Equisingularité et conditions de Whitney
Thèses d'Orsay, no. 97 (1980) , 154 p.
@phdthesis{BJHTUP11_1980__0097__P0_0,
     author = {Trotman, David},
     title = {Equisingularit\'e et conditions de {Whitney}},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e Paris-Sud Centre d'Orsay},
     number = {97},
     year = {1980},
     language = {fr},
     url = {http://www.numdam.org/item/BJHTUP11_1980__0097__P0_0/}
}
TY  - BOOK
AU  - Trotman, David
TI  - Equisingularité et conditions de Whitney
T3  - Thèses d'Orsay
PY  - 1980
IS  - 97
PB  - Université Paris-Sud Centre d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_1980__0097__P0_0/
LA  - fr
ID  - BJHTUP11_1980__0097__P0_0
ER  - 
%0 Book
%A Trotman, David
%T Equisingularité et conditions de Whitney
%S Thèses d'Orsay
%D 1980
%N 97
%I Université Paris-Sud Centre d'Orsay
%U http://www.numdam.org/item/BJHTUP11_1980__0097__P0_0/
%G fr
%F BJHTUP11_1980__0097__P0_0
Trotman, David. Equisingularité et conditions de Whitney. Thèses d'Orsay, no. 97 (1980), 154 p. http://numdam.org/item/BJHTUP11_1980__0097__P0_0/

1. J. Briancon & J.-P. Speder, Les conditions de Whitney impliquent μ * -constant, Annales de l'institut Fourier de Grenoble, 26 (2). p. 153-163, 1976. | Zbl | Numdam | DOI

2. E. A. Feldman, The geometry of immersions. I, Transactions of the A. M. S. 120, p. 185-224, 1965. | Zbl | DOI

3. C. G. Gibson, K. Wirthmuller, A.A. Du Plessis, E. J. N. Looijenga, Topological stability of smooth mappings, Springer Lecture Notes 552, Berlin, 1976. | Zbl

4. H. A. Hamm et Lê Dũng Tràng, Un théorème de Zariski du type de Lefschetz, Annales de l''Ecole Normale Supérieure, 4ème série, tome 6, p. 317-366, 1973. | Zbl | Numdam | DOI

5. H. Hironaka, Normal cones in analytic Whitney stratifications, Publications Mathématiques de l'I.H.E.S. 36, 1969. | Zbl | Numdam

6. H. Hironaka, Subanalytic sets, in Number Theory, Algebraic Geometry and Commutative Algebra, volume in honour of Y. Akizuki, Kinokuniya, Tokyo, p. 453-493, 1973. | Zbl

7. M. Hirsch, Differential topology, Springer-Verlag, New York, 1976. | Zbl | DOI

8. A. Kambouchner & D. J. A. Trotman, Whitney (a)-faults which are hard to detect, à paraître. | Zbl | Numdam | DOI

9. T.-C. Kuo, The ratio test for analytic Whitney stratifications, Liverpool singularities symposium I, Springer lecture notes 192 Berlin, p. 141-149, 1971. | Zbl | MR | DOI

10. T.-C. Kuo, On Thom-Whitney stratification theory, Math. Annalen, 234, p. 97-107, 1978. | MR | Zbl | DOI

11. S. Lojasiewicz, Ensembles semi-analytiques, I.H.E.S notes, 1965.

12. R. Macpherson, Characteristic classes for singular varieties, 1976. | MR

13. J. Mather, Notes on topological stability, Harvard University, 1970. | Zbl

14. J. Mather, Stratifications and mappings, in Dynamical Systems (edited by M. M. Peixoto), Academic Press, p. 195-223, 1971. | MR | Zbl

15. C. Morlet, Le lemme de Thom et les théorèmes de plongement de Whitney I : les topologies des espaces d'applications, Séminaire Henri Cartan (Topologie différentielle), 1961-62. | MR | Zbl | Numdam

16. M.-H. Schwartz, Classes caractéristiques définies par une stratification d'une variété analytique complexe, Comptes Rendus de l'Académie des Sciences, tome 260, p. 3262-3264, 3535-3537, 1965. | MR | Zbl

17. J.-P. Speder, Equisingularité et conditions de Whitney, Thèse d'Etat, Université de Nice, 1976. | MR | Zbl

18. B. Teissier, Cycles évanescents, sections planes, et conditions de Whitney, Singularités à Cargèse, Astérisque 7-8, Société Mathématique de France, p. 285-362, 1973. | MR | Zbl | Numdam

19. B. Teissier, Introduction to equisingularity problems, A. M. S. Algebraic geometry symposium, Arcata 1974, Providence, Rhode Island, p. 593-632, 1975. | MR | Zbl | DOI

20. R. Thom, La stabilité topologique des applications polynomiales, l'Enseignement Math., tome VIII, p. 24-33, 1962. | MR | Zbl

21. R. Thom, Local topological properties of differentiable mappings, Differential analysis, Oxford University Press, London, p. 191-202, 1964. | MR | Zbl

22. R. Thom, Propriétés différentielles locales des ensembles analytiques, Séminaire Bourbaki no. 281, 1964-65. | Zbl | Numdam | MR

23. R. Thom, Ensembles et morphismes stratifiés, Bulletin of the A. M. S., 75, p. 240-284, 1969. | Zbl | MR | DOI

24. D. J. A. Trotman, A transversality property weaker than Whitney (a)-regularity, Bulletin of the L. M. S., 8, p. 225-228, 1976. | MR | Zbl

25. D. J. A. Trotman, Geometric versions of Whitney regularity, Math. Proc. Camb. Phil. Soc. 80, p. 99-101, 1976. | Zbl | MR

26. D. J. A. Trotman, Counterexamples in stratification theory : two discordant horns, Real and complex singularities, ed. P. Holm, Proceedings of the Nordic Summer School/Symposium, Oslo 1976, Sijthoff & Noordhoff, p. 679-686, 1977. | Zbl | MR

27. D. J. A. Trotman, Whitney stratifications : faults and detectors, Thesis, Warwick University, 1977. | MR

28. D. J. A. Trotman, Stability of transversality to a stratification implies Whitney (a)-regularity, à paraître. | Zbl

29. D. J. A. Trotman, Geometric versions of Whitney regularity for smooth stratifications, à paraître. | Zbl | Numdam | MR

30. D. J. A. Trotman, Transverse transversals and homeomorphic transversals, à paraître. | Zbl

31. J.-L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Inventiones Mathematicae 36, p. 295-312, 1976. | Zbl | MR | DOI

32. C. T. C. Wall, Regular stratifications, Dynamical systems - Warwick 1974. Springer lecture notes 468, p. 332-344, 1975. | Zbl | MR

33. C. T. C. Wall, Geometric properties of generic differentiable manifolds, Geometry and topology, Rio de Janeiro, July 1976, Springer Lecture Notes 597, Berlin, p. 707-774, 1977. | Zbl | MR

34. H. Whitney, Elementary structure of real algebraic varieties, Annals of Math. 66, p. 545-556, 1957. | MR | Zbl | DOI

35. H. Whitney, Local properties of analytic varieties, Diff. and Comb. Topology (ed. S. Cairns), Princeton, p. 205-244, 1965. | MR | Zbl

36. H. Whitney, Tangents to an analytic variety, Annals of Math. 81, p. 496-549, 1965. | MR | Zbl | DOI

1. Bass, D. W. Topological classification of endomorphisms of line bundles, Warwick University preprint, 1975.

2. Briançon, J. & Speder, J.-P. La trivialité topologique n'implique pas les conditions de Whitney, C. R. Acad. Sci. Paris, tome 280. p. 365-367, 1975. | MR | Zbl

3. Briançon, J. & Speder, J.-P. Les conditions de Whitney impliquent µ*-constant, Annales de l'Institut Fourier de Grenoble. 26 (2). p. 153-163, 1976. | MR | Zbl | Numdam | DOI

4. Chenciner, A. Hanoi notes, 1975.

5. Feldman, E. A. The geometry of immersions. I, Trans. Amer. Math. Soc. 120, p. 185-224, 1965. | MR | Zbl | DOI

6. Gibson, C. G. Construction of canonical stratifications, in Topological stability of smooth mappings, by C. G. Gibson et al., Springer lecture notes 552, Berlin, p. 8-34, 1976.

7. Gibson, C. G., Wirthmüller, K., Du Plessis, A. A., Looijenga, E. J. N., Topological stability of smooth mappings, Springer lecture notes 552, Berlin, 1976. | MR | Zbl

8. Golubitsky, M. & Guillemin, V., Stable mappings and their singularities, Springer-Verlag, New York, 1974.

9. Hamm, H. A. & Lê Dũng Tràng, Un théoreme de Zariski du type de Lefschetz, Ann. Sci. Ec. Norm. Sup. 4ème série, t. 6, p. 317-366, 1973. | Zbl | Numdam | DOI

10. Hardt, R., Stratification of real analytic mappings and images, Inventiones 28, p. 193-208, 1975. | Zbl | DOI

11. Hironaka, H., Normal cones in analytic Whitney stratifications, Publ. Math. I. H. E. S. 36, 1969. | Zbl | Numdam | DOI

12. Hironaka, H. Subanalytic sets, in Number Theory, Algebraic Geometry and Commutative Algebra, volume in honour of Y. Akizuki, Kinokuniya, Tokyo, p. 453-493, 1973. | Zbl

13. Hirsch, M. Differential topology, Springer-Verlag, New York, 1976. | MR | Zbl | DOI

14. Kuo, T.-C. The ratio test for analytic Whitney stratifications, Liverpool singularities symposium I, Springer Lecture Notes 192, Berlin, p. 141-149, 1971. | MR | Zbl | DOI

15. Kuo, T.-C. On Thom-Whitney stratification theory, preprint, 1976. | MR | Zbl

16. Lê Dũng Tràng & Saito, K. La constance du nombre de Milnor donne des bonnes stratifications, C. R. Acad. Sci. Paris, t. 277 (22 Oct. 1973). p. 793-795, 1973. | MR | Zbl

17. Lê Dũng Tràng & Ramanujam, C. P. The invariance of Milnor's number implies the invariance of topological type, Amer. J. Math. 98, p. 67-78, 1976. | MR | Zbl | DOI

18. Lojasiewicz, S. Ensembles semi-analytiques, I. H. E. S. notes, 1965.

19. Macpherson, R. D. Chern classes for singular algebraic varieties, Ann. of Math. 100, p. 423-432, 1974. | Zbl | MR | DOI

20. Macpherson, R. Characteristic classes for singular varieties, preprint, 1976. | MR

21. Mather, J. Notes on topological stability, Harvard University, 1970. | Zbl

22. Mather, J. Stratifications and mappings, in Dynamical Systems (ed. M. M. Peixoto), Academic Press, p. 195-223, 1971. | MR | Zbl

23. Milnor, J. Singular points of complex hypersurfaces, Ann. of Math. Studies 61, Princeton, 1968. | Zbl | MR

24. Morlet, C. Le lemme de Thom et les théorèmes de plongement de Whitney I : les topologies des espaces d'applications, Séminaire Henri Cartan (Topologie différentielle), 4, 1961-62. | Numdam | Zbl | MR

25. Pham, F. & Teissier, B. Fractions lipschitziennes d'une algebre analytique complexe et saturation de Zariski, Ecole Polytechnique notes, 1969. | MR

26. Schwartz, M.-H. Classes caractéristiques définies par une stratification d'une variété analytique complexe, C. R. Acad. Sci. Paris, t. 260, p. 3262-3264, 3535-3537, 1965. | MR | Zbl

27. Schwartz, M.-H. Sections holomorphes des espaces lineaires et autres espaces, Lille I preprint, 1976.

28. Speder, J.-P. Equisingularité et conditions de Whitney, Amer. J. Math. 97 (3), p. 571-588, 1975. | Zbl | MR | DOI

29. Speder, J.-P. Equisinsularité et conditions de Whitney, Thèse d'Etat, Université de Nice, 1976. | MR | Zbl

30. Teissier, B. Cycles evanescents, sections planes, et conditions de Whitney, in Singularités à Cargèse, Astérisque 7-8, Société Mathématique de France, p. 285-362, 1973. | Zbl | Numdam | MR

31. Teissier, B. Introduction to equisingularity problems, A. M. S. Algebraic geometry symposium, Arcata 1974, Providence, Rhode Island, p. 593-632, 1975. | Zbl | MR | DOI

32. Teissier, B. Variétés polaires I : invariants polaires des singularités d'hypersurfaces, Inventiones Math. 40, p. 267-292, 1977. | MR | Zbl | DOI

33. Timourian, J. The invariance of Milnor's number implies topological triviality, Amer. J. Math. 99, p. 437-446, 1977. | Zbl | MR | DOI

34. Thom, R. Local topological properties of differentiable mappings, in Differential analysis, Oxford University Press, London, p. 191-202, 1964. | MR | Zbl

35. Thom, R. Propriétés différentielles locales des ensembles analytiques, Séminaire Bourbaki no. 281, 1964-65. | Zbl | Numdam

36. Thom, R. Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75, p. 240-284, 1969. | Zbl | MR | DOI

37. Trotman, D. J. A. A transversality property weaker than Whitney (a)- regularity, Bull. London Math. Soc., 8, p. 225-228, 1976. | Zbl | MR | DOI

38. Trotman, D. J. A. Geometric versions of Whitney regularity, Math. Proc.Camb. Phil. Soc. 80, p. 99-101, 1976. | MR | Zbl | DOI

39. Trotman, D. J. A. Counterexamples in stratification theory : two discordant horns, in Singularities of real and complex mappings, Proc. Nordic Summer School in Math., Oslo 1976, to appear, 1977. | MR | Zbl

40. Verdier, J.-L. Stratifications de Whitney et théorème de Bertini-Sard, Inventiones Math. 36, p. 295-312, 1976. | Zbl | MR | DOI

41. Wall, C. T. C. Stratified sets : a survey, Liverpool Singularities Symposium I, Springer lecture notes 192, Berlin, p. 133-140, 1971. | Zbl | DOI

42. Wall, C. T. C. Lectures on C stability and classification, Liverpool Singularities Symposium I, Springer Lecture Notes 192, Berlin, p. 178-206, 1971. | Zbl | MR | DOI

43. Wall, C. T. C. Regular stratifications, Dynamical Systems - Warwick 1974, Springer Lecture Notes 468, p. 332-344, 1975. | Zbl | MR

44. Wall, C. T. C. Geometric properties of generic differentiable manifolds, preprint, 1977. | MR | Zbl

45. Whitney, H. Local properties of analytic varieties, Diff. and comb. topology (ed. S. Cairns), Princeton, p. 205-244, 1965. | MR | Zbl

46. Whitney, H. Tangents to an analytic variety, Ann. of Math. 81, p. 496-549, 1965. | MR | Zbl | DOI

47. Whitney, H. Complex analytic varieties, Addison-Wesley, Reading, Mass., 1972. | Zbl | MR

48. Wirthmüller, K. Stratifications and flows, in Topological stability off smooth mappings. C. G. Gibson et al., Springer Lecture Notes 552, Berlin, p. 35-63, 1976. | DOI

49. Zariski, O. Contributions to the problem of equisingularity, C. I. M. E. Varenna 1969, Edizioni Cremonese Roma, 1970. | MR | Zbl

50. Zariski, O. Some open questions in the theory of singularities, Bull. Amer. Math. Soc. 77 (4). p. 481-491, 1971. | MR | Zbl | DOI

51. Damon, J. Topological stability in the nice dimensions, preprint, 1977. | MR | Zbl

52. Kuiper, N.H. 𝐂 1 -equivalence of functions near isolated oritical points, Symposium on infinite-dimensional topology. Baton Rouge 1967. edited by R. D. Anderson, Annals Study 69, Princeton, 1972. | Zbl | MR

53. May, R. D. Transversality properties of topologically stable mappings, Harvard doctoral thesis, 1973. | MR

54. Munkres, J. R. Elementary differential topology, Annals Study 54, Princeton, 1968. | Zbl | MR

55. Ostrowski, A. On the Morse-Kuiper theorem, Aequationes Math. 1, p. 66-76, 1968. | Zbl | MR | DOI

56. Takens, F. A note on sufficiency of jets, Inventiones Math. 13, p. 225-231, 1971 | Zbl | MR | DOI

57. Navarro Aznar, V. & Trotman, D. J. A. Whitney regularity and generic wings, to appear. | Zbl | Numdam | MR

58. Teissier, B. Variétés polaires locales et conditions de Whitney, C. R. Acad. Sci. Paris, 1980. | MR | Zbl

59. Trotman, D. J. A. Transverse transversals and homeomorphic transversals, to appear. | MR | Zbl

(1) Lojasiewicz, S. Ensembles semianalytiques (I.H.E.S. notes, 1965).

(2) Mather, J. N. Notes on topological stability (Harvard notes, 1970). | Zbl

(3) Trotman, D. J. A. A transversality property weaker than Whitney (a)-regularity. Bull. London Math. Soc. (to appear). | MR | Zbl

(4) Wall, C. T. C. Regular stratifications. Dynamical Systems-Warwick 1974 (Springer Lecture Notes 468 (1975), Berlin), 332-344. | Zbl | MR

1. J. Briançon et J.-P. Speder, Les conditions de Whitney impliquent μ * -constant, Ann. Inst. Fourier (Grenoble), 26 (2) (1976), 153-163. | Zbl | Numdam | MR | DOI

2. H. Hironaka, Subanalytic sets, in Number Theory, Algebraic Geometry and Commutative Algebra, volume in honour of Y. Akizuki, pp. 453-493, Kinokuniya, Tokyo, 1973. | Zbl | MR

3. T.-C. Kuo, The ratio test for analytic Whitney stratifications, Liverpool Singularities Symposium I (Lecture Notes in Mathematics 192), pp. 141-149, Springer-Verlag, Berlin - Heidelberg. New York, 1971. | Zbl | MR | DOI

4. T.-C. Kuo, Private communication, 1977.

5. B. Teissier, Variétés polaires I. Invariants polaires des singularités d'hypersurfaces, Invent. Math. 40 (1977), 267-292. | MR | Zbl | DOI

6. D.J.A. Trotman, Counterexamples in stratification theory : two discordant horns, in Real and complex singularities, Proceedings of the Nordic Summer School/Symposium, Oslo 1976 (ed. P. Holm), pp. 679-686, Sijthoff and Noordhoff, Groningen, 1977. | MR | Zbl

7. D. J. A. Trotman, Whitney stratifications : faults and detectors, Thesis, University of Warwick, 1977. | MR

8. J.-L. Verdier, Stratifications de Whitney et Théorème de Bertini-Sard, Invent. Math. 36 (1976), 295-312. | Zbl | MR | DOI

9. H. Whitney, Tangents to an analytic variety, Ann. of Math. 81 (1965), 496-549. | MR | Zbl | DOI

1. N. A'Campo, La fonction zêta d'une monodromie, Comm. Math. Helv. 50 (1975), 233-248. | Zbl | DOI

2. V.I. Arnol'D, Classification of unimodal critical points of functions, Functional Analysis 7 (3). 1973, 75-76. | Zbl

3. J. Briançon, J.-P. Speder, La trivialité topologique n'implique pas les conditions de Whitney, C. R. Acad. Sci. Paris, 280, 1975, 365-367. | Zbl

4. J. Briancon, J.-P. Speder, Les conditions de Whitney impliquent μ * -constant, Ann. Inst. Fourier de Grenoble 26 (2), 1976, 153-163. | Zbl | Numdam | DOI

5. J. Briancon, J.-P. Speder, Thèses, Université de Nice, 1976.

6. R. Ephraim, C1 Preservation of Multiplicity, Duke Math. Journal 43 (4), 1976, 797-803. | Zbl | DOI

7. A. Gabrielov, A. Koushnirenko, Description of deformations of constant Milnor number of homogeneous functions, Functional Analysis 9 (4). 1975, 67-68. (Russian) | Zbl

8. H. C. King, Real analytic germs and their varieties at isolated singularities, Inventiones Math. 37, 1976, 193-199. | Zbl | DOI

9. H. C. King, Topological type of isolated critical points, Ann. Math. (2), 107, 1978, 385-397. | Zbl | DOI

10. Lê Dũng Tràng, C. P. Ramanujam, The invariance of Milnor's number implies the invariance of topologital type, Am. J. Math. 98, 1976, 67-78. | Zbl | DOI

11. Lê Dũng Tràng, K. Saito, La constance du nombre de Milnor donne des bonnes stratifications, C. R. Acad. Sci. Paris, 277, 1973, 793-795. | Zbl

12. S. Lefschetz, Topology, Chelsea, N. Y., 1956. | JFM

13. J. Mather, Notes on topological stability, Harvard, 1970. | Zbl

14. J. Milnor, Singular points of complex hypersurfaces, Annals of Math. Studies 61, Princeton, 1968. | Zbl

15. J. E. Reeve, A summary of results in the topological classification of plane algebroid singularities, Rendiconti Sem. Math. Torino, 14, 1954-55, 159-187. | Zbl

16. B. Teissier, Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse, Astérisque 7-8, 1973, 285-362. | Zbl | Numdam

17. B. Teissier, Introduction to equisingularity problems, A. M. S. Algebraic Geometry Symposium, Arcata 1974, Providence, Rhode Island, 1975, 593-632. | Zbl | DOI

18. R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75, 1969, 240-284. | Zbl | DOI

19. J. Timourian, The invariance of Milnor's number implies topological triviality, Amer. J. Math. 99, 1977, 437-446. | Zbl | DOI

20. D. J. A. Trotman, Multiplicity is a C1 invariant, Orsay preprint, March 1977.

21. O. Zariski, Some open questions in the theory of singularities, Bull. Amer. Math. Soc. 77 (4), 1971, 481-491. | Zbl | DOI

1. K. Brauner, Zur Geometrie der Funktionen zweier komplexen Veränderlichen, III, IV, Abh. Math. Sem. Hamburg. 6 (1928), 8-54.

2. R. Ephraim, C1 Preservation of Multiplicity, Duke Math. Journal 43 (4), 1976, 797-803 | Zbl | DOI

3. S. Lefschetz, Topology, Chelsea, New York, 1956.

4. S. Lojasiewicz, Triangulation of semi-analytic sets, Annali Scu. Norm. Sup. Pisa, So. Fis. Mat. Ser. 3, v. 18, fasc. 4 (1964), 449-474. | Zbl | Numdam

5. J. E. Reeve, A summary of results in the topological classification of plane algebroid singularities, Rendiconti Sem. Mat. Torino, 14 (1954-55), 159-187. | Zbl

6. H. Whitney, Complex Analytic Varieties, Addison-Wesley, Reading, Mass., 1972. | Zbl

7. O. Zariski, Some open questions in the theory of singularities, Bull. Amer. Math. Soc. 77 (4), (1971), 481-491. | Zbl | DOI