	0	0	0
δ(S ^m)	0 11	20 9	11 0	9 20	3 14	17 6	3 10	17 10	6 13	14 3	6 17	14 7	12 5	9 2	8 15	11 18
	3	17 17	14 10	6 10	0 6	20 14	6 0	14 20	3 3	11 13	9 7	17 17	9 15	12 12	11 5	8 8
H(S)	20	20	20	20	20	20	20	20	20	20	20	20	17.8	-17.8	17.8	17.8

The system ends into one of the pattern is 52% of the cases

References

- Amit DJ, Gutfreund H, Sompolinsky H (1985a) Phys Rev A 32:1007
- Amit DJ, Gutfreund H, Sompolinsky H (1985b) Phys Rev Lett 55:1530
- Caianiello ER (1961) J Theor Biol 1:204
- Cooper LN, Liberman F, Oja E (1978) Biol Cybern 33:9
- Hebb DO (1949) The organization of behavior. Wiley, New York
- Hopfield J (1982) Proc Natl Acad Sci USA 79:2554 Kohonen T (1970) Helsinki University of Technical Report
- TKK-F-A130
- Kohonen T (1972) IEEE Trans C-21:353-359
- Kohonen T (1984) Self-organization and associative memory. Springer, Berlin Heidelberg New York
- Kohonen T, Oja E (1976) Biol Cybern 21:85-95
- Kohonen T, Lehtiö P, Rovamo J (1974) Annales Academiae Scientiarum Fennicae A: V Medica 167
- Kohonen T, Lehtiö P, Rovamo J, Hyvärinen J, Bry K, Vainio L (1977) Neuroscience 2:1065-1076
- Little WA (1974) Math Biosci 19:101

Nakano K (1972) IEEE Trans SMC-2:380-388

- Peretto P (1984) Biol Cybern 50:51
- Peretto P, Niez JJ (1985) Collective properties of neural networks. In: Proceedings of the winter school on "Disordered Systems and Biological Organization"
- Personnaz L, Guyon I, Dreyfus G (1985) J Phys Lett 46:359 Personnaz L, Guyon I, Dreyfus G, Toulouse G (1986) J Stat
- Phys 43:411

Rosenblatt F (1958) Psych Rev 65:386

Weichbuch G, Fogelman-Soulie F (1985) J Phys Lett 46:624

Received: February 26, 1987 Accepted in revised form: July 11, 1987

Dr. Marie Cottrell UA 743 CNRS Statistique Appliquée Laboratoire de Mathématique Bât. 425 Université Paris XI F-91405 Orsay Cedex France

QUATRIEME PARTIE

ANALYSE MATHEMATIQUE D'UN MODELE DU CORTEX CEREBELLEUX.

•

.

ANALYSE MATHEMATIQUE D'UN MODELE DU CORTEX CEREBELLEUX :

I. EFFET DE L'ACTION INHIBITRICE DES COLLATERALES RECURRENTES

Marie COTTRELL U.A. C.N.R.S. 743 "Statistique Appliquée" Laboratoire de Mathématique, Bât. 425 Université Paris 11 F - 91405 ORSAY Cedex

Nous analysons le comportement d'un réseau de neurones reliés uniquement par des liaisons inhibitrices, en l'absence de stimuli extérieurs.

L'état du réseau est un processus de Markov dont nous étudions l'ergodicité ou caractérisons la divergence, suivant les paramètres du système.

Ce réseau modélise l'état du cortex cérebelleux chez le rat de quelques jours.

MOTS CLES :

Processus de Markov Réseaux de neurones Cortex cérebelleux Liaisons inhibitrices

I. MODELISATION DU CORTEX CEREBELLEUX.

INTRODUCTION.

Cet article a eu pour point de départ une collaboration avec le Docteur H. Axelrad et C. Bernard (Laboratoire de Neurophysiologie de la Faculté de Médecine Pitié-Salpétrière) et B. Giraud (Laboratoire de Physique théorique au CEA).

Il s'agit d'une contribution à la compréhension du mode de fonctionnement du cortex du cervelet et en particulier du rôle de l'inhibition par les collatérales récurrentes, en menant ensemble

- un travail de modélisation et de simulation.
- l'analyse mathématique du modèle
- un travail expérimental in vivo.

Voir AXELRAD et al. (1985), GIRAUD et al. (1985), AXELRAD et al. (1987).

1. PLACE DE NOTRE TRAVAIL.

De nombreux modèles de réseaux de neurones formels, d'automates cellulaires, ont été proposés ces dernières années. La bibliographie en est très importante c'est un sujet qui connaît actuellement un immense développement. Voir par exemple dans KOHONEN (1984) ou RUMELHART et Mc CLELLAND (1986) une présentation de beaucoup des aspects des recherches en cours et une abondante bibliographie. On peut consulter aussi la liste des intervenants au congrès qui s'est tenu à San Diego (USA) en juin 1987, sous les auspices de IEEE.

Ces neurones sont organisés en réseaux fonctionnant de façon dynamique, avec des règles (déterministes ou stochastiques) d'excitation, d'inhibition, de coopération ou compétition, bref d'interaction. Ces réseaux ont des fonctions d'apprentissage, de mémoire, de reconnaissance de formes, font du traitement d'information en parallèle, et ont d'ailleurs permis un extraordinaire développement et la construction de calculateurs parallèles.

Mais ils ont peu de chose à voir avec les systèmes neurobiologiques réels, même si l'ensemble de ces travaux font progresser l'étude des mécanismes du cerveau et du système nerveux central. Ces réseaux ont des comportements collectifs intéressants, mais il est difficile de les comparer à des réseaux de neurones réels. Beaucoup de biologistes font de sérieuses réserves sur l'adéquation de ces modèles à la réalité neurobiologique.

Par ailleurs, on connaît assez précisément les mécanismes physicochimiques de l'activité neuronale et on sait enregistrer à l'aide de micro-électrodes les décharges électriques (*spikes*) successives d'un ou plusieurs neurones. Jusqu'à ces dernières années, on ne pouvait enregistrer qu'un ou deux neurones à la fois, mais maintenant les méthodes optiques permettent l'enregistrement simultané de toute une une population de neurones (par exemple BLASDEL et SALAMA (1986)).

Cependant si de nombreux modèles ont été proposés pour mimer l'activité d'un seul neurone (voir par exemple SAMPATH et SRINIVASAN (1977)), la modélisation "réaliste" de l'activité simultanée d'un réseau de neurones reste une tâche délicate.

D'où l'idée de notre travail : étudier un système neurobiologique réel : *le cortex cérebelleux*, dont la structure morphologique et le fonctionnement physiologique soit assez bien décrit et compris pour qu'on puisse en faire un modèle simplifié mais réaliste, pour lequel on pourra comparer les résultats théoriques et expérimentaux.

3

2. LE CORTEX CEREBELLEUX.

Le cortex cérebelleux, dont le rôle est de coordonner les mouvements, est une partie du système nerveux, dont les caractéristiques sont bien particulières.

Il a fait l'objet d'un très grand nombre d'études neurophysiologiques et théoriques, (ECCLES et al. (1967), MARR (1969), ALBUS (1971), PALAY et CHAN-PALAY (1974), ITO (1984), CHAUVET (1986)) pour ne citer que quelques auteurs.

Sa structure est cristalline, invariante par déplacement le long de sa surface.

Il est composé d'un nombre limité -5- de types cellulaires :

* les plus grandes cellules sont les *cellules de Purkinjie* (notées CP). Ce sont les seules qui sont en communication avec l'extérieur du cervelet, avec deux entrées (fibres grimpantes et moussues) et une sortie.

* entre les cellules du Purkinjie, se trouvent les interneurones (trois types : cellules en panier, cellules en étoiles, cellules de Golgi) qui jouent un rôle inhibiteur.

* les CP sont reliées par des axones collatéraux récurrents, qui jouent également un rôle inhibiteur.

* par l'intermédiaire des *cellules grains*, les afférences moussues (entrées) amenant l'information extérieure se ramifient en *fibres parallèles* qui en contactant plusieurs cellules de Purkinjie jouent un rôle *activateur*. Les cellules de Purkinjie sont disposées régulièrement suivant un réseau bidimensionnel le long de la surface du cortex cérebelleux.

Figure 1.a

Figure 1.b

(D'après ECCLES)

Pour étudier le rôle propre du cortex cérebelleux, on schématise les différents constituants de la couche moléculaire, et on décompose l'analyse du système global en analysant des sous-systèmes de complexité croissante comme suit :

Système A

Système B

Cellules de Purkinjie reliées par les collatérales récurrentes inhibitrices Figure 2.b

Système C

 $-\frac{1}{4}$

Cellules de Purkinjie avec collatérales récurrentes inhibitrices et fibres parallèles excitatrices *Figure 2.c*

Le système complet contient de plus des interneurones (inhibiteurs), et les fibres grimpantes (excitatrices), dont on peut reconnaître facilement les décharges en salves.

Dans cette étude, on se borne aux systèmes A et B, pour dégager le rôle organisateur, structurant au niveau du réseau tout entier, de l'inhibition.

Il se trouve en outre que chez le jeune rat entre 6 et 9 jours, les fibres parallèles et les interneurones sont absents. Les collatérales récurrentes sont présentes en grand nombre. Elles régressent d'ailleurs au fur et à mesure du développement des fibres et des interneurones (CREPEL et al. (1980)). Les fibres grimpantes sont présentes dès le 3^e jour, et chacune contacte alors plusieurs cellules de Purkinjie, dans le même plan sagittal (axe transversal).

Comme la fréquence de décharge des fibres grimpantes est plus faible que la fréquence des décharges spontanées des cellules de Purkinjie, et que la forme de leurs salves est caractéristique, on peut étudier le modèle B in vivo, en enregistrant les activités des cellules de Purkinjie chez de jeunes rats. De plus un enregistrement du tissu in vitro permet d'éliminer les décharges des fibres grimpantes.

Par ailleurs, comme on connaît les antagonistes (bicuculline et bicrotoxine) du neurotransmetteur des cellules de Purkinjie (GABA), on peut découpler chimiquement les cellules et donc comparer le modèle B au modèle A in vivo.

3. VARIABLE D'ETUDE. MODELE PROPOSE PAR H. AXELRAD.

Les décharges (*spikes*) émises par les cellules de Purkinjie étant d'amplitude constante et de durée fixe (1 ms), ce qui caractérise l'activité d'une cellule, c'est la fréquence des spikes et donc les intervalles inter-spikes.

En l'absence de liaisons intra-cérebelleuses et avec l'extérieur, les intervalles inter-spikes forment *un processus de renouvellement* de loi notée \mathcal{F} , c'est-à-dire une suite de variables aléatoires indépendantes et de même loi \mathcal{F} (COX et LEWIS (1966), LANDOLT et CORREIA (1978)).

On prend comme convention que l'état du neurone i, à l'instant t est le temps à attendre jusqu'à la prochaine décharge. Ce temps décroît linéairement en fonction du temps et la décharge se produit quand il atteint la valeur 0 (convention commode).

A chaque instant de décharge, une variable aléatoire U de loi F est tirée, indépendamment du passé. La loi F correspond à une v.a. positive, bornée ou non.

Une trajectoire de l'état du neurone i est donc de la forme :

Evolution de l'état d'un neurone isolé.

Figure 3

Mais dans le modèle B, les neurones, numérotés (i,j), rangés dans un réseau bidimensionnel, sont reliés par les collatérales inhibitrices. Chaque neurone (i,j) est lié aux neurones d'un voisinage V(i,j).

L'effet de l'inhibition collatérale est de retarder ou même supprimer les décharges prévues des neurones voisins.

Le modèle proposé par H. Axelrad et al. a des règles assez fines pour mimer précisément la réalité.

On en trouvera la description précise dans AXELRAD et al. (1987).

La suite de cet article est l'analyse mathématique d'un modèle de fonctionnement du système B, (Fig. 2.b : cellules de Purkinjie avec collatérales inhibitrices) simplifié pour rendre possibles les démonstrations, tout en gardant les mêmes principes essentiels.

II. MODELE MATHEMATIQUE DU RESEAU. MODELE (M). CELLULES AVEC COLLATERALES INHIBITRICES.

1. DEFINITION. DESCRIPTION.

Résumons les notations utilisées.

Les neurones sont disposés dans un carré plan, et numérotés $(i,j), 1 \leq i,j \leq n$.

L'état du système à l'instant t est décrit par le vecteur $X^{t} = (X_{ii}^{t})$, où X_{ii}^{t} est une valeur positive état du neurone (i,j).

A chaque instant de décharge, le neurone concerné est réinitialisé par le tirage d'un état suivant une loi de distribution F. On envisage différentes lois, qu'on suppose à valeurs positives.

Dans le système de neurones non couplés (système A, Fig. 2.a), chaque neurone fonctionne indépendamment des autres, et en chaque site on observe un processus de renouvellement de loi **F** (Fig. 3).

Dans le système B, Fig. 2.b, les neurones interagissent et l'inhibition est modélisée de la manière suivante : chaque fois qu'un neurone émet un spike, il inhibe ses voisins : leurs états sont alors incrémentés d'une quantité positive, ce qui retarde d'autant leur prochaine décharge. On considère différents systèmes de voisins d'un neurone (i,j) : par exemple

$V_4(i,j) =$	*	* • *	*		$V_6(i,j) = *$	* *	* •	*	*
$V_{B}(i,j) =$	* *	* •	* *		$v_{12}(i,j) = *$	* * *	* •	*	*
$v_{14}(i,j) = ***********************************$	* *	* • *	* *	* * *	$v_{24}(i,j) =$	E sje E sje E sje E sje E sje	**•	* * * * *	* * * *

(les voisinages V_6 et V_{14} correspondent au fait que les cellules contactées par les collatérales récurrentes issues d'une cellule de Purkinjie forment approximativement une ellipse allongée dans le plan sagittal).

Le processus $X^{t} = (X_{i,j}^{t})$ est donc défini de la manière suivante : i) Algorithme à temps et espace discret. (II.1.1)

Au temps O, chaque état est initialisé "*au hasard*" suivant la loi F, et indépendamment des autres. La loi F est une loi discrète sur N.

8

Soit $X^{t} = (X_{i,i}^{t})$ l'état du réseau à l'instant t,

• si $X_{ij}^{t} = 0$, le neurone (i,j) décharge et X_{ij}^{t+1} est une réalisation d'une variable aléatoire U de loi \mathfrak{F} , indépendante de X^{t} . • si (i,j) est voisin d'un neurone (i_{0}, j_{0}) qui émet un spike au temps t, $X_{ij}^{t+1} = X_{ij}^{t} + \theta - 1$ où $\theta \in \mathbb{N}$ est le "délai" modélisant l'inhibition causée par la décharge du neurone (i_{0}, j_{0}).

• sinon $X_{ij}^{t+1} = X_{ij}^{t} - 1$.

Le processus X^t défini ainsi est une <u>chaîne de Markov</u>, à temps discret, à valeurs dans N^{n²}, à probabilités de transition stationnaires. L'unité de temps correspond à la durée d'un spike.

En fonctionnement réel, un certain nombre de neurones sont simultanément excités, d'autant que la durée d'un spike est typiquement de 1ms. C'est ce que l'on observe dans les simulations de la chaîne X^t . Notons que si un neurone est voisin de plusieurs neurones qui déchargent, il n'est inhibé qu'une fois, on ne cumule pas les inhibitions. Mais l'étude mathématique est un peu compliquée par la possibilité de décharges simultanées de plusieurs neurones.

On utilise donc une version continue du processus X^t, où le temps est continu, l'instant de décharge identifié avec l'instant de début du spike, et la probabilité que plusieurs neurones initient leurs décharges simultanément est nulle.

D'où la définition du modèle (M).

ii) Algorithme à temps et espace continus.

(II.1.2)

Au temps 0, les (X_{ij}^{o}) sont initialisées de manière quelconque (mais positives et sans ex aequo). La loi F est alors une loi qui admet une densité f strictement positive par rapport à la mesure de Lebesgue sur \mathbb{R}^+ (ou éventuellement sur un intervalle de la forme [0,L] si l'on choisit une loi **F** à support borné).

Si $X^{t} = (X_{ii}^{t})$ est l'état du réseau à l'instant t

• si aucune des composantes de X^{t} n'est nulle, (aucun neurone ne décharge), $X_{ij}^{t+dt} = X_{ij}^{t}$ -dt, pour tout (i,j).

• si t est instant de décharge d'un des neurones, soit $X_{i_0j_0}^t = 0$, alors

- $X_{i_0j_0}^{t+dt}$ est une réalisation d'une v.a. U de loi F, indépendante de X^t , -dt.
- $X_{ij}^{t+dt} = X_{ij}^{t} + \theta dt$, pour $(i,j) \in \mathcal{V}(i_0, j_0)$, avec θ fixe, réel positif.

• $\mathbf{x}_{ij}^{t+dt} = \mathbf{x}_{ij}^{t} - dt$, pour $(i,j) \in \mathbf{V}(i_0, j_0)$.

Le processus X^{t} défini ci-dessus, dans sa version continue à droite est un processus de Markov, à temps continu, à valeurs dans $(\mathbb{R}^{+})^{n^{2}}$, à noyau de transition stationnaire donné par

$$P(x_{11}, x_{12}, \dots, x_{nn}, dy_{11}, dy_{12}, \dots, dy_{nn}, dt)$$

$$\left\{ \begin{array}{c} = \delta(y_{ij} = x_{ij} - dt), \text{ si } \prod_{(i,j)} x_{ij} \neq 0 ; \\ = f(y_{i_0j_0}) dy_{i_0j_0} \otimes \left[(i,j) \in \Psi(i_0, j_0) \delta(y_{ij} = x_{ij} + \theta - dt) \right] \end{array} \right.$$

$$\left\{ \begin{array}{c} (II.1.3) \\ \otimes \left[(i,j) \in \Psi(i_0, j_0) \cup \{(i_0, j_0)\} \delta(y_{ij} = x_{ij} - dt) \right], \text{ si } x_{i_0j_0} = 0 ; \end{array} \right.$$

Pour éviter les ex aequo, et donc définir l'indice (i_o,j_o) de manière unique p.s., on prend comme système d'états

$$\mathcal{P} = \left(\mathbb{R}^+\right)^{n^2} \cap \left\{ \frac{x}{x_{\mathbf{i}j}} - \frac{x_{\mathbf{i}'j'}}{x_{\mathbf{i}j}} \in \theta\mathbb{Z}, \text{ pour } (\mathbf{i}, \mathbf{j}) \neq (\mathbf{i}', \mathbf{j}') \right\}$$

ce qui autorise au plus une coordonnée nulle.

Une trajectoire de (X^t) est typiquement constituée de segments parallèles à la "diagonale" (droite d'équation $y_{11} = \ldots = y_{nn}$ dans $(\mathbb{R}^+)^{n^2}$), séparés par des sauts chaque fois qu'elle rencontre une face (d'équation $y_{ij} = 0$). Par exemple si le réseau est simplement constitué de deux neurones) on obtient une trajectoire de la forme indiquée figure 4

Figure 4

Une trajectoire d'une coordonnée X_{ij}^t est du type :

• Remarquons que les coordonnées X_{ij}^t ne sont pas individuellement markoviennes.

Dans la suite, on considère toujours (sauf mention expresse) le modèle continu (M), où θ est donc un réel positif représentant le délai dû à l'inhibition, et **F** est une loi continue de support \mathbb{R}^+ admettant une densité f>0 par rapport à la mesure de Lebesgue.

On suppose que 🗣 est d'espérance et de variance finies.

2. <u>SIMULATIONS</u>.

Les simulations (voir appendices) du modèle discret (i) défini au II.I montrent expérimentalement

• l'établissement d'un régime stationnaire correspondant à l'ergodicité du processus (X^t) , lorsque θ est plus petit qu'un certain seuil θ_0 , dépendant du système de voisinage.

• au contraire, si $\theta > \theta_0$, l'installation d'un régime non stationnaire, approximativement en "quinconce", ou en "bandes" suivant la forme des voisinages V. On obtient des moirures, alternances de bandes de neurones actifs, déchargeant suivant la loi F, avec une fréquence moyenne à peu près constante (inverse de EF), et de bandes de neurones complètement inhibés, la largeur de ces bandes dépendant de la taille des voisinages.

Dans les paragraphes suivants, on donne les démonstrations de ces résultats : au paragraphe III, on montre que le processus (X^{t}) est irréductible et apériodique et que lorsque $\theta < \theta_{o}$, les temps de retour à 0 en chaque site sont des v.a. d'espérance finie. Dans le paragraphe IV, on démontre que lorsque $\theta < \theta_0$, le processus (X^t) est récurrent positif et ergodique, on étudie son régime stationnaire et on calcule alors l'intervalle inter-spike moyen de chaque neurone.

On étudie le cas $\theta > \theta_0$ au paragraphe V pour un système de deux neurones et on montre alors que p.s. l'une des deux composantes tend vers + ∞ , et que l'autre converge en loi vers sa loi propre (sans inhibition, c'est-à-dire le processus de renouvellement de loi \mathcal{F}).

Enfin dans le § VI, on donne des conditions de stabilité de certaines configurations divergentes lorsque $\theta > \theta_{o}$.

Dans les Appendices 1, 2, 3, 4 etc., sont présentés de nombreux exemples à 2 ou n^2 neurones dans les cas convergent et divergent.

Dans ce qui suit on oublie la structure géométrique du modèle. Les sites sont nommés i, et sont en nombre fini N.

Rappelons que les variables U_{ℓ} sont supposées indépendantes de même loi \mathcal{F} , à densité strictement positive sur \mathbb{R}^+ , et que E(U) notée $E(\mathcal{F})$ et $E(U^2)$ notée $E(\mathcal{F}^2)$ sont <u>finis</u>.

III. CHAINE EXTRAITE. IRREDUCTIBILITE. APERIODICITE. TEMPS DE RETOUR.

1. <u>CHAINE EXTRAITE</u>.

Au processus de Markov défini par le modèle (M) au (II.1.2), on associe la suite croissante des temps d'arrêt T_1, T_2, T_3, \ldots instants des décharges successives, instants des sauts du processus (X^t). Plus précisément, avec $T_0 = 0$, on pose

 $T_{l+1} = \inf\{t > T_l, \exists i_0, X_{i_0}^{t^-} = 0\}.$ (III.1.1) <u>Remarque</u>. Les T_l sont tous finis p.s. et même $\overline{\lim} \frac{T_l}{l} \leq E(\mathcal{F}).$ (Voir ci-dessous juste avant le lemme III.3.1.).

Pour $x \in \mathcal{P}$, on note $\Im(x) = \min_{i}(x_{i})$ et $i_{0}(x)$ l'indice (unique) qui réalise ce minimum.

Alors après le temps T_{ℓ} , le numéro du neurone qui sera le premier à décharger est $i_0(X^{T_{\ell}})$, noté i^{ℓ} , et $T_{\ell+1} = T_{\ell} + \Im(X^{T_{\ell}}) = T_{\ell} + X_{i_0}^{T_{\ell}}$.

En posant $Z(x) = x - \Im(x)$ 1, et en définissant comme équivalents deux vecteurs qui ont le même Z(x), on voit que pour $T_{\ell} \le t < T_{\ell+1}$, $x^{t} = x^{T_{\ell}} - (t - T_{\ell})$ 1 et que x^{t} reste équivalent à $x^{T_{\ell}}$: on a $Z(x^{t}) = Z(x^{T_{\ell}}) = Z(x^{T_{\ell}+1}) = x^{T_{\ell}+1}$, noté Z^{ℓ} dans la suite.

On associe au temps T_{l+1} , l'état du système juste après la décharge et on a donc

 $\mathbf{x}_{i}^{\mathsf{T}_{\ell+1}} = \mathbf{z}_{i}^{\ell} + \mathbf{U}_{\ell+1} \mathbf{1}_{i=i^{\ell}} + \boldsymbol{\theta} \mathbf{1}_{i\in\mathsf{V}(i^{\ell})},$

où V(i) est l'ensemble des voisins de i, sans y inclure i, inhibés par i.

Les processus $(X^{T_{\ell}})$ et (Z^{ℓ}) sont tous deux des chaînes de Markov, à temps discret. La chaîne (Z^{ℓ}) a pour ensemble d'états $\mathscr{P}_{o} = \{x \in \mathscr{G} \neq \exists i, x_{i} = 0\}$. Sa transition est notée Q.

Quant à $(x^{T_{\ell}})$, l'ensemble de ses états est $\mathscr{P}_{p} = \{x \in \mathscr{P} / \exists i, \forall j \in \mathbb{V}(i), x_{j} > \theta\}$, puisque les voisins d'un certain i, (celui qui vient de sauter) sont simultanément incrémentés de θ à chaque décharge.

13

Bien sûr, la chaîne $(X^{T_{\frac{p}{2}}})$ contient toute l'information du processus (X^{t}) , puisque la partie de trajectoire issue de $(X^{T_{\frac{p}{2}}})$ jusqu'à l'instant $T_{\frac{p}{2}+1}$ du prochain saut est déterministe.

La transition de cette chaîne de Markov $(X^{T_{\ell}})$, homogène dans le temps est P donnée par

$$P(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N, \mathbf{ay}_1, \mathbf{ay}_2, \dots, \mathbf{ay}_N)$$

$$= f(y_{i_{0}}) dy_{i_{0}} \otimes \begin{bmatrix} \mathbf{a} & \delta(y_{i} = x_{i} - x_{i_{0}} + \theta) \end{bmatrix}$$
(III.1.2)
$$\otimes \begin{bmatrix} \mathbf{a} & \delta(y_{i} = x_{i} - x_{i_{0}}) \end{bmatrix}$$

lorsque $i_0 = i_0(x)$.

Ses itérées sont P^2 , P^3 ,..., P^m ,..., la loi de $(X^{T_{\ell}})$ correspondant à la loi initiale μ est notée \mathbb{P}_{μ} (ou \mathbb{P}) lorsque cela ne prête pas à confusion. On note aussi \mathbb{P}_{μ}^{k} la loi de $X^{T_{k}}$ sous μ (notations usuelles $\mu \mathbb{P}^{k}$). On note aussi \mathbb{P}_{μ} la loi de (X^{t}) .

2. IRREDUCTIBILITE. APERIODICITE.

La loi \mathcal{F} admettant une densité f > 0 sur \mathbb{R}^+ , on peut clairement construire un ensemble de probabilité strictement positive de trajectoires de X^t menant un x quelconque de \mathcal{P} à toute boule ouverte B_g(y) de centre y et de rayon $\varepsilon > 0$. Cette construction se fait par exemple comme illustrée ci-dessous figure 6, pour 2 neurones

Figure 6

Précisons le cas général. Posons $Z^{\circ} = X^{\circ} - \mathcal{I}(X^{\circ})$. Le premier saut aura lieu au temps $T_1 = \mathcal{I}(X^{\circ})$ et au site $i_1 = i_0(X^{\circ})$ tel que $Z_{i_0}^{\circ} = 0$. On a $X^{T_1} = Z^{\circ} + U_1 \mathbb{1}_{i_1}^{\circ} + \theta \mathbb{1}_{U(i_1)}^{\circ}$ (notation évidente).

On peut choisir le tirage de U_1 de sorte que l'indice du 2^e saut soit $i_2 \neq i_1$: en posant $\mathfrak{M}(x) = \max_i(x_i) - \mathfrak{I}(x)$, on voit que pour tout $j \neq i_1$, $X_j^{T_1} \leq \mathfrak{M}(Z^0) + \theta$ et qu'il suffit que $U_1 > \mathfrak{M}(Z^0) + \theta$.

Alors au temps T2, on aura

 $x_{i_{1}}^{T_{2}} \ge U_{1} - m(Z^{\circ}) - \theta, \quad x_{i_{2}}^{T_{2}} = U_{2},$

 $x_j^{T_2} \leq m(Z^{o}) + 2\theta$ et ainsi de suite.

Si donc à chaque tirage, l'innovation U_j vérifie

 $U_j > N M(Z^0) + (1 + 2 + ... + N) \theta = N M(Z^0) + \frac{N(N+1)}{2} \theta$

on est assuré de définir une permutation σ de l'ensemble des entiers $\{1, \ldots, N\}$, ne dépendant que de Z^O et définissant l'ordre des sites qui sautent. Alors au temps T_N , chaque coordonnée $x_i^{T_N}$ s'écrit $U_{\sigma(i)} + \phi_i(Z^O)$, où $\phi_i(Z^O)$ est déterministe, ne dépend pas des tirages des U_i et est entièrement déterminée par Z^O .

On note U_{σ} le vecteur $U_{\sigma(i)}$, $\varphi(Z^{o})$ le vecteur $(\varphi_{i}(Z^{o}))$, ||x||la norme $\sup_{i} |x_{i}|$ et U > a pour $(U_{i} > a)$ pour tout i.

On peut résumer ce qui précède par le

 $\begin{array}{l|l} \hline \textbf{LEMME} & \text{III.2.1. Evolution déterministe.} \\ Soit & \mathsf{M}(\mathsf{Z}^{\mathsf{O}}) = \mathsf{N} \; \mathsf{M}(\mathsf{Z}^{\mathsf{O}}) \; + \; \frac{\mathsf{N}(\mathsf{N}+1)}{2} \; \theta \; . \; \text{Il existe une permutation déterministe} \\ \hline \textbf{ministe} \; \; \sigma(\mathsf{Z}^{\mathsf{O}}) \; de \; [1,\mathsf{N}], \; \text{ et un vecteur déterministe } \phi(\mathsf{Z}^{\mathsf{O}}) \; vérifiant \; \|\phi(\mathsf{Z}^{\mathsf{O}})\| \leq \mathsf{M}(\mathsf{Z}^{\mathsf{O}}) \; \text{ tels que, conditionnellement aux tirages} \\ U = (\mathsf{U}_1,\mathsf{U}_2,\ldots,\mathsf{U}_{\mathsf{N}}) > \mathsf{M}(\mathsf{Z}^{\mathsf{O}}), \; \text{ on ait } \; \mathsf{X}^{\mathsf{T}\mathsf{N}} = \mathsf{U}_{\sigma} + \phi(\mathsf{Z}^{\mathsf{O}}) \; \text{ avec } \; \mathsf{T}_{\mathsf{N}} \leq \mathsf{M}(\mathsf{Z}^{\mathsf{O}}), \\ (\text{ on a alors } \; \mathsf{T}_{\mathsf{N}+1} - \mathsf{T}_{\mathsf{N}} \leq \mathsf{M}(\mathsf{Z}^{\mathsf{O}}) + \|\mathsf{U}\|). \end{array}$

Comme $\mathscr{P}_0 = \bigoplus_{j} \mathscr{P} \cap \{x_j = 0\}$, on prend sur $\mathscr{P} \cap \{x_j = 0\}$ la mesure de Lebesgue sur les coordonnées différentes de j et δ_0 sur la j-ième coordonnée, et on définit ainsi (par somme directe) la mesure Λ sur \mathscr{P}_0 . LEMME III.2.2. Minoration.

Si K est un compact de $\overline{\Psi_0}$, il existe une constante $\gamma_K > 0$ telle que $Q^N(z, dz') \ge \gamma_K \mathbf{1}_K(z) \mathbf{1}_K(z') \Lambda(dz')$.

<u>Démonstration</u>. Il suffit de démontrer ceci pour $z'_1 = 0$. Soit $z' = (0, z'_2, ..., z'_N)$. D'après le lemme précédent, en N coups, on est en $(U_1 + \phi_1(z), ..., U_N + \phi_N(z))$ et on a le choix des U_i dès que $U_i > M(Z^0)$. On peut donc minorer $Q^N(z, dz')$ par

 $\begin{array}{l} 1 \\ z_1'=0 \end{array} \times \Lambda(dz') \times \int_A^B f(u) \prod_{j=1}^{n} f(u+z_j'-\varphi_j(z)+\varphi_1(z)) du, \end{array}$

en choisissant A et B pour réaliser les conditions du lemme III.2.1. Comme $z \in K$ compact, on peut majorer M(z) par une constante finie M(K). Remarquons qu'il faut $U_{\sigma(j)} = z'_{\sigma(j)} + U_1 - \varphi_{\sigma(j)}(z) + \varphi_1(z)$ pour "descendre" en z', et que de plus, comme

 $|\varphi_{\sigma(j)}(z)|, |\varphi_1(z)| < M(z) \le M(K)$, il suffit de prendre B > A > 3M(K)pour avoir $U_{\sigma(j)} > M(K)$ pour tout j (conditions du lemme) et pour que tous les arguments de l'expression intégrale soient positifs.

Quitte à remplacer f par $f \wedge 1$, on peut supposer (dans la minoration de l'expression intégrale), que f est intégrable, strictement positive et bornée. L'expression minorante, étant *continue* alors des $(z'_j - \varphi_j(z) + \varphi_1(z))$ est donc minorée par $C_K > 0$.

De plus, en faisant un "coup pour rien", on peut aussi arriver en n'importe quel z' à partir de z, en N+1 transitions au lieu de N. Illustrons ceci, dans le cas de deux neurones :

Figure 7

Le lemme III.2.2. entraine l'irréductibilité de la chaine Z¹ (avec A comme mesure de référence), et la dernière remarque entraine l'apériodicité.

En fait, pour tout $c \in]0,1[$, tout x initial

 $G^{C}(x,dy) = \sum c^{n}Q^{n}(x,dy)$ est équivalent à Λ , et on obtient donc

<u>COROLLAIRE</u> III.2.3. La chaîne (Z^{l}) est irréductible et apériodique. Pour que la chaîne soit récurrente (pour tout x, tout E tel que $\Lambda(E) > 0$, partant de x on repasse indéfiniment dans E) il suffit de montrer qu'il existe un x et un compact K ($\Lambda(K) > 0$) tel que

i) Soit, partant de x, on repasse infiniment dans K

ii) Soit $G(x,K) = \infty$.

(voir par exemple [REVUZ]).

On peut en déduire les mêmes propriétés pour la chaîne $(X^{T_{\ell}})$. Soit x et x' appartenant à un compact K de \mathscr{P}_{p} . Comme la loi conditionnelle après le premier saut ne dépend que de Z(x), en N coups, la chaîne (Z^{ℓ}) peut passer de z = Z(n) à z' pour z' susceptible de conduire à x' de \mathscr{P}_{p} : si x' = $(x'_{1}, \ldots, x'_{N}) \in \mathscr{P}_{p}$, il existe i tel que $x'_{j} > \theta$ pour $j \in V(i)$ et z' = (z'_{1}, \ldots, z'_{N}) peut conduire à x' dès lors que $z'_{i} = 0$, $z'_{j} = x'_{j} - \theta$ pour $j \in V(i)$ et $z'_{j'} = x'_{j'}$, pour $j' \neq i$ et j' $\in V(i)$, en tirant $U = x'_{i}$.

Alors en (N+1) étapes, on peut aller de x à x', avec probabilité minorée sur K.

Bien sûr, comme pour (Z^{ℓ}) , on peut aussi faire "un coup pour rien" et aller de x à x' en N+2 étapes. D'où

<u>COROLLAIRE</u> III.2.4. La chaîne $(X^{T_{\ell}})$ est irréductible, apériodique sur \mathscr{P}_{p} (muni de la mesure de Lebesgue λ). S'il existe un compact de potentiel infini, elle est récurrente dans tous les ensembles λ -positifs de \mathscr{P}_{p} . De même (X^{t}) est irréductible, apériodique sur \mathscr{P} , et la récurrence de $(X^{T_{\ell}})$ entraîne celle de (X^{t}) .

En effet, comme la chaîne $(X^{T_{\ell}})$ contient toute l'information du processus (X^{t}) , (X^{t}) a les mêmes propriétés que $(X^{T_{\ell}})$ sur son support \mathcal{P} .

17

3. <u>TEMPS DE RETOUR A ZERO.</u>

Intuitivement, la récurrence du processus correspond au fait que les neurones déchargent tous alternativement, c'est-à-dire que la loi de la v.a. $i^{\hat{k}} = i_0(x^{T_{\hat{k}}})$ du site où est réalisé $\min_i(X_i^{T_{\hat{k}}})$ charge indéfiniment tous les entiers de 1 à N. La récurrence positive est le fait que la "bascule" a lieu en un temps intégrable. Au contraire, lorsqu'un neurone i ne décharge plus, il ne "descend" jamais assez pour être à son tour minimum, il est surchargé et $X_i^t \longrightarrow +\infty$.

Soit i un site donné, d'état $x = X_i^0$ en t = 0, et notons τ la v.a. temps de retour de ce site à 0.

Pour $t < \tau$, $t < t + X_{i}^{t} = x + \theta \sum_{j \in \overline{V}(i)} \sum_{m} \mathbb{1}_{(T_{j,m} < t)}$ où $T_{j,m}$ est le m-ième temps de retour du site j à l'état 0.

Notons N_j(t) le nombre de retours à 0 du site j avant t :

$$N_{j}(t) = \sum_{m} \mathbf{1}_{T_{j,m} \leq t}$$

Dans le modèle initial, on s'est donné une unique suite U_k iid (\mathfrak{F}). On aurait pu tout aussi bien affecter à chaque site j une suite $U_m^{(j)}$ iid (\mathfrak{F}), ces suites étant indépendantes, réinitialisant l'état j à chacun de ses passages en 0, de sorte que, pour m > 1,

 $T_{j'(m+1)} - T_{j,m} > U_m^{(j)}$. (*)

Soit $S_m^{(j)} = U_1^{(j)} + \ldots + U_m^{(j)}$ et v_j le compteur associé : $\{v_j(t) \ge m+1\} = \{S_m^{(j)} \le t\}$. (*) donne $N_j(t) \le v_j(t)$.

On note que ν_j ne dépend pas de la loi initiale, et que $\frac{\nu_j(t)}{t} \xrightarrow{p.s.} 1/E(\mathcal{F}).$

<u>Remarque</u>. Soit N(t) le "compteur général" (N(t) > l+1) = {T_l < t}. Comme en T_l , $\Im(X^{T_l}) < U_l$, il est clair que N(t) > $\nu(t)$, compteur associé à la marche des U, soit lim inf $\frac{N(t)}{t} > 1/E(\mathcal{F})$ ou encore lim sup $\frac{T_l}{l} < E(\mathcal{F})$.

Comme $(t < \tau)$ implique $\left\{ 1 < \frac{x}{t} + \theta \sum_{j \in V(i)} \frac{\nu_j(t)}{t} \right\}$ $\{\tau = \infty\}$ est impossible si $\theta | V(i) | \neq E(\mathfrak{F}) < 1$, soit
LEMME III.3.1. Si le site i vérifie $\theta | V(i) | < E(F)$ alors, pour toute loi initiale, le temps de retour à 0 du site i est fini p.s.

<u>Démonstration</u>. Notons v le nombre |V(i)| de sites voisins de i. La même hypothèse $\theta v < E(\mathcal{F})$ va entraîner l'intégrabilité de τ (avec majoration exponentielle). Notons (abusivement) $\mathbb{P}_{\mathbf{X}}$ la probabilité sous une loi initiale donnant au site i la valeur initiale x, et ν la loi commune des ν_i .

Comme $\mathbb{P}_{\mathbf{x}}[\tau > t+\mathbf{x}] \leq \mathbb{P}[\mathbf{v} \sum_{j \in V(i)} \nu_{j}(t+\mathbf{x}) \geq t]$, on obtient comme majorant $\mathbf{v} \mathbb{P}[\nu(t+\mathbf{x}) \geq t/\nu\theta]$. Si [z] désigne "partie entière de z", il vient $\mathbb{P}_{\mathbf{x}}[\tau > t+\mathbf{x}] \leq \mathbf{v} \mathbb{P}[S_{\lfloor t/\nu\theta \rfloor - 1} \leq t+\mathbf{x}]$. Mais la variable (centrée) $\mathbb{U}-\mathbb{E}(\mathcal{F})$ est bornée à gauche et satisfait donc une inégalité de Cramer du type : pour tout $\alpha > 0$, il existe $\gamma > 0$ tel que

 $\mathbb{P}[S_m \leq m[E(\mathcal{F}) - \alpha]] \leq \exp - m\gamma .$

On en déduit que :

Soit $E(\mathcal{F}) = v\theta(1+\rho)$ avec $\rho>0$. On pose $\alpha = \rho v\theta/2$, et on note γ le nombre associé. Alors, pour $m \ge 2 (2+x/v\theta)/\rho$, si $(m+1)v\theta \le t \le (m+2)v\theta$, $\mathbb{P}_{x}[\tau \ge t+x] \le v \exp(-m\gamma)$. On peut donc énoncer $\left| \frac{\text{LEMME}}{\Gamma} \text{ III.3.2. Lorsque } \theta \le \theta_{0} = E(\mathcal{F})/|V(1)| \quad il \text{ existe des constantes} \right|$ A et B ne dépendant que de la loi \mathcal{F} et de θ telles que pour toute loi initiale μ donnant x comme état initial, $\mathbb{E}_{\mu}(\tau) \le A+Bx$ et $\mathbb{E}_{\mu}(\tau^{2}) \le A+Bx^{2}$.

La majoration $N_i(t) \le 1 + v_i(t)$ montre que

IV. REGIME STATIONNAIRE

 $\theta < \theta_{0}$.

1. <u>RECURRENCE POSITIVE POUR</u>

 $\theta < \theta_{0} = E(\mathcal{F})/|\mathcal{V}|$.

Nous prenons comme loi initiale $v = \mathfrak{F}^{\otimes N}$. On a

<u>LEMME</u> IV.1.1. Si $\theta < \theta_0$, la suite des probabilités $\mu_n = \frac{1}{n} \sum_{k=1}^{n} \mathbb{P}_{\nu}^k \quad \text{est tendue.}$

On en déduit immédiatement que toute probabilité adhérente à cette suite est une probabilité invariante de la chaîne, donc unique, équivalente à la mesure λ , et que la suite des itérées \mathbb{P}^k tend vers elle. La chaîne est bien récurrente positive.

<u>Preuve de IV.1.1.</u> Fixons un site i, et soit $T_{i,k}$ la suite des temps de retour à 0 du site i, (pour le processus X^{t^-}) avec la convention $T_{i,o} = 0$. Si $T_{i,k} \le s < T_{i,k+1}$, $X_i^s \le T_{i,k+1} - s$ donc $\int_{T_{i,k}}^{T_{i,k+1}} X_i^s \, ds \le \frac{1}{2} (T_{i,k+1} - T_{i,k})^2$. Mais, y compris pour k = 0, $X_i^{T_{i,k}}$ est de loi \mathcal{F} , de sorte qu'en utilisant le lemme III.3.2, où on pose $C = A + B E(\mathcal{F}^2)$ il vient

 $E_{\nu} \int_{0}^{T_{i,k}} X_{i}^{s} ds \leq C k/2.$ (IV.1.2)

Notons \mathcal{E}_{s} la variable $\sum_{i} X_{i}^{s}$. Si T_{ℓ} désigne la suite des instants de retour à 0 (tous sites confondus) comme $T_{i,\ell} > T_{\ell}$,

$$E_{\nu} \int_{0}^{T_{\ell}} \mathcal{E}_{s} ds \leq C N \ell/2. \qquad (IV.1.3)$$

Notons X_i^k la quantité $X_i^{T_k}$, $\mathcal{E}_k = \sum_i X_i^k$, et \Im_k le minimum des X_i^k . L'évolution de la chaîne entre passages en zéro donne :

 $T_{k+1} = T_{k} + \Im_{k} , \ x_{i}^{T_{k}+s} = x_{i}^{k} - s \text{ pour } 0 \le s \le \Im_{k} ,$ donc $\int_{T_{k}}^{T_{k+1}} \mathscr{E}_{s} \ ds \ge (\mathscr{E}_{k} - N \Im_{k}/2) \Im_{k} \ge \mathscr{E}_{k} \Im_{k}/2.$ Notons que $\mathcal{C}_{k+1} = \mathcal{C}_k - N \Im_k + |\nabla|\theta + U_{k+1}$, où (U_j) désigne la suite des innovations, indépendantes et de loi \mathcal{F} , de sorte que, pour $\alpha = \theta/(N+2)$, on a

si
$$\mathfrak{I}_k \leq \alpha$$
, $\mathfrak{E}_{k+1} \geq \mathfrak{E}_k$. (IV.1.4)

Supposons (<u>ler cas</u>) que $Max(J_k, J_{k+1}, ..., J_{k+N+2}) \ge \alpha$. Les formules précédentes montrent que $\int_{T_k}^{T_{k+N+3}} \mathcal{E}_s ds \ge \alpha \mathcal{E}_k/2$.

Mais parmi les instants $T_{k+1} \dots T_{k+N+2}$, l'un des sites a sauté au moins deux fois, de sorte que si on pose $W_{k+1} = Min\{U_{k+1}, \dots, U_{k+N+2}\}$, $T_{k+N+2} - T_k \ge W_{k+1}$.

Dans le <u>second cas</u>, $(Max(\Im_k, \ldots, \Im_{k+N+2}) < \alpha)$ on sait que $\mathcal{E}_{k+j} \geq \mathcal{E}_k$ (1 < j < N+2) donc $\int_{T_k}^{T_{k+N+3}} \mathcal{E}_s ds \geq \Im_k W_{k+1}/2$. Posons $\widetilde{\alpha}_{k+1} = \alpha \wedge W_{k+1}$. En combinant les deux minorations, il vient

$$\int_{T_{k}}^{T_{k+N+3}} \mathcal{E}_{s} \, ds \ge \tilde{\alpha}_{k+1} \, \mathcal{E}_{k}/2. \qquad (IV.1.5)$$

Notons que par construction, $\tilde{\alpha}_{k+1}$ est indépendant de l'évolution du processus jusqu'à T_k, et d'espérance 2 β > 0. Il vient donc :

Il existe $\beta > 0$ telle que, pour toute loi initiale

$$E \int_{T_{k}}^{T_{k}+N+3} \mathcal{E}_{s} ds > \beta E \mathcal{E}_{k} \quad (k > 0). \quad (IV.1.6)$$

Aussi bien, pour toute loi initiale

$$(N+3)E \int_{T_1}^{T_1+(j+1)(N+3)} \mathcal{E}_s ds \geq \beta \qquad \frac{1+j(N+3)}{\sum_{k=1}} E \mathcal{E}_k \ .$$

Combinant ceci avec IV.1.3, reprenant la définition de μ_n et notant $\mathcal E$ la variable ΣX_i , il vient

$$\int \mathcal{E} d\mu_{1+j(N+3)} \leq \left(\frac{C}{2\beta}\right) \left(\frac{(j+1)(N+3)+1}{1+j(N+3)}\right) N(N+3), \quad (IV.1.7)$$

qui prouve, C et N étant finis et $\beta > 0$ que

$$\int \mathcal{E} d\mu_n = O(1).$$

Prenant pour K_T le compact ($\mathcal{E} \leq T$), il vient $\mu_n(K_T) = O(1/T)$ qui prouve la tension des mesures. \Box

La chaîne étant récurrente dans tous les λ positifs de son espace d'états, on a déjà noté que le processus X^{t} l'est aussi dans tous les λ positifs de son système d'états. Bien entendu, il possède lui aussi une <u>probabilité</u> invariante, équivalente à λ : comme dans le début de ce paragraphe, il suffit de montrer que, pour la même mesure initiale, les

 $\mu_{t} = \frac{1}{t} \int_{0}^{t} \nu P_{s} ds \text{ sont tendues quand } t \neq \infty . \quad (IV.1.8)$ Soit A_{t} l'événement : {pour tout site i, $1 + N_{i}(t) \leq k_{t}$ } où k_{t} est l'entier $[2t/E(\mathcal{F})]$. Soit $Z_{t} = 1_{A_{t}} \int_{0}^{t} \mathcal{E}_{s} ds$.
Sur $A_{t}, T_{i,k_{t}} \geq t$ et d'après (IV.1.2),

 $E_{v}(Z_{t}) \le C N k_{t}/2 \le C N t/E[\$]$ (IV.1.9)

Soit (K_T le complémentaire du compact ($\mathcal{E} \leq T$).

L'inégalité de Markov montre que

 μ_{t} [C K_T] < P_V(A_t) + C N/(T E[\$]).

Mais (III.3.3) montre que, quand t tend vers l'infini, $P_{\nu}(A_{t})$ tend vers 0 et (IV.1.8) est prouvé.

Nous pouvons donc résumer

PROPOSITION IV.1.10. Si $\theta < E(\mathfrak{F}) / |V|$ et $E(\mathfrak{F}^2) < \infty$, les processus (X^t) et $(X^{T_{\underline{U}}})$ sont ergodiques, irréductibles, apériodiques, récurrents positifs.

On remarquera qu'on n'a pas utilisé dans la minoration le fait qu'un i influence ou soit influencé par ses voisins.

En fait, la seule hypothèse est que si $v = \sup | V(i) |$,

 $v \theta < E[F]$ car cette hypothèse assure que tous les $T_{i,k}$

sont finis p.s. !

2. LOI INVARIANTE.

La loi invariante m de la chaîne
$$X^{T_{\ell}}$$
 vérifie

$$m(dy) = \int_{x \in \mathcal{P}_{p}} m(dx) P(x, dy),$$
et par (III.1.1) (en posant $A_{i} = \{x \in \mathcal{P}_{p} / x_{i} = \min(x_{j})\})$

$$m(dy) = \sum_{i_{0}} \int_{x \in A_{i_{0}}} m(dx) f(y_{i_{0}}) dy_{i_{0}} \otimes [\underset{i \in \mathcal{V}(i_{0})}{\otimes} \delta(y_{i} = x_{i} - x_{i_{0}} + \theta)]$$

$$\otimes [\underset{i \in \mathcal{V}(i_{0}) \cup \{i_{0}\}}{\otimes} \delta(y_{i} = x_{i} - x_{i_{0}})]$$

$$= \sum_{i_{0}} f(y_{i_{0}}) dy_{i_{0}} \int_{x_{i_{0}}} m(dx_{1}, dx_{2}, \dots, dx_{N})$$
avec
$$x_{i} = x_{i_{0}} + y_{i} - \theta \quad \text{si} \quad i \in \mathcal{V}(i_{0}) \cup \{i_{0}\}.$$

Cette équation, discrétisée, permet de déterminer la mesure stationnaire dans des cas particuliers.

On peut en déduire les équations vérifiées par les lois marginales

$$m(dy_{i}) = \int_{y_{i}} pour \quad i' \neq i \qquad m(dy_{1}, \ldots, dy_{N}).$$
sůr

On a bien s

$$y_{i'} > \theta$$
 si $i' \in V(i)$

et

ave

$$y_i > 0$$
 si $i' \in V(i) \cup \{i\}$

$$m(dy_i) = f(y_i) dy_i m(A_i) + \sum_{i} m(A_i \cap \partial B_i) \times \delta(y_i > \theta)$$

où ∂B_i est défini par les inégalités

$$x_i' + y_i - \theta < x_i'' < x_i' + y_i - \theta + dy_i$$

pour $i^{"} \in V(i)$.

La symétrie du comportement de tous les neurones implique que $m(A(i)) = \frac{1}{N} .$

On a donc :

$$E(X_{i}) = \int_{y_{i}} m(dy_{i}) y_{i} = \frac{1}{N} E(\mathcal{F}) + \int_{y_{i} > \theta} \sum_{i'} m(A_{i'} \cap \partial B_{i'}) (IV.2.1)$$

Quant au processus (X^t) , sa loi invariante, notée aussi m, a une densité g par rapport à la mesure de Lebesgue sur $\mathscr S$ et on peut écrire une équation de bilan, vérifiée par la fonction g :

$$\sum_{i} \frac{\partial g}{\partial x_{i}} + \sum_{i_{o}} g(x'_{1}, x'_{2}, \dots, x'_{N}) f(x_{i_{o}}) = 0 \qquad (IV.2.2)$$

avec $x'_{i_{o}} = 0, x'_{i} = x_{i} - \theta$ pour $i \in V(i_{o})$
et $x'_{i} = x_{i}$ pour $i \notin V(i_{o}) \cup \{i_{o}\}.$

Remarque.

On observe des auto-corrélations peu significatives de ces intervalles, ce qui s'explique par le fait qu'à chaque décharge, la variable U est indépendante de l'état du réseau. Quant aux inter-corrélations des activités de deux neurones, mesurées par exemple entre les nombres de décharges des deux neurones pendant des fenêtres successives de temps, elles sont faibles quand θ est petit, et augmentent avec θ . Voir les Appendices 1 (2 neurones, dernière colonne) et 3 (n² neurones).

3. ETUDE DE L'INTERVALLE INTER-SPIKE D'UN NEURONE DANS UN RESEAU DE DEUX NEURONES OUAND $\theta < \theta_{o}$.

On considère le processus (X^t) dans le cas de deux neurones, notés 1 et 2, et on s'intéresse aux intervalles inter-spikes du neurone 2. Dans ce cas $\theta_0 = E($)$ puisque |V| = 1.

Supposons qu'à l'instant t_0^- , l'état du système est $(x_0^-, 0)$. On conditionne par $x_0^- = (x_0^-, 0)$.

	to	t _o +
Etat :	(x ₀ ,0)	(x _o +0,u _o)

i) Si $u_0 < x_0 + \theta$, la prochaine décharge de 2 a lieu à $t_0 + u_0$

$$\begin{array}{c|c} t_1^- = t_0^- + u_0 \\ (x_0^- + \theta^- u_0^-, 0) \end{array} \qquad \begin{array}{c} t_1^+ \\ (x_0^- - u_0^- + 2\theta, u_1^-) \end{array}$$

Sinon, la prochaine décharge est du neurone 1 et a lieu à $t_o+x_o+\theta$ en $(0,u_o-x_o-\theta)$ et (u_1,u_o-x_o) après le saut.

ii) Si $u_1 > u_0 - x_0$, la prochaine décharge de 2 a lieu à $t_0 + x_0 + \theta + u_0 - x_0 = t_0 + \theta + u_0 = t_2$ avec

 $\begin{array}{c|c} t_{2}^{-} & t_{2}^{+} \\ (u_{1}-u_{0}+x_{0},0) & (u_{1}-u_{0}+x_{0}+\theta,u_{2}) \end{array}$

Sinon, la décharge suivante est celle du neurone 1, et a lieu au temps $t_0+x_0+\theta+u_1$ en (0, $u_0-x_0-u_1$) et $(u_2,u_0-x_0-u_1+\theta)$ après le saut.

iii) Si $u_2 > u_0 - x_0 - u_1 + \theta$, la prochaine décharge de 2 a lieu à $t_0 + x_0 + \theta + u_1 + u_0 - x_0 - u_1 + \theta = t_0 + u_0 + 2\theta = t_3$ avec

$$t_{3}^{-1}$$
 | t_{3}^{-1}
 $(u_{2}-u_{0}+x_{0}+u_{1}-\theta,0)$ | $(x_{0}-u_{0}+u_{1}+u_{2},u_{3})$ après le saut.

Sinon, la prochaine décharge est celle du neurone 1, a lieu au temps $t_0+x_0+\theta+u_1+u_2$ en $(0,u_0-x_0-u_1-u_2+\theta)$ et $(u_3,u_0-x_0-u_1-u_2+2\theta)$ après le saut.

On voit que le temps τ séparant deux décharges consécutives du neurone 2 s'écrit

$$\tau = U_0 + K\theta \qquad (IV.3.1)$$

où U_o est une v.a. de loi F et K une v.a. entière.

On voit que

$$\mathbb{P}(K>0) = \mathbb{P}(U_{o}>x_{o}+\theta)$$
$$\mathbb{P}(K>1) = \mathbb{P}(U_{o}>x_{o}+\theta, U_{1}< U_{o}-x_{o})$$

$$\mathbb{P}(K>k) = \mathbb{P}(U_{o}>x_{o}+\theta, U_{1}
$$= \mathbb{P}(U_{o}>x_{o}+\theta, U_{1}$$$$

Si l'on pose $U' = U-\theta$ (EU' = EU- θ)

$$\mathbb{P}(K > k) = \mathbb{P}(U_{o} > x_{o} + \theta, U_{1} < U_{o} - x_{o}, U_{1} + U_{2} < U_{o} - x_{o}, \dots, U_{1} + U_{2} + \dots + U_{k} < U_{o} - x_{o})$$
$$= \mathbb{P}(U_{o} > x_{o}, U_{1} < U_{o} - x_{o}, \dots, U_{1} + U_{2} + \dots + U_{k} < U_{o} - x_{o}). \qquad (IV.3.2)$$

Or $U'_1 + \ldots + U'_k$ est une marche aléatoire telle que $EU'_i = EU - \theta = \theta_0 - \theta$ (2 neurones).

On retrouve le fait que $K \rightarrow +\infty$ lorsque EU'<O, c'est-àdire quand $\theta > \theta_0$.

Au contraire si $\theta < EU = \theta_0$, EU' > 0, et

 $\mathbb{P}(K=k) = \mathbb{P}((U'_{o} > x_{o}) \text{ et } k \text{ est le premier entier strictement positif tel}$ $que U'_{1} + \ldots + U'_{k} > U'_{o} - x_{o}) \qquad (IV.3.3)$

La loi de K est donc complètement déterminée, conditionnellement à la valeur x_o du potentiel du neurone 1 à l'instant immédiatement antérieur à la décharge du neurone 2 ,considéré).

On a

$$E_{\mathbf{x}_{0}}(\mathbf{K}) = \sum_{\mathbf{k}} \mathbf{P}(\mathbf{K} > \mathbf{k})$$

$$= \sum_{\mathbf{k}} \int_{\mathbf{x}_{0} + \theta}^{+\infty} f(\mathbf{u}_{0}) d\mathbf{u}_{0} \int_{0}^{\mathbf{u}_{0} - \mathbf{x}_{0}} f(\mathbf{u}_{1}) d\mathbf{u}_{1} \dots \int_{0}^{-u_{1} - u_{2} - \dots - u_{k-2}} \int_{0}^{-u_{1} - u_{2} - \dots - u_{k}} \int_{0}^{-u_{1} - \dots - u_{k}} \int_{$$

Lorsque K=k, l'intervalle τ prend la valeur u_o+k θ avec k>0 lorsque u_o>x_o+ θ .

En $t_{k+1} = t_0 + u_0 + k\theta$, on obtient l'état $(u_1 + \ldots + u_k - u_0 + x_0 - (k-1)\theta, 0)$ et comme on est en régime stationnaire, on peut écrire

 $U_1 + \ldots + U_K - U_o + X_o - (K-1) \theta \sim X_o$ ou encore

 $v'_1 + \ldots + v'_K - v'_o + x_o \sim v_o$

En particulier

$$E (U'_1 + \ldots + U'_K) = EU'_0 = \theta_0 - \theta$$

et comme K est un temps d'arrêt,

$$(EK)$$
 $(EU') = (EU'_{o})$ d'où $EK = 1$

d'où

PROPOSITION IV.3.4. (Cas de 2 neurones)

En régime stationnaire, l'intervalle inter-spike moyen est

EU+ θ (quand $\theta < \theta_0 = EU$).

Ce résultat peut aussi se retrouver comme au paragraphe suivant.

4. INTERVALLE INTER SPIKE D'UN NEURONE OUAND

 $\theta < \theta_{o}$. <u>CAS GENERAL. EQUATION LIMITE.</u>

Soit τ le temps de retour à 0 du site i : $\tau = U + \theta \sum_{j \in U(1)} N_j(\tau)$, et donc en initialisant par $\nu = (\mathcal{F})^{\otimes N}$, $T_{i,k} = U_0^i + \ldots + U_{k-1}^i + \theta \sum_{j \in U(1)} N_j(T_{i,k})$.

Mais l'ergodicité du processus entraîne que $\frac{T_{i,k}}{k}$ converge p.s. vers une limite s_i (0 < s_i < ∞). Comme $\frac{U_o^i + \ldots + U_{k-1}^i}{k} - E(\mathcal{F}) \xrightarrow{p.s} 0$ et que N_i ($T_{i,k}$) = k, il vient

$$E(\mathcal{F}) \xrightarrow{N_{i}(T_{i,k})}{T_{i,k}} + \theta \sum_{j \in \mathcal{V}(i)} \frac{N_{j}(T_{i,k})}{T_{i,k}} \xrightarrow{p.s} 1.$$

Mais $\frac{N_i(t)}{t}$ converge p.s. ; en notant $\frac{1}{\tau_i}$ sa limite, les équations limites sont

$$1 = E(\mathcal{F}) \frac{1}{\tau_{i}} + \theta \sum_{j \in \mathcal{V}(i)} \frac{1}{\tau_{j}}, \forall i \qquad (IV.4.1)$$

Ces convergences ont lieu en fait quelle que soit la mesure initiale. τ_i est donc l'espérance du temps de retour à 0 du site i, en régime stationnaire.

En particulier dans le cas homogène (|V(i)| = v), ne dépendant pas de i),

$$\tau_{i} = E(\mathcal{F}) + \theta v \qquad (IV.4.2)$$

PROPOSITION IV.4.3. (Cas de N neurones, avec voisinages homogènes). En régime stationnaire ($\theta < \theta_0 = E(\mathcal{F})/|\mathcal{V}|$), l'intervalle interspike moyen est $E(\mathcal{F}) + |\mathcal{V}|\theta$.

V. DIVERGENCE : CAS DE DEUX NEURONES.

Dans ce paragraphe $\theta > \theta_0 = E(\mathfrak{F})$ (N = 2, $|\mathfrak{V}| = 1$).

1. ETUDE DE $(X_2 - X_1)^{T}$.

Rappelons qu'en toute situation les T_{ℓ} sont finis p.s.

Dans le cas de deux neurones, c'est le signe de $(X_2-X_1)^{T_{\ell}}$ qui indique la nature de la décharge suivante : le neurone 1 (resp. 2) décharge si $(X_2-X_1)^{T_{\ell}} > 0$ (resp. < 0).

Considérons tout d'abord le processus à temps discret $Z^{\ell} = (X_2 - X_1)^{T_{\ell}}$ (et non $X^{T_{\ell}} - \min(X^{T_{\ell}})$ comme au § III).

On a $Z^{\ell+1} = Z^{\ell} + \text{signe}(Z^{\ell})(\theta - U_{\ell+1})$ où $U_{\ell+1}$ est une v.a. de loi \mathfrak{F} , indépendante de Z^{ℓ} : en effet, la différence $(X_2 - X_1)^{t}$ est constante, égale à Z^{ℓ} , pour $T_{\ell} \leq t < T_{\ell+1}$ et à l'instant de la décharge $T_{\ell+1}$, on ajoute θ à la plus grande des deux composantes et une v.a. $U_{\ell+1}$ de loi \mathfrak{F} à l'autre (qui est nulle à cet instant).

La situation est donc particulièrement simple : l'espérance du saut de Z^L est du signe contraire à Z^L si et seulement si E(F) - 0>0

Figure 8.

On sait d'après le § IV que si $\theta < \theta_0$, $(X^{T_{\ell}})$ et (X^t) sont des processus ergodiques.

Reste à étudier le comportement de $(X^{T_{\ell}})$ et (X^{t}) lorsque $\theta > E(F)$.

THEOREME V.1.1. Cas de deux neurones, $\theta > E(F)$. Lorsque $\theta > E(F)$: i) $|X_2-X_1|^T et |X_2-X_1|^t$ tendent vers $+\infty$ ps, et plus précisément ii) Pour presque toute trajectoire ω , quand $t \Rightarrow +\infty$, $(X_2-X_1)^t$ converge vers $+\infty$ ou vers $-\infty$.

Démonstration

i) Notons $\mu = E(\mathfrak{F})$, $\sigma^2 = \text{Var}(\mathfrak{F})$. Pour $U \sim \mathfrak{F}$, on pose $V=\theta-U$, $EV = \theta-\mu = \alpha > 0$, $Var V = \sigma^2$. On note encore $Z^{\ell} = (X_2-X_1)^{T_{\ell}}$. On sait que $Z^{\ell+1} = Z^{\ell} + \text{sgn}(Z^{\ell}) (\theta-U_{\ell+1})$ avec $U_{\ell+1}$ indépendante de Z^{ℓ} , et de loi \mathfrak{F} .

De
$$Z^{\ell+1} = Z^{\ell} + \operatorname{sgn} (Z^{\ell}) \cdot V_{\ell+1}$$
, on obtient
 $|Z^{\ell+1}| = |\operatorname{sgn} (Z^{\ell}) (|Z^{\ell}| + V_{\ell+1})|$
 $= ||Z^{\ell}| + V_{\ell+1}|$.

 $|Z^{\ell}|$ est Z^{ℓ} -mesurable. On note E^{ℓ} l'espérance conditionnelle relativement à Z^{ℓ} .

Alors
$$E(|Z^{\ell+1}|/Z^1,...,Z^{\ell}) = E^{\ell}(|Z^{\ell+1}|) = E^{\ell}||Z^{\ell}| + V_{\ell+1}|$$

> $|E^{\ell}(|Z^{\ell}| + V_{\ell+1})| = |Z^{\ell}| + \alpha > |Z^{\ell}|$

Donc $|Z^{\ell}|$ est une sous-martingale positive.

Comme E
$$(|Z^{l+1}|) = E (E^{l} |Z^{l+1}|)$$

on a $E(|Z^{\ell+1}|) \ge E(|Z^{\ell}|) + \alpha$.

Donc la suite $E(|Z^{\ell}|) \ge l\alpha$, est croissante et tend vers + ∞ .

D'autre part, la sous-martingale $(|Z^{l}|)$ se décompose (Décomposition de Doob) en la somme d'une martingale intégrable (M_{l}) et d'un processus croissant (A_{l}) , soit

$$|Z^{\ell}| = M_{\ell} + A_{\ell}.$$

Cette décomposition est unique si l'on prend $A_{\rm o}=0$ et $M_{\rm o}=|Z^{\rm o}|\,.$

Ces variables sont définies par

$$A_{\ell+1} - A_{\ell} = \Delta A_{\ell} = E^{\ell} (|Z^{\ell+1}| - |Z^{\ell}|)$$

= $E^{\ell} (|Z^{\ell+1}|) - |Z^{\ell}|$
> α ,

et $M_{\ell+1} - M_{\ell} = \Delta M_{\ell} = |Z^{\ell+1}| - E^{\ell} (|Z^{\ell+1}|)$. On a donc $A_{\ell} \ge \ell \alpha$ et $A_{\ell} \xrightarrow{P.S.} + \infty$ quand $\ell \ge +\infty$.

Reste à étudier le comportement de la martingale M_{ℓ} .

La sous-martingale M_l^2 , intégrable puisque la loi $\mathscr F$ est de carré intégrable, se décompose aussi en $M_l^2 = m_l + B_l$, où (m_l) est une martingale intégrable et B_l un processus croissant.

On a
$$E^{\ell} (\Delta M_{\ell}^{2}) = E^{\ell} ((|Z^{\ell+1}|)^{2}) - (E^{\ell} (|Z^{\ell+1}|))^{2}$$

 $E^{\ell} (|Z^{\ell} + \operatorname{sgn} (Z^{\ell}) V_{\ell+1}|^{2}) - (E^{\ell} |Z^{\ell} + \operatorname{sgn} (Z^{\ell}) V_{\ell+1}|)^{2}$
 $\leq E^{\ell} (|Z^{\ell} + \operatorname{sgn} (Z^{\ell}) V_{\ell+1}|^{2}) - (E^{\ell} (Z^{\ell} + \operatorname{sgn} (Z^{\ell}) V_{\ell+1}))^{2}$

puisque $|EX| \leq E |X|$.

$$= (Z^{\ell})^{2} + 2 (\operatorname{sgn} Z^{\ell}) \cdot Z^{\ell} \cdot \operatorname{EV}_{\ell+1} + E [(V_{\ell+1})^{2}]$$

- $(Z^{\ell})^{2} - 2 (\operatorname{sgn} Z^{\ell}) \cdot Z^{\ell} \cdot \operatorname{EV}_{\ell+1} - E [(V_{\ell+1})]^{2}$

Comme $B_{\ell+1} - B_{\ell} = E^{\ell} (M_{\ell+1}^2) - M_{\ell}^2 = E^{\ell} (\Delta M_{\ell}^2)$ on obtient $B_{\ell} \leq \ell \sigma^2$.

Alors (voir NEVEU, § VII.2),

= Var V = σ^2 .

sur $(B_{\infty} < +\infty)$, M_{ℓ} converge presque sûrement vers une limite finie sur $(B_{\infty} = +\infty)$, $M_{\ell} / \sqrt{B_{\ell}}$ ln $(B_{\ell}) \xrightarrow{p.s.} 0$ quand $\ell > +\infty$, et donc $M_{\ell} = o$ $(\sqrt{\ell} \ln(\ell))$ p.s.

Dans les deux cas, la sous-martingale $|Z|^{\ell}$ tend presque sûrement vers + ∞ , puisque $A_{\ell} \rightarrow + \infty$ p.s. avec $A_{\ell} \geq \ell \alpha$ et que $M_{\ell}/A_{\ell} \xrightarrow{p.s.} 0$. Comme $(X_2-X_1)^{t}$ est égale à Z^{ℓ} pour $T_{\ell} < t \leq T_{\ell+1}, |X_2-X_1|^{t} \xrightarrow{p.s.} + \infty$ quand $n \rightarrow + \infty$. ii) Reste à montrer que la probabilité que $Z^{\ell} = (X_2 - X_1)^{T_{\ell}}$ change de signe infiniment souvent est nulle,

Or $|Z^{\ell}| = A_{\ell} (1 + \frac{M_{\ell}}{A_{\ell}})$ avec $A_{\ell} \ge \ell \alpha$ et $\frac{M_{\ell}}{A_{\ell}} \ge 0$. Donc il existe β (0< $\beta<\alpha$) et L(ω), tels que $\forall \ell > L(\omega)$, $|Z^{\ell}| \ge \ell \beta$.

La probabilité d'un changement de signe, quand $|Z^{\ell}| \ge l\beta$, est majorée par

$$\mathbb{P} (|V_{l+1}| > l\beta) < \frac{\mathbb{E}(V_{l+1}^2)}{l^2 \beta^2}$$

qui est le terme général d'une série convergente. Donc d'après le lemme de Borel-Cantelli, $Z^{\hat{k}}$ ne peut changer de signe infiniment souvent : il n'y a pas d'oscillations.

Il en est de même pour $(X_2-X_1)^t$. Mais alors pour chaque trajectoire, il existe un temps $T(\omega)$ après lequel $(X_2-X_1)^t$ garde un signe constant, et tend donc soit vers + ∞ , soit vers - ∞ d'après le i). \Box

2. <u>COMPORTEMENT DE</u> X^t.

Reste à montrer que lorsqu'une des composantes de (X^t) tend vers $+\infty$, l'autre converge en loi.

PROPOSITION V.2.1. Cas de deux neurones. Quand $\theta > \theta_0 = E(\mathcal{F})$, sur presque toute trajectoire, une des deux composantes tend vers $+\infty$, l'autre converge en loi vers la loi propre définie par la loi \mathcal{F} .

<u>Démonstration</u>. Pour chaque trajectoire, d'après V.1.1, une des deux composantes tend vers $+\infty$, puisque l'autre est positive.

Soit ω une trajectoire sur laquelle $X_1^t \longrightarrow +\infty$. Soit $\tau_A(\omega)$ le temps d'entrée dans $(X_1(\omega) > A)$ et E_k l'événement $U_1 + U_2 + \ldots + U_k - k\theta < A - \theta$. Tant que E_1, E_2, \ldots, E_k sont réalisés, c'est le neurone (2) qui décharge.

On a $\mathbb{P}(\bigcap_{k=\tau_{A}(\omega)}^{+\infty} E_{k}) > \varphi(A)$ où φ est une certaine fonction de A avec $\varphi(A) \longrightarrow 1$ quand A $\longrightarrow +\infty$.

En effet $\mathbb{P}(\bigcup_{k \geq \tau_A(\omega)} C E_k) \leq \sum_{k} \mathbb{P}(C E_k)$. Mais $\exists k_0, \exists C$ tel que $k \geq k_0$ entraine

$$\mathbb{P}\left(\frac{U_1 + \ldots + U_k - kE(\mathcal{F})}{k} > \theta - E(\mathcal{F}) + \frac{A - \theta}{k}\right)$$

$$\leq \mathbb{P}\left(\frac{U_1 + \ldots + U_k - kE(\mathcal{F})}{k} > \theta - E(\mathcal{F})\right) \leq C \exp\left(-kh(\theta - E\mathcal{F})\right)$$

où h est la transformée de Cramer de la loi F, qui existe du côté gauche puisque U est bornée à gauche.

Pour $k < k_0$, $\mathbb{P}(U_1 + \ldots + U_k - k\theta > A - \theta) \leq \varphi_k(A)$ pour une certaine fonction φ_k .

Alors
$$\mathbb{P}(\bigcup_{k \ge \tau_{A}(\omega)} C E_{k}) \le k_{o} \max_{k} \varphi_{k}(A) + C \sum_{k_{o}}^{+\infty} e^{-kh(\theta - ET)}$$

Donc pour tout a, il existe K tel que $k_0 > K \implies$ le deuxième terme $< \frac{a}{2}$ et il existe A_0 tel que $A > A_0 \implies$ le premier terme avec $k_0 = K$ est inférieur à $\frac{a}{2}$. D'où la propriété annoncée. Donc sur $E_A^{\infty} = \bigcap_{k > \tau_A} E_k$, la loi limite de (X_2^t) conditionnellement à E_A^{∞} tend vers la loi propre de X_2 , puisque E_A^{∞} est asymptotiquement de probabilité 1. \Box

On trouvera dans l'Appendice 1, les résultats de simulations menées pour différentes lois F, et différentes valeurs de 0.

VI. DIVERGENCE. CAS GENERAL.

 $\theta > \theta_0 = E (\mathcal{F})/|\mathcal{V}|.$

1. STABILITE.

On constate dans les simulations que θ_0 est sous-estimé : ceci s'explique si l'on considère la démonstration des propositions III.3.1. et III.3.2 : on a majoré le nombre de décharges des voisins d'un neurone i par la situation où ils déchargeraient selon leur loi propre (c'est-à-dire avec la fréquence $\frac{1}{E(\mathfrak{F})}$ au lieu de $\frac{1}{E(\mathfrak{F})+\theta|V|}$).

Lorsque $\theta > \theta_0$, lorsqu'il y a divergence, apparaissent des "cartes" de neurones inhibés et de neurones actifs : certaines diffé rences tendent vers + ∞ . On trouvera dans l'Appendice 2 les résultats de simulations menées à partir d'états initiaux tirés suivant la loi $\mu = {\mathcal{F}}^{\otimes n^2}$ et différentes configurations divergentes, obtenues suivant la forme de V et la valeur de θ .

Une "carte" stable de neurones actifs et inhibés (c'est-à-dire de sites où $X_j^t \Rightarrow + \infty$ et de sites où X_i^t reste borné) définit une partition du réseau en deux sous-ensembles E et F (actifs, inhibés) tels que à partir d'un certain temps T, les neurones qui déchargent appartiennent tous à E.

On cherche un critère de "stabilité asymptotique" d'une carte donnée.

On suppose que, pour tout i de E, $V_E(i) = \{i' \in E/i \in V(i')\}$ a le même cardinal v et que pour tout j de F, $W_E(j) = \{i \in E/j \in V(i)\}$ est non vide et a un cardinal w_i .

Remarquons tout de suite que si $|W_E(\mathbf{j})| = 0$ pour un certain site, nécessairement j devient actif au bout d'un temps fini, puisqu'il décroît de manière déterministe sans jamais être inhibé.

D'après les résultats démontrés au § IV, si

|--|

il y a récurrence du processus restreint à E et en notant $N_i(t)$ le processus de comptage au site i (qui compte les décharges du neurone i, avant l'instant t), pour toute mesure initiale μ sur E, et pour tout site i,

$$\frac{N_{i}(t)}{t} \xrightarrow{p.s.} \frac{1}{E(\mathcal{F}) + \theta v} \cdot$$

Alors pour $j \in F$, on définit

$$Y_{j}(t) = \theta \sum_{i \in W_{E}(j)} N_{i}(t)$$
$$\frac{Y_{i}(t)}{t} \xrightarrow{p.s.} \frac{\theta w_{j}}{E(\mathcal{F}) + \theta v}.$$

Alors si

$$\forall j \in F, \ \theta(w_j - v) > E(F)$$

il existe t_o (dépendant de μ) tel que

 \mathbb{P}^{μ} ($\forall j \in F$, $Y_{i}(t) > t$) $\geq 1-\varepsilon$.

En tirant les valeurs initiales X_j^0 sur les sites $j \in F$ suivant une loi ν telle que $X_j^0 > 2 t_p$, $\forall j$, (définissant ainsi une mesure $\mu + \nu$ sur $E \cup F$), on assure qu'aucune décharge n'aura lieu dans F avant le temps t_o (pour $t < t_o$, $X_j^t > 2 t_o - t_o$, $\forall j \in F$).

Alors pour tout $\varepsilon > 0$, il existe une mesure initiale $\mu + \nu$ sur $E \cup F$, telle qu'avec probabilité $(1-\varepsilon)$, $(X_i^t)_{i \in E}$ est un processus récurrent et $(X_j^t)_{j \in E} \rightarrow +\infty$ quand $t \rightarrow +\infty$.

Comme tout état est atteignable en N+1 transitions, (lemme III.2.1 et corollaire III.2.4.) on obtient la

PROPOSITION VI.I.I.

Soit une partition E,F du réseau, avec
$$\begin{split} &\mathbb{V}_{E}(i) = \{i' \in E/i \in \mathbb{V}(i')\} \quad pour \ i \in E, \\ &\mathbb{W}_{E}(j) = \{i \in E/j \in \mathbb{V}(i)\} \quad pour \ j \in F, \\ &|\mathbb{V}_{E}(i)| = v \quad , \quad \mathbb{W}_{E}(j)| = w_{j} > 0, \ \forall j \in F. \end{split}$$

Alors à condition que $\theta v < E(\mathfrak{F}) < \theta(w_j^{-}v)$, $\forall j \in F$, il y a une probabilité positive que le processus $(X_i^t)_{i \in E}$ soit récurrent et que $(X_j^t) \xrightarrow{p.s.} + \infty$ quand $t \rightarrow + \infty$, pour tout $j \in F$.

REMARQUES .

et

1) Si E est un ensemble sur lequel $(X^t)_E$ est récurrent (sup $|V_E(i)| \theta < E(F)$), alors E "absorbe" tout point j de F tel i $\in E$ que $w_j \theta < E(F)$. Une situation (E,F) stable est nécessairement saturée pour

$$\sup_{i \in E} |\mathcal{V}_{E}(i)| \ \theta < E \ (\mathcal{F})$$
(VI.1.2)

et vérifie donc

$$(\inf_{j} |W_{E}(i)| - \sup_{i} |V_{E}(i)|) \theta > E(\mathcal{F})$$
(VI.1.3)

(cela implique en particulier 2 sup $|\mathcal{V}_{E}(i)| < \inf_{j} |\mathcal{W}_{E}(j)|$).

Il y aura bascule et instabilité si l'une de ces deux conditions n'est pas réalisée.

Le cas $|V| \theta < E$ F correspond à $w_j = v = |V|$, et à la récurrence sur E tout entier.

2) La largeur d'une bande de neurones de F est limitée par la taille du voisinage V: tout site de F doit être inhibé par au moins un site de E: $w_j > 0 \quad \forall j \in F$ et $w_j > v$.

2. <u>EXEMPLES DE SITUATIONS LIMITES.</u>

Le réseau sous-jacent est un tore, dont on figure une image locale - qu'il faut imaginer périodique sur le tore. Bien entendu tout translatée d'une situation limite en est une.

On note × les points de E, • les points de F.

On note $\theta_1 = \sup_j \frac{Ef}{w_j - v}$, $\theta_2 = \frac{Ef}{v}$ et (E,F) est stable pour $\theta_1 < \theta < \theta_2$.

a) $|\Psi| = 4$ $U = \circ$ \times \circ 1) $\begin{pmatrix} \times & \circ & \times & \circ \\ \circ & \times & \circ & \times \\ \times & \circ & \times & \circ \\ \circ & \times & \circ & \times \end{pmatrix}$ 2) $\begin{pmatrix} \times & \circ & \circ & \times \\ \circ & \times & \circ & \circ \\ \circ & \circ & \times & \circ \\ \circ & \circ & \times & \circ \\ \times & \circ & \circ & \times \end{pmatrix}$ V = 0 $w_{j} = 4$ $\theta_{1} = \frac{E(\mathfrak{F})}{4}$ $\theta_{2} = +\infty$ v = 0 $w_{j} = 2$ $\theta_{1} = \frac{E(\mathfrak{F})}{2}$ $\theta_{2} = +\infty$

<u>CUMMENTAIRE</u> : Si le tore étudié est $T = \mathbb{Z}/2m \times \mathbb{Z}/2m'$, la forme particulière des voisinages fait que le réseau se partitionne en damier : $\mathbb{T} = \mathbb{E} + \mathbb{F}$ avec $\mathcal{V}(i) \subset \mathbb{E}$ pour $i \in \mathbb{F}$ et vice-versa. Et cependant, on trouve une situation limite (la 2)) qui <u>n'est pas un damier</u>. Noter que pour $\theta > \frac{\mathbb{E}(\mathfrak{F})}{2}$, les deux types sont des états finaux.

1)	$\begin{pmatrix} \circ & \circ & \circ & \circ \\ \times & \times & \times & \times \\ \circ & \circ & \circ & \circ \\ \times & \times & \times & \times \end{pmatrix}$	$v = 2 \qquad \theta_1 = \frac{E(\mathcal{F})}{4}$	$\theta_2 = \frac{E(\mathcal{F})}{2}$
2)	$\begin{pmatrix} \circ & \circ & \circ & \circ \\ \circ & \times & \circ & \times \\ \circ & \circ & \circ & \circ \\ \circ & \times & \circ & \times \end{pmatrix}$	v = 0 $w_j = 2 \text{ ou } 4 \theta_1 = \frac{E(\mathcal{F})}{2}$	$\theta_2 = +\infty$

On a vérifié (Appendice 3) que ces exemples correspondent effectivement à des situations "stables" pour les valeurs convenables de θ .

De plus, on constate (Appendice 2) qu'elles sont effectivement situations limites quand on initialise le processus (X^{t}) au hasard. Resterait à calculer comment se fait le choix entre les différentes cartes stables lorsqu'il en existe plusieurs pour une même valeur de θ .

VII. CONCLUSION

Nous avons proposé un modèle du cortex cérebelleux, pour étudier les cellules de Purkinjie reliées seulement par les collatérales inhibitrices. Pour les valeurs du délai θ , (qui modélise l'inhibition d'un neurone due à la décharge d'un voisin), correspondant à la réalité (θ de l'ordre de 3 ou 4 ms, pour EU de 100 ms) on observe l'établissement d'un régime stationnaire en accord avec la théorie. Une évaluation du seuil θ_0 en dessous duquel le régime stationnaire s'installe est faite, bien qu'il s'agisse d'une minoration.

Lorsque l'inhibition est forte $(\theta > \theta_0)$ le réseau diverge. L'intérêt est que s'établit alors une carte formée de bandes alternées de neurones actifs et inhibés. La forme et l'orientation de ces bandes dépend de la forme du voisinage considéré, de sa largeur et de la valeur de θ . Lorsqu'on franchit certaines valeurs de θ , on assiste à un phénomène de bifurcation : de nouvelles situations stables apparaissent sans que pour autant disparaissent les précédentes (voir spécialement le cas à 6 voisins). On aurait pu penser qu'autour de chaque neurone actif se serait établie une zone d'inhibition latérale, ces zones isolant les uns des autres les neurones actifs. Au contraire on voit qu'en augmentant l'inhibition, on fait "éclater" ces zones isolées, en provoquant la formation de moirures tout-à-fait semblables à celles qu'on observe dans les différents tissus du cortex lorsqu'on les soumet à des stimuli : cartes d'orientation préférentielle, ou de dominance occulaire dans le cortex visuel par exemple. Notre modèle met donc de façon particulièrement claire en évidence le fait que c'est l'inhibition qui cause ces différenciations.

Il reste à tenir compte du développement des fibres parallèles et modéliser le système C (cf. § I.2), pour déterminer les réponses du réseau à des stimuli extérieurs. C'est l'objet de l'article suivant.

Je tiens à remercier R. AZENCOTT et J. BRETAGNOLLE pour m'avoir encouragée et guidée au cours de fréquentes discussions.

REFERENCES

AXELRAD H., BERNARD C., GIRAUD B., MARC M.E. (1985), CRAS PARIS, t. 301, Série III, nº 10. AXELRAD H., BERNARD C., COTTRELL M., GIRAUD B. (1987). The use of an artificial neural network to analyse the informational transfer properties of a simplified model of the cerebellar cortex in IEEE. Proceedings of the First International Conference on neural networks (à paraître). BLASDEL G.G., SALAMA G. (1986) . Nature, vol. 321, p. 579. CHAUVET G. (1986). Biol. Cybern. 55, p. 201-209. R., LEWIS P.A.W. (1968). Statistical analysis of series of events. Methven and Coltd, London. COX D.R. CREPEL F. DELHAYE-BOUCHAUD N., DUPONT J.L., SOTELO C. (1980). Neuroscience 5, p. 333-347. ECCLES J.C., ITO M., SZENTAGOTHAI J. (1967). The cerebellum as a neuro-nal machine. Springer, Berlin Heidelberg New York. GIRAUD B., BERNARD C., AXELRAD H. (1985). CRAS, Paris t. 301, Série III, nº 11. ITO M. (1984). The cerebellum and neural control. Raven Press, New York. KOHONEN T., (1984). Self-organization and Associative memory, Springer, Berlin Heidelberg, New York. LANDOLT J.P., CORREIA M.J. (1978). IEEE Trans. BME25, p. 1-12. MARR D. (1969). A theory of cerebellar cortex. J. Physiol. 202, p.437-470. NEVEU J. (1972). Martingales à temps discret. Masson, Paris. NUMMELIN E. (1984). General irreducible Markov chains and non-negative operators. Cambridge University Press. PALAY S.L., CHAN-PALAY V. (1974). Cerebellar cortex. Springer, Berlin Heidelberg, New York. REVUZ D. (1975). Markov chains, North Holland. RUMELHART T.E., Mc CLELLAND J.L. (1986). Paralel distributing processing, Tome 1 et 2, MIT Press, Cambridge. SAMPATH G., SRINIVASAN S.K. (1977). Stochastic models for spike trains of single neurons, Springer, Berlin, Heidelberg, New York.

APPENDICE 1 - CAS DE DEUX NEURONES

Loi 🖇 uniforme

θ ₀ =ε(\$) _Ө	Intervalle inter-spike moyen théorique	Intervalle inter-spike moyen observé	Var. empirique	Fréq. moyenne x 100 unités de temps	Corr. des fréquences
3	0	3	2.9	1.98	34.8	-0.1
з	1	4	3.5	4.81	27.8	-0.2
3	2	5	4.1	15.35	23.2	-0.9
3	3		diverge	• X ₁ → ∞		
5	0	5	4.9	7.07	20.4	0.2
5	1	6	5.6	11.84	17.6	-0.7
5	2	7	6.6	23.8	15.5	-0.7
5	з	8	7.2	47.9	13.8	-0.8
5	4	9	7.9	142.4	11.5	-0.9
5	5	diverge X ₁ ≯ ∞				
10	0	10	9.7	32.06	10.5	-0.2
10	5	15	14.1	132.3	6.9	-0.7
10	7	17	15.5	360.1	6.1	-0.9
10	9	19	28.1	1301	5.5	-0.9
10	10	diverge X ₂ → ∞				
20	0	20	19.45	127.4	5.1	-0.2
20	5	25	24.7	228.2	4.2	-0.5
20	10	30	31.1	494.5	3.4	-0.6
20	15	35	36.1	1304	2.9	-0.9
20	20		diverge	$X_1 \rightarrow \infty$	······································	· · · · · · · · · · · · · · · · · · ·

Loi **F** exponentielle

^θ o≕E(\$)	θ	Intervalle inter-spike moyen théorique	Intervalle inter-spike moyen observé	Var. empirique	Fréq. moyenne x 100 unités de temps	Corr. des fréquences
3	0	3	3.0	5.1	32.4	-0.2
з	1	4	3.8	13.3	26.4	-0.7
З	2	5	4.9	63.2	21.0	-0.9
3	3		diverge	e X ₁ → ∞		
4	0	4	4.1	10.6	24.1	-0.2
4	1	5	5.0	19.7	20.5	-0.8
4	2	6	6.3	55.8	17.1	-0.9
4	3	7	7.3	154.5	14.5	-1.0
4	4	8	9.9	1430	12.1	-1.0
4	5		diverge	• X ₁ → ∞		
5	0	5	5.2	19.2	19.3	0.1
5	1	6	6.2	33.8	16.7	-0.7
5	4	9	9.0	255.4	10.7	-0.9
5	5		diverge	$x_1 \rightarrow \infty$		
10	0	10	10.7	107.5	9.1	-0.1
10	5	15	15.7	348.5	6.5	-0.7
10	7	17	16.3	644.2	5.6	-0.9
10	9	19	19.5	2600	5.1	-0.9
10	10		diverge	×1 → ∞		
20	0	20	20.7	374.3	4.7	0.2
20	5	25	26.6	810.4	3.7	-0.3
20	10	30	32.7	1751	3.2	-0.3
20	15	35	34.1	3852	2.6	-0.8
20	20		diverge	× 1 > 00		

```
<u>Loi</u> F <u>normale</u>
```

θ ₀ =ε(\$)	θ	Intervalle inter-spike moyen théorique	Intervalle inter-spike moyen observé	Var. empirique	Fréq. moyenne x 100 unités de temps	Corr. des fréquences
3	0	3	2.8	1.1	39.1	0.2
з	1	4	3.2	2.7	32.4	-0.1
з	2	5	3.9	18.5	25.6	-1.0
3	3		diverge	×1 → ∞		
5	ο	5	4.8	1.1	21.9	0.1
5	1	6	5.6	2.4	19.2	0.1
5	4	9	7.8	86.3	13.9	-0.9
5	5	diverge X ₁ → ∞				
10	0	10	9.8	12.2	10.5	-0.2
10	5	15	13.6	57.3	7.5	-0.6
10	10		diverge	e X ₁ → ∞		

APPENDICE 2 - CAS DE n² NEURONES

EXEMPLES DE DIVERGENCES $\theta > \theta_0$.

Les exemples suivants correspondent à des réseaux de 40 × 40 neurones, pour des types différents de voisinages V, dans le cas $\theta > \theta_0 \simeq \frac{EF}{|V|}$.

Pour chaque exemple, on écrit l'état du processus (X^t) au bout de 2000 itérations, la fréquence observée des neurones – on remarque que prédominent pour les neurones non inhibés des valeurs des fréquences proches de la fréquence propre, inverse de l'espérance de la loi F -, l'intervalle inter-spike moyen observé des neurones.

Enfin on a choisi un seuil (intervalle inter-spike supérieur à 4 fois l'intervalle moyen propre) pour faire une carte des neurones actifs et inhibés.

Les résultats obtenus sont les mêmes si on change de loi 牙.

On remarquera les bandes alternées de neurones actifs et de neurones inhibés, l'orientation et la largeur des bandes dépendant de la forme de \mathbf{V} .

Les configurations représentées ne sont pas forcément l'état limite (t infini), mais correspondent à une "réponse" quasiment stable du réseau neuronal, établie en un temps long par rapport à la durée de l'intervalle inter-spike moyen.

Dans tous les cas apparaissent des "formes typiques". Voir dans l'Appendice 3 une étude plus détaillée des cas |V| = 4, 6 et 8.

EXEMPLE 1-4 VOISINS

Le réseau est de taille 40 * 40

La forme du voisinage à 4 voisins est:

La loi propre des intervalles inter-spikes est uniforme

Le paramètre d'inhibition téta vaut 6

L'intervalle inter-spikes moyen propre est 10

La fréquence moyenne de décharge propre pour 100 unités de temps est: 10

Etat du système au bout de 2000 itérations

 Etat du système au bout de 2000 l'Érations

 51155
 41313
 91192
 121255
 51165
 31316
 91210
 171042
 141270
 71250
 91333
 121216
 151258
 141469
 41238
 61435

 8205
 16110
 131367
 112005
 10205
 82104
 141977
 12000
 112447
 42174
 42017
 22002
 12003
 11849
 6711
 138
 823
 4109

 690
 31720
 6766
 11638
 7865
 14198
 1584
 148
 15251
 118
 16
 81
 15223
 11445
 161709
 141508

 61072
 32003
 72285
 72110
 6195
 564
 12023
 11538
 5561
 12004
 11285
 141709
 141508

 1203
 4103
 3242
 15265
 12126
 12148
 1204
 12285
 112128
 19194
 11745
 12195
 1318
 12147
 51498
 12147
 51498
 12147
 51498
 12147
 51498
 12147
 51498
 12147
 51498
 12147
 < 820 689 427 1124 692 949 1198 141421 1277 1238 1165 1226 92017 141024 1275 121992 210 92048 12180 1226 1089 1239 318

Fréquence de chaque neurone en nb pour 100 unites de temps -le 0 indique les neurones inhibés

0 11 9 0 0 11 7 0 6 0 0 10 0 8 1 0 $\begin{array}{c} 0 & 11 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 4 \\ 0 & 8 \\ 10 & 0 & 1 \\ 0 & 10 \\ 10 & 0 & 1 \\ 0 & 10 \\ 10 & 0 & 1 \\ 0 & 10 \\ 10 & 0 & 1 \\ 0 & 10 \\ 10 & 0 & 1 \\ 0 & 10 \\ 10 & 0 & 1 \\ 0 & 10 \\ 10 & 0 & 1 \\ 0 & 10 \\ 10 & 0 & 1 \\ 0 & 10 \\ 10 & 0 & 1 \\ 0 & 10 \\ 10 & 0 \\ 10 & 0 \\ 10 & 0 \\ 10 & 0 \\ 0 & 11 \\ 0 & 10 \\ 0 & 0 & 10 \\ 0 & 0 & 10 \\ 0 & 0 & 11 \\ 0 & 11 \\ 0 & 10 \\ 10 & 0 \\ 11 & 0 \\ 10 & 0 \\ 11 & 0 \\ 11 & 0 \\ 11 & 0 \\ 11 & 0 \\ 11 & 0 \\ 11 & 0 \\ 10 & 0 \\ 11 & 0 \\ 11 & 0 \\ 10$ 0 11 11 0 0 11 7 0 5 1 1 10 7 0 0 10 $\begin{smallmatrix} 0 & 10 \\ 9 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 11 \\ 10 & 0 \\ 0 & 6 \\ 9 & 2 \\ 0 & 0 & 0 \\ 5 & 7 \\ 1 & 0 \\ 0 & 10 \\ 10 & 0 \\ 10 & 0 \\ 10 & 0 \\ 10 & 0 \\ 11 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 10 & 0 \\ 10 & 0 \\ 10 & 0 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 0 &$ $\begin{smallmatrix} 0 & 11 \\ 10 & 0 \\ 0 & 10 \\ 9 & 0 \\ 2 & 0 \\ 0 & 10 \\ 1 & 0 \\ 0 & 10 \\ 10 & 0 \\ 10 & 0 \\ 10 & 0 \\ 10 & 0 \\ 10 & 0 \\ 11 & 0 \\ 0 & 10 \\ 11 & 0 \\ 0 & 11 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 11 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 11 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 11 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 11 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 11 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 11 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 0 \\ 11 \\ 0 & 0 \\ 0 & 11 \\ 0 & 0 \\ 0 & 11 \\ 0 & 0 \\ 0 & 11 \\ 0 & 0 \\ 0 & 11 \\ 0 & 0 \\ 0 & 11 \\ 0 & 0 \\ 0 & 11 \\ 0 & 0 \\ 0 & 0 \\ 0 & 11 \\ 0 & 0 \\$ 0 10 0 10 0 10 0 11 0 7 5 0 0 6 6 0 10 0 0 7 5 0 0 6 7 0 11 0 10 10 0 11 0 0 8 0 0 1 10 0 10 7 0 6 0 0 10 0 0 12 0 0 11 0 9 0 6 7 0 10 9 0 0 0 0 2 8 0 0 0 9 2 0 10 0 0 9 0 $\begin{smallmatrix} 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 0 & 10 \\ 0 & 10 \\ 0 & 10 \\ 0 & 0 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 11 & 0 \\ 0 & 10 \\ 0 & 10 \\$ 0 0 0 10 0 10 0 0 10 0 0 0 0 10 0 Ó Õ 0 9 0 0 11 0 õ Ō 10 6 7 0 10 0 10 0 10 10 0 8 2 0 10 9 0 3 9 0 10 0 11 0 0 10 0 10 0 10 0 10 0 10 0 10 0 11 0 11 0 11 0 0 0 11 0 11 0 11 0 10 0 11 0 11 0 10 0 10 0 11 ò 1Ŏ 9 1 0 11 0 Ō 8 3 0 10 0 10 0 9 0 10 0 8 0 0 3 8 0 8 0 10 0 11 0 10 10 0 8 2 0 5 6 0 10 0 10 0 10 10 10 0 10 0 0 11 0 10 10 0 10 0 10 0 6 3 4 0 0 11 0 10 0 4 5 3 0 0 10 9 0 10 10 10 10 10 0 10 0 0 0 10 0 7 6 0 11 0 5 8 0 6 0 11 0 5 7 0 0 10 0 0 10 0 10 0 9 0 9 0 9 0 Õ 9 0 10 0 11 0 10 0 10 0 10 0 Õ Õ 0 0 10 0 11 0 10 11 0 10 0 10 0 Ō 0 10 0 10 0 10 10 0 0 Ō 0 0 11 0 10 10 10 0 0 10 0. 10 0 0 10 11 0 0 10 0 11 11 0 0 10 0 11 0 ō Õ Ō 9 0 11 0 10 0 11 Õ 0 11 0 10

Intervalle inter-spike moyen de chaque neurone-l'étoile indique les neurones inhibés

*100 * 14 * 9 * 10 * 14

 9
 *
 9
 9
 *
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10< * * * * 9 9 * 9 13 * 8 9 * 9 13 * 8 9 * 9 9 * 8 10 39 9 * 9 10 * 9 9 * 9 10 * 9 9 * 9 10 * 9 9 * 9 10 * 9 9 * 9 10 * 9 9 * 9 10 * 9 9 * 9 10 * 9 9 * 9 10 * 9 9 * 9 10 * 9 9 * 9 10 * 9 9 * 9 10 * 9 9 * 9 10 * 9 9 * 9 10 * 9 9 * 9 10 * 9 10 * 9 9 * 9 10 * * 8 * * 8 * 9 9 * 9 16250 * 8 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 8 * 10 9 * 9 9 * 9 9 * 9 8 * 10 9 * 9 8 * 10 83 * 9 9 * 9 9 * 9 9 * 9 8 * 10 9 * 9 8 * 10 9 * 9 8 * 10 9 * 9 8 * 10 9 * 9 9 * 9 9 * 9 8 * 10 9 * 9 8 * 10 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 9 * 9 8 * 10 9 * 9 9 * 9 9 * 9 8 * 10 9 * 9 9 * 9 8 * 10 9 * 9 9 * 9 9 * 9 8 * 10 9 * 9 9 * 9 8 * 9 9 * 9 9 * 9 8 * 10 9 * 9 8 * 9 9 * 9 9 * 9 8 * 9 9 * 9 8 * 9 9 * 9 8 * 9 9 * 9 8 * 9 9 * 9 8 * 9 9 * 9 8 * 9 9 * 9 8 * 9 9 * 9 8 * 9 9 * 9 8 * 9 9 * 9 8 * 9 9 * 9 8 * 9 9 * 9 8* 9* 31* 9* 9* 9* 9* 9* 8* 9* 9* 9* 8* 8* 8* 8* 9* 8* 8* 9* 9* * * 9 * * 8 * 9 * * * 8 * 15 * 9 * * 9* 9* * 9* 0* 9* 9* 9* 9* 0* * 8* 9* 9* 9* 9* 9* 9* 10*9*9*9*9*144*9*9*9*9*9*8*9*8**10*9*9*9* 10*9*9*9*9*9*9*9*9*9*8*9*8**0*9*9*9* * 9 * 9 * 10 * 19 * 9* 9* * 9* 8* 9* 9* 8* 9* 0* 8* 35* 9* 9* 9* 9* 8* 9* 9* 9 * 9 * 9 * 132 * 8 * * 12 * 14 8 * 9 * 9 * * 9 * 9*09*9**9*9*9*9*0*9*9*9*9*15132*9*9* 13* 8* 9* 105* 9* 9* 9* 9* 8* 9* 9* 9* 8* * 9* 9* * 8* 9* 8* 9*10*1613*9*10*8*9*8*9*9*145*8*1712*9*8* 55*10*9*212*8*9*9*8*9*9*9*9*9*135*9*211*9*8*9 * 12 20 * 10 * 9 * 9 * 8 .* 10 * 16 12 *

 18
 55

 9
 9

 9
 9

 9500
 *

 75
 10

 8
 9

 9500
 *

 10
 *

 8
 9

 9
 9

 75
 10

 8
 9

 10
 *

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 9
 8

 8
 9

 9
 8

 9
 8

 <t * 8 * 9 9 * 9 * 9 10 * 9 * 9 12 * 9 * 9 * 300 10 * 9 * 9 * 300 10 * 9 * 9 * 300 10 * 9 * 9 * 300 10 * 9 * 9 * 300 10 * 9 * 9 * 300 10 * 9 * 9 * 300 10 * 9 * 9 * 300 10 * 9 * 9 * 300 10 * 9 * 9 * 300 10 * 9 * 9 * 300 10 * 9 * 9 * 300 * 10 * 9 * 9 * 9 * 10 * 9 * 9 * 9 * 300 * 10 * 8 * 9 * 9 * 9 * 9 * 10 * 9 * 9 * 9 * 10 * 9 * 9 * 9 * 10 * 8 * 9 * 9 * 9 * 9 * 10 * 8 * 9 * 9 * 10 * 9 * 35 13 * 0 * 9 * 9 * 9 * 9 * 8 * 8 * 10 * 8 * 9 * 9 * 9 * 8 * 8 * 10 * 8 * 9 * 8 * 10 * 11 * 9 * 9 * 9*9**9* 114*9*9**9*9* 9*9* 20 34 * 12 10 * 9 * 8 20125 * 9 * 20125 * 9 * 20125 * 9 * 0 10 26 71 * 8 9 9 * 9 * 9 9 * 9 * 10 * 9 * 9 9 * 9 16*9*9*9*9*9*9*9*9*114*9*9*9*9*9*9*9*10 51 * 9 * 9 * 8 * 9 * 0 * 9 * 9 * 9 * 13 * * 8 * 9 * 9 * 8 * 8 * 12 25 * 9 * 9 * 9 *

 *
 9

 *
 11500
 9

 *
 11500
 9

 *
 20
 14

 19
 30
 *

 14
 23999
 !

 *
 20
 14

 19
 30
 *

 14
 9
 8

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9
 9
 *

 9300
 10

 15 * 17 12 * 9 * 9 * 9 9 * 9 * 9 * 9 * 8 * 9 * * 8 * 9 * 8 * * * * * 9 * * 9 * 9 * 9 * 8 * * *

ETAT FINAL (2000 ITERATIONS)

FORMES CARACTERISTIQUES =

Les	zones	grises	représentent	les	neurones	inhibés
Les	zones	blanches	représentent	les	neurones	actifs.

Le réseau est de taille 40 * 40

La forme du voisinage à 6 voisins est: x x . x x

La loi propre des intervalles inter-spikes est uniforme

Le paramètre d'inhibition têta vaut 6

L'intervalle inter-spikes moven propre est 10

La fréquence moyenne de décharge propre pour 100 unités de temps est: 10

Etat du système au bout de 2000 itérations

Let du système au bout de 2000 itérations 11329 313 7 5091036 16 21475 41 11384 259 41018 764 2 1421234 8 17 817 864 5 3 766 807 9 101060 622 6 1 1162 14 462264 4 71985 382 1714761090 8 0041847 2 12281 17 1412211552 7 414771460 6 312261372 11 32015 4 31971 200 131676 819 7 9981467 7 3121225 17 181747 825 3 4662001 12 91628 795 5 4 8931665 1 51504132 3 866 3 4341909 5 1592169 16 62222 34 315131525 8 452272 6 61766 716 13425 58 41 401 9 6911957 1 102195 4 5142 165 82116 304 62036 645 2 9701939 6 32036 644 114421066 713541255 61460 427 121889 744 15 931758 3 2 157 11348 789 811771279 8 722033 1 1016461207 2 2802105 2 3322114 1 5951396 15 9661415 5 271477 743 311151 183 134 1114191002 7 6691963 2 91441213 5 21994 656 8 672410 19 31707 838 12281135 15 9662415 5 271477 743 311151 139 128 2733 171571561 8 4582024 7 2461306 412341155 1812911458 11 6471665 13 2282135 15 9262285 6 1792123 14 22421 41982 753 1711571561 8 4582024 7 2461306 412341155 1812911458 11 6471665 13 2282135 15 9262285 6 192123 14 22421021 14982 753 1711571561 8 4582024 7 21618 259 2 605 2 6041274 10 112313 40 17240 158 42094 279 82178 297 320 329 21273 9 4102024 7 114141480 4 511271016 13 8 141166129 4 21938 715 112643 151698 277 11109 652 3 4 15302196 9 51475104 1 3 5140771515 4 1 602 93 877 2 1118021028 15 541197 4 1378 1901107 15 10 928 8 51193714 1 54012075 5 5 253 91 164 14 101672177 12 9130100 245 1541897 4 1378 1901107 15 10 928 8 5119174 6 5218 525 5 525 91135102 6 71231049 3 9313001248 1 541192140 6 244 1378 1 910107 15 10 928 8 5119174 6 5218 55 5 12337102 6 71231240 5 313207 12 12120163 8 4762077 12 121285 640 152361278 3 12760116 5 141423461 9 114061282 8 15 148 209 743 9 313301274 6 5 5421031 8 211501 225 27 364 5119174 6 5218 525 5 525 91135100 6 7 1251192 30 6102 61011237 1140 12838 40 9172 5 4 3156997 7 123172178 1158 147 319 2165 267 3 312718155 5 122210 10121217198 3 61561 83 3 72305 6 53 31259 8 415931728 3 41593178 14222145 5121031305 2 471289466 6 6 13953490 12009174 3 4 21258 525 8 415931103 7 1264224 7 319

0 0 10 0 0 7 0 10000600010032011 1100060010032011 0 0 7 0 6 0 0 0 0 4 0 0 7 0 0 10 6 0 5 0 0 1Ó 0 š õ 0 10 0 9 0 0 0 0 0 6 0 10 0 10 0 9 0 10 7 2 0 10 0 0 5 0 9 Õ Ğ 0 Ó 0 8 0 7 0 6 0 0 0 0 9 0 Ō Õ 0 10 0 0 0 Ó 0 0 Õ 0 9 0 1 0 0 1100700 0 7 0 $\begin{smallmatrix} 0 & 10 \\ 0 & 0 \\ 11 \\ 10 & 0 \\ 0 & 11 \\ 10 & 0 \\ 0 & 0 \\ 10 & 0 \\ 0 & 10 \\ 0 & 0 \\ 0 & 0 \\ 10 & 0 \\ 0 & 0 \\ 10 & 0 \\ 0 & 0 \\ 10 & 0 \\ 0 & 0 \\ 10 & 0 \\ 0 & 11 \\ 0 & 0 \\ 0 & 11 \\ 0 & 0 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 0 \\ 11 & 0 \\ 0 & 0 \\ 10 & 0 \\ 0 & 0 \\ 0 & 0 \\ 10 & 0 \\ 0 & 0$ 11 0 0 0 6 0 6 0 9 0 8 0 10 0 0 7 0 0 0 8 0 7 0 2 0 3 0 0 10 0 5 0 0 10 0 10 0 0 10 0 0 0 0 0 8 0 7 0 5 0 0 0 10 7 0 0 10 0 0 11 0 10 0 0 0 0 4 2 0 0 0 6 0 0 10 0 7 0 0 11 9 0 0 10 0 0 10 0 0 10 0 0 5 0 $\begin{array}{ccc}
 0 & 0 \\
 11 & 0 \\
 0 & 10
 \end{array}$ 0 9 0 5 11 0 0 10 Ó 0 11

Intervalle inter-spike moyen de chaque neurone

* 10 46 9 * * *115 9 8 * * * 9 * 10 *107 * 17 9 * * * 9 * * 13 * * 16 12 * *
14 14 * 15 14
* 13 15 * *
10 *136999 * 9
* 8 * 9 9
* 8 * 9 9
* 8 * 9 9
* 9 * 11
37 * 9 *750
19 14 * 9 * 9
* 9 * 9 * 10
34 11 * 9 * 9
* 9 * 9 * 10
34 11 * 9 * 9
* 9 * 9 * 10
34 11 * 9 * 9
* 9 * 9 * 10
34 11 * 15 * 15
* 16 13 * * *
15 * 15 13 * 4
9 * 10 * 9 *
9 * 10 * 19 *
9 * 10 * 19 *
9 * 10 * 19 *
14 * 11 * 22
* 9 * 10 * 9 *
9 * 10
* 10 * 9 *
9 * 10
* 10 * 9 *
9 * 10
* 10 * 9 *
9 * 10
* 10 * 9 *
9 * 10
* 10 * 9 *
9 * 10
* 10 * 9 *
9 * 10
* 10 * 9 *
9 * 10
* 10 * 9 *
9 * 10
* 11 * 11 * 22
* 9 * 9 * 10
* 4 * 11 * 22
* 9 * 9 * 10
* 4 * 11 * 22
* 9 * 9 * 10
* 4 * 11 * 22
* 9 * 9 * 10
* 14 * 156 9 *9
9 * 12 * 20
* 10 * 9 * 9
* 10
* 14 * 156 9 *9
* 9 * 10
* 4 * 1 * 22
* 9 * 9 * 9
* 12 * 20
* 11 34 * *
* 9 * 10
* 13 * * * 8 * * 9 * * * * 12 * 9 * * * * 9 * * 9 * 9 * 17 * 39 22 * 29 * 9 * 13 *250 9 * * * 9 * 13 *250 9 * * * 9 * * 13 16 5 * 14 14 * * 11 31 10 * * 11 13 16 * 9 9 * * * 10 * 10 * * * * * * * 9*9*9** * 9 * * 14*13**10*9*9*9*12**9*9**8*12**8*10*9* 11 * 12 * * * 9 * 9 * 11 * 16 * * 18 * 16 * * * 18 * 16 * * * 18 * * 16 * * * 18 * * 9 * 18 68 * 8 * * * * * * 9 * 18 68 * 8 * * * * 8 * * * * 9 * * * * * * 9 * * 9 * * 28 11 * * 12 * 9 * 15 * * 9 * 21 * 21 * 14 * * 9 * 9 8 24 * 12 * * * 9 * 13 17 *250 * * * * 9 * 10 57 * 9*.9*8* * 9 * * * * * * 9 * 9 * * 9 * 9 * 42 9 * 10 * 9 * * * * 9 * 9 * 8 * 9 * 9 * * * 8 * 9 * * 13 * 9 * 14 * 16 * * 8 * * * * * 9 * 9 * 9 * * * 13 * 9 * * * 23 * * * 11 * 14 * 15 * 9 * * 9 * 17 * * 9 * 9 * 10 * 9 * 15 * 15 * 12 * * * * * 10 * 9 * 12 * 35 71 * 15 * 13 * 16 * 11 * * 9 * * 15 * 14 * 8 * 9 * 9 * * 14 * 9 * * * * 9 * 9 * 28 25 * 11 * 15 * * 15 * 9 9 * 9 36 * 15 * 11 * 25 * 13 * 9 * * 15 * * 9 * 10 * 9 * 9 * 9 * 8 * 8 * * 9 * 33 * 10 26 * 28 * 10 * 14 * 9 * 9 * * * 9 * * 9 * 8 * 23 * * 9 * * * * 9 * * 10 * * 11 * * 9 * * 9 * * * * 8 * *107 9 * * 9 * * *999 9 * 9 * 9 * 44 9 22 * * 12 * 9 55 * * * 9 * 12 * 9 * * * * * * *7 * 9 * 9 * * * * * * 13 * * 17 * 9 9 * 9 *500 * * * * 8 * 9 * 9 * * 8 * * 9 * 9 10 * * 12 * 19 * * 10 * * * * * 8 * * * * 13 14 17 14

Fréquence de chaque neurone en nb pour 100 unités de temps -le 0 indique les neurones inhibés

ETAT FINAL (2000 ITERATIONS)

FORMES CARACTERISTIQUES =

Dans ce cas, (voisinage elliptique) on notera que les bandes inhibées sont à 45 % aux bords du carré, mais s'inclinent à 30 % vers le centre.

EXEMPLE 3-8 VOISINS

Le réseau est de taille 40 * 40

La forme du voisinage à 8 voisins est: x x x

x . x x x x

La loi propre des intervalles inter-spikes est uniforme

Le paramètre d'inhibition téta vaut 5

L'intervalle inter-spikes moyen propre est 10

La fréquence moyenne de décharge propre pour 100 unités de temps est: 10

Etat du système au bout de 2000 itérations

8 197 8 220 3 208 5 22 10 11 18 9 898 16 918 6 849 2 91 231053
 145
 816
 513
 761
 749
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049
 049</td 1 748 5 897 4 936 15 74 14 372 26 992 7 142 22 925 10 335 385 6 53 27 480 444 489 689 219 804 114 92 3 7 5 19 8 4 13 11 7 15 3 2 11 9 5 5 5 27 5 24 621181 3271164 415 945 472 811 607 828 709 769 660 827 438 924 168 388 4 450 11 546 6 182 2 112 412 622 699 721 581 601 283 76 4 183 1 37 10 21 8 5 72 7 842 7 412 8 811 12 760 70 11 38 10 3 3 3 12 6 33 12 46 11 13 14 7 567 20 651 5 60 601149 649 999 713 624 847 570 921 454 922 512 915 336 916 254 695 9 779 11 827 698 1 698 13 747 2 383 11 936 191011 3 735 331097 371102 94 812 78 12 31 5 66 631299 1721273 45 4 203 4 23 16 33 36 3 55 81197 19 667 13 24 14 203 13 24 14 4 23 16 33 1 36 774 262 836 876 5201156 1861359 2271279 11 19 7 489 8 215 1 154 18 704 656 4 8 817 25 903 161136 311093 5104 0 135 6 11 18 12 17 5 44 11 12 3 20 2 207 3 919 2581085 511 919 735 750 975 568 898 3051173 2041067 3 433 13 581 12 693 3 673 20 135 31061 22 939 14 734 10 673 6 642 12 576 5 51 10 578 6 613 28 116 7 38 1 24 10 37 9 6 11 4 4 7 178 61173 3251088 4171012 669 938 741 744 838 4041188 122 852 7 707 10 824 3 744 13 755 11 797 11 884 2 861 7 69 2 633 4 957 11 688 28 116 8 661 4 729 853 4 654 14 76 10 437 1 6 716 8 638 5 858 8 400 2 12 6 2 7 9 5 9 6 18 11 19 9 9 612 821073 571 778 714 719 868 739 807 707 829 497 927 40 599 5 712 6 827 5 532 6 813 8 790 68 91054 4 894 3 718 17 44 758 31237 12 428 93 6 732 20 748 7 613 8 964 7_365 2 644 4 497 1021153 22 4 5 21 15 606 1 48 637 4 25 2 11 14 24 14 13 2 4 10 8 8 475 1341026 701 759 779 629 866 794 619 925 342 641 241 111232 40 637
 342
 641
 241
 22
 4
 5
 21
 1
 186
 6
 714

 10
 11
 2
 48
 280
 677
 856
 317
 774
 27
 379

 59
 404
 7
 72
 10
 19
 8
 26
 5
 8
 421

 11
 343
 66
 949
 3141118
 2991062
 254
 230
 14
 24 939 8 185 21037 16 963 6108 1 352 4 178 1 120 11 21 13 602 3 567 101151

 5
 11
 543
 66
 949
 3141118
 2991062
 254
 230
 14
 9
 15
 12
 14
 10
 32
 1
 4

 548
 717
 370
 148
 1
 8
 7
 8
 2
 3
 8
 14
 356
 150
 910
 745
 617
 844
 3951036
 229119
 6
 12
 12
 333
 133
 688
 711
 5151009
 3211311
 128
 667
 5
 9
 17
 13
 1
 6
 3
 2
 5

 101026
 14
 616
 9
 7
 13
 6
 3
 15
 4
 8
 661
 1011124
 453
 863
 710
 663
 835
 436
 98
 8
 248
 1
 26
 11
 17
 12
 9
 121057
 52
 491
 5
 14
 4
 438
 175
 994
 554
 711
 701
 763
 679
 744
 61

 4
 472
 2
 687
 <td 8 421 216 915 94 891 241021 38113 4 409 311201 6 835 16 113 3 409 6 613 11 964 261148 8 287 121057 4 472 341184 9 189 7 6 12 3 110 2281137 460 548 611 14 79 14 32 5 10 34 2 20 1 28 13 13 5 513 261027 48 938 366 994 549 957 3571093 185 851 2 671 5 5 1 10 9 19 10 235 26 988 8 503 10 281074 12103 9 316 7 21
 202
 9
 189
 8
 503
 861067
 4401041
 638
 786
 530
 724
 110
 77
 1
 162
 10
 233

 839
 671075
 74
 511
 10
 34
 2
 20
 1
 28
 13
 13
 5
 513
 261027
 26
 988

 19
 10
 16
 1636
 48
 938
 366
 994
 549
 957
 3571093
 185
 851
 2
 671
 4
 625

 301
 765
 340
 97
 15
 5
 5
 1
 0
 9
 1
 8
 8269
 11
 723
 13
 667

 1208
 12
 138
 19
 588
 509
 848
 690
 739
 808
 4211048
 1691142
 21133
 11062

 101003
 13
 633
 5
 76
 15
 4
 6
 5
 10
 15
 12< 4 5 111009 4 9 19 10 16 59 859 301 765 340 33 881 15 94 10 224 2 825 8 12 9 641 4 112 3 574 12 186 16 128 11 890 15 293 421375 271046 19 466 746 9 89 9 13 14 36 6 377 971247 302 742 141 425 18 664 33 73 3 205 1 24 3 30 4 37 5 17 1 16 3 9 5 4 53 2 338 4 61 10 998 142 910 459 814 726 823 667 988 4821103 3791046 388 953 514 468 349 176 56 12 226 8 443 50 96 148 5 2 30 4 16 1291103 595 740 567 537 312 464 13 532 8 854 12 14 11 9 9 8 2 22 11 129 10 37 11 9 2 10 13 15 3 7 1 13 9 13 2 15 8 8 12 9 13 13 781236 4241124 404 859 382 858 280 786 208 864 413 892 509 768 634 665 747 794 821 862 5381053 4941142 2851154 2081040 195 545 21 3 29 16 12 12 3 33 3 11 3 18 4 13 13 14 89 2 3 8 2 18 7 10 3 -5 1 18 4 52 11 58

1 8 3 6 ō ŏ ō õ ō ō Ò Ó Ó Õ Ō Õ Ó Ó Ò Ó Õ ō 5 0 4 7 6 Õ Õ 0 9 0 Õ Ō Ô Ō 3 7 ŏ 0 4 0 Õ ; 3 7 0 Õ Ō Ō Ó Ó 0 0 9 0 2 0 0 4 6 7 0 0 0 0 0 3 0 Õ Õ 0 10 0 0 9 1 0 Ó 4 0 9 0 6 0 6 0 1 0 0 4 0 0 0 0 3 0 9 0 8 0 8 0 7 1 7 0 0 0 2 0 0 1 0 2 0 1 0 0 0 0 0 0 9 0 Ō 0 8 06 09 1 0 3 0 Õ ğ Ō ŏ Õ 0 6 4 6 2 8 0 0 ŏ ŏ Õ Ō Ō Ó õ ŏ Ğ Ó Õ õ 8 0 10 0 6 0 1 0 2 0 Ó Ó Ó 5 Ŏ Õ Õ Õ Õ Ŏ 0 0 0 0 6 Õ Ó Ó 0 6 0 3 0 7 1 7 4 5 6 0 4 0 7 0 7 0 0 0 0 0 0 0 0 3 0 9 0 6 0 ż Ō Õ Õ 0 100 0 0 Ó 2 6 3 9 0 0 0 0 0 0 0 0 0 Õ ŏ Õ 3 8 1 8 0 Ō Ó Ó Ó 1 2 2 Ō Ô 5 3 Ó 7 1 9 0 4 6 5 0 Ō Ó Ó ŏ 0 0 0 0 6 õ Õ Ó Ō Ō Ō Ó Ō 2 0 7 0 8 0 3 9 0 0 4 0 5 Õ Õ Õ 0 0 5 0 5 0 6 0 7 0 1 0 5 0 6 0 5 õ Õ Õ ě Ğ Ğ 0 10 2 7

Intervalle inter-spike moyen de chaque neurone

* 10 * 29 * 17 * 12 * * * 13 * 15 * 29 * 10 * 10 * 32 * 16 * 16 * 28 * 10 * 42 * 12 * 24 * 10150 10 * * * * * * * * * * * 11 37 * 14 ******** *107 * * * 33 11 40 11 38 12 27 15 20 18 13 29 16 14 20 15 27 34 12 32 13 21 18 13 27 14 22 * 22 15 29 11 * * * * * * * * * * * * 20 15 50 11 38 12 25 15 10 * 20 * * 22 8750 12 * *250 * * 31 11 * * * 36 20 15 23 16 17 22 13 28 * 10 51 12 18 16 45 11 *375 **** 27 14 * * * 10 * 30 * 15 * 21 * 17 * 14 * 48 * * 11 10 11 * 51 17 19 15 22 16 * * * 42 11 45 * * * * 11999 * 29 * * 18 * * 15 * * 26 * * 12 * * 62 * 50 10 * * 15 15 35 * * * * * *150 * 103 * 103 * 41 * 13 * 22 13 22 19 12 * * 22 * * * * 13 * 48 11 * * *300 9 71 17 * * 65 * * * * * * 22 32 * 13 44 * 35 9214 9 75 10 36 13 23 16 17 21 16 18 18 19 18 18 15 28 13 26 14 23 14 18 22 13 68 11 57 12 27 15 15 35 12150

Fréquence de chaque neurone en nb pour 100 unités de temps -le 0 indique les neurones inhibés

ETAT FINAL (2000 ITERATIONS)

υ =

FORMES CARACTERISTIQUES =

EXEMPLE 4-12 VOISINS

Le réseau est de taille 40 * 40

La forme du voisinage à 12 voisins est:

ххх x x . x x ххх x

La loi propre des intervalles inter-spikes est uniforme

Le paramètre d'inhibition téta vaut 5

L'intervalle inter-spikes moyen propre est 10

La fréquence moyenne de décharge propre pour 100 unités de temps est: 10

Etat du système au bout de 2000 itérations

0 0 2 0 0 5 4 0 0 0 0 3 0 6 2 0 1 0 0 1 0 0 3 0 0 0 0 0 6 2 0 4 0 5 0 ŏ ō õ 9 0 0 0 8 5 0 5 0 0 0 8 0 0 1 0 Ō 9 Õ Õ ŏ ž õ Õ 5 7 0 0 0 2 3 0 0 0 Ō Ŏ O 0 10 0 7 0 0 0 0 0 11 0 Õ 0 7 0 0 6 0 0 1 1 0 0 2 0 1 0 0 7 2 0 0 03 50 00 22 00 26 00 17 00 40 00 00 0 0 00 15 00 40000800380011202000090 Õ Ó 2 0 0 0 11 0 0 0 0 0 0 10 2 0 0 0 0 1 0 0 4 0 0 2 7 0 0 0 Ó Ó 0 6 Õ Õ 5 0 Ó 4 0 0 8 0 10 0 0 0 0 0 0 0 5 8 Õ 0 0 6 0 Ó 0 0 1 8 0 0 0 0 0 11 0 0 5 6 ŏ 2 0 Õ Õ Õ Õ 6 0 9 2 9 9 Ō ŏ Õ õ Õ Õ Ô Ó Ó Ó

Intervalle inter-spike moyen de chaque neurone

Intervalle inter-spike moyen de chaque neurone 6 * 24 41 * 12 71 * 51 10 * 15 39 * 23 13 * 12 36 * 21 14 * 10 30 * 1 * 75 23 * 50 13 * * 71 23 * 44 48 * 83 53 * 20 16 * 57136 * 18 50 * 11 * 15 * 78 * 9 * 107 15 * 10 * 28 * 28 * * 20 17 * 21 48 4 * * 15 * 78 * 9 * 107 15 * 1099 * 11 42 * 41 27 * 14 * 13 * 44 11 * * 12 35 * 12 18 * * 9 * 1099 * 11 42 * 41 27 * 1 * 13 * 44 999 * 8 * 28 * 128 * 130 6 10 * 88 * 222 * * 9 5 * 8150 * 19 * 500 * 16 13 * * 10 51 * * 10 * 78 * 12107 * 17 38 * * * 4 * * 13 * * 9 83 * * 28 * 136 6 0 10 * 88 * * 28 22 * * 9 5 * 8150 * 19 * 500 * 16 13 * * 10 51 * * * 375 * 10999 * 11 42 * 41 27 * 18 * * * 8 * 166 28 * 15 * * 10 * 10 * * * 14 17 * 13 * 9 * * * 10 * 18 * * * 500 10 * 14 * * 10 0 13 * * * 27 10 * 18 * 24 14 * * 217 * 17 88 * * * 500 10 * * * 8214 * * 100 13 * * * 27 10 * 18 * 24 14 * * 217 * 18 * * 1227 * 500 10 * * * 8214 * * 100 13 * * * 27 10 * 18 * 24 14 * * 117 * 81 1 * 500 10 * * * 8214 * * 1221 * 83 34 * 15 65 * 125500 * 14 * 12 * 11 * 757 * 8 * * * 10 50 * * * 11 1 * * 150 28 * 12 * 10 * 13 * * 10 * 12 * * 13 * 10 * * * 8 * * 12 21 * 83 34 * 15 65 * 125500 * 14 * 13 * * 10 * 10 * * * 9 * * * 100 9 * 999 48300 * 11 0 * 34 11 * * 13 * 10 * * 12 * * 13 * 18 * 9 * * * 100 9 * 999 * 12 20 * 9 * 12 42 * * 13 * * 10 * 18 * 9 * * * 100 9 * 12 * 16 18 * 25 * 22 * * 13 * 10 * * 42 * 14 * * 11 * 10 * 18 * 10 * 12 * 150375 * 11 34 * 34 2399 * 21 20 * 9 * * 14 * 11 * * * 14 17 * 18 * 15037 * 11 34 * 34 2399 * 21 20 * 9 * * 13 26 * 999 * 25 40 * 55 15 * 18 * 18 * 11 34 * 23 16 * * * 10 * * 12 36 * * 15 25 * 38 10 * * * 9 * * 19 00 * 14 * 12 * 12 * * 12 * * 12 * * 12 * * 11 * * 10 * 11 * * 11 0 * * 12 * * 13 * * 10 * * 12 * * 10 * * 11 * 10 * * 10 * * 10 * 10 * * 10 * * 10 * * 10 * * 10 * * 10 * * 10 * * 10 * * 10 * 10 * * 10 * * 10 * * * 14 17999 * 35 12 40 83 50 * * 27 15 * * 375 11 48 * 214 35 * * * 78 * 15 16 * 65 11 27 * * * * 46 23 * * 18 9 * 51 17187 * 14 * 17 * 71 12 51 * * 13 * 65 * 57 50 65 * 11 34 * 26 13 10999 * 88 * 39115 * * 11 24 * 11300 * * * 11 24 * 11300 * * * 11 24 * 11300 * * * 11 24 * 11300 * * * * 18 88 *999 10 * 9 * 750 16 * * 20 57 * 9 * 26 25 13 * 28 * 23 93 * * 18 * 18 18 * 11 * 71 40 *136 57 * 29 * * 10115 * 12 23 * * * 10115 * 12 23 * * * 11 24 * 40 * * 11 * 71 40 *136 57 * 29 * * 10115 * 12 23 * * * 18 * 18 18 * 11 * 71 40 *136 57 * 29 * * 10115 * 12 23 * * * 18 * 18 18 * 11 * 71 40 *136 57 * 50 * * 10115 * 12 23 * * * 18 * 18 18 * 11 * 71 40 *136 57 * 50 * * 10115 * 12 23 * * * 13 20 * 15 * 12 * * 13 20 * 15 * 13 * 13 20 * 15 * 15 * * 18 34 * 83 10 19 51 * 28187 * 50 * * 14 19 * 10 68 * * * 13 35 * 33 32 * 15 * 50 * * 13 00 16750150999 34 * 15 35 * 33 37 * 93 12 * 999 55187 25 * 24 7 0 *125 10 * 15 18 * 16 16 18 * * * 18 * 18 24 18 24 166 * 166 * * 13125 75 14 * * * 12 * * * * * * * * 12 * *5 * 39 10 * * * 15 * * 20 20 * * 48 * * 11 15 *300 27 19 * * 39 25375 * 27 19 * * 25375 16 21 * 71 * * 17 * 18 83 * 20 * * 12 * * * 750 71 3 * * * 16 * 31 16 * * * 16 19 * * 34 25 *300 1675 15 35 * 33 37 999 55187 25 5 10 * * *500 8 * * 10 22 88 18 * 15 17

Fréquence de chaque neurone en nb pour 100 unités de temps -le 0 indique les neurones inhibés

ETAT FINAL (2000 ITERATIONS)

FORMES CARACTERISTIQUES =

56

EXEMPLE 5-14 VOISINS

Le réseau est de taille 40 * 40

La forme du voisinage à 14 voisins est: x x x x x x x . x x x x x x x

La loi propre des intervalles inter-spikes est uniforme

Le paramètre d'inhibition téta vaut 5

L'intervalle inter-spikes moyen propre est 10

La fréquence moyenne de décharge propre pour 100 unités de temps est: 10

Etat du système au bout de 2000 itérations

8 7 48 9 9 5 27 3 6 16 50 12 18 71 13 9 22 27 12 2 35 1 1 197 21 5 67 54 16 23 168 9 1 158 8801556 796 58412031099 532 7361230 946 68312531389 737 8911569 980 38913621373 408 8401494 511 14812081047 203 8211615 867 44 16 13 295 22 11 296 33 7 47 168 1 8 155 8 4 20 41 2 16 61 7 6 17 344 9 10 253 239 2 14 399 11 16 13 295 22 11 296 33 7 47 168 1 8 155 8 4 20 41 2 16 61 7 6 17 34 32 8821459 274 5411496 602 30111881096 172 8701625 775 49313391401 618 6731422 909 92 304 817 9 6 19 405 635 13 1011135 407 2 12 92 788 38 40 774 809 14 2 779 102 6 604 123 6 295 387 5 7 472 8 7 372 30 9 7 167 21 14 51 56 2 17 339 2 14 926 982 27 8071080 83 3671224 510 40611401480 631 55213231269 402 4171310 406 5 183 408 5 1 47 66 8 6 604 123 7 5711486 692 44212221304 294 2921480 728 1 8 410 462 10 20 458 10 15 2 40 20 1 12 179 3 4 835 826 9 6991149 234 7981220 834 965 821 6461227 572 4 575 378 5 511 357 627 638 5 511 357 8 4 340 4 1 16 34 1 10 287 6 1 5591251 236 57317851061 24914971578 358 9791899 695 48 13 839 841 14 402 388 14 119 241 8 18 11 18 2 4 1 350 330 6 9991045 35 9711306 23810201262 47412071139 221 786 537 16 654 657 14 402 1 350 330 1 12 297 3 17 237 4 3 79 67 6 6 211 15 1 9 7931738 684 45117181167 12514281601 24411581908 569 71 5 861 867 13 318 335 8 119 185 3 5 103 4 13 4 15 4 9 6 363 544 6 5651104 414 609 860 656 825 736 8651225 856 71515101010 292 758 462 8 5 112 4 8 5 43 12 13 13 14 1 5 192 6 6 628 643 13 318 335 11 301 9 6 30 14 16 114 17 115 8 10.293 13 10 13 9 5 7 126 9 9 4 89 4 9 714 593 6911301649 396 7391601 793 40013381267 367 9711613 656 498 64 166 9031847 679 47216231406 38810981714 883 59412521522 719 350 967 414 11 8 135 11 5 43 12 8 14 54 8 1 155 5 5 16 243 16 12 90 13 9 6 25 6 3 9 43 7 13 121 547 295 79714231172 629 8811190 522 4101323 737 1811391 989 5 8 7771241 55 5201171 484 6281227 944 9461219 88910901250 634 279 552 79 6 3 314 15 2 304 147 6 289 253 7 234 231 19 481 46 324 357 10 64 248 6 9 122 6 9 159 17 6 118 705 109 4701475 109 470147 6 289 253 7 234 231 2 4 52 8111611 551 47214841014 20 Joo /2415971192 556 581 993 282 6 1 264 14 3 332 621 197 76314041119 8391072 9321033 945 396 144 411 9 9 18 24 14 10 384 304 23 8441546 810 379 632 279 9 9 9 3 5 8 7 6 4 2 62 783 4 11 126 6 8 22 10 12 250 510 553 623 066 263 85 659 780 84313001360 660 677 6 4 2 62 783 13611021627 426 7141607 664 76 783 066 263 066 263 85 659 780 84313001360 660 677 6 4 2 62 783 13611021627 426 7141607 664 783 066 263 06 12 8971480 305 8731827 862 22 6 247 280 2 3 195 10 5 795 954 34310151774 811 48 1 3 8 -96 62 783 348 57214491436 639 72 10 138
 4
 11
 126
 6
 8
 22
 10
 12
 250
 510
 553
 623
 966
 363
 16
 174
 42
 3
 18
 240
 2
 17
 235
 9
 16
 169
 637
 84

 13611021627
 426
 7141607
 664
 28
 703
 398
 15
 33
 641
 206
 34
 9461236
 25511051950
 733
 71618101174
 308
 814
 968
 39

 11
 4
 73
 12
 11
 135
 10
 12
 394
 401
 6
 188
 945
 9
 13
 113
 79
 10
 1
 108
 18
 13
 19
 63
 4
 1
 387
 388
 11710781765
 538
 7701821
 969
 3401377
 79
 13
 394
 897
 137
 2151185
 888
 314
 9491495
 769
 53315271378
 385
 8061519
 < 84 23812481120 482 73 3 140 160 10 1 548 714 13 7 740 675 12 1
 8
 25
 148
 11
 9
 170
 3
 9
 28
 38
 2
 183
 353
 9
 15
 241
 13
 2
 14
 56
 6
 12
 7
 9
 2
 7
 243
 4
 2
 113
 200
 17
 1

 9710191785
 519
 64418341102
 30013531291
 140
 8061448
 483
 49314211209
 595
 89715791031
 49211581558
 666
 64216001174
 343
 9351352
 446
 42
 6
 252
 1
 4
 109
 4
 8
 10
 96
 6
 1
 168
 8
 3
 43
 74
 12
 14
 45
 11
 16
 1
 127
 19
 2
 35
 43
 10
 17
 104
 13
 1

0 0 0 9 0 1 0 2 Õ 7 0 8 9 0 2 2 5 6 8 3 2 5 ŏ Õ 0 Õ õ Ò Ō Ò Ŏ Ŏ Õ Ō Ō Ō õ Õ Ò Ô Ō Ô 6 7 4 0 Ŏ Õ Õ Ō Ó 7 0 5 0 0 ō Ò Õ Ō Ō Ō Ō Ō Ō Ō Ò Ō Ó 5 7 0 Õ Ō Ô Ô Ô Ó Ô Ó Ó 0 0 0 3 0 Ō 0 0 7 3 9 7 3 8 0 2 0 Õ Õ ŏ Ó 0 0 3 0 0 Õ Õ Ő 0 Õ ŏ ŏ ŏ Ó 0 0 0 Ó Ô Ó Ó Ō 0 9 0 7 0 0 0 0 0 0 6 0 0 6 0 Ó Ó 8 ō Õ Ō ō Õ Õ Õ Ó 6 Ó 0 0 3 4 7 0 Ō 0 6 0 1 9 0 0 5 0 4 Õ Ò 0 2 0 0 0 3 0 0 0 7 0 6 Ŏ 0 Õ Õ ŏ Ō Õ Ò Õ Ŏ 0 Ō Ō Ó Ó Ó Ô Ô 3 0 0 5 0 0 0 0 7 0 3 0 0 5 0 Ō 0 3 0 0 1 0 3 0 Ō Ô 3 0 7 0 0 0 0 7 0 Õ Õ Ó Ô Ŏ Ō Ó Ó 3 0 7 Ó Õ Õ Ó Ó 0 3 0 1 4 5 0 0 Ó Ó Ó 0 1 0 2 0 7 1 4 0 7 Õ Õ 0 8 0 Ó 0 Ó 0 0 0 0 3 Ó ŏ õ ŏ Õ Õ Ō Ō Ó Ō 2 5 0. 2 ŏ õ Õ Å Ő Ó Q

Intervalle inter-spike moyen de chaque neurone-l'étoile indique les neurones inhibés

Fréquence de chaque neurone en nb pour 100 unités de temps -le 0 indique les neurones inhibés

ETAT FINAL (2000 ITERATIONS)

			Alternational	101 <u>9</u> 31				
			1000 ATC: 3141	\$965 MIN	200 200			
			100 MC 200	365 535	846 2550			
			*	8 (3)				
			酸的	编码				
				204 014	100			
			1973 APR 845	523	398.398			
			BOD WER WE	402 EQ	NE 95.	17		
			NK 52				and the second secon	
				-				
		<u></u>						
шш				میرد نید				
	—			100		내했다		
	Ľ	وي الكليك						
		n ř	THE T	128				
	า่โ							
		$\square^*\square$						
	י ב	10.34					1.	
- And sort of	. C							
]					·····		
	TRACE IN CO.			1 99 M		35		
				in the second		~~~~~		
	DAL	100						
				8 2	い こうちょう ほうしん ひんしょう しんしょう しんしょ しんしょ			
	<u>, 1999</u>							
					100 MIC:	100		
				1				
					TT I	- Bas		

FORMES CARACTERISTIQUES =

EXEMPLE 6-24 VOISINS

Le réseau est de taille 40 * 40

La forme du voisinage à 24 voisins est: x x x x x

x	x	x	x	x
X	X	•	X	X
x	X	x	X	X
x	х	x	х	х

La loi propre des intervalles inter-spikes est uniforme

Le paramètre d'inhibition téta vaut 5

L'intervalle inter-spikes moyen propre est 10

La fréquence moyenne de décharge propre pour 100 unités de temps est: 10

Etat du système au bout de 2000 itérations

8 72 83 2 12 47 12 9 311 23 17 129 63 7 18 16 8 13 74 1 12 67 146 3 6 54 22 15 122 29 5 7 1 9 388 958 161 409 873 397 292 716 379 11 903 665 12 4971131 281 57 379 742 35 17 595 834 95 32310881054 768 658 964 972 5 41211771980 907 94518111307 86916821298 36316461436 31211882001 951 66314531904 813 58317151774 610 86415431374 762 65113411344 44 1211771980 907 94518111307 86916821298 3051040130 312168 4 4 16 288 637 25 18 544 562 17 7 119 77 444 4341629 737 11 88 804 9 5 496 222 5 718 700 13 615 503 6 61 664 4 16 288 637 25 18 544 562 17 7 119 77 444 4341629 737 5 28 562 10 14 492 181 14 422 422 11 570 602 4 226 756 7 7 72 69 3 7 76 208 9 10 6791114 444 4341629 737 51 8611526 231 5381430 770 961296 759 1014091465 29313372168 814 78814751435 836 69413481833 954 59815931731 447 4371659 763 7712721599 216 9301467 402 6201843 938 29814491129 33 5761306 304 31910281130 693 537 8961266 367 5 581 504 12 8 610 68 7712721599 216 9301457 402 6201843 938 29814491129 33 5761306 304 31910281130 693 537 8961266 367 5 581 504 12 8 610 68 7414 410 8 340 354 6 49 804 26 22 631 264 6 17 249 28 2 13 9 14 5 6 84 11 12 437 857 158 4341652 734 7414 410 8 340 354 6 49 804 26 22 631 264 6 17 249 28 2 13 9 14 5 6 84 11 12 437 857 158 4341652 734 7414 410 8 340 354 6 49 804 26 22 631 264 6 17 249 28 2 13 9 14 5 6 84 11 12 437 857 158 4341652 734 1 3 7712721599 216 9301467 402 6201843 938 29814491129 33 5761306 304 31910281130 693 537 8961266 367 5 581 504 12 8 610 68 8 414 410 8 340 354 6 49 804 26 22 631 264 6 17 249 28 2 13 9 14 5 6 84 11 12 437 857 158 4341652 734 5 36 672 670 17 477 492 12 104 631 9 8 692 943 367 7611741 965 374 7871204 576 204 8781570 771 43417321583 487 7791714 495 1 26618302002 38316081953 55511612076 880 50713871494 417 56917301254 608110018441077 68613271907 750 4181194 554 8 10 426 20 13 9631165 9 7491137 94 4371298 578 219 527 565 5 11 184 118 11 34 564 3 9 86 301 11 18 484 155 11 4411384 441 23 15 68 229 8 31 244 17 15 91 29 1 11 785 205 3010981068 10 116 946 7 10 529 985 39 1301548 889 23612291961 612 42 3311911679 366 9951876 998 56614811416 551 69218911052 22716801688 288 9502259 948 54917632005 639 7211767 672 10 395 796 4 611321614 301 8361698 880 45813871511 614 4331106 185 14 425 548 9 1571175 89 13 696 612 2 6 608 53 17 81 721 4 13 17 283 10 16 138 4 15 10 163 10 15 669 297 1 709 784 16 73 578 10 13 134 176 17 10 653 312 9 4061553 668 37 28 8931467 214 6271653 976 313 9331399 382 1161377 832 211821247 11 8071348 5 5581238 793 862 94710181279 777 3371395 701 1 17014872029 462 66519851118 442134186 58 00 4681446 777 1 842 911 1211251657 42311621464 451 815 817 210 758 477 7 605 394 1 709 784 16 73 578 10 13 134 176 17 10 653 312 9 211821247 11 8071348 5 5581238 793 862 94710181279 777 1 842 911 1211751657 42311621464 451 815 817 210 758 477

 20
 0931407
 214
 0271033
 970
 313
 9331399
 382
 110177
 832
 211821247
 11
 8071348
 5
 5581238
 793
 862
 94710181279
 77
 7
 666
 394

 9
 362
 631
 10
 4391
 3
 7
 36
 379
 3
 6
 929
 600
 3211261127
 10
 632
 6224
 9240
 226
 0199
 903
 1312681255
 7916001595
 3

 23112792127
 787
 76922581505
 47416022030
 495
 4511299
 172
 6
 633
 525
 1112251221
 7718181817
 20216671859
 21016741671
 1011041062
 1

 8
 3761149
 47
 6
 848
 34
 1451
 430
 6
 5
 633
 5211342
 77
 7630
 10
 99
 93
 1214414
 148
 14814991263
 31
 942
 940
 8
 772
 76
 4
 489
 481
 451
 430
 6
 5
 633
 5211342
 77
 7 606 394 11 884 882 17914872029 462 86519851118 44211431865 800 4681446 777 1 43 350 17 18 431 11 11127 914 85 9541707 88 351025 672 6 711334 406 5414021128 16 361 799 15 14 220 14 4 1 4410751718 382 81620901106 41818081349 37 9781748 327 32715461415 482 79122411129 31315881604 61 8281743 646 54915281325 412 57 1410091640 389 7141724 682 1 998 541 2 161 703 4 14 376 319 9 15 859 141 4 433 678 8 4021364 654 5501521265 125

Fréquence de chaque neurone en nb pour 100 unités de temps -le 0 indique les neurones inhibés 3 0 0 0 0 0 0 0 0 Õ ŏ ō Õ 0 0 0 4 6 0 0 0 0 Õ 0 8 4 0 6 0 7 0 6 0 0 5 0 0 6 0 0 0 6 0 0 10 2 0 7 1 1 0 9 0 0 6 0 0 0 0 Õ Ó 0 0 0 0 Ō 5 4 7 Õ Ó Ó Ó

Intervalle inter-spike moyen de chaque neurone-l'étoile indique les neurones inhibés

13 25	53	78 *	15 *	48 *	28 1 *99	15 4	0136 * *	18 250	16 46	* *	53 (*1	13 2 50	23	* 28 *999	3 1 3 9375	27 *	* 28 * 48	3 17 3 16	*	* *2	12 2 14	2 57 * *	32 *	24 *	20 1 *	19 *	* 30 * *	14 23	* *	11 16	* * * *	14 15
*	*	*	*	*	*	*	* *	*	*	*	*	*	*	* 1	* *	*	* *	r *	*	*	* '	* *	*	*	*	*	* *	*	* *	*	* *	*
25	166	*	35	17	*	* 1	3 *	*	20	*	*	12	*	* 21	22	*	*375	250	*	*	21 2	1 *	*	13	13	*	* 19	*	* *	136	* *	42
15	30	*	38	17	*	* 1	<u>3</u> *	*	15	*	*	18	*	* 20) 22	750	* 15	i 12	*	*	22 1	9*	*	*	*	*	* 22	*	* 11	20	* 33	12
375	*	*	*	*	*	*	* *	*	26	*	*	*	*	* *	r *	*	* 1	* *	*	*	*	* *	*	*	*	*	* 30	*	* *	*	* *	*
*	*	*	*	*	*	*	* *	*	*	*	* :	28	*	* 1	* *	*	* *	* *	*	*	*99	9 *	*	11	15	*	* 15	*	* *	*	* *1	.36
11	*	*	14	*	* 1	237	5 *	55	30	*	*	11 !	57	* 14	17	57	32 26	i 18	18	* ;	22 1	1 *	*9	99	*	*	*750	*	* 13	44	* 17	13
23	*	*	13	*	*]	4	* *	14	18	*	*	*	*	* *	* *	*	* *	999	*	*	*	* *	*	*	*	*	* 57	*	* 18	*	* *	*
*	*	*	.*	*	*	* .	* *	*	*	*	*	*	*	* *	* *	*	* 1	* *	*	*	*	* *	*	15	25	* 2	7 12	*	* *	*	* *	*
23	*	*	125	*	* 8	33	* *	*	*	*	* 2	24 1	10	* 1	۱1 ¹	26	* 46	i 16	*	*	12 1	5*	999	28	*	*75	i0 *	*	* 31	*	* 13	13
12	150	*	11	27	* j	8 1	5 *	50	11	26	*	*11	15	* *	44	250	* 51	14	*	*	*	* *	*	*	*	*	* *	*	* 13	*	* *	*
375	*	*	*	*	*	*	* *	*	*	*	*	*	*	* *	* *	*	* *	* *	*	*	* .	* *	*	23	*	* 1	5 17	*	* 24	*	* *	*
750	* (*	*	*	*	*	* *	*	*	*	*	* 1	12	* *	' 16	*	* 1	* *	*	* :	21 2	7*	187	14	*	* 4	1 42	*	*500	*	* 12	14
12	107	*	12	19	* 2	23 1	2 48	*	16	12	*	* 2	28	* *	' 17	187	* 15	i 13	*	*	192	0 *	*	28	*	*	* *	*	* 25	*	* *	*
23	*	*	*	*	*	*	* *	*	*!	500	*	* (55	* *	' 62	*	* *	*	*	*	* :	* *	*	*	*	*	* 25	*	* 12	*	* *	*
*	*	*	*	*	*	* 1	* *	*	*	*	*	*]	L7	* *	' 36	*	* 1	*	*	*	* :	*750	*	*	22	*	* 12	*	* 31	*.	* 13	14
17	*	*	11	36	* 2	24 1	3 53	*	23	15	*	* {	55	* *	' 22	*	* 14	*	*	11	* :	* 10	*	*	11	*	* 45	*	* *	*	* *	*
14	999	*	313	375	*	* 5	0 *	*	65	26	*	* 3	34	* *	' 18	*	* 15	; *	*	24	* :	* 28	*	*	*	*	* *	*	* 22	*	* *	*
*	*	*	*	*	*	*	* *	*	*	*	*	* 1	11	* *	' 18	*	* *	* *	*	*	*	* *	*	*1	25	*	* 15	*	* 12	88	* 13	14
39	*	*	88	28	*	* 1	7*	*	24	*	*	*	*	* *	* *	*	* 31	*	*	20	*	* 18	*	*	10	*	* 14	*	* *	*	* *	*
12	27	*	29	12	*	* 1	1 *	*	115	500	*1(07	*	* *	' 38	*	* 14	*	*	12	* :	* 12	*	*	41	*	*214	*	* *	*	* *	*
*	*	*	*	*	*	*	* *	*	*	*	*]	11 1	18	* 32	2 11	*	* 26	; *	*	*	* :	* *	*	*	*	*	* 50	*	* 12	19	* 33	13
*	*	*	*	*	*	* 1	* *	*	*	*	* -	*	*	* *	*	*	*999) *	*	75	* :	* 65	*	*	14	*	* 10	*	* *	*	* *	20
15	13	41	*	23	15 5	53	* 20	15	28	*	* .	*	*	* *	* *	*	* 20) *	*	11	* :	* 9	*9	99	12	*	* 48	*	* *	*	* *	*
*	*	*	*	*	24	* .	* *	*	*	*	19 1	13 6	50	* 15	i 14	*:	125 12	*	*	39	* :	* *	*	*	*	*	* *	*	* 12	20	*750	35
*	*	*	*	*	*	* 1	* *	*	*	*	*	*	*	* *	* *	*	* *	*	*	*	*. :	* *	*	*	*	*	* 15	*	*187	*	* 34	10
18	16	17	*	*	39	* '	* 16	13	*	*	*	*	*	* *	* *	*	* *	500	*	*18	87 1	534	*	18	13	* 8	8 15	*	*300	*	* *	*
*	*	*	*	*	1213	36	*750	93	*	*	9	*	* 1	0 1	•	11	44 1	17	13	*9	99 2	5*	*	*	*	*	* *	*7	50 10	*	* *	*
*	*	*	*	*	2516	56	* *	*	*	*1	66	*	* 2	23 *	• *	34	* * *	*	*	*	* :	* *	*	*	*	*	* *	*	*750	*	* 21	21
15	22	20	*	*	*	*	* *	13	*	*2	50	* :	*	* *	* *	*	* *	*	*	*	* 2	1 *	*	12	2099	992	2 13	*	*300	*	* 21	21
*	*	*	*	*	* 2	28	* *	13	*	*	9	*	* 2	1	*	19	* *	15	18	* ,	40 14	4 *	*	*	*	*	* *	* :	53 10	*	* *	*
*	*	*	45	*	*]	Õ	* *	*	*	*	*	*	* 1	4	r *	11	* *	31	*	*	*50	0 *	*	*	*	*	* *	*	*300	*	* *	*
q	*	*	10	*	* 7	n i	* *	*	*	*	*	*	*	* *	. *	*	* *	*	*	*	*	* *	41	11	* (55	9 *	*	* *	*	* 14	13
۵Ň	*	*	*	*	* [′]	÷	* *	*	121	136	*1()7 f	55	* *	. *	*	* *	25	*	*	13	* *	*	*	*	*	* *	*	18 25	*	* *	*
150	*	*	*	*	* 4	15 12	8 *	*	147	750	*	15 1	6	* *	12	25	* 28	13	*	*	15	* *	*	*	*	*	* *	*	21 24	*	* *	*
14	*	*	10	25	* 3	10 1	Ř *	*	000	*	*	*	*	* *	48	*	*990	500	*	*	55	* *	13	15	* 3	38 1	0187	*	* *	*	* 15	12
53				*	*	÷ 1	ž .		100			*	*	* *	*	*	* *	*	*	*	*	* *	*	*	*	*	* *	*	* *	*	* *	*
		~							1111																							
- 57	*	*	*	*	*	*21	4 *	*	11	*	* :	21 2	3	* *	27	31	* *	12	*	*	20	* *	*	*	*	*	* *	*	* 15	*	* *	*

ETAT FINAL (2000 ITERATIONS)

FORMES CARACTERISTIQUES =

EXEMPLE 7-48 VOISINS

Le réseau est de taille 40 * 40

La forme du voisinage à 48 voisins est: X X X X X X X

X	x	х	x	x	X	x	
X	X	X	X	X	X	X	
X	X	x	•	X	X	x	
X	x	X	x	x	X	x	
х	X	x	x	X	X	x	
X	x	X	X	X	X	х	

La loi propre des intervalles inter-spikes est uniforme

Le paramètre d'inhibition têta vaut 5

L'intervalle inter-spikes moven propre est 10

La fréquence moyenne de décharge propre pour 100 unités de temps est: 10

Etat du système au bout de 2000 itérations

Eta du système au bout de 2000 trênetion 9 16 6 119 197 30 6 8 97 394 45 6 16 522 493 8 5 137 812 761 7 5 814 803 228 8 671 678 676 4 203 619 617 14 9 95 555 5 9 6 617 668 92316311724120 623 59712971443117 228 1291491112 361 9 144 884 782 5 15 805 609 241 9 648 674 648 2 399 9921001 33 90 9321637 821 167 75 876 609 672 924161817061291 627 59815022231561 729 6271002051274 11834119381109 21 90 595 594 520 13 784 680 877 8 9615841832 64 47 75114402511716 75 876 609 672 924161817061291 627 59815022231561 729 6271002051274 661 011539119 20 213169011800 16 263 14702277226 666 7014647587 75 876 605 61 5 5 10 15 4 551 24 13 12222247 666 101547193 199 621365195 27 39055000 818 8305196 67 90 74612587 1149 199 73 77 79 160 746125817162 29 89 616 716 9211700178131851357 64 61 643 731 751 64 18 657 666 3 16 76 66 3 16 76 66 3 15 70 17 46125817162 29 895 617 09 9317131851337 64 19 8 5031102 698 231 22916771946144 50316017322099118613581653165 9561926103139 976 74 6521581393 274 45213942141407 269 267 617 093171313153337 64 19 8 5031102 698 231 22916771946144 53016017322091186135816531665 9665 695162912161381197 644155421501339 424 45213942141407 269 267 617 7533130221319041135 655 6671431413 251 16 11 638 969 600 84 498 6071664 643 719 711708 472 1891128 76 239 195 038 86 330 12 15 138 89 354 71 2 617 7185 773 205 14 8 1812511365 1366 643 718 711708 4728 191128 76 229 195 053886 530 12 15 138 89 354 71 2 617 7185 773 205 14 8 1812511365 671 12195719821215 64118812851288 088 407 687 003 6661047 917 519 220 75616781441147 67614527002311268 91 617 75271222461697 33 617 9611397 773 11 8 47 87 850 629 0414313552155010744401605163110710101311531278137 08 114827127978 198 028 295616781557 12 15 617 185 773 2056 73 14 8 1812511376 31 16 350 121 05 93 251 17 13 35 19 64 77 77 91 180 128 77 78 19 120 787 79 110 121 91777 1167 182 77 617 185 773 20567 31 4 8 1812511205198 245 12 01937712728 450164021027177318712828770 645651288 115 88 150 100 107173187 128 191287777 110 11 91910773187 128 77 617 185 778 25 95 957172572

$\begin{array}{c} 5 & 5 \\ 0 & 0 \\$	400040005000000000000000000000000000000	000000000000000000000000000000000000000	20001000600053000600010000000000000000000	500060006000000000000000000000000000000		000000000000000000000000000000000000000	7000330005400070001000000000000000000000000000	5000540003400010000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	6520035600050007000700000000000000000000000	000000000005000000000000000000000000000		00000000000000000000000440000440006	431002660000007400370004400000004300004		000000000050000000000000000000000000000	0000004400020004400050006400141004630047	5540003400000044000700040000000000000000		000000000000000000000000000000000000000	654002750015000440005000700060004500000	0000000000003400070002000000000000000000	•••••••••••••••••••••••••••••••••••••••	000000000000000000000000000000000000000	8100250003300000000000002200035000600044	4000350004500053002640034400044000700000	000000000000520001000000000000000000000	•••••••••••••••••••••••••••••••••••••••	100000000000000000000000000000000000000	7000540004400000000340007000440004400033	5000440004400066100350005000350004500033
			I	nterv	/a11	e in	ter	-sp1	ke i	noye	n de	cha	Ique	nei	iron	₽-(1	'éto	lle	ind	ique	le	s ne	uro	nes	in	h 1b	és)					
18 18 2 18 18 2 16 21 2 16 21 2 18 16 21 18 16 21 18 16 21 18 16 21 18 16 34 18 16 34 43 * * 15 15 * * 15 15 * * 14 * 14 * 14 * 14 16 * * 14 * 14 16 * * * * * * * * * * * * * * * * * * * * * * * * <td>0***3***8***********************</td> <td>+ +<td>6 * * * 0 * * * 4 * * * 40 * * * 5 * * * 38 * * 0 4 * * * 48 * * 6</td><td>16 * * 16 * * 15 * * * * * * * * * * * * * * * *</td><td>* * * * * * * * * * * * * * * * * * * *</td><td>***************************************</td><td>13 * * * 30 299 * * * 19 20 * * * 13 * * * 14 * * * 62 * * * * * * * * * * * * * * * *</td><td>16* ** 18 24* ** 26 23* ** 66* ** ** ** ** ** ** ** ** ** ** *</td><td>**************</td><td>* * * * * * * * * * * * * * * * * * *</td><td>***************************************</td><td>* * * * * * * * * * * * * * * * * * * *</td><td>* * * * * * * * * * * * * * * * * * * *</td><td>***************************************</td><td>2530* * 265* * * * * * 21* * 283* * * 201* * * * * * * * * 224 6 3</td><td>***************************************</td><td>* * * * * * * * * * * 18* * * * * * * *</td><td>* * * * * 211* * * 11* * * 221* * * 19* * * 154* * 1285 * 215</td><td>17 20 21 * * * 26 23 * * * * * * 23 21 * * * 26 21 * * * * * * * 23 21 * * * * * * * * * * * * * * * * * * *</td><td>**************************</td><td>***************************************</td><td>16724 * 42138 * * 85818 * * 2122* * * 17* * * 13* * * 15* * * 230*</td><td>***************************************</td><td>****************</td><td>*****************</td><td>129 318 318 318 318 318 318 318 318</td><td>21 * * * 39 * * 216 * * 88 * 4663 * * 202 * * 122 * * 3</td><td>***************************</td><td>****************</td><td>72********************</td><td>14************************************</td><td>16***251***224***15518**268***16***268***219</td></td>	0***3***8***********************	+ + <td>6 * * * 0 * * * 4 * * * 40 * * * 5 * * * 38 * * 0 4 * * * 48 * * 6</td> <td>16 * * 16 * * 15 * * * * * * * * * * * * * * * *</td> <td>* * * * * * * * * * * * * * * * * * * *</td> <td>***************************************</td> <td>13 * * * 30 299 * * * 19 20 * * * 13 * * * 14 * * * 62 * * * * * * * * * * * * * * * *</td> <td>16* ** 18 24* ** 26 23* ** 66* ** ** ** ** ** ** ** ** ** ** *</td> <td>**************</td> <td>* * * * * * * * * * * * * * * * * * *</td> <td>***************************************</td> <td>* * * * * * * * * * * * * * * * * * * *</td> <td>* * * * * * * * * * * * * * * * * * * *</td> <td>***************************************</td> <td>2530* * 265* * * * * * 21* * 283* * * 201* * * * * * * * * 224 6 3</td> <td>***************************************</td> <td>* * * * * * * * * * * 18* * * * * * * *</td> <td>* * * * * 211* * * 11* * * 221* * * 19* * * 154* * 1285 * 215</td> <td>17 20 21 * * * 26 23 * * * * * * 23 21 * * * 26 21 * * * * * * * 23 21 * * * * * * * * * * * * * * * * * * *</td> <td>**************************</td> <td>***************************************</td> <td>16724 * 42138 * * 85818 * * 2122* * * 17* * * 13* * * 15* * * 230*</td> <td>***************************************</td> <td>****************</td> <td>*****************</td> <td>129 318 318 318 318 318 318 318 318</td> <td>21 * * * 39 * * 216 * * 88 * 4663 * * 202 * * 122 * * 3</td> <td>***************************</td> <td>****************</td> <td>72********************</td> <td>14************************************</td> <td>16***251***224***15518**268***16***268***219</td>	6 * * * 0 * * * 4 * * * 40 * * * 5 * * * 38 * * 0 4 * * * 48 * * 6	16 * * 16 * * 15 * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	***************************************	13 * * * 30 299 * * * 19 20 * * * 13 * * * 14 * * * 62 * * * * * * * * * * * * * * * *	16* ** 18 24* ** 26 23* ** 66* ** ** ** ** ** ** ** ** ** ** *	**************	* * * * * * * * * * * * * * * * * * *	***************************************	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	***************************************	2530* * 265* * * * * * 21* * 283* * * 201* * * * * * * * * 224 6 3	***************************************	* * * * * * * * * * * 18* * * * * * * *	* * * * * 211* * * 11* * * 221* * * 19* * * 154* * 1285 * 215	17 20 21 * * * 26 23 * * * * * * 23 21 * * * 26 21 * * * * * * * 23 21 * * * * * * * * * * * * * * * * * * *	**************************	***************************************	16724 * 42138 * * 85818 * * 2122* * * 17* * * 13* * * 15* * * 230*	***************************************	****************	*****************	129 318 318 318 318 318 318 318 318	21 * * * 39 * * 216 * * 88 * 4663 * * 202 * * 122 * * 3	***************************	****************	72********************	14************************************	16***251***224***15518**268***16***268***219

Fréquence de chaque neurone en nb pour 100 unités de temps-(le 0 indique les neurones inhibés)

ETAT FINAL (2000 ITERATIONS)

FORMES CARACTERISTIQUES =

APPENDICE 3 - CAS DE n² NEURONES

E(F)=60

DIVERGENCE :

ETUDE DETAILLEE DE DIFFERENTES CARTES STABLES POUR |V| = 4, 6 et 8.

I.1) |V| = 4

 $\theta = 25 > E(\mathcal{F})/4$

ETAT INITIAL

85	31	25	42	52	109	105	61	117	22	
34	70	76	44	108	56	87	71	41	99	
10	13	85	18	16	36	33	77	68	44	
108	56	38	85	38	93	57	58	67	55	
70	4	45	99	115	26	81	70	3	46	
33	109	47	114	74	66	52	20	88	104	
109	18	27	53	97	17	108	25	107	77	
85	41	100	1	97	8	38	80	37	40	
103	105	29	103	58	68	76	54	102	111	
13	63	3	75	15	64	67	50	19	53	

CARTE

Presque tous les neurones sont isolés.

Deux remarques:

l)Ne peuvent subsister des amas de m neurones que si téta < E(F)/m.

2)La largeur d'une bande de neurones inhibés est limitéepar la portée du voisinage considéré:tout neurone inactif doit être voisin d'un neurone actif, sous peine de bascule dans le sous-ensemble des actifs.

ETAT FINAL

ETAT INITIAL ALEATOIRE

54	4	569	55	305	40	521	22	492	28
47	1120	17	1119	6	623	86	940	6	249
394	61	1410	10	681	3	754	19	844	37
64	1531	85	1085	53	768	7	1103	16	396
445	49	1495	74	1165	60	1206	79	1207	5
36	1409	1	1239	25	1316	20	1327	12	544
559	13	1302	38	972	15	1408	1	1432	28
66	1384	46	948	3	876	46	1405	19	519
728	40	1142	4	833	78	1132	45	1027	81
41	513	1	268	27	330	41	362	13	67

2) |v| = 4

e = 70

ETAT INITIAL

85	31	25	42	52	109	105	61	117	22	8	51	171	4	4692	24	2869	415	50	5187	7 3130
34	70	76	44	108	56	87	71	41	99	510		54	4800	- 34	1000	0	204/	2001	10	J135
10	13	85	18	16	36	33	77	69	A.A.		20	633	605	2358	31	4896	50	283/	448	992
100		200		10	30	33		00	44	24	2 21	816	18	2705	208	403	2817	15	5767	6
108	50	38	85	- 38	93	5/	58	6/	55	J4	2 20	010	7015	16	4075	30	2631	3180	23	4976
70	4	45	99	115	26	81	70	3	46	276)	25	/215	10	49/0		2031	3100	0400	0
33	100	47	114	74	66	52	20	00	104	5	7.7	769	79	4904	- 58	4996	22	240/	2420	o
100	105	07	117	67	17	100	20	00	104	630	3	1	3207	433	592	1027	2448	31	4267	802
103	10	27	53	9/	- 17-	108	25	10/	- 77	220			3207	EA	7407	an	079	6710	85	4410
85	41	100	1	97	8	38	80	37	40	2	5 5	401	410	54	3407	00	3/0	3110	7000	14
103	105	20	103	59	60	76	54	102	111	524	3	6	2719	483	533	1078	2906	0	/83Z	14
105	105	25	105	50	00	/0	- 34	102	111	1	ם כ	1 2 2	11	2555	80	2614	3	4980	16	2253
13	63	- 3	/5	15	64	67	50	19	53	1	ζ Ο.	100	11	2333						

CARTE

Pas de paires(sauf sur le bord, moins inhibé).

ETAT INITIAL EN BANDE

ETAT INITIAL ALEATOIRE

ETAT FINAL

3) |V| = 4

θ = 28

ETAT INITIAL

600	31	600	42	600	109	600	61	600	22
600	70	600	44	600	56	600	71	600	99
500	13	600	18	600	36	600	77	600	44
500	56	600	85	600	93	600	58	600	55
500	4	600	99	600	26	600	70	600	46
500	109	600	114	600	66	600	20	600	104
500	18	600	53	600	17	600	25	600	77
500	41	600	1	600	8	600	80	600	40
500	105	600	103	600	68	600	54	600	111
500	63	600	75	600	64	600	50	600	53

ETAT FINAL

51	- 38	1036	77	560	12	82	105	392	81
4	1170	43	1208	3	43	672	31	78	171
448	70	1652	20	308	414	7	753	85	92
87	787	89	353	115	19	1792	79	756	97
90	76	420	91	39	1123	37	1264	43	285
106	13	98	20	812	66	1848	16	1260	46
94	427	96	757	5	1254	30	1161	45	433
700	6	1260	62	1792	76	1484	40	1456	8
6	961	17	1323	14	1428	109	1215	9	715
84	85	924	87	1456	13	1176	53	1344	12

CARTE

Les bandes se désagrègent et le réseau tend vers la quinconce limite .

θ == 70

ETAT INITIAL

600	31	600	42	600	109	600	61	600	22	
600	70	600	44	600	56	600	71	600	99	
600	13	600	18	600	36	600	77	600	44	
600	56	600	85	600	93	600	58	600	55	
600	4	600	99	600	26	600	70	600	46	
600	109	600	114	600	66	600	20	600	104	
600	18	600	53	600	17	600	25	600	77	
600	41	600	1	600	8	600	80	600	40	
600	105	600	103	600	68	600	54	600	111	
600	63	600	75	600	64	600	50	600	53	

CARTE

ETAT INITIAL EN BANDE

ETAT FINAL

2870	21	4760	61	4620	6	4690	45	5250	100
107	5980	110	6584	27	5056	35	3597	10	4300
4340	20	6790	40	6790	23	1960	737	2170	11
92	5546	47	6765	17	1943	2590	33	1120	2535
4410	21	6860	14	3010	2175	25	4370	840	68
43	6579	13	2594	2520	32	6370	101	3150	344
2940	7	3290	2253	31	5927	14	5935	113	2557
189	911	2940	30	7210	1	6370	14	6300	15
101	3565	94	7063	67	6608	9	5404	67	4481
2450	61	5320	43	5670	37	4900	6	4970	66

Plus aucune paire, les isolés actifs suivent la loi F.

Quinconce presque parfaite.

ETAT INITIAL A L'EQUILIBRE NUMERO 1

5) |V| = 4

θ = 30

ETAT INITIAL

600	31	600	42	600	109	600	61	600	22
34	600	76	600	108	600	87	600	41	600
600	13	600	18	600	36	600	77	600	44
108	600	38	600	38	600	57	600	67	600
600	4	600	99	600	26	600	70	600	46
33	600	47	600	74	600	52	600	88	600
600	18	600	53	600	17	600	25	600	77
85	600	100	600	97	600	38	600	37	600
600	105	600	103	600	68	600	54	600	111
13	600	3	600	15	600	67	600	19	600

CARTE

ETAT FINAL

550	25	1390	73	1480	3	1540	90	1330	46
69	2560	8	2290	18	2560	13	2140	13	1540
1870	77	2680	19	2470	24	2350	38	2410	16
22	2890	1	2470	80	2710	37	2350	100	1720
1720	13	2680	10	2680	29	2620	3	2560	62
29	2410	35	2530	10	2920	14	2410	90	1660
1270	-30	2410	58	2650	13	2800	21	2650	11
42	2320	49	2530	51	2590	22	2950	61	1930
1450	60	2740	67	2380	27	2710	13	2950	70
68	1780	14	1690	53	1540	54	1750	10	670

Stabilité complète de la carte de départ.L'inhibition est supérieure au seuil calculé. 6) |V| = 4

θ == 70

ETAT INITIAL

85	600	25	600	52	600	105	600	117	60 0	
600	70	600	44	600	56	600	71	600	99	
10	600	85	600	16	600	33	600	68	600	
600	56	600	85	600	93	600	58	600	55	
70	600	45	600	115	600	81	600	3	600	
600	109	600	114	600	66	600	20	600	104	
109	600	27	600	97	600	108	600	107	600	
600	41	600	1	600	8	600	80	600	40	
103	600	29	600	58	600	76	600	102	600	
600	63	600	75	600	64	600	50	600	53	

CARTE

Stabilité complète de la carte de départ.L'inhibition est supérieure au seuil calculé.

7) |V| = 4

ETAT INITIAL A L'EQUILIBRE NUMERO 2

θ = 25

ETAT INITIAL

85	600	600	42	600	600	105	600	600	22
600	70	600	600	108	600	600	71	600	600
600	600	85	600	600	36	600	600	68	600
108	600	600	85	600	600	57	600	600	55
600	4	600	600	115	600	600	70	600	600
600	600	47	600	600	66	600	600	88	600
109	600	600	53	600	600	108	600	600	77
600	41	600	600	97	600	600	80	600	600
600	600	29	600	600	68	600	600	102	600
13	600	600	75	600	600	67	600	600	53

CARTE

ETAT FINAL

46	425	53	4	1300	13	1326	74	674	10
950	37	13	1623	6	5275	80	2003	19	556
49	79	1030	92	4232	10	4800	41	1428	28
104	1465	28	4350	10	4450	41	4100	57	796
925	17	4275	87	4456	27	4225	20	4575	60
62	4700	38	4325	13	3842	1	4550	10	1528
1181	69	3500	36	4500	58	3998	41	2310	13
75	2483	14	3850	46	4525	26	1162	27	14
1169	14	2647	8	4700	14	1881	14	39	750
20	1304	73	1250	63	1025	43	71	750	21

La carte se désagrége lentement, l'inhibition est trop faible.

ETAT FINAL

ETAT INITIAL A L'EQUILIBRE NUMERO 1

8) |v| = 4

θ = 35

ETAT INITIAL A L'EQUILIBRE NUMERO 2

ETAT FINAL

ETAT INITIAL

85	600	600	42	600	600	105	600	600	22	
600	70	600	600	108	600	600	71	600	600	
600	600	85	600	600	36	600	600	68	600	
108	600	600	85	600	600	57	600	600	55	
600	- 4	600	600	115	600	600	70	600	600	
600	600	47	600	600	66	600	600	88	600	
109	600	600	53	600	600	108	600	600	77	
600	41	600	600	97	600	600	80	600	600	
600	600	29	600	600	68	600	600	102	600	
13	600	600	75	600	600	67	600	600	53	

CARTE

Stabilité, seulement troublée par l'inhibition plus faible des bords.

- 9) |v| = 4
 - θ = 70

ETAT INITIAL

85	600	600	42	600	600	105	600	600	22	
600	70	600	600	108	600	600	71	600	600	
600	600	85	600	600	36	600	600	68	600	
108	600	600	85	600	600	57	600	600	55	
600	4	600	600	115	600	600	70	600	600	
600	600	47	600	600	66	600	600	88	600	
109	600	600	53	600	600	108	600	600	77	
600	41	600	600	97	600	600	80	600	600	
600	600	29	600	600	68	600	600	102	600	
13	600	600	75	600	600	67	600	600	53	

CARTE

ETAT FINAL

ETAT INITIAL A L'EQUILIBRE NUMERO 2

9	4060	770	15	2940	1050	40	3500	840	74
4060	27	3220	2940	49	3780	3500	6	3500	840
980	3220	14	2870	3780	24	4340	3500	12	3640
2	3500	2870	2	2800	4340	9	3430	3640	12
3500	9	3570	2800	- 38	2940	3430	13	3080	1260
1120	3570	11	3150	2940	54	2800	3080	52	2590
62	3570	3150	36	2870	2800	30	2940	2590	93
3570	60	3500	2870	14	2520	2940	35	3290	420
1750	3500	6	3360	2520	13	2660	3290	79	3500
71	1750	3360	53	1050	2660	53	1050	3500	71

Stabilité complète de la carte de départ.L'inhibition est supérieure au seuil calculé.

θ = 20

ETAT INITIAL 85 31 25 42 52 109 105 61 117 22 34 70 76 44 108 56 87 71 41 99

				100					- 33
10	13	85	18	16	36	33	77	68	44
108	56	38	85	38	93	57	58	67	55
70	4	45	99	115	26	81	70	3	46
33	109	47	114	74	66	52	20	88	104
109	18	27	53	97	17	108	25	107	77
85	41	100	1	97	8	38	80	37	40
103	105	29	103	58	68	76	54	102	111
13	63	3	75	15	64	67	50	19	53

CARTE

 ETAT FINAL

 67
 32
 68
 262
 35
 50
 259
 64
 38
 17

 3
 590
 79
 6
 351
 850
 13
 123
 568
 21

 19
 36
 101
 1298
 67
 69
 1317
 46
 52
 197

 28
 1056
 57
 24
 427
 433
 36
 202
 1447
 5

 150
 33
 156
 1659
 80
 11
 2201
 8
 67
 606

 43
 1469
 29
 37
 732
 97
 46
 279
 1148
 65

 412
 57
 93
 1433
 47
 51
 1888
 72
 25
 377

 4
 1101
 65
 60
 917
 114
 36
 360
 434
 20

 393
 50
 4
 843
 24
 6
 1216
 29
 28

ETAT INITIAL ALEATOIRE

Une majorité de paires de neurones actifs et voisins.

ETAT INITIAL ALEATOIRE

- 2) |V| = 6

 $\theta = 50$

			EJ	ETAT		INITIAL			
85	31	25	42	52	109	105	61	117	22
34	70	76	44	108	56	87	71	41	99
10	13	85	18	16	36	33	77	68	44
108	56	38	85	38	93	57	58	67	55
70	4	45	99	115	26	81	70	3	46
33	109	47	114	74	66	52	20	88	104
109	18	27	53	.97	17	108	25	107	77
85	41	100	1	97	-8	38	80	37	40
103	105	29	103	58	68	76	54	102	111
13	63	3	75	15	64	67	50	19	53

CARTE

ETAT FINAL

985	70	1332	3142	9	421	412	26	1417	15
87	4120	1376	° - 1	3208	456	37	490	40	2899
1086	8	3035	3418	77	70	1183	927	1568	6
8	3206	26	15	2788	2593	108	105	1967	455
1720	10	1545	3349	765	8	3431	4220	65	246
16	3809	2197	38	39	5366	402	3	3438	101
3209	104	54	4253	1447	10	2958	3275	36	1397
41	3891	195 0	8	2697	2858	10	2980	2701	53
2053	33	2229	2853	13	2968	2926	64	1602	1811
45	1513	59	825	2215	15	1267	3450	8	203

Moins de paires, les actifs sont plus souvent isolés. 3) |V| = 6

$$\theta = 70 > E(F)$$

ETAT INITIAL

85	31	25	42	52	109	105	61	117	22	
34	70	76	44	108	56	87	71	41	99	
10	13	85	18	16	36	33	77	68	44	
108	56	38	85	38	93	57	- 58	67	55	
70	4	45	99	115	26	81	70	3	46	
33	109	47	114	74	66	52	20	88	104	
109	18	27	53	97	17	108	25	107	77	
85	41	100	1	97	8	- 38	80	37	40	
103	105	29	103	58	68	76	54	102	111	
13	63	3	75	15	64	67	50	19	53	

CARTE

ETAT INITIAL A L'EQUILIBRE NUMERO 1

טן = 6 4)

> = 20 > E(F)/4 et < E(F)θ

ETAT INITIAL

85	31	600	600	52	109	600	600	117	22
600	600	76	44	600	600	87	71	600	600
10	13	600	600	16	36	600	600	68	44
600	600	38	85	600	600	57	58	600	600
70	4	600	600	115	26	600	600	3	46
600	600	47	114	600	600	52	20	600	600
109	18	600	600	97	17	600	600	107	77
600	600	100	1	600	600	38	80	600	600
103	105	600	600	58	68	600	600	102	111
600	600	3	75	600	600	67	50	600	600

CARTE

ETAT FINAL

89	85	720	480	85	69	600	520	19	62
360	740	70	41	1100	1060	7	61	500	40
6	118	1320	1180	37	90	1200	1120	19	41
240	660	113	89	1080	1280	30	34	540	200
45	57	1220	1220	32	47	1320	1080	31	4
300	560	38	18	1140	1400	3	34	620	63
26	73	1 0 40	1020	- 77	35	1220	880	3	3
240	620	99	51	1000	1120	23	17	560	35
62	32	1020	920	60	5	1100	860	71	36
45	140	35	13	360	400	2	54	220	74

Stabilité complète de la carte de départ.L'inhibition est supérieure au seuil calculé.

ETAT FINAL

ETAT INITIAL ALEATOIRE

Plus aucune paire, les isolés actifs suivent la loi F.

- 5) |V| = 6
 - $\theta = 70 > E(\mathcal{F})$

ETAT INITIAL

31	600	600	52	109	600	600	117	22
600	76	44	600	600	87	71	600	600
13	600	600	16	36	600	600	68	44
600	38	85	600	600	57	58	600	600
4	600	600	115	26	600	600	3	46
600	47	114	600	600	52	20	600	600
18	600	600	97	17	600	600	107	77
600	100	1	600	600	38	80	600	600
105	600	600	58	68	600	600	102	111
600	3	75	600	600	67	50	600	600
	31 600 13 600 4 600 18 600 105 600	$\begin{array}{ccccc} 31 & 600 \\ 600 & 76 \\ 13 & 600 \\ 600 & 38 \\ 4 & 600 \\ 600 & 47 \\ 18 & 600 \\ 600 & 100 \\ 105 & 600 \\ 600 & 3 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

CARTE

ETAT FINAL

15	560	5040	1890	4	349	910	2800	217	43
2310	3780	15	284	5670	1120	287	6	770	5040
1515	19	5810	6440	66	766	3780	2940	378	28
12	7140	2031	73	6440	5740	15	438	4130	910
1570	17	3500	5670	425	27	8190	4480	10	1266
910	6930	25	424	2870	5670	64	384	4060	1330
3849	65	4690	7280	617	29	5250	3710	487	10
93	8610	2230	49	3290	7700	1	320	1190	2660
2323	50	3080	5390	269	28	3360	5040	225	2000
910	3150	2	544	1120	3220	377	76	1260	2500
		-		****	JELU	511		1500	2090

Plus aucune paire, les isolés actifs suivent la loi F.

6) |v| = 6

ETAT INITIAL A L'EQUILIBRE NUMERO 2

 $\theta = 16 < E(\mathcal{F})/3$

ETAT INITIAL

85	600	600	42	600	600	105	600	600	22
600	70	600	600	108	600	600	71	600	600
600	600	85	600	600	36	600	6 0 0	68	600
108	600	600	85	600	600	57	600	600	55
600	4	600	6 0 0	115	600	600	70	600	600
600	600	47	600	600	66	600	600	88	600
109	600	600	53	600	600	108	600	600	77
600	41	600	600	97	600	600	80	600	600
600	600	29	600	600	68	600	600	102	600
13	600	600	75	600	600	67	600	600	53

CARTE

ETAT FINAL

19	37	42	37	11	11	100	33	8	81
36	55	34	49	44	224	51	43	56	13
35	8	11	288	41	80	496	96	69	49
46	256	1	57	160	144	60	41	464	20
40	25	208	16	43	20	224	59	35	20
83	5	68	144	67	20	41	53	23	109
7	175	48	1	37	224	10	3	88	13
9	50	44	192	90	66	9 6	61	2	9
42	17	26	8	96	36	49	32	62	85
39	30	160	34	42	31	91	17	7	103

La carte se désagrége lentement, l'inhibition est trop faible.

- 7) |V| = 6
 - $\theta = 25 > E(\mathcal{F})/3$

ETAT INITIAL

85	600	600	42	600	600	105	600	600	22	
600	70	600	600	108	600	600	71	600	600	
600	600	85	600	600	36	600	600	68	600	
108	600	600	85	600	600	57	600	600	55	
600	4	600	600	115	600	600	70	600	600	
600	600	47	600	600	66	600	600	88	600	
109	600	600	53	600	600	108	600	600	77	
600	41	600	600	97	600	600	80	600	600	
600	600	29	600	600	68	600	600	102	600	
13	600	600	75	600	600	67	600	600	53	

CARTE

9 1250 425 15 1000 250 40 1100 250 37 550 62 1075 975 49 1350 1125 6 350 300

330	02	10/3	3/3	49	1220	1123	0	220	200
300	250	73	1150	1275	93	1475	1400	12	400
8	1075	975	2	1000	1300	9	1250	1350	12
375	79	1150	1025	5	925	1050	13	200	375
300	375	11	1000	1000	54	925	975	52	1
24	1100	1050	36	825	875	30	725	700	17
350	60	1125	1025	14	825	900	35	300	25
525	350	6	950	850	13	900	950	71	375
53	550	1350	23	275	850	53	400	1225	71

ETAT FINAL

Stabilité, seulement troublée par l'inhibition plus faible des bords.

ETAT INITIAL A L'EQUILIBRE NUMERO 3

- 8) |V| = 6
 - $\theta = 50 > E(\mathcal{F})/2$

ETAT INITIAL

85	600	600	600	52	600	600	600	117	600	
600	70	600	600	600	56	600	600	600	99	
600	600	85	600	600	600	33	600	600	600	
600	600	600	85	600	600	600	58	600	600	
70	600	600	600	115	600	600	600	3	600	
600	100	600	600	600	66	600	600	600	104	
600	600	27	600	600	600	108	600	600	600	
600	600	600	1	600	600	600	80	600	600	
102	600	600	600	58	600	600	600	102	600	
102	63	600	600	600	64	600	600	600	53	
000	00	000	000	000	37					

ETAT FINAL

			E	TWT		TANT	•		
13	1950	2 250	500	43	2050	2050	250	63	1800
1950	1	2000	1750	2050	28	1700	1800	1800	74
400	2000	.74	2000	1900	1700	15	1700	150	250
100	250	2000	86	1650	1800	1700	22	2050	150
21	1900	1500	1650	20	1800	1900	2050	48	2000
1900	97 [.]	1900	2250	1800	7	2450	1950	2000	22
100	1900	57	2100	2100	2450	14	2200	600	100
300	600	2100	16	2300	2200	2200	67	1800	200
71	2050	2050	2300	74	2050	2000	1800	20	2150
2050	15	350	2050	2050	71	300	2200	2150	62

Stabilité complète de la carte de départ.L'inhibition est supérieure au seuil calculé.

CARTE

ETAT INITIAL A L'EQUILIBRE NUMERO 4

- 9.) |V| = 6
 - $\theta = 70 > E(\mathcal{F})$

			ET	AT	INI	TIA	L		
85	600	600	600	600	109	600	600	600	600
600	70	600	600	600	600	87	600	600	600
600	600	85	600	600	600	600	77	600	600
600	600	600	85	600	600	600	600	67	600
600	600	600	600	115	600	600	600	600	46
33	600	600	600	600	66	600	600	600	6 0 0
600	18	600	600	600	600	108	600	600	600
600	600	100	600	600	600	600	80	600	600
600	600	600	103	600	600	600	600	102	600
600	600	600	600	15	600	600	600	600	53

CARTE

ETAT FINAL

24	3290	1050	1050	1050	33	3640	1050	910	2520	54
3290	4	3430	840	1260	3640	19	5250	2800	52	4130
2800	3430	37	3990	1260	1260	3780	10	5110	4340	67
28	4620	5530	31	3570	1330	980	3500	13	3430	2660
4340	78	2660	5250	47	3290	980	1050	3430	13	3500
22	5740	1120	980	3290	50	3430	980	1050	5110	95
3990	83	3780	1540	1050	3430	5	4760	2730	- 74	4340
2450	3780	104	3080	980	630	3080	40	4480	3850	20
44	3780	4480	36	3080	770	910	2940	36	3010	2520
3710	76	2590	4690	68	2940	910	770	3010	30	3360
40	2380	910	700	2940	37	700	700	1190	3360	46

Stabilité,seulement troublée par l'inhibition plus faible des bords.

ETAT INITIAL A L'EQUILIBRE NUMERO 1

III. 1) |V| = 8

 $\theta = 20 < E(F)/2$

FTAT	INITIAL.		ETAT	FINAL
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2) $ V = 8$ $\theta = 40 > E($	₹)/2	160 67 1720 2 9 1520 2 34 1600 2 10 1480 2 36	280 800 160 1440 79 389 66 948 2680 2280 2360 2600 650 19 520 28 3680 1480 3120 1520 709 54 434 62 2840 2440 2320 2760 2 740 9 617 2920 2640 3000 2640 783 93 1115 65	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{l} 3 \\ \theta \\ \theta \\ \end{array} \begin{array}{c} 8 \\ 70 \\ \end{array} \end{array} $	(Ŧ)	840 44 3010 25 3080 14 3290 535 3360 7 7	980 1120 1120 3360 450 611 40 2868 5460 3500 5530 5320 2536 85 2495 46 7420 3080 7490 3220 2449 63 2664 47 5320 5530 5530 5570 25 2930 9 2577 5810 5810 6160 5880 2893 3 3465 4	1050 2520 770 2030 630 4 2007 4 1520 107 3080 4760 3010 6580 3220 263 333 63 2757 17 3290 3290 3220 7630 3290 697 502 12 2568 31 3290 3080 3850 5950 3570 44 138 950 7 910 6230 3430 6790 4130 4130 3734 28 3440 69 783

CARTE

T	

La carte se désagrége lentement,

Stabilité complète de la carte de départ.L'inhibition est su-périeure au seuil calculé.

Plus aucune paire,les isolés actifs suivent la loi F.

- 4) |V| = 8
 - $\theta = 20 < E(\mathcal{F})/2$

ETAT INITIAL

600	600	600	600	600	600	600	600	600	600	
600	70	600	44	600	56	600	71	600	99	
6000	600	600	600	600	600	600	600	600	600	
600	56	600	85	600	93	600	58	600	55	
600	600	600	600	600	600	600	600	600	600	
600	100	600	114	600	66	600	20	600	104	
600	600	600	600	600	600	600	600	600	600	
600	41	600	1	600	8	600	80	600	40	
600	600	600	600	600	600	600	600	600	600	
000	600	600	75	600	64	600	50	600	53	
000	03	000	/5	000		000		000		

- 5) |V| = 8 $\theta = 40 > E(F)/2$
- 6) $|\Psi| = 8$ $\theta = 70 > E(F)/2$

CARTE

Stabilité, seulement troublée par l'inhibition plus faible des bords.

Stabilité complète de la carte de départ.L'Inhibition est supérieure au seuil calculé.

ETAT FINAL

ETAT INITIAL A L'EQUILIBRE NUMERO 2

29	105	180	39	100	48	320	20	500	49
60	45	300	39	380	25	520	1	620	33
280	280	1040	74	1100	63	1180	27	1180	33
47	41	40	60	200	5	160	16	80	63
340	520	1040	20	1140	100	1160	29	1020	84
66	67	27	87	41	29	43	13	86	9 9
200	480	1000	160	1200	180	1180	89	9 80	61
5	36	75	34	2	36	112	75	33	26
240	420	1100	120	1380	160	1320	109	1160	35
51	52	17	2	40	2	93	48	92	18

ETAT FINAL (2000 ITERATIONS)

TT

E(F)=10

θ=3

Une majorité de paires de neurones actifs et voisins.

θ=5

Moins de paires,les actifs sont plus souvent isolés.

θ=10

θ=15

Plus aucune paire, les isolés actifs suivent la loi F.

FORMES CARACTERISTIQUES =

APPENDICE 4 - CAS DE n² NEURONES

<u>REGIME STATIONNAIRE</u> $\theta < \theta_{o}$.

On donne ici quelques exemples de processus convergents pour $\theta < \theta_0$: état, fréquences, intervalles inter-spikes moyens des neurones d'un réseau.

Pour quelques couples de neurones on a calculé les 10 premières auto-corrélations, et l'inter-corrélation entre les nombres de décharges observées dans des fenêtres de temps simultanées.

Les corrélations des neurones en interactions inhibitrices sont négatives, et d'autant plus grandes en valeur absolue que θ est grand.

Les corrélations des neurones qui n'intéragissent pas sont en général faibles, comme le sont les auto-corrélations.

EXEMPLE 1---4 VOISINS---REGIME STATIONNAIRE

Le réseau est de taille 20 * 20

La forme du voisinage à 4 voisins est:

t: x x.x

La loi propre des intervalles inter-spikes est uniforme

Le paramètre d'inhibition téta vaut 2

L'intervalle inter-spikes moyen propre est 10

La fréquence moyenne de décharge propre pour 100 unités de temps est: 10

Etat du système au bout de 2000 itérations

5 9 5	8 18 10	16 8 5	5 17 5	7 3 3	10 3 1	9 9 13	6 7 3	2 10 5	7 6 2	5 9 6	11 13 3	6 2 10	9 2 11	9 1 2	13 15 3	3 4 7	4 5 5	3 1 6	2 10 9
.3	12	3	14	2	2	8	9	4	3	11	15	17	10	13	9	2	2	4	16
11	12	14	4	2		14	5	5	2	2	5	13	0	11	6	2	9 4	4	12
14	1	8	- 7	8	2	ī	4	ň	5	13	ĭ	3	4	2	8	13	3	ż	12
4	ī	ī	12	8	10	5	5	7	7	11	5	3	1	10	3	13	4	12	10
4	6	5	4	2	8	8	2	11	15	7	8	6	13	12	4	16	14	11	4
3	2	16	1	8	8	12	13	18	12	6	1	7	7	7	- 5	17	8	4	3
10	20	3	9	9	13	12	4	4	6	2	12	2	16	5	5	3	11	10	2
9	14	8	8	9	9	19	13	13	14	. 8	9	13	9	4	15	2	11	3	2
14	12	5	9	3	11	10	6	10	18	14	6	16	12	4	14	6	12	12	3
8	8	3	15	5	10	5	17	12	8	7	5	6	1	2	6	6	3	8	12
2	2	8	8	5	13	4	3	7	6	3	2	6	11	6	15	4	17	11	8
3	9	18	10	8	3	8	8	7	4	8	9	16	9	3	5	6	3	10	4
2	12	4	12	3	2	7	7	2	2	4	1	5	7	10	7	17	11	5	7
11	7	1	2	4	10	1	6	1	10	12	9	6	11	7	4	8	9	9	4
-3	4	7	5	1	1	1	8	9	2	12	5	5	8	5	2	3	1	4	12
5	5	5	6	4	13	1	10	1	1	10	3	8	11	15	9	9	3	12	6

Fréquence de chaque neurone en nb pour 100 unités de temps-(le 0 indique les neurones inhibés)

Intervalle inter-spike moyen de chaque neurone-(l'étoile indique les neurones inhibés)

11	15	16	15	14	16	14	14	15	16	13	14	16	14	15	14	16	15	14	13
15	16	18	17	16	19	15	17	18	16	19	16	16	17	17	17	16	16	17	14
13	16	15	18	17	15	19	15	17	16	16	17	16	14	17	16	15	15	17	15
15	15	18	16	18	16	16	15	16	16	15	15	18	17	15	15	18	16	17	13
15	16	16	16	15	16	18	17	16	17	19	18	16	16	17	16	17	17	17	15
13	17	15	17	16	18	16	15	17	16	16	15	16	17	15	16	14	18	15	16
13	17	15	17	16	16	17	16	16	15	19	17	17	15	17	15	17	15	19	13
15	17	15	15	19	16	15	17	15	18	16	15	16	15	17	16	16	15	17	14
14	16	18	16	15	17	16	17	18	17	15	16	18	17	17	16	16	16	17	15
16	16	14	19	17	16	15	16	15	20	17	16	16	14	18	16	19	15	17	13
14	18	16	18	15	17	16	17	18	15	16	18	15	18	15	16	15	17	16	17
14	16	15	17	16	16	16	16	16	16	17	16	15	18	14	17	18	14	18	13
13	17	15	16	17	17	15	15	17	17	16	18	15	17	15	15	18	17	15	15
15	16	18	17	15	16	16	15	16	15	16	15	17	16	17	16	16	18	17	16
13	17	16	15	20	16	15	17	15	17	17	16	15	17	17	15	17	15	16	14
14	17	16	16	16	15	17	14	19	16	15	15	18	15	17	17	16	16	16	15
14	16	18	16	17	18	15	16	15	17	17	17	15	16	16	17	16	16	19	14
14	15	17	16	16	16	16	17	16	17	14	16	15	16	16	16	15	16	16	14
15	17	15	20	17	17	18	16	17	19	16	18	17	16	16	16	17	19	16	15
13	15	16	14	15	14	14	14	15	14	15	15	14	14	16	14	14	15	14	13

Tous les neurones sont actifs, leur intervalle moyen inter-spike est de l'ordre de $E(F)+4\theta$

Les neurones observés sont marqués

٠	٠	٠	٠	٠	٠	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•
٠	٠		•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	•	•	٠	•
٠	٠	٠	•	٠	٠	٠	٠	•	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠
•	•			•		٠	٠	•	•	٠		•	٠	٠	٠	•	٠	٠	٠
•	•	•	٠	•		•	•	•	•	•	•	•	•	•	٠		•	٠	•
•	•	•	•	•				٠	٠		•	•		•	٠	•	٠	•	•
•	•	•	•			٠		٠	•	•	•		•	•	•	٠	•	•	•
•	•		•				٠		•	٠	•	•	•	•	٠	•	٠	٠	•
•	٠	٠	٠	٠	٠	٠	÷	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	ė	٠	4	•	•	÷	¢	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	•	٠	٠	•	÷	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
٠	•	•	٠	•	•	•	٠	•	٠		•	•	٠		٠	•	٠	•	•
•	•	٠	•	٠		•	•	٠	•	•	•	•	٠	•	٠	•	٠	•	
•		•	٠		•	•	•	٠	٠	٠	٠	•	٠	•	٠	•	٠	•	
•	•		•	•			•	•	•	•	٠	•	•	٠	٠	٠	٠	•	•
•	•	٠	•	•	٠	•	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
•	•	•	•	•	٠	٠	•	•	٠	٠	٠	٠	•	٠	•	•	٠	٠	•
٠	•	•	٠	•	•	•	•	•	•	٠	٠	٠	٠	•	•	•	٠	٠	•
•	•	٠	•	•	•	٠	٠	٠	•	•	٠	٠	٠	٠	٠	٠	٠	٠	•

81

Intervalles moyens inter-spikes

Coordonnées	Intervalle	Variance
(10.10)	19.9	139.09
(10, 9)	15.4	107.74
(10, 8)	16.6	117.03
(10.7)	16.0	149.35
(10, 6)	16.0	134.65
(10. 5)	17.6	128.22
(9,9)	17.9	147.58
(9,8)	17.5	121.71
(8,8)	17.3	170.11
(7, 7)	17.7	181.39

10 premières autocorrélations des neurones

Coordonnées	Autoc	orrélati	ons							
(10,10) (10,9) (10,8) (10,7) (10,6) (10,5) (9,9) (9,8) (8,8) (7,7)	13 .01 .04 19 12 03 .00 .02 06 .18	03 01 .02 09 22 .13 .00 11 .05	12 04 07 .16 .04 .15 03 10 21	.01 15 05 .00 .08 .19 .13 04 .04 04	.04 .05 02 .16 .06 03 .04 .15 .06 .04	.10 09 .01 12 .11 21 03 01 14 .08	09 .00 01 15 10 .04 14 10 .10 08	.04 20 02 .06 .11 16 05 .08 02 08	23 .07 12 05 .13 11 07 07 .08 05	06 .19 04 14 03 01 14 .04 .07 06

Nombre moyen de spikes par fenêtre de100

Coordonnées	Nombre	Variance
(10,10) (10, 9) (10, 8) (10, 7) (10, 6) (10, 5) (9, 9) (0, 8)	5.0 6.5 6.0 6.3 6.1 5.7 5.5 5.5	1.47 2.35 3.68 3.35 1.46 1.48 3.93 1.80
(8,8) (7,7)	5.7 5.7 5.7	2.09

Matrice d'intercorrélations des neurones observés

(10,10) (10, 9) (10, 8) (10, 7) (10, 6) (10, 5) (9, 9) (9, 8) (8, 8) (7, 7)	1.00 42 .11 .14 .00 11 .15 32 .03 .06	1.00 21 18 08 .31 13 .20 11 38	1.00 43 .20 18 40 47 .25 .30	1.00 20 .25 .32 18 .28 .08	1.00 23 48 21 .20 .35	1.00 .00 13 .07 11	1.00 .12 34 05	1.00 61 45	1.00 .29	1.00
--	--	--	---	--	--------------------------------------	--------------------------------	-------------------------	------------------	-------------	------

(10,10) (10, 9) (10, 8) (10, 7) (10, 5) (10, 5) (9, 9) (9, 8) (8, 8) (7, 7)

REMARQUES:

a)Les autocorrélations sont faibles dans l'ensemble ,(rôle important de l'innovation due au tirage indépendant de la v.a. U de loi F après chaque décharge).

b)Les coefficients de corrélations d'activité les plus importants correspondent presque tous aux corrélations négatives entre voisins directs,qui s'inhibent:par exemple (8,8)-(9,8),(10,10)-(10,9), (10,8)-(10,7),(10,8)-(9,8)...

c)Sauf sur les bords,où les neurones sont moins inhibés(moins de voisins),l'intervalle moyen interspike est de l'ordre de $E(F)\!+\!4\theta$

EXEMPLE 1 BIS---4 VOISINS---REGIME PRESQUE STATIONNAIRE

Le réseau est de taille 20 * 20

La forme du voisinage à 4 voisins est: x x . x x

La loi propre des intervalles inter-spikes est uniforme

Le paramètre d'inhibition téta vaut 3 (>téta zéro)

L'intervalle inter-spikes moyen propre est 10

La fréquence moyenne de décharge propre pour 100 unités de temps est: 10

Etat du système au bout de 2000 itérations

13	9	12	6	6	13	7	11	8	15	14	5	9	4	2	17	16	17	11	16
2	5	4	2	5	14	14	15	13	7	6	3	3	9	10	18	9	13	2	13
8	10	1	3	10	13	21	5	1	14	2	6	2	1	26	9	8	10	15	2
6	8	3	5	4	14	3	5	1	14	9	13	7	32	7	48	5	6	16	5
4	4	12	9	13	1	7	8	1	7	25	3	40	4	52	13	35	7	11	9
3	12	3	30	3	39	3	24	3	34	3	15	12	52	10	20	3	17	12	3
8	4	39	13	25	3	39	19	24	8	50	3	22	10	20	11	15	14	9	2
10	32	1	29	16	25	2	22	2	45	8	36	10	10	7	15	12	5	8	11
7	1	68	15	29	13	48	8	26	17	36	14	20	12	9	16	17	8	2	8
2	28	13	62	2	99	14	78	8	14	5	14	10	13	11	15	8	12	5	15
13	2	21	9	86	2	81	8	66	1	11	5	10	2	5	15	7	14	8	11
2	17	8	13	1	58	6	61	18	15	16	6	7	4	3	6	2	2	5	7
ĩ	1	14	5	44	8	71	7	41	7	14	4	16	3	11	16	8	1	6	12
î.	ĝ	3	8	5	50	1	60	15	23	15	11	16	5	7	12	13	9	10	7
12	7	15	13	34	2	40	6	55	1	10	2	12	3	10	4	5	5	4	23
6	9	1	13	17	105	3	41	7	69	2	36	10	6	4	9	1	13	24	9
7	3	10	2	70	7	27	4	34	2	33	14	1	3	9	18	8	8	- 2	8
2	10	3	3	7	18	5	8	4	5	4	10	8	7	5	5	5	-11	12	13
9	4	7	13	3	6	7	ī	11	3	6	4	10	4	15	16	9	13	9	3
6	8	8	9	9	6	4	10	2	6	5	5	13	15	1	7	4	12	9	13

Fréquence de chaque neurone en nb pour 100 unités de temps-(le 0 indique les neurones inhibés) 4 6 5 3 4 5 5 4 4 5 5 6 3 7 6 2 2 6 7 2 2 8 0 9 9 9 0 0 10 6 3 6 3 6 2 8 1 9 0 8 1 8 0 9 1 6 4 5 6 2 7 2 8 0 9 0 8 0 9 0 9 2 5 5 62635544545353635454 46365463535445354546 37274452626355453636 72634637273544545355 72645536363644546365 5 6 4 5 3 6 2 7 2 8 1 0 46355363445354463535 746556565656565656567 75656556464656456657 45354362627253535364 4 6 3 5 4 3 6 3 637272727282727 72727282727 4627271818 0 9 0 9 0 9 0 9 1 7 0 10 9 0 0 10 8 0 2 8 0 9 0 8 3

Intervalle inter-spike moyen de chaque neurone-(l'étoile indique les neurones inhibés)

13	20	16	16	20	15	20	15	18	15	19	16	21	14	22	13	27	13	24	12
20	18	25	22	18	27	17	25	18	26	16	25	16	35	14	36	14	37	15	23
15	29	14	26	21	17	22	17	25	15	25	17	27	15	31	15	37	15	27	15
18	17	30	15	21	24	17	27	16	29	18	25	16	26	15	26	14	25	19	19
16	22	18	25	19	18	27	14	32	15	25	18	25	18	19	20	24	20	19	16
16	30	16	22	16	29	15	35	15	33	15	26	18	19	23	16	23	17	26	15
19	15	29	16	32	13	37	12	41	13	37	15	20	22	15	29	17	30	16	18
14	33	14	35	14	38	13	54	12	48	12	36	17	21	26	13	40	14	26	16
21	14	35	13	38	14	50	11	76	12	67	13	31	17	18	33	14	29	20	18
14	41	13	40	13	41	12	*	10	*	10	67	14	22	26	14	34	16	22	15
21	13	47	12	46	12	82	10	*	10	*	12	33	19	17	29	15	27	19	19
14	35	13	59	12	*	10	*	10	*	11	63	14	25	21	19	26	15	29	15
18	17	38	12	*	10	*	10	*	11	73	12	42	16	22	20	18	24	17	19
14	27	14	90	10	*	10	*	10	*	11	65	13	26	16	24	19	21	22	15
20	16	45	11	*	q	*	10	*	10	*	12	41	15	27	18	22	17	22	17
17	28	12	•	Q	*	10	*	10	*	10	57	14	26	17	22	17	24	15	20
16	10	A 1	10	*	10	*	11	86	10	51	12	27	18	23	16	30	15	31	16
16	26	13	*	۵	*	11	63	13	40	15	27	18	21	10	25	15	32	17	18
10	16	13	12	*	12	50	15	31	17	23	19	25	19	23	18	27	-15	25	16
12	10	12	22	11	25	12	21	15	10	17	10	16	22	15	20	16	10	17	14
10	22	12	22	11	20	12	21	15	19	17	10	10	22	12	20	10	1a	17	14

Certains neurones sont inactifs,leur voisins ont leur fréquence propre, les autres sont ralentis.

La carte au bout de 2000 itérations est

Les neurones observés sont les mêmes que dans l'exemple 1

Intervalles moyens inter-spikes

Coordonnées	Intervalle	Variance
(10,10)	58.9	4902.61
(10, 9)	10.1	45.63
(10, 8)	46.9	1916.73
(10, 7)	12.0	76.76
(10, 6)	20.3	354.91
(10, 5)	13.0	309.89
(9,9)	29.1	2336.91
(9,8)	11.2	65.01
(8,8)	51.4	14623.58
(7, 7)	29.1	1789.11

10 premières autocorrélations des neurones

Coordonnées	Autoco	prélatio	ons							
(10,10)	27	19	.45	36	.10	69	64	71	71	71
(10, 9)	14	.02	02	02	04	.04	07	08	10	07
(10. 8)	.10	43	20	46	55	08	.43	22	.07	.76
(10, 7)	.35	.22	.10	.17	.26	.04	05	.07	.06	.15
(10, 6)	.10	01	.23	12	22	12	11	40	38	35
(10, 5)	.18	03	.10	.17	01	01	01	.02	05	.01
(9,9)	19	.03	12	17	.00	11	23	22	23	24
(9,8)	.13	.06	.01	06	.05	.15	.05	.06	05	01
(8,8)	.27	.14	13	11	03	12	13	09	05	05
(7,7)	.25	04	.01	.02	.09	.01	.12	.08	11	07

Nombre moyen de spikes par fenêtre de 100

Coordonnées Nombre Variance

(10,10)	.5	1.20
(10, 9)	9.9	3.88
(10, 8)	.8	1.50
(10, 7)	8.3	8.85
(10, 6)	2.4	8.66
(10, 5)	7.6	14.23
(9,9)	1.3	6.74
(9,8)	8.6	6.66
(8,8)	1.8	4.76
(7, 7)	2.7	8.74

Matrice d'intercorrélations des neurones observés

(10,10)	1.00									
(10, 9)	56	1.00								
(10, 8)	.76	46	1.00							
(10, 7)	53	.20	74	1.00						
(10, 6)	.62	08	.72	75	1.00					
(10, 5)	42	02	59	.65	87	1.00				
(9,9)	.89	58	.83	63	.55	45	1.00			
(9,8)	66	.37	84	.68	63	.48	65	1.00		
(8,8)	.56	38	.80	63	.68	55	.60	81	1.00	
(7,7)	. 58	45	.63	57	.68	52	.55	67	.88	1.00

(10,10) (10, 9) (10, 8) (10, 7) (10, 6) (10, 5) (9, 9) (9, 8) (8, 8) (7, 7)

REMARQUES:

a)Ce cas n'est pas stationnaire, puisque $\theta = 3 > b = 10/4$. Mais la divergence est lente. On observe des autocorrélations plus grandes (rôle plus important de l'inhibition).

b)Certains neurones ne déchargent plus,ceux qui sont "protégés" des autres par un entourage de neurones inhibés ont leur fréquence propre(10 décharges pour 100 unités de temps).Une quinconce(carte n 1) commence à se dessiner.

c)Les coefficients d'intercorrélations tendent

vers +1 pour les couples de neurones inhibé-actif, (par ex.(10,10),(10,8),(10,6),(9,9),(8,8),(7,7)) vers -1 pour les couples de neurones inhibé-actif, (par ex.(10,10)-(10,9) ou (10,8)-(10,7)), alors qu'ils sont plus faibles entre neurones actifs à l'intérieur de la zone où a commencé la divergence :(10,9)-(10,7) ou (10,9)-(10,5) par exemple).

d)La variance des estimateurs des intervalles moyens inter-spikes augmente avec θ .

EXEMPLE 1 TER---4 VOISINS---REGIME STATIONNAIRE

Le réseau est de taille 20 * 20

La forme du voisinage à 4 voisins est: x . x x . x

La loi propre des intervalles inter-spikes est uniforme

Le paramètre d'inhibition téta vaut 4

L'intervalle inter-spikes moyen propre est 15

La fréquence moyenne de décharge propre pour 100 unités de temps est: 6

Etat du système au bout de 2000 itérations

4	9	1	10	2	25	5	3	6	14	14	4	24	9	14	4	1	21	21	10	
12	13	11	26	5	23	2	14	- 4	9	- 4	16	11	1	14	2	6	10	10	14	
20	19	16	10	15	6	14	5	6	11	18	14	7	10	2	23	3	17	4	5	
5	13	6	6	11	16	2	11	13	5	11	5	20	26	16	6	10	7	11	7	
Ā	4	11	6	18	4	8	11	7	10	17	22	9	11	8	10	7	2	12	6	
4	2	11	3	11	ż	7	14	16	23	8	7	4	6	17	1	4	5	11	8	
12	14	21	6	11	17	19	15	17	21	4	11	6	14	17	8	16	7	19	18	
11	Â	28	5	15	2	5	17	7	16	5	28	ĩ	17	6	17	15	11	10	15	
22	A5	10	26	5	14	ĭ	12	13	5	ă	18	Ř	12	26	5	ğ	15	7	13	
16	1	10	20	22	10	1.	16	21	10	ő	Ĩ	10	11	12	15	š	- 2	14	13	
10		10	2	23	10	13	10	21	10		10	10	11	11	11	~	12	10	10	
b	13	21	23	4	10	8	10	10	11	24	10	3	2	11	11	4	12	10	Ta	
9	13	13	7	18	21	28	11	5	- 7	15	-7	13	8	13	12	1	8	8	8	
13	21	16	.13	7	7	9	22	8	9	21	18	18	6	11	13	17	7	3	11	
12	20	18	17	ġ	4	1	10	21	15	12	20	15	13	18	6	13	14	9	23	
2	6	17	4	26	14	11	17	11	11	11	7	6	2	4	10	2	17	7	16	
17	21	14	15	19	17	1	11	5	5	6	18	17	1	13	22	18	3	9	14	
15	5	23	13	18	10	27	23	13	15	23	8	11	6	7	16	25	21	7	ġ	
13	11	5	10	10	Ĩ	6	15	26	ĨŘ	5	7	16	23	8	24	15	6	6	23	
13	-12	2	1	2	1	7	- 2	6	12	13	17	18	6	13	11	Ř	14	ĭ	- 8	
~ 4	2	10	1	4	10	~~	2		12	10		10	11	10	2	12	16	-	15	
20	D	10	4	5	13	22	- 3	4	23	8	4	. ว	11	22	D	12	10		10	

Fréquence de chaque neurone en nb pour 100 unités de temps-(le 0 indique les neurones inhibés)

4	3	3	3	3	3	4	3	3	3	4	3	3	4	3	4	3	3	3	4	
4	3	3	2	3	2	3	2	3	3	3	3	3	3	2	3	3	3	3	3	
4	2	2	4	2	4	4	4	2	2	2	2	2	Δ	4	2	3	2	3	Δ	
3	2	3	3	2	Δ	2	Δ	2	Ă	2	3	3	3	3	3	2	- 3	ž	3	
3	3	3	ĩ	3	2	Ā	2	4	ż	4	3	3	3	3	3	3	3	2	4	
4	2	3	2	3	4	Ż	4	2	4	2	3	3	2	3	3	3	2	4	3	
3	3	3	3	3	2	4	2	4	2	4	2	3	3	3	3	3	3	3	4	
4	2	4	2	3	3	2	3	2	3	2	3	3	3	3	3	3	3	3	3	
3	4	2	4	2	3	4	3	3	3	3	3	3	3	3	3	3	3	3	4	
4	1	5	2	4	2	3	2	3	3	3	3	3	3	3	2	3	3	ž	3	
3	4	2	3	2	4	2	3	3	3	3	Ž	4	2	3	3	2	2	3	3	
4	2	3	3	4	1	4	3	3	3	2	3	3	2	2	2	3	2	2	2	
4	2	2	4	2	4	2	2	2	2	2	2	2	Δ	5	Δ	2	2	3	Å	
7	3	2	3	3	2	3	3	3	3	2	ĩ	Δ	2	4	3	3	3	3	3	
4	3	3	ž	3	4	2	3	2	3	3	3	2	4	ż	3	2	3	3	4	
3	4	2	3	3	3	Ā	2	3	3	3	2	4	ż	4	3	Ā	Ž	3	4	
3	ż	4	Ź	3	Ś	Ż	4	2	3	2	4	2	4	2	3	3	3	3	3	
4	3	3	4	4	3	5	3	4	3	4	2	5	3	4	3	4	4	3	4	

Intervalle inter-spike moyen de chaque neurone-(l'étoile indique les neurones inhibés)

22	25	26	26	25	26	24	26	25	30	24	25	27	23	25	22	25	25	27	21
25	27	30	34	29	34	27	33	27	28	29	30	29	29	34	29	33	25	27	27
24	35	26	24	38	20	39	22	37	27	27	30	26	37	22	38	30	37	28	27
25	25	40	26	26	37	24	50	24	31	30	30	34	25	32	26	30	29	31	24
26	34	27	32	33	25	47	21	38	24	33	27	28	28	32	28	37	27	25	26
26	27	32	26	28	38	21	41	24	40	24	27	31	30	27	33	27	26	38	24
22	34	26	36	31	22	47	21	48	21	38	27	26	33	29	31	26	35	25	31
22	25	32	25	32	35	22	45	22	46	21	35	28	27	29	30	31	27	31	23
23	46	21	35	25	28	35	26	36	26	38	29	29	33	26	31	29	31	29	25
28	22	17	23	38	27	24	20	25	31	27	25	32	28	30	30	31	28	29	24
20	51	10	17	23	35	27	37	27	31	31	26	30	31	26	35	25	31	35	28
20	22	13	25	11	20	10	26	32	28	27	28	24	40	26	27	38	27	31	26
20	22	27	23	20	61	21	22	27	25	22	26	32	25	20	30	26	35	26	28
23	32	27	24	36	23	30	27	32	23	20	31	21	36	10	38	27	31	30	24
23	22	21	24	22	20	20	25	20	22	29	26	29	20	51	22	31	27	30	25
20	2/	20	20	21	20	29	20	29	21	20	20	20	4	21	21	25	21	30	25
20	30	20	30	20	30	29	20	20	21	22	29	42	44	20	27	20	20	22	20
25	29	20	30	31	22	30	20	33	20	20	20	43	42	20	21	34 95	20	22	20
26	24	35	20	32	32	25	38	25	32	20	3/	21	43	24	32	25	34	20	22
26	35	23	40	28	30	3/	21	38	25	40	22	50	20	38	28	33	30	25	22
20	26	27	24	23	32	18	30	23	30	22	54	20	32	22	27	24	25	29	20

Tous les neurones sont actifs

Les neurones observés sont les mêmes que dans l'exemple 1

Intervalles moyens inter-spikes

Coordonnées	Intervalle	Variance
(10,10)	29.3	1086.45
(10, 9)	25.4	1047.02
(10, 8)	29.0	1107.91
(10, 7)	24.6	810.55
(10, 6)	27.1	2766.75
(10, 5)	35.9	2499.56
(9,9)	34.8	1244.06
(9,8)	26.8	403.67
(8,8)	45.4	1811.26
(7,7)	48.2	5219.69
•		

10 premières autocorrélations des neurones

Coordonnées	Autoco	rrélatio	ns							
(10.10)	05	.04	09	.01	.11	06	.04	17	.16	.05
(10. 9)	07	.02	.02	.04	.04	07	01	.02	07	06
(10.8)	.35	.21	.06	.01	06	.13	13	.02	02	20
(10, 7)	.03	.21	.22	14	01	15	18	14	21	19
(10, 6)	09	04	05	.01	06	.01	.04	06	05	.08
(10. 5)	.21	11	16	12	14	15	13	04	04	24
(9,9)	01	12	25	11	17	.00	01	.13	05	.03
(9,8)	.07	.08	.05	.13	03	03	.02	22	.03	08
(8,8)	.11	.07	.11	.00	11	02	.11	07	.07	.07
(7, 7)	02	18	.13	.01	04	.06	16	02	.08	.01

Nombre moyen de spikes par fenêtre de 100

Coordonnées	Nombre	Variance
(10,10)	3.2	5.32
(10, 9)	3.9	5.94
(10, 8)	3.4	4.35
(10. 7)	4.1	8.89
(10. 6)	3.7	6.11
(10. 5)	2.6	6.44
(9, 9)	2.7	2.40
(9.8)	3.7	2.30
(8,8)	2.2	2.38
(7, 7)	2.1	2.52

Matrice d'intercorrélations des neurones observés

(10,10) (10, 9) (10, 8) (10, 7) (10, 6) (10, 5) (9, 9) (9, 8) (8, 8) (7, 7)	1.00 72 .44 15 17 .12 .35 21 34 .02	1.00 64 .25 09 .01 45 .30 .47 .02	1.00 65 .55 38 .34 50 06 .40	1.00 80 .62 22 .68 35 47	1.00 75 .18 56 .17 .25	1.00 23 .44 22 29	1.00 54 13 01	1.00 38 36	1.00	1.00
	(10,10)	(10, 9)	(10, 8)	(10, 7)	(10, 6)	(10, 5)	(9,9)	(9,8)	(8,8)	(7,7)

REMARQUES:

a)Ce cas (0 =4, \$=15/4) apparait encore comme "stationnaire" à la simulation, car la divergence est très lente.

b)Les intervalles inter-spikes moyens sont de l'ordre de E(F)+40=29, même si commence à se dessiner une inhibition en alternance.La variance est très grande, comme cela se produit quand 0 augmente.

c)Les autocorrélations sont faibles,comme en régime stationnaire.

d)La matrice d'intercorrélation a les mêmes caractéristiques que celle de l'exemple 1-bis, même si la différentiation entre neurones actifs et inhibés ne s'est pas encore faite clairement.

.

EXEMPLE 2---6 VOISINS---REGIME STATIONNAIRE

Le réseau est de taille 20 * 20

La forme du voisinage à 6 voisins est: x x x . x x x

La loi propre des intervalles inter-spikes est uniforme

Le paramètre d'inhibition téta vaut 2

L'intervalle inter-spikes moyen propre est 15

La fréquence moyenne de décharge propre pour 100 unités de temps est: 6

Etat du système au bout de 2000 itérations

3	8	8	6	12	17	17	6	3	6	15	6	10	15	8	6	14	6	4	4	
13	12	7	7	8	15	4	13	10	1	5	15	5	16	16	7	7	11	14	15	
1	4	9	13	12	9	17	10	10	4	5	1	20	13	24	8	18	17	9	3	
5	22	23	12	īī	4	18	12	14	15	3	6	10	16	17	16	15	14	20	4	
20	4	4	-8	6	2	10	11	2	13	7	17	21	3	5	6	4	1	5	18	
3	13	ġ	7	15	3	16	28	7	9	3	4	16	6	11	19	2	12	2	13	
ž	14	4	3	- 9	4	4	15	16	1	7	20	13	24	23	15	7	2	20	1	
17	11	6	ğ	ī	ġ	3	3	5	22	14	12	5	9	14	12	11	9	18	21	
1	- 2	20	24	7	6	19	5	22	4	5	18	11	20	19	22	9	4	26	8	
6	2	18	2	3	Ř	5	20	25	11	7	7	5	4	6	9	12	7	- 4	8	
12	Ř	11	11	8	24	7	-4	1	10	2	5	4	17	7	7	20	7	21	2	
7	ň	1	-4	15	13	13	4	5	5	4	19	ġ	2	14	22	2	10	10	8	
24	24	8	10	2	9	10	19	18	10	1	4	14	15	23	4	4	15	2	4	
17	15	20	ĝ	13	3	18	8	8	16	2	12	14	9	6	14	2	24	20	26	
23	5	4	6	26	Ă,	-8	ğ	ğ	24	5	4	25	10	15	20	11	6	21	5	
24	ő	5	5	13	10	ī	5	16	1	4	4	10	11	15	15	12	26	17	6	
5	ň	ğ	8	2	4	20	. 9	2	6	17	3	16	2	12	1	14	7	17	28	
14	16	26	6	12	11	18	17	7	5	11	6	21	9	10	17	5	11	4	14	
13	-4	16	16	13	22	5	24	16	12	18	7	11	7	3	15	1	3	9	11	
7	18	9	23	19	5	16	5	11	15	8	11	4	14	15	4	19	10	13	2	
					-															

Fréquence de chaque neurone en nb pour 100 unités de temps-(le 0 indique les neurones inhibés)

5	4	4	4	4	4	4	4	4	4	4	4	4	4	3	4	4	4	4	- 5
4	4.	4	3	4	3	4	4	3	4	4	3	3	4	4	4	4	3	4	5
4	3	4	4	3	• 4	4	3	4	3	3	3	4	3	3	3	4	3	4	4
4	4	4	3	4	3	3	4	3	4	4	3	4	4	3	4	3	3	4	4
4	4	4	4	4	4	4	3	4	4	3	3	4	3	3	4	4	3	3	5
4	4	3	3	4	4	3	4	4	3	3	3	4	3	4	4	3	3	4	4
4	4	4	4	4	4	3	3	4	4	3	4	4	4	3	3	4	3	4	5
4	4	4	4	4	3	4	4	3	4	3	3	3	3	3	3	3	4	4	4
4	4	4	3	ġ.	4	3	4	4	3	3	3	4	3	3	3	4	3	4	4
4	4	4	4	4	3	3	4	4	3	4	3	4	3	3	4	3	4	4	4
5	4	3	3	4	3	4	4	3	4	3	4	3	3	3	3	4	3	3	4
4	4	3	3	3	4	3	4	4	3	3	4	4	4	3	4	4	3	4	4
4	3	4	4	3	3	4	3	4	4	4	4	4	3	4	3	3	4	4	4
4	4	3	3	3	3	3	4	4	3	3	4	4	3	4	3	4	3	3	4
4	3	3	3	4	4	3	3	4	3	.4	4	3	4	3	3	4	3	4	4
4	4	3	3	4	3	3	4	4	4	3	3	3	4	3	4	4	3	4	- 4
4	4	4	3	3	4	4	4	3	4	3	4	3	4	3	3	3	3	4	4
5	4	3	4	3	3	4	3	3	4	4	3	4	3	4	4	3	3	4	4
4	4	4	3	3	4	4	3	3	4	4	4	3	3	3	4	4	3	4	5
4	4	4	3	4	4	3	4	4	4	4	4	4	4	4	4	4	4	4	5
Intervalle inter-spike moyen de chaque neurone-(l'étoile indique les neurones inhibés)

19	21	23	22	24	23	21	22	24	25	23	22	23	25	26	24	24	22	23	19
22	23	23	28	24	25	23	22	31	23	23	27	26	24	22	22	24	28	24	19
20	25	24	23	27	22	23	26	21	26	26	25	23	26	27	26	24	25	24	21
25	22	22	27	23	29	26	22	30	24	22	27	22	24	27	24	28	26	24	20
21	24	24	22	24	23	24	27	23	23	25	27	24	27	25	23	24	26	26	19
24	21	26	29	22	24	26	25	24	26	26	27	24	27	23	25	26	28	22	24
20	21	23	25	24	23	26	27	23	25	26	24	22	24	26	26	24	29	23	19
22	25	24	24	23	26	24	25	26	23	25	27	27	26	29	25	28	21	24	22
20	20	24	29	27	23	26	24	21	27	29	25	23	27	26	25	23	26	22	22
24	23	24	24	24	28	29	25	23	27	24	26	23	25	25	21	27	24	23	22
19	22	28	25	25	28	24	25	26	23	26	24	27	25	26	30	23	26	25	21
23	21	26	29	27	21	31	24	23	27	26	23	24	24	26	21	24	28	21	21
22	26	25	23	26	28	21	25	24	25	25	23	21	28	22	26	26	23	22	24
21	21	25	25	26	26	25	23	24	27	27	24	23	26	20	26	23	26	25	20
21	26	25	25	26	26	26	20	25	25	23	22	25	25	26	26	23	28	23	23
21	20	25	20	23	20	20	20	23	20	25	20	25	23	20	20	24	27	21	23
20	23	23	20	24	20	20	24	22	24	23	20	20	23	20	23	24	27	21	21
24	20	24	20	23	23	24	20	20	23	25	22	21	24	20	21	21	21	23	20
19	22	28	23	27	28	24	25	25	25	23	20	24	20	24	25	21	20	24	20
23	23	23	26	27	24	23	26	28	24	24	Z5	25	27	26	23	25	26	24	19
21	22	24	25	20	24	28	20	23	24	24	22	21	21	22	23	22	24	24	18

Tous les neurones sont actifs, leur intervalle moyen inter-spike est de l'ordre de $E(F)+6 \Theta$

Les neurones observés sont marqués

	•	•	•	•	•	•	•	•	•	•	•		•	•	٠	•	•	٠	•	
•	•	•	٠	•	•	•	•	•		•	•	٠	٠	٠	٠	٠	٠	٠	٠	
			٠	•	•		٠		٠		•	٠	٠	٠	٠		٠		٠	
	•		٠			٠	•			•	٠	•	•	•	•		•	٠	٠	
	•	•	÷	٠				•			٠	•	٠	•	٠	•		٠	٠	
	•			÷		•				•	•		•		٠		•	٠	٠	
													•	•	٠				٠	
			•						٠		•	•	•		٠	٠	•	•	٠	
								ð	ð	•		•			•	•	٠	•	٠	
	•			٠		•		ð	ð			•	•	•	•	•	•	٠	٠	
				÷	÷		÷	ð		٠			•	•	•	•	•	•	•	
				•			•	÷		•				•	•	•	•	•	٠	
				•	•	•	•		•	•	•		٠	•	٠	•		•		
			•	•	•	•	•	•	٠	•	•		•	٠	٠	٠	•	٠	•	
				•		•		•		•	٠	•		٠		٠	•	٠	٠	
				•			•		٠	•	٠	•	•	٠	٠	٠	•	•	٠	
	•	٠	•	٠	٠	•	•	•	٠	•	•	٠	•	٠	•	•	•	•	٠	
	•	•	•	•	•	•	٠	•	•	٠	٠	٠	•	٠	٠	•	•	٠	٠	
	•		•	•	•		٠	٠	•	•	•	•	•	•	•	•	٠	•	•	
•	•	٠	•	•	•	•	٠	•	•	•	٠	•	٠	٠	٠	٠	٠	٠	٠	

Intervalles moyens inter-spikes

Coordonnées	Intervalle	Variance
(10.10)	27.1	297.22
(10, 9)	23.3	268.44
(10. 8)	25.2	272.06
(10, 7)	29.4	239.67
(10, 6)	28.5	299.19
(10. 5)	23.7	217.70
(9.10)	27.3	321.80
(8.10)	23.8	286.56
(9, 9)	21.9	243.55
(4, 4)	27.1	297.76
(15,15)	26.7	269.49
(11.11)	26.1	291.78
(9.11)	29.0	313.39
(11. 9)	26.7	319.27
(5,5)	23.7	324.04

10 premières autocorrélations des neurones

Coordonnées	Autoc	orrélat	ions								
(10.10)	10	.00	03	.04	19	22	27	-,10	32	23	
(10. 9)	12	01	03	18	.08	16	08	06	.07	.20	
(10, 8)	05	06	.10	.19	.09	.02	.12	.16	.26	.10	
(10, 7)	21	13	.16	27	.05	06	35	.11	36	38	
(10, 6)	14	.03	09	.02	.28	25	19	01	06	.13	
(10, 5)	07	.11	18	15	10	14	22	.14	.02	.22	
(9.10)	.21	04	02	.00	.02	.24	.20	.05	11	18	
(8 10)	07	12	.00	07	.04	.00	01	08	-06	06	
(9,9)	.06	08	14	12	.14	.02	.21	.01	11	03	
(4 4)	.08	08	.03	.21	.14	.04	08	.02	.02	.01	
(15, 15)	.11	05	05	29	10	.03	.07	.27	.06	18	
(11,11)	.13	14	12	.01	.11	10	.28	.15	.15	10	
(9,11)	14	.07	.00	.01	12	10	05	.10	28	.07	
(11, 9)	.04	20	10	12	11	06	16	10	23	05	
(5,5)	05	20	.03	18	.01	.00	01	13	.05	.00	

Nombre moyen de spikes par fenêtre de100

Coordonnées	Nombre	Variance
(10,10)	3.6	1.51
(10, 9)	4.3	2.19
(10, 8)	4.0	1.37
(10, 7)	3.4	.77
(10. 6)	3.5	1.09
(10.5)	4.2	2.03
(9.10)	3.6	1.71
(8.10)	4.2	1.85
(9,9)	4.6	2.45
(4, 4)	3.7	1.90
(15, 15)	3.7	1.04
(11.11)	3.8	1.43
(9.11)	3.4	1.51
(11, 9)	3.8	1.01
(5,5)	4.2	2.03

Matrice d'intercorrélations des neurones observés

(10,10) (10, 9) (10, 8) (10, 7) (10, 6) (10, 5) (9,10) (8,10) (8,10) (15,15) (11,11) (9,11) (11, 9) (5, 5)	1.00 -26 48 .21 .38 23 .10 48 37 .20 .00 .37 20 .18 .19	1.00 .06 .24 .08 07 .00 .02 .00 .01 02 .06 .32 18 .03	1.00 10 .00 21 .23 .20 26 .13 08 .11 49 28	1.00 .10 -56 -14 .15 .13 .50 .24 .13 07 .16 .24	1.00 45 .26 23 28 .15 .03 .13 .11 25 16	1.00 .26 23 04 30 44 20 01 09 .01	1.00 58 08 35 .19 30 22 .26	1.00 .17 .04 .08 13 .26 .19 04	1.00 16 .39 22 07 29 .34	1.00 .32 .25 17 .10 .11	1.00 26 25 16 23	1.00 05 .01 .30	1.00 .07 13	1.00 12	1.00
	(10,10)	(10,9)	(10,8)	(10,7)	(10,6)	(10,5)	(9,10)	(8,10)	(9,9)	(4,4)	(15,15)	(11,11)	(9,11)	(11,9)	(5,5)

Il s'agit d'un cas stationnaire(θ =2 < θ_{ϕ} =15/6):intervalle moyen inter-spikes de l'ordre de 15+6 θ , autocorrélations faibles, coefficients d'intercorrélations peu significatifs, les plus importants correspondants aux couples de neurones voisins qui s'inhibent:(10,10)-(10,8) ou (8,10)-(9,10) par exemple. 91

EXEMPLE 3--- 8 VOISINS---REGIME STATIONNAIRE

Le réseau est de taille 40 * 40 La forme du voisinage à 8 voisins est: x x x x . x x x x La loi propre des intervalles inter-spikes est uniforme

Le paramètre d'inhibition têta vaut 2

L'intervalle inter-spikes moyen propre est 20

La fréquence moyenne de décharge propre pour 100 unités de temps est: 5

Etat du système au bout de 3000 itérations

27 **4** 11 **3** 15 23 **7 4** 12 1 6 5 22 7 2 8 19 8 11 2 2 11 6 13 11 8 15 30 28 35 1 23 28 17 17 5 24 5 12 18 15 30 28 35 1 23 28 17 17 5 14 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 1 23 28 17 17 5 12 18 15 30 28 35 12 30 17 17 5 12 18 15 30 28 35 12 30 17 17 5 12 18 15 30 28 35 12 30 17 17 5 12 18 15 30 28 35 12 30 17 17 5 12 18 15 30 18 15 10 18 10 18 15 100 $\begin{array}{c} 11\\ 18\\ 13\\ 27\\ 9\\ 3\\ 13\\ 26\\ 4\\ 3\\ 5\\ 2\\ 3\\ 14\\ 216\\ 27\\ 10\\ 20\\ 17\\ 7\\ 5\\ 4\\ 7\\ 4\\ 11\\ 2\\ 8\\ 18\\ 3\\ 23\\ 11\\ 20\\ 9\\ 19\\ 7\\ 10\\ 210 \end{array}$ $\begin{array}{c} 11\\ 22\\ 10\\ 31\\ 2\\ 4\\ 12\\ 36\\ 4\\ 35\\ 21\\ 28\\ 19\\ 6\\ 14\\ 19\\ 6\\ 18\\ 14\\ 16\\ 1\\ 32\\ 37\\ 6\\ 20\\ 2\\ 16\\ 13\\ 34\\ 26\\ 4\\ 2\\ 11\\ 5\\ 13\\ 2\end{array}$ $\begin{array}{c} \textbf{16577} \\ \textbf{1152712923015376267714938154510338511739} \\ \textbf{11739} \end{array}$ 17 8 144 18 9 11 202 27 6 13 18 21 4 38 7 3 20 14 20 25 16 2 15 12 32 14 9 8 9 17 20 32 8 2 1 7 29 16 $\begin{array}{c} 18 \\ 8 \\ 5 \\ 26 \\ 9 \\ 32 \\ 12 \\ 2 \\ 9 \\ 9 \\ 9 \\ 9 \\ 2 \\ 7 \\ 4 \\ 3 \\ 3 \\ 9 \\ 6 \\ 6 \\ 4 \\ 22 \\ 14 \\ 15 \\ 2 \\ 4 \\ 5 \\ 18 \\ 2 \\ 9 \\ 18 \\ 16 \\ 5 \\ 5 \\ 7 \\ 1 \\ 1 \\ 9 \\ 2 \\ 7 \\ 16 \\ 4 \\ 6 \\ \end{array}$ $\begin{array}{c} 2 \\ 12 \\ 14 \\ 8 \\ 13 \\ 14 \\ 29 \\ 12 \\ 18 \\ 32 \\ 18 \\ 23 \\ 12 \\ 6 \\ 37 \\ 16 \\ 62 \\ 23 \\ 92 \\ 27 \\ 19 \\ 17 \\ 18 \\ 72 \\ 17 \\ 22 \\ 11 \\ 27 \\ 36 \\ 3 \end{array}$ $\begin{array}{c} 6 \\ 17 \\ 8 \\ 17 \\ 18 \\ 27 \\ 17 \\ 18 \\ 21 \\ 17 \\ 16 \\ 7 \\ 16 \\ 7 \\ 16 \\ 36 \\ 58 \\ 9 \\ 16 \\ 7 \\ 20 \\ 17 \\ 20 \\ 17 \\ 10 \\ 21 \\ 11 \\ 10 \\ 28 \\ 18 \\ 9 \\ 4 \\ 3 \end{array}$ 14 191 11 22 18 30 4 10 2 3 13 3 8 7 12 02 3 10 18 9 23 9 7 14 25 4 12 5 14 13 2 4 28 23 18 13 13 17 5 8 **13 96 28 8 39 15 10 8 13 8 3 20 5 12 8 23 6 6 26 21 23 13 28 5 5 4 6 10 2 8 36 30 36 4 5 13 7 15** 914282334 60104212712871021621411134359711911151562268328 203217262155169451782420226123331377291511051372420782078 2 3 4 9 17 17 386 217 19 6 9 31 37 8 3102 36 5 9 3 9 211 5 28 27 7 31 210 130 26 6 7 23 **1727725 28434885929652607231929552691128359 172772528434885929652607231929552691128359** 3683741107314255701887433201329718892318265123125462237 281555021497744811434212647766228782815124699 20128443082337188660411717640021919602478253980532516 1021919602478253980532516 **270225 1225 1428 12906 953901375 3504 3746765 6747882 27882 2702 2702 2702 3702** $\begin{array}{c} \textbf{16} \textbf{20} \textbf{16} \textbf{10} \textbf{27} \textbf{9} \textbf{12} \textbf{6} \textbf{12} \textbf{8} \textbf{6} \textbf{32} \textbf{4} \textbf{13} \textbf{12} \textbf{5} \textbf{2} \textbf{30} \textbf{9} \textbf{18} \textbf{29} \textbf{10} \textbf{11} \textbf{6} \textbf{3} \textbf{5} \textbf{3} \textbf{22} \textbf{10} \textbf{13} \textbf{12} \textbf{12} \textbf{16} \textbf{3} \textbf{12} \textbf{12} \textbf{16} \textbf{11} \textbf{6} \textbf{3} \textbf{5} \textbf{3} \textbf{22} \textbf{10} \textbf{13} \textbf{12} \textbf{12} \textbf{16} \textbf{13} \textbf{12} \textbf{16} \textbf{16} \textbf{3} \textbf{16} \textbf{16}$ **2962215698002138541172663875066896471162260127237** 5 11 2 8 27 13 11 15 11 11 5 8 9 10 16 11 23 10 9 16 7 12 3 20 4 2 24 5 8 11 7 13 27 7 11 2 $\begin{array}{c} 8 \\ 5 \\ 136 \\ 2216 \\ 4 \\ 157 \\ 6 \\ 210 \\ 2210 \\ 912 \\ 123 \\ 213 \\ 111 \\ 1521 \\ 71 \\ 87 \\ 712 \\ 250 \\ 101 \\ 915 \\ 24 \\ 46 \end{array}$ $\begin{array}{c} 21\\ 24\\ 23\\ 26\\ 13\\ 17\\ 15\\ 7\\ 14\\ 30\\ 36\\ 8\\ 3\\ 16\\ 19\\ 24\\ 20\\ 9\\ 14\\ 18\\ 14\\ 4\\ 9\\ 13\\ 9\\ 34\\ 18\\ 9\\ 19\\ 26\\ 24\\ 8\\ 13\\ 6\\ 12\\ 7\\ 12\end{array}$ 9 30 22 2 35 9 4 32 18 7 36 8 12 1 6 5 3 9 9 10 1 2 11 0 11 1 31 5 17 12 7 22 10 26 2 5 27 15 39 32 22 **3629** 4022 303 8153711299622332291505131921720741226221151826 4216363187622111551172474014125160212201603781852247120111551172474014125160222016037818522471821 5 2 2 0 192 5 7 20 3 9 4 9 25 20 15 7 15 1 6 7 3 20 2 6 13 1 1 6 18 8 9 8 1 3 13 15 18 24 5187291718291271134615111213192152083315113122131243102017618

Fréquence de chaque neurone en nb pour 100 unités de temps-(le 0 indique les neurones inhibês) 3332222332222223232323233223322332222233322333223 323222332222322222233333332333232222233 322332223322232232323233223322332233232232232232232 322232233233232232332323232323232322332233322333 32233332223333223333233223222222324

Intervalle inter-spike moyen de chaque neurone-(l'étoile indique les neurones inhibés)

Tous les neurones sont actifs, leur intervalle moyen inter-spike est de l' ordre de E(F)+8 Θ

Les neurones observés sont marqués

Intervalles moyens inter-spikes

Coordonnées	Intervalle	Variance
(20.20)	33.5	329.94
(19,20)	37.0	446.08
(20, 19)	32.2	479.92
(20,21)	35.5	462.43
(21,20)	28.9	403.24
(19,19)	34.7	436.29
10.10	34.9	421.76
20,10	38.4	484.52
(5, 5)	33.4	438.26
1515	34.5	395.34
}	24.4	216.55
25 25	32.0	415.21
230 10	32.5	482.98
2 5 35	31.4	467.37
(35,20)	33.6	470.84

10 premières autocorrélations des neurones

Coordonnées	Au	tocorrélat	ions							
(20.20)		0205	13	22	.23	.16	09	03	12	.06
(19 20)	-	01 - 18	03	04	25	.01	18	12	06	32
20 19		09 .09	.08	07	05	04	08	01	.20	17
20 21		06 08	06	- 15	09	.07	03	.03	.06	07
21 20		04 - 12	- 14	21	72	.18	.10	09	.00	17
210,10		13 - 05	- 17	16	09	.03	06	19	07	34
210,10		1505	.05	.27	06	.02	.02	.20	14	.01
20 10		12 .09	- 20	07	.01	.13	.06	08	03	01
20,10		10 _ 04	12	.03	04	.15	.12	22	09	.08
115'15		1904	- 05	12	.07	.14	19	.42	.21	02
113,13		02 10	03	- 13	.08	03	- 13	- 10	.09	.03
>25'25		0210	05	- 10		- 11	- 06	- 15	26	11
(35,35)	•	02 .02	.03	- 17	- 06	- 06	- 03	- 14	05	28
(30,10)	•	1003	.01	1/	- 07	00	05	07	.32	12
(5,35)		10 .24	.10	.01	07		14	- 20	03	09
(35,20)		10 .03	10	.04	•02	.01	.14	20	.05	

Nombre moyen de spikes par fenêtre de 100

Coordonnées	Nombre	Variance
(20,20)	3.0	.50
(19,20)	2.7	.92
(20,19)	3.1	.99
(20,21)	2.8	1.17
(21.20)	3.5	1.96
(19.19)	2.9	1.12
(10.10)	2.8	1.17
(20.10)	2.6	1.02
(5. 5)	3.0	.86
(15,15)	2.9	1.27
(1, 1)	4.1	1.10
(35,35)	3.1	1.77
(30,10)	3.1	1.64
(5.35)	3.1	1.41
(35.20)	3.0	1.89

Matrice d'intercorrélations des neurones observés

(20,20) (19,20) (20,19) (20,21) (21,20) (19,19) (10,10) (20,10) (5,5) (15,15) (15,15) (15,15) (30,10) (5,35) (35,35) (36,35) (1.00 21 .20 .04 43 .33 .10 .33 .04 24 19 .24 04	1.00 .10 13 .01 .25 .07 .20 27 .07 19 .10 22	1.00 .28 15 02 .31 22 .19 12 .06 .26 .39 07	1.00 19 .10 .05 .15 .11 .03 20 .25 .37 .14	1.00 .04 .07 .03 11 .02 16 36 .00 .20	1.00 18 .05 29 32 .14 04 .01 24	1.00 01 .00 .05 30 .19 .14	1.00 .11 05 13 14 12 13	1.00 03 15 09 .45 03	1.00 .01 08 29 .28	1.00 09 25 13	1.00 07 .15	1.00 03	1.00	
(35,20)	.00	06	.03	01	.16	.39	20	16	.00	.04	.30	15	10	.03 1	.00

(20,20)(19,20)(20,19)(20,21)(21,20)(19,19)(10,10)(20,10)(5,5)(15,15)(1,1)(35,35)(30,10)(5,35)(35,20)

REMARQUES:

Dans cet exemple à 8 voisins $\theta=2 < 0$, =20/8, l'inhibition est faible.Il y a peu de corrélations entre les sites, du même ordre de grandeur entre neurones proches ou neurones éloignés.

L'autocorrélation est peu significative et l'intervalle moyen inter-spike est de l'ordre de E(F)+86=36.

EXEMPLE 4---12 VOISINS---REGIME STATIONNAIRE

Le réseau est de taille 40 * 40

La forme du voisinage à 12 voisins est:

Le paramètre d'inhibition têta vaut 2

L'intervalle inter-spikes moyen propre est 25

La fréquence moyenne de décharge propre pour 100 unités de temps est: 4

Etat du système au bout de 3000 itérations

183313888210417174994247217202538214852565263827167224531464 **31 7 6 10 2 19 41 5 19 20 3 6 11** 3 5 11 23 42 5 7 21 43 7 7 4 10 27 6 19 7 11 15 18 4 6 27 23 0 5 10 7 42 232 313 7 26 1 5 3 30 8 18 27 13 19 19 4 36 30 7 3 15 11 23 20 9 3 1 10 7 17 31 6 6 7 23 10 12 16 6 7 9 26 7 38 12 13 5 4 10 23 4 19 17 26 4 20 12 13 10 7 25 02 32 5 7 22 12 3 26 5 17 7 7 3 24 **33 12 33 22 23 9 10 24 18 9 11 15 18 44 29 12 13 1 11 23 29 9 22 37 4 20 6 17 30 6 16 4 18 3 29 1813796431067219**8297772874422217433431218261591329 5 1262 128 350 11 3 20 15 14 20 1 9 44 34 44 15 25 61 26 20 19 16 20 41 13 4 9 21 5 8 21 13 18 39 9 6115 3 9 8 2273 8 4 15 9 14 3 3 8 11 2 11 27 3 5 8 14 16 14 40 14 6 7 9 17 43 5 7 12 1 8 28 7 6 18 9 1 38 6 7 5 8 9 8 7 37 7 28 11 31 7 8 9 9 4 10 12 34 8 9 6 8 22 7 7 16 6 5 6 6 4 3 1307 239 20 2 180 2 2 7 4 2 4 13 9 2 18 2 7 3 1 2 3 9 3 6 5 3 4 5 4 1 2 1 9 9 91918332516122161715161632302392571834428019551291734343125380127 201343136 32718844814021232416486482932164223675639623 1923 **30 14 7 8 22 6 4 5 20 128 16 8 5 35 18 5 10 28 5 7 30 7 6 6 2 4 5 7 10 28 16 8 5 35 18 5 10 28 5 7 30 7 6 6 6 2 4 5 7 7 10 28 5 9 8 18 9 37 14 3 13 14** 1 **148 23 34 922 28 6 6 11 15 6 29 3 5 7 20 5 14 212 30 8 12 19 7 10 16 7 8 11 5 18 392** 2052212424713277361339610831619325578349771370135 2311253167311149149367420431731512121623725131236772124521512 $\begin{array}{c} \mathbf{14} \\ \mathbf{46} \\ \mathbf{10} \\ \mathbf{7} \\ \mathbf{11} \\ \mathbf{24} \\ \mathbf{7} \\ \mathbf{102} \\ \mathbf{18} \\ \mathbf{215} \\ \mathbf{34} \\ \mathbf{529} \\ \mathbf{488} \\ \mathbf{312} \\ \mathbf{6177} \\ \mathbf{346} \\ \mathbf{187346} \\ \mathbf{8191222132} \\ \mathbf{1837521} \\ \mathbf{187521} \\ \mathbf{18$ 2011 4 9 7 7 9 6 15 21 3 9 12 8 17 13 25 9 9 8 24 10 30 14 7 19 3 18 14 2 1 20 4 4 2 26 3 4 2 26 3 4 **3954257111024**033042512691871596251840014228559218315822 2 3 3 2 9 27 1 7 6 7 1 4 1 3 7 2 1 7 1 3 4 3 5 6 3 4 4 1 1 2 4 9 1 4 2 8 3 0 1 2 4 7 8 5 1 1 1 2 4 9 1 4 2 8 3 1 0 2 4 8 5 1 1 610675300715300715122767838256296924222417815 **316 310 121 8 116 7 31 7 38 5 16 12 2 7 18 11 16 7 31 7 38 5 16 12 2 7 19 5 9 14 16 8 35 38 1 5 5 15 2 14 1 18** $\begin{array}{c} 2385 \\ 356 \\ 9131 \\ 28 \\ 172 \\ 192 \\ 1558 \\ 482 \\ 2237 \\ 140 \\ 58 \\ 196 \\ 310 \\ 2117 \\ 27 \\ 346 \\ 7 \\ 167 \\ 310 \\ 2117 \\ 27 \\ 346 \\ 7 \\ 310 \\ 310 \\ 2117 \\ 27 \\ 346 \\ 7 \\ 310$ 1601229241101516917209485823005714473214142428727426 20725552021711911044813524411173213106251848619442521231 2016018227151526523422123230264112215151242711610382914290101 8 6 8 4 18 7 18 11 26 4 3 4 4 8 8 14 16 15 17 4 10 7 16 9 1 1 7 7 7 7 7 7 7 13 3 1 14 16330312944 8 2 5 9 7 13 1 1040527 2 3 1921254 8 16 12 10 6 16 9 7 10 5 19 10 357 2 29 6687 664 512 415 2 434 518 347 24 429 108 3464 70 185 129 170 4 102 3464 70 185 129 170 4

Fréquence de chaque neurone en nb pour 100 unités de temps-(le 0 indique les neurones inhibés)

Intervalle inter-spike moyen de chaque neurone-(l'étoile indique les neurones inhibés)

Tous les neurones sont actifs, leur intervalle inter-spike est de l'ordre de E(F)+12 θ

Les neurones observés sont marqués

Intervalles moyens inter-spikes

Coordonnées	Intervalle	Var iance
(20.20)	46.6	785.59
(20.19)	46.0	844.45
20.21	42.8	816.63
(21.19)	44.5	863.46
(19.21)	42.6	871.62
(19,19)	44.2	849.65
18.18)	48.5	782.68
17.17	45.0	588.11
10.10	48.2	664.58
5.5	39.0	790.09
21.21	39.9	829.26
(22.22)	51.3	1047.47
(23.23)	43.9	886.43
(30, 30)	44.1	674.91
(35, 35)	50.5	932.65

10 premières autocorrélations des neurones

Coordonnées	Autoco	orré lat io	ons							
(20,20)	.20	.14	.06	16	11	20	30	04	.25	.22
(20,19)	08	21	.46	06	22	.18	01	01	.11	05
(20,21)	18	05	.01	04	15	06	.11	14	.07	20
(21, 19)	19	16	.19	.12	38	03	10	29	08	14
(19,21)	.13	05	10	01	.08	24	08	10	17	07
(19,19)	14	05	05	.18	.13	09	.08	01	.04	22
(18, 18)	.03	.14	.05	.09	.17	.37	.03	.23	01	11
(17, 17)	15	15	04	.12	24	03	07	58	25	39
(10,10)	14	.13	.06	.00	01	11	20	13	15	07
(5, 5)	15	.08	19	23	20	08	.17	.04	.20	03
(21.21)	04	05	04	06	.16	18	.06	04	11	.17
(22.22)	.18	06	26	20	07	.10	.30	.16	08	15
(23.23)	.00	02	.23	.08	06	.06	.18	.22	07	07
(30,30)	29	09	09	.12	.07	.00	14	02	20	02
(35,35)	.19	.11	07	15	16	20	40	47	21	20

Nombre moyen de spikes par fenêtre de 100

Coordonnées	Nombre	Var lance
(20,20)	2.1	1.31
(20, 19)	2.2	.58
(20.21)	2.3	.58
(21.19)	2.2	1.03
(19.21)	2.3	1.50
(19.19)	2.3	.92
(18.18)	2.0	.68
(17.17)	2.2	.74
(10, 10)	2.1	.64
1 5 5	2.5	1.54
(21,21)	2.5	1.61
22 22	1.9	1.14
23 23	2.3	1.35
230,301	2 3	40
(35,35)	2.0	1.57

Matrice d'intercorrélations des neurones observés

(18, 18) (17, 17) (10, 10) (5, 5) (21, 21) (22, 22) (23, 23) (30, 30) (35, 35)	08 46 05 21 11 26 .17 .05 15	12 .16 14 06 .02 .06 30 10 .19	02 .06 .14 .06 20 .07 31 17 04	.16 .15 02 11 28 .08 26 .27 .00	44 .41 .34 .15 06 12 01 02 .46	.49 07 31 .12 .21 .12 .09 12 18	1.00 16 28 19 .29 .17 27 .11 .00	1.00 18 .34 .03 .33 28 22 07	1.00 14 18 .05 .06 04 .54	1.00 .41 .11 05 29 09	1.00 13 .10 24 .31	1.00 16 16 29	1.00 .08 07	1.00	1.00	
(20,20) (20,19) (20,21) (21,19) (19,21) (19,19)	1.00 31 08 .07 25 06	1.00 .02 05 .21 32	1.00 .10 .04 .22	1.00 .29 17	1.00 38	1.00										

(20,20) (20,19) (20,21) (21,19) (19,21) (19,19) (18,18) (17,17) (10,10) (5,5) (21,21) (22,22) (23,23) (30,30) (35,35)

REMARQUES:

Les remarques à faire sont les mêmes que celles de l'exemple 3.0n voit que l'intercorrélation (faible) est répartie dans tout le réseau,elle ne diminue pas en fonction de la distance des sites.

97

EXEMPLE 5---14 VOISINS---REGIME STATIONNAIRE

Le réseau est de taille 40 * 40 La forme du voisinage à 14 voisins est: x x x x x x x . x x x x x x x

La loi propre des intervalles inter-spikes est uniforme

Le paramètre d'inhibition têta vaut 2

L'intervalle inter-spikes moyen propre est 30

La fréquence moyenne de décharge propre pour 100 unités de temps est: 3

Etat du système au bout de 3000 itérations

 $\begin{array}{c} 18 \\ 36 \\ 426 \\ 10 \\ 29 \\ 837 \\ 16 \\ 411 \\ 522 \\ 42 \\ 5538 \\ 343 \\ 14 \\ 318 \\ 167 \\ 4257 \\ 102 \\ 203 \\ 84 \\ 164 \\ 477 \\ 516 \\ 236 \\ 24 \\ 102 \\$ $\begin{array}{c} \textbf{25} \textbf{10} \textbf{155} \textbf{74} \textbf{2011} \textbf{11} \textbf{19} \textbf{51} \textbf{87} \textbf{209} \textbf{688} \textbf{84} \textbf{198} \textbf{306} \textbf{1326} \textbf{37} \textbf{617} \textbf{514} \textbf{16234} \textbf{1524} \textbf{16234} \textbf{1524} \textbf{16234} \textbf{1524} \textbf{16234} \textbf{1524} \textbf{16234} \textbf{1524} \textbf{16234} \textbf{16234}$ 21 265 154 154 144 30 156 12 160 316 150 640 17 361 45 39 33 42 78 347 99 39 221753177441506364751303541974320715267418105353512432333 16 354 327 29151 12 18 325 14 5 293 16 5 14 6 8 7 2 4 5 5 8 32 7 7 13 5 8 32 5 13 15 9 9 30 $\begin{array}{c} \textbf{23} \textbf{47} \\ \textbf{13} \\ \textbf{19} \\ \textbf{37} \\ \textbf{15} \\ \textbf{30} \\ \textbf{49} \\ \textbf{27} \\ \textbf{40} \\ \textbf{17} \\ \textbf{21} \\ \textbf{40} \\ \textbf{172} \\ \textbf{14} \\ \textbf{322} \\ \textbf{207} \\ \textbf{94} \\ \textbf{28} \\ \textbf{24} \\ \textbf{128} \\ \textbf{6336} \\ \textbf{41230} \\ \textbf{1380} \\ \textbf{1380}$ 454338721294243159693031682945122235426219452792387 4392312310 58382218 859 804149412928477250144 4 6 5290422815 $\begin{array}{c} 13\\17\\4\\226\\17\\18\\534\\9\\16\\3\\12\\4\\36\\7\\1\\3\\5\\3\\4\\9\\3\\5\\2\\20\\16\\5\\7\\1\\1\\1\\8\\3\\5\\6\\2\\1\\3\\1\\1\\1\\3\end{array}$ $\begin{array}{c} 2 \\ 26 \\ 15 \\ 14 \\ 19 \\ 7 \\ 22 \\ 44 \\ 16 \\ 1 \\ 20 \\ 9 \\ 19 \\ 23 \\ 50 \\ 24 \\ 21 \\ 3 \\ 13 \\ 1 \\ 23 \\ 9 \\ 13 \\ 4 \\ 12 \\ 3 \\ 28 \\ 50 \\ 3 \\ 10 \\ 57 \\ 7 \\ \end{array}$ 5 4 2 3 4 4 0 3 3 2 9 4 1 6 6 8 4 2 9 5 3 3 5 8 3 9 9 2 4 3 9 1 5 4 6 0 1 7 3 7 2 1 6 9 6 1 1 2 6 8 4 9 2 5 3 3 5 8 3 9 9 5 2 4 3 3 8 6 5 4 5 4 6 0 1 7 3 7 2 1 6 9 6 20351610274325261311836125559916613201382644256323132111730622 $\begin{array}{c} \textbf{3715913926827143012222513913237876919411953041662314655} \end{array}$ $\begin{array}{c} \textbf{43} \textbf{16} \textbf{9} \textbf{15} \textbf{36} \textbf{20} \textbf{9} \textbf{1} \textbf{29} \textbf{9} \textbf{18} \textbf{19} \textbf{28} \textbf{135} \textbf{238} \textbf{6} \textbf{17} \textbf{143} \textbf{9} \textbf{38} \textbf{18} \textbf{3511} \textbf{37360} \textbf{11100} \textbf{4} \textbf{6} \textbf{2} \textbf{1027} \textbf{7} \end{array}$ 2 8 130 267 11 40 0 13 42 52 51 88 2 8 11 7 30 83 25 54 8 30 6 3 25 50 3 51 6 9 26 6 31 4 9 3 4 38 19 3 22 12 8 22 02 45 9 8 16 35 9 14 36 3 3 13 44 8 3 17 24 16 8 8 13 3 34 39 7 6 28 5 1 2 53143303548424202242365392414222943422353353327331019 $\begin{array}{c} \textbf{3423}\\ \textbf{111}\\ \textbf{12216}\\ \textbf{637027147}\\ \textbf{8611}\\ \textbf{2332318}\\ \textbf{192434}\\ \textbf{97339}\\ \textbf{377113262643}\\ \textbf{18113262643}\\ \textbf{18113262643}\\ \textbf{18113262643}\\ \textbf{18113262643}\\ \textbf{18113262643}\\ \textbf{1811326663}\\ \textbf{181132663}\\ \textbf{18113266$ 722216189337612101383213448452313031018951835411301523023 3194421231021323136443082032882413262251647737044632824 $\begin{array}{c} 2 \\ 121 \\ 9 \\ 225 \\ 135 \\ 113 \\ 128 \\ 123 \\ 9 \\ 312 \\ 486 \\ 159 \\ 121 \\ 128 \\ 128 \\ 128 \\ 128 \\ 133 \\ 127 \\ 128 \\ 339 \\ 127 \\ 128 \\$ 1614028861122022647928141233151214544179732780822304792814123315121454417973278082232144

Fréquence de chaque neurone en nb pour 100 unités	de temps-(le 0	indique les neurones	inhibés)
---	----------------	----------------------	----------

2 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 2 2 1 1 1 1 1 2 1 1 1 2 1 2 1 1 1 1 1<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 2 1 1 1 2 1	1 2 1 2 2 2 1 1 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2
2 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1	2 1 1 2 1	1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 2 2 2 2 2

Intervalle inter-spike moyen de chaque neurone-(l'étoile indique les neurones inhibés)

44 52 53 51 53 54 54 56 57 59 57 53 25 28 57 60 54 50 51 25 751 45 47 50 50 53 48 47 48 54 52 50 58 53 50 60 54 56 41 48 58 51 62 53 45 57 52 50 50 45 57 47 54 50 51 48 57 52 59 50 60 52 53 50 58 54 54 51 54 43 57 57 48 54 47 58 54 43 50 50 52 54 52 52 43 60 53 54 52 45 57 47 52 53 51 65 56 53 45 56 56 57 49 51 52 56 49 52 51 50 50 50 56 59 53 4 46 41 51 62 50 51 51 52 59 57 53 47 54 54 74 6 59 62 54 51 54 56 60 56 48 47 56 50 58 57 56 58 57 57 48 51 58 52 48	34255 383344905348528345823434343434344544444444444444	4545555555444545555448545455444524475454541	45756626556637666537807836296483563438051	4625862477348778440006204970524390991122	45646067765255555555555555555555555555555555	4592480555555555555555555555555555555555555	4565216085555494775544554765555555555565565654521	5495534452651727275055896785045545605120765732	454855495555555555555555555555555555555	4537555554577485755555555555555555555555	$\begin{array}{c} 55696\\ 5596\\ 5569\\ 5576\\ 516\\ 516\\ 575\\ 555\\ 557\\ 557\\ 557\\ 557\\ 557\\ 55$	556555555555555555555555555555555445555545545555	4399554465155555544704575555555555555555555555555	4548450558595555555555555555555555555555	460405265874673555454798835558545555566051355554747	45634735651547492515050545260888639022605246	4522457753745055566384515550621888908769941339	43499233756192441229999133782568111084802084120084100841	$\begin{array}{c} \textbf{4605297} \\ \textbf{5565338259} \\ 556535455565554555555555555555555555555$	45362272599451894536086755555555555555555555555555555555555	5544287779755651866329463656448337062775555555555555555555555555555555555	4520725055555680401555774208454544745562411505555555555555555555555555555555555	35555555555555555555555555555555555555	45855416445223498265655555555555566737266	$\begin{array}{c} \textbf{4929} \\ \textbf{62305555495555959597} \\ 55555555555555555555555555555555555$	4622425555555564485555555456631656565555947	4505555644855164905885555555555555555555555555555555555	44497665556493665129538669970599115644517518845250	451488855555555555555555445098663175975074568	45825406788854539651655555555554588832859655555555555555555555555555555555555	4555548555565925554885555555555555555555555555555555	455549589751555555555555555555555555555555555	451471552555555555649565195552555555555555555555555555555555	42756938524821258755555555682988590457857555555555555555555555555555555555	4383341664512005555565545555555555555555555555555555	$\begin{array}{c} 433556 \\ 5526 \\ 5526 \\ 5526 \\ 5526 \\ 554 \\ 5526 \\ 556 \\ 556 \\ 556 \\ 556 \\ 556 \\ 556 \\ 556 \\ 657 \\ 556 \\ 657 \\ 556 \\ 657 \\ 556 \\ 555 \\ 556 \\ 555 \\ 556 \\ 555 \\ 556 \\ 555 \\ 556 \\ 555 \\ 555 \\ 555 \\ 556 \\ 555$	458652875486884229795194547845954205351960758	46986859516293559555555555564502855555555555555555555555555555555555	45554444555465544455455445545445544455554748
--	---	---	--	---	--	---	---	--	---	--	--	--	--	--	---	--	--	--	---	---	---	--	--	--	--	---	---	--	---	---	--	---	--	--	--	--	---	--	--

Tous les neurones sont actifs, leur intervalle moyen inter-spike est de l'ordre de E(F)+14 Θ

Les neurones observés sont marqués

Intervalles moyens inter-spikes

Coordonnées	Intervalle	Variance
(20,20)	59.3	1062.96
(20, 19)	56.5	1471.79
(20,18)	56.4	1282.69
(20.21)	55.1	868.34
(20.22)	42.8	907.04
(20, 5)	48.1	1062.47
(20,35)	57.0	1085.50
(5.5)	55.9	896.70
(35, 35)	50.0	967.29
5.35	51.7	835.44
35. 5	55.5	1166.81
(17.20)	59.7	824.44
(23.20)	50.4	932.27
(10,10)	49.9	985.41
(30,30)	47.1	975.07

10 premières autocorrélations des neurones

Coordonnées	Autoco	rré lat io	ns							
(20,20)	.04	.18	05	01	22	09	02	15	02	.11
(20,19)	.01	.02	17	.01	05	25	21	18	01	24
(20,18)	05	32	08	.06	.20	02	01	.03	.32	.25
(20,21)	.14	03	23	20	28	05	15	19	32	42
(20,22)	16	11	05	14	.03	.09	.00	25	.17	09
(20. 5)	.18	16	14	24	.01	20	20	.01	.02	02
(20.35)	21	.03	03	04	.25	.03	.11	.14	.13	.09
(5, 5)	.16	.39	.32	.02	.40	.05	.14	.17	.09	06
(35,35)	09	11	09	07	.02	.15	01	.02	26	17
(5,35)	.14	.15	.10	.17	.13	.12	.40	.11	.35	.12
(35, 5)	.07	02	.06	.21	.03	.14	.24	09	.04	.19
(17.20)	.01	36	15	.22	.15	.09	.24	.04	13	33
(23,20)	.13	.14	09	51	05	22	.07	.03	.00	.09
(10,10)	.09	08	05	24	26	47	36	19	29	14
(30,30)	.02	.11	.10	11	.04	05	.14	.32	.00	.15

Nombre moyen de spikes par fenêtre de 100

Coordonnées	Nombre	Variance
(20,20)	1.7	.50
(20,19)	1.8	1.12
(20,18)	1.8	1.12
(20,21)	1.8	.88
(20,22)	2.4	1.09
(20, 5)	2.1	1.60
(20.35)	1.8	.54
(5, 5)	1.8	.88
(35,35)	2.0	.75
(5,35)	1.9	1.21
(35, 5)	1.8	.86
(17.20)	1.6	.66
(23,20)	2.0	1.43
(10,10)	2.0	1.00
(30,30)	2.1	.92

Matrice d'intercorrélations des neurones observés

(20,20)	1.00														
(20,19)	15	1.00													
(20,18)	01	.14	1.00												
(20,21)	05	.09	41	1.00											
(20,22)	62	. 34	08	.04	1.00										
(20, 5)	.04	09	.31	10	.00	1.00									
(20,35)	.12	.01	.15	03	16	.30	1.00								
(5,5)	16	. 20	.09	05	.04	.08	.03	1.00							
(35,35)	08	01	. 34	36	10	.30	.21	.03	1.00						
(5,35)	.20	32	14	08	26	41	.24	22	12	1.00					
(35, 5)	.13	.03	.21	25	01	.29	.40	25	23	08	1.00				
(17,20)	.17	06	31	.04	10	14	.09	10	.08	.49	23	1.00			
(23,20)	25	.08	28	10	. 32	.07	20	.00	14	22	06	18	1.00		
(10,10)	25	10	14	34	.24	08	34	15	.17	26	27	09	.27	1.00	
(30,30)	.09	.23	.40	06	06	.52	.18	.21	.17	43	.09	10	06	19	1.00
	(20,20)	(20,19)	(20,18)	(20,21)	(20,22)	(20, 5)	(20,35)(5, 5)	(35,35)(5,35)	(35, 5)	(17,20)	(23,20)	(10,10)	(30,30)

ANALYSE MATHEMATIQUE D'UN MODELE DU CORTEX CEREBELLEUX :

II. EFFET DE L'ACTION INHIBITRICE DES COLLATERALES RECURRENTES EN PRESENCE DE STIMULI.

Marie COTTRELL U.A. C.N.R.S. 743 "Statistique Appliquée" Laboratoire de Mathématique, Bât. 425 Université de Paris 11 F - 91405 ORSAY Cedex

Nous analysons les réactions d'un réseau de neurones reliés par des liaisons inhibitrices, en présence de stimuli extérieurs.

L'état du système est dans ce cas un processus de Markov dont le comportement dépend des paramètres du système (niveau de l'inhibition, degré d'excitation).

Ce modèle du cortex cerebelleux intègre les excitations apportées par les fibres grimpantes ou les fibres moussues.

MOTS CLES :

Processus de Markov Réseaux de neurones Cortex cérebelleux Liaisons inhibitrices Stimuli

I - INTRODUCTION.

Dans cette deuxième partie, on prend en compte des stimuli extérieurs et on considère que certains neurones sont excités. Voir le système C, figure 2c du I.2, Partie I.

On modélise ainsi le fait que chez le jeune rat les fibres grimpantes (présentes dès le 3ème jour) excitent directement quelques cellules de Purkinjie (3 à 5) situées principalement sur un axe transversal (CREPEL et al. (1970)). Au contraire, chez le rat adulte, chaque fibre grimpante ne contacte qu'<u>une</u> cellule de Purkinjie.

On modélise aussi le fait que les signaux apportés par les fibres moussues sont transmis par l'intermédiaire des fibres parallèles qui contactent un grand nombre de cellules de Purkinjie, situées principalement le long de l'axe longitudinal.

II - MODELE MATHEMATIQUE DU RESEAU DE NEURONES AVEC EXCITATION

1. LE MODELE - INTRODUCTION DES STIMULI.

Les notations générales sont les mêmes que dans la première partie (Analyse Mathématique du Cortex Cerebelleux I).

On considère maintenant que certains neurones sont excités, c'està-dire qu'ils sont amenés à décharger avec une fréquence propre supérieure à celles des autres neurones.

Pour cela la loi \mathcal{F}_{ij} de la v.a. U_{ij} avec laquelle est réinitialisé le neurone (i,j) au moment d'une décharge dépend du <u>site</u> (i,j).

On suppose que les lois \mathcal{F}_{ij} appartiennent à une même famille de lois (uniforme, exponentielle, normale, dans nos exemples), mais ces lois diffèrent par leurs espérances : E $\mathcal{F}_{ij} < E \mathcal{F}_{i'j'}$ signifiant que le neurone (i,j) est plus excité que le neurone (i',j').

On modifie alors tout simplement les modèles discrets et continus présentés dans la Partie 1 (II.1), en posant :

Si $X_{ij}^{t} = 0$, X_{ij}^{t+1} (modèle discret) ou X_{ij}^{t+dt} (modèle continu) est une réalisation d'une v.a. U_{ij} de loi F_{ij} indépendante de X^{t} .

On suppose comme pour \mathcal{F} , que les lois \mathcal{F}_{ij} sont à support \mathbb{R}^+ , et sont d'espérances et de variances finies.

Les deux processus ainsi définis (discrets et continus) sont alors des processus de Markov. De même le processus échantillonné aux instants T_{ℓ} de décharge d'un neurone, noté ($X^{T_{\ell}}$) est une chaîne de Markov.

La plupart des démonstrations et des résultats de la lère partie restent valables :

La chaîne $(X^{T_{\ell}})$ est irréductible, apériodique et son comportement dépend de la valeur du paramètre d'inhibition θ .

Il faut donc évaluer dans ce nouveau contexte la valeur seuil θ_{0} en-dessous de laquelle le système converge.

2. SYSTEME DE DEUX NEURONES.

Notons U, de loi \mathcal{F}_1 , (resp. V, de loi \mathcal{F}_2) la v.a. réinitialisant l'état du neurone (1) (resp. (2)) au moment de leur décharge. On suppose pour fixer les idées que E $\mathcal{F}_1 < E \mathcal{F}_2$. C'est donc le neurone (1) qui est stimulé.

Alors en posant $Z^{\ell} = (X_2 - X_1)^{\ell}$, comme dans la première partie, on a :

$$Z^{\ell+1} = Z^{\ell} + 1_{Z^{\ell} > 0} \qquad (\theta - U_{\ell+1}) + 1_{Z^{\ell} < 0} \qquad (V_{\ell+1} - \theta)$$

où $U_{\ell+1}$ (resp. $V_{\ell+1}$) est une v.a. de loi \mathcal{F}_1 (resp. \mathcal{F}_2), indépendante de $(x^{T_{\ell}})$.

Alors,

- Si $\theta < E \mathcal{F}_1 = \min (E \mathcal{F}_1, E \mathcal{F}_2)$, l'espérance du saut de Z^{ℓ} est de signe contraire à Z^{ℓ} .
- Si $E \mathcal{F}_1 < \theta < E \mathcal{F}_2$, l'espérance du saut de Z^2 est toujours positif.
- Si max (E \mathcal{F}_1 , E \mathcal{F}_2) = E $\mathcal{F}_2 < \theta$, l'espérance du saut de Z^l est du même signe que Z^l.

On a alors :

 $\begin{array}{|c|c|c|c|c|c|c|} \hline PROPOSITION & \text{II.2.1.} & - Cas \ de \ 2 \ neurones. \\ \hline On \ pose \ \theta_{O} &= \min \ (E \ \mathcal{F}_{1}, \ E \ \mathcal{F}_{2}) \\ \hline \theta_{1} &= \max \ (E \ \mathcal{F}_{1}, \ E \ \mathcal{F}_{2}) \\ \hline i) \ Lorsque \ \theta < \theta_{O}, \ les \ processus \ x^{T_{\ell}} \ et \ x^{t} \ sont \ ergodiques. \\ \hline ii) \ Lorsque \ \theta_{O} < \theta < \theta_{1} \ , \ x^{t}_{2} \ \frac{p.s.}{t \rightarrow +\infty} + \infty \ et \ x^{t}_{1} \ converge \ en \\ \hline x^{t$

loi vers un processus de renouvellement de loi ${\mathfrak F}_1.$

iii) Lorsque $\theta > \theta_1$, les processus (X^t) et (X^{T_ℓ}) divergent : sur presque toute trajectoire, une des deux composantes tend p.s. vers $+\infty$, l'autre converge en loi vers un processus de renouvellement de loi \mathfrak{F}_1 ou \mathfrak{F}_2 .

Démonstration

Les cas i) et iii) se déduisent des mêmes arguments que ceux utilisés dans le IV de la première partie.

Supposons $\mathbb{E} \mathfrak{F}_1 < \mathbb{E} \mathfrak{F}_2$ et donc $\theta_0 = \mathbb{E} \mathfrak{F}_1$, $\theta_1 = \mathbb{E} \mathfrak{F}_2$.

Dans le cas ii), il suffit d'observer que Z^{ℓ} est une marche aléatoire d'incrément V-0, $\theta_1 - \theta > 0$, tant que $Z^{\ell} < 0$, et d'incrément $\theta - U$, d'espérance $\theta - \theta_0 > 0$ quand $Z^{\ell} > 0$.

On trouvera dans l'appendice 1 les résultats numériques de simulations menées pour différentes lois \mathcal{F}_i et différents θ .

Dans le cas $\theta < \theta_0$, on peut calculer l'espérance de l'intervalle inter-spike d'un neurone, en régime stationnaire.

Reprenons les calculs faits au IV de la première partie. Il faut simplement noter différemment les v.a. tirées à chaque décharge, suivant qu'il s'agit du neurone (1) ou du neurone (2).

Soit K la v.a. entière mesurant le nombre de décharges (éventuellement nul) du neurone (1) entre t_0 et t_1 , instants de décharges consécutives du neurone (2).

Alors on a : - au temps t_0 , l'état $(x_0, 0)$, et en t_0^+ , $(x_0 + \theta, V_1)$ Si K = 0 (si $V_1 < x_0 + \theta$) - au temps $t_0 + V_1$, l'état est $(x_0 + \theta - V_1, 0)$ Si K > 0 (si $V_1 > x_0 + \theta$) - au temps $t_0 + x_0 + \theta$, l'état est $(0, V_1 - x_0 - \theta)$ et ensuite $(U_1, V_1 - x_0)$ Si K = 1 (si $U_1 > V_1 - x_0$) - au temps $t_0 + V_1 + \theta$, l'état est $(x_0 + U_1 - V_1, 0)$ Si K > 1 (si $U_1 < V_1 - x_0$) - au temps $t_0 + x_0 + \theta + U_1$, l'état est $(0, V_1 - x_0 - U_1)$ puis $(U_2, V_1 - x_0 - U_1 + \theta)$ Si K = 2 (si $U_2 > V_1 - x_0 - U_1 + \theta$) - au temps $t_0 + V_1 + 2\theta$, l'état est $(x_0 + U_1 + U_2 - V_1 - \theta)$ \vdots Donc

5

Si K = k (si $U_k > V_1 - x_0 - U_1 - \dots - U_k - (k-1) \theta$) - au temps $t_0 + V_1 + k\theta$, l'état est $(x_0 + U_1 + U_2 + \dots + U_k - V_1 - (k-1) \theta)$. L'intervalle inter-spike est donc de la forme

$$\tau = V_1 + K\theta$$

où K est une v.a. entière dont la loi est donnée par $\mathbb{P}(K>k) = \mathbb{P}(V_1>x_0+\theta, U_1 \leq V_1-x_0, U_1+U_2 < V_1-x_0+\theta, \dots, U_1+\dots+U_k < V_1-x_0+(k-1)\theta)$ (cela permet de redémontrer que le processus converge ssi E $\mathcal{F}_1-\theta>0$ et par symétrie E $\mathcal{F}_2 - \theta > 0$, sinon la v.a. K (et son homologue L, nombre de décharges de (2) entre deux décharges de (1)) tend vers + ∞ .

Si l'on note Y_0 et Y_1 les états du neurone (1) aux instants t_0 et t_1 , on a :

$$X_1 = U_1 + U_2 + \ldots + U_K - V_1 + X_0 - (K-1) \theta$$

et comme en régime stationnaire, $X_1 \sim X_0$ et on obtient puisque K est un temps d'arrêt

$$(EK) (EU - \theta) = EV - \theta$$

d'où

$$EK = \frac{EV - \theta}{EU - \theta}$$

Cela permet de conclure :

PROPOSITION II.2.2.

En régime stationnaire ($\theta < \theta_0$) pour le réseau de deux neurones, les intervalles inter-spikes moyens sont

$$E \mathcal{F}_{2} + \frac{E \mathcal{F}_{2} - \theta}{E \mathcal{F}_{1} - \theta} \theta \quad \text{pour le neurone (2)}$$
$$E \mathcal{F}_{1} + \frac{E \mathcal{F}_{1} - \theta}{E \mathcal{F}_{2} - \theta} \theta \quad \text{pour le neurone (1)}$$

(Voir l'appendice 1).

3. <u>SYSTEME DE</u> n² <u>NEURONES</u>

Les résultats de la première partie se généralisent :

PROPOSITION II.3.1.

Si $\theta < \theta_{o} = \min_{(i,j)} \left\{ \frac{E \mathfrak{F}_{ij}}{|V|} \right\}$

les processus $(X^{T_{\underline{\ell}}})$ et $(X^{\underline{\ell}})$ sont ergodiques.

Dans ce cas, on observe sur les simulations que tous les neurones sont actifs, déchargeant bien sûr avec une fréquence plus faible que leur fréquence propre. On trouvera dans l'appendice 2 différents exemples.

On a choisi de stimuler des groupes de neurones disposés, soit en plaques, soit en lignes (cellules grimpantes) par exemple. On remarque que l'intervalle moyen inter-spike de chaque neurone est environ égal à

 $E \mathcal{F}_{ij} + |V| \theta$ si le neurone (i,j) est à l'intérieur de la zone excitée ou de la zone non excitée. $E \mathcal{F}_{i'j'} + \frac{E \mathcal{F}_{ij} - \theta}{E \mathcal{F}_{i'j'} - \theta} \theta$ si le neurone (i,j) est à la lisière d'une zone excitée et d'une zone non excitée.

DIVERGENCE.

Lorsque $\theta > \theta_1 = \max_{i,j} \left\{ \frac{E \mathfrak{F}_{ij}}{|v|} \right\}$, le processus (X^t)

diverge, et se comporte comme dans le cas non stimulé : des bandes de neurones inhibés et actifs s'établissent, brisant le mur d'inhibition latérale autour de chaque neurone. Bien sûr, l'intervalle interspikes moyen de chaque neurone actif est à peu près égal à son intervalle moyen propre E \mathcal{F}_{ij} .

Enfin, lorsque $\theta_0 < \theta < \theta_1$, certains neurones sont inhibés, d'autres pas et l'on peut obtenir toute une variété de cartes.

Examinons quelques cas :

1) Un seul neurone (i_0, j_0) est excité, $\mathcal{F}_{ij} = \mathcal{F}$ pour tout $(i,j) \neq (i_0, j_0)$ et $\mathbb{E} \mathcal{F}_{i_0} < \mathbb{E} \mathcal{F}$. Alors si $\mathbb{E} \mathcal{F}_{i_0 j_0} / |\mathcal{V}| < \theta < \mathbb{E} \mathcal{F} / |\mathcal{V}|$,

on observe la divergence des seuls voisins de (i_0, j_0) . Cela dessine parfaitement la forme de V (i_0, j_0) . C'est l'inhibition latérale.

Voir l'appendice 3.

 Une seule zone D (plaque ou ligne) de neurones est excitée, en prenant par exemple

> $E \mathcal{F}_{ij} = E \mathcal{F}_1$ si $(i,j) \in D$ $E \mathcal{F}_{ij} = E \mathcal{F}_2$ si $(i,j) \notin D$

avec $E \mathcal{F}_1 < E \mathcal{F}_2$. Alors si $E \mathcal{F}_1 / |\mathcal{V}| < \theta < E \mathcal{F}_2 / |\mathcal{V}|$, il y a

convergence à l'extérieur de D divergence à l'intérieur de D

et

alvergence à l'interieur de D au bord de D on observe un périmètre de neurones particuliérement inhibés.

Voir l'appendice 4.

III - CONCLUSION

Ce qui est intéressant dans le modèle étudié c'est que en renforçant l'inhibition, on brise l'inhibition latérale et on crée des bandes ou moirures de neurones actifs et inhibés en alternance.

Ces bandes alternées des tissus neuronaux que l'on observe dans de nombreux contextes sont donc la conséquence de l'inhibition et non de l'excitation de certains neurones.

Ces phénomènes s'apparentent à ce qui se produit lors de la formation des cristaux : ce sont les contraintes (pression, volume fixe, etc...) qui aboutissent à la formation de cristaux réguliers et de dispositions périodiques.

Les références de cette partie sont les mêmes que celles de la première partie.

APPENDICE 1 - CAS DE DEUX NEURONES

Le neurone 1 est excité

<u>Loi</u> F <u>uniforme</u>

			Intervalles inter-s théorie	s moyens pikes ques	Intervalle inter-spike et variance	es moyens es observés es entre ()	Fréquence observées unités de	s moyennes s 100 temps	Corr. des fréquences
E(\$_1)	^{E(\$} €2) 0						1	
3 3 3 3 3	6 6 6 6 6	0 1 2 3 10	3 3.4 3.5 3	6 8.5 14 ∞	2.9(2.0) 3.2(3.1) 3.1(3.5) 2.9(2.0) X1→∞	$5.6(9.9)7.6(24.3)14.3(141)X2 \Rightarrow \infty5.7(10.7)$	34.5 31.1 32.5	17.7 13.1 6.9	0.0 -0.4 -0.8
5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10	0 1 2 3 4 5 15	5 5.4 5.75 5.85 5.66 5	10 12.25 15.3 20.5 34 ∞	$\begin{array}{c} 4.8(6.6) \\ 5.1(9.0) \\ 5.4(11.2) \\ 5.4(13.2) \\ 5.5(15.9) \\ 4.8(7.0) \\ X1 \rightarrow \infty \end{array}$	$\begin{array}{c} 9.9(32.5)\\ 12.3(46.5)\\ 14.6(95.0)\\ 20.7(256)\\ 27.8(1269)\\ X2 \rightarrow \infty\\ 9.9(31.3) \end{array}$	20.7 19.5 18.5 18.5 18.0	10.1 8.1 6.8 4.8 3.5	0.1 -0.3 -0.4 -0.8 -0.8
5 5 5 5	15 15 15 15	3 4 5 25	5.5 5.36 5	33 59 8	5.1(10.1) 5.1(10.0) 4.8(7.02) 4.8(7.02)	35.4(629) 59.3(4106) $X2 \rightarrow \infty$ $X2 \rightarrow \infty$	19.4 19.6	2.8 1.6	-0.7 -0.8

<u>Loi</u> F <u>exponentielle</u>

3 3 3 3 3 3 3 3 3 3 3	6 6 6 6 6 6 6 6	0 1 2 3 4 10	3.4 3.5 3	6 8.5 14 ∞	3.0(5) 3.4(8.5) 3.6(12.5) 3.3(10.3) 3.1(5.8) X1 ≯∞	$\begin{array}{c} 6.5(29.6) \\ 8.4(52.3) \\ 11.8(245) \\ 38.5(11296) \\ X2 \Rightarrow \\ 6.4 \end{array}$	33.3 29.8 27.9 30.5	15.1 11.8 8.3 1.5	0.1 -0.5 -0.8 -0.8
ភ្ល ភ្ល ភ្ល ភ្ល ភ្ល ភ្ល ភ្ល ភ្ល ភ្ល ភ្ល	11 11 11 11 11 11 11	0 1 2 3 4 5 6	5 5.4 5.6 5.75 5.6 5	11 13.5 17 23 39 ∞	5.1(19.8) 5.4(26.1) 5.4(25.6) 5.7(35.5) 5.8(38.2) 5.8(46.5) 5.3(20.8)	$11.2(91.4) 13.7(120.4) 18.6(338) 21.5(695) 31.1(2172) 41.5(9333) X2 \Rightarrow \infty$	19.6 18.5 18.4 17.6 17.3 17.0	8.9 7.3 5.3 4.6 3.1 1.7	0.0 -0.4 -0.4 -0.7 -0.7 -0.8
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	16 16 16 16 16	0 1 2 3 4 10	5.3 5.4 5.5 5.4 5.5	16 19.7 25.3 33 56 ∞	5.1(20.4) 5.6(23.6) 5.5(23.22) 5.5(25.7) 5.5(28.7) 5.3(21.7)	$15.8(181) 17.6(328) 25.3(704) 33.7(1110) 75.1(5161) X2 \Rightarrow \infty$	38.9 17.7 36.6 36.1 37.5	12.4 5.7 7.8 5.8 2.7	-0.1 -0.3 -0.7 -0.8 -0.8

 $E(\mathcal{F}_1) E(\mathcal{F}_2) \theta$

APPENDICE 2 - CAS DE n² NEURONES

REGIME STATIONNAIRE

On donne quelques exemples de processus convergents pour $\theta < \min \frac{E(\mathfrak{F}_{ij})}{|\mathcal{V}|}$: état, fréquences, intervalles inter-spikes moyens des neurones d'un réseau, auto-corrélations et inter-corrélations de quelques neurones observés.

On peut faire les mêmes commentaires que dans l'appendice 4 de la partie I : corrélations négatives entre neurones voisins augmentant en valeur absolue avec θ , auto-corrélations faibles.

Les zones grises représentent les neurones totalement inhibés. Les zones blanches représentent les neurones actifs et excités. Les petits cercles marquent les neurones actifs ayant une activité propre normale. EXEMPLE : 6 VOISINS -UNE PLAQUE DE NEURONES EXCITES REGIME STATIONNAIRE

Le réseau est de taille 20 * 20

La forme du voisinage à 6 voisins est: x x x . x x x

La loi propre des intervalles inter-spikes est uniforme

Le paramètre d'inhibition téta vaut 4

L'intervalle inter-spikes moyen propre des neurones non excités est 60

L'intervalle inter-spikes moyen propre des neurones excités est 30

La plaque excitée est définie par: 6 < i < 15, 6 < j < 15.

Etat du système au bout de 4000 itérations

105 11 79 38 13 37 66 87 50 18 44 85 105 5 5 70 2 60 14 108 70 9 59 24 67 97 69 74 30 44 54 96 34 35 9 26 37 8 94 9 14 76 68 54 6 30 13 88 90 12 51 34 33 8 30 66 26 11 21 36 38 34 91 34 18 89 52 12 26 83 28 21	12 14 68 40 23 79 96 9 99 28 5 7
14 108 70 9 59 24 67 97 69 74 30 44 54 96 34 35 9 26 37 8 94 9 14 76 68 54 6 30 13 88 90 12 51 34 33 8 30 66 26 11 21 36 38 34 91 34 18 89 52 12 26 83 28 21	68 40 23 79 96 9 99 28 5 7
37 8 94 9 14 76 68 54 6 30 13 88 90 12 51 34 33 8 30 66 26 11 21 36 38 34 91 34 18 89 52 12 26 83 28 21	23 79 96 9 99 28 5 7
30 66 26 11 21 36 38 34 91 34 18 89 52 12 26 83 28 21	96 9 99 28 5 7
	99 28 5 7
33 6 79 48 105 51 7 61 25 7 22 72 54 26 65 3 14 7	57
85 66 8 28 41 30 29 34 6 57 6 14 30 31 27 61 12 38	
10 26 45 99 20 22 4 5 14 13 1 10 3 3 25 9 29 89	41 51
50 27 11 19 17 18 29 3 48 12 2 2 10 12 18 6 31 3	37 38
28 53 64 26 6 15 20 23 19 57 11 12 11 20 21 22 1 41	24 56
36 34 53 7 70 75 39 2 13 14 21 11 6 10 29 6 12 29	20 14
14 35 82 60 44 3 25 17 33 38 25 38 35 5 44 10 39 9	36 30
18 46 2 42 10 44 46 49 13 25 36 6 38 13 46 19 17 27	87 62
18 67 16 31 24 55 9 26 43 12 8 12 10 27 62 25 39 46	24 44
22 90 35 25 17 25 61 59 76 58 2 80 25 17 112 21 76 25	16 20
22 88 26 62 87 33 60 67 84 1 53 43 18 6 35 21 42 37	53 38
73 40 28 10 13 80 69 72 24 20 30 116 114 31 37 42 45 61	29 64
37 45 79 2 39 33 8 68 1 7 47 4 44 6 96 16 51 80	18 45
18 48 20 7 2 62 77 9 53 85 60 17 22 112 48 16 76 20	1 8
49 40 13 42 43 72 11 3 50 27 71 53 20 24 57 60 25 44	17 3

Tous les neurones sont actifs.

Les neurones observés sont marqués

000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000
000000
000000
000000
000000
000000
000000
000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000

••••••••••	
· · · · · · · · · · · · • • • • • • • •	
••••••••••••••	

Intervalles moyens inter-spikes

Coordonnées	Intervalle	Variance
(10.10)	58.0	1333.40
(11,11)	55.3	1131.37
(10,11)	52.4	1292.92
(12,12)	53.1	1180.19
(10,12)	47.4	1123.16
(5,5)	88.1	2395.73
(5,6)	91.2	2997.99
(6, 6)	94.3	2211.87
	78.8	2625.15
(7,6)	85.4	3208.38

10 premières autocorrélations des neurones

Coordonnées	Autocorrélations

(10.10)	.25	.09	.01	.08	.23	. 38	.07	10	01	.19
(11 11)	06	.06	.08	.09	35	.15	17	07	.02	03
(10 11)	.14	07	11	.37	.21	06	02	.11	.17	05
(12, 12)	.03	.05	.01	.02	.13	09	02	21	14	30
10 12	30	.19	12	27	.08	31	.01	11	.03	.08
(10,12)	00	- 08	- 15	.01	.64	.11	.07	17	14	.22
		04	02	.08	.17	14	.06	.08	47	34
	_ 08	_ 20	- 15	16	.01	02	33	52	26	30
	00	20	_ 05	06	_ 22	- 16	06	02	26	07
(7.6)	04	03	.07	12	.02	41	19	44	26	.11
•										

Nombre moyen de spikes par fenêtre de 100

Coordonnées	Nombre	Variance
(10,10)	1.7	1.05
(11,11)	1.8	.90
(10,11)	1.9	.92
(12,12)	1.9	1.07
(10.12)	2.1	1.37
(5,5)	1.1	.52
	1.1	.90
(6, 6)	1.1	.45
	1.2	.69
(7,6)	1.1	.58

Matrice d'intercorrélations des neurones observés

(10,10) (11,11) (12,11) (12,12) (10,12) (5,5) (5,6) (6,6) (6,7) (7,6)	1.00 11 39 08 30 .20 .00 .02 17 17	1.00 .03 20 04 21 .09 21 .13 08	1.00 10 20 05 .11 21 .15 05	1.00 .05 05 07 .05 .10 .02	1.00 11 31 11 .05 .18	1.00 .02 13 .42 .07	1.00 05 .15 34	1.00 28 .04	1.00	1.00
(. , ,	(10,10)	(11,11)	(10,11)	(12,12)	(10,12)	(5,5)	(5,6)	(6,6)	(6,7)	(7,6)

APPENDICE 3 - CAS DE n² NEURONES

1 SEUL NEURONE EXCITE

Seul le neurone central est excité, de loi \mathcal{F}_1 avec $E\mathcal{F}_1 < E\mathcal{F}$.

Ci-dessous on a représenté l'état du système (10 × 10) au bout de 4000 itérations, pour $EF_1 = 10$, EF = 30, et différentes formes de voisinages.

Dans chaque cas on prend $\theta_0 < \theta < \theta_1$, puis $\theta > \theta_1$.

	4 voisins		6 voisins		8 voisins
θ = 5		$\theta = 4$		θ = 3	
θ = 20		θ =20		θ ≕ 20	
				·	
	12 voisins		14 voisins		24 voisins
θ = 2		θ - 2		θ = 2	
θ = 20		θ =20		θ =20	

Les zones grises représentent les neurones totalement inhibés. Les zones blanches représentent les neurones actifs et excités. Les petits cercles marquent les neurones actifs ayant une activité propre normale.

APPENDICE 4 - CAS DE n² NEURONES

UNE PLAQUE DE NEURONES EXCITES

On excite une "plaque" de neurones en les réinitialisant avec la loi ${\mathcal F}_1,$ telle que ${\rm E}{\mathcal F}_1<{\rm E}{\mathcal F}$.

Ci-dessous on a représenté l'état du système (20 × 20) au bout de 4000 itérations, pour $EF_1 = 10$, EF = 30 et différentes formes de voisinages.

On prend $\theta_0 < \theta < \theta_1$ puis $\theta > \theta_1$. Plaque excitée : 7 $\leq i \leq 14$, 7 $\leq j \leq 14$.

4 voisins	6 voisins	8 voisins
θ=5	θ=4	θ=3
0-20	0.00	

Les zones grises représentent les neurones totalement inhibés. Les zones blanches représentent les neurones actifs et excités. Les petits cercles marquent les neurones actifs ayant une activité propre normale.

14

	14 voisins	24 voisins
θ=2	θ=2	θ=2
θ= 20	θ = 20	θ = 20

Les zones grises représentent les neurones totalement inhibés. Les zones blanches représentent les neurones actifs et excités. Les petits cercles marquent les neurones actifs ayant une activité propre normale. On excite une "plaque" de neurones en les réinitialisant avec la loi ${\mathcal F}_1,$ telle que ${\rm E}{\mathcal F}_1<{\rm E}{\mathcal F}$.

Ci-dessous on a représenté l'état du système (20 × 20) au bout de 4000 itérations, pour $E\mathcal{F}_1 = 10$, $E\mathcal{F} = 30$ et différentes formes de voisinages.

On prend $\theta_0 < \theta < \theta_1$ puis $\theta > \theta_1$. Lignes excitées : i=10,11, 5<j<16

4 voisins	6 voisins	8 voisins
θ = 5	θ=4	θ=3
θ=20	θ = 20	θ=20

Les zones grises représentent les neurones totalement inhibés. . Les zones blanches représentent les neurones actifs et excités. Les petits cercles marquent les neurones actifs ayant une activité propre normale.

12 voisins	14 voisins	24 voisins
θ=2	θ=2	θ=2
θ=20	θ=20	θ= 20

Les zones grises représentent les neurones totalement inhibés. Les zones blanches représentent les neurones actifs et excités. Les petits cercles marquent les neurones actifs ayant une activité propre normale.