Sur la limite en loi et les fluctuations de certains modèles dynamiques d'interaction
Thèses d'Orsay, no. 148 (1984) , 196 p.
@phdthesis{BJHTUP11_1984__0148__P0_0,
     author = {L\'eonard, Christian},
     title = {Sur la limite en loi et les fluctuations de certains mod\`eles dynamiques d'interaction},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {148},
     year = {1984},
     language = {fr},
     url = {http://www.numdam.org/item/BJHTUP11_1984__0148__P0_0/}
}
TY  - BOOK
AU  - Léonard, Christian
TI  - Sur la limite en loi et les fluctuations de certains modèles dynamiques d'interaction
T3  - Thèses d'Orsay
PY  - 1984
IS  - 148
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_1984__0148__P0_0/
LA  - fr
ID  - BJHTUP11_1984__0148__P0_0
ER  - 
%0 Book
%A Léonard, Christian
%T Sur la limite en loi et les fluctuations de certains modèles dynamiques d'interaction
%S Thèses d'Orsay
%D 1984
%N 148
%I Université de Paris-Sud Centre d'Orsay
%U http://www.numdam.org/item/BJHTUP11_1984__0148__P0_0/
%G fr
%F BJHTUP11_1984__0148__P0_0
Léonard, Christian. Sur la limite en loi et les fluctuations de certains modèles dynamiques d'interaction. Thèses d'Orsay, no. 148 (1984), 196 p. http://numdam.org/item/BJHTUP11_1984__0148__P0_0/

[Ald] D.J. Aldous. Exchangeability and related topics. Ecole d'été de Saint-Flour. 1983 (à paraitre dans LNM) | MR | Zbl

[Aze] R. Azencott (1980) Grandes Déviations et Applications Statistiques. Lecture Notes in Math. 774. Springer-Verlag. | MR | Zbl

[Bou] N. Bourbaki. Intégration. Chapitre 9. Hermann, Paris, 1969. | Zbl

[Bre] J. Bretagnolle. Formule de Chernoff pour les lois empiriques de variables à valeurs dans des espaces généraux. Grandes déviations et applications statistiques. Astérisque 68. | Zbl | Numdam

[Dac] J. Dacunha-Castelle. Formule de Chernoff pour une suite de variables réelles. Grandes déviations et applications statistiques. Astérisque 68. | Numdam | Zbl

[Daw] D.A. Dawson (1983) Critical dynamics and fluctuations for a mean-field model of cooperative behavior. Journal of statistical physics. Vol. 31, no. 1. | MR | DOI

[Dob] R.L. Dobrushin (1968) The problem of uniqueness of a Gibbsian Random Field and the problem of phase transitions. Functional Analysis and its applications. 2 (pp. 302-312). | Zbl | MR | DOI

[Dyn] E.B. Dynkin (1967) Markov Processes I. Springer-Verlag. | MR

[Dzw] R.C. Desai & R. Zwanzig (1978) Statistical mechanics of a nonlinear stochastic model. Journal of statistical physics. Vol. 19, no. 1. | MR | DOI

[EN1] R.S. Ellis & C.M. Newman (1978) Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z.W.v.G. 44, 117-139. | MR | Zbl

[EN2] R.S. Ellis & C.M. Newman (1978) Necessary and sufficient conditions for the G.H.S. inequality with applications to analysis and probability. Transactions of the American Mathematical Society. Vol. 237, March 1978. | MR | Zbl

[Fou] J.P. Fouque (1983) La convergence en loi pour les processus à valeurs dans un espace nucléaire (à paraitre). | MR | Zbl | Numdam

[Gro] L. Gross (1980) Thermodynamics, statistical mechanics and random fields. Lecture Notes in Mathematics 929. Springer-Verlag. | MR | Zbl

[GSk] I.I. Gihmann & A.V. Skorohod (1972) Stochastic differential equations. Springer-Verlag. | MR

[HSt] R.A. Holley & D.W. Stroock (1978) Generalized Ornstein-Uhlenbeck processes and infinite particle branching brownian motions. Publ. RIMS, Kyoto Univ. 14, 741-788. | MR | Zbl | DOI

[JoM] A. Joffe & M. Métivier (1984) Weak convergence of sequences of semimartingales with applications to multiple branching processes (à paraitre) | MR | Zbl

[Kac] M. Kac (1958) Probability and related topics in the physical sciences (New York : Interscience, 1958). | MR

[Kal] O. Kallenberg (1973) Canonical representations and convergence criteria for processes with interchangeable increments. Z.W.v.G. 27, pp. 23-36. | MR | Zbl

[MKl] H.P. Mckean (1966) A class of Markov processes associated with nonlinear parabolic equation. Proc. N.A.S. uSA. 56 pp. 1907-1911. | MR | Zbl | DOI

[MK2] H.P. Mckean (1967) Propagation of chaos for a class of nonlinear parabolic equations. Lecture series in differential equations. Vol. 7, 41-57, Catholic University, Washington D.C. | MR

[Nev] J. Neveu (1957) Théorie des semi-groupes de Markov. Thèse d'état. University of California. Publications in Statistics.

[Oel] K. Oelschläger (1984) A martingale approach to the law of large numbers for weakly interacting stochastic processes. The Annals of Probability. Vol. 12, no. 2, pp. 458-479. | MR | Zbl | DOI

[Pri] P. Priouret (1973) Processus de diffusion et équations différentielles stochastiques. Lecture Notes in Mathematics. 390. Springer-Verlag. | MR | Zbl

[Roc] R.T. Rockafellar (1970) Convex Analysis. Princeton University Press. | MR | Zbl | DOI

[Spi] F. Spitzer (1973) INtroduction aux processus de Markov à paramètres dans ν . Lecture Notes in Mathematics. 390. Springer-Verlag. | MR | Zbl

[Stv] D.W. Strook & S.R.S. Varadhan (1979). Multidimensional diffusion processes. Springer-Verlag. | MR | Zbl

[Szn] A.S. Sznitman (1983) An example of non-linear diffusion process with normal reflecting boundary conditions and some related limit theorems (à paraitre).

[TaH] H. Tanaka & M. Hitsuda (1981) Central limit theorem for a simple diffusion model of interacting particles. Hiroshima Math. Journal. 11, 415-423. | MR | Zbl | DOI

[Tan] H. Tanaka (1982) Limit theorems for certain diffusion processes with interaction, preprint. | MR | Zbl

[Yor] M. Yor (1974) Existence et unicité de diffusions à valeurs dans un espace de Hilbert. Annales de l'IHP, Section B, Vol. X, no. 1, p 55-88. | MR | Zbl | Numdam

[Yos] K. Yosida (1965) Functional Analysis. Springer-Verlag. | MR