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ARITHMETIC GEOMETRY OF TORIC VARIETIES.
METRICS, MEASURES AND HEIGHTS

José Ignacio Burgos Gil, Patrice Philippon, Martin Sombra

Abstract. — We show that the height of a toric variety with respect to a toric metrized
line bundle can be expressed as the integral over a polytope of a certain adelic family
of concave functions. To state and prove this result, we study the Arakelov geometry
of toric varieties. In particular, we consider models over a discrete valuation ring,
metrized line bundles, and their associated measures and heights. We show that
these notions can be translated in terms of convex analysis, and are closely related to
objects like polyhedral complexes, concave functions, real Monge-Ampére measures,
and Legendre-Fenchel duality.

We also present a closed formula for the integral over a polytope of a function of one
variable composed with a linear form. This formula allows us to compute the height
of toric varieties with respect to some interesting metrics arising from polytopes. We
also compute the height of toric projective curves with respect to the Fubini-Study
metric and the height of some toric bundles.

Résumé (Géométrie arithmétique des variétés toriques. Métriques, mesures et hauteurs)

Nous montrons que la hauteur d’une variété torique relative & un fibré en droites
métrisé torique s’écrit comme l'intégrale sur un polytope d’une certaine famille adé-
lique de fonctions concaves. Afin d’énoncer et démontrer ce résultat, nous étudions
la géométrie d’Arakelov des variétés toriques. En particulier, nous considérons des
modéles de ces variétés sur des anneaux de valuation discréte, ainsi que les fibrés en
droites métrisés et leurs mesures et hauteurs associées. Nous montrons que ces no-
tions se traduisent en termes d’analyse convexe et sont intimement liées a des objets
tels que les complexes polyhédraux, les mesures de Monge-Ampére et la dualité de
Legendre-Fenchel.

Nous présentons également une formule close pour l'intégration sur un polytope
d’une fonction d’une variable composée avec une forme linéaire. Cette formule nous
permet de calculer la hauteur de variétés toriques relativement a plusieurs métriques
intéressantes, provenant de polytopes. Nous calculons aussi la hauteur des courbes
toriques projectives relativement a la métrique de Fubini-Study et la hauteur des
fibrés toriques.

© Astérisque 360, SMF 2014
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INTRODUCTION

Systems of polynomial equations appear in a wide variety of contexts in both pure
and applied mathematics. Systems arising from applications are not random but come
with a certain structure. When studying those systems, it is important to be able to
exploit that structure.

A relevant result in this direction is the Bernstein-Kusnirenko-Khovanskii theorem
[Kus76, Ber75]. Let K be a field with algebraic closure K. Let A C R™ be a
lattice polytope and fi,...,f, € K[tf‘l, ..., t51] a family of Laurent polynomials
whose Newton polytope is contained in A. The BKK theorem says that the number
(counting multiplicities) of isolated common zeros of fi,..., f, in (FX )™ is bounded
above by n! times the volume of A, with equality when fi,..., f, is generic among
the families of Laurent polynomials with Newton polytope contained in A. This
shows how a geometric problem (the counting of the number of solutions of a system
of equations) can be translated into a combinatorial, simpler one. It is commonly
used to predict when a given system of polynomial equations has a small number
of solutions. As such, it is a cornerstone of polynomial equation solving and has
motivated a large amount of work and results over the past 25 years, see for instance
[GKZ94, Stu02, PS08b| and the references therein.

A natural way to study polynomials with prescribed Newton polytope is to asso-
ciate to the polytope A a toric variety X over K equipped with an ample line bundle
L. The polytope conveys all the information about the pair (X, L). For instance, the
degree of X with respect to L is given by the formula

deg; (X) = nlvol(A),

where vol denotes the Lebesgue measure of R™. The Laurent polynomials f; can
be identified with global sections of L, and the BKK theorem can be deduced from
this formula. Indeed, there is a dictionary which allows to translate algebro-geometric
properties of toric varieties in terms of combinatorial properties of polytopes and fans,
and the degree formula above is one entry in this “toric dictionary”.



2 INTRODUCTION

The central motivation for this text is an arithmetic analogue for heights of this
formula, which is the theorem stated below. The height is a basic arithmetic invariant
of a proper variety over the field of rational numbers. Together with its degree, it
measures the amount of information needed to represent this variety, for instance,
via its Chow form. Hence, this invariant is also relevant in computational algebraic
geometry, see for instance [GHH197, AKS07, DKS12]. The notion of height of
varieties generalizes the height of points already considered by Siegel, Northcott, Weil
and others, it is an essential tool in Diophantine approximation and geometry.

For simplicity of the exposition, in this introduction we assume that the pair (X, L)
is defined over the field of rational numbers @Q, although in the rest of the book we
will work with more general adelic fields (Definition 1.5.1). Let g denote the set of
places of Q and let (0, ),eom, be a family of concave functions on A such that 9, =0
for all but a finite number of v. We will show that, to this data, one can associate
an adelic family of metrics (|| - ||,), on L. Write L = (L, (|| - ||»)») for the resulting
metrized line bundle.

Theorem. — The height of X with respect to L is given by

This theorem was announced in [BPS09] and we prove it in the present text. To
establish it in a wide generality, we have been led to study the Arakelov geometry of
toric varieties. In the course of our research, we have found that a large part of the
arithmetic geometry of toric varieties can be translated in terms of convex analysis. In
particular, we have added a number of new entries to the arithmetic geometry chapter
of the toric dictionary, including models of toric varieties over a discrete valuation
ring, metrized line bundles, and their associated measures and heights. These objects
are closely related to objects of convex analysis like polyhedral complexes, concave
functions, Monge-Ampere measures and Legendre-Fenchel duality.

These additions to the toric dictionary are very concrete and well-suited for com-
putations. In particular, they provide a new wealth of examples in Arakelov geometry
where constructions can be made explicit and properties tested. In relation with ex-
plicit computations in these examples, we present a closed formula for the integral
over a polytope of a function of one variable composed with a linear form. This
formula allows us to compute the height of toric varieties with respect to some in-
teresting metrics arising from polytopes. Some of these heights are related to the
average entropy of a simple random process on the polytope. We also compute the
height of toric projective curves with respect to the Fubini-Study metric and of some
toric bundles.

There are many other arithmetic invariants of toric varieties that may be studied
in terms of convex analysis. For instance, in the subsequent paper [BMPS12] we give
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INTRODUCTION 3

criteria for the positivity properties of a toric metrized line bundle and give a formula
for its arithmetic volume. In fact, we expect that the results of this text are just the
starting point of a program relating the arithmetic geometry of toric varieties and
convex analysis. In this direction, we plan to obtain an arithmetic analogue of the
BKK theorem bounding the height of the solutions of a system of Laurent polynomial
equations, refining previous results in [Mai00, Som05].

In the rest of this introduction, we will present the context and the contents of
our results. We will refer to the body of the text for the precise definitions and
statements.

Arakelov geometry provides a framework to define and study heights. We leave
for a moment the realm of toric varieties, and we consider a smooth projective va-
riety X over Q of dimension n equipped with a regular proper integral model X.
Let X(C) the analytic space over the complex numbers associated to X. The main
idea behind Arakelov geometry is that the pair (X, X(C)) should behave like a com-
pact variety of dimension n + 1 [Ara74]. Following this philosophy, Gillet and Soulé
have developed an arithmetic intersection theory [GS90a]. As an application of
this theory, one can introduce a very general and precise definition, with a geo-
metric flavor, of the height of a varlety [BGS94]. To the model X, one associates

the arithmetic intersection ring CH (X)g. This ring is equipped with a trace map

/- cH' " (x (X)g — R. Given a line bundle L on X, an arithmetic line bundle L is

a pair (£, - ||), where £ is a line bundle on X which is an integral model of L, and
I - || is a smooth metric on the analytification of L, invariant under complex conjuga-
tion. In this setting, the analogue of the first Chern class of L is the arithmetic first
Chern class ¢, (L) € CH (X)g. The height of X with respect to L is then defined

as
h(X) = /El(f)"“ €R.

This is the arithmetic analogue of the degree of X with respect to L. This formalism
has allowed to obtain arithmetic analogues of important results in algebraic geom-
etry like Bézout’s theorem, Riemann-Roch theorem, Lefschetz fixed point formula,
Hilbert-Samuel formula, etc.

This approach has two technical issues. In the first place, it only works for smooth
varieties and smooth metrics. In the second place, it depends on the existence of an
integral model, which puts the Archimedean and non-Archimedean places in differ-
ent footing. For the definition of heights, both issues were addressed by Zhang by
taking an adelic point of view and considering uniform limits of semipositive metrics
(Zha95Db].

Many natural metrics that arise when studying line bundles on toric varieties
are not smooth, but are particular cases of the metrics considered by Zhang. This
is the case for the canonical metric of a toric line bundle introduced by Batyrev
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4 INTRODUCTION

and Tschinkel [BT95], see Proposition-Definition 4.3.15. The associated canonical
height of subvarieties plays an important role in Diophantine approximation in tori,
in particular in the generalized Bogomolov and Lehmer problems, see for instance
[DP99, AVO09] and the references therein. Maillot has extended the arithmetic in-
tersection theory of Gillet and Soulé to this kind of metrics at the Archimedean place,
while maintaining the use of an integral model to handle the non-Archimedean places
[Mai00].

The adelic point of view of Zhang was developed by Gubler [Gub02, Gub03] and
by Chambert-Loir [Cha06]. From this point of view, the height is defined as a sum
of local contributions. In what follows we outline this procedure, that will be recalled
with more detail in Chapter 1.

For the local case, let K be either R, C, or a field complete with respect to a
nontrivial non-Archimedean absolute value. Let X be a proper variety over K and L
a line bundle on X, and consider their analytifications, respectively denoted by X"
and L*. In the Archimedean case, X" is the complex space X (C) (equipped with
an anti-linear involution, if K = R), whereas in the non-Archimedean case it is the
Berkovich space associated to X. The basic metrics that can be put on L®" are
the smooth metrics in the Archimedean case, and the algebraic metrics in the non-
Archimedean case, that is, the metrics induced by an integral model of a pair (X, L®¢)
with e > 1. There is a notion of semipositivity for smooth and for algebraic metrics,
and the uniform limit of such metrics leads to the notion of semipositive metric on
La". More generally, a metric on L*" is called DSP (for “difference of semipositive”)
if it is the quotient of two semipositive metrics.

Let L be a DSP metrized line bundle on X and Y a d-dimensional cycle of X.
These data induce a (signed) measure on X*', denoted c¢; (L) ¢ A §y by analogy with
the Archimedean smooth case, where it corresponds with the current of integration
along Y*" of the d-th power of the first Chern form. This measure plays an important
role in the distribution of points of small height in the direction of the Bogomolov
conjecture and its generalizations, see for instance [SUZ97, Bil97, Yua08]. Fur-
thermore, if we have sections s;, ¢ = 0,...,d, that meet Y properly, one can define
a notion of local height h1(Y'; sg,...,sq). The metrics and their associated measures
and local heights are related by the Bézout-type formula:

hz(y . div(sd); S0y -y Sdfl) = hz(y; S0y .- ,Sd) + / log ”S(]H C1 (Z)/\d A dy .
X?Lll

For the global case, consider a proper variety X over @@ and a line bundle L
on X. For simplicity, assume that X is projective, although this hypothesis is
not really necessary. A DSP quasi-algebraic metric on L is a family of DSP met-
rics || - ||, on the analytic line bundles L3", v € Mg, such that there is an integral

v o7
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INTRODUCTION 5

model of (X,L%¢), e > 1, which induces || - |, for all but a finite number of v.
Write L = (L, (|| - ||o)v), and L, = (Lo, || - ||) for each v € Mg. Given a d-dimensional
cycle Y of X, its global height is defined as

h‘E(Y) = Z hzv (Y, S0y vy Sd),

veMg

for any family of sections s;, i = 0,...,d, meeting Y properly. The fact that the
metric is quasi-algebraic implies that the right-hand side has only a finite number of
nonzero terms, and the product formula implies that this definition does not depend
on the choice of sections. This notion can be extended to number fields, function
fields and, more generally, to M-fields [Zha95b, Gub03].

Now we review briefly the elements of the construction of toric varieties from com-
binatorial data, see Chapter 3 for details. Let K be a field and T ~ G}, a split torus
over K. Let N = Hom(G,,, T) ~ Z"™ be the lattice of one-parameter subgroups of T
and M = NV the dual lattice of characters of T. Set Ng = N®zR and Mz = M ®@zR.
To a fan ¥ on N one can associate a toric variety Xy of dimension n. It is a normal
variety that contains T as a dense open subset, denoted Xs; o, and there is an action of
T on Xy which extends the natural action of the torus on itself. In particular, every
toric variety has a distinguished point xy that corresponds to the identity element
of T. The variety X is proper whenever the underlying fan is complete. For sake of
simplicity, in this introduction we will restrict to the proper case.

A Cartier divisor invariant under the torus action is called a T-Cartier divisor. In
combinatorial terms, a T-Cartier divisor is determined by a virtual support function
on ¥, that is, a continuous function ¥: Ng — R whose restriction to each cone of ¥
is an element of M. Let Dy denote the T-Cartier divisor of Xy determined by V.
A toric line bundle on Xy is a line bundle L on this toric variety, together with the
choice of a nonzero element z € L,,. The total space of a toric line bundle has a
natural structure of toric variety whose distinguished point agrees with z. A rational
section of a toric line bundle is called toric if it is regular and nowhere zero on the
principal open subset Xy o, and s(xg) = z. Given a virtual support function ¥, the
line bundle Ly = O(Dy) has a natural structure of toric line bundle and a canonical
toric section sy such that div(sy) = Dy. Indeed, any line bundle on Xy, is isomorphic
to a toric line bundle of the form Ly for some W. The line bundle Ly is generated by
global sections (respectively, is ample) if and only if ¥ is concave (respectively, ¥ is
strictly concave on X).

Consider the lattice polytope

Ay ={x € My : (x,u) > U(u) for all u € Ng} C Mg.

This polytope encodes a lot of information about the pair (Xy,Lg). In case the
virtual support function ¥ is concave, it is determined by this polytope, and the
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6 INTRODUCTION

degree formula can be written more precisely as
degL\P (XE) =n! VOl]y[(A\I/),

where the volume is computed with respect to the Haar measure voly; on Mk nor-
malized so that M has covolume 1.

In this text we extend the toric dictionary to metrics, measures and heights as
considered above. For the local case, let K be either R, C, or a field complete with
respect to a nontrivial non-Archimedean absolute value associated to a discrete valu-
ation. In this latter case, let K° be the valuation ring, K°° its maximal ideal and w@
a generator of K°°. Let T be an n-dimensional split torus over K, X a toric variety
over K with torus T, and L a toric line bundle on X. The compact torus S is a closed
analytic subgroup of the analytic torus T?" (see Example 1.2.4) and it acts on X",
A metric || - || on L* is toric if, for every toric section s, the function ||s| is invariant
under the action of S.

The correspondence that to a virtual support function assigns a toric line bundle
with a toric section can be extended to semipositive and DSP metrics. Assume that
U is concave, and let Xy, Ly and sy be as before. For short, write X = X5, L = Ly
and s = sy. There is a fibration

val: X&" — N

whose fibers are the orbits of the action of S on X§". Now let b: Ng — R be a
continuous function. We define a metric on the restriction L*"|xan by setting

Is(p)ll = e =@

Our first addition to the toric dictionary is the following classification result. As-
sume that the function 1 is concave and that |1 — ¥| is bounded. Then |||y extends
to a semipositive toric metric on L®*" and, moreover, every semipositive toric metric
on L*" arises in this way (Theorem 4.8.1(1)). There is a similar characterization of
DSP toric metrics in terms of differences of concave functions (Theorem 4.8.6) and a
characterization of toric metrics that involves the topology of the variety with corners
associated to Xy, (Proposition 4.3.10). As a consequence of these classification results,
we obtain a new interpretation of the canonical metric of L*" as the metric associated
to the concave function ¥ under this correspondence.

We can also classify semipositive metrics in terms of concave functions on polytopes:
there is a bijective correspondence between the space of continuous concave functions
on Ay and the space of semipositive toric metrics on L*" (Theorem 4.8.1(2)).
This correspondence is induced by the previous one and the Legendre-Fenchel

duality of concave functions. Namely, let || - | be a semipositive toric metric on
L2 write L = (L, || - ||) and % the corresponding concave function. The associated
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INTRODUCTION 7

roof function ¥z ;: Ay — R is the concave function defined as the Legendre-Fenchel
dual 1V. One of the main outcomes of this text is that the pair (A\p,’ﬂzyg plays, in
the arithmetic geometry of toric varieties, a role analogous to that of the polytope in
its algebraic geometry.

Our second addition to the dictionary is the following characterization of the mea-
sure associated to a semipositive toric metric. Let X, L and 1 be as before, and write
pyp = (L) A x, for the induced measure on X**. Then (Theorem 4.8.11)

(val)u(py|xzn) = n! M (),

where M r(1)) is the (real) Monge-Ampere measure of 1) with respect to the lattice M
(Definition 2.7.1). The measure uy, is determined by this formula, and the conditions
of being invariant under the action of S and that the set X*" \ X§" has measure
zero. This gives a direct and fairly explicit expression for the measure associated to
a semipositive toric metric.

The fact that each toric line bundle has a canonical metric allows us to introduce
a notion of local toric height that is independent of a choice of sections. Let X be an
n-dimensional projective toric variety and L a semipositive toric line bundle as before,
and let ™" be the same toric line bundle L equipped with the canonical metric. The
toric local height of X with respect to L is defined as

htl—j)r(X) =hy(X;80,...,8n) — hpean (X5 80,...,5n),

for any family of sections s;, ¢ = 0,...,n, that meet properly on X (Definition 5.1.1).
Our third addition to the toric dictionary is the following formula for this toric local
height in terms of the roof function introduced above (Theorem 5.1.6):

ht[,_j)r(X) — (n + 1)' 193»5 dVO]]M .

More generally, the toric local height can be defined for a family of n + 1 DSP toric
line bundles on X. The formula above can be extended by multilinearity to compute
this toric local height in terms of the mixed integral of the associated roof functions
(Remark 5.1.10).

For the global case, let ¥ and ¥ be as before, and consider the associated toric
variety X over Q equipped with a toric line bundle L and toric section s. Given a
family of concave functions (¢, )vecom, such that |, — ¥| is bounded for all v and
such that ¢, = ¥ for all but a finite number of v, the metrized toric line bundle
L = (L[
toric metric on L arises in this way (Proposition 4.9.2 and Theorem 4.9.3). The

| - |ly, )v) is quasi-algebraic. Moreover, every semipositive quasi-algebraic

associated local roof functions ¥, 1 .: Ay — R are identically zero except for a finite
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8 INTRODUCTION

number of places. Then, the global height of X with respect to L can be computed
as (Theorem 5.2.5)

hp(X) = Y WX, =(m+1)! > / ¥, 7., dvolas,
veMyg vemg Y A
which precises the theorem stated at the beginning of this introduction. Here,
h:}"%(Xv) is the toric local height for the place v.

A remarkable feature of these results is that they read exactly the same in the
Archimedean and in the non-Archimedean cases. For general metrized line bundles,
these two cases are analogous but not identical. By contrast, the classification of
toric metrics and the formulae for the associated measures and local heights are the
same in both cases. We also point out that these results holds in greater generality
than explained in this introduction: in particular, they hold for proper toric varieties
which are not necessarily projective and, in the global case, for general adelic fields
(Definition 1.5.1). We content ourselves with the case when the torus is split. For the
computation of heights, one can always reduce to the split case by considering a suit-
able field extension. Still, it would be interesting to extend our results to the non-split
case by considering the corresponding Galois actions as, for instance, in [ELST14].

The toric dictionary in arithmetic geometry is very concrete and well-suited for
computations. For instance, let K be a local field, X a toric variety and ¢: X — P"
an equivariant map. Let L be the toric semipositive metrized line bundle on X induced
by the canonical metric on the universal line bundle of P, and s a toric section of L.
The concave function ¢ : Ng — R corresponding to this metric is piecewise affine.
Hence, it defines a polyhedral complex in Ng, and it turns out that (val). (s, |xan),
the direct image under val of the measure induced by L, is a discrete measure on
Ny supported on the vertices of this polyhedral complex (Proposition 2.7.4). The
roof function 7 _ is the function parameterizing the upper envelope of a polytope in
Mg x R associated to ¢ and the section s (Example 5.1.16). The toric local height of
X with respect to L can be computed as the integral of this piecewise affine concave
function.

Another nice example is given by toric bundles on a projective space. For a finite
sequence of integers a, > -+ > ag > 1, we consider the vector bundle on Pg

E =0(ag) ®--- & O(ay).

The toric bundle P(E) — Py is defined as the bundle of hyperplanes of the total space
of E. This is an (n + r)-dimensional toric variety over Q which can be equipped with
an ample universal line bundle Op(g)(1), see §7.2 for details.

We equip Op(g)(1) with a semipositive adelic toric metric as follows: the Fubini-
Study metrics on each line bundle O(a;) induces a semipositive smooth toric metric
on Op(g)(1) for the Archimedean place of Q, whereas for the finite places we consider
the corresponding canonical metric. We show that both the corresponding concave
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functions 1, and roof functions ¥, can be described in explicit terms (Lemma 7.2.1
and Proposition 7.2.3). We can then compute the height of P(E) with respect to this
metrized line bundle as (Theorem 7.2.5)

hoME)(l)(P(E)) = ho‘(ﬁ(]}pn) Z a + Z Ay (1) ai7

ienr+1 ienr+1

Ji]=n+1 [i]=n
where for i = (ig,...,43,) € N1 we set |[i| = ig + -+ + ip, a® = a...a%
0> ) ) 0 ) 0 r

. d . n+r+1 1 . ] .
and A, - (3) = 30, _o(im +1) 22057, 57, while hzr5(Pg) = D el 2= % denotes
the height of the projective space with respect to the Fubini-Study metric. In
particular, the height of P(F) is a positive rational number.

The Fubini-Study height of the projective space was computed by Gillet and Soulé
[GS90Db, §5.4]. Other carly computations for the Fubini-Study height of some toric
hypersurfaces where obtained in [Dan97, CMO00]. Mourougane has determined the
height of Hirzebruch surfaces, as a consequence of his computations of Bott-Chern
secondary classes [Mou06]. A Hirzebruch surface is a toric bundle over P&P’ and the
result of Mourougane is a particular case of our computations for the height of toric
bundles (Remark 7.2.6).

The fact that the canonical height of a toric variety is zero is well-known. It results
from its original construction by a limit process on the direct images of the toric
variety under the so-called “powers maps”. Maillot has studied the Arakelov geometry
of toric varieties and line bundles with respect to the canonical metric, including the
computation of the associated Chern currents and their product [Mai00].

In [PS08a], Philippon and Sombra gave a formula for the canonical height of a
“translated” toric projective variety, a projective variety which is the closure of a
translate of a subtorus, defined over a number field. In [PS08b], they also obtain a
similar formula for the function field case. Both results are particular cases of our
general formula (Remark 5.2.7). Indeed, part of our motivation for the present text
was to understand and generalize this formula in the framework of Arakelov geometry.

For the Archimedean smooth case, our constructions are related to the Guillemin-
Abreu classification of Kéhler structures on symplectic toric varieties [Abr03]. The
roof function corresponding to a smooth metrized line bundle on a smooth toric variety
coincides, up to a sign, with the so-called “symplectic potential” of a Kéhler toric
variety (Remark 4.8.3). In the Archimedean continuous case, Boucksom and Chen
have recently considered a similar construction in their study of arithmetic Okounkov
bodies [BC11]. It would be interesting to further explore the connection with these
results.

We now discuss the contents of each chapter, including some other results of
interest.

Section 1 is devoted to the first half of the dictionary. Namely, we review DSP
metrized line bundles both in the Archimedean and in the non-Archimedean cases. For
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the latter case, we recall the basic properties of Berkovich spaces of schemes. We then
explain the associated measures and heights following [Zha95b, Cha06, Gub03].
For simplicity, the theory presented is not as general as the one in [Gub03]: in the
non-Archimedean case we restrict ourselves to discrete valuation rings and in the
global case to adelic fields, while in loc. cit. the theory is developed for arbitrary
valuations and for M-fields, respectively.

Section 2 deals with the second half of the dictionary, that is, convex analysis with
emphasis on polyhedral sets. Most of the material in this section is classical. We have
gathered all the required results, adapting them to our needs and adding some new
ones. We work with concave functions, which are the functions which naturally arise
in the theory of toric varieties. For later reference, we have translated many of the
notions and results of convex analysis, usually stated for convex functions, in terms
of concave functions.

We first recall the basic definitions about convex sets and convex decompositions,
and then we study concave functions and the Legendre-Fenchel duality. We introduce
a notion of Legendre-Fenchel correspondence for general closed concave functions, as a
duality between convex decompositions (Definition 2.2.10 and Theorem 2.2.12). This
is the right generalization of both the classical Legendre transform of strictly concave
differentiable functions, and the duality between polyhedral complexes induced by a
piecewise affine concave function. We also consider the interplay between Legendre-
Fenchel duality and operations on concave functions like, for instance, the direct and
inverse images by affine maps. This latter study will be important when considering
the functoriality with respect to equivariant morphisms between toric varieties. We
next particularize to two extreme cases: differentiable concave functions whose sta-
bility set is a polytope that will be related to semipositive smooth toric metrics in the
Archimedean case, and to piecewise affine concave functions that will correspond to
semipositive algebraic toric metrics in the non-Archimedean case. Next, we treat dif-
ferences of concave functions, that will be related to DSP metrics. We end this section
by studying the Monge-Ampere measure associated to a concave function. There is
an interesting interplay between Monge-Ampere measures and Legendre-Fenchel du-
ality. In this direction, we prove a combinatorial analogue of the arithmetic Bézout’s
theorem (Theorem 2.7.6), which is a key ingredient in the proof of our formulae for
the height of a toric variety.

In Chapter 3, we study the algebraic geometry of toric varieties over a field and of
toric schemes over a discrete valuation ring (DVR). We start by recalling the basic
constructions and results on toric varieties, including Cartier and Weil divisors, toric
line bundles and sections, orbits and equivariant morphisms, and positivity proper-
ties. Toric schemes over a DVR where first considered by Mumford in [KKMS73],
who studied and classified them in terms of fans in Ng X R>g. In the proper case,
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these schemes can be alternatively classified in terms of complete polyhedral com-
plexes in Ng [BS11]. Given a complete fan ¥ in N, the models over a DVR of the
proper toric variety Xy are classified by complete polyhedral complexes on Ng whose
recession fan (Definition 2.1.5) coincides with ¥ (Theorem 3.5.4). Let II be such a
polyhedral complex, and denote by A7 the corresponding model of X5. Let ¥ be a
virtual support function on ¥ and (L, s) the associated toric line bundle on Xy and
toric section. We show that the models of (L, s) over Ay are classified by functions
that are rational piecewise affine on II and whose recession function is ¥ (Theo-
rem 3.6.8). We also prove a toric version of the Nakai-Moishezon criterion for toric
schemes over a DVR, which implies that semipositive models of (L, s) translate into
concave functions under the above correspondence (Theorem 3.7.1).

In Chapter 4, we study toric metrics and their associated measures. For the present
discussion, consider a local field K, a complete fan ¥ on Nr and a virtual support
function ¥ on X, and let (X, L) denote the corresponding proper toric variety over
K and toric line bundle. We first introduce a variety with corners Ny which is a
compactification of Ng, together with a proper map val: X" — Ny, whose fibers are
the orbits of the action of S on X§&'. We first treat the problem of obtaining a toric
metric from a non-toric one (Proposition 4.3.4) and prove the classification theorem
for toric metrics on L*" (Proposition 4.3.10). We next treat smooth metrics in the
Archimedean case. A toric smooth metric is semipositive if and only if the associated
function v is concave (Proposition 4.4.1). We make explicit the associated measure in
terms of the Hessian of this function, hence in terms of the Monge-Ampere measure
of ¢ (Theorem 4.4.4). We also observe that an arbitrary smooth metric on L can be
turned into a toric smooth metric by averaging it by the action of S. If the given
metric is semipositive, so is the obtained toric smooth metric.

Next, in the same section, we consider algebraic metrics in the non-Archimedean
case. We first show how to describe the reduction map for toric schemes over a DVR
in terms of the corresponding polyhedral complex and the map val (Lemma 4.5.1).
We then study the triangle formed by toric metrics, rational piecewise affine functions
and toric models (Proposition 4.5.3 and Theorem 4.5.10) and the effect of taking a
field extension (Proposition 4.5.12). Next, we treat in detail the one-dimensional case,
were one can write in explicit terms the metrics, associated functions and measures.
Back to the general case, we use these results to complete the characterization of
toric semipositive algebraic metrics in terms of piecewise affine concave functions
(Proposition 4.7.1). We also describe the measure associated to a semipositive toric
algebraic metric in terms of the Monge-Ampeére measure of its associated concave
function (Theorem 4.7.4).

Once we have studied smooth metrics in the Archimedean case and algebraic met-
rics in the non-Archimedean case, we can study semipositive toric metrics. We show
that the same classification theorem is valid in the Archimedean and non-Archimedean

SOCIETE MATHEMATIQUE DE FRANCE 2014



12 INTRODUCTION

cases (Theorem 4.8.1). Moreover, the associated measure is described in exactly the
same way in both cases (Theorem 4.8.11). We end this section by introducing and
classifying adelic toric metrics (Definition 4.9.1, Proposition 4.9.2 and Theorem 4.9.3).

In Chapter 5, we prove the formulae for the toric local height and for the global
height of toric varieties (theorems 5.1.6 and 5.2.5). By using the functorial properties
of the height, we recover, from our general formula, the formulae for the canonical
height of a translated toric projective variety in [PS08a, Théoreme 0.3] for number
fields and in [PS08b, Proposition 4.1] for function fields.

In Chapter 6, we consider the problem of integrating functions on polytopes. We
first present a closed formula for the integral over a polytope of a function of one
variable composed with a linear form, extending in this direction Brion’s formula
for the case of a simplex [Bri88] (Proposition 6.1.4 and Corollary 6.1.10). This
allows us to compute the height of toric varieties with respect to some interesting
metrics arising from polytopes (Proposition 6.2.5). We can interpret some of these
heights as the average entropy of a simple random process defined by the polytope
(Proposition 6.3.1).

In Chapter 7, we study some further examples. We first consider translated toric
curves in Pg. For these curves, we consider the line bundle obtained from the re-
striction of O(1) to the curve, equipped with the metric induced by the Fubiny-Study
metric at the place at infinity and by the canonical metric for the finite places. We
compute the corresponding concave function ¢ and toric local height in terms of the
roots of a univariate polynomial (Theorem 7.1.3). We finally consider toric bundles as
explained before, and compute the relevant concave functions, measures and heights.
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CONVENTIONS AND NOTATIONS

For the most part, we follow generally accepted conventions and notations. We

also use the following:

N and N* denote the set of natural numbers with 0 and without 0, respectively;
a multi-index is an element i € N°, where S is a finite set. For a multi-index 1,
we write |i| = Y ois;

A semigroup is a set with an associative binary operation and an identity element.
In particular, a morphism of semigroups will send the identity element to the
identity element. All considered semigroups will be commutative;

all considered rings are commutative and with a unit;

a scheme is a separated scheme of finite type over a Noetherian ring;

a variety is a reduced and irreducible separated scheme of finite type over a field;
P™ is a projective space of dimension n over a field, with a fixed choice of homo-
geneous coordinates;

by a line bundle we mean a locally free sheaf of rank one;

compact spaces are Hausdorff;

measures are non-negative and a signed measure is a difference of two measures.

For the notations and terminology introduced in this text, the reader can locate
them using the list of symbols and the index at the end of the book.






CHAPTER 1

METRIZED LINE BUNDLES AND THEIR ASSOCIATED
HEIGHTS

In this chapter, we recall the adelic theory of heights as introduced by Zhang
[Zha95b] and developed by Gubler [Gub02, Gub03] and Chambert-Loir [Cha06].
These heights generalize the ones that can be obtained from the arithmetic intersection
theory of Gillet and Soulé [GS90a, BGS94].

To explain the difference between both points of view, consider a smooth variety X
over Q. In Gillet-Soulé’s theory, we choose a regular proper model X over Z of X, and
we also consider the real analytic space X®" given by the set of complex points X (C)
and the anti-linear involution induced by the complex conjugation. By contrast, in
the adelic point of view we consider the whole family of analytic spaces X", v € Mgq.
For the Archimedean place, X3" is the real analytic space considered before, while
for the non-Archimedean places, it is the associated Berkovich space [Ber90]. Both
points of view have advantages and disadvantages. In the former point of view, there
exists a complete formalism of intersection theory and characteristic classes, with
powerful theorems like the arithmetic Riemann-Roch theorem and the Lefschetz fixed
point theorem, but one is restricted to smooth varieties and needs an explicit integral
model of X. In the latter point of view, one can define heights, but does not dispose
yet of a complete formalism of intersection theory. Its main advantages are that it can
be easily extended to non-smooth varieties and that there is no need of an integral
model of X. Moreover, all places, Archimedean and non-Archimedean, are set on a

similar footing.

1.1. Smooth metrics in the Archimedean case

Let X be a variety over C and X®" its associated complex analytic space. We
recall the definition of differential forms on X" introduced by Bloom and Herrera
[BHG69]. The space X®" can be covered by a family of open subsets {U;}; such that
each U; can be identified with a closed analytic subset of an open ball in C” for some
r. On each U;, the differential forms are defined as the restriction to this subset of
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smooth complex-valued differential forms defined on an open neighbourhood of U; in
C". Two differential forms on U; are identified if they coincide on the non-singular
locus of U;. We denote by «7*(U;) the complex of differential forms of U;, which is
independent of the chosen embedding. In particular, if U; is non-singular, we recover
the usual complex of differential forms. These complexes glue together to define a
sheaf 27%... This sheaf is equipped with differential operators d, d¢, 9, J, an external
product and inverse images with respect to analytic morphisms: these operations are
defined locally on each «/*(U;) by extending the differential forms to a neighbourhood
of U; in C" and applying the corresponding operations for C". We write Oxan and
C¥un = A3an for the sheaves of analytic functions and of smooth functions of X1,
respectively.
Let L be an algebraic line bundle on X and L?" its analytification.

Definition 1.1.1. — A metric on L?*" is an assignment that, to each open subset U C
X and local section s of L*" on U, associates a continuous function
[sOIl: U — Rxo
such that
1. it is compatible with the restrictions to smaller open subsets;
2. for all p € U, ||s(p)|| = 0 if and only if s(p) = 0;
3. for any p € U and A € Oxan (U), it holds [[(As)(p)|| = [A()] [s(p)]-

The pair L := (L, || - ||) is called a metrized line bundle. The metric || - || is smooth if
for every local section s of L*", the function ||s(-)[|? is smooth.

We remark that what we call “metric” in this text is called “continuous metric” in
other contexts.

Let L = (L,|| - ||) be a smooth metrized line bundle. Given a non-vanishing local
section s of L* on an open subset U, the first Chern form of L is the (1,1)-form
defined on U as

ci1(L) = 00dlog||s||* € & (U).
It does not depend on the choice of local section and can be extended to a global
closed (1,1)-form. Observe that we are using the algebro-geometric convention, and
so ¢1(L) determines a class in H*(X*", 2mi Z).

Example 1.1.2. — Let X = P¢ and L = O(1), the universal line bundle of P¢. A
rational section s of O(1) can be identified with a homogeneous rational function
ps € C(xg,...,z,) of degree 1. The poles of this section coincide which those of p;.
For a point p = (pg : ... : pp) € P*(C) and a rational section s as above which is
regular at p, the Fubini-Study metric of O(1)*" is defined as

|ps(Pos -+ Pn)l

ls(p)[lFs = W

=0
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Clearly, this definition does not depend on the choice of a representative of p. The
pair (O(1),] - |lrs) is a metrized line bundle.

Many smooth metrics can be obtained as the inverse image of the Fubini-Study
metric. Let X be a variety over C and L a line bundle on X, and assume that there
is an integer e > 1 such that L®¢ is generated by global sections. Choose a basis of
the space of global sections I'(X, L®¢) and let p: X — Pg be the induced morphism.
Given a local section s of L, let s’ be a local section of O(1) such that s®¢ = p*s'.
Then, the smooth metric on L®" obtained from the Fubini-Study metric by inverse
image is given by

lse)ll = lls' o) lIgs

for any p € X*" which is not a pole of s.

Definition 1.1.3. — Let L be a smooth metrized line bundle on X and D = {z €
C||z| < 1}, the unit disk of C. We say that L is semipositive if, for every holomorphic

map ¢: D — X

1 —
— *ey (L) > 0.
omi Jy ¢ ei(L) >
We say that L is positive if this integral is strictly positive for all non-constant holo-

morphic maps as before.

Example 1.1.4. — The Fubini-Study metric (Example 1.1.2) is positive because its
first Chern form defines a smooth metric on the holomorphic tangent bundle of P"(C)
[GH94, Chapter 0, §2]. All metrics obtained as inverse image of the Fubini-Study
metric are semipositive.

A family of smooth metrized line bundles Lo, ..., Ls—; on X and a d-dimensional
cycle Y of X define a signed measure on X®" as follows. First suppose that Y is
a subvariety of X and let dy denote the current of integration along the analytic

subvariety Y2", defined as dy (w) = (2—731)—1 fY w for w € &/24,. Then the current

CI(ZQ) VAN Cl(fdfl) A 5}/
is a signed measure on X®". This notion extends by linearity to Y € Z4(X). If L;,

i =0,...,d—1, are semipositive and Y is effective, this signed measure is a measure.

Remark 1.1.5. — We can reduce the study of algebraic varieties and line bundles
over the field of real numbers to the complex case by using the following standard
technique. A variety X over R induces a variety X¢ over C together with an anti-linear
involution ¢: X¢ — X¢ such that the diagram

Xe — 4 X¢

L]

Spec(C) 5, Spec(C)
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commutes, where the arrow below denotes the map induced by complex conjugation.
Following this philosophy, we define the analytification of X as X§" = (X2",¢).

A line bundle L on X determines a line bundle L¢ on X¢ and an isomorphism
a: ¢*Le — Le such that a section s of L is real if and only if a(¢*s) = s. Thus we
define L§" = (LE", ). By a metric on L§" we will mean a metric || - || on L& such
that the map a: ¢* (L, || - ||) = (Lc, || - |]) is an isometry.

In this way, the above definitions can be extended to metrized line bundles on
varieties over R. For instance, a real smooth metrized line bundle is semipositive if
and only if its associated complex smooth metrized line bundle is semipositive. The
corresponding signed measure is a measure over X&" which is invariant under .

In the sequel, every time we have a variety over R, we will work instead with the
associated complex variety and quietly ignore the anti-linear involution ¢, because it
will not play an important role in our results. In particular, if X is a real variety, we
will denote X*" = X" for the underlying complex space of X3". Similarly, we will
denote L = L&".

1.2. Berkovich spaces of schemes

In this section we recall Berkovich’s theory of analytic spaces. We will not present
the most general theory developed in [Ber90] but we will content ourselves with the
analytic spaces associated to algebraic varieties, that are simpler to define and enough
for our purposes.

Let K be a field which is complete with respect to a nontrivial non-Archimedean
absolute value | - |. Such fields will be called non-Archimedean fields. Let K° = {« €
K | |a| < 1} be the valuation ring, K°° = {« € K | |a| < 1} the maximal ideal and
k = K°/K°° the residue field.

Let X be a scheme of finite type over K. Following [Ber90], we can associate an
analytic space X" to the scheme X as follows. First assume that X = Spec(A), where
A is a finitely generated K-algebra. Then, the points of X*" are the multiplicative
seminorms of A that extend the absolute value of K, see [Ber90, Remark 3.4.2].
Every element a of A defines a function |a(-)|: X*" — R>¢ given by evaluation of the
seminorm. The topology of X" is the coarsest topology that makes the functions
la(+)| continuous for all a € A.

A point p € X defines a prime ideal {a € A | |a(p)| = 0} C A. This induces a
map

m: X — X = Spec(A).

Let K(mw(p)) denote the function field of w(p), that is, the field of fractions of the
quotient ring A/m(p). The point p is a multiplicative seminorm on A and so it induces
a non-Archimedean absolute value on K (7 (p)). We denote by ¢ (p) the completion
of this field with respect to that absolute value.

ASTEH,ISQ UE 360
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Let U be an open subset of X?". An analytic function on U is a function

fU— [ #w
peU
such that, for each p € U, f(p) € 2 (p) and there is an open neighbourhood U’ C U
of p with the property that, for all ¢ > 0 and ¢ € U’, there are elements a,b € A
with b € w(q) and |f(q) — a(q)/b(¢)| < e. The analytic functions form a sheaf, de-
noted O xan, and (X", Oxan) is a locally ringed space [Ber90, §1.5 and Remark 3.4.2].
In particular, every element a € A determines an analytic function on X", also de-
noted a. The function |a(-)| can then be obtained by composing a with the absolute
value map
e T #0) — B
peXan

which justifies its notation.

Now, if X is a scheme of finite type over K, the analytic space X?" is defined by
gluing together the affine analytic spaces obtained from an affine open cover of X. If
we want to stress the base field, we will denote X*" by X,

Let K’ be a complete extension of K and X%’ the analytic space associated to
the scheme Xg/. There is a natural map X3 — X% defined locally by restricting
seminorms.

Definition 1.2.1. — A rational point of X3 is a point p € X% satisfying 5 (p) =
K. We denote by X?"(K) the set of rational points of X%". More generally, for
a complete extension K’ of K, the set of K'-rational points of X3 is defined as
X*(K') = X3 (K'). There is a map X*"(K') — X%, defined by composing the
inclusion X*"(K') < X35 with the map X3 — X3 as above. The set of algebraic
points of X" is the union of X" (K') for all finite extensions K’ of K. Its image in
X is denoted X7y, We have that X2, = {p € X*"[[7(p) : K] < oo}.

al
The basic properties of X?" are summarized in the following theorem.
Theorem 1.2.2. — Let X be a scheme of finite type over K and X" the assoctated
analytic space.
1. X®" s a locally compact and locally arc-connected topological space.

2. X 4s Hausdorff (respectively compact, arc-connected) if and only if X is sep-
arated (respectively proper, connected).

3. The map m: X* — X s continuous. A locally constructible subset T C X
is open (respectively closed, dense) if and only if 7=1(T) is open (respectively
closed, dense).

4. Let ¥v: X — Y be a morphism of schemes of finite type over K and
P XN — YA ts analytification. Then ) is flat (respectively unramified,
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étale, smooth, separated, injective, surjective, open immersion, isomorphism) if
and only if Y*™ has the same property.

5. Let K' be a complete extension of K. Then the map g+ : X3 — Xk induces
a bijection between X" (K') and X (K’).

6. Set Xag = {p € X|[K(p) : K| < oo}, where K(p) denotes the function field
of p. Then  induces a bijection between Xig and Xag. The subset X7, C X*"
is dense.

7. Let K be the completion of the algebraic closure K of K. Then the map X2 —

XK' induces an isomorphism X'/ Gal(K™/K) ~ Xxa».
Proof. — The proofs can be found in [Ber90] and the next pointers are with respect
to the numeration in this reference: (1) follows from Theorem 1.2.1, Corollary 2.2.8
and Theorem 3.2.1, (2) is Theorem 3.4.8, (3) is Corollary 3.4.5, (4) is Proposition 3.4.6,
(5) is Theorem 3.4.1(i), while (6) follows from Theorem 3.4.1(i) and Proposition 2.1.15
and (7) follows from Corollary 1.3.6. O

Remark 1.2.3. — Not every analytic space in the sense of Berkovich can be obtained
as the analytification of an algebraic variety. The general theory is based on spectra
of affinoid K-algebras, that provide compact analytic spaces that are the building
blocks of the more general analytic spaces.

Example 1.2.4. — Let M ~ Z" be a lattice of rank n and consider the associated
group algebra K[M] and algebraic torus Tp; = Spec(K[M]). The corresponding
analytic space T3} is the set of multiplicative seminorms of K[M] that extend the
absolute value of K. This is an analytic group. We warn the reader that the set of
points of an analytic group is not an abstract group, hence some care has to be taken
when speaking of actions and orbits. The precise definitions and basic properties can
be found in [Ber90, §5.1].

The analytification T3? is an analytic torus as in [Ber90, §6.3]. The subset
Y M Y

S={pe Tyl Ix"(p)| =1foral me M}.

is a compact analytic subgroup, called the compact torus of T%}.

1.3. Algebraic metrics in the non-Archimedean case

Let K be a field which is complete with respect to a nontrivial non-Archimedean
absolute value. Let K° and K°° be as in the previous section. For simplicity, we will
assume from now on that K° is a discrete valuation ring (DVR), and we will fix a
generator w of its maximal ideal K°°. This is the only case we will need in the sequel
and it allows us to use a more elementary definition of measures and local heights.
The reader can consult [Gub03, Gub07] for the general case.
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Let X be a variety over K and L a line bundle on X. Let X?" and L*" be their
respective analytifications.

Definition 1.3.1. — A metric on L*" is an assignment that, to each open subset U C
X2 and local section s of L®" on U, associates a continuous function

[s()ll: U — Rxo,
such that
1. it is compatible with the restriction to smaller open subsets;
2. for all p € U, |s(p)|| = 0 if and only if s(p) = 0;
3. for any A € Oxan (U), it holds [|(As)(p)]| = [A()| 1s(p)]l-
The pair L := (L, || - ||) is called a metrized line bundle.

Models of varieties and line bundles give rise to an important class of metrics. To
introduce and study these metrics, we first consider the notion of models of varieties.
Write S = Spec(K°). The scheme S has two points: the special point o and the generic
point 7. Given a scheme X over S, we set X, = X' x Spec(k) and &), = X x Spec(K)
for its special fibre and its generic fibre, respectively.

Definition 1.3.2. — A model over S of X is a flat scheme X of finite type over S
together with a fixed isomorphism X ~ &,. This isomorphism is part of the model,
and so we can identify &, with X. When X is proper, we say that the model is proper
whenever the scheme X is proper over S.

Given a model X of X, there is a reduction map defined on a subset of X*" with
values in X, [Ber90, §2.4]. This map can be described as follows. Let {U; }icr be a
finite open cover of X’ by affine schemes over S of finite type and, for each i, let A;
be a K°-algebra such that U; = Spec(A;). Set U; =U; N X and let C; be the closed
subset of UM defined as

Ci={pe U |lalp)l <1,Va € A;} (1.3.1)

For cach p € C}, the prime ideal q, := {a € A; | la(p)| < 1} C A; contains K°°A;
and so it determines a point red(p) := q,/K°°A; € U; , C X,. Consider the subset
C =J,C; c X*". The above maps glue together to define a map

red: C — X, (1.3.2)

This map is surjective and anti-continuous, in the sense that the preimage of an open
subset of X, is closed in C' [Ber90, §2.4]. If both X and X are proper then, using the
valuative criterion of properness, one can see that C' = X" and the reduction map is
defined on the whole of X",

SOCIETE MATHEMATIQUE DE FRANCE 2014



22 CHAPTER 1. METRIZED LINE BUNDLES AND THEIR ASSOCIATED HEIGHTS

Proposition 1.3.3. — Assume that X and X are normal. For each irreducible compo-
nent V. of X,, there is a unique point &, € C such that
red(év) = nv,

where ny denotes the generic point of V. If we choose an affine open subset U =
Spec(A) C X containing ny and we write A = A Qo K and U = U N X, then &y
lies in U and it is the multiplicative seminorm on A given, for a € A, by

la(év)| = fao|ordv@/ordvi=), (1.3.3)
where ordy (a) denotes the order of a at ny.

Proof. — We first assume that X and X are affine. Let A be a K°-algebra such that
X = Spec(A) and set A = A® K. Since X is normal, A, is a discrete valuation
ring. Let ordy denote the valuation in this ring.

We first show the existence of £y. Since ordy (w) > 1, the right hand side of the
equation (1.3.3) determines a multiplicative seminorm of A that extends the absolute
value of K and hence a point &y € U?” C X?". From the definition, it is clear that
la(€v)] <1 for all @ € A and |a(éy)| < 1 if and only if a € ny. Hence &y € C and
red(éy) = ny.

We next prove the unicity of &y. Let p € C such that red(p) = ny. This implies
that p is a multiplicative seminorm of A that extends the absolute value of K such
that |a(p)] < 1 for all @ € A and |a(p)| < 1 if and only if @ € ny. In particular,
this multiplicative seminorm can be extended to A,,. Let 7 be a uniformizer of
o and a € A. Write a = urotdvi(a) with w € Af;v. Since

|°rd‘/(“). Applying the same to w, we deduce that

the maximal ideal ny A
lu(p)| = 1, we deduce |a(p)| = |7(p)

Ia(P)l _ |w|ordv(a)/ordv(w).

Hence p = €y

To prove the statement in general, it is enough to observe that, if Uy C Uy are two
affine open subsets of X' containing 7y, then the corresponding closed subsets verify
C, C C5. The result follows by the unicity in C5 of the point with reduction ny. 0O

Next we recall the definition of models of line bundles.

Definition 1.3.4. — A model over S of (X, L) is a triple (X, L, e), where X is a model
over S of X, £ is a line bundle on X and e > 1 is an integer, together with an
isomorphism £L|x ~ L®¢. When e = 1, the model (X, £, 1) will be denoted (X, L) for
short. A model (X, L, e) is called proper whenever X is proper.

We assume that the variety X is proper for the rest of this section. To a proper
model of a line bundle we can associate a metric.

Definition 1.3.5. — Let (X, L, e) be a proper model of (X, L). Let s be a local section
of L defined at a point p € X*". Let Y C X be a trivializing open neighbourhood

ASTERISQUE 360



CHAPTER 1. METRIZED LINE BUNDLES AND THEIR ASSOCIATED HEIGHTS 23

of red(p) and o a generator of L|y. Let U =UNX and A € Opan such that s¥¢ = Ao
on U2, Then, the metric induced by the proper model (X,L,e) on L*, denoted
I lx,c.es is given by

Is()llx,c.c = AP)]"*.
This definition does neither depend on the choice of the open set U nor of the section o,
and it gives a metric on L?". The metrics on L?" obtained in this way are called
algebraic, and the pair L := (L, || - ||x.c.e) is called an algebraic metrized line bundle.

Different models may give rise to the same metric.

Proposition 1.3.6. — Let (X,L,e) and (X', L' €') be proper models of (X, L), and
f: X' = X a morphism of models such that (L')®¢ ~ f*L®¢ . Then the metrics on
LA™ induced by both models agree.

Proof. — Let s be a local section of L?*" defined on a point p € X?". Let Y C X be
a trivializing open neighbourhood of redx(p), the reduction of p with respect to the
model X and o a generator of L|y. Let A be an analytic function on (U N X)*" such
that s©¢ = \o.

We have that f(redy/(p)) = redx(p) and U’ := f~1(U) is a trivializing open set
of £'®¢ with generator f*¢®¢". Then s2°¢" = X f*¢®¢" on (U' N X)** = (U N X)*".
Now the proposition follows directly from Definition 1.3.5. O

The inverse image of an algebraic metric is algebraic.

Proposition 1.3.7. — Let p: X1 — X9 be a morphism of proper algebraic varieties
over K and Lo an algebraic metrized line bundle on Xo. Then ¢* Lo, the inverse
image under ¢ of Ly, is an algebraic metrized line bundle on X .

Proof. — Let (X3, La,€e) be a proper model of (Xa, Lo) which induces the metric
in Ly. From Nagata’s compactification theorem (see for instance [Con07]) we can
find a proper model X] of X;. Let A} be the Zariski closure of the graph of ¢
in X] xg Xo. This is a proper model of X; equipped with a morphism ¢g: X; —
Xy, Then (X1, p5Ls,€) is a proper model of (X5, p*Ls) which induces the metric
of p*Ls. O

Next we give a second description of an algebraic metric. As before, let X be a
proper variety over K and L a line bundle on X, and || - || x z,e an algebraic metric on
L. Let p € X® and put F' = #(p), which is a complete extension of K. Let F°
denote its valuation ring, and o and 7 the special and the generic point of Spec(F*°),
respectively. The point p induces a morphism of schemes Spec(F) — X. By the
valuative criterion of properness, there is a unique extension

D: Spec(F°) — X. (1.3.4)

It satisfies p(n) = mw(p), where m: X** — X is the natural map introduced at the
beginning of §1.2; and p(o) = red(p).
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Proposition 1.3.8. — With notation as above, let s be a local section of L in a neigh-
bourhood of m(p). Then

ls(p)llx.c.e =inf {|a|1/e'a € F*,a 'p*s® e p*L}. (1.3.5)

Proof. — Write || || = || - |lx,z,e for short. Let U = Spec(A) 3 red(p) be a trivializing
open affine set of £ and o a generator of L|;;. Then s%¢ = Ao with A in the fraction
field of A. We have that A(p) € F and, by definition, ||s(p)|| = [A(p)|'/¢. If A(p) = 0,
the equation is clearly satisfied. Denote temporarily by 7 the right-hand side of (1.3.5).
If A(p) # 0, then

Mp) 'p*s®C = pro € pL.

Hence ||s(p)|| > . Moreover, if a € F* is such that a=1p*s®¢ € p*L, then there
is an element o € F°\ {0} with a~!'p*s®® = ap*o. Therefore, a = o 'A(p) and
lal*¢ = ||~ ¢|X(p)[* > |A(p)|'/e. Thus, ||s(p)| < 7, completing the proof. d

We give a third description of an algebraic metric in terms of intersection theory
that makes evident the relationship with higher dimensional Arakelov theory. Let
(X, L,e) be a proper model of (X,L) and ¢: Y — X a closed algebraic curve. Let
JNi be the normalization of ) and 7: j — X and p: ;)N) — Spec(K°) the induced
morphisms. Let s be a rational section of £ such that the Cartier divisor div(s)
intersects properly . Then the intersection number (v - div(s)) is defined as

(¢ -div(s)) = deg(p«(div(Z"s))).

Proposition 1.3.9. — With the above notation, let p € X3, and denote by p the image
of the map in (1.3.4). This is a closed algebraic curve. Let s be a local section of L

defined at p and such that s(p) # 0. Then

(7~ div(s°))

) k]

log lls(p)llx.c.e =
Proof. — We keep the notation in the proof of Proposition 1.3.8. In particular,
s%¢ = Ao with A in the fraction field of A, and 5#(p) = F. Then

log [|s(p)llx.ce _ log [A(p)| _ 10g[Np/x(A())] _ ordw(Nr/k (A(P)))

log |w]| eloglw|  e[F: K]log|w| e[l : K| '

where N/ is the norm function of the finite extension F’ /K. We also verify

(p - div(s®)) = deg(p.(div(p*s9?))) = deg(p.(div(A(p))))
= deg(div(Np/k (A(p)))) = ord(Nr,k (A(p))),

which proves the statement. ]
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Example 1.3.10. — Let X = P9 = Spec(K). A line bundle L on X is necessarily
trivial, that is, L ~ K. Consider the model (X, L, ¢) of (X, L) given by X = Spec(K°),
e > 1, and £ a free K°-submodule of L&¢ of rank one. Let v € L®¢ be a basis of L.
For a section s of L we can write s¥¢ = av with a € K. Hence,

lIsll,c.e = Joof'/e.

All algebraic metrics on L?" can be obtained in this way.

Example 1.3.11. — Let X = P}, and L = O(1), the universal line bundle of P%. As
a model for (X, L) we consider X = P, the projective space over Spec(K°), £ =
(’)um}z( ,(1), and e = 1. A rational section s of L can be identified with a homogeneous
rational function ps € K(xq,...,x,) of degree 1.

Let p=(po:...:pn) € (P%)* \ div(s) and set F' = J(p). Let 0 < ig < n be
such that |p;,| = max;{|p;|}. Take U ~ AL (respectively U ~ A%.) as the affine set
x5, # 0 over F (respectively F'°). The point p corresponds to the morphism

P KXoy oo, Xig—1, Xig+1y-- s Xn] — F
that sends X; to p;/p;,. The extension p factors through the morphism
P K[ Xy, Xig—1, Xig+1y - - Xn] — F°
with the same definition. Then
|s(p)|| = inf {|z| | z € F*,z"'p*s € p*L}

= inf{lz| | 2 € F* 27 ps(po/Dins s Ly ooy P/ Pig) € F°}

ps(p07 e 7pn)
Pig
max;{ |p;|}

We call this the canonical metric of O(1)*" and we denote it by || - ||can-

Many other algebraic metrics can be obtained from Example 1.3.11, by considering
maps of varieties to projective spaces. Let X be a proper variety over K equipped
with a line bundle L such that L®¢ is generated by global sections for an integer
e > 1. A set of global sections in I'(X, L®¢) that generates L®¢ induces a morphism
p: X — P% and, by inverse image, a metric ¢*|| - ||can o0 L. Then Proposition 1.3.7
shows that this metric is algebraic.

Now we recall the notion of semipositivity for algebraic metrics. A curve C' in X
is vertical if it is contained in X,.
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Definition 1.3.12. — Let X be a proper algebraic variety over K, L a line bundle on
X and (X, L,e) a proper model of (X,L). We say that (X, L, e) is a semipositive
model if, for every vertical curve C in X,

deg,(C) > 0.

Let || - || be a metric on L and set L = (L,|| - ||). We say that L has a semipositive
model if there is a semipositive model (X, £, e) of (X, L) that induces the metric.

Proposition 1.3.13. — Let ¢: X1 — X5 be a morphism of proper algebraic varieties
over K and Ly a metrized line bundle on Xo with a semipositive model. Then @*fg
is a metrized line bundle on X1 with a semipositive model.

Proof. — Let (X, L2, ¢e) be a semipositive model inducing the metric of Ly. With
notations as in the proof of Proposition 1.3.7, (X1, ¢5Ls, e) is a model inducing the
metric of p*Ly. Let C be a vertical curve in X;. By the projection formula,

degwﬁg(C) = deg,,(0.C) > 0.

Hence, (X1, @5Ls, €) is semipositive. O

Example 1.3.14. — The canonical metric in Example 1.3.11 has a semipositive model:
for a vertical curve C| its degree with respect to Op?}zo(l) equals its degree with
respect to the restriction of this model to the special fibre. This restriction identifies
with Opr (1), the universal line bundle of P}, which is ample. Hence, all the metrics
obtained by inverse image of the canonical metric of O(1)*" have semipositive models.

Finally, we recall the definition of the signed measures associated with a family of
algebraic metrics.

Definition 1.3.15. — Let L;, i = 0,...,d — 1, be line bundles on X equipped with
algebraic metrics. For each i, choose a model (&}, £;, €;) that induces the metric of L;.
We can assume without loss of generality that the models X; agree with a common
model X. Let Y be a d-dimensional subvariety of X and ) C X be the closure of Y.
Let i be its normalization, )N}O the special fibre, )7((,0) the set of irreducible components
of 3707 Y = 37,] the generic fibre, and Y21 the analytification of Y. For each V € ;)7(()0),
consider the point &y € yan given by Proposition 1.3.3. Let d¢, be the Dirac delta
measure on X" supported on the image of £,y. We define a discrete signed measure
on X" by

- — degg, . r, (V)
C](L()) /\"'/\C](Ld41) ANdy = E Ordv(w)%*dgv. (136)
Vej}((’”) €n...€4—-1

This notion extends by linearity to the group of d-dimensional cycles of X.

This signed measure only depends on the metrics and not on the particular choice
of models [Cha06, Proposition 2.7]. Observe that ordy (w) is the multiplicity of the
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component V in Y, and that the total mass of this measure equals deg LowiLy_, (Y).
If L; has a semipositive model for all i and Y is effective, this signed measure is a
measure.

Remark 1.3.16. — The above measure was introduced by Chambert-Loir in [Cha06].
For the subvarieties of a projective space equipped with the canonical metric, it is
also possible to define similar measures through the theory of Chow forms [Phi94].

Remark 1.3.17. — Let K be the completion of the algebraic closure K of K. In
analogy with Remark 1.1.5, we could have defined a continuous metric on L*" as a
continuous metric on the line bundle Lé}? over X ;1(“ that is invariant under the action of

the Galois group Gal(?sep /K). The obtained theory is equivalent to the one outlined
here and the reader should have no difficulties in translating results from one to the
other. This point of view is closer to Zhang’s approach in [Zha95b],

1.4. Semipositive and DSP metrics, measures and local heights

Let K be either R or C (the Archimedean case) as in §1.1, or a field which is
complete with respect to a nontrivial non-Archimedean discrete absolute value (the
non-Archimedean case) as in §1.3. Let X be a proper variety over K. Its analytifi-
cation X" will be a complex analytic space in the Archimedean case (equipped with
an anti-linear involution when K = R), or an analytic space in the sense of Berkovich
in the non-Archimedean case. A metrized line bundle on X is a pair L = (L,|| - ||),
where L is a line bundle on X and || - || is a metric on L*". Recall that the operations
on line bundles of tensor product, dual and inverse image under a morphism extend
to metrized line bundles.

Given two metrics ||-|| and ||-||’ on L*", their quotient defines a continuous function
X — Ryq given by [|s(p)]|/||s(p)]]’ for any local section s of L not vanishing at p.
The distance between || - || and || - || is defined as the supremum of the absolute value
of the logarithm of this function. In other words,

dist([ -1, - 1) = sup  [log(lIs(p)ll/Is(p)I")] (1.4.1)
peXan\div(s)

for any nonzero rational section s of L.

Definition 1.4.1. — Let L = (L, ||-||) be a metrized line bundle on X. The metric || - ||
“|l)1>0 of semipositive smooth metrics (in

is semipositive if there exists a sequence (|
the Archimedean case) or metrics with a semipositive model (in the non-Archimedean
case) on L* such that

lim dist(]| - ||, || - ||l1) = 0.
l—o00
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If this is the case, we say that L is semipositive. The metrized line bundle L is called
DSP (for “difference of semipositive”) if there are semipositive line bundles M, N
such that L = M ® JA
Remark 1.4.2. — In the Archimedean case, if || - || is a smooth metric, one can verify
that definitions 1.4.1 and 1.1.3 are equivalent. Thus there is no ambiguity in the use
of the term semipositive metric.

In the non-Archimedean case, a metric with a semipositive model is semipositive.
In the general case, we do not know whether an algebraic and semipositive metric has
a semipositive model.

Remark 1.4.3. — Although we define our notion of semipositivity through a limit pro-
cess, we believe that a “good” definition should be intrinsic. For example, for smooth
projective varieties, in the Archimedean case [Mai00, Théoreme 4.6.1] and in the non-
Archimedean case of equi-characteristic zero [BFJ11, Theorem 5.11] our definition
is equivalent to the fact that the logarithm of the norm of a section is a plurisub-
harmonic function. We hope our definition will still agree with such an intrinsic one
when the theory of plurisubharmonic functions on Berkovich spaces matures.

We adopt the terminology of “DSP metric” by analogy with the notion of DC
function, used in convex analysis to designate a function that is a difference of two
convex functions.

The tensor product and the inverse image of semipositive line bundles are also

semipositive. The tensor product, the dual and the inverse image of DSP line bundles
are also DSP.

Example 1.4.4. — Let X = P" be the projective space over C and L = O(1). The

an

canonical metric of O(1)*" is the metric given, for p = (po : ... : p,) € P*(C), by

||s(p)”can B IllaXi{IpiI}

for any rational section s of L defined at p and the homogeneous rational function

bl

ps € C(xo, ..., x,) associated to s.

This is a semipositive metric. Indeed, consider the m-power map [m] : P* — P"
defined as [m](po : ... :pn) = (g : ... : p*). The m-th root of the inverse image by
[m] of the Fubini-Study metric of O(1)*" is the semipositive smooth metric on L*"
given by

[s(p)|lm = s (o — .2l .
(5, I /2

The family of metrics obtained varying m converges uniformly to the canonical metric.

Proposition 1.4.5. — Let Y be a d-dimensional subvariety of X and (L, | - ||:), i =
0,...,d —1, a collection of semipositive metrized line bundles on X. For each i, let
(I )10 be a sequence of semipositive smooth metrics (in the Archimedean case) or
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metrics with a semipositive model (in the non-Archimedean case) on L2 that converge
to || - |ls- Then the measures c1(Lo, || - llog) A -+ Aci(La—1,] - [la=1,1) A dy converge
weakly to a measure on X*".

Proof. — The non-Archimedean case is established in [Cha06, Proposition 2.7(b)]
and in [GubO07, Proposition 3.12]. The Archimedean case can be proved similarly. O

Definition 1.4.6. — Let L; = (L;,||-|l;),i=0,...,d—1, be a collection of semipositive
metrized line bundles on X. For a d-dimensional subvariety ¥ C X, we denote
by ¢i1(Lo) A -+ Aci(Lg_1) A dy the limit measure in Proposition 1.4.5. For DSP
bundles L; and a d-dimensional cycle Y of X, we can associate a signed measure
c1(Lo) A+~ Aci(Lg—1) A Sy on X* by multilinearity.

This signed measure behaves well under field extensions.

Proposition 1.4.7. — With the previous notation, let K' be a finite extension of K. Set
(X" Y") = (X,Y) x Spec(K') and let ¢: X'* — X be the induced map. Let ¢*L;,
1 =0,...,d — 1, be the line bundles with algebraic metrics on X' obtained by base
change. Then

Px (CI(QO*Z()) JANRRRIAY cl(ga*fd_l) AN (SY/) e Cl(ZO) A A Cl(zd,1> A (Sy/.
Proof. — This follows from [Gub07, Remark 3.10]. O
We also have the following functorial property.

Proposition 1.4.8. — Let p: X' — X be a morphism of proper varieties over K, Y' a
d-dimensional cycle of X', and L;, i = 0,...,d — 1, a collection of DSP metrized line
bundles on X. Then

@s (c1(p™Lo) A= Acr(@*La-1) Adyr) = ci(Lo) A+ Aci(Lag—1) A by, vy

Proof. — In the non-Archimedean, this follows from [Gub07, Corollary 3.9(2)]. In
the Archimedean case, this follows from the functoriality of Chern classes, the pro-
jection formula, and the continuity of the direct image of measures. O

Definition 1.4.9. — Let Y be a d-dimensional cycle of X and (L;,s;),i=0,...,d, a
collection of line bundles on X with a rational section. We say that s, ..., sq meet Y
properly if, for all I C {0,...,d}, each irreducible component of Y N (.., |div(s;)]|
has dimension d — #1.

el

The above signed measures allow to integrate continuous functions on X4". Indeed,
it is also possible to integrate certain functions with logarithmic singularities that
play an important role in the definition of local heights. Moreover, this integration is
continuous with respect to uniform convergence of metrics.
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Theorem 1.4.10. — Let Y be a d-dimensional cycle of X, L;, i = 0,...,d — 1, a
collection of semipositive metrized line bundles and (fd,sd) a metrized line bundle
with a rational section meeting Y properly.

1. The support of div(sq) has measure zero and the function log ||sq4||q is integrable
with respect to the measure c1(Lo) A--+ Aci(Lg_1) A Sy.

2. Let (|| - |lin)n>1 be a sequence of semipositive metrics that converge to || - ||; for
each 1. Then

/ ‘ log ||Sd“dC1(Z0) JARERIVAN cl(Zd,l) )%

= lim / log ||8allang €1(Lomg) A Aci(La—1.m, ,) Ady.
400 an

Proof. — In the Archimedean case, when X is smooth, this is proved in [Mai00,
théorémes 5.5.2(2) and 5.5.6(6)]. For completions of number fields this is proved in
[CT09, Theorem 4.1], both in the Archimedean and non-Archimedean cases. Their

argument can be easily extended to cover the general case. O

Definition 1.4.11. — The local height on X is the function that, to each d-dimensional
cycle Y and each family of DSP metrized line bundles with sections (L;,s;),
i = 0,...,d, such that the sections meet Y properly, associates a real number
hz, ...,Zd(Y? S0y - - - s S4) determined inductively by the properties:

1. h(@) =0;

2. if Y is a cycle of dimension d > 0, then
Lo, T, (Y; S0y - Sd) = hfo,...,fdfl (Y -div Sd3 S0y -+ del)

7/ IOgHSd”dcl(ZO)/\'--/\Cl(zd_l)/\(Sy.
Xall

In particular, for p € X(K) \ |div(so)l,
bz, (p; s0) = = log|lso(p)llo- (14.2)

Remark 1.4.12. — Definition 1.4.11 makes sense thanks to Theorem 1.4.10. We have
chosen to introduce first the measures and then heights for simplicity of the exposition.
Nevertheless, the approach followed in the literature is the inverse, because the proof
of Theorem 1.4.10 relies on the properties of local heights. The interested reader can
consult [Chal1l] for more details.

Remark 1.4.13. — Definition 1.4.11 works better when the variety X is projective.
In this case, for every cycle Y there exist sections that meet Y properly, thanks to
the moving lemma. This does not necessarily occur for arbitrary proper varieties.
Nevertheless, we will be able to define the global height (Definition 1.5.9) of any cycle
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of a proper variety by using Chow’s lemma. Similarly we will be able to define the
toric local height (Definition 5.1.1) of any cycle of a proper toric variety.

Remark 1.4.14. — When X is regular and the metrics are smooth (in the Archimedean
case) or algebraic (in the non-Archimedean case), the local heights of Definition 1.4.11
agree with the local heights that can be derived using the Gillet-Soulé arithmetic
intersection product. In particular, in the Archimedean case, this local height agrees
with the Archimedean contribution of the Arakelov global height introduced by Bost,
Gillet and Soulé in [BGS94]. In the non-Archimedean case, the local height with
respect to an algebraic metric can be interpreted in terms of an intersection product.
Assume that Y is prime and choose models (X;, £;,e;) of (X, L;) that realize the
algebraic metrics of L;. Without loss of generality, we assume that all the models X;
agree with a common model X'. The sections s can be seen as rational sections of
L; over X. With the notations in Definition 1.3.15, the equation (1.3.3) implies that

log |w|ordy (s5)

log [|s4(&v)|| = eqordy (w)

Therefore, in this case the recurrence in Definition 1.4.11(2) can be written as

hy Zd(Y?SO, cy84) = hfu’myfd_l(y -div(sq); S0, - - -5 8d—1)
log || ®
-— dy (s5°) d V).
€o...€4 Z:(O) or V(Sd ) eg£07~--»£d—1( )
Vey,

Remark 1.4.15. — 1t is a fundamental observation by Zhang [Zha95b] that the non-
Archimedean contribution of the Arakelov global height of a variety can be expressed
in terms of a family of metrics. In particular, this global height only depends on
the metrics and not on a particular choice of models, exhibiting the analogy between
the Archimedean and non-Archimedean settings. The local heights were extended by
Gubler [Gub02, Gub03] to non-necessarily discrete valuations and he also weakened
the hypothesis of proper intersection.

Remark 1.4.16. — The local heights of Definition 1.4.11 agree with the local heights
introduced by Gubler, see [Gub03, Proposition 3.5] for the Archimedean case and
[Gub03, Remark 9.4] for the non-Archimedean case. In the Archimedean case, the
local height in [Gub03] is defined in terms of a refined star product of Green currents
based on [Bur94]. The hypothesis needed in Gubler’s definition of local heights are
weaker than the ones we use. We have chosen the current definition because it is more
elementary and suffices for our purposes.
Theorem 1.4.17. — The local height function satisfies the following properties.
1. It is symmetric and multilinear with respect to ® in the pairs (L;, s;), i =
0,...,d, provided that all terms are defined.

J
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2. Let p: X' — X be a morphism of proper varieties over K, Y a d-dimensional
cycle of X', and (L;,s;), 1 =0,...,d, a collection of DSP metrized line bundles
on X with a section. Then

. * * —_ - Q >
hap*fo,...,ga*fd(y’(p S05 .-, @ Sd) = th Ed((p*Y,éo,. . .,éd),

,,,,,

provided that both terms are defined.

3. Let X be a proper variety over K, Y a d-dimensional cycle of X, and (L, s;), 1 =
0,...,d, a collection of DSP metrized line bundles on X with sections that meet
Y properly. Let f be a rational function such that the sections sg,...,S4—1, fSd
also meet Y properly. Let Z be the zero-cycle Y - div(sg) - - - div(sq—1). Then
hy 7, (Yiso, .. 8a-1.84) —hg, 1, (Yiso,...,sa-1, fsa) = log|f(Z)],
where, if Z =, myp;, then f(Z) =TI, f(pi)™.

4. Let fii = (Lg, || - I') be another choice of metric. Then

llf(,,__,7fd7hfd(y§ 805 v s Sd) - hf(),...,zd,l,f; (Y* 505 .- 73d) =
— [ toglsa)l sa e (o) A+ s (Las) Aoy
Xﬂl’l
is independent of the choice of sections.

Proof. — In the Archimedean case, statement (1) is [Gub03, Proposition 3.4], state-
ment (2) is [Gub03, Proposition 3.6]. In the non-Archimedean case, statement (1)
and (2) are [Gub03, Remark 9.3]. The other two statements follow easily from the
definition. O

1.5. Metrics and global heights over adelic fields

To define global heights of cycles, we first introduce the notion of adelic field, which
is a generalization of the notion of global field. In [Gub03] one can find a more general
theory of global heights based on the concept of M-fields.

Definition 1.5.1. — Let K be a field and 90 a family of absolute values on K with
positive real weights. The elements of 91 are called places. For each place v € MM we
denote by | - |, the corresponding absolute value, by n, € R the weight, and by K,
the completion of K with respect to | - |,. We say that (K,9) is an adelic field if

1. for each v € M, the absolute value | - |, is either Archimedean or associated to
a nontrivial discrete valuation;

2. for each o € K, |a|, = 1 except a for a finite number of v.

For an adelic field (K,9) and o € K*, the defect of a is
def(a) = Z Ny log |aly.

veEM
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Since def: K* — R is a group homomorphism, we have that def(K*) is a subgroup
of R. If def(K*) = 0, then K is said to satisfy the product formula. The group of
global heights of K is R/def(K*).

Observe that the complete fields K, are either R, C or of the kind of fields consid-
ered in §1.3.

Definition 1.5.2. — Let (K,91) be an adelic field and F a finite extension of K. For
each v € M, put N, for the set of absolute values | - |, of F that extend | - |,, with
weight
ny = Lo Ko
v F:K
Set M =[], M,. Then (F,N) is an adelic field. In this case, we say that (IF,)) is an
adelic field extension of (K, IN).

The classical examples of adelic fields are number fields and function fields of curves.

Example 1.5.3. — Let Mg be the set of the Archimedean and p-adic absolute values
of @, normalized in the standard way, with all weights equal to 1. Then (Q,Mg)
is an adelic field that satisfies the product formula. We identify 9g with the set
{oo} U {primes of Z}. For a number field K, the construction in Definition 1.5.2 gives
an adelic field (K, k) which satisfies the product formula too.

Example 1.5.4. — Consider the function field K(C') of a smooth projective curve C
over a field k. For each closed point v € C' and a € K(C)*, we denote by ord,(«) the
order of « in the discrete valuation ring O¢,. We associate to each v the absolute
value and weight given by

lafy = "y = [k(v) < k]

with

e if #k = oo,
Cl. =
T sk i #k < oo

Let Mg () denote this set of absolute values and weights. The pair (K(C), Mg (c))
is an adelic field which satisfies the product formula, since the degree of a principal
divisor is zero.

More generally, let K be a finite extension of K(C). Following Definition 1.5.2
we obtain an adelic field extension (K,MMg,kcy). In this geometric setting, this
construction can be explicited as follows. Let m: B — C' be a dominant morphism
of smooth projective curves over k such that the finite extension K(C') — K can be
identified with 7*: K(C) — K(B). For a closed point v € C, the absolute values
of K that extend |- |, are in bijection with the closed points of the fiber of v. For each
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closed point w € 7~ 1(v), the corresponding absolute value and weight are given, for
B e K(B)*, by
Lo e [k(w) : K]
Plo=c ™ e = () RO
where e,, is the ramification index of w over v. Observe that the structure of adelic
field on K depends on the extension and not just on the field K(B). For instance,
(K(C), Mg cy) corresponds to the identity map C' — C in the above construction,
but other finite morphism 7: C' — C may give a different structure of adelic field on
K(C). The projection formula for the map 7 implies that, for each v € Mg (c), the
equation
[K: K(C) =) [Ky,: K(C),]
wlv

is satisfied. From this, it is easy to deduce that (K, Mg,k (c)) satisfies the product
formula.

A simple example of an adelic field that does not satisfy the product formula is
constructed below. This kind of adelic fields can be useful when studying arithmetic
intersection on moduli spaces (see for instance [BBKO07, §6]).

Example 1.5.5. — Let N > 2 be an integer write My = {p € Mg | p t N} and
K= (Q,My). Then K is an adelic field and

def(K*) = Zlog(p).
pIN

Definition 1.5.6. — Let (K, 9) be an adelic field. Let X be a proper variety over K and
L aline bundle on X. For each v € M set X, = X xSpec(K, ) and L,, = L xSpec(K,).
A metric on L is a family of metrics || - ||,, v € M, where || - ||, is a metric on L3". We
will denote by L = (L, (||-||+)) the corresponding metrized line bundle. This metric is
said to be semipositive (respectively DSP) if || - ||, is semipositive (respectively DSP)
for all v € 9.

Let Y be a d-dimensional cycle of X and (L;, s;), i = 0,...,d, DSP metrized line
bundles on X with rational sections meeting Y properly. For v € 91, we note

hv,fu,...,fd(y§ S05-+-584) = hZo,v,.».id,u (Yo: 80,05 -5 Sdw)

where s; , is the rational section of L;, induced by s;.

For cycles defined over an arbitrary adelic field, the global heights with respect to
DSP metrized line bundles may not be always defined. An obvious class of cycles
where the global height is well-defined is the following.

Definition 1.5.7. — Let (K,90) be an adelic field, X a proper variety over K and Lj,
i =0,...,d, a family of DSP metrized line bundles on X. Let Y be a d-dimensional
irreducible subvariety of X. We say that Y is integrable with respect to Ly, ..., L if
there is a birational proper map ¢: Y’ — Y with Y’ projective, and rational sections
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s; of p*Li, i =0,...,d, meeting Y’ properly, such that for all but a finite number of
v €M,

h (Y';80,...,84) = 0.

v,0*Lo,...,p* Ly

A d-dimensional cycle is integrable if all its components are integrable.

It is clear from the definition that the notion of integrability of cycles is closed under
tensor products of DSP metrized line bundles. In addition, it satisfies the following
properties.

Proposition 1.5.8. — Let (K, 9) be an adelic field, X a proper variety over K and L;,
1=0,...,d, a family of DSP metrized line bundles on X.

1. Let Y be a d-dimensional irreducible subvariety of X which is integrable with
respect to L;, i = 0,...,d. Let ¢: Y' —Y be a proper birational map, with Y’
projective, and s;, i = 0,...,d, rational sections of ¢*L; meeting Y' properly.

Then

h (Y';80,...,84) =0

U,Lp*fo,...,kp*fd,
for all but a finite number of v € M.

2. Lety: X' — X be a morphism of proper varieties over K and Y a d-dimensional
cycle of X'. Then Y is integrable with respect to ¥* Lo, ...,¢¥* Ly if and only if
.Y is integrable with respect to Lo, ..., Lq.

Proof. — To prove (1), we start by assuming that there are rational sections s,
1=0,...,d, of *L; meeting Y’ properly such that

1ot o
hvﬁp*for__w)*fd(y 80y .-+, 8y) =0

for all but a finite number of v € 9. Since Y’ is projective, there are rational sections
st of p*L;, 1 =0,...,d, such that, for any partition I U J = {0, ...,d}, both families
of sections {s;,i € I,s,j € J} and {s},i € I,s,j € J} meet Y’ properly. Using the

bl 7 )
definition of adelic field and Theorem 1.4.17(3) we can deduce that

h Y'isg,...,84) =0

Uv‘P*ZOv--v‘P*Zd(

for all but a finite number of v € 9, which proves the statement in this case.
We prove now the general case. Then there is a birational proper map

U
Yy 2y,

with Y projective, and sections s, of ¢"*L;, i = 0,...,d, meeting Y properly such
that

_ _ ", o o
hv,cp*L(),...,ga*Ld(Y 180y ---58y) =0
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for all but a finite number of v € 9. There is a commutative diagram of proper

birational morphisms
!

v 2 Ly

Rt
1

Y/// (p YI
Since Y’ and Y are projective, we can find rational sections s}, i =0, ..., d, of p*L;
meeting Y’ properly and such that the family of sections ¢”*s;, i = 0,...,d, meet
Y properly, and rational sections s/, i =0, ..., d, of ¢'*L; meeting Y properly and

such that the family of sections ¢'""*s/

, 1 =20,...,d, meet Y’ properly. Then we
deduce the result in this case from the previous case and Theorem 1.4.17(2).

The proof of (2) can be done in a similar way. O

Definition 1.5.9. — Let X be a proper variety over K, Lo, ..., Ly DSP metrized line
bundles on X, and Y an integrable d-dimensional irreducible subvariety of X. Let
Y’ and sgp,...,sq be as in Definition 1.5.7. The global height of Y with respect to
S0, - -+, 8q is defined as
hp 1,(Yiso,...,s8a) = Z Ny hU»‘P*ZOw“ﬁD*—Ed(Y/; S0y---584) € R.
veM

The global height of Y, denoted hy
the quotient group R/def(K*). The global height of integrable cycles is defined by
linearity.

7,(Y), is the class of hy 7 (Y;s0,...,5q) in

Observe that the global height is well-defined as an element of R/def(K*) because
of Theorem 1.4.17(3). In particular, if K satisfies the product formula, the global
height is a well-defined real number.

Proposition 1.5.10. — Let (F, M) be a finite adelic field extension of (K, 9M). Let X be
a K-variety, L;, i = 0, ...,d, DSP metrized line bundles on X and Y a d-dimensional
integrable cycle on X. Let m: Xgp — X be the morphism obtained by base change.
Denote by Yy and 7 L;, i = 0,...,d — 1, the cycle and DSP metrized line bundles

obtained by base change. Then
hn*E,....,w*Ed(YF) =hz, Zd(Y) in R/ def(FF).
Proof. — This is proved by induction using Proposition 1.4.7 in the algebraic case

and the formula for the change of variables of an integral in the smooth case. Then
the semipositive case follows by continuity and the DSP case by multilinearity. [

Theorem 1.5.11. — The global height of integrable cycles satisfies the following prop-
erties.

1. It is symmetric and multilinear with respect to tensor products of DSP metrized
line bundles.
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2. Let o: X' — X be a morphism of proper varieties over K, L;,i=0,....d, DSP
metrized line bundles on X. Let Y be a d-dimensional cycle of X', integrable
with respect to the metrized line bundles * Lo, ..., 0" Lq. Then

b Tz, (V) =g, 7, (0Y).

Proof. — The first statement follows from Theorem 1.4.17(1), while the second fol-
lows readily from Proposition 1.5.8(2) and Theorem 1.4.17(2). O

We turn now our attention to number fields and function fields.

Definition 1.5.12. — A global field is a finite extension K/Q or K/K(C) for a smooth
projective curve C over a field k, with the structure of adelic field given in exam-
ples 1.5.3 or 1.5.4, respectively. To lighten the notation, we will usually denote those
global field by K and the set of places by Mk, although, in the function field case,
the structure of adelic field depends on the particular extension.

Our use of the terminology “global field” is slightly more general than the usual one
where, in the function field case, the base field is finite and the extension is separable.

Definition 1.5.13. — Let K be a global field. Let X be a proper variety over K and L a
line bundle on X . For each v € Mg set X, = X xSpec(K,) and L, = LxSpec(K,). A
metric on L is called quasi-algebraic if there exists a finite subset S C Mk containing
the Archimedean places, an integer e > 1 and a proper model (X, L, e) over K¢ of
(X, L) such that, for each v ¢ S, the metric | - ||, is induced by the localization of
this model at v.

For global fields and quasi-algebraic metrics, all cycles are integrable.

Proposition 1.5.14. — Let K be a global field and X a proper variety over K of di-
mension n. Let d < n and L;, i = 0,...,d, a family of line bundles with quasi-
algebraic DSP metrics. Then every d-dimensional cycle of X is integrable with respect
to Zo,...,Zd.

Proof. — 1Tt is enough to prove that every prime cycle is integrable. Applying Chow’s
lemma to the support of the cycle and using that the inverse image of a quasi-algebraic
metric is quasi-algebraic, we are reduced to the case when X is projective.

We proceed by induction on the dimension of Y. For Y = &, the statement is
clear, and so we consider the case when d = dim(Y") > 0. Let Y be a d-dimensional
cycle of X and s;, ¢ = 0,...,d, rational sections of L; that intersect Y properly.
Let Y be the normalization of Y. By the hypothesis of quasi-algebricity, there is a
finite subset S C Mk containing the Archimedean places such that there exists a
normal proper model Y over K¢ of Y and models L; of L?e’ ly,1=0,...,d, for some

integers e; > 1, all of them being line bundles over J. Then s?e“

y 1s a nonzero
rational section of £, and so it defines a finite number of vertical components. Let
v ¢ S be a place that is not below any of these vertical components. Let ), be
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the fibre of Y over v. Let V;, j = 1,...,I, be the components of this fibre, and §;
the corresponding points of Y#" given by Proposition 1.3.3. On the one hand, the
measure cl(fo) Ao A cl(qu) A dy is concentrated on these points. On the other
hand, by Proposition 1.3.8, ||sq4(§;)||4,, = 1 for all j. Hence,

b, 2oz, (Yis0,. o osa) =h, ¢ 7, (Y -div(sa); so,. .., 8a-1),

because of the definition of local heights. The statement follows then from the induc-
tive hypothesis. O
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CHAPTER 2

THE LEGENDRE-FENCHEL DUALITY

In this chapter, we explain the notions of convex analysis that we will use in our
study of the arithmetic of toric varieties. The central theme is the Legendre-Fenchel
duality of concave functions. A basic reference in this subject is the classical book by
Rockafellar [Roc70] and we will refer to it for many of the proofs.

Although the usual references in the literature deal with convex functions, we
will work instead with concave functions. These are the functions which arise in the
theory of toric varieties. In this respect, we remark that the functions which are called
“convex” in the classical books on toric varieties [KKMS73, Ful93] are concave in
the sense of convex analysis.

2.1. Convex sets and convex decompositions

Let Ng ~ R™ be a real vector space of dimension n and Mg = Ny its dual space.
The pairing between € Mg and u € Ng will be alternatively denoted by (x, u), x(u)
or u(x).

A non-empty subset C' of Ny is convez if, for each pair of points uy,us € C, the
line segment

U1U2:{tul+(1‘—t)’LL2|O§t§1}

is contained in C. Throughout this text, convex sets are assumed to be non-empty.
A non-empty subset o C Ny is a cone if Ao = ¢ for all A € R.

The affine hull of a convex set C, denoted aff (C), is the minimal affine space which
contains it. The dimension of C' is defined as the dimension of its affine hull. The
relative interior of C, denoted ri(C), is defined as the interior of C relative to its
affine hull. The recession cone of C, denoted by rec(C), is the set

rec(C)={ue Ng |C+ucCC}.
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It is a cone of Ng. The cone of C is defined as
() = Foo{C X [11] € Vi x Bap.

It is a closed cone. If C is closed, then rec(C) x {0} = ¢(C) N (Ng x {0}).

Definition 2.1.1. — Let C be a convex set. A convex subset F' C C is called a face
of C if, for every closed line segment wyuz; C C such that ri(ujuz) N F # @, the
inclusion uyuz C F holds. A face of C of codimension 1 is called a facet. A non-
empty subset F' C C is called an exposed face of C' if there exists © € Mg such
that

F={ueC|(z,u) <(z,v),VveC}

Any exposed face of a convex set is a face, and the facets of a convex set are always
exposed. However, a convex set may have faces which are not exposed. For instance,
think about the four points of junction of the straight lines and bends of the boundary
of the inner area of a racing track in a stadium.

Definition 2.1.2. — Let II be a non-empty collection of convex subsets of Ng. The
collection II is called a conver subdivision if it satisfies the conditions:

1. every face of an element of II is also in II;
2. every two elements of II are either disjoint or they intersect in a common face.

If II satisfies only (2), then it is called a convex decomposition. The support of II is
defined as the set [II] = o €. We say that I is complete if its support is the
whole of Ng. For a given set E C Ng, we say that Il is a convex subdivision (or
decomposition) in E whenever |II| C E. A convex subdivision in F is called complete
if [II| = E.

For instance, the collection of all faces of a convex set defines a convex subdivision of
this set. The collection of all exposed faces of a convex set is a convex decomposition,
but it is not necessarily a convex subdivision.

In this text, we will be mainly concerned with the polyhedral case. Since we will
only deal with polyhedra which are convex, we call them polyhedra for short.

Definition 2.1.3. — A polyhedron of Ng is a convex set defined as the intersection of
a finite number of closed halfspaces. It is called strongly convez if it does not contain
any line. A polyhedral cone is a polyhedron o such that Ao = ¢ for all A > 0. A
polytope is a bounded polyhedron.

For a polyhedron, there is no difference between faces and exposed faces.
By the Minkowski-Weyl theorem, polyhedra can be explicitly described in two
dual ways, either by the H-representation, as an intersection of half-spaces, or by
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the V-representation, as the Minkowski sum of a cone and a polytope [Roc70, The-
orem 19.1]. An H-representation of a polyhedron A in N is a finite set of affine
equations {(a;, @)} 1<j<x C Mr X R so that

A= () {ueNel(aju)+a; >0} (2.1.1)

1<j<k

With this representation, the recession cone can be written as

rec(A) = ()| {u€ Na|(aj,u) >0}

1<j<k
A V-representation of a polyhedron A’ in Nk consists in a set of vectors {bj}lg <k
in the tangent space Ty Ngr(~ Ng) and a non-empty set of points {b;}ri1<;<i C Nr
such that
A = cone(by, ..., bg) + conv(bgr,...,b) (2.1.2)

where
k
COIle(b17 . ,bk) = { Z/\jb]‘ ’ )\j > 0}
j=1

is the cone generated by the given vectors (with the convention that cone() = {0})
and

l l
conv(byt1, .-, bi) ;{ > Ab; ‘ A>0, >  N = 1}
j=k+1 j=k+1
is the convex hull of the given set of points. With this second representation, the
recession cone can be obtained as

rec(A’) = cone(by, ..., bg).

Definition 2.1.4. — A polyhedral complex in Np is a finite convex subdivision whose
elements are polyhedra. A polyhedral complex is called strongly convez if all of its
polyhedra are strongly convex. It is called conic if all of its elements are cones. A
strongly convex conic polyhedral complex is called a fan. If IT is a polyhedral complex,
we will denote by II? the subset of i-dimensional polyhedra of ¥. In particular, if ¥
is a fan, ¥¢ is its subset of i-dimensional cones.

There are two natural processes for linearizing a polyhedral complex.

Definition 2.1.5. — The recession of 11 is defined as the collection of polyhedral cones
of Ng given by
rec(IT) = {rec(A) | A € IT}.

The cone of II is defined as the collection of cones in Ng x R given by

c(Il) = {c(A) | A €T} U {o x {0} | 0 € rec(Il) }.
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It is natural to ask whether the recession or the cone of a given polyhedral complex
is a complex too. The following example shows that this is not always the case.

Example 2.1.6. — Let II be the polyhedral complex in R? containing the faces of the
polyhedra

A =A{(z1,22,0)| 21,22 > 0}, Ag = {(z1,22,1)| 21 + x2, 21 — 2 > 0}.

Then rec(A;) and rec(Ay) are two cones in R? x {0} whose intersection is the cone
{(z1,22,0)|z2,21 — 22 > 0}. This cone is neither a face of rec(A;) nor of rec(As).
Hence rec(IT) is not a complex and, consequently, neither is ¢(II). In Figure 1 we
see the polyhedron A; in light grey, the polyhedron Ay in darker grey and rec(As) as
dashed lines.

€3

> )

1

FIGURE 1.

Therefore, to assure that rec(Il) or ¢(II) are complexes, we need to impose some
condition on II. This question has been addressed in [BS11]. Because of our appli-
cations, we are mostly interested in the case when II is complete. It turns out that
this assumption is enough to avoid the problem raised in Example 2.1.6.

Proposition 2.1.7. — Let 11 be a complete polyhedral complex in Ng. Then rec(II)
and c(IT) are complete conic polyhedral complexes in Nr and Nr x R>q, respectively.
If, in addition, 11 is strongly convex, then both rec(Il) and c(II) are fans.

Proof. — This is a particular case of [BS11, Theorem 3.4]. O

Definition 2.1.8. — Let II; and II; be two polyhedral complexes in Ng. The complex
of intersections of II; and Il is defined as the collection of polyhedra

II, - Il = {Al ﬁAQ‘Al eI}, Ay € HQ}
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Lemma 2.1.9. — The collection 11y - Il is a polyhedral complex. If 11y and Iy are
complete, then

rec(Il - IIy) = rec(IIy) - rec(Ily).

Proof. — Using the H-representation of polyhedra, one verifies that, if A; and Ay are
polyhedra with non-empty intersection, then any face of Ay N Ay is the intersection
of a face of Ay with a face of A5. This implies that II; - Il is a polyhedral complex.

Now suppose that IT; and II; are complete. Let o € rec(IT; - II). This means that
o =rec(A) and A = Ay N Ay with A; € II;. It is easy to verify that A # @ implies
rec(A) = rec(A;) Nrec(Az). Therefore o € rec(Ily) - rec(Ily). This shows

rec(Il; - ) C rec(Ily) - rec(Ilz).

Since both complexes are complete, they agree. O

We consider now an integral structure in Ng. Let N =~ Z" be a lattice of rank n
such that Ng = N@R. Set M = NV = Hom(N, Z) for its dual lattice so Mg = M @R.
We also set Ng = N ® Q and Mg =M ® Q.

Definition 2.1.10. — Let A be a polyhedron in Ng. We say that A is a lattice polyhe-
dron if it admits a V-representation as (2.1.2) with integral vectors and points, that is,
with b; € N for j =1...,l. We say that it is rational if it admits a V-representation
with b; € Ng for j =1,...,1.

Observe that any rational polyhedron admits an H-representation as (2.1.1) with
aj € M and aj € Z, for j =1,... k.

Definition 2.1.11. — Let II be a strongly convex polyhedral complex in Ng. We say
that II is lattice (respectively rational) if all of its elements are lattice (respectively
rational) polyhedra. For short, a strongly convex rational polyhedral complex is called
an SCR polyhedral complex. A conic SCR polyhedral complex is called a rational fan.

Remark 2.1.12. — The statement of Proposition 2.1.7 is compatible with rational
structures. Namely, if II is rational, the same is true for rec(IT) and c(II).

Corollary 2.1.13. — The correspondence 11 — c(II) is a bijection between the set of
complete polyhedral complezes in Ng and the set of complete conical polyhedral com-
plezes in Nr x R>qg. Its inverse is the correspondence that, to each conic polyhedral
complez ¥ in Ngr XR>( corresponds the complex in Nr obtained by intersecting ¥ with
the hyperplane Ng x {1}. These bijections preserve rationality and strong convezity.

Proof. — This is [BS11, Corollary 3.12]. O
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2.2. The Legendre-Fenchel dual of a concave function

Let Ng and My be as in the previous section. Set R = RU{—o0} with the natural
order and arithmetic operations. A function f: Ng — R is concave if
fQtur + (1= tug) = tf(ur) + (1 —t) f(uz)
for all uj,us € N, 0 <t <1 and f is not identically —co. Observe that a function
f is concave in our sense if and only if —f is a proper convex function in the sense
of [Roc70]. The effective domain dom(f) of such a function is the subset of points
of Ng where f takes finite values. It is a convex set. A concave function f: Ng — R
defines a concave function with finite values f: dom(f) — R. Conversely, if f: C — R
is a concave function defined on some convex set C', we can extend it to the whole of
Ng by declaring that its value at any point of Ng \ C is —oco. We will move freely
from the point of view of concave functions on the whole of N with possibly infinite
values to the point of view of real-valued concave functions on arbitrary convex sets.
A concave function is closed if it is upper semicontinuous. This includes the case
of continuous concave functions defined on closed convex sets. Given an arbitrary
concave function, there exists a unique minimal closed concave function above f.
This function is called the closure of f and is denoted by cl(f).
Let f be a concave function on Ng. The Legendre-Fenchel dual of f is the function

VMg — R, z+— uien]\fim(<x,u> — f(u)).

It is a closed concave function. The Legendre-Fenchel duality is an involution between
such functions: if f is closed, then f¥V = f [Roc70, Corollary 12.2.1]. In fact, for
any concave function f we have f¥V = cl(f).

The effective domain of fV is called the stability set of f. It can be described as

stab(f) = dom(f") = {z € Mg | (z,u) — f(u) is bounded below}.

Example 2.2.1. — The indicator function of a convex set C' C Ng is the concave
function ¢ defined as (o (u) = 0 for u € C and 1 (u) = —oo for u & C. Observe that
e is the logarithm of the characteristic function of C'. This function is closed if and
only if C' is a closed set.

The support function of a convex set C' is the function

Ve Mg — ]R, r — inf <.’L’, ?l,>.
ueC

It is a closed concave function. A function f: Mg — R is called conical if f(A\zx) =
Af(z) for all A > 0. The support function V¢ is conical. The converse is also true:
all conical closed concave functions are of the form ¥ for a closed convex set C.

We have 1, = V¢ and VU, = cl(i¢) = 1. Thus, the Legendre-Fenchel duality
defines a bijective correspondence between indicator functions of closed convex subsets
of Nr and closed concave conical functions on Mg.
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Next result shows that the Legendre-Fenchel duality is monotonous.

Proposition 2.2.2. — Let f and g be concave functions such that g(u) < f(u) for
all w € Ng. Then dom(g) C dom(f), stab(g) D stab(f) and g¥(z) > fV(z) for
all € M.

Proof. — Tt follows directly from the definitions. O
The Legendre-Fenchel duality is continuous with respect to uniform convergence.

Proposition 2.2.3. — Let (f;)i>1 be a sequence of concave functions which converges
uniformly to a function f. Then f is a concave function and the sequence (f)i>1
converges uniformly to fV. In particular, there is some ig > 1 such that dom(f;) =
dom(f) and stab(f;) = stab(f) for all i > iy.

Proof. — Clearly f is concave. Let € > 0. Then there is an iy such that, for all i > g,
f—e < f; < f+e. By Proposition 2.2.2 this implies dom(f;) = dom(f £¢) = dom(f)
and stab(f;) = stab(f 4 ¢) = stab(f) and that

fP—e=(f+e)V < <(f-e) =f"+e,
which implies the uniform convergence of f to fV. O

The classical Legendre duality of strictly concave differentiable functions can be
described in terms of the gradient map V f, called in this setting the “Legendre trans-
form”. We will next show that the Legendre transform can be extended to the general
concave case as a correspondence between convex decompositions.

Let f be a concave function on Ng. The sup-differential of f at a point u € Ng is
defined as the set

Of(u) ={z € Mg | (z,v —u) > f(v) — f(u) for all v € Ny}

if u € dom(f), and the empty set if u ¢ dom(f). For an arbitrary concave function,
the sup-differential is a generalization of the gradient. In general, 0 f(u) may contain
more than one point, so the sup-differential has to be regarded as a multi-valued
function.

We say that f is sup-differentiable at a point u € Ny if 9f(u) # @. The effective
domain of df, denoted dom(Jf), is the set of points where f is sup-differentiable. For
a subset F C Nr we define

of(E) = | of(u).
ueE
In particular, the image of 0f is defined as im(9f) = 0f(Ng).

The sup-differential f(u) is a closed convex set for all u € dom(9f). It is bounded

if and only if u € ri(dom(f)). Hence, in the particular case when dom(f) = Ng, we
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have that 0f(u) is a bounded closed convex subset of My for all u € Ng. The effective
domain of the sup-differential is not necessarily convex but it differs very little from
being convex since, by [Roc70, Theorem 23.4], it satisfies

ri(dom(f)) C dom(9f) C dom(f).
Let f be a closed concave function and consider the pairing
Pp: Mg x Ng — R, (u,z) —> f(u) + fV(z) — (z,u). (2.2.1)

This pairing satisfies Py(u,z) < 0 for all u, .

Proposition 2.2.4. — Let f be a closed concave function on Ng. For u € Ny and
x € Mg, the following conditions are equivalent:

1. z € 0f(u);

2. uedfv(z);

3. Ps(u,z) =0.
Proof. — This is proved in [Roc70, Theorem 23.5]. O

If f is closed, then im(9f) = dom(df") and so the image of the sup-differential is
close to be a convex set, in the sense that

ri(stab(f)) C im(9f) C stab(f). (2.2.2)

Definition 2.2.5. — Let f be a closed concave function on Ng. We denote by II(f)
the collection of all sets of the form

Cp = 0f" ()
for some x € stab(f).

Lemma 2.2.6. — Let f be a closed concave function on Ng. Let © € stab(f). Then
Cy = {u € Nr | Ps(u,z) = 0}. In other words, the set Cy is characterized by the
condition

fu) = (x,u) — fY(z) forue C, and f(u) < (z,u) — f"(x) forug Cy. (2.2.3)

Thus the restriction of f to Cy is an affine function with linear part given by x, and
C, is the maximal subset where this property holds.

Proof. — The first statement follows from the equivalence of (2) and (3) in Propo-
sition 2.2.4. The second statement follows from the definition of P; and its non-
positivity. O

The hypograph of a concave function f is defined as the set
hypo(f) = {(u,A\) | u € Ng, A < f(u)} € Ng x R.

A face of the hypograph is called non-vertical if it projects injectively in Ng.
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Proposition 2.2.7. — Let f be a closed concave function on Ng. For a subset C C Ng,
the following conditions are equivalent:

1. C eII(f);
2. C={ue Ng|zedf(u)} for a x € Mg;
3. there exist xc € Mg and Ac € R such that the set {(u,{zc,u) — Ac) | u € C}
is an exposed face of the hypograph of f.
In particular, the correspondence
Ce = {(u, (z,u) — f¥(2)) | u € C,}
is a bijection between II(f) and the set of non-vertical exposed faces of hypo(f).

Proof. — The equivalence between the conditions (1) and (2) comes directly from
Proposition 2.2.4. The equivalence with the condition (3) follows from (2.2.3). 0O

Proposition 2.2.8. — Let f be a closed concave function. Then II(f) is a convex
decomposition of dom(9f).

Proof. — The collection of non-vertical exposed faces of hypo(f) forms a convex
decomposition of a subset of Ng x R. Using Proposition 2.2.7 the projection to
Ny of this decomposition agrees with II(f) and so, it is a convex decomposition of

[TL(f)| = dom(0f). O

We need the following result in order to properly define the Legendre-Fenchel cor-
respondence for an arbitrary concave function as a bijective correspondence between
convex decompositions.

Lemma 2.2.9. — Let f be a closed concave function and C € 1I(f). Then for any
ug € ri(C),

() 0 (w) = 0 (uo).

ueC

Proof. — Fix xp € dom(df") such that C = C,, and up € ri(C). Let z € 9f(uyp).
Then
(x,v —ug) > f(v) — f(ug) for all v € Ng. (2.2.4)

Let u € C. By (2.2.3), we have f(u)— f(uo) = (zo, u—1ug) and so the above inequality
implies (z,u — ug) > (xo,u — ug). The fact ug € ri(C) implies ug + A(ug — u) € C for
some small A > 0. Applying the same argument to this element we obtain the reverse
inequality (z,u — ug) < {zg,u — up) and so

(x — xo,u —up) = 0. (2.2.5)
In particular, f(u) — f(uo) = (zo,u — ug) = (x,u — up) and from (2.2.4) we obtain

(x,v—u) = (x,v—ug) + flug) — f(u) > f(v) — f(u) for all v € Ng.
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Hence © € (),co0f(u) and so Of(ug) C (\,ec Of(u), which implies the stated
equality. O

Definition 2.2.10. — Let f be a closed concave function. The Legendre-Fenchel cor-
respondence of f is defined as

LET(f) —T(fY), Cr ) 0f(w).

uel

By Lemma 2.2.9, Lf(C) = 9f(up) for any ug € ri(C). Hence,
Lf(C) € 1(fY).

Definition 2.2.11. — Let E, E’ be subsets of Ng and My respectively, and IT, IT' convex
decompositions of F and E’, respectively. We say that II and II' are dual convex
decompositions if there exists a bijective map IT — II', C' — C* such that

1. for all C, D € II we have C' C D if and only if C* D> D*,;

2. for all C € II the sets C' and C'* are contained in orthogonal affine spaces of Ny
and Mp, respectively.

Theorem 2.2.12. — Let f be a closed concave function, then Lf is a duality between
I(f) and T(fY) with inverse (Lf)~1 = LfY.

Proof. — We will prove first that LfY = (L£f)~!. Fix C € II(f) and set C' = Lf(C).
Let yo € Mg such that C = Cy, and let ug € ri(C). Hence ug € Cy, = 9f" (yo) and
50 yo € Of(up) = C”" by Proposition 2.2.4 and Lemma 2.2.9. Hence

LIV(LFC) =LY (C) = () of¥(x) COf¥(yo) = C.
zeC’

On the other hand, let o € ri(C"). In particular, xg € 9f(uo) and so ug € OfY (z0) =
LfY(C") for all ug € C. Tt implies

CCL(C) = LI(LI(C)).

Thus LfV(Lf(C)) = C and applying the same argument to f¥ we conclude that
LfY = (Lf)~" and that Lf is bijective.

Now we have to prove that £ is a duality between I1( f) and TI(fV). Let C, D € II(f)
such that C C D. Clearly, Lf(C) D Lf(D). The reciprocal follows by applying the
same argument to f¥. The fact that C' and £f(C) lie in orthogonal affine spaces has
already been shown during the proof of Lemma 2.2.9 above, see (2.2.5). |

Definition 2.2.13. — Let f be a closed concave function. The pair of convex decom-
positions (IT( f), II(f¥)) will be called the dual pair of convex decompositions induced

by f.
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In particular, for C' € TI(f) put C* := Lf(C). For any ug € ri(C) and zq € ri(C*),
we have
C ={ue Ng| Pf(u,z0) =0} and C* = {z € Mg | Ps(uo,z) = 0}.

Following (2.2.3), the restrictions f|c and fY|c~ are affine functions. Observe that
we can recover the Legendre-Fenchel dual from the Legendre-Fenchel correspondence
by writing, for z € C* and any u € C,

(@) = (@,u) = f(u).

Example 2.2.14. — Let || - |2 denote the Euclidean norm on R? and B; the unit
ball. Consider the concave function f: B; — R defined as f(u) = —||ull2. Then
stab(f) = R? and the Legendre-Fenchel dual is the function defined by fY(z) = 0
if |z]l2 < 1 and fY(z) = 1 — ||z||2 otherwise. The decompositions II(f) and II(fY)
consist of a collection of pieces of three different types and the Legendre-Fenchel
correspondence Lf: II(f) — TI(fV) is given, for z € S, by

LF{0}) =By, Lf([0,1]-2) ={z}, LF({z}) =R>1 2.

In the above example both decompositions are in fact subdivisions. But this is not

always the case, as shown by the next example.
Example 2.2.15. — Let f: [0,1] — R the function defined by

—ulog(u) if0<u<e

fluy=<e! ifetl<u<1l-—e™t,

—(1—wu)log(l —u) ifl—et<u<l.
Then stab(f) = R and the Legendre-Fenchel dual is the function f¥(z) = z—e® ! for
x <0and fV(z) = —e @ ! for z > 0. Then dom(df) = (0,1) and dom(df") = R.
Moreover,

I(f) = 0.eHufle ™ 1—e ' fU@—e 1), T(fY)=R.

The Legendre-Fenchel correspondence sends bijectively (0,e7!) to Rsg and (1—e~1, 1)
to R<o, and sends the element [e™!,1 — e '] to the point {0}. In this example, I1(f)
is not a subdivision while IT(fV) is.

2.3. Operations on concave functions and duality

In this section we consider the basic operations on concave functions and their
interplay with the Legendre-Fenchel duality.
Let f1 and f2 be two concave functions on Ny such that their stability sets are not
disjoint. Their sup-convolution is the function
fiB fo: Np — R, v+— sup (fi(u1)+ fo(uz)).

u1+uz:v
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This is a concave function whose effective domain is the Minkowski sum dom(f;) +
dom(f2). This operation is associative and commutative whenever the terms are
defined.

The operations of pointwise addition and sup-convolution are dual to each other.
When working with general concave functions, there are some technical issues in this
duality that will disappear when considering uniform limits of piecewise affine concave
functions.

Proposition 2.3.1. — Let f1,..., fi be concave functions on Ng.
1. Ifstab(f1) N---Nstab(f;) # &, then
(h8 B = 4+ .
In particular, stab(f; B --- 8 f;) = stab(f1) N--- Nstab(f;).
2. If dom(fy)N---Ndom(f;) # @, then
(cl(fr) + -+ el(fi)” = cl(fy BB ).
3. Ifri(dom(fy)) N---Nri(dom(f;)) # @, then
(fit o+ f) =fH 8B
In particular, stab(f1 + - -+ fi) = stab(f1) + - - - + stab(f;).
Proof. — This is proved in [Roc70, Theorem 16.4]. d

Remark 2.3.2. — When some of the f;, say fi,..., fi, are piecewise affine, the state-
ment (3) of the previous proposition holds under the weaker hypothesis [Roc70,
Theorem 20.1]

dom(f1) N---Ndom(fr) Nri(dom(fry1)) N---Nri(dom(f;)) # 2.

Let f: Ng — R be a function. For A > 0, the left and right scalar multiplication of f
by A are the functions defined, for u € Ng, by (Af)(u) = Af(u) and (fA)(u) = Af(u/A)
respectively. For a point ug € Ng, the translate of f by wg is the function defined as
(Tuo f)(u) = f(u—wup) for u € Ng. If f is concave, then its left and right multiplication
by a scalar and its translation by a point are also concave functions.

Proposition 2.3.3. — Let f be a concave function on Ng, ¢, A € R with A > 0, up € Nr
and xg € Mg. Then

1. dom(f + ¢) = dom(f), stab(f + ¢) = stab(f) and (f +¢)¥ = f¥ —¢;

2. dom(\f) = dom(f), stab(Af) = Astab(f) and (Af)Y = f¥A;

3. dom(f\) = Adom(f), stab(fA) = stab(f) and (f\)¥ = Af";

4. dom(7y, f) = dom(f) + uq, stab(ry, f) = stab(f) and (14, f)¥ = f¥ + uo;

5. dom(f + zo) = dom(f), stab(f + zg) = stab(f) + zo and (f + z0)" = 7o f¥-

Proof. — This follows easily from the definitions. O
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We next consider direct and inverse images of concave functions by affine maps.
Let Qg be a another finite dimensional real vector space and set P = Qy for its dual
space. For a linear map H: Qg — Ngr we denote by HY: Mg — Pg the dual map.
We need the following lemma in order to properly define direct images.

Lemma 2.3.4. — Let H: Qr — Ng be a linear map and g a concave function on Qg.
If stab(g) Nim(HY) # & then, for all u € Ng,

sup  g(v) < oo.
veH—1(u)

Proof. — Let © € Mg such that HY(z) € stab(g). By the definition of the stability
set, SUp,eq, (9(v) — (v, HY(x))) < oo. Thus, for any u € Ng,

sup (g(v) — (v, H"(x))) = sup (g(v) — (z, H(v)))

vEQR vEQR
> sup (g(v) = {z, H(v))) = sup g(v) = (z,u)
veEH 1 (u) vEH 1 (u)
and S0 Sup,¢ y—1(,) 9(v) is bounded above, as stated. d

Definition 2.3.5. — Let A: Qg — Ng be an affine map defined as A = H + ug for a
linear map H and a point ug € Ng. Let f be a concave function on Ny such that
dom(f)Nim(A) # @ and g a concave function on Qg such that stab(g)Nim(H") # @.
Then the inverse image of f by A is defined as

A f: Qr — R, v foA(v),
and the direct image of g by A is defined as

Ayg: Ng — R, u+—— sup g(v).
vEA~1(u)

It is easy to see that the inverse image A*f is concave with effective domain
dom(A*f) = A '(dom(f)). Similarly, the direct image A.g is concave with effec-
tive domain dom(A.g) = A(dom(g)), thanks to Lemma 2.3.4.

The inverse image of a closed function is also closed. In contrast, the direct image of
a closed function is not necessarily closed: consider for instance the indicator function
tc of the set C' = {(x,y) € R? | zy > 1,z > 0}, which is a closed concave function.
Let A: R? — R be the first projection. Then A,.c is the indicator function of the
subset R+, which is not a closed concave function.

We now turn to the behaviour of the sup-differential with respect to the basic
operations. A first important property is the additivity.

Proposition 2.3.6. — For each i = 1,...,1, let f; be a concave function and A\; > 0 a
real number. Then, for all u € Ng,

102 Aifi) (w) D 32 Mid(fi)(w);
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2. if ri(dom(f1)) N---Nri(dom(f;)) # @, then
o So0h ) ) = S M0 ) (231)

Proof. — This is [Roc70, Theorem 23.8]. O

As in Remark 2.3.2, if fi,..., fx are piecewise affine, then (2.3.1) holds under the
weaker hypothesis

dom(f1) N---Ndom(f) Nri(dom(fry1)) N---Nri(dom(f;)) # @.

The following result gives the behaviour of the sup-differential with respect to linear
maps

Proposition 2.3.7. — Let H: Qg — Ng be a linear map, ug € Ng and A = H +uq the
associated affine map. Let f be a concave function on Ng, then
1. O(A* f)(v) D HYOf(Av) for allv € Qg;
2. if either ri(dom(f))Nim(A) # & or [ is piecewise affine and dom(f)Nim(A) #
&, then for all v € Qr we have
A(A*f)(v) = HYOf(Av).

Proof. — The linear case up = 0 is [Roc70, Theorem 23.9]. The general case follows
from the linear case and the commutativity of the sup-differential and the translation.
O

We summarize the behaviour of direct and inverse images of affine maps with
respect to the Legendre-Fenchel duality.

Proposition 2.3.8. — Let A: Qg — Ng be an affine map defined as A = H + ug for
a linear map H and a point ug € Ng. Let f be a concave function on Nr such that
dom(f)Nim(A) # @ and g a concave function on Qg such that stab(g)Nim(H"Y) # @.
Then

1. stab(A,g) = (H") !(stab(g)) and
(Aeg)” = (H)"(g") + uo;
2. HY(stab(f)) C stab(A* f) ¢ HV (stab(f)) and
(A™el(f))” = cl((HY)(f = uo));
3. if ri(dom(f)) Nim(A) # @ then stab(A* f) = H" (stab(f)) and, for all y in this

set,

(A* ) (y) = (H") (¥ —uo)(y) = me(;}lvz;g(y)(f'v(fr) — (x,up)).

Moreover, if f is closed and y € ri(stab(A*f)), then a point x € (HY) (y)
attains this maximum if and only if there exists v € Qg such that x € Jf(Av).
The element v verifies y € O(A* f)(v).
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Proof. — By Proposition 2.3.3(4,5),
A (f) = (H +uo)"(f) = H"(T-uo ), Avg = (H +uo)g = Tuy(Hvg).  (2.3.2)

Then, except for the second half of (3), the result follows by combining (2.3.2) with
the case when A is a linear map, treated in [Roc70, Theorem 16.3].
To prove the second half of (3), we first note that the concave function

(Y = o)l (mvy-1(y)

attains its maximum at a point x if and only if its sup-differential at = contains 0.
We consider the linear inclusion

t: ker(HY) < Mg
and denote by ¥: Ng — Ng/im(H) its dual. We fix a point
wo € (HY)™!(y) Nri(stab(f)),
that exists because y € ri(stab(A* f)) and stab(A* f) = H" (stab(f)).
Set F' = (v + x0)*(fY — up). Up to a translation, F' is the restriction of f¥ — ug
to (HY)"1(y). Since, by choice, zg € ri(dom(fY — ug)) Nim(c + z¢), we can apply

Proposition 2.3.7(2) to the concave function fY — ug and the affine map ¢ + x¢ to
deduce that, for any z € ker(H"), we have

AF(2) = 1Y (OfY (2 + z0) — o).

Therefore 0 € OF(z) if and only if 9 fY (z+xo)N(ker(.")+up) # @. Since ker(t¥)+ug =
im(A), a point x = 2z + 9 € (HY) !(y) attains the maximum if and only if there is a
v € Qg such that Av € 9fV(z). Being f closed, by Proposition 2.2.4 this is equivalent
to z € 9f(Av) for some v € Qg. By Proposition 2.3.7, v satisfies y € I(A*f)(v). O

In particular, the operations of direct and inverse image of linear maps are dual
to each other. In the notation of Proposition 2.3.8 and assuming for simplicity
ri(dom(f)) Nim(H) # &, we have

(Hog)" = (HY)"(g"), (H*f)" = (H").(f),

while the stability sets relate by stab(H.g) = (HY)™!(stab(g)) and stab(H*f) =
HY (stab(f)).

The last concept we recall in this section is the notion of recession function of a
concave function.

Definition 2.3.9. — The recession function of a concave function f: Ng — R, denoted
rec(f), is the function

rec(f): Ng — R, ur— inf (flu+4v)— f)).
vedom(f)
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This is a concave conical function. If f is closed, its recession function can be defined
as the limit

rec(f)(u) = /\Iim A (v + Au) (2.3.3)
—00
for any vp € dom(f) [Roc70, Theorem 8.5].

It is clear from the definition that dom(rec(f)) C rec(dom(f)). The equality does
not hold in general, as can be seen by considering the concave function R — R,
u — — exp(u).

If f is closed then the function rec(f) is closed [Roc70, Theorem 8.5]. Hence it is
natural to regard recession functions as support functions.

Proposition 2.3.10. — Let f be a concave function. Then rec(fV) is the support func-
tion of dom(f). If f is closed, then rec(f) is the support function of stab(f).

Proof. — This is [Roc70, Theorem 13.3]. O

2.4. The differentiable case

In this section we make explicit the Legendre-Fenchel duality for smooth concave
functions, following [Roc70, Chapter 26].

In the differentiable and strictly concave case, the decompositions IT( f) and TI(fV)
consist of the collection of all points of dom(df) and of dom(df") respectively. The
Legendre-Fenchel correspondence agrees with the gradient map, and it is called the
Legendre transform in this context.

Recall that a function f: Ng — R is differentiable at a point u € Ng with f(u) >
—00, if there exists some linear form V f(u) € Mg such that

f(w) = fu) +(Vf(u),v —u) +of||lv —ul]),

where || - || denotes any fixed norm on Ng. This linear form V(f)(u) is the gradient
of f in the classical sense. It can be shown that a concave function f is differentiable
at a point u € dom(f) if and only if df(u) consists of a single element. If this is the
case, then df(u) = {Vf(u)} [Roc70, Theorem 25.1]. Hence, the gradient and the
sup-differential agree in the differentiable case.

Let C' C Ng be a convex set. A function f: C' — R is strictly concave if f(tu; +
(1 =t)ua) > tf(uy) + (1 —t)f(uz) for all different u;,us € C and 0 < ¢ < 1.

Definition 2.4.1. — Let C' C Ng be an open convex set and || - || any fixed norm on
Mpg. A differentiable concave function f: C' — R is of Legendre type if it is strictly
concave and lim;_,« ||V f(u;)|] = oo for every sequence (u;);>1 converging to a point
in the boundary of C. In particular, any differentiable and strictly concave function
on Ny is of Legendre type.

ASTERISQUE 360



CHAPTER 2. THE LEGENDRE-FENCHEL DUALITY 55

The stability set of a function of Legendre type has maximal dimension [Roc70,
Theorem 26.5]. Therefore its relative interior agrees with its interior and, in this case,
we will use the classical notation stab(f)° for the interior of stab(f).

The following result summarizes the basics properties of the Legendre-Fenchel du-
ality acting on functions of Legendre type.

Theorem 2.4.2. — Let f: C — R be a concave function of Legendre type defined on
an open set C C Ng and let D = Vf(C) C Mg be the image of the gradient map.
Then

1. D = stab(f)°;
2. fV|p is a concave function of Legendre type;
3. Vf: C = D is a homeomorphism and (Vf)~! =V fV;
4. for all z € D we have f¥(z) = (z,(Vf)" (z)) — F(Vf) 1 (x)).
Proof. — This follows from [Roc70, Theorem 26.5]. O

Example 2.4.3. — Consider the function
1 " o
frs: R* — R,  ur—s *510g<1+§e 2 )

Let A™ = {(z1,...,2,) CR™ | 2; > 0, x; <1} be the standard simplex of R™. For

(T1,...,2y) € A™, write zg = 1 — >_7 | z; and set
n
En: A" — R, z+— — Zm, log(z;). (2.4.1)
i=0
We have V frs(u) = __ (Cl e”?“n) and so
o FS 1 +ZZ7:—:1 672u1, 9y
1 Yo ey, 1 = 2w,
en(Virs(u)) = T35 o T3 log (1 + Z;e ) = (Vfrs(u), u) = frs(u),

which shows that stab(frs) = A™ and that fys = 3&,.

The fact that the sup-differential agrees with the gradient and is single-valued can
simplify some statements. It is interesting to make explicit the computation of the
Legendre-Fenchel dual of the inverse image by an affine map of a concave function of
Legendre type.

Proposition 2.4.4. — Let A: Qr — Ngr be an affine map defined as A = H + uqg for
an injective linear map H and a point ug € Ng. Let f: C — R be a concave function
of Legendre type defined on an open convex set C' C Ng such that C Nim(A) # .
Then A*f is a concave function of Legendre type on A=1(C),

stab(A” f)° = Im(V(A* f)) = HY (im(V f)) = H" (stab(f)°),
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and, for allv € A7'C,
(A" ) (VA" f)(v) = f(Vf(Av)) = (Vf(Av), uo).

Moreover, there is a section 14, ¢ of HV|Stab(f)o such that the diagram

V(A" f)

A0 — 0 stab(A* f)°

o/ o
R R

A YA, f
’X %uo
C ——— > stab(f)°
7 (f)
commutes.
Proof. — This follows readily from Proposition 2.3.8. |

The section 14,5 embeds stab(A*f)° as a real submanifold of stab(f)°. Varying
in a suitable space of parameters, we obtain a foliation of stab(f)° by “parallel”
submanifolds. We illustrate this phenomenon with an example in dimension 2.

Example 2.4.5. — Consider the function f: R? — R given by
1
flup,ug) = —5 log (1 4 e ot 2uz +e*2“1*4“2) .

It is a concave function of Legendre type whose stability set is the polytope A =
conv((0,0),(1,0),(2,1),(1,2)). The restriction of its Legendre-Fenchel dual to A° is
also a concave function of Legendre type.

For ¢ € R, consider the affine map

AR = R? ur— (—u,u+e).

We write A. = H + (0,¢) for a linear function H. The dual of H is the function
HY:R? - R, (z1,22) = x9 — x1. Then stab(A%f)° = HY(A®) is the open inter-
val (—1,1). By Proposition 2.4.4, there is a map 24, 5 embedding (—1,1) into A® in
such a way that 14, 5o V(A%Lf) = (Vf)o A.. For u € R,

efzufélc _ e?u _ CZuAZC

V(A:f)(u) = 1 +e2u+02u72c +072u~4c

€ (-1,1),

eZu +262u72c+672u74c782u—26 +20—2u—4c
(Vf) o A(u) = ( ) e .

1+62u+02u72c_’_e—2u——4c
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From this, we compute 24, s(z) = (21, z2) with
_ 6726 2+3 6726 1'2
St = + £},
2(1 + e~ 2c) 20 +e 2)\ /2 + (1 —pDa2+p. 1+ pe
2+e"2%¢ 2+3e % Pe
To = ST + = + ,
2(1+e2¢) 2(14e72¢) p2+ (1 —p2)a? + p. 14 pe

T =

where we have set p. = 2e72¢y/1 + e—2¢ for short. In particular, the image of the
map 4,,r is an arc of conic: namely the intersection of A° with the conic of equation

(w2 — 21)® = (1 — p?)Le(1,72) + 2pcLe(m1, 22),

2

c
—3c L2 —

with L.(x1,29) = 22;%6;2;% + Qfs;e 11;6. Varying ¢ € R, these arcs of conics
form a foliation of A°, they all pass through the vertex (1,2) as © — 1, and their
other end as x — —1 parameterizes the relative interior of the edge conv((1,0), (2,1)),

see Figure 2.

FIGURE 2. A foliation of A° by curves

2.5. The piecewise affine case

The Legendre-Fenchel duality for piecewise affine concave functions can be de-
scribed in combinatorial terms. Moreover, some technical issues of the general theory
disappear when dealing with piecewise affine concave functions on convex polyhedra
and uniform limits of such functions.

Definition 2.5.1. — Let C C Ny be a polyhedron. A function f: C' — R is piecewise
affine if there is a finite cover of C' by closed subsets such that the restriction of f to
each of these subsets is an affine function. Such affine functions are called defining
functions of f. A concave function f: Ngp — R is said to be piecewise affine if dom(f)
is a polyhedron and the restriction f|qom(s) is piecewise affine.
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Remark 2.5.2. — Considering a polyhedron C inside its affine envelope, we may think
of it as a closed domain, that is, the closure of an open set. By an argument of general
topology, if a closed domain C' is a finite union of closed subsets C = Ul”:] D;, then
c=U", D;?. Therefore, when the domain is a polyhedron, our definition of piecewise
affine function agrees with the notion of piecewise linear function of [Ovc02].

Lemma 2.5.3. — Let f be a piecewise affine function defined on a polyhedron C C Ng.
Then there exists a polyhedral complex 11 in C' such that the restriction of f to each
polyhedron of I is an affine function.

Proof. — This is an easy consequence of the max-min representation of piecewise
affine functions in [Ovc02], that can be applied thanks to Remark 2.5.2. d

Definition 2.5.4. — Let C be a polyhedron, II a polyhedral complex in C' and f: C' —
R a piecewise affine function. We say that II and f are compatible if f is affine on
each polyhedron of 1I. Alternatively, we say that f is a piecewise affine function on
I1. If the function f is concave, it is said to be strictly concave on I1 if II = TI(f). The
polyhedral complex II is said to be regular if there exists a concave piecewise affine
function f such that IT = TI(f).

As was the case for polyhedra, piecewise affine concave functions can be described
in two dual ways, which we refer as the H-representation and the V-representation.
For the H-representation, we consider a polyhedron

A= ﬂ {u e Ng | {(aj,u) +c; >0}

1<5<k

as in (2.1.1) and a set of affine equations {(a;, a;)}r+1<j<i C Mr xR. We then define
a concave function on Ng as

(2.5.1)

mingy1<;j<i({a;,u) + a;) for u € A,
fluy =4 TTEER
—0o0 for u ¢ A.

The equation (2.5.1) is an H-representation of the function f. With this representa-
tion, the recession function of f is given by

rec(f)(u) = k+r]nirj;<l<a_,-, u), for u € rec(A)

and rec(f)(u) = —oo for u ¢ rec(A). In particular,
dom(rec(f)) = rec(dom(f)), stab(rec(f)) = stab(f). (2.5.2)
For the V-representation, we consider a polyhedron

A = cone(by, ..., by) + conv(bgi,....b)
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as in (2.1.2), a set of slopes {8 }1<j<x C R and a set of values {8; }r+1<j<1 C R. We
then define a concave function on Ny as

l l l
ﬂMZQm{E:M@'&207E:Af~L§:M%=u} (2.5.3)
j=1 J=1

Jj=k+1
This equation is the V-representation of the function g. With this second representa-
tion, we obtain the recession function as

k k
seelg)) = sup { D008, [ 3,200 3 vty =,
=1 =

We will typically use the H-representation for functions on Ng while we will use the
V-representation for functions in Mg.

As we have already mentioned, the Legendre-Fenchel duality of piecewise affine
concave functions can be described in combinatorial terms.

Proposition 2.5.5. — Let A be a polyhedron in Ng and f a piecewise affine concave
Sfunction with dom(f) = A given as
A= ﬂ {ue Ng|(a;,u) +a; >0},
1<j<k

flu) = kﬁlér;gl((aj,u) +a;) forueA

with a; € Mg and o; € R. Then

stab(f) = cone(ay, ..., ar) + conv(akt1, ..., ar),
l ! l
fY(z) =sup { Z —Ajo | Ay >0, Z A =1, Z/\jaj = x} for x € stab(f).
=1 =kt =1

Proof. — This is proved in [Roc70, pages 172-174]. ]

Example 2.5.6. — Let A be a polyhedron in Ng. Then both the indicator function ¢y
and the support function ¥, are concave and piecewise affine. We have UY = 15. In
particular, if we fix an isomorphism Ny ~ R"™, the function

Uan: Ng — R, (u1,...,u,) — min{0, uq,...,u,}
is the support function of the standard simplex A™ = conv(0,ey,...,eY) C Mg,
where {ej,...,e,} is the standard basis of R™ and {ey,...,eY} is the dual basis.

Hence, stab(¥an) = A™ and U)X, = tan.

Let A be a polyhedron in Ny and f a piecewise affine concave function with
dom(f) = A. Then dom(df) = A and I(f) and II(fV) are convex decompositions
of A and of A’ := stab(f) respectively. By Theorem 2.2.12, the Legendre-Fenchel
correspondence

Lf:T(f) —TI(fY)
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is a duality in the sense of Definition 2.2.11. However in the polyhedral case, these de-
compositions are dual in a stronger sense. We need to introduce some more definitions
before we can properly state this duality.

Definition 2.5.7. — Let A be a polyhedron and K a face of A. The angle of A at K
is defined as

Z(K,A) ={t(u—v)|ueAveK,t>0}

It is a polyhedral cone.

Definition 2.5.8. — The dual of a convex cone o C Ny is defined as
oV ={z € Mg | (z,u) >0 forallu € o}.

This is a convex closed cone.

If o is a convex closed cone, then oYV = o. The following result is a direct
consequence of Proposition 2.5.5.
Corollary 2.5.9. — Let [ be a piecewise affine concave function on Ng. Then

rec(dom(f))Y = rec(stab(f)).
In particular, if dom(f) = Ng, then stab(f) is a polytope.

Definition 2.5.10. — Let C,C’ be polyhedra in Ng and Mg, respectively, and II, IT’
polyhedral complexes in C' and C’, respectively. We say that II and I’ are dual
polyhedral complexes if there is a bijective map IT — IT', A = A* such that

1. for all A, K € II, the inclusion K C A holds if and only if K* D A*;
2. forall A, K €11, if K C A, then Z(A*, K*) = Z(K,A)V.
For A € II, the angle Z(A,A) is the linear subspace generated by differences of

points in A. Condition (2) above implies that Z(A, A) and Z(A*, A*) are orthogonal.
In particular, dim(A) + dim(A*) = n.

Proposition 2.5.11. — Let f be a piecewise affine concave function with A = dom(f)
and N = stab(f). Then T(f) and T(fY) are polyhedral complexes in A and A’
respectively. Moreover, they are dual of each other. In particular, the vertices of TI(f)
are in bijection with the polyhedra of TI(f) of mazimal dimension.

Proof. — This is proved in [PRO4, Proposition 1]. O

Example 2.5.12. — Consider the standard simplex A" of Example 2.5.6. Its indicator
function induces the standard polyhedral complex in A™ consisting of the collection of
its faces. The dual of tan, the support function ¥an», induces a fan Xan := II(Wan)
of Ng. The duality between these polyhedral complexes can be made explicit as

H(LAN) — ZAr:7 F— Z(}j‘7 An)\/
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Example 2.5.13. — The previous example can be generalized to an arbitrary polytope
A C Mg . The indicator function ta induces the standard decomposition of A into
its faces and, by duality, the support function ¥ induces a polyhedral complex
YA :=II(Va) made of cones. If A is of maximal dimension, then ¥4 is a fan.

The faces of A are in one-to-one correspondence with the cones of ¥ o through the
Legendre-Fenchel correspondence. For a face F' of A, its corresponding cone is

op=F"={ue Ng|(u,y—z)>0forally € A,z € F}.
Reciprocally, to each cone o corresponds a face of A of complementary dimension
F,=c"={z€A|{z,u) =¥a(u) for all u € ¢}.

On a cone o € X, the function W, is defined by any vector m, in the affine
space aff (F,;). The cone o is normal to F,.

We will use the notation F, in a more general context. If ¥ is a refinement of ¥ A
and o € X, we will denote by F, the face of A given by the condition

F,={xeA|{u,y—z)>0foralyecAuco}.

For piecewise affine concave functions, the operations of taking the recession func-
tion and the associated polyhedral complex commute with each other.

Proposition 2.5.14. — Let f be a piecewise affine concave function on Ng. Then

M(vec(f)) = rec(I1(f)).

Proof. — Let Py(u,z) = f(u) + f¥(z) — (u,x) be the function introduced in (2.2.1).
For each x € stab(f) write Ps(u) = Ps(u,x) which is a piecewise affine concave
function. Let C; be as in Definition 2.2.5. By Lemma 2.2.6,

C, = {u € dom(f) | Pf.(u) =0}.
Write P'(v) = rec(f)(v) — (u,z). Then P’ =rec(Py ).
We claim that, for each = € stab(f),
rec(C,) = {v € dom(rec(f)) | P'(v) = 0}.
Let v € rec(Cy). Clearly v € dom(rec(f)) and, since x € stab(f), the set C, is
non-empty. Let ug € C,. Then, for each A > 0, ug + Av € C,.. Therefore,

P ) — Pr
P(v) = lim Dzl +20) = Pro(uo)
A—00 A
Conversely, let v € dom(rec(f)) satisfying P'(v) = 0 and u € C;. On the one hand,
by the properties of the function Py, we have Py (u + v) < 0. On the other hand,

=0.

since P' = rec(Ps ) and Py, is a piecewise affine concave function,
Pj o (u+v) — P p(u) > P'(v) = 0.

Thus Py g (u+v) > Ppa(u) = 0 and finally Py, (u +v) = 0. This implies that, if
u € Cy then u +v € Cy, showing v € rec(C,). Hence the claim is proved.
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By definition TI(f) = {Cy}sestan(s)- Hence rec(II(f)) = {rec(Cz)}restan(s)- For
each x € stab(rec(f)), write

C: = {v € dom(rec(f)) | P'(v) = 0}.

Then I(rec(f)) = {C} }zestab(rec(s))- The result follows from the previous claim and
the fact that stab(f) = stab(rec(f)) by (2.5.2). a

Now we want to study the compatibility of Legendre-Fenchel duality and integral
and rational structures.

Definition 2.5.15. — Let L be a lattice in a finite dimensional real vector space Lg =
L ®R and LY the dual lattice. A piecewise affine concave function f on Lg is an
H-lattice concave function if it has an H-representation as (2.5.1) with a; € LY and
aj € Zforj=1,...,1. Itis a V-lattice concave function if it has a V-representation as
(2.5.3) with b; € L and 8; € Z, for j =1,...,l. We say that f is a rational piecewise
affine concave function if it has an H-representation as before with a; € LY ® Q
and a; € Q for j = 1,...,1, or equivalently, a V-representation with b; € L @ Q
and ﬁj € Q.

Observe that the domain of a V-lattice concave function is a lattice polyhedron,
whereas the domain of an H-lattice concave function is a rational polyhedron.

Let N ~ Z" be a lattice of rank n such that Ng = N @ R. Set M = NV =
Hom(N,Z) for its dual lattice, so Mr = M @ R. We also set Ng = N ® Q and
Mg =M®Q.

Remark 2.5.16. — The notion of H-lattice concave functions defined on the whole N
coincides with the notion of tropical Laurent polynomials over the integers, that is,
the elements of the group semi-algebra Zi,.,[/N], where the arithmetic operations of
the base semi-ring Z,op, = (Z, @, @) are defined as @y = min(z,y) and 20y = z+y.

Proposition 2.5.17. — Let [ be a piecewise affine concave function on Ng.

1. f is an H-lattice concave function (respectively, a rational piecewise affine con-
cave function) if and only if f¥ is a V-lattice concave function (respectively, a
rational piecewise affine concave function) on Mg.

2. rec(f) is an H-lattice concave function if and only if stab(f) is a lattice polyhe-
dron. In this case rec(f) is the support function of stab(f).

Proof. — This follows easily from Proposition 2.5.5. O

Example 2.5.18. — If A is a lattice polytope, its indicator function is a V-lattice
function, its support function ¥, is an H-lattice function and, when A has maximal
dimension, the fan YA is a rational fan. In particular, if the isomorphism N ~ R"
of Example 2.5.6 is given by the choice of an integral basis ey, ...,e, of N, then A"
is a lattice polytope, the function Wan is an H-lattice concave function and Xan is
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a rational fan. If we write g = — >, e;, this is the fan generated by the vectors
€g, €1,...,6n in the sense that each cone of YA~ is the cone generated by a strict
subset of the above set of vectors. Figure 3 illustrates the case n = 2.

(u1,u2) — 0

(u1,u2) = —uy

A2
(u1,u2) = —ug

FIGURE 3. The standard simplex A? its associated fan and support function

Definition 2.5.19. — Let A and A’ be polyhedra in Ng and in Mg, respectively. We
set P (A, \) for the space of piecewise affine concave functions with effective domain

A and stability set A’. We also set Z?(A, A’) for the closure of this space with respect
to uniform convergence. We set

2(N) =2\ N), PN =2\ N
A’ A

for the space of piecewise affine concave functions with effective domain A and for its
closure with respect to uniform convergence, respectively. If we want to single out
the elements of the previous spaces whose stability set is a lattice polyhedron we will
write
PMNz= |J 2AN), PAz= |J Z@KN),

A’ lat. pol. A’ lat. pol.
where the union runs over all lattice polyhedrons. We also set

2= 2nLN), Z=]20AN).

AN AN

When we need to specify the vector space Nx we will denote it as a subindex as
in Pn, or ?NR.

The following propositions contain the basic properties of the Legendre-Fenchel
duality acting on &. The elements in & are continuous functions on polyhedra. In
particular, they are closed concave functions. Observe that when working with uni-
form limits of piecewise affine concave functions, the technical issues in §2.2 disappear.

Proposition 2.5.20. — The piecewise affine concave functions and their uniform limits
satisfy the following properties.

1. Let f € Py,. Then f¥V = f.
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2. If f € P(AN') (respectively f € P(A,N')) then f¥ € P (N, A) (respectively
Y e 2N, N)).

3. If f € P(A) then dom(rec(f)) = rec(A).

4. Let f; € P(A;, Ny) (respectively f; € P(A;,N})), i = 1,2, with Ay N Ay # @.
Then fi+ f2 € (A1 NAg, Ny +AL) (respectively fi+ fo € P(A1N A, Ay +A))
and (fi+ f2)V = fY B 5.

5. Let fi € P(Ni, L) (respectively f; € P(Ai,AY)), i = 1,2, with A} N Ay # @.
Then fiB fo € P(A1+ Az, A{NAL) (respectively fi+ fo € P(A1+ Az, A{NAY))
and (fi B f2)V = f)/ + f5.

6. Let (fi)i>1 C P be a sequence converging uniformly to a function f. Then
fe?.

Proof. — All the statements follow, either directly from the definition, or the propo-
sitions 2.5.5 and 2.2.3. O

Proposition 2.5.21. — Let A: Qg — Ngr be an affine map defined as A = H + ug
for a linear map H and a point ug € Ng. Let f € Py, (respectively f € Pn,)
with dom(f) Nim(A) # @ and g € Pg, (respectively g € P, ) such that stab(g) N
im(HY) # @. Then A*f € P, (respectively A*f € Pq,) and A.g € Py, (respec-
tively Avg € Py ). Moreover,

1. stab(A*f) = HY (stab(f)), (A*f)Y = (HY).(fY —uo) and, for ally € stab(A* f),

(A Ny = max (f'(z) = (z,u0));

z€(HY)~(y)
2. stab(A.g)=(H") (stab(g)), (A.g9)V=(H")*(g")+ug and, for alluec dom(A.g),

Aig(u) = s g9(v).

Proof. — These statements follow either from Proposition 2.3.8 or from [Roc70,
Corollary 19.3.1]. O

We will be concerned mainly with functions in & whose effective domain is either
a polytope or the whole space Ng. These are the kind of functions that arise when
considering proper toric varieties. The functions in 4?(Ng) can be realized as the
inverse image of the support function of the standard simplex, while the functions
of Z(A) can be realized as direct images of the indicator function of the standard
simplex.

Lemma 2.5.22. — Let f € P(Ng) and let f(u) = ming<;<,(a;(u) + ;) be an H-
representation of f. Write a = (a; — ap)i=1,...r, and consider the linear map
H: Ng — R" given by H(u) = (a;(u) —ap(u))i=1,...r and the affine map A = H + a.
Then

1. f=A"Yar +ag + ap;

2. f’\/ = TGU(HV)*([’AT - OL) - @o.
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This second function can be alternatively described as the function which parameterizes
the upper envelope of the extended polytope

conv((ay, —ay), ..., (a;, —a;)) € Mg x R.

Proof. — Statement (1) follows from the explicit description of U - in Example 2.5.6.
Statement (2) follows from Proposition 2.3.3, Proposition 2.5.21(1) and Example 2.5.6.
The last statement is a consequence of Proposition 2.5.5. O

The next proposition characterizes the elements of 2(Ng) and Z(A) for a poly-
tope A.

Proposition 2.5.23. — Let A be a convex polytope of Mg.

1. The space P(A, Ng) agrees with the space of all continuous concave functions
on A.

2. A concave function f belongs to P(Ng,A) if and only if dom(f) = Ng and
|f — WAl is bounded.

Proof. — We start by proving (1). By the properties of uniform convergence, it
is clear that any element of Z(A, Ng) is concave and continuous. Conversely, a
continuous function f on A is uniformly continuous because A is compact. Therefore,
given € > 0 there is a § > 0 such that |f(u) — f(v)] < e for all u,v € A such
that |ju — v|| < 0. By compactness, we can find a triangulation A = J; A; with
diam(A;) < 6. Let {b;}, be the vertices of this triangulation and consider the function
g € P(A, Ng) defined as

l
g(u) = sup { > N f(by) ’ X203 N =1 Na; = g}
j=1 J J

For uw € A, let bj,,...,b;, denote the vertices of an element of the triangulation con-
taining u. We write u = A\j uj, +---+A;, u;, forsome A;; > 0and Aj, +---+ A, = 1.
By concavity, we have

Flu) > glu) =D N, flug) > flu) -,
k=0

which shows that any continuous function on A can be arbitrarily approximated by
elements of Z(A, Ng).

We now prove (2). Let f € P(Ng,A). By definition, for each ¢ > 0 we can find
a function g € P (Ng,A) with sup|f — g| < e. In particular, |f — g| is bounded.
Furthermore, rec(g) = ¥ and |g — rec(g)| is bounded because g € Z(Ng). Hence
dom(f) = dom(g) = Ng and |f — | is bounded.

Conversely, let f be a concave function such that dom(f) = Ng and |f — WA is
bounded. Then stab(f) = stab(¥a) = A. By [Roc70, Theorem 12.2] fV is a closed
concave function on A. Since A is a polytope, by [Roc70, Theorem 10.2], fV is
continuous on A. Hence we can apply (1) to f¥ to obtain functions g; € Z2(A, Ng)
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approaching f¥ uniformly. By Proposition 2.2.3, we conclude that the functions
g € P(Ng, A) approach f uniformly and so f € Z(Ng, A). O

Proposition 2.5.24. — Let A be a lattice polytope of Mg. Then the subset of rational
piecewise affine concave functions in P(A, Ng) (respectively, in P (Ng, A)) is dense
with respect to uniform convergence.

Proof. — This follows from Proposition 2.5.23 and the density of rational numbers.
|

2.6. Differences of concave functions

Let C' C Ng be a convex set. A function f: C' — R is called a difference of concave
functions or a DC function if it can be written as f = g — h for concave functions
g,h: C — R. DC functions play an important role in non-convex optimization and
have been widely studied, see for instance [HT99] and the references therein. We
will be interested in a subclass of DC functions, namely those which are a difference
of uniform limits of piecewise affine concave functions.

Definition 2.6.1. — For a polyhedron A in Ny we set
(M) ={g-hlg.he PN}, FA) ={g—h|g.heDP®)}.
and
DNz ={g—h|g.he PNz}, F(Nz=1g-hlghe PNz}

These spaces are closed under the operations of taking finite linear combinations,
upper envelope and lower envelope.

Proposition 2.6.2. — Let A be a polyhedron in Ng and f1,..., f; functions in 2(A)
(respectively in D(N), 2(N)z or Z(MN)z). Then the functions

1. 3", Nifi for any \; € R (respectively \; € Z for Z(A)z or (N)z),
2. max; f;, min; f;
are also in P(N) (respectively in D(N), D(N)g or Z(N)z).
Proof. — Statement (1) is obvious. For the statement (2), write f; = g; — h; with

gishi in P(A) (respectively, in Z(A)). Then the upper envelope admits the DC
decomposition max; f; = g — h with
g:= Zgj, h = miin <h,-, + Zgj>,
J J#i
which are both concave functions in #(A) (respectively, in Z(A)). This shows that

max; f; is in Z(A) (respectively, in Z(A)). The statement for the lower envelope
follows similarly. O
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In particular, if f lies in Z(A) or in Z(A), the same holds for the functions |f],
max(f,0) and min(f,0).

Corollary 2.6.3. — The space Z(A) coincides with the space of piecewise affine func-
tions on A.

Proof. — This follows from the max-min representation of piecewise affine functions
in [Ovec02] and Proposition 2.6.2(2). O

Some constructions for concave functions can be extended to this kind of functions.

In particular, we can define the recession of a function in Z(A).

Definition 2.6.4. — Let A be a polyhedron in Ng and f € 2Z(A). The recession
function of f is defined as

rec(f): rec(A) — R, u+— lim f(vo + Au) — f(vo)

2.6.1

for any vy € A.

Write f = g — h for any g,h € Z(A). By Proposition 2.5.20(3), the effective
domain of both rec(g) and rec(h) is rec(A). Therefore, by (2.3.3), for all u € rec(A),
the limit (2.6.1) exists and

vec(f)(u) = rec(g)(u) — rec(h) (u).

Observe that the recession function of a function in Z(A) is a piecewise linear function
on a subdivision of the cone rec(A) into polyhedral cones. Observe also that

| = rec(f)] < |g — rec(g)| + [h — rec(h)| = O(1).
We will be mostly interested in the case when A = Ng.

Proposition 2.6.5. — Let || -|| be any metric on Ng and f € P(Ng). Then there exists
a constant k > 0 such that, for all u,v € N,

|f(u) = f(v)] < &llu—v].
A function which verifies the conclusion of this proposition is called Lipschitzian.

Proof. — Let f = g — h with g,h € 2 (Ng). The effective domain of the recessions
of g and of h is the whole of Ng. By [Roc70, Theorem 10.5], both g and h are
Lipschitzian, hence so is f. O

Observe that 9(Ng) is not the completion of 2(Ng) with respect to uniform
convergence and neither Z(Ng)z is the completion of 2(Ng)z. It is easy to construct
functions which are uniform limits of piecewise affine ones but do not verify the
Lipschitz condition.

We will consider the integral and rational structures on the space of piecewise affine
functions. We will use the notation previous to Definition 2.5.15.
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Definition 2.6.6. — Let A be a polyhedron and f € Z(A). We say that f is an H-
lattice (respectively V-lattice) function if it can be written as the difference of two
H-lattice (respectively V-lattice) concave functions with effective domain A. We say
that f is a rational piecewise affine function if it is the difference of two rational
piecewise affine concave functions with effective domain A.

Proposition 2.6.7. — If f is an H-lattice function (respectively a rational piecewise
affine function) on a polyhedron A C Ng, then there is a polyhedral complex IT in Ng,
with |II| = A, such that, for every A’ € 11,

flA' (’U,) = <"LA'7u> +lars
with (mas,lar) € M x Z (respectively (mar,ln) € Mg x Q). Conversely, every piece-
wise affine function on A such that its defining functions have integral (respectively
rational) coefficients, is an H-lattice function (respectively a rational piecewise affine
function,).

Proof. — We will prove the statement for H-lattice functions. The statement for
rational piecewise affine functions is proved with the same argument. If f is an H-
lattice function, we can write f = g—h, where g and h are H-lattice concave functions.
We obtain IT as any common refinement of II(g) and II(h) to a polyhedral complex.
Then the statement follows from the definition of H-lattice concave functions.

We also prove the converse only for H-lattice functions. Let g;, i = 1,...,n, be the
set of H-lattice distinct defining functions of f. By [Ovc02, Theorem 2.1] there is a
family {S;};ecs of subsets of {1,...,n} such that, for all z € A,

flz) = rJnEax min g;(x).

J 1ed;

For j € J, write f; = mineg; g;- It is an H-lattice concave function. Then we can

(@)= file) - ( > filw) - max fj(:v)> :

jed jeJ

write

Since both 3., fj and 3 c; fj — maxjey f; = minjes 3¢\ ;3 fi are H-lattice
concave functions on A, we conclude that f is an H-lattice function. O

Definition 2.6.8. — Let f be a rational piecewise affine function on Ng, and let II and
{(ma,lr)}aen be as in Proposition 2.6.7. The family {(ma,ls)}aen is called a set of
defining vectors of f.

Proposition 2.6.9. — Let 11 be a complete SCR polyhedral complex in Ng and f an
H-lattice function on II. Then rec(f) is a conic H-lattice function on the fan rec(II).

Proof. — Let A € Il and (m,l) € M x Z such that f(u) = (m,u)+1 for u € A. Then,
by the definition of rec(f), it is clear that rec(f)|rec(a)(u) = (m,u). Hence, rec(f) is
a conic H-lattice function on rec(IT). O
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2.7. Monge-Ampeére measures

Let f: C — R be a concave function of class C? on an open convex set C' C R™.
Its Hessian matrix

82
Hess(f)(u) := <8u-6fuj (U)>
i 1<i,j<n

is a negative semi-definite matrix which quantifies the curvature of f at the point w.
The real Monge-Ampere operator is defined as (—1)" times the determinant of this
matrix. This notion can be extended as a measure to the case of an arbitrary concave
function. A good reference for Monge-Ampere measures is [RT77].

Let p be a Haar measure of Mg. Assume that we choose linear coordinates

(z1,...,2n) of Mg such that p is the measure associated to the differential form
w = dx1 A---A dx, and the orientation of My defined by this system of coordinates.
Let (u1,...,uy,) be the dual coordinates of Ng. We will use the induced orientation

to identify a top differential form with a signed measure.

Definition 2.7.1. — Let f be a closed concave function on Ng. The real Monge-Ampére
measure of f with respect to p is defined, for a Borel subset F of Ng, as

Mu((E) = wf(E)).

It is a measure with support contained in dom(df). The correspondence f — M, (f)
is called the Monge-Ampére operator.

When the measure y is clear from the context, we will drop it from the notation.
Moreover, since we are not going to consider complex Monge-Ampere measures, we
will simply call M, (f) the Monge-Ampére measure of f.

By (2.2.2), the total mass of the Monge-Ampére measure is given by

M (f)(Ne) = p(stab(f)). (2.7.1)

In particular, when stab(f) is bounded, M, (f) is a finite measure.

Proposition 2.7.2. — The Monge-Ampére measure is a continuous map from the space
of concave functions with the topology defined by uniform convergence on compact sets
to the space of o-finite measures on Ny with the weak topology.

Proof. — This is proved in [RT77, §3]. O
The two basic examples of Monge-Ampere measures that we are interested in, are

the ones associated to smooth functions and the ones associated to piecewise linear
functions.
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Proposition 2.7.3. — Let C be an open conver set in Ng and f € C*(C) a concave
function. Then

M, (f) = (—1)" det(Hess(f)) dus A -+ A duy,

where the Hessian matriz is calculated with respect to the coordinates (uy, ..., uy).
Proof. — This is [RT77, Proposition 3.4] O

By contrast, the Monge-Ampere measure of a piecewise affine concave function is
a discrete measure supported on the vertices of a polyhedral complex.

Proposition 2.7.4. — Let f be a piecewise affine concave function with dom(f) = Ng
and (TI(f),TII(fY)) the dual pair of polyhedral complexes associated to f. Denote by
A — A* the correspondence Lf. Then

Mu(f)=> w@f@)ss= Y p)d= Y nA)r,
vell(f)0 veII(f)0 AelIl(fVv)m

where 9, is the Dirac measure supported on v.

Proof. — This follows easily from the definition of M(f) and the properties of the
Legendre correspondence of piecewise affine functions. O

Example 2.7.5. — Let A C Mg be a polytope and W, its support function. Since
II(¥A) is a fan, it has the origin as its single vertex. Moreover, 0* = A. Therefore,

M,(0) = u(A)d.

The following relation between Monge-Ampere measure and Legendre-Fenchel du-
ality is one of the key ingredients in the computation of the height of a toric variety.
We will consider the (n — 1)-differential form on N

A= (1) aiday A A dz A A da,
=1

It satisfies d\ = nw.

Let D C Ng be a compact convex set and set dD = D \ ri(D) for its relative
boundary. If the interior of D is non-empty, by using [Roc70, theorems 25.5 and
10.4] one can show that D has piecewise smooth boundary in the sense of [AMRSS,
Definition 7.2.17]. Therefore, for any continuous function g on D the integral

[,
oD

is well-defined. If the interior of D is empty, then we define this integral as zero.

Theorem 2.7.6. — Let f: Ng — R be a concave function such that D = stab(f) is
compact. Then

- fdMH(f):(n+1)/ijVdu— FYN. (2.7.2)

Ngr oD
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To prove this result, we will use the following lemma to reduce to the case of strictly
concave smooth functions.

Lemma 2.7.7. — Let f: Ng — R be a concave function such that stab(f) is bounded
and has non-empty interior. Then there is a sequence of strictly concave smooth
functions (fi1)i>1 that converges to f uniformly in Ng.

Proof. — Let || - || be the Euclidean norm on Ng induced by the choice of linear
coordinates. By [Roc70, Corollary 13.3.3], the hypothesis that stab(f) is bounded
implies that there is a constant x > 0 such that, for all z,y € N,

|f(x) = f(y)] < &llz =yl (2.7.3)
For | > 1, consider the Gaussian function
" —12z?
)= e ©
We define
f@) = [ e =) 0) o).
R

The fact that p; is smooth implies that f; is smooth too, and the facts that stab(f)
has non-empty interior and that p; is strictly positive on the whole of Ng imply that f;
is strictly concave. The equation (2.7.3) implies that the sequence (fi)ren converges
uniformly to f. O

Proof of Theorem 2.7.6. — 1f the interior of D is empty, then both sides of the equa-
tion (2.7.2) are zero. Therefore, the theorem is trivially true in this case. Thus, we
may assume that D has non-empty interior.

Since stab(f) is compact, the right-hand side of (2.7.2) is continuous with respect
to uniform convergence of functions, thanks to Proposition 2.2.3. Moreover, Propo-
sition 2.7.2 and the fact that M, (f) is finite imply that the left-hand side is also
continuous with respect to uniform convergence. By Lemma 2.7.7, we can find a
sequence of strictly concave smooth functions (f;);>1 that converges uniformly to f.
Hence, we may assume that f is smooth and strictly concave. In this case, the
Legendre transform V f: Ng — D° is a diffeomorphism (Theorem 2.4.2).

By the definition of the Monge-Ampere measure,

/ FAM,(f) = / F(VF) ) du(a), (2.7.4)
Ng D

which, in particular, shows that the integral on the left is convergent for smooth
strictly concave functions with compact stability set. Therefore, it is convergent for
any concave function within the hypothesis of the theorem.

By Theorem 2.4.2(4),

(V) @) = V(@) = (V)" (@), 2). (2.7.5)
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Moreover,
AN () = df¥ A A@) + £ dA(z)
= (VfY(z),2)w+nf'w
= (V) x),z)w+nfYw, (2.7.6)
where the last equality follows from Theorem 2.4.2(3). The result is obtained by

combining the equations (2.7.4), (2.7.5) and (2.7.6) with the piecewise smooth Stokes’
theorem [AMRSS8, Theorem 8.2.20]. d

We now particularize Theorem 2.7.6 to the case when the Haar measure comes
from a lattice and the convex set is a lattice polytope of maximal dimension.

Definition 2.7.8. — Let L be a lattice and set Lg = L ® R. We denote by vol;, the
Haar measure on Lg normalized so that L has covolume 1.

Let N be a lattice of Ng and set M = NV for its dual lattice. For a concave
function f, we denote by My;(f) the Monge-Ampere measure with respect to the
normalized Haar measure vol,;.

Notation 2.7.9. — Let A be a rational polyhedron in My and aff(A) its affine hull.
We denote by L the linear subspace of Mg associated to aff(A) and by M(A) the
induced lattice M N Ly. By definition, volys(a) is a measure on Ly, and we will denote
also by volys(s) the measure induced on aff(A). If v € Ng is orthogonal to Ly, we
define (A, v) = (z,v) for any 2 € A. Furthermore, when dim(A) = n and F' is a facet
of A, we will denote by vp € N the vector of minimal length that is orthogonal to
Lp and satisfies (F,vp) < (z,vp) for each z € A. In other words, vp is the minimal
inner integral orthogonal vector of I’ as a facet of A.

Corollary 2.7.10. — Let f: Ng — R be a concave function such that A = stab(f) is a
lattice polytope of dimension n. Then

— fdMM(f) :(n+1)/AfvdV01]\/[+Z<F,?]F>/FfvdV01M(F),
F

J N

where the sum is over the facets F' of A.

Proof. — We choose (my, ..., my) a basis of M such that (ms,...,m,) is a basis of
M(F) and my points to the exterior direction. Expressing A in this basis we obtain

Alp = —(F,vp)dvoly(r) .
The result then follows from Theorem 2.7.6. O

In §5, we will see that we can express the height of a toric variety in terms of
integrals of the form jA fV dvolys as in the above result. In some situations, it will
be useful to translate those integrals to integrals on Ng.
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Let f: Ng — R be a concave function and g: stab(f) — R an integrable function.
We consider the signed measure on Ny defined, for a Borel subset E of Ng, as

Marg(F)(E) = / gdvoly |
Of(E)

Clearly, My 4(f) is uniformly continuous with respect to Mu;(f). By the Radon-
Nicodym theorem, there is a M /(f)-measurable function, that we denote g o df,
such that
/ goafdMM(f)z/ dMM,g(f):/ gdvoly, . (2.7.7)
JE E af(E)
Example 2.7.11. — When the function f is differentiable or piecewise affine, the mea-
surable function f¥ o df can be made explicit.

1. Let f € C?(Ngr). Proposition 2.7.3 and the change of variables formula imply
godf = goV f. For the particular-case when g = fV, Theorem 2.4.2(4) implies,
for u € N,

froof(u) = (Vf(u),u) — f(u).

2. Let f a piecewise affine concave function on Ng. By Proposition 2.7.4, M (f)
is supported in the finite set II(f)° and so is My 4(f). For v € TI(f)° write
v* € TI(f¥)" for the dual polyhedron. Then go df(v) = m [, gdvolar,
which implies

1
% a —
J7edf(w) volps (v¥)

/* (z,v)dvolp — f(v).

The function fY o df is defined as a My (f)-measurable function. Therefore,
only its values at the points v € II(f)" are well defined. Nevertheless, we can
extend the function fY o df to the whole Ng by writing

Vodf(u :; T,u — f(u
£ 000w = gy | = 1w

for any Haar measure p on the affine space determined by 0f(u).

The Monge-Ampeére operator is homogeneous of degree n. There is an associated
multilinear operator, introduced by Passare and Rullgard [PRO04|, which takes n
concave functions as arguments.

Definition 2.7.12. — Let f1,..., f, be closed concave functions on Ng. The mized
Monge-Ampére measure is defined by the formula

Mar(fro fa) = S0 S Mulfa + o )

1<iyp<-<i;<n
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In principle, the mixed Monge-Ampere measure is a signed measure. Nevertheless
it can be shown that it is a measure (see [PRO4, §5]). Moreover, it is symmetric and
multilinear in the concave functions f; with respect to the pointwise addition.

Proposition 2.7.13. — The mized Monge-Ampére measure is a continuous map from
the space of n-tuples of concave functions with the topology defined by uniform con-
vergence on compact sets to the space of o-finite measures on Nr with the weak
topology.

Proof. — The general mixed case reduces to the unmixed case f; = --- = f,,, which
is Proposition 2.7.2. O
Definition 2.7.14. — The mized volume of a family of compact convex sets Q1,...,Qn

of Mp is defined as

MV (@, Qu) =Y (=)™ Y volu(Qi, +++ + Qi)

j=1 1<iy < <i;<n

Since MV (@, ..., Q) = n! voly (@), the mixed volume is a generalization of the
volume of a convex body. The mixed volume is symmetric and linear in each vari-
able @; with respect to the Minkowski sum, and monotone with respect to inclu-
sion [Ewa96, Chapter IV].

The total mass of the mixed Monge-Ampere measure is given by a mixed volume.

Proposition 2.7.15. — Let f1,. .., fn be concave functions such that ri(dom(f1))N---N
ri(dom(f,)) # @, then

Mat(Ft oo s f)(Ne) = %MVM(stab(fl), .. stab(£,).

Proof. — 1f dom(f;) = Ng for all i, this is proved in [PR04, Proposition 3(iv)]. In
the general case, this follows from the definitions of mixed Monge-Ampére measure
and mixed volume, the equation (2.7.1) and Proposition 2.3.1(3). O

Following [PS08a], we introduce an extension of the notion of integral of a concave
function.

Definition 2.7.16. — Let Q;, 1 = 0,...,n, be a family of compact convex subsets of

Mg and g;: Q; — R a concave function on @;. The mized integral of go,...,gn is
defined as
MIn(go, - gn) = D (=17 iy B+ B g;, dvoly .
§j=0 0<ig< <i;<n* Qig++Qi;
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For a compact convex subset Q C Mg and a concave function g on ), we have
Ml (g, ..., 9) = (n+ 1)! fQ gdvolys. The mixed integral is symmetric and additive
in each variable g; with respect to the sup-convolution. For a scalar A € R, we have
MIn(Agos - - -5 Agn) = AMIas(go, - - -, gn). We refer to [PS08a, PS08b] for the proofs
and more information about this notion.
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CHAPTER 3

TORIC VARIETIES

In this chapter we recall some basic facts about the algebraic geometry of toric
varieties and schemes. In the first place, we consider toric varieties over a field and
then toric schemes over a DVR. We refer to [KKMS73, Oda88, Ful93, Ewa96,
CLS11] for more details.

We will use the notations of the previous section concerning concave functions
and polyhedra, with the proviso that the vector space Ng will always be equipped
with a lattice N and most of the objects we consider will be compatible with this
integral structure, even if not said explicitly. In particular, from now on, by a fan
(Definition 2.1.11) we will mean a rational fan and by a polytope we will mean a lattice

polytope.

3.1. Fans and toric varieties

Let K be a field and T ~ G}, a split torus over K. We alternatively denote it by
Tg if we want to refer to its field of definition.

Definition 3.1.1. — A toric variety is a normal variety X over K equipped with a
dense open embedding T — X and an action p: T x X — X that extends the action
of T on itself by translations. When we want to stress the torus, we will call X a toric
variety with torus T.

Toric varieties can be described in combinatorial terms as we recall in the sequel.
Let N = Hom(G,,,T) ~ Z" be the lattice of one-parameter subgroups of T and
M = NY = Hom(N,Z) its dual lattice. For a ring R we set Np = N ® R and
Mpr = M ® R. We will use the additive notation for the group operations in N and
M. There is a canonical isomorphism M ~ Hom(T, G,,) with the group of characters
of T. For m € M we will denote by x™ the corresponding character.
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To a fan 3 we associate a toric variety Xy over K by gluing together the affine
toric varieties corresponding to the cones of the fan. For o € ¥, let ¢V be the dual
cone (Definition 2.5.8) and set

My=0"NM={me M| (mu) >0, Vue o}
for the saturated semigroup of its lattice points. We consider the semigroup algebra

K[M,] = { Z amx™ | O € K, o, = 0 for almost all m}
meM,
of formal finite sums of elements of M,, with the natural ring structure. It is an
integrally closed domain of Krull dimension n. We set X, = Spec(K[M,]) for the
associated affine toric variety. If 7 is a face of o, then K[M,] is a localization of
K[M,]. Hence there is an inclusion of open sets

X, = Spec(K[M,]) — X, = Spec(K[M,]).

For 0,0’ € ¥, the affine toric varieties X, X,/ glue together through the open subset
X,ne corresponding to their common face. Thus these affine varieties glue together
to form the toric variety
Xz = Xo.
cED

This is a normal variety over K of dimension n. When we need to specify the field of
definition we will denote it as X5 x. We denote by Ox;, its structural sheaf and by
Kx, its sheaf of rational functions. The open subsets X, C X5 may be denoted by
X5, when we want to include the ambient toric variety in the notation.

The cone {0}, that we denote simply by 0, is a face of every cone and its associated
affine scheme

Xo = Spec(K[M])

is an open subset of all the schemes X,. This variety is an algebraic group over K
canonically isomorphic to T. We identify this variety with T and call it the principal
open subset of Xs.

For each ¢ € %, the homomorphism

K[M,] - KIM]® K[M,], x™—=x"ax™

induces an action of T on X,. This action is compatible with the inclusion of open
sets and so it extends to an action on the whole of Xy

;J,:TXXE—%XE.

Thus we have obtained a toric variety in the sense of Definition 3.1.1. In fact, all toric
varieties are obtained in this way.

Theorem 3.1.2. — The correspondence ¥ — Xy is a bijection between the set of fans
in Ng and the set of isomorphism classes of toric varieties with torus T.

Proof. — This result is [KKMS73, §1.2, Theorem 6(i)]. O
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For each o € X, the set of K-rational points in X, can be identified with the set
of semigroup homomorphisms from (M, +) to the semigroup (K, x) := K* U {0}.
That is,

Xo(K) = Homgg (M,, (K, x)).
In particular, the set of K-rational points of the algebraic torus can be written intrin-
sically as
T(K) = Homgg (Mo, (K, X)) = Homgp (M, K*) ~ (K*)".
Every affine toric variety has a distinguished rational point: we will denote by z, €
X, (K) = Homgg (M, (K, x)) the point given by the semigroup homomorphism

1 if —me M,,

M, >mr—
0 otherwise.

For instance, the point zg € Xg = T is the unit of T.

Most algebro-geometric properties of the toric scheme translate into combinatorial
properties of the fan. In particular, Xy is proper if and only if the fan is complete in
the sense that |X| = Ng. The variety X is smooth if and only if every cone o € ¥ can
be written as 0 = R>ov; + -+ + R>ov with v1,..., v, which are part of an integral
basis of N. The variety Xx is projective if and only if the fan 3 is complete and
regular (Definition 2.5.4).

Example 3.1.3. — Let ¥ an be the fan in Example 2.5.12. The toric variety Xy, is
the projective space P%. More generally, to a polytope A C My of maximal dimension
we can associate a complete toric variety Xy ,, where ¥4 is the fan of Example 2.5.13.

3.2. Orbits and equivariant morphisms

The action of the torus induces a decomposition of a toric variety into disjoint
orbits. These orbits are in one to one correspondence with the cones of the fan. Let
o € ¥ and set

N(o) = N/(NNRo), M(o)=N(o)" =Mnot, (3.2.1)

where Ro is the linear space spanned by ¢ and o is the orthogonal space to o. We
will denote by m,: N — N(o) the projection of lattices. By abuse of notation, we
will also denote by m,: Ng — N(o)g the induced projection of vector spaces.
The orthogonal space ot is the maximal linear space inside ¢¥ and M (o) is the
maximal subgroup sitting inside the semigroup M,. Set
O(o) = Spec(K[M(0)]),
which is a torus over K of dimension n — dim(o). The surjection of rings
@ ifaeot,
K[M,] — K[M(0)], x*—{%
0 ifag¢got,
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induces a closed immersion O(c) < X,. In terms of rational points, the inclusion
O(0)(K) <= X,(K) sends a group homomorphism v: M (o) — K* to the semigroup
homomorphism 7: M, — (K, x) obtained by extending v by zero. In particular,
the distinguished point x, € X,(K) belongs to the image of O(c)(K) by the above
inclusion. Composing with the open immersion X, — Xy, we identify O(c) with a
locally closed subvariety of X5. For instance, the orbit associated to the cone 0 agrees
with the principal open subset Xy. In fact, if we consider z, as a rational point of
Xy, then O(o) agrees with the orbit of z, by T.

We denote by V(o) the Zariski closure of O(o) with its induced structure of closed
subvariety of Xy. The subvariety V(o) has a natural structure of toric variety. To
see it, we consider the fan on N(o)r

(o) :={ns(1) | T D0} (3.2.2)

This fan is called the star of o in ¥. For each 7 € ¥ with o C 7, set T = 71, (7) € E(0).

Then, M (c)7 = M(o) N M,. There is a surjection of rings
m ifm e L’

KM, —s K[M(0)s], x"r—s* ME7
0 if m¢ot,

that defines a closed immersion X7 — X.. These maps glue together to give a closed
immersion iy : X5 — Xz

Proposition 3.2.1. — The closed immersion L, induces an 1350’m07"phi5m Xs(o) = V(o).

Proof. - - Since the image of each X7 contains O(o) as a dense orbit, we deduce the
result from the construction of ¢,. O

In view of this proposition, we will identify V(o) with X5(,) and consider it as a
toric variety.
We now discuss more general equivariant morphisms of toric varieties.

Definition 3.2.2. — Let T; ~ G, i = 1,2, be split tori over K, and ¢: Ty — T»
a group morphism. Let X;, i = 1,2, be toric varieties with torus T;. A morphism
p: X1 = Xo is p-equivariant if the diagram

T, x X; 22 x,
Q><<Pl l«p
TQXX2M2—>X2

is commutative. A morphism p: X; — X3 is p-toric if its restriction to T} agrees with
0. We say that ¢ is equivariant or toric if it is g-equivariant or g-toric, respectively,
for some .
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Toric morphisms are equivariant. Indeed, a morphism is toric if and only if it is
equivariant and sends the distinguished point 21,90 € X7 (K) to the distinguished point
T20 € XQ(K)

The inclusion V(o) — X is an example of equivariant morphism that is not toric.
Moreover, the underlying morphism of tori depends on the choice of a section of the
projection m,: N — N(o).

A general equivariant morphism is obtained by composing an equivariant morphism
whose image intersects the principal open subset, with the inclusion of this image as
the Zariski closure of an orbit.

Equivariant morphisms whose image intersects the principal open subset can be
characterized in combinatorial terms. Let T;, ¢ = 1,2, be split tori over K. Put
N; = Hom(G,,, T;) and let 3; be fans in N; g. Let H: Ny — N be a linear map such
that, for every cone o; € ¥, there exists a cone o9 € Xy with H(oy) C 09, and let
p € Xy, 0(K) be a rational point. The linear map induces a group homomorphism

OH: T, — Ts.

Let o; € ¥;, ¢ = 1,2, be cones such that H(c;) C o9. Let HY: My — M; be
the map dual to H. Then there is a homomorphism of semigroups Mz ,, = M o,
which we also denote by HY. For a monomial x™ € K[M; ,,] we denote by yHm
its image in K[M; ,,]. The assignment x™ X" (p)x ™
algebras K[M; ,,] = K[M ,,], that in turn, induce morphisms

induces morphisms of

X, = Spec(K[Mi,4,]) — Xo, = Spec(K[Maz,s,]).

These morphisms are compatible with the restriction to open subsets, and they glue
together into a ppg-equivariant morphism

Yp,H: XZ] — XZQ' (323)

In case p = x20, the distinguished point on the principal open subset of Xy, , this
morphism is a toric morphism and will be denoted as ¢ g for short.

Remark 3.2.3. — The restriction of ¢, i to the principal open subset can be written
in coordinates by choosing bases of N; and N». Let n; be the rank of V;. The chosen

bases determine isomorphisms Xs, o o~ G, which give coordinates = (z1, ..., 2y, )
and t = (t1,...,t,) for X5, o and Xy, o, respectively. We write the linear map H
with respect to these basis as a matrix, and we denote its rows by a;, i = 1,...,na.
Write p = (p1,...,Pn,). In these coordinates, the morphism ¢, g is given by

ep.u(T) = (P1x, ... pp,x2).
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Theorem 3.2.4. — Let T;, N; and ¥;, i = 1,2, be as above. Then the correspondence
(p, H) — @p i 15 a bijection between

1. the set of pairs (p, H), where H: Ny — Ny is a linear map such that for every
cone o1 € ¥y there exists a cone o9 € 39 with H(oy) C 02, and p is a rational
point of Xx, 0(K),

2. the set of equivariant morphisms ¢: Xs, — Xy, whose image intersects the
principal open subset of Xx,.

Proof. — For a point p € X5, o(K) = To(K), let t,: X5, — X5, be the morphism
induced by the toric action. Denote by x;9 € Xx, (K) the distinguished point of
the principal open subset of Xy,. The correspondence ¢ — (t;(lx]‘o) o, (1))
establishes a bijection between the set of equivariant morphisms ¢: X5, — Xy,
whose image intersects the principal open subset of X, and the set of pairs (¢, p),
where @g: Xy, — X5, is a toric morphism and p € Xy, o(K) is a rational point in
the principal open subset. Then the result follows from [Oda88, Theorem 1.13]. O

Following [Oda88, Proposition 1.14}, we now show how to refine the Stein factor-
ization for an equivariant morphism whose image intersects the principal open subset,
in terms of combinatorial data. Let N;, ¥;, H and p be as in Theorem 3.2.4. The
linear map H factorizes as

Hsurj Haat Hin;
N1 —» N’; i H(Nl) — N4 = Sa,t(Ng) — NQ,
where Nj is the image of H and Ny is the saturation of N3 with respect to Na. Clearly
N3r = Ngr. By restriction, the fan ¥y induces a fan in this linear space. We will
call this fan either X3 or ¥4, depending on the lattice we are considering. Applying
the combinatorial construction of equivariant morphisms, we obtain the following
factorization of ¢, :

P Hgat

Xs, ¥ Hausj Xs, Xz, or i Xs,. (3.2.4)

The first morphism has connected fibres, the second morphism is finite and surjective,
and the third morphism is also finite. Therefore, ¢, and ¢, ;0@ H,,, give a Stein
factorization of ¢, . Furthermore, by [Oda88, Corollary 1.16],

deg(goHsat) = [N4 : N'g] (325)

The morphism ¢, g7, can be further factorized as a normalization followed by a closed
immersion. In what follows, we describe this latter factorization with independent
notations.

Consider a saturated sublattice @ of N, ¥ a fan in Ng and p € X5 o(K). Let ¥g
be the induced fan in Qg and ¢: Q < N the inclusion of ) into N. Then we have a
finite equivariant morphism

Pp,u+ XEQ — XE
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Set P = QV = M/Q* and let .Y: M — P be the dual of .. Let ¢ € ¥ and
o' =0 NQr € Lg. The natural semigroup homomorphisms M, — P,/ factors as

M, — Mg, = (M, +Q*%)/Q*+ — P,y := PN ().

The first arrow is the projection and will be denoted as m — [m], while the second
one is the inclusion of Mg , into its saturation with respect to P. We have a diagram
of K-algebra morphisms

K[M,] — K[Mg | — K[P,],

where the left map is given by x™ — x™(p)x!™, and the right map is given by
X = ™ Let Y, 0.p = Spec(K[Mg,,]) be the closed subvariety of X, given by
the left surjection. Then we have induced maps

KXo 0,Q,p > Xo.

These maps are compatible with the restriction to open subsets and so they glue
together into a factorization of ¢, ,:

XEQ —» YE,Q,P — XE. (326)

Denote by Yy, ¢ p,0 the orbit of p under the action of the subtorus of T determined by @
Then Yy g, is the closure of Yx, g 5 0, while the toric variety X5, is the normalization
of Y5, g,p. When p = ¢, the subvariety Yz g, will be denoted by Yx g for short.

Observe in the previous construction that, when o = 0, hence ¢/ = 0, then
Mg = Py. Therefore the difference between Xy, and Yy g, is concentrated in
the complement of the principal open subset:

Proposition 3.2.5. — The normalization map Xs, — Ys qp tnduces an isomorphism

X500 = Ye@p0-

Definition 3.2.6. — A subvariety Y of Xy will be called a toric subvariety (respectively,
a translated toric subvariety) if it is of the form Yx o (respectively, Ys gp) for a
saturated sublattice @ C N and p € X5 o(K).

A translated toric subvariety is not necessarily a toric variety in the sense of Defi-
nition 3.1.1, since it may be non-normal.

Example 3.2.7. — Let N = Z?  (a,b) € N with ged(a,b) = 1 and ¢: Q — N the
saturated sublattice generated by (a,b). Let 3 be the fan in Ny of Example 2.5.12.
Then Xy = P? with projective coordinates (xg : x1 : 2). The fan induced in Qg has
three cones: ¥ = {R<q, {0}, R>0}. Thus Xy, = P! Let p = (1: p; : p2) be a point
of X5 o(K). Then ¢, ,((1:t)) = (1 : pit* : pat®). Therefore, Ys o,p is the curve of
equation

pgfrgxﬂ’ — pll’:l:gxg =0.

In general, this curve is not normal. Hence it is not a toric variety.
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We end this section by stating the compatibility between equivariant morphisms
and orbits.

Proposition 3.2.8. — With the notations of Theorem 3.2.4. Let o1 € X1 and let
o9 € Yo be the unique cone such that H(oy) C oo and H(oy) Nri(oe) # &. Let
H': Ni(o1) — Na(og) be the linear map induced by H and let p' € O(oa) =
Spec(K[Mz(o2)]) be the point determined by the map K[My(o2)] — K, x™ — x™(p),
m € Ms(oa). Then there is a commutative diagram

99p’7H’
X5y (01) = X5y (o)

Lq] J« ll’o‘z

Xy, — X5,
X $p,H 2

3.3. T-Cartier divisors and toric line bundles

When studying toric varieties, the objects that admit a combinatorial description
are those that are compatible with the torus action. These objects are enough for
many purposes. For instance, the divisor class group of a toric variety is generated
by invariant divisors.

Let mo: T x X — X denote the projection to the second factor and pu: Tx X — X
the torus action. A Cartier divisor D is invariant if and only if

moD = p*D.
Definition 3.3.1. — Let X be a toric variety with torus T. A Cartier divisor on X is

called a T-Cartier divisor if it is invariant under the action of T on X.

The combinatorial description of T-Cartier divisors is done in terms of virtual
support functions.

Definition 3.3.2. — Let ¥ be a fan in Ng. A function ¥: |X| — R is called a virtual

support function on ¥ if it is a conic H-lattice function (Definition 2.6.6). Alterna-

tively, a virtual support function is a function ¥: |X| — R such that, for every cone
o € X, there exists m, € M with ¥(u) = (m,,u) for all w € . A set of functionals
{ms}sex as above is called a set of defining vectors of W. A concave virtual support
function on a complete fan will be called a support function.

A support function on a complete fan in the sense of the previous definition, is the
support function of a polytope as in Example 2.2.1: it is the support function of the
polytope

conv({mg }yexn ) C Mg,

where X" is the subset of n-dimensional cones of X.
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Two vectors m,m’ € M define the same functional on a cone ¢ if and only if
m—m’ € . Hence, for a given virtual support function ¥ on a fan ¥, each defining
vector m, is unique up to the orthogonal space o. In particular, m, € M is uniquely
defined for o € ¥™ and, in the other extreme, mg can be any point of M.

Let {ms}sex be a set of defining vectors of W. These vectors have to satisfy the
compatibility condition

Mo |onor = Mot|onor for all o,0" € B.

On each open set X, the vector m, determines a rational function x~". For
o,0’ € 3, the above compatibility condition implies that x =" /x~™’ is a regular
function on the overlap X, N X, = Xonor and so ¥ determines a Cartier divisor
on Xy:

Dy = {(Xm)(_m")}(762 )

This Cartier divisor does not depend on the choice of defining vectors and it is a
T-Cartier divisor. All T-Cartier divisors are obtained in this way.

Theorem 3.3.3. — Let X be a fan in Ng and Xx, the corresponding toric variety. The
correspondence ¥ — Dy is a bijection between the set of virtual support functions on
3 and the set of T-Cartier divisors on Xx.. Two Cartier divisors Dy, and Dy, are
rationally equivalent if and only if the function ¥ — Wy is linear.

Proof. This is proved in [KKMST73, §1.2, Theorem 9]. O

We next recall the relationship between Cartier divisors and line bundles in the
toric case.

Definition 3.3.4. — Let X be a toric variety and L a line bundle on X. A toric
structure on L is the choice of a nonzero vector z on the fibre L,, = 5L over the
distinguished point. A toric line bundle is a pair (L, z), where L is a line bundle on
X and z is a toric structure on L. A rational section s of a toric line bundle is a toric
section if it is regular and nowhere vanishing on the principal open subset X, and
s(zp) = z. In order not to burden the notation, a toric line bundle will generally be
denoted by L, the vector z being implicit.

Remark 3.3.5. — Let L be a toric line bundle and denote by 0 its zero section. Let
V(L) = Specy (Sym(L")) be the total space of L. Then T’ := V(L|r) \ 0(T) admits
a unique structure of split torus of dimension n + 1 characterized by the properties

1. z is the unit of T';
2. the projection T — T is a morphism of algebraic groups;

3. every toric section s induces a morphism of algebraic groups T — T".
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The terminology “toric structure”, “toric line bundle” and “toric section” comes from
the fact that V(L) admits a unique structure of toric variety with torus T’ satisfying
the conditions:

1. z is the distinguished point of the principal open subset;
2. the structural morphism V(L) — X is a toric morphism;

3. for each point z € X and vector w € L, the morphism G,, — V(L), given by
scalar multiplication A — Aw, is equivariant;

4. every toric section s determines a toric morphism U — V(L), where U is the
invariant open subset of regular points of s.

This can be shown using the construction of V(L) as a toric variety in [Oda88,
Proposition 2.1].

Remark 3.3.6. — Every toric line bundle equipped with a toric section admits a unique
structure of T-equivariant line bundle such that the toric section becomes an invariant
section. Conversely, every T-equivariant toric line bundle admits a unique invariant
toric section. Thus, there is a natural bijection between the space of T-equivariant
toric line bundles and the space of toric line bundles with a toric section. In particular,
every line bundle admits a structure of T-equivariant line bundle. This is not the case
for higher rank vector bundles on toric varieties, nor for line bundles on other spaces
with group actions like, for instance, elliptic curves.

To a Cartier divisor D, one associates an invertible sheaf of fractional ideals of Kx,
denoted O(D). When D is a T-Cartier divisor given by a set of defining vectors
{m¢ }sesx, the sheaf O(D) can be realized as the subsheaf of Ox-modules generated,
in each open subset X, by the rational function ™. The section 1 € Kx provides us
with a distinguished rational section sp such that div(sp) = D. Since D is supported
on the complement of the principal open subset, sp is regular and nowhere vanishing
on Xo. We set z = sp(zp). This is a toric structure on O(D). From now on, we will
assume that O(D) is equipped with this toric structure. Then ((O(D),z),sp) is a
toric line bundle with a toric section.

Theorem 3.3.7. — Let X be a toric variety with torus T. Then the correspondence
D ((O(D),sp(x0)),sp) determines a bijection between the sets of

1. T-Cartier divisors on X,

2. isomorphism classes of pairs (L,s) where L is a toric line bundle and s is a

toric section.

Proof. — We have already shown that a T-Cartier divisor produces a toric line bundle
with a toric section. Let now ((L, z), s) be a toric line bundle equipped with a toric
section and ¥ the fan that defines X. Since every line bundle on an affine toric variety
is trivial, for each ¢ € ¥ we can find a section s, that generates L on X, and such
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that s,(xg) = z. Since s is regular and nowhere vanishing on Xy and s(zg) = z,
we can find elements m, € M such that s = x7™°s,, because any regular nowhere
vanishing function on a torus is a constant times a monomial. The elements m, glue
together to define a virtual support function ¥ on ¥ that does not depend on the
chosen trivialization. It is easy to see that the correspondence (L,s) — Dy is the
inverse of the previous one, which proves the theorem. O

Thanks to this result and Theorem 3.3.3, we can freely move between the languages
of virtual support functions, T-Cartier divisors, and toric line bundles with a toric
section.

Notation 3.3.8. — Let ¥ be a virtual support function, we write ((Ly, zw), sw) for
the toric line bundle with toric section associated to the T-Cartier divisor Dy by
Theorem 3.3.7. When we do not need to make explicit the vector zg, we will simply
write (Ly,sy). Conversely, given a toric line bundle L with toric section s we will
denote ¥y, s the corresponding virtual support function.

We next recall the relationship between Cartier divisors and Weil divisors in the
toric case.

Definition 3.3.9. — A T-Weil divisor on a toric variety X is a finite formal linear
combination of hypersurfaces of X which are invariant under the torus action.

The invariant hypersurfaces of a toric variety are particular cases of the toric sub-
varieties considered in the previous section: they are the varieties of the form V(7)
for 7 € X! a ray. Hence, a T-Weil divisor is a finite formal linear combination of
subvarieties of the form V(7) for 7 € £1.

There is a correspondence that to each Cartier divisor on X associates a Weil
divisor. To the T-Cartier divisor Dy, it corresponds the T-Weil divisor

[De] = > =¥(v,)V(7), (3.3.1)
Tex!

where v, € N is the smallest nonzero lattice point in 7.

Example 3.3.10. — We continue with the notation of examples 2.5.18 and 3.1.3. The
fan X an has n + 1 rays. For each i =0, ..., n, the closure of the orbit corresponding
to the ray generated by the vector e; is the standard hyperplane of P™

The function Wan is a support function on ¥ a» and the T-Weil divisor associated to
Dy, is [Dy,.] = Ho.

For a toric variety Xy of dimension n, we denote by Divy(Xyx) its group of T-
Cartier divisors, and by ZI_; (Xx) its group of T-Weil divisors. Recall that Pic(Xy),
the Picard group of Xy, is the group of isomorphism classes of line bundles. Let
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A, —1(Xy) denote the Chow group of cycles of dimension n — 1. The following result
shows that these groups can be computed in terms of invariant divisors.

Theorem 3.3.11. — Let ¥ be a fan in Ny that is not contained in any hyperplane.
Then there is a commutative diagram with exact rows

0 —— M —— Divp(Xyg) —— Pic(Xy) —— 0.

| L]

0——M—7" (Xg) —— A,_1(X5) ——0

n—1
Proof. — This is the first proposition in [Ful93, §3.4]. O

Remark 3.3.12. — In the previous theorem, the hypothesis that ¥ is not contained in
any hyperplane is only needed for the injectivity of the second arrow in each row of
the diagram.

In view of Theorem 3.3.7, the upper exact sequence of the diagram in Theo-
rem 3.3.11 can be interpreted as follows.

Corollary 3.3.13. — Let X be a toric variety with torus T.

1. Every toric line bundle L on X admits a toric section. Moreover, if s and s
are two toric sections, then there exists m € M such that s’ = x™s.

2. If the fan ¥ that defines X is not contained in any hyperplane, and L and L' are
toric line bundles on X, then there is at most one isomorphism between them.

Proof. — This follows from theorems 3.3.11 and 3.3.7. O

We next study the intersection of a T-Cartier divisor with the closure of an orbit.
Let ¥ be a fan in Ng and ¥ the virtual support function on ¥ given by the set of
defining vectors {m, },cx. Let o be a cone of ¥ and ¢,: V(o) — X5 the associated
closed immersion. We consider first the case when ¥|, = 0. Let 7 D ¢ be another
cone of . For vectors u € 7 and v € Ro such that u + v € 7, the condition ¥|, =0
implies

U(u+v)=(mru+v) = (m,u) = V(u)

= 0. Hence, we can define a function

because m. |R0

U(og): N(o)g — R, u+Ro+— ¥(u+v) (3.3.2)

for any v € Ro such that u+v € |J, -, 7.

It is easy to produce a set of defining vectors of ¥(o). For each cone 7 O o
we denote by T = 7,(7) the corresponding cone in X(o). Since 'rn,ThRU = 0, then
m, € M(o) = M Not. We set mz=m, € M(c).
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Proposition 3.3.14. — Let notation be as above. If ¥|, = 0, then Dy intersects
V(o) properly and 1Dy = Dyg(s). Moreover, {mz}zex(s) is a set of defining vec-
tors of U(o).

Proof. — The T-Cartier divisor Dy is given by {(X;,x ™ )}res. If m, = 0, the
local equation of Dy in X, is x° = 1. Therefore, the orbit O(c) does not meet the
support of Dy. Hence V(o) and Dy intersect properly.

To see that {m=}zcx (o) is a set of defining vectors, we pick a point u € 7 and we
choose u € 7 such that 7,(u) = @. Then

U(o)(m) = ¥(u) = m.(u) = m=(7),

which proves the claim. Now, using the characterization of ¥ (o) in terms of defining
vectors, we have

L;D‘I’ = {(XT n ‘/(U)?XimT |X7ﬁV(0))}? = {(X77X7m?)}? = D\P(U)' U

When V|, # 0, the cycles Dy and V(o) do not intersect properly, and we can only
intersect Dy with V(o) up to rational equivalence. To this end, we choose any m/
such that W(u) = (m,u) for every u € o. Then the divisor Dy, is rationally
equivalent to Dy and ¥ — m/|, = 0. By the above result, this divisor intersects
V(o) properly, and its restriction to V(o) is given by the virtual support function

(W —my)(o).

Example 3.3.15. — We can use the above description of the restriction of a line bundle
to an orbit to compute the degree of an orbit of dimension one. Let ¥ be a complete fan
and 7 € X", Hence V() is a toric curve. Let o1 and o2 be the two n-dimensional
cones that have 7 as a common face. Let ¥ be a virtual support function. Choose
v € oy such that 7, (v) is a generator of the lattice N(7). Then, by (3.3.1) and (3.3.2),

degp, (V(7)) = deg(t;Dy) = mg,(v) — mg, (v).

Let now (L, z) be a toric line bundle on Xy and ¢ € ¥. The line bundle (5L on
V(o) has an induced toric structure. Let s be a toric section of L that is regular
and nowhere vanishing on X,, and set z, = s(x,) € L, \ {0}. If & is another
such section, then s’ = x™s for an m € M such that m|, = 0, by Corollary 3.3.13.
Therefore s'(z,) = s(z,). Hence, z, does not depend on the choice of section and
(¢r L, z,) is the induced toric line bundle. The following result follows easily from the
constructions.

Proposition 3.3.16. — Let (L, z) be a toric line bundle on Xs; and 0 € . Let ¥ be a
virtual support function such that ¥|, = 0 and (L, 2) ~ (Lg, 2y) as toric line bundles.
Then 1} (L, z) ~ (Ly(s): 20(0))-

We next study the inverse image of a T-Cartier divisor with respect to equivariant
morphisms as those in Theorem 3.2.4. Let N;, ¥;, i = 1,2, and let H: N — Ny
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and p € Xy, o(K) be as in Theorem 3.2.4. Let ¢, y be the associated equivariant
morphism, ¥ a virtual support function on X9 and {m’, }, 5, a set of defining vectors
of W. For each cone 7 € 3 we choose a cone 7/ € ¥y such that H(r) C 7’ and we
write m, = HY(m/,). The following result follows easily from the definitions

Proposition 3.3.17. — The divisor Dy intersects properly the image of ¢p . The
function ¥ o H is a virtual support function on ¥, and

p.uDv = Duyon.
Moreover, {m;}.cx, is a set of defining vectors of W o H.

Remark 3.3.18. — 1f L is a toric line bundle on X5, and ¢ is a toric morphism, then
©*L has an induced toric structure. Namely, ¢*(L, z) = (¢*L, p*z). By contrast, if
¢: X5, — Xy, is a general equivariant morphism that meets the principal open sub-
set, there is no natural toric structure on ¢* L, because the image of the distinguished
point x1 ¢ does not need to agree with xo . 1If (L, s) is a toric line bundle equipped
with a toric section, then we set ¢*(L,s) = ((¢*L, (¢*s)(x1,0)),¢*s). However, the
underlying toric bundle of *(L, s) depends on the choice of the toric section.

3.4. Positivity properties of T-Cartier divisors

Let ¥ be a fan in Ng and ¥ a virtual support function on Y. In this section, we
will assume that ¥ is complete or, equivalently, that the variety Xy is proper.

Many geometric properties of the pair (Xs, Dy) can be read directly from W. For
instance, the following result relates the concavity of the virtual support function ¥
with the positivity of Dy.

Proposition 3.4.1. — Let O(Dy) be the line bundle associated to Dy .
1. O(Dy) is generated by global sections if and only if W is concave.
2. O(Dy) is ample if and only if ¥ is strictly concave on 3.
Proof. — This is classical, see for instance [Ful93, §3.4]. |

In the latter case, the fan ¥ agrees with the polyhedral complex II(¥) (Defini-
tion 2.2.5) and the pair (Xyx, Dy) is completely determined by W. Thus, the variety
Xy is projective if and only if the fan ¥ is complete and regular (Definition 2.5.4).

We associate to ¥ the subset of My

Ay ={x € Mg | (z,u) > V(u) for all u € Ng}.

This set is either empty or a lattice polytope. When O(Dy) is generated by global
sections, the polytope Ay agrees with stab(¥), and W is the support function of Ayg.

The polytope Ay encodes a lot of information about the pair (Xy,Dy). For
instance, we can read from it the space of global sections of O(Dy).
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Proposition 3.4.2. — A monomial rational section x™ € Kx,, m € M, is a regular
global section of O(Dy) if and only if m € Ay. Moreover, the set {X™ }memnay 1S a
K -basis of the space of global sections I'( X5, O(Dy)).

Proof. — See for instance [Ful93, §3.4]. O

Also the intersection number between toric divisors can be read off from the cor-
responding polytopes.

Proposition 3.4.3. — Let Dy,, i =1,...,n, be T-Cartier divisors on Xx, generated by
their global sections. Then

(Dg, -+~ Dg,)=MVy(Ay,,...,Av,). (3.4.1)

where MV y; denotes the mized volume function associated to the Haar measure volys
on Mg (Definition 2.7.14). In particular, for a T-Cartier divisor Dy generated by its
global sections,

degp, (Xx) = (Dy) = n!voly (Ay). (3.4.2)

Proof. — This follows from [Oda88, Proposition 2.10]. ]

Remark 3.4.4. — The intersection multiplicity and the degree in the above proposition
only depend on the isomorphism class of the line bundles O(Dy,) and not on the
T-Cartier divisors themselves. It is easy to check directly that the right-hand sides
of (3.4.1) and (3.4.2) only depend on the isomorphism classes of the line bundles. In
fact, let L be a toric line bundle generated by global sections and s1, so two toric
sections. For i = 1,2, set D; = div(s;) and let ¥; be the corresponding support
function and A; the associated polytope. Then so = x"s; for some m € M. Thus
WUy = ¥y —m and Ay = A —m. Since the volume and the mixed volume are invariant
under translation, we see that these formulae do not depend on the choice of sections.

Definition 3.4.5. — A polarized toric variety is a pair (Xs, Dy ), where Xy is a toric
variety and Dy is an ample T-Cartier divisor.

Polarized toric varieties can be classified in terms of their polytopes.

Theorem 3.4.6. — The correspondence (Xx, Dy) — Ay is a bijection between the set
of polarized toric varieties and the set of lattice polytopes of dimension n of M. Two
ample T-Cartier divisors Dy and Dy on a toric variety Xy, are rationally equivalent
if and only if Ay is the translate of Ay by an element of M.

Proof. — If ¥ is a strictly concave function on ¥, then Ay is an n-dimensional
lattice polytope. Conversely, if A is a lattice polytope in Mg, then WA, the support
function of A, is a strictly concave function on the complete fan 3o = II(TA) (see
examples 2.5.13 and 2.5.18). Therefore, the result follows from Theorem 3.3.3 and
the construction in Remark 3.4.4. O
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Remark 3.4.7. — When Dy is only generated by its global sections, the polytope Ay
may not determine the variety Xy, but it does determine a polarized toric variety that
is the image of Xy by a toric morphism. Write A = Ay for short. Let M(A) be as
in Notation 2.7.9 and choose m € aff(A) N M. Set N(A) = M(A)V. The translated
polytope A — m has the same dimension as its ambient space Ln = M(A)g. By
the theorem above, it defines a complete fan Yo in N(A)g together with a support
function ¥a: N(A) — R. The projection N — N(A) induces a toric morphism

@: XE — XZA>
the divisor Dy, is ample, and Dy = ¢* Dy, + div(x™™).

Example 3.4.8. — The projective morphisms associated to T-Cartier divisors gener-
ated by global sections can also be made explicit in terms of the lattice points of the
associated polytopes. Consider a toric variety Xy of dimension n equipped with a
T-Cartier divisor Dy generated by global sections. Let mg,...,m, € Ag N M be
such that conv(mg,...,m,) = Ay. These vectors determine an H-representation
U = min;~g, . ,m;. Let H: Ng — R" be the linear map defined by H(u) =
(m;(u) — mo(u))i=1,...». By Lemma 2.5.22, U = H*WUar + my.

In R" we consider the fan XA, whose associated toric variety is P". One easily
verifies that, for each o € 3, there is ¢/ € Lo with H(o) Co’. Let p=(po:...: pr)
be an arbitrary rational point of the principal open subset of P”. The equivariant mor-
phism ¢, : X — P} can be written explicitly as (pox™° : ... : prx""). Moreover,
Dy = ¢y pDwyr +div(x™™).

The orbits of a polarized toric variety (X, Dy) are in one-to-one correspondence
with the faces of Ay.

Proposition 3.4.9. — Let X be a complete fan in Ng and ¥ a strictly concave function
on X. The correspondence F' — O(or) is a bijection between the set of faces of Ay
and the set of the orbits under the action of T on Xx.

Proof. — This follows from Example 2.5.13. O

The equation (3.3.1) gives a formula for the Weil divisor [Dy] in terms of the
virtual support function ¥. When the line bundle O(Dy) is ample, we can interpret
this formula in terms of the facets of the polytope Ay.

Let Dy be an ample divisor on Xy. The polytope Ay has maximal dimension n.
For each facet F' of Ay, let vp be as in Notation 2.7.9. The ray 77 = R>gvp is a cone
of .

Proposition 3.4.10. — With the previous hypothesis,

diV(Sq;) = [D\p] = Z 7<F7 /UF>V(TF),
F
where the sum is over the facets ' of A.
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Proof. — Since V¥ is strictly concave on ¥, the Legendre-Fenchel correspondence
shows that the set of rays of the form 7 agrees with the set ¥'. Moreover, ¥(vp) =
(F,vp), because ¥ is the support function of A. The proposition then follows
from (3.3.1). O

For a T-Cartier divisor generated by global sections, we can interpret its intersection
with the closure of an orbit, and its inverse image with respect to an equivariant
morphism, in terms of direct and inverse images of concave functions.

Proposition 3.4.11. — Let ¥ be a complete fan in Ng and V: Ng — R a support
function on X.

1. Let o0 € X, F, the associated face of Ay, and ml, € Fo, " M. Let m,: Ng —
N(o)r be the natural projection. Then

(U —m.)(o) = (75)s (¥ —m.). (3.4.3)

In particular, the restriction of Dy to V(o) is given by the concave function
(m5)« (U —m.). Moreover, the associated polytope is

A(\Il—mi,)(a) =F, — mf, - M(O’)]R =ot. (344)

2. Let H: N’ — N be a linear map and HY : M — M’ its dual map, where M’ =
(N")Y. Let ¥ be a fan in Nj such that, for each o' € ¥ there is 0 € ¥ with
H(o') Co, and let p € Xy o(K). Then

(p;’HDq/ = DH*\IJ, (345)
and the associated polytope is
Ap-y = HY(Ay) C M. (3.4.6)

Proof. — The equation (3.4.3) follows from (3.3.2), while the equation (3.4.5) follows
from Proposition 3.3.17. Then (3.4.4) and (3.4.6) follow from Proposition 2.5.21. O

As a consequence of the above construction, we can compute easily the degree of
any orbit.

Corollary 3.4.12. — Let ¥ be a complete fan in Ng, V: Ng — R a support function
on X, and o € ¥ a cone of dimension n — k. Then

degp, (V(0)) = k!volys (g, ) (Fy).

Proof. — In view of (3.4.4) and (3.4.2), it is enough to prove that M (o) = M(F,).
But this follows from the fact that Ly, = o1 (see Notation 2.7.9). O
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Example 3.4.13. — Let 7 € X", The degree of the curve V(1) agrees with the
lattice length of Fi..

We will also need the toric version of the Nakai-Moishezon criterion.

Theorem 3.4.14. — Let Xy be a proper toric variety and Dy a T-Cartier divisor
on Xy. .
1. The following properties are equivalent:
(a) Dy is ample;
(b) (Dg -C) >0 for every curve C in Xx;
(¢) (Dg V(7)) >0 for every T € X"~ 1;
(d) the function U is strictly concave on X.
2. The following properties are equivalent:
(a) Dy is generated by its global sections;
(b) (Dg -C) >0 for every curve C in Xx;
(¢c) (Dg V(7)) >0 for every T € X"~ 1,

(d) the function V¥ is concave.

Proof. — The equivalence between (1a) and (1d) and between (2a) and (2d) is Propo-
sition 3.4.1. The rest of (1) and (2) is proved in [Mav00], see also [Oda88, Theo-
rem 2.18] for (1) in the case of smooth toric varieties. O

A direct consequence of theorems 3.4.14 and 3.3.11 is that, in a toric variety, a
divisor is nef if and only if it is generated by global sections, and every ample divisor
is generated by global sections.

3.5. Toric schemes over a discrete valuation ring

In this section we recall some basic facts about the algebraic geometry of toric
schemes over a DVR. These toric schemes were introduced in [KKMS73, Chapter IV,
§3], and we refer to this reference for more details or to [Gub12] for a study of toric
schemes over general valuation rings and their relation with tropical geometry. They
are described and classified in terms of fans in Ng xR>¢. In this section we will mostly
consider proper toric schemes over a DVR. As a consequence of Corollary 2.1.13,
proper toric schemes over a DVR can be described and classified in terms of complete
SCR polyhedral complexes in Ny as, for instance, in [NS06].

Let K be a field equipped with a nontrivial discrete valuation valy : K* — R whose
group of values is Z. In this section we do not assume K to be complete. As usual, we
denote by K° the valuation ring, by K°° its maximal ideal, by w a generator of K°°
and by k the residue field. Since the group of values of valg is Z, then valg (w) = 1.
We denote by S the base scheme S = Spec(K°), by n and o the generic and the
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special points of S and, for a scheme X over S, we set X, = X xg Spec(K) and
X, = X xg Spec(k) for its generic and special fibre respectively. We will denote by
Ts = Tgo =~ Gj,, 5 a split torus over S. Let T = T, N and M be as in §3.1. We will

write N=N®Z and M = M & Z.

Definition 3.5.1. — A toric scheme over S of relative dimension n is a normal inte-
gral separated S-scheme of finite type, X', equipped with a dense open embedding
Tg — A, and an S-action of Tg over X that extends the action of Tx on itself by
translations. If we want to stress the torus acting on A we will call them toric schemes
with torus Tg.

If X is a toric scheme over S, then &), is a toric variety over K with torus T.

Definition 3.5.2. — Let X be a toric variety over K with torus Tx and let X be a
toric scheme over S with torus Tg. We say that X is a toric model of X over S if the
identity of Tk can be extended to an isomorphism from X to A,.

If X and X’ are toric models of X and a: X — X’ is an S-morphism, we say that
« is a morphism of toric models if its restriction to Ty is the identity.

Since, by definition, a toric scheme is integral and contains T as a dense open
subset, it is flat over S. Thus a toric model is a particular case of a model as in
Definition 1.3.2.

Let 3 be a fan in Ngr x R>¢. To the fan ¥ we associate a toric scheme X5 over S.
Let o € % be a cone and oV C MR its dual cone. Set ]W =MnoV. Let KO[M ] be
the semigroup K*°-algebra of M,. By definition, (0,1) € M,. Thus (X(O 1) — @) is an
ideal of K°[M,]. There is a natural isomorphism

M xOY — @) ~

{ Qi lw X
(m, l)EM

that we use to identify both rings. The ring K°[M,]/(x®Y) — @) is an integrally

Qm, € K° and oy, = 0 for almost all (m,l)} (3.5.1)

closed domain. We set
Xy = Spec(K°[M,]/(x V) - =)
for the associated affine toric scheme over S. For short we will use the notation

K°[X,] = K°[M,]/(x*V - w). (3.5.2)
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For cones 0,0’ € ¥, with o C ¢’ we have a natural open immersion of affine schemes
Xy — X, Using these open immersions as gluing data, we define the scheme

Xe = A
o€es

This is a reduced and irreducible normal scheme of finite type over S of relative
dimension 7.

There are two types of cones in 3. The ones that are contained in the hyperplane
Ng x {0}, and the ones that are not. If o is contained in Ng x {0}, then (0, —1) € M,,
and w is invertible in K°[X,]. Therefore K°[X,] ~ K[M,]; hence X, is contained in
the generic fibre and it agrees with the affine toric variety X,. If o is not contained
in Ng x {0}, then X, is not contained in the generic fibre.

To stress the difference between both types of affine schemes we will use the follow-
ing notations. Let IT be the SCR polyhedral complex in Ng obtained by intersecting
5 by the hyperplane Ng x {1} as in Corollary 2.1.13, and ¥ the fan in Ng obtained
by intersecting ¥ with Ng x {0}. For A € II, the cone ¢(A) € % is not contained
in N x {0} We will write MA = Mc(/\)v KO[MA] = KO[MC(A)L XA = XC(A) and
K°[Xp] = K°[Xo(a))-

Given polyhedrons A, A" € TI, with A C A’, we have a natural open immersion of
affine toric schemes X < Xa.. Moreover, if a cone o € ¥ is a face of a cone c¢(A) for
some A € II, then the affine toric variety X, is also an open subscheme of X,. The
open cover (3.5.2) can be written as

Xe=|J vl X,
Aell oey
We will reserve the notation Xy, A € II, for the affine toric schemes that are not
contained in the generic fibre and denote by X,, o € ¥, the affine toric schemes
contained in the generic fibre, because they are toric varieties over K.

The scheme Xj corresponding to the polyhedron 0 := {0} is a group S-scheme which
is canonically isomorphic to Tg. The S-action of Tg over A% is constructed as in the
case of varieties over a field. Moreover there are open immersions Tx — X, — A%
of schemes over S and the action of Ts on A% extends the action of Ty on itself.
Thus X is a toric scheme over S. Moreover, the fan 3 defines a toric variety over K
which coincides with the generic fibre A5 . Thus, A% is a toric model of Xy. The
special fibre Xi,o = X5 >s< Spec(k) has an induced action by Tk, but, in general, it
is not a toric variety over k, because it is not irreducible nor reduced. The reduced
schemes associated to its irreducible components are toric varieties over k& with this
action.

Every toric scheme over S can be obtained by the above construction. Indeed, this
construction gives a classification of toric schemes by fans in Ng x R>q [KKMS73,
§IV.3(e)].
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If the fan 3 is complete, then the scheme A% is proper over S. In this case the set
{Xa}aen is an open cover of Xx. Proper toric schemes over S can also be classified
by complete SCR polyhedral complexes in Ng. This is not the case for general toric
schemes over S as is shown in [BS11].

Theorem 3.5.3. — The correspondence Il — X1y, where c(I1) is the fan introduced in
Definition 2.1.5, is a bijection between the set of complete SCR polyhedral complezes
in Ng and the set of isomorphism classes of proper toric schemes over S of relative
dimension n.

Proof. — Follows from [KKMS73, §IV.3(¢)] and Corollary 2.1.13. O

If we are interested in toric schemes as toric models of a toric variety, we can restate

the previous result as follows.

Theorem 3.5.4. — Let 3 be a complete fan in Ng. Then there is a bijective correspon-
dence between equivariant isomorphism classes of proper toric models over S of Xx
and complete SCR polyhedral complexes 11 in Ng such that rec(I) = X.

Proof. — Follows easily from Theorem 3.5.3. tl

For the rest of the section we will restrict ourselves to the proper case and we will
denote by IT a complete SCR polyhedral complex. To it we associate a complete fan
¢(IT) in Ng xR> and a complete fan rec(II) in Ng. For short, we will use the notation

An = Ao,
and we will identify the generic fibre Xn, with the toric variety Xiec()-
Example 3.5.5. — We continue with Example 3.1.3. The fan XA~ is in particular an

SCR polyhedral complex and the associated toric scheme over S is P%, the projective
space over S.

This example can be generalized to any complete fan ¥ in Ng.

Definition 3.5.6. — Let ¥ be a complete fan in Ng. Then ¥ is also a complete SCR
polyhedral complex. Clearly rec(X) = X. The toric scheme Xy is a model over S of
X5 which is called the canonical model. Tts special fibre

Xso=Xsi
is the toric variety over k defined by the fan X.

The description of toric orbits in the case of a toric scheme over a DVR is more
involved than the case of toric varieties over a field, because we have to consider two
kind of orbits.

In the first place, there is a bijection between rec(IT) and the set of orbits under the
action of Tk on ATy, that sends a cone o € rec(II) to the orbit O(0) C A,y = Xyeem)
as in the case of toric varieties over a field. We will denote by V(o) the Zariski closure
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in X7q of the orbit O(c) with its structure of reduced closed subscheme. Then V(o) is a
horizontal S-scheme, in the sense that the structure morphism V(o) — S is dominant,
of relative dimension n — dim(o).

Next we describe V(o) as a toric scheme over S. As before, we write N(o) =
N/(N NRo) and let m,: Ng — N(o)r be the linear projection. Each polyhedron
A € 1T such that o C rec(A) defines a polyhedron 7, (A) in N(o)g. One verifies that
these polyhedra form a complete SCR polyhedral complex in N(o)g, that we denote
II(¢). This polyhedral complex is called the star of ¢ in II.

Proposition 3.5.7. — There is a canonical isomorphism of toric schemes

XH(U) — V(O’)
Proof. — The proof is analogous to the proof of Proposition 3.2.1. O

In the second place, there is a bijection between II and the set of orbits under the
action of Ty on X, over the closed point 0. Given a polyhedron A € II, we set

N(A) = N/(NNRec(A), M(A) = N(A)Y = M nc(A)*.
We denote T(A) = Spec(k[]T/f (A)]). This is a torus over the residue field k of dimension
n — dim(A). There is a surjection of rings

KO[BT] — K{AT(A)), y0 {X(’”’” if(m,) € M(A),

0 if (m,1) ¢ M(A).
Since the element (0,1) does not belong to M(A), this surjection sends the ideal
(x'%Y — @) to zero. Therefore, it factorizes through a surjection K°[X] — k[H(A)],
that defines a closed immersion T(A) «— X,. Let O(A) be the image of this map and
V(A) the Zariski closure of this orbit in Xjy. The subscheme O(A) is contained in the
special fibre &1 ,, because the surjection sends @ to zero. By this reason, the orbits
of this type will be called vertical. Therefore, V/(A) is a vertical cycle in the sense
that its image by the structure morphism is the closed point o.

The variety V(A) has a structure of toric variety with torus T(A). This structure
is not canonical because the closed immersion T(A) < X depends on the choice of
w. We can describe this structure as follows. For each polyhedron A’ such that A is
a face of A/, the image of ¢c(A’) under the projection 7y : Ng — N(A)g is a strongly
convex rational cone that we denote ox,. The cones o/ form a fan of N (A)g that we
denote TI(A). Observe that the fan TI(A) is the analogue of the star of a cone defined
in (3.2.2). For each cone o € II(A) there is a unique polyhedron A, € II such that A
is a face of A, and o = mp(c(Ay)).
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Proposition 3.5.8. — There is an isomorphism of toric varieties over k

XH(A),Ic — V(A)
Proof. — Again, the proof is analogous to the proof of Proposition 3.2.1. O

The description of the adjacency relations between orbits is similar to the one for
toric varieties over a field. The orbit V(A) is contained in V(A') if and only if the
polyhedron A’ is a face of the polyhedron A. Similarly, V(o) is contained in V(o) if
and only if ¢’ is a face of o. Finally, V(A) is contained in V(o) if and only if o is a
face of the cone rec(A).

Remark 3.5.9. — As a consequence of the above construction, we see that there is
a one-to-one correspondence between the vertices of II and the components of the
special fibre. For each v € I1°, the component V' (v) is a toric variety over k defined by
the fan II(v) in Ng/R(v,1). The orbits contained in V (v) correspond to the polyhedra
A € 11 containing v. In particular, the components given by two vertices v, v’ € TI°
share an orbit of dimension [ if and only if there exists a polyhedron of dimension
n — [ containing both v and v’.

To each polyhedron A € I, hence to each vertical orbit, we can associate a combi-
natorial invariant, which we call its multiplicity. For a vertex v € I1°, this invariant
agrees with the order of vanishing of @ along the component V(v) (see (3.6.2)).

Denote by 3: N — N the inclusion J(u) = (u,0) and by pr: M — M the projection
pr(m,l) = m. We identify N with its image. We set

N(A) = N/(N NRe(A)), M(A) =M npr(c(A)L).

Remark 3.5.10. — The lattice M(A) can also be described as M(A) = M N Ly.
Therefore, for a cone o C Ng, the notation just introduced agrees with the one
in (3.2.1). Here, the polyhedron A is contained in Ng. By contrast, for a polyhedron
I' C Mg, we follow Notation 2.7.9, so M (I') = M N Ly.

Then 7 and pr induce inclusions of lattices of finite index N(A) — N(A) and
M(A) — M(A), that we denote also by 7 and pr, respectively. These inclusions are
dual of each other and in particular, their indexes agree.

Definition 3.5.11. — The multiplicity of a polyhedron A € II is defined as

mult(A) = [M(A) : pr(M(A))] = [N(A) : J(N(A))].

Lemma 3.5.12. — If A € 11, then mult(A) = min{n > 1| Ip € aff (A), np € N}.
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Proof. — We consider the inclusion Z — N(A) that sends n € Z to the class of (0,n).
There is a commutative diagram with exact rows and columns

0 0
00— N(A)NZ 7 Z/(N(A)NZ)——0
0 N(A) N(A) ——— N(A)/N(A) —— 0

It is easy to see that the bottom arrow in the diagram is an isomorphism. By the
Snake lemma the right vertical arrow is an isomorphism. Therefore

mult(A) = [Z : Z N N(A)].
We verify that ZNN(A) = {n € Z | 3p € aff(A), np € N}, from which the lemma
follows. O

We now discuss equivariant morphisms of toric schemes.

Definition 3.5.13. — Let T;, i = 1,2, be split tori over S and p: T; — Ty a morphism
of algebraic group schemes. Let &; be toric schemes over S with torus T; and let
1t; denote the corresponding action. A morphism p: X} — Xy is g-equivariant if the
diagram

T1XX1M1—>X1

e s

TQXXQMQ;)XQ

commutes. A morphism ¢: X; — X» is p-toric if its restriction to T, ,, the torus over
K, coincides with that of o.

It can be verified that a toric morphism of schemes over S is also equivariant. In
the sequel, we extend the construction of equivariant morphisms in §3.2 to proper
toric schemes. Before that, we need to relate rational points on the open orbit of the
toric variety with lattice points in N.
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Definition 3.5.14. — The valuation map of the field, valg: K* — Z, induces a val-
uation map on T(K), also denoted valg : T(K) — N, by the identifications T(K) =
Hom (M, K*) and N = Hom(M,Z).

Let Tg,, ¢ = 1,2, be split tori over S. For each 4, let N; be the corresponding
lattice and II; a complete SCR polyhedral complex in V; g. Let A: Ni = N be an
affine map such that, for every A; € II, there exists Ay € TIy with A(A1) C Ay. Let
p € X, 0(K) = To(K) such that valg(p) = A(0). Write A = H + valg(p), where
H: N7 — N is a linear map. H induces a morphism of algebraic groups

or: Ts1 — Tgpo.

Let 33; = rec(II;). For each cone o1 € 3, there exists a cone 03 € Xo with H(o1) C 03.
Therefore H and p define an equivariant morphism ¢, i: X, — Xx, of toric varieties
over K as in Theorem 3.2.4.

Proposition 3.5.15. — With the above hypothesis, the morphism @, g can be extended
to a pp-equivariant morphism

(I)p,A: XHI — XH2~

Proof. — Let A; € II; such that A(A;) C As. Then the map Mz — Ml given by
(m,1) — (HYm,{m,valg(p)) + 1) for m € M and | € Z (which is just the dual of
the linearization of A) induces a morphism of semigroups ngm — JT/[JLAI. Since
X" (p)ww = (mvalk (P)) belongs to K°, the assignment

X(m,l) — (Xm(p)w—(m,valx(p)))X(H m,(m,valg (p))+1)

defines a ring morphism K°[Mj x,] — KO[MLA] ]. This morphism sends y(*") —w to
x®1 — @, hence induces a morphism K°[Xy,] — K°[Xx,] and a map Xy, — Xa,.
Varying A; and A; we obtain maps that glue together into a map

(I)p7AZ an — an'

By construction, this map extends ¢, g and is equivariant with respect to the mor-
phism o . O

As an example of the above construction, we consider the toric subschemes asso-
ciated to orbits under the action of subtori. Let NV be a lattice, IT a complete SCR
polyhedral complex in Ng and set £ = rec(II). Let () C N be a saturated sublattice
and let p € Xy o(K). We set ug = valg (p). We consider the affine map A: Qg — Ng
given by A(v) = v+ ug. Recall that the sublattice @ and the point p induce maps of
toric varieties (3.2.6)

XE — YEQ,I) — XE.

Q
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We want to identify the toric model of Xy, induced by the toric model A7 of Xs.
We define the complete SCR polyhedral complex I, = A 'l of Qr. Then,
rec(Ilgu,) = ¢o. Applying the construction of Proposition 3.5.15, we obtain an
equivariant morphism of schemes over S

X]‘[Q) — ATI1.

uQ

The image of this map is the Zariski closure of Yy, , and A, ,, is a toric model of
Xs,- This map will be denoted either as ®, 4 or ®, . Observe that the abstract
toric scheme Ap, , only depends on () and on valgk (p)-

3.6. T-Cartier divisors on toric schemes

The theory of T-Cartier divisors carries over to the case of toric schemes over
a DVR. We keep the notations of the previous section. In particular, K is a field
equipped with a nontrivial discrete valuation valg. Let X be a toric scheme over
S = Spec(K°) with torus Tg. There are two morphisms from Tg x X’ to X: the toric
action, that we denote by p, and the second projection, that we denote by my. A
Cartier divisor D on & is called a T-Cartier divisor if p*D = n3D.

T-Cartier divisors over a toric scheme can be described combinatorially. For sim-
plicity, we will discuss only the case of proper schemes. So, let IT be a complete SCR
polyhedral complex in Nk, and Xy the corresponding toric scheme. Let ¢ be an H-
lattice function on II (Definitions 2.6.6 and 2.5.4). Then ¢ defines a T-Cartier divisor
in a way similar to the one for toric varieties over a field. We recall that the schemes
{Xr}ren form an open cover of Ap;. Choose a set of defining vectors {(ma,la)}aen
of ¢. Then we set

Dy = {(Xn, @ X7 )} aen, (3.6.1)

where we are using the identification (3.5.1). The divisor Dy only depends on ¢ and
not on a particular choice of defining vectors.

We consider now toric schemes and T-Cartier divisors over S as models of toric
varieties and T-Cartier divisors over K.

Definition 3.6.1. — Let ¥ be a complete fan in Ny and ¥ a virtual support function
on . Let (Xy, Dy) be the associated toric variety and T-Cartier divisor defined over
K. A toric model of (X, Dy) is a triple (X, D, e), where X is a toric model over S of
X, D is a T-Cartier divisor on X and e > 0 is an integer such that the isomorphism
t: X5, — X, that extends the identity of Ty satisfies ¢*(D) = eDy. When e = 1, the
toric model (X, D,1) will be denoted simply by (X, D). A toric model will be called
proper whenever the scheme X is proper over S.
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Example 3.6.2. — We continue with Example 3.5.5. The function Wa~- is an H-lattice
concave function on Xa» and (P%, Dy, ) is a proper toric model of (P, Dy .. ).

This example can be generalized as follows.

Definition 3.6.3. — Let ¥ be a complete fan in Vg and ¥ a virtual support function
on . Then ¥ is a complete SCR polyhedral complex in Ng and ¥ is a rational
piecewise affine function on ¥. Then (Xs, Dy) is a model over S of (Xx, Dy ), which
is called the canonical model. '

Definition 3.6.4. — Let X be a toric scheme and £ a line bundle on X. A toric
structure on L is the choice of an element z of the fibre £;,, where zg € X}, is the
distinguished point. A toric line bundle on X is a pair (L, z), where L is a line bundle
over X and z is a toric structure on L. Frequently, when the toric structure is clear
from the context, the element z will be omitted from the notation and a toric line
bundle will be denoted by the underlying line bundle. A toric section is a rational
section that is regular and non vanishing over the principal open subset X, C &),
and such that s(xg) = z. Exactly as in the case of toric varieties over a field, each
T-Cartier divisor defines a toric line bundle O(D) together with a toric section. When
the T-Cartier divisor comes from an H-lattice function ¢, the toric line bundle and
toric section will be denoted L4 and sy respectively.

The following result follows directly form the definitions.

Proposition 3.6.5. — Let (X5, Dy) be a toric variety with a T-Cartier divisor. Every
toric model (X, D,e) of (Xx,Dy) induces a model (X,O(D),e) of (X%, Ly), in the
sense of Definition 1.3.4, where the identification of O(D)|x, with L$® matches the
toric sections determined by the Cartier divisors (Theorem 3.3.7). Such models will
be called toric models.

Proposition-Definition 3.6.6. — We say that two toric models (X;, D;,e;), ¢ = 1,2, are
equivalent, if there exists a toric model (X', D’ ¢e') of (Xy, Dy) and morphisms of
toric models a;: X' — X;, ¢ = 1,2, such that e’afD; = e;D’. This is an equivalence
relation.

Proof. -—— Symmetry and reflexivity are straightforward. For transitivity assume that
we have toric models (X;, D;,e;), i = 1,2,3, that the first and second model are equiv-
alent through (X', D’,e’) and that the second and the third are equivalent through
(X", D" €e"). Then, by Theorem 3.5.4, X’ and X" are defined by SCR polyhedral
complexes II" and II"” respectively, with rec(Il') = rec(II”) = 3. Let I = 11" - 11",
By Lemma 2.1.9, rec(Il"’") = ¥. Thus II" determines a model X" of Xx. This
model has morphisms 3’ and 8" to X’ and X"’ respectively. We put ¢/’ = e’e” and
D" =¢"p"*D" = €p"*D". Now it is easy to verify that (X", D" ") provides the
transitivity property. O
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We are interested in proper toric models and equivalence classes because, by Def-
inition 1.3.5, a proper toric model of (Xy;, Dy) induces an algebraic metric on L§".
By Proposition 1.3.6, equivalent toric models define the same algebraic metric.

We can classify proper models of T-Cartier divisors (and therefore of toric line
bundles) in terms of H-lattice functions. We first recall the classification of T-Cartier
divisors.

Theorem 3.6.7. — Let I1 be a complete SCR polyhedral complex in Ng and X1 the
associated toric scheme over S. The correspondence ¢ — Dy is an isomorphism
between the group of H-lattice functions on Il and the group of T-Cartier divisors on
A1. Moreover, if ¢1 and ¢o are two H-lattice functions on 11, then the divisors Dy,
and Dy, are rationally equivalent if and only if ¢1 — @2 is affine.

Proof. — The result follows from [KKMS73, §1V.3(h)]. O
We next derive the classification theorem for models of T-Cartier divisors.

Theorem 3.6.8. — Let 3 be a complete fan in Ng and VU a virtual support function on
Y. Then the correspondence (1L, ¢) — (X1, Dy) is a bijection between:
o the set of pairs (11, ¢), where Il is a complete SCR polyhedral complex in Ng with
rec(Il)= X and ¢ is an H-lattice function on II such that rec(¢) = U,
e the set of isomorphism classes of toric models (X, D) of (Xs, Dy).

Proof. — Denote by ¢: Xy = X,ec(m) — A the open immersion of the generic fibre.
The recession function (Definition 2.6.4) determines the restriction of the T-Cartier
divisor to the fibre over the generic point. Therefore, when ¢ is an H-lattice function
on IT with rec(¢) = ¥, we have that

L*qu = Drec(¢) = qu.

Thus (Xm, Dg) is a toric model of (Xyx, Dy). The statement follows from Theo-
rem 3.5.4 and Theorem 3.6.7. O

Remark 3.6.9. — Let ¥ be a complete fan in Ny and ¥ a virtual support function
on ¥. Let (X, D,e) be a toric model of (Xyx, Dy). Then, by Theorem 3.6.8, there
exists a complete SCR polyhedral complex IT in Ng with rec(Il) = ¥ and a rational
piecewise affine function ¢ on II such that e¢ is an H-lattice function, rec(¢) = ¥ and
(X,D,e) = (X1, Deg. €). Moreover, if (X', D’ €’) is another toric model that gives
the function ¢, then both models are equivalent if and only if ¢ = ¢’. Thus, to every
toric model we have associated a rational piecewise affine function ¢ on II such that
rec(¢) = ¥. Two equivalent models give rise to the same function.

The converse is not true. Given a rational piccewise affine function ¢, with
rec(¢) = ¥, we can find a complete SCR polyhedral complex II such that ¢ is piece-
wise affine on II. But, in general, rec(II) does not agree with 3. What we can expect is
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that ¥’ := rec(II) is a refinement of .. Therefore the function ¢ gives us an equivalence
class of toric models of (X5, Dy). But ¢ may not determine an equivalence class of
toric models of (Xyx, Dg). In Corollary 4.5.5 in next section we will give a necessary
condition for a function ¢ to define an equivalence class of toric models of (Xyx, Dy)
and in Example 4.5.6 we will exhibit a function that does not satisfy this necessary
condition. By contrast, as we will see in Theorem 3.7.3, the concave case is much
more transparent.

The correspondence between T-Cartier divisors and T-Weil divisors has to take
into account that we have two types of orbits. Each vertex v € II° defines a vertical
invariant prime Weil divisor V' (v) and every ray 7 € rec(I1)! defines a horizontal prime
Weil divisor V(7). If v € 11° is a vertex, by Lemma 3.5.12, its multiplicity mult(v) is
the smallest positive integer v > 1 such that vvo € N. If 7 is a ray, we denote by v,
the smallest lattice point of 7\ {0}.

Proposition 3.6.10. — Let ¢ be an H-lattice function on II. Let Dy be the associated
T-Cartier divisor. Then the corresponding T-Weil divisor is given by

[Dy] = > —mult(v)e(v)V()+ Y —rec(d)(v,)V(7).

vello T€rec(II)?
Proof. — By Lemma 3.5.12, for v € I1%, the vector mult(v)v is the minimal lattice
vector in the ray c(v). Now it is easy to adapt the proof of [Ful93, §3.3, Lemma] to
prove this proposition. O

Example 3.6.11. — Consider the constant H-lattice function ¢(u) = —1. This function
corresponds to the principal divisor div(w). Then

div(w) = Z mult(v)V (v). (3.6.2)
velll
Thus, for a vertex v, the multiplicity of v agrees with the multiplicity of the divisor
V(v) in the special fibre div(w). In particular, the special fibre A7y, is reduced if and
only if all vertices of II° belong to N.

We next study the restriction of T-Cartier divisors to orbits and their inverse image
by equivariant morphisms. Let IT be a complete SCR. polyhedral complex in Ng, and
¢ an H-lattice function on II. Set ¥ = rec(II), and ¥ = rec(¢). Choose sets of defining
vectors {(ma,la)}aen and {mg},ex for ¢ and U, respectively.

Let o € 3. We describe the restriction of Dy to V(o), the closure of a horizontal
orbit. As in the case of toric varieties over a field, we first consider the case when
U|, = 0. Recall that V(o) agrees with the toric scheme associated to the polyhe-
dral complex II(c) and that each element of II(c) is the image by m,: Ng = N(o)g
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of a polyhedron A € IT with ¢ C rec(A). The condition ¥|, = 0 implies that we can
define

@(0): N(o)g — R, u+Ror— ¢d(u+v) (3.6.3)

for any v € Ro such that u + v € U,e(n)5o A The function ¢(o) can also be
described in terms of defining vectors. For each A € II with o C rec(A), we will
denote A € I(o) for its image by 7,. For each A as before, the condition ¥|, = 0
implies that ma € M(c). Hence we define (my,lx) = (ma,la) for A € II with
rec(A) D o.

Proposition 3.6.12. — If V|, = 0 then the divisor Dy and the horizontal orbit V(o)
intersect properly. Moreover, the set {(my, ZK)}KGH(U) is a set of defining vectors of
¢(0) and the restriction of Dy to V(o) is Dy(s)-

Proof. — The proof is analogous to the proof of Proposition 3.3.14. O

If U|, # 0, then V(o) and Dy do not intersect properly and we can only restrict
D, with V(o) up to rational equivalence. To this end, we consider the divisor Dg_py_,
that is rationally equivalent to D, and intersects properly with V(o). The restriction
of this divisor to V(o) corresponds to the H-lattice function (¢ — m,)(o) as defined
above.

Let now A € II be a polyhedron. We will denote by 7a: N — N(A) and 7a: N —
N(A) the projections and by 7Y : M(A) — M and 7Y : M(A) — M the dual maps.
We will use the same notation for the linear maps obtained by tensoring with R.

We first assume that ¢|a = 0. If u € N(A)R7 then there exists a polyhedron A’
with A a face of A’ and a point (v,r) € c¢(A’) that is sent to u under the projection
7. Then we set

d(A): N(Mr — R, ur— ré(v/r) = mpr(v) + rlp. (3.6.4)

The condition ¢|p = 0 implies that the above equation does not depend on the choice
of (v,r).

We can describe also ¢(A) in terms of defining vectors. For each cone o € TI(A) let

A, € II be the polyhedron that has A as a face and such that ¢(A) is mapped to o by
7a. The condition ¢|y = 0 implies that (ma_,lx,) € M(A). We set my = (ma,,la, ).

Proposition 3.6.13. — If ¢|n = 0 then the divisor Dy intersects properly the orbit
V(A). Moreover, the set {mq}cra) is a set of defining vectors of ¢(A) and the
restriction of Dy to V(A) is the divisor Dga)-

Proof. — The proof is analogous to that of Proposition 3.3.14. O

As before, when ¢|5 # 0, we can only restrict Dy to V(A) up to rational equiva-
lence. In this case we just apply the previous proposition to the function ¢ —mu — 4.

ASTERISQUE 360



CHAPTER 3. TORIC VARIETIES 107

Example 3.6.14. — We particularize (3.6.4) to the case of one-dimensional vertical
orbits. Let A be a (n — 1)-dimensional polyhedron. Hence V' (A) is a vertical curve.
Let A; and Ay be the two n-dimensional polyhedron that have A as a common face.
Let v € Ng such that the class [(v,0)] is a generator of the lattice N(A) and the
affine space (v,0) + Rc(A) meets ¢(Ay). This second condition fixes one of the two
generators of N(A). Then, by the equation (3.3.1)

degp, (V(A)) = deg([Dylv (a)]) = ma,(v) —ma, (v). (3.6.5)

We end this section discussing the inverse image of a T-Cartier divisor by an equiv-
ariant morphism. With the notation of Proposition 3.5.15, let ¢ be an H-lattice func-
tion on Ils, and {(ma,lr)}acm, a set of defining vectors of ¢. For each T' € TI; we
choose a polyhedron IV € Il such that A(T') C I'. We set mpr = HY(mp/) and
Ir = mrp(valg (p)) + lrr. The following proposition follows easily.

Proposition 3.6.15. — The divisor D, intersects properly the image of ®, 4. The
function ¢ o A is an H-lattice function on I1y and
®, 4Dy = Dgoa-

Moreover, {(mr,lr)}remn, is a set of defining vectors of ¢ o A.

3.7. Positivity on toric schemes

The relationship between the positivity of the line bundle and the concavity of the
virtual support function can be extended to the case of toric schemes over a DVR. In
particular, we have the following version of the Nakai-Moishezon criterion.

Theorem 3.7.1. — Let 11 be a complete SCR complex in Ngx and Xy its associate
toric scheme over S. Let ¢ be an H-lattice function on 11 and Dy the corresponding
T-Cartier divisor on X.

1. The following properties are equivalent:
(a) Dy is ample;
(b) Dg-C >0 for every vertical curve C' contained in X o;
(c) Dy -V (A) >0 for every (n — 1)-dimensional polyhedron A € 11;
(d) The function ¢ is strictly concave on II.
2. The following properties are equivalent:
(a) Dy is generated by global sections;
(b) Dy -C >0 for every vertical curve C' contained in X ,;
(¢) Dy -V(A) >0 for every (n — 1)-dimensional polyhedron A € 11;

(d) The function ¢ is concave.
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Proof. — In both cases, the fact that (a) implies (b) and that (b) implies (c) is clear.
The fact that (c) implies (d) follows from the equation (3.6.5). The fact that (1d)
implies (1a) is [KKMS73, §IV.3(k)].

Finally, we prove that (2d) implies (2a). Let ¢ be an H-lattice concave function.
Each pair (m,1) € M defines a rational section ' X™sg of Dy. The section is regular
if and only if the function m(u) 4 [ lies above ¢. Moreover, for a polyhedron A € II,
this section does not vanish on X if and only if ¢(u) = m(u) + 1 for all u € A.
Therefore, the affine pieces of the graph of ¢ define a set of global sections that
generate O(Dy). O

Let ¥ be a complete fan in Ng and ¥ a virtual support function on . Let Xy
and Dy be the associated proper toric variety over K and T-Cartier divisor.

Definition 3.7.2. — Let (X, D,e) be a toric model of (X, Dy). Then (X, D,e) is
semipositive if the T-Cartier divisor D satisfies any of the equivalent conditions of
Theorem 3.7.1(2).

Observe that, if a toric model (X,D,e) of (Xx,Dy) is semipositive, then
(X,0(D), e) is a semipositive model of (X5, O(Dy)) in the sense of Definition 1.3.12.
Equivalence classes of semipositive toric models are classified by rational concave
functions.

Theorem 3.7.3. — Let ¥ be a complete fan in Ng and VU a virtual support function
on Y. Then the correspondence of Theorem 3.6.8 induces a bijective correspondence
between the space of equivalence classes of semipositive toric models of (Xx, Dy)
over S and the space of rational piecewise affine concave functions ¢ on Ny with
rec(¢) = V.

Proof. — Let (X, D, e) be a semipositive toric model. By Theorem 3.6.8, to the pair
(X, D) corresponds a pair (II, ¢’), where ¢ is an H-lattice function on II, rec(Il) = X
and rec(¢’) = e¥. By Theorem 3.7.1, the function ¢ is concave. We put ¢ = %(;S’. It
is clear that equivalent models produce the same function.

Conversely, let ¢ be a rational piecewise affine concave function. Let II' = II(¢).
This is a rational polyhedral complex. Let ¥’ = rec(Il'). This is a conic rational
polyhedral complex. By Proposition 2.5.14, ¥’ = TI(¥). Since ¥ = rec(¢) is concave,
hence a support function on ¥, we deduce that X is a refinement of ¥/. Put I =1I"- %
(Definition 2.1.8). Since II' is a rational polyhedral complex and ¥ is a fan, then II
is an SCR polyhedral complex. Moreover, by Lemma 2.1.9,

rec(I1) = rec(Il’ - ¥) = rec(Il') - rec(X) = X' - ¥ = %,

Let e > 0 be an integer such that e¢ is an H-lattice function. Then (X, Deg, €) is
a toric model of (Xy, Dy ). Both procedures are inverse of each other. O
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A direct consequence of Theorem 3.7.3 is that the T-Cartier divisor Dy admits
a semipositive model if and only if ¥ is concave, hence a support function. By
Proposition 3.4.1(1), this is equivalent to the fact that Dy is generated by global
sections.

Recall that, for a toric variety over a field, a T-Cartier divisor generated by global
sections can be determined either by the support function ¥ or by its stability set Ay.
In the case of toric schemes over a DVR, if ¢ is a concave rational piecewise affine
function on IT and ¥ = rec(¢), then the stability set of ¢ agrees with the stability set
of W. Then the equivalence class of toric models determined by ¢ is also determined
by the Legendre-Fenchel dual function ¢V.

Corollary 3.7.4. — Let ¥ be a complete fan in Ng and ¥ a support function on 3.
The correspondence of Theorem 3.7.3 and Legendre-Fenchel duality induce a bijection
between the space of equivalence classes of semipositive toric models of (Xs, Dy) and
that of rational piecewise affine concave functions on Mg with effective domain Ay .

Proof. — From Theorem 3.7.3, the space of equivalence classes of semipositive toric
models of (X3, Dy) is in bijection with the space of rational piecewise affine concave
functions ¢ on Ng with rec(¢) = ¥.

Let ¢ be a function in this latter space. Then dom(¢) = Ng and stab(¢) = Ay.
By propositions 2.5.17(1) and 2.5.20(2), the function ¢V is a rational piecewise affine
concave function on Mg with effective domain Ag. Conversely, if ¥ is a rational
piecewise affine concave function on Mg with effective domain Ay, then, by the same
propositions, ¥V is a rational piecewise affine concave function with effective domain
Ng and stability set Ag. By Proposition 2.5.17(2), the function rec(9) agrees with
. By Proposition 2.5.20(1) the above correspondences are inverse of each other, thus
stablishing the bijection. O

Let II be a complete SCR complex in Ng and ¢ an H-lattice concave function on II.
Then the T-Cartier divisor Dy is generated by global sections and we can interpret its
restriction to toric orbits in terms of direct and inverse images of concave functions.

Proposition 3.7.5. — Let 11 be a complete SCR polyhedral complex in Ng and ¢ an
H-lattice concave function on II. Set ¥ = rec(Il) and ¥ = rec(¢). Let ¢ € ¥
and my € M such that ¥|, = my|,. Let mo: Ng — N(o)r be the projection and
7l M(o)r — Mg the dual inclusion. Then

(¢ —mgo)(0) = (76)«(¢ — M), 3.7.1)

Hence the restriction of the divisor Dg_,, to V(o) corresponds to the H-lattice con-
cave function (74).(¢ — my). Dually,

(¢ —my)(o)Y = (7) +my) 0", (3.7.2)
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In other words, the Legendre-Fenchel dual of (¢ — my)(0) is the restriction of ¢¥ to
the face F, translated by —m, .

Proof. — For the equation (3.7.1), we suppose without loss of generality that m, = 0,
and hence V|, = 0. Let u € N(o)r. Then, the function ¢| -1, is concave. Let
A € 11 such that rec(A) = o and 7,1 (u) N A # @. Then, 7, (u) N A is a polyhedron
of maximal dimension in 7 ' (u). The restriction of ¢ to this polyhedron is constant
and, by (3.6.3), agrees with ¢(o)(u). Therefore, by concavity,

(o )b(u) = max ¢(v),

very H(u)

agrees with ¢(o)(u). Thus we obtain (3.7.1). The equation (3.7.2) follows from the
previous equation and Proposition 2.5.21(2). To prove (3.7.2) when m, # 0 we use
Proposition 2.3.3(5). O

We now consider the case of a vertical orbit. For a function ¢ as before, with
U = rec(¢), we denote by c¢(¢): Ng — R the concave function given by

reg(u/r) ifr >0,
c(@)(u,r) = 4 ¥(u) if r =0,
—00 if r <O0.

The function ¢(¢) is a support function on ¢(IT).
Lemma 3.7.6. — The stability set of c(¢) is the epigraph epi(—¢") C Mg.
Proof. — The H-representation of c(¢) is
dom(c(¢)) = {(u,r) € Na | r > 0},
c(o)(u,r) = m/&n(m,\(u) + IAT).
By Proposition 2.5.5
stab(c(¢)) = R>0(0,1) 4+ conv({(ma, ) }rerm)-

Furthermore, by the same proposition, for x € stab(¢),

¢ (z) = sup { Z—)\Al,\ x> O,Z)\A = l,z/\/\m/\ = x}
A A A

Hence epi(—¢") = R>0(0,1) +conv({(ma,lr)}acr), which proves the statement. [J

Proposition 3.7.7. — Let 11 and ¢ be as before and letNA € II. Let mpy € M and
In € Z be such that ¢|a = (ma +1p)|a. Let Ta: Ng = N(A)r be the projection, and
X M(A)g — Mg the dual map. Then

(¢ —ma —IaA)(A) = (Ta)u(c(p — ma — 1a)). (3.7.3)
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Moreover, this is a support function on the fan II(A). Its stability set is the polytope
Agp = (7Y + (ma,ln)) " Lepi(—=¢Y). Hence, the restriction of the divisor Dg_pm, —i,
to the variety V(A) is the divisor associated to the support function of Ag A .

Proof. — To prove the equation (3.7.3) we may assume that my = 0 and Iy = 0. Let
u € N(A)g. Then, the function C((b)'%xl(u) is concave. Let A’ € II such that A is a
face of A’ and 7' (u) Nc(A’) # @. Then, 75 ' (u) Nc(A’) is a polyhedron of maximal
dimension of 7, '(u) and the restriction of c(¢) to this polyhedron is constant and,
by (3.6.4), agrees with ¢(A)(u). Therefore, by concavity,

(M)« c(@)(u) = max c(¢)(v),

verg ! (u)

agrees with ¢(A)(w). This proves the equation (3.7.3).
Back in the general case when m and 5 may be different from zero, by Proposition
2.5.21, Proposition 2.3.3(5) and Lemma 3.7.6 we have

stab((Ta)«(c(¢ —ma —1a))) = (TX) ™" stab(c(¢ —m — [a))
= (7X)~ " (stab(c()) — (ma,1n))
= (TX + (ma,1x)) " stab(c(¢))
= (7X + (ma, 1n)) " epi(—¢").

™

™

The remaining statements are clear. O

We next interpret the above result in terms of dual polyhedral complexes. Let
I1(¢) and II(¢") be the pair of dual polyhedral complexes associated to ¢. Since ¢ is
piecewise affine on II, then II is a refinement of I1(¢). For each A € II we will denote
by A € TI(¢) the smallest element of II(¢) that contains A. It is characterized by the
fact that ri(A) Nri(A) # @. Let A* € TI(¢Y) be the polyhedron A* = L¢(A). This
polyhedron agrees with d¢(ug) for any ug € ri(A). Then the function ¢ |5~ is affine.
The polyhedron A* — my is contained in M(A)g. The polyhedron

A = {(w,—¢"(@))la € A"}

is a face of epi(—¢") and it agrees with the intersection of the image of 7y + (ma, [a)
with this epigraph. We consider the commutative diagram of lattices

—~ T+ (ma,ly) ~
M(A)A—*——“ SUNSY:

prJ{ pr
™ +m
M(A) 2T gy
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where 7Y is the inclusion M (A) C M, and the corresponding commutative diagram of
real vector spaces obtained by tensoring with R. This diagram induces a commutative
diagram of polytopes

X+ (ma,la) —
Ay (ma, ) e

X 4+ ma

A —mpy ——— A,
where all the arrows are isomorphisms.

In other words, the polytope Ag a associated to the restriction of Dy_p,, 1, to
V(A) is obtained as follows. We include M (Mg in Mg throughout the affine map
X + (ma,ln). The image of this map intersects the polyhedron epi(—¢") in the face
of it that lies above A*. The inverse image of this face agrees with Ay A.

Since we have an explicit description of the polytope Ay o, we can easily calculate
the degree with respect to Dy of an orbit V(A).

Proposition 3.7.8. — Let Il be a complete SCR polyhedral complex in Ng and ¢ an
H-lattice concave function on II. Let A € 11 be a polyhedron of dimension n — k,
uo € ri(A) and A* = 0¢(ug). Then

mult(A) degp, (V(A)) = k!volps(a)(A"), (3.7.4)
where mult(A) is the multiplicity of A (see Definition 3.5.11).
Proof. — From the description of D¢|V(A) and Proposition 3.4.3, we know that
degp, (V(A)) = k! volﬁ(A)(Ad),A).

Since
1

[M(A) : M(A)]
the result follows from the definition of the multiplicity. O

VOIH(A)(A@A) = VOljw(A)(A*),

Remark 3.7.9. — If dim(A*) < k, then both sides of (3.7.4) are zero. If dim(A*) = &,
then M(A) = M(A*) and volp;a)(A*) agrees with the lattice volume of A*.

We now interpret the inverse image by an equivariant morphism, of a T-Cartier
divisor generated by global sections, in terms of direct and inverse images of concave
functions.

Proposition 3.7.10. — With the hypothesis of Proposition 3.5.15, let ¢o be an H-lattice
concave function on Ily and Dy, the corresponding T-Cartier divisor. Then @7 4Dq,
is the T-Cartier divisor associated to the H-lattice concave function ¢ = A*¢o. More-
over the Legendre-Fenchel dual is given by

@) = (H")u(dg — valg(p)).
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Proof. — The first statement is Proposition 3.6.15. The second statement follows
from Proposition 2.5.21(1). |

Example 3.7.11. — Let ¥ be a complete fan in Ng and ¥ a support function on 3. By
Theorem 3.7.3, any equivalence class of semipositive models of (Xy;, Dy ) is determined
by a rational piecewise affine concave function ¢ with rec(¢) = ¥. By Lemma 2.5.22,
any such function can be realized as the inverse image by an affine map of the support
function of a standard simplex. Using the previous proposition, any equivalence class
of semipositive toric models can be induced by an equivariant projective morphism.

More explicitly, let e > 0 be an integer such that e¢ is an H-lattice concave function.
Let II be a complete SCR complex in Ng compatible by e¢ and such that rec(Il) =
(see the proof of Theorem 3.7.3). Then, (X1, Deg, €) is a toric model of (Xy, Dy) in
the class determined by ¢.

Choose an H-representation e¢(u) = ming<;<,(m;(u) + ;) with (m;,1;) € M for
i=0,....r. Put a = (Il —lp,...,l, —lp). Let H and A be as in Lemma 2.5.22. In
our case, H is a morphism of lattices and

ep = A*Uar +mg + 1.
We follow examples 3.1.3, 3.3.10, 3.4.8 and 3.6.2, and consider Py as a toric scheme
over S. Let p = (po : ... : pr) be a rational point in the principal open subset of P}
such that valg (p) = a. Observe that, in this example, the map valg from the set of
rational points of the principal open subset of P} to N (Definition 3.5.14) is given
explicitly by the formula
valg (po @ ... pr) = (valg(p1/po), - - - valk (pr/po))-

One can verify that the hypothesis of Proposition 3.5.15 are satisfied. Let ®,, 4: X —
P% be the associated morphism. Then

Dey = @) 4Dy, + div(w oy =m0).
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CHAPTER 4

METRICS AND MEASURES ON TORIC VARIETIES

In this chapter, we study the metrics on a toric line bundle that are invariant under
the action of the compact torus. Our aim is to obtain a characterization, in terms of
convex analysis, of semipositive toric metrics and of their associated measures.

We set the notation for most of this chapter. Let K be either R, C or a field which is
complete with respect to a non-Archimedean absolute value. In the non-Archimedean
case, we will use the notations of §1.3, although, for the moment, we do not assume
that the absolute value is associated to a discrete valuation.

Let T be an n-dimensional split torus over K. Set N and M = NV for the cor-
responding lattices and let ¥ be a fan in N as in §3.1. For each cone o € %, we
will denote by X, the corresponding affine toric variety and by X32" its analytifica-
tion. These spaces glue together into a toric variety Xx and an analytic space X",
respectively. When K = C, the latter agrees with the complex analytic space Xy (C)
whereas in the non-Archimedean case, it is a Berkovich space. When K = R, we will
use the technique of Remark 1.1.5 to reduce the study of X&" to that of the associated
complex analytic space.

4.1. The variety with corners Xy (R>)

The variety with corners associated to the fan ¥ is a partial compactification of
Ng, and can be seen as a real analogue of the toric variety Xy.. It was introduced
by Mumford in [AMRT75]. More recently, it has also appeared in the context of
tropical geometry as the “extended tropicalization” of [Kaj08] and [Pay09].

With notations as above, for a cone o € ¥ we set

X(T(]Rz()) = HOHlsg(Afo, (Rzo, X))
On X,(R>q), we put the coarsest topology such that, for each m € M,, the map

Xo(R>p) = Rx>q given by v — ~(m) is continuous. Using [Ful93, §1.2, Proposi-
tion 2], we can see that, if 7 is a face of o, then there is a dense open immersion



116 CHAPTER 4. METRICS AND MEASURES ON TORIC VARIETIES

X:(R>0) = X;(R>p). Hence the topological spaces X,(R>o) glue together to de-
fine a topological space Xs5;(R>(). This is the variety with corners associated to Xsy.
Analogously to the algebraic case, one can prove that this topological space is Haus-
dorff and that the spaces X,(R>) can be identified with open subspaces of X5 (R>¢)
satisfying, for o,0’ € X,

Xo(R>0) N X (R>0) = Xonor (R>0)-
We have that
T(R>0) := Homge (M, R>0) = Homgp, (M, R+) =~ (Rxo)"

is a topological Abelian group that acts on X (Rx>).
For each o € ¥ there is a continuous map p,: X3" = X, (R>g). This map is given,
in the Archimedean case, by

X = Homgy (M, (C, x)) ~-5 Homgg (M, (R0, X)) = X (Rs0).

In the non-Archimedean case, since a point p € X" corresponds to a multiplicative
seminorm on K[M,] and a point in X,(R>¢) corresponds to a semigroup homomor-
phism from M, to (R>g, x), we define p,(p) as the semigroup homomorphism that
to an element m € M, corresponds |x™(p)].

In both cases, these maps glue together to define a continuous map

Py X%“ — Xz(Rzo) (411)
Lemma 4.1.1. — For 0 € 3, the map py, satisfies py,' (X, (Rsp)) = X20.

Proof. — By construction, X2" C py.'(X,(Rs)). For the reverse inclusion we will
write only the non-Archimedean case. Assume that p € py.' (X, (R>0)). There is a

cone o’ with p € X2 Let 7 = 0 N o’ be the common face. Then p is a multiplicative
seminorm of K[M,/] and we show next that it can be extended to a multiplicative
seminorm of A[M;]. By [Ful93, §1.2 Proposition 2] there is an element u € M,
such that M; = My + Z>o(—u). Hence K[M,] = K[M, + Z>o(—u)]. Since px:(p) €
X;(R>o) we have that [x"(p)| # 0. Therefore p extends to a multiplicative seminorm

of K[M;]. Hence p € X2" C X2". O
Corollary 4.1.2. — The map py: X& — X5 (R>o) is proper.

Proof. — When ¥ is complete, the analytic space X&" is compact. Since X, (R>q)
is Hausdorff, the map ps; is proper. Assume now that X is not necessarily complete.
Let o € ¥ be a cone. Let ¥ be a complete fan that contains 0. By Lemma 4.1.1, the
fact that psy is proper implies that p, is proper. Since the condition of being proper
is local on X5 (R>¢), the fact that p, is proper for all cones o € X implies that ps is
proper. O
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We denote by e: R — Ry the map u — exp(—u). This map induces a homeomor-

phism
N]R = HOIH(M, R) — Homsg(]W, (Rzo, X)) = XO(RZO)

that we also denote by e.

We define a valuation map in both Archimedean and non-Archimedean cases, by
setting, for a € K*,

val(a) = —log |af.

Next, we define a map val: X§® — Ng. For p € X@", we denote by val(p) €

Homgz (M, R) = Ng the morphism given by
m +— (m,val(p)) = —log |x™(p)|- (4.1.2)

Then, there is a commutative diagram

Xgn (4.1.3)

val l 2

NR —e) X()(Rzg).

When K is non-Archimedean and the associated valuation is discrete, we set

val(p)
Ak

for u € Ng and p € X3". This latter map extends the map valg : T(K) — N of Defi-
nition 3.5.14. In order to make some statements more compact, if K is Archimedean,

Mg = —log|wl|, ex(u)=e(Axu), valg(p)= (4.1.4)

we will write Ax = 1, eg = e and valg = val.

Remark 4.1.3. — The map val only depends on the absolute value and is invariant
under valued field extensions. It can be defined for arbitrary valued fields. The map
valg is the valuation normalized with respect to the field K. It is only defined for
discrete valuations. The advantage of valg is that the image of a rational point
belongs to the lattice, that is

valg (Xo(K)) C N.

The map e allows us to see X5(R>¢) as a partial compactification on Ng. Fol-
lowing [AMRT75, Chapter I, §1] we can give another description of the topology of
X5 (R>g). For o € 3, we consider the set

No= [ Nk (4.1.5)
T face of o

where N(7) denotes the lattice introduced in (3.2.1).
We first extend the map e to a map N, — X,(R>). For 7 a face of o, we consider
the semigroup M (1)U {~oc}. Each group homomorphisms M (7) = (Rsg, X) can be
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extended to a semigroup morphism M (7) U {—occ} — (Rxo, x) by sending —oo to 0.
There is a morphism of semigroups M, — M (1)U {—oc} given by

{m ifmert,
m—

—o00  otherwise,
that induces an injective map
N(1)r - Homg, (M (1), (R>0, X)) — Homgg(M,, (R>0, X)) = Xo(R>0).

Glueing together these maps for all faces of o we obtain the map e: Ny — X, (R>0).
One may verify that this map is a bijection.

We next define a topology on N,. To this end, we choose a positive definite bilinear
pairing in Ng. Hence we can identify the quotient spaces N(7)r with subspaces of
Ng, that, for simplicity, we will denote also by N(7)g. For a point u € N(7)g, let
U C N(7)r be a neighbourhood of u. For each 7’ face of 7, 7 induces a cone 7,/(7)
contained in N(7/)g. If p € 7, then its image 7,/ (p) in N(7')g is contained in 7, (7).
We write

wr,Up) = [ = U+p+7). (4.1.6)
7/ face of 7
The topology of N, is defined by the fact that {W(7,U,p)}v,, is a basis of neighbour-
hoods of u in N,. With this topology, the map e: N, — X,(R>() is a homeomor-
phism.
We write
Ny = [] N(o)e.
oes
and put on Ny, the topology that makes {N,},es an open cover. Then the map e
extends to a homeomorphism between Ny and X5 (R>() and the map val in (4.1.3)
extends to a proper continuous map val: X&" — Ny such that the diagram

Xgn (4.1.7)

val l P

Ny —5 Xs(R>o)
is commutative.

Remark 4.1.4. — 1In case we are given a strictly concave support function ¥ on a
complete fan ¥, then Ny is homeomorphic to the polytope Ay introduced in §3.4.
An homeomorphism is obtained as the composition of e with the moment map
p: X5 (R>o) = Ay induced by W:

Ns = Xs(Rso) Ay

S exp(—(m,u))m
2 exp(=(m,u))

where the sums in the last expression are over the elements m € M N Ay.

u o — e(u) —
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We end this section stating the functorial properties of the space X5 (R>g). We
start by studying field extensions. Assume that K is non-Archimedean and let K’ be
a complete valued field extension of K. As explained before Definition 1.2.1, there is
amap v: X&', — X&'

Proposition 4.1.5. — The diagram
an v an
X8 — X3,
N
Vall V‘M\:’K pZ,K
Ny ——5 Xs(Rx0)

1s commutative.

Proof. — The commutativity of the diagram follows from the fact that the map
X&' — X&' s given by restricting seminorms. O

We next study the inclusion of closed orbits. Let N and ¥ be as before and ¢ € X.
Recall that there is an induced fan (o) in N(o)g defined in (3.2.2) and a closed
immersion ¢, : X5,) — Xs defined before Proposition 3.2.1. We will also denote by
s the induced morphism of analytic spaces. The map e gives us an homeomorphism
N(o)r = X5(0),0(R>0). Hence the natural map N(o)r < N, induces an inclusion
X5(0),0(R>0) = Xo(R>0).

Proposition 4.1.6. — The inclusion Xs(5),0(R>0) = X,(R>0) extends to a continuous
map Lo Xn(o)(R>0) = Xs(Rxo). Moreover, there is a commutative diagram
lo

Xgh,) ot X

Pz(a)l lpz

lo
XE(U) (Rzo) —_— Xg (Rzo).

Proof. — To construct the map ¢, at the level of varieties with corners one can imitate
the construction of the morphism ¢, given before Proposition 3.2.1. It is possible
to verify that the obtained map is continuous. To prove the commutativity of the
diagram, it is enough to restrict oneself to the principal open affine subset Xgr(la),o
or Xs(¢),0(R>0), where it follows from the concrete description of points either as
multiplicative seminorms or as semigroup homomorphisms. We leave to the reader
the verification of the details. |

Notation 4.1.7. — Let N; and ¥; be a complete fan in N; g, i = 1,2. Let H: N; — Ny
be a linear map such that, for each cone oy € X, there is a cone oy € Yo with
H(oy) C 03. Let p € X5, o(K) and A: Ny g — Nog the affine map A = H + val(p).
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By Theorem 3.2.4 there is an equivariant morphism ¢, g: X5, = Xs5,. We denote
also by ¢, i both, the corresponding morphism between analytic spaces, and the map

Pp.H —eoAdoe™!: XZ]70(RZO) —>XZ2’0(R20), (418)
even though the latter depends only on val(p) and H and not on p itself.

The proof of the following proposition is left to the reader.

Proposition 4.1.8. — The map (4.1.8) extends to a continuous map Xx, (R>g) —
X5, (Rx>q) that we also denote by ¢, . Moreover, there is a commutative diagram

Pp,H
an an
X - X
p25} PP

pEl\l{ J{pzz
¥Pp,H

X5, (R>0) —— X5, (Rx>0).

4.2. Analytic torus actions

When K is Archimedean, the analytic torus T*" ~ (C*)" is a group which acts on
the analytic toric variety X" = X5 (C). The compact torus of T*" is defined as the
subset

S={peT*" | |x"(p)|=1foralmeM}.
It is a compact topological subgroup of T#", homeomorphic to (S1)" and which has a
Haar measure of total volume 1. The map py. defined in (4.1.1) is equivariant, in the
sense that, for all £ € T*" and p € X{",

px(t-p) = po(t)  ps(p).
The orbits of the action of S on X&" agree with the fibers of the map psx defined
in (4.1.1): for a point p € X3",

S-p=ps'(p=(p))- (4.2.1)

an

Therefore the variety with corners Xs;(R>g) can be understood as the quotient of X
by the action of the closed subgroup S. Since the map pyx, is proper, the topology of
X5 (R>g) is the final topology with respect to this map.

In the non-Archimedean case, the analogues of these properties are more subtle.
For the remainder of the section we will assume that K is non-Archimedean. Following
[Ber90, Chapter 5], an analytic group G over K is an analytic space over K endowed
with three morphisms G x G — G (multiplication), Spec(K)** — G (identity) and
G — G (inversion), satisfying the natural conditions.

An action of G on an analytic space X over K is a morphism

w:Gx X — X,

also satisfying the natural conditions in this context.
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The rational points G(K) form an abstract group but, in general, the set of points of
the topological space underlying the analytic space G has no natural group structure
induced by the analytic group structure. Instead, we can define a correspondence that
associates, to g € G and p € X, the subset of points

g-p=pu(pr~(g,p)),
where pr: G x X — G Xyop, X is the projection induced from the functorial properties
of the direct product of sets, the first product being in the category of analytic spaces
whereas the second is in the category of topological spaces. The set g - p may contain
more than one point as shown in Corollary 4.2.11, for example. This “multiplication”
of points satisfies the properties that, for all g,h € G and p,q € X,

g-(h-p)=1(g-h)-p, (4.2.2)
pEg-aE=qegp, (4.2.3)

where g~ denotes the image of g by the inversion map [Ber90, Proposition 5.1.1(i)].
If either g € G(K) or p € X(K), then ¢ - p consists of a single point.

A non-empty subset H C G is a subgroup if it satisfies that, for all g,h € H,
g~ € H and g-h C H. For a subgroup H and a point € X, the orbit of p with
respect to H is defined as the subset

H-p= U h-p.

By (4.2.3), different orbits are either disjoint or coincide.

Although we have defined g - p as a set, for some special elements of G or X we
can single out a distinguished point of this subset with good properties.

Let K’ and K" be two complete valued field extensions of K, recall that the tensor
product K’ @ K’ has a tensor product norm defined as

vl = _inf 5 mle|CYz'||ﬁi|-

=2 G i

Then K'®K" is defined as the completion of K’ ®x K' with respect to this norm.

Definition 4.2.1. — Let Z be an analytic space over K. A point p € Z is called
peaked if, for any complete valued field extension K’ of K, the tensor product norm
of #(p)®K’ is multiplicative.

Let g € G and p € X. The set pr~1(g,p) can be identified with the set of multi-
plicative seminorms of ¢ (q)&)/?” (p) that are bounded by the tensor product norm.

Definition 4.2.2. — Let g € G and p € X. It follows from the definition that if one of
these points is peaked, then the tensor product norm of .7# (q)(}%ﬁ” (p) is multiplicative,
and so it defines a point of pr=!(g,p) € G x X. We denote by g*p € X the image by
w1 of this point.
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Remark 4.2.3. — Assume that G and X are the analytification of an affine algebraic
group Spec(A) and of an affine algebraic variety Spec(B) over K respectively. Assume
also that the action is induced by a morphism B -+ A® B. Let g € G and p € X.
If either g or p is peaked, then the point g * p € X is given by the multiplicative
seminorm of B induced by the tensor product norm of . (g)®.7 (p) through the
composition B — A® B — (9)&.5 (p).

Proposition 4.2.4. — Let G be an analytic group and X an analytic space with an

action of G.
1. The points of G(K) and of X(K) are peaked. If either g € G orp € X is
rational, then g -p = {g * p}.

2. If g€ G and p € X are peaked, then g * p is peaked.

3. If two of the three points g1 € G, g2 € G andp € X are peaked, then (gy%ge)*p =
g1 * (g2 * p).

4. If g € G is peaked, then the map X — X given by p — g x p is continuous. If
p € X is peaked then the map G — X given by g — g * p is continuous.

Proof. — The first statement follows directly from the definition. The remaining
statements are proved in [Ber90, Proposition 5.2.8]. O
Proposition 4.2.5. — Let ¢: Y — Z be a closed immersion of algebraic varieties over

K. Then p € Y™ is peaked if and only if ©®"(p) is peaked.

Proof. — Since ¢ is a closed immersion, we have that J#(p*"(p)) = #(p), which
implies the result. O

The example of interest for us is when G and X are the analytification of a split
algebraic torus and an algebraic toric variety over K, respectively. Let notations be
as at the beginning of this chapter and assume that K is non-Archimedean. Then the
analytic torus T*" is an analytic group as above.

The map p, is equivariant in the following sense.

Proposition 4.2.6. — Lett € T*" and p € X&*. Then
ps(t-p) = po(t) - ps(p)-

Proof. — We can assume that p € X2 for a cone o € X. The set pr—'(¢,p) is the
set of multiplicative seminorms of K[M] ® K[M,] that extend the absolute value of
K and that satisfy, for f € K[M] and g € K[M,],

Ifell=1f®L  1egl=lg@) (4.2.4)

Therefore, if m € M,, and ¢ € t - p is the image by p of a multiplicative seminorm
|- |4 of K[M]® K[M,] satisfying (4.2.4), then

po(@)(m) = X" (g)] = X" @ x" g = (X" @ (T @ x™)lq
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By the multiplicativity of | - |,
po(@)(m) = |(X™ @ D)]g|(1 & X™)q-
By (4.2.4),
pa(@)(m) = X" (O)Ix™(P)] = po(t)(m)ps(p)(m) = (po(t) - po(p))(m),
proving the result. O

The compact torus S C T?" is a subgroup in the analytic sense and its underlying
topological space is compact. However, as discussed previously it is not an abstract
group. Thus we cannot apply the theory of locally compact topological groups to
obtain a Haar measure on S. The role of the Haar measure of S will be played by a
Dirac delta measure centred at a special point of S.

Definition 4.2.7. — The Gauss norm of K[M] is the norm given, for f =5 a,,x™ €
K[M], by max,, |am].

The following result is classical.
Proposition 4.2.8. — The Gauss norm is multiplicative.

Proof. — Let f =3, anXx™ and g = >, Bix! and write fg = Sk erx® with e =
> mii—r @m/B1. Then, since the absolute value of K is ultrametric,
P < . )
Joax (Jex]) < max (Jom|) max(|5])

Let Cy = {m € M,|max,, (|an|) = |om|} and define Cy analogously. Let r be a ver-
tex of the Minkowski sum conv(C'y)+conv(Cy). Then there is a unique decomposition
r =m, + I, with m, € Cy and [, € C. Hence €, = oy, 5. Thus

a N > = ks
max (Jex]) = Jer| = max (Jom|) max (|5,
which concludes the proof. O

Definition 4.2.9. — The Gauss point of T*" is the point ( corresponding to the Gauss
norm of K[M]. Thus, if f =) a,x™ € K[M], then

1F(Q)] = max .
It is clear that { € S C T?".

The Gauss point satisfies the following invariance property, that indicates that it is
reasonable to consider the Dirac delta measure d; as the non-Archimedean analogue
of the Haar measure on S.

Proposition 4.2.10. — The Gauss point ¢ is peaked. Moreover, for any t € S one has
tx(=C(.
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e

Proof. — Let K’ be a complete valued field over K. We denote by K’[M] the com-
pletion of K'[M] with respect to the Gauss norm. Since there is an isometry

KIMZK' = K'[M],
and the Gauss norm is multiplicative, then [Ber90, Lemma 5.2.2] implies that the
Gauss point is peaked.
Let f =3 amx™ € K[M]. The action of T on itself is given by the morphism of
algebras K[M] — K[M] ® K[M] that sends f to > amx™ @ x™.
For t € T*", by Remark 4.2.3, the value | f(¢ % ()| is the norm of the image of f in
H(C)@HA(t). Since the map

KMEA(t) = A()EA )

is an isometric embedding, it is enough to compute the norm of the image of f in

—

K[M|®#(t) = #(t)[M]. Therefore

(N = 1D amx™(OxX™ | = max(jam|Ix™ (1)])-

Assume now that ¢t € S. Then |x™(¢)| = 1 for all m € M. Thus | f(t*()| = max,, |am|
and sot*x( = (. O

Corollary 4.2.11. — The Gauss point satisfies (- ( = S.

Proof. — Since S is a subgroup, ¢ - ¢ C S. Let now t € S. By Proposition 4.2.10,
C=C(¢xte (-t By (423),te (-¢ ' Since ¢ = (7', we deduce that t € (- ¢,
proving the result. U

On each fibre of the map py, there is a point with similar properties to those of the
Gauss point, giving a continuous section of ps.

Proposition-Definition 4.2.12. — Let o € ¥. For each v € Homg, (M,,R>g), the semi-
norm that, to a function > a,, x™ € K[M,] assigns the value max,, (|cu,|y(m)), is
a multiplicative seminorm on K[M,] that extends the absolute value of K. There-
fore it determines a point of X2" that we denote 6,(y). The maps 6, are injective,
continuous and proper. Moreover, they glue together to define a map

92: Xz(Rzo) — X;’:n
that is a continuous and proper section of py.

Proof. — Let v € Homgg(My,R>(). The fact that the seminorm 6, () extends the
absolute value of K is clear. That it is multiplicative is proved with an argument
similar to the one in the proof of Proposition 4.2.8. Thus we obtain a point 6,(v) €
xan,

We show next that the map 6, is continuous. The topology of X3 is the coarsest
topology that makes the functions p — |f(p)| continuous for all f € K[M,]. Thus
to show that 6, is continuous, it is enough to show that the map v — |f(6,(7))| is
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continuous on X, (R>o) = Homg, (M,,R>). The topology of X, (R>¢) is the coarsest
topology such that, for each m € M,, the map v +— ~(m) is continuous. Since, for
f = ZmeM(, amx™,
|f (0o (7))| = max(|am, [y(m)),

we deduce that 0, is continuous.

The facts that the maps 6, glue together to give a continuous map fy, and that fy,
is a section of py follow easily from the definitions. The analogue of Lemma 4.1.1 is
true for Oy, hence 0, is proper by the argument of the proof of Corollary 4.1.2. O

Observe that ¢ = 6p(1). The following result extends Proposition 4.2.10 to the
points in the image of 0y.

Proposition 4.2.13. — Lett € T*", p € X&, v € X5 (R>g) and 7 € T(R>0). Then the
points Os;(y) and Oy(7) are peaked and

tx0s(v) = Os(po(t) - ), 0o(7) % p = 0s(7 - px(p)).

Proof. — Let 0 € ¥ such that v € X,;(R>g). By similar arguments as those in the
proof of Proposition 4.2.10, we see that 6,(7) is peaked and that, for f =3 a,,x™ €
K[M,],

[f(t 05 (7))] = max |a||x™ ()7 (m) = max|am|(po(t) - v)(m) = |f(0(po(t) - 7)),

which proves the first formula. The rest of the proposition can be proved along the
same lines. O

A direct consequence of Proposition 4.2.13 is the following equivariance result
for fs;. It implies that (im(fy),*) is a topological group acting by * on the topo-
logical space im(fy;), with an action isomorphic to the action of T(R>¢) on X5 (R>¢).

Corollary 4.2.14. — Let 7 € T(R>¢) and v € X5(R>o). Then
O (7 7) = Oo(7) * O(7).
The orbits of the action of S on X" agree with the fibers of the map psx.
Proposition 4.2.15. — Let p € X3'. Then
S-p=rps'(p=(p).

Proof. By Proposition 4.2.6, px(S - p) = px(p) and so S p C p5' (ps(p)).
Conversely, let ¢ € pgl(pg(p)). By Proposition 4.2.13, ¢ * p = ( * q. Therefore
S-pNS-q# @. Thus, both orbits agree and ¢ € S - p, concluding the proof. O

The previous proposition shows that, also in the non-Archimedean case, the space
X5(R>o) can be understood as the quotient of X&" by the action of the closed sub-
group S. Note that, since the map py; is proper, the topology of X5 (R>¢) is the final

topology with respect to this map.
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We next discuss the functorial properties for the map fs. Let K’ be a complete
valued field extension of K, and consider the map v: X&), — X

Proposition 4.2.16. — The diagram

v
an arn
Xz,K' — >XE,K

Os. Kk
o |

Xs(Rxo)
18 commutative.
Proof. — The commutativity of the diagram follows from the fact that the map
X3 — X§'k is given by restricting seminorms. O

The map 0y is compatible with the inclusion of closure of orbits. The proof of the
following proposition is left to the reader.

Proposition 4.2.17. — With the notations of Proposition 4.1.6, there is a commutative
diagram
L
X, —— X

92(0)T Tf)z

L
X5(0)(R>0) —— X5 (R>0).
In some cases, the map 0y is compatible with equivariant maps.

Proposition 4.2.18. — With Notation 4.1.7, assume that the dual linear map HY is
injective. Then the diagram

Pp,H
an an
xan T, X&
PN o

S
Pp,H
Xs, (Rz) —— Xz, (Rx0)
is commutative.

Proof. — Tt is enough to treat the local case. Write M; for the dual lattice of N;,
i=1,2, and HY: My — M, for the dual of H. Let 0 € ¥; be a cone, ¢ € X2", and
f=> amx™ € K[M3,]. Then

Fepr@)l =] Y amx™eX" ™M@= 3 | Y anx™®) | X"

me Moy ne M, me Mo
HY (m)=n
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If v € X,(R>0) and g = 0,(7) then

|flep (@) = max [ > amx™(p)|v(n).

eM
MEM e,
HY (m)=n

Since HV is injective
Fep (0] = max ol ™ () (Y m).

But, by Proposition 4.1.8, [x™(p)[v(H"(m)) = po(p)(m)y(H"(m)) = @p,u(7)(m).
Thus
|/ (pp. 11 (O, (1)) = max |amlep,n(7)(m) =105, (ep.n (1))

concluding the proof. O

Corollary 4.2.19. — With Notation 4.1.7, for any point v € Xs,(R>0), the point
op.i (05, (7)) is peaked.

Proof. — We first treat the case when v € Xy, o(R>g). Following (3.2.4), we factorize

$p,H as
PHgyr

j PH, Pp.Hinj
Xy = X23 — Xg4 - Xz,z.

1

Since HY

eurj and Hg, are injective, by Proposition 4.2.18, we deduce that

OHeae (PHo; (05, (7)) = 05, (PH., (P H. (7))

By Proposition 4.2.13, this latter point is peaked. By Proposition 3.2.5, the map
Op,Hin; * X540 = Xs,0 is a closed immersion. Therefore, by Proposition 4.2.5, we
deduce that ¢, (05, (7)) is peaked, proving the result in this case.

The general case follows from the previous one together with propositions 3.2.8
and 4.2.5. O

4.3. Toric metrics

With the notations at the beginning of this chapter, assume furthermore that %
is complete. Let L be a toric line bundle on Xy and s a toric section of L (Defini-
tion 3.3.4). By theorems 3.3.7 and 3.3.3, we can find a virtual support function ¥ on
¥ such that there is an isomorphism L ~ O(Dy) that sends s to sy. The algebraic
line bundle L defines an analytic line bundle L*® on X&' Let L = (L, || - ||), where
Il - || is a metric on L2".

Every toric object has a certain invariance property with respect to the action of
T. This is also the case for metrics. Since T®" is non compact, we cannot ask for
a metric to be T*-invariant, but we can impose S-invariance. In view of equation
(4.2.1) and Proposition 4.2.15, a function f: T®" — R will be called S-invariant if it
is constant along the fibres of pg.
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We need a preliminary result.

Proposition 4.3.1. — With notations as above, if the function p — |s(p)| is
S-invariant, then, for every toric section s', the function p — ||s'(p)|| is S-invariant
too.

Proof. If ¢’ is a toric section of L, then there is an element m € M such that
X™(t)] = 1, if the function ||s(p)] is
S-invariant, then the function ||s'(p)|| = ||x""(p)s(p)| is also S-invariant. O

s’ = x™s. Since for any element t € S we have

Definition 4.3.2. — Let L be a toric line bundle on Xys. A metric on L*" is toric if
the function p — ||s(p)]| is S-invariant.

Given an arbitrary metric on a toric line bundle, we can associate to it a toric
metric by an averaging process.

Definition 4.3.3. — Let L be a toric line bundle on Xy and || - || a metric on L*". For
o € X, let s, be a toric section of L which is regular and non-vanishing in X, .
If K is Archimedean, we set, for p € X2"

o

5o (@)l = exp ( [0

where fif1aar 18 the Haar measure of S of total volume 1.

If K is non-Archimedean, we set, for p € X2",

5o (P)lls = [lso (O (ps (@)l

where py; is defined in (4.1.1) and fy; in Proposition-Definition 4.2.12.
It is easy to verify that these functions define a toric metric || - ||z on L*".

So (t . p)” d“l‘laar(”) )

Observe that the previous definition is compatible with the idea that d¢ is the
analogue, in the non-Archimedean case, of the Haar measure of S of total volume 1,
because s (ps(p)) = ¢ * p.

Proposition 4.3.4. — The averaging process in Definition 4.3.3 is multiplicative with
respect to products of metrized line bundles, is continuous with respect to uniform
convergence of metrics and leaves invariant toric metrics.

Proof. — This follow easily from the definition of | - |s. O

To the metrized line bundle L and the section s we associate the function
an

97 . X¢* — R given by g7 (p) = —log||s(p)l|. In the Archimedean case, the
function gy . is 1/2 times the usual Green function associated to the metrized line
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bundle L and the section s. The metric || - || is toric if and only if the function g  is
S-invariant. In this case we can form the commutative diagram
X 2L R (4.3.1)
b
vall P g
Ve
Nr

The dashed arrow exists as a continuous function because pg, hence val, is a proper
surjective map and, by S-invariance, g7 , is constant along the fibres. This justifies
the following definition.

Definition 4.3.5. — Let L be a toric line bundle on Xy, and s a toric section of L.
Let ||| be a metric on L*™ and set L = (L, [|-]|). We define the function ¢  : Ng — R
given, for u € Ng, by

U o (u) = log|s(p)ls (4.3.2)
for any p € X§" with val(p) = u. When the line bundle and the section are clear from
the context, we will alternatively denote this function as ..

The facts that || ||s is S-invariant and that s is a nowhere vanishing regular section
on X&" imply that (4.3.2) gives a well-defined continuous function on Ng. In the case
when || - || is toric, we have that

g, (u) = log ||s(p)] (4.3.3)

for uw € Ng and any p € X§" with val(p) = u.
We will also use the following variant of the function ¢z .. It will be most useful
when treating metrics induced by integral models.

Definition 4.3.6. — Let notations be as in Definition 4.3.5 and suppose that absolute
value of K is either Archimedean or associated to a discrete valuation. We define the
function ¢7  : Ng — R given, for u € Ng, by
| log [|s(p) ls
or (u) = 3
K

for any p € X3 with valx(p) = v. When the line bundle and the section are clear

from the context, we will alternatively denote this function as ¢y..

Remark 4.3.7. — The function ¢, , agrees with the right multiplication 1/773/\;(1, that
is,

o1 o (u) = A Yp  (Akcu) (4.3.4)
for all w € Ng. Hence, the functions ¢ and ¢ carry the same information and
it is easy to move from one to the other. The difference between both functions is
similar to the difference between valg and val discussed in Remark 4.1.3.
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We study the effect of taking a field extension. Let K’/K be a finite extension of
complete valued fields. We denote by ey the ramification degree of K over K.

Proposition 4.3.8. — Let notations be as in Definition 4.3.5 and consider a finite
extension of complete valued fields K'/K. Let L' and s' be the metrized toric line
bundle and toric section on Xs x Spec(K') obtained after base change to K'. Then

ll’/}Z/,S, = ’(/)E.S7 ¢E,,S’ = L,.s'eK//K7
that is, ¢ ,(u) = egr ko, s(e o ) for all u € Ng.

Proof. The first statement follows from the definition of ¥ , and propositions 4.1.5
and 4.2.16. The second statement follows from the first one, equation (4.3.4) and the
fact that A\g = (t‘K//K)\K/. [l

Example 4.3.9. — With the notation in examples 2.5.6 and 3.3.10, consider the stan-
dard simplex A™ with fan ¥ = ¥ A» and support function ¥ = Wan~. To these data
correspond the toric variety Xy = P", the toric line bundle Ly = O(1), and the toric
section sy whose associated Weil divisor is the hyperplane at infinity Hy.

1. The canonical metrics || - ||can in examples 1.3.11 and 1.4.4 are toric and both
batlsfy d)H [lean =W,
2. The Fubini-Study metric || - ||ps in Example 1.1.2 is also toric and satisfies

Y. ps = frs, where frg is the function in Example 2.4.3.

In general, the space of toric metrics on the line bundle L can be put into a one-
to-one correspondence with a certain class of continuous functions on Ng.

Proposition 4.3.10. — Let X be a complete fan in Ng and ¥ a virtual support function
on Y. Let Xy, and L = O(Dy) be the associated proper toric variety over K and toric
line bundle.

1. Given a metric || - || on L*, the function .| — ¥ extends to a continuous
function on Nx.

2. The correspondence || - || = ). is a bijection between the set of toric metrics
on L™ and the set of continuous functions 1p: Ng — R with the property that

— W can be extended to a continuous function on Ny.

Proof. — We first prove (1). Let {m,} be a set of defining vectors of ¥. For each
cone ¢ € X, the section s, = x™s is a nowhere vanishing regular section on X3".
By (4.1.2), for p € X§",

) (val(p)) = (mo, val(p)) = log||s(p)[ls + log [x™* (p)| = log Hsa(p)Hs-

Since [|s¢||s is a nowhere vanishing regular function on X3", the is
a continuous function on X32" that is S-invariant. So it d(‘hneb a continuous functlon

on Xq(R>p). As a consequence, 1. — m, extends to a continuous function on N,.
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Now, if we see that ¥ —m, extends also to a continuous function on N, we will be
able to extend v — ¥ to a continuous function on N, for every o € ¥ and therefore
to Ny.

Let 7 be a face of o and let u € N(7)r. Let W(r,U, p) be a neighbourhood of u
as in (4.1.6). By taking U small enough and p € 7 far away from the origin, we can
assume that W(r, U, p) N Ng is contained in the set of cones that have 7 as a face.
Since ¥ and m, agree when restricted to o (hence when restricted to 7) it follows
that, if w+t € W(r,U,p) N Ng with w € U and t € p+ 7, then (¥ —m,)(w +t) only
depends on w and not on t. Hence it can be extended to a continuous function on
the whole W (7, U, p). By moving 7, u, U and p we see that it can be extended to a
continuous function on N, which completes the proof of the first statement.

For the second statement, let now 9 be a function on Ny such that 1) — U extends
to a continuous function on Ny. We define a toric metric || - || on the restriction
L% |xan by the formula

ls(p)] = exp(i(val(p))). (4.3.5)

Then, by the argument before, 1) —m, extends to a continuous function on N,, which
proves that || - || extends to a metric over X2". Varying o € ¥ we obtain that || - ||
extends to a metric over X3". We can verify that this assignment is the inverse of the
correspondence || - [| = .|, when the latter is restricted to the space of toric metrics

on LA™, (]

Remark 4.3.11. — Assume that K is non-Archimedean and with discrete valuation.
Let ¢: Ng — R be a function and consider the right multiplication ¢ = 1/)A;<1. Since
¥ is conic, \I//\I_(1 = V. Therefore 1y — ¥ extends to a continuous function on Ny if
and only if ¢ — ¥ does. Thus the statement of Proposition 4.3.10 remains true if we
replace the function ¢ by the function ¢.

Notation 4.3.12. — For a function 1: Ng — R with the property that ¢» — ¥ can be
extended to a continuous function on Ny, we denote by || - ||, the metric given by the
correspondence in Proposition 4.3.10(2). It is the metric defined in (4.3.5) above.

Corollary 4.3.13. — For any metric || - || on L*", the function 1. — ¥| is bounded.

Proof. — Since we are assuming that ¥ is complete, the space Ny, >~ X»n(Rx>g) is

O

compact. Thus the corollary follows from Proposition 4.3.10(1).

Proposition 4.3.14. — The correspondence (L, s) — VE satisfies the following prop-
erties.
1. Let Ly = (Ly, || - |l:), i = 1,2, be toric line bundles equipped with a metric and s;
a toric section of L;. Then

/l/)Z|®Z2,-51®82 = d’Zl,s, + /lf/}fz,sz'
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2. Let L = (L, || -||) be a toric line bundle equipped with a metric and s a toric
section of L. Then

1/)3‘59”1,5@71 = —ZZJE,S.
3. Let (L, s) be a toric line bundle and section, and (||-||;)i>1 a sequence of metrics

- || with respect to the distance in (1.4.1). Then
Yy, converges uniformly to ..

on L converging to a metric

Proof. This follows easily from the definitions. O

A consequence of Proposition 4.3.10(2) is that every toric line bundle has a distin-
guished toric metric.

Proposition-Definition 4.3.15. — Let X be a complete fan, Xy the corresponding toric
variety, and L a toric line bundle on Xy. Let s be a toric section of L and ¥ the
virtual support function on X associated to (L, s) by theorems 3.3.7 and 3.3.3. The
metric on L*" associated to the function ¥ by Proposition 4.3.10(2) only depends on
the structure of toric line bundle of L. This toric metric is called the canonical metric

of L* and is denoted | - ||can. We write L™ = (L, - |lcan)-

Proof. — Let s’ be another toric section of L. Then there is an element m € M such
that ' = x™s. The corresponding virtual support function is ¥/ = ¥ — m. Denote
by || - || and || - || the metrics associated to s, ¥ and to s’, U’ respectively. Then

)" = [Ix~™s' (p)||/ = el HPIE@) — PR — |i5(p)]|.
Thus both metrics agree. O

The canonical metrics || - |[can in examples 1.3.11 and 1.4.4 are particular cases of
the canonical metric of Proposition-Definition 4.3.15.

Proposition 4.3.16. — The canonical metric is compatible with the tensor product of
line bundles.
1. Let L;, i = 1,2, be toric line bundles on X. Then Ly ® Lgcan = Emn ® Ligmn

2. Let L be a toric line bundle on X. Then L1 = (L*")®-1,
Proof. This follows easily from the definitions. O

Next we describe the behaviour of the correspondence of Proposition 4.3.10(2)
with respect to equivariant morphisms. We start with the case of orbits. Let X be
a complete fan in N and ¥ a virtual support function on ¥. Let L and s be the
associated toric line bundle and toric section, and {m, }scx a set of defining vectors
of U. Let o € ¥ and V(o) the corresponding closed subvariety. As in Proposition
3.3.16, the restriction of L to V(o) is a toric line bundle. Since V(o) and div(s) may
not intersect properly we can not restrict s directly to V(o). By contrast, Dy _,,, =
div(x™ s) intersects properly V(o) and we can restrict the section x™°s to V(o) to

ASTERISQUE 360



CHAPTER 4. METRICS AND MEASURES ON TORIC VARIETIES 133

obtain a toric section of O(D(w—_m, (o)) = L |v (o). Denote v: V(o) — Xy the closed
immersion. For short, we write s, = x"vs. Then ¢*s, is a nowhere vanishing section
on O(o). Recall that V(o) has a structure of toric variety given by the fan ¥(o) on
N(o) (Proposition 3.2.1). The principal open subset of V(o) is the orbit O(o).

Let || - || be a metric on L* and write L = (L, || - ||). By the proof of Proposi-
tion 4.3.10, the function ¢y A —mo = ¢, can be extended to a continuous function

on N, that we denote Ef 8"

Proposition 4.3.17. — The function 1.7 ., : N(o)r = R agrees with the restriction
of EZ,SG to the subset N(o)r of No.

Proof. — The section s is nowhere vanishing on Xs ,. Therefore, the function
9z, X§" — R of diagram (4.3.1) can be extended to a continuous function on
X§, that we also denote gz , . By the definition of the inverse image of a metric,
there is a commutative diagram

O(0)™ —— X&

9T.s
gt,*Lk l 7

R.

We next prove the result in the Archimedean case. Let T, be the torus correspond-
ing to the quotient lattice N(o), and S, the compact subtorus of T2". Denote by
To: S = Se. Let fiHaar,s be that Haar measure of S, of total measure 1. Then
HHaar,c = (Mo )« tHaar- The inclusion ¢ satisfies that, for ¢t € S and p € O(o)*" then
Uy (t) -p) =t-u(p). Thus

mmw%@mm:~/"%nm4rmmmmwa>

:—L%Muwmmwww:mw%wmm,

which implies the result.
We next prove the statement in the non-Archimedean case. By propositions 4.1.6
and 4.2.17,

log [|¢*54(p)lls, = *.UL*E,,,*S(,(92(0)(/)2(0)(1))))
= =975, (Os(pn(c(p)))) = log [[so(¢(p))]ls:

which implies the result. O

Corollary 4.3.18. — Let L be a toric line bundle on Xs, equipped with the canonical
metric, o € ¥ and 1: V(o) — Xyx the closed immersion. Then the restriction t*L is
a toric line bundle equipped with the canonical metric.
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Proof. — Choose a toric section s of L whose divisor meets V(o) properly. Let ¥
be the corresponding virtual support function. The condition of proper intersection
is equivalent to ¥|, = 0. Then ¥ extends to a continuous function ¥ on N, and
the restriction of ¥ to N (o) is equal to W(o) (Proposition 3.3.14). Hence the result
follows from Proposition 4.3.17. ]

We next study the case of an equivariant morphism whose image intersects the
principal open subset. Let N;, ¥;, ¢ = 1,2, H, p and A be as in Proposition 4.1.8. Let
W5 be a virtual support function on Y5 and let ¥ = Wyo0 H. This is a virtual support
function on 3;. Let (L;, s;) be the corresponding toric line bundles and sections. By
Proposition 3.3.17 and Theorem 3.3.7, there is an isomorphism ¢ Ly >~ Ly that
sends ¢, sz to s1. We use this isomorphism to identify them. The following result
follows from Proposition 4.1.8 and is left to the reader.

Proposition 4.3.19. — Let || - || be a toric metric on L§" and write Ly = (Lo, || - ||),
fl = (Lh w;,H” ’ ”) The equality ¢Z1,s1 = /%2,32 o A holds.

The canonical metric is stable by inverse image under toric morphisms. The fol-
lowing result follows easily from the definitions.

Corollary 4.3.20. — Assume furthermore that p = x¢ and so the equivariant morphism
vp.H = pu: Xn, = Xx, s a toric morphism. If L is a toric line bundle on Xy,
equipped with the canonical metric, then 3L is a toric line bundle equipped with the
canonical metric.

The inverse image of the canonical metric by an equivariant map does not need
to be the canonical metric. In fact, the analogue of Example 3.7.11 in terms of
metrics shows that many different metrics can be obtained as the inverse image of the
canonical metric on the projective space.

Example 4.3.21. — Let ¥ be a complete fan in Ng and Xy the corresponding toric
variety. Recall the description of the projective space P" as a toric variety given in
Example 3.1.3. Let H: N — Z" be a linear map such that, for each o € 3 there exist
7 € Yar with H(o) C 7. Let p € P{(K). Then we have an equivariant morphism
©p.i: X5y — P". Consider the support function War on ¥ar. Then Ly, = Opr(1).
Write L = 5 yLw s 8= 95 gsus, and ¥ = H*War. Thus (L, s) = (L, sw).

Set A = H + val(p) for the affine map. Let || - || be the metric on L*" induced
by the canonical metric of O(Dy ,,)*" and let 9 be the function associated to it by
Definition 4.3.5. By Proposition 4.3.19, ¢ = A*War. This is a piecewise affine concave

function on Ng with rec(¢)) = ¥ that can be made explicit as follows.
Let {e1,...,e,} be the standard basis of Z" and {eY, ..., e} the dual basis. Write
m; =e; o H € M and I; = ¢/ (val(p)) € R. Then

U =min{0,my,...,m;}, ¥ =min{0,mq +11,...,m, + 1}
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Proof. — This follows readily from the previous result together with Example 1.4.4
in the Archimedean case and Example 1.3.11 in the non-Archimedean case and the
fact that the inverse image of a semipositive metric is also semipositive. O

The conclusion of Proposition 4.3.19 is not true for non toric metrics, because the
averaging process in Definition 4.3.3 does not commute with inverse images by equiv-
ariant morphisms. Nevertheless, with the notations before Proposition 4.3.19, we

can compute ¢7 . oA as an average over all equivariant morphisms associated with

J52
the affine map A. In the non-Archimedean case, this averaging process will be de-
scribed by a limit process on algebraic points of X3". Recall that the algebraic points
of a Berkovich space are dense. Since Berkovich spaces are not necessary metriz-
able, in principle, one should approximate an arbitrary point by a net of algebraic
points. Nevertheless, thanks to [Poil2, Théoreme 5.3], Berkovich spaces are of type
Fréchet-Uryshon, which implies that every point can be approximated by a sequence
of algebraic points.
The next result will be needed in the proof of Proposition 4.7.1.

Proposition 4.3.24. — With the notations previous to Proposition 4.53.19, let || - || be a
metric on L5".

1. Assume that K is Archimedean. Let p € Xy, o(K) and put ug = val(p). Then,
foru e Nig,

Py (o + H(u / Vol () dttaar, (1),

where So is the compact subtorus of the torus associated to the lattice No, and
UHaar,2 15 the Haar measure of So of total volume 1.

2. Assume that K is non-Archimedean. Let ug € A Nag and (¢;)ien be a sequence
of points q; € val ™! (up) N X3 g with lim; 00 q; = Oy, o e(ug). For each i € N,
let K] be a finite extension of K and q; € X, 0(K]) a point over q;. We denote
by || | the metric induced on the line bundle Ly g by base change. Then, for
u € Nl,]Ry

Yy (o + H(w)) = i ey, (u)-

Proof. — We first prove (1). Let ¢ € X&! with val(q) = u. By definition,

/ l/,atr) ool ll(“) dNHaar) t2 /S / 9@12 ool H (I) d/ufHaarl (t])d,U/Haarz (t2)'
2 JS

where S; is the compact subtorus of the torus associated to the lattice N;, and pHaar,
is the Haar measure of S; of total volume 1, i = 1,2. Let gy: Ty — T2 be the
morphism of tori induced by the linear map H. Now we compute

9oty (@) = 91 (Prop (B - q)) = g (B2 - 0 (1) - @p, 1 (9))-
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We want to characterize all the functions that can be obtained with a slight gener-
alization of the previous construction. In this case we will use the function ¢ instead

of 9.

Proposition 4.3.22. — Assume that the absolute value of K is either Archimedean or
assoctated to a discrete valuation. Let ¥ be a complete fan in N and ¥ a support
function on X. Write L = Lg and s = sy. Let ¢: Ng — R a piecewise affine concave
function with rec(¢) = ¥, that has an H-representation

= lglin {m; + 1},

with m; € Mg and l; € R in the Archimedean case and l; € Q in the non-Archimedean
case. Then there is an equivariant morphism ¢: X, — P, an integer e > 0 and an
isomorphism L®¢ ~ ¢*O(1) such that the metric ||- || induced on L* by the canonical
metric of O(1)*" satisfies ¢).|| = ¢.

Proof. — First observe that the condition /; € R in the Archimedean case and [; € Q
in the non-Archimedean case is equivalent to the condition I; € Qvalg(K*). Let
e > 0 be an integer such that em; € M and el; € valg (K*) for i =0,...,r.

Consider the linear map H: Ng — R" given by H(u) = (em;(u) — emo())i=1,...»
and the affine map A = H + 1 with I = (el; — elp);=1,... . By Lemma 2.5.22,

ep = A*Uar + emg + ely.

For each 0 € ¥, we claim that there exists o;, € ¥ar such that H(o) C 0;,. Indeed,
U(u) = min;{m;(u)}. Since ¥ is a support function on X, for each o € 3, there exists
an ig such that ¥(u) = m;,(u) for all u € o. Writing e} = 0, this condition implies

min {e; (H(u))} = e} (H(u)) forall u € o.

0<i<r o

Hence, H(o) C 0;,, where 0;, € ¥ar is the cone {v|ming<;<,{e/(v)} = e

io

(v)} and
the claim is proved.

Therefore, we can apply Theorem 3.2.4 and given a point p € P"(K) such that
valg(p) = 1, there is an equivariant map ¢, y: X» — P". By Example 3.4.8,
there is an isomorphism L®¢ ~ ¢* ;O(1) and a € K* with valk(a) = I such that
(a='x~"05)®¢ corresponds to @F (sw,r)-

Let L be the line bundle L equipped with the metric induced by the above isomor-
phism and the canonical metric of O(1)*". Then

1 *
(Pf’s = ¢z,aflern()s +mo+ 1l = EA Uar +mg+ 1y = ¢,
as stated. 0

Corollary 4.3.23. — Let ¢ be as in Proposition 4.3.22 and ¢ = ¢ . Then the metric
It Il is semipositive.
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Consider the morphism of compact tori ¢: So X S; — So given by o(t2,t1) =
to - op(t1). The measure g.(fiHaar,1 X [Haar,2) 18 an invariant measure on Sy of total
volume 1. Thus agrees with pHaar 2. Hence

/S/S91|~|}(752'0H(t1)’@p,H(Q))duHaarl(tl)dNHaarz(tz)

B / Il (t2 ' wva((I)) d:uHaarz (t‘Z)
S,

2

Since val(yp m(q)) = uo + H(u), we obtain,

- /S g“'l!(tZ ’ QO;D,H((])) dtHaar, (t2) = 1/J||.|| (ug + H(u)),

proving the result.

Next we prove (2). In view of Proposition 4.3.8, it is enough to treat the case when
K is algebraically closed and hence K! = K and ¢; = ¢;. Then, by definitions 4.3.5
and 4.3.3,

Bim g () = = Himogee g (05, (e(w) = = lim gy (9,1 (05, (e(u))))-
Identifying Xy, o with Ty and denoting by z¢ the distinguished point of Xs, o(X),
we obtain, using 4.2.4(1)

Pai i (05, (€(1)) = i - Puo, 1 (05, (€(w)) = i * Pug 1 (05, (e(w))).

By Corollary 4.2.19, the point ¢, m(fs,(e(u))) is peaked. Thus, by Proposi-
tion 4.2.4(4),

g1 (g % @, 1 (05, (€(w)))) = g1 (052 (e(10))) * P, 1 (05, (€(w)))-
By propositions 4.2.13 and 4.1.8
B (e(u0)) * 2.1 (05, (€(1)) = B (e(u0) * s (9.1 (B, ()
= Oz, (e(uo) - a1 (e(u))) = Os,(e(uo + H(u))).
Therefore
Jim e () = =gy (05, (e(uo + H(w)))) = ¥y (uo + H(u)),

proving the result. O

4.4. Smooth metrics and their associated measures

We now discuss the relationship between semipositivity of smooth metrics and
concavity of the associated function in the Archimedean case. Moreover we will
determine the associated measure.

We keep the notation at the beginning of the chapter but we restrict to the case
when K is either R or C and ¥ is a complete fan. Let ¥ be a virtual support function
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on X, with L and s the corresponding toric line bundle and section. Let L*" be the

analytic line bundle on X" associated to L.

Proposition 4.4.1. — Let ||-|| be a srooth toric metric on L*". Then ||-|| is semipositive
if and only if the function 1 = ). is concave.

Proof. — Since the condition of being semipositive is closed, it is enough to check
an

it in the open set X§". We choose an integral basis of M = NV. This determines
isomorphisms
X§ ~ (C)", Xo(Rso) = (Rs)", Ng~C", Nr~R"
Let zy,..., 2z, be the coordinates of X§" and w4, ..., u, the coordinates of Nr deter-
mined by these isomorphisms. With these coordinates, the map
val: X§" — N

is given by

-1
val(z1,...,2,) = 7(log(z1:2] )y oo log(znzn)).
As usual, we set L = (L,||-||) and g = 97.s = —log|ls||. Then the integral valued
first Chern class is given by
(I | i 82g
— L:—(‘)(’):—E —— dzi A dZ. 44.1
271 Cl( ) T g s 2107 k “ ( )

The standard orientation of the unit disk D C C is given by dz A dy = (¢/2) dz A dZz.
Hence, the metric of L is semipositive if and only if the matrix G = (5%);\7’1 is
semi-positive definite. Since
d%g -1 0%y
02,0%) - 4zp7z; Ou Oy’
if we write Hess(y) = (%)M and Z = diag((2z1)7 %, ..., (22,)7 1), then G =
—Z'Hess(¢)Z. Therefore G is semi-positive definite if and only if Hess(¢)) is semi-

(4.4.2)

negative definite, hence, if and only if ¥ is concave. O
Proposition 4.4.2. — Let || - || be a smooth metric on L**. Then || - ||s is also smooth.
Moreover, if || - || is semipositive, then || - ||s is semipositive too.

Proof. — The first statement follows from the definition of || - ||s and the preservation

of smoothness under integration of log || s, || along the compact subsets S-p for p € X3,
o€
For the second statement, we have

e (L] ls) = /S 1 (L] - ) dpians (1)

where t* denotes the inverse image under the multiplication map t: X&' — X{.
Therefore, if (L, || - ||) is semipositive, then (L, || - ||s) is semipositive too. O
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As a direct consequence of propositions 4.4.2 and 4.4.1, if the line bundle L*" admits
a semipositive smooth metric, then its virtual support function ¥ is concave. By
Proposition 3.4.1(1), this latter condition is equivalent to the fact that L is generated
by global sections.

For a semipositive smooth toric metric || - || on L*", we can characterize the as-
sociated measure on X" in terms of the Monge-Ampere measure of the concave
function 1[)““

Definition 4.4.3. — Let ¢: Ng — R be a concave function and M, () the Monge-
Ampére measure associated to 1) and the lattice M. We denote by M, (1)) the
measure on Ny given by

My ()(E) = Mar(¢)(E N Ny)

for any Borel subset £ of Ny.. We will use the same notation for the mixed Monge-
Ampere measure.

By its very definition, the measure M, (1)) is bounded with total mass

M (¥)(Ng) = volp (Ay)

and the set Ny \ Ng has measure zero.

Theorem 4.4.4. — Let ||-|| be a semipositive smooth toric metric on L*". Let c¢i (L) " A
dxy. be the measure defined by L. Then,
val*(cl(f)A" Ndxy) = n!ﬂM(w), (4.4.3)

where val is the map in the diagram (4.1.7). In addition, this measure is uniquely
characterized by the equation (4.4.3) and the property of being S-invariant.

Proof. — Since the measure ¢;(L)"™ A dx,, is given by a smooth volume form and
X&\ X3 is a set of Lebesgue measure zero, the measure c1 (L) Adx,, is determined
by its restriction to the dense open subset X§". Thus, to prove (4.4.3) it is enough to
show that

val, (c1 (L) A 0xy [xan) = nIMpr(9). (4.4.4)
We use the coordinate system of the proof of Proposition 4.4.1. We denote by
e: Ng — Xo(C) the map induced by the morphism C — C* given by z +— exp(—2z).

We write uy + ivg for the complex coordinates of N¢. Then
?(M) = (—2i) dug A do. (4.4.5)

ZkZk

Using now the equations (4.4.1), (4.4.2) and (4.4.5), we obtain that

-1
& e (D) = 5*(%71!(1@(@ dzy A dz A A dzy, A dzﬂ)
7T
_1 n
= ((27r))” nldet(Hess(¢))) dus A dvg A -+ A duy A doy,.

(2mi)™
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Since the map val is the composition of € " with the projection N¢ — Np, integrating
with respect to the variables vy, ..., v, in the domain [0, 27]", taking into account the
natural orientation of C™ and the orientation of Ng given by the coordinate system,
and the fact that the normalization factor 1/(27¢)™ is implicit in the current dx,, we
obtain

val, (e (L)"" Adxy|xan) = (=1)"n! det(Hess(y)) duy A--- A duy,.

Thus the equation (4.4.4) follows from Proposition 2.7.3. Finally, the last statement
follows from the fact that, in a compact Abelian group there is a unique Haar measure
with fixed total volume. O

We end this section by making explicit the compatibility of the previous construc-
tions with the conjugation in the case of toric varieties over R. Let ¥ be a fan in Ng,
and Xy g and Xy ¢ the corresponding toric varieties over R and C. Recall that the
underlying complex analytic spaces of X{- and X7, agree (see Remark 1.1.5) and
are denoted by X{".

Proposition 4.4.5. — Let ¥ be a complete fan and ¢: X&' — X&' the anti-linear
involution of Remark 1.1.5.

1. There are commutative diagrams

X%‘] C ; X%n X%Il g’ } X%Il
R JPZ val Jval

X5(R>o), Ns.

2. Let Lg be a line bundle on Xs,x and L¢ the line bundle over Xs c obtained

by base change. The assignment that to each metric || - || on Lg associates

the metric || - |[c on L¢ given by forgetting the anti-linear involution, induces a
bijection between the set of toric metrics on Ly and the set of toric metrics on

Lc. Moreover .. = ¥ |a-

Proof. — We first prove (1). The first commutativity follows from the invariance of
the absolute value under complex conjugation and the second follows from the first
and the commutativity of diagram (4.1.7).

To prove (2) we have to show that, if || - || is a toric metric on L¢, then it is
compatible with complex conjugation. That is, if s a toric section of L¢ defined over
R and p € X§", then |[s(p)|| = ||s(s(p))||. Since the fibres of py are orbits under S, by
(1), there is an element ¢ € S such that ¢(p) = t(p). Since the metric is toric

Is(c@DIl = ls(te)Il = lIsp)l

The last assertion is clear because the definitions of .. and )., agree. O
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4.5. Algebraic metrics from toric models

Next we study some properties of algebraic metrics with particular emphasis on
the ones that arise from toric models. We keep the notation at the beginning of
the chapter and we assume that K is a complete field with respect to an absolute
value associated to a nontrivial discrete valuation. We also assume that the fan ¥ is
complete.

Since we will discuss the relationship between metrics and algebraic models it is
preferable to work with the functions ¢ of Definition 4.3.6 instead of the functions of
Definition 4.3.5.

We begin by studying the relationship between the maps valg and red.

Lemma 4.5.1. — Let 11 be a complete SCR polyhedral complex of Ng such that
rec(Il) = ¥. Let X := Xy be the model of Xy, determined by II. Let A € Il and
p € X§". Then red(p) € X if and only if valk (p) € A.

Proof. — By the definition of the semigroup M, A, the condition valk (p) € A holds if
and only if (m, valg (p))+1 > 0 for all (m,1) € M. This is equivalent to log |x ™ (p)|+
log ||~ > 0 for all (m,1) € M. In turn, this is equivalent to |x™(p)@!| < 1, for all
(m,l) € My. Hence, valg (p) € A if and only if |a(p)| < 1 for all a € K°[X4], which
is exactly the condition red(p) € X) (see (1.3.1)). O

Corollary 4.5.2. — With the same hypothesis as in Lemma 4.5.1, red(p) € O(A) if
and only if valk (p) € ri(A).

Proof. — This follows from Lemma 4.5.1 and the fact that the special fibre is
XA,O = H O(A,),
A’ face of A
and ri(A) = A\ Uy proper face of A A O

Let ¥ be a virtual support function on ¥ and (L, s) the corresponding toric line
bundle and section. We denote by L*" the analytic line bundle on X{" associated to
L. Let IT be a complete SCR polyhedral complex in Ng such that rec(Il) = ¥ and ¢
a rational piecewise affine function on II with rec(¢) = ¥. Let e > 0 be an integer
such that e¢ is an H-lattice function. By Theorem 3.6.8, the pair (I, e¢) determines a
toric model (X1, Leg. €) of (Xx, L). We will write £ = L4 for short. Definition 1.3.5
gives us an algebraic metric || - ||z on L*". The following proposition closes the circle.

Proposition 4.5.3. — The algebraic metric || - ||z is toric and the equality ¢y. . = ¢
holds. The function ¢ — ¥ extends to a continuous function on Ny, and the metric
I - loax associated to pAi (Notation 4.3.12) agrees with || - || .

Proof. — The tensor product s¥¢ defines a rational section of £. Let A € II and
choose my € M, In € Z such that ep|pn = mp + Ip|a. Let u € A and p € X" with
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u = valg(p). Then red(p) € Xy. But in X, the section x4 w!*5®¢ is regular and
non-vanishing. Therefore, by Definition 1.3.5,

X" ()@ s%(p) e = 1.

Thus
1 1 —MmMA —la 1
—log [[s(p)llc = ——log [x " (p)w ™| = = ((ma, u) + 1n) = d(u),
/\K 6)\1( (&
which shows that the metric is toric. Moreover,
1
e () = 3 log [ls(p)lle = d(u),
K
and therefore, ¢ agrees with the function associated to the metric || - ||z. By Propo-
sition 4.3.10(1), and Remark 4.3.11, ¢ — ¥ extends to a continuous function on Ny
and the metric || - |41, agrees with || - || z. O
Example 4.5.4. — In the non-Archimedean case, the canonical metric of Proposi-

tion-Definition 4.3.15 is the toric algebraic metric induced by the canonical model of
Definition 3.6.3.

Proposition 4.5.3 imposes a necessary condition for a rational piecewise affine func-
tion to determine a model of (X5, Ly).

Corollary 4.5.5. — Let U be a virtual support function on ¥ and ¢ a rational piece-
wise affine function on N, with rec(¢) = U, such that there exists a complete SCR
polyhedral complex T with rec(Il) = X and ¢ piecewise affine on II. Then ¢ — ¥ can
be extended to a continuous function on Ny.

Proof. — 1If there exists such a SCR polyhedral complex II, then Il and ¢ determine

a model of O(Dy) and hence an algebraic metric || - || arising from a toric model.
By Proposition 4.5.3, ¢ = ¢ and, by Proposition 4.3.10(1), the function ¢y — W
extends to a continuous function on Ny. O

Example 4.5.6. — Let N = 72 and consider the fan ¥ generated by the vectors
eg = (=1,-1), e; = (1,0) and e5 = (0,1). Then Xy = P2. The virtual support
function ¥ = 0 corresponds to the trivial line bundle Op2. Consider the function

0 ifz<o0,
dlr,y)=qz f0<z<1,
1 ifl<a.

Then rec(¢) = ¥, but ¢ does not extend to a continuous function on Ny, and therefore
it does not determine a model of (Xy, Opz). By contrast, let ¥’ be the fan obtained
subdividing ¥ by adding the edge corresponding to ¢/ = (0, —1). Then 7: X5» — Xy,
is isomorphic to a blow-up of P? at one point. The function ¢ extends to a continuous
function on Ny and it corresponds to a toric model of (Xy, 7*Op2).
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Question 4.5.7. — 1s the condition in Corollary 4.5.5 also sufficient? In other words,
let N, ¥ and ¥ be as before and ¢ a rational piecewise affine function on N such
that ¢ — ¥ can be extended to a continuous function on Ny. Does it exist a complete
SCR. polyhedral complex II such that rec(Il) = 3 and ¢ is piecewise affine on II?

Remark 4.5.8. — By the proof of Theorem 3.7.3 and Corollary 4.5.5, when ¢ is a
piecewise affine concave function, the conditions

1. |¢ — V| is bounded;
2. ¢ — ¥ can be extended to a continuous function on Ny;

3. there exist a complete SCR polyhedral complex Il with rec(Il) = ¥ and ¢
piecewise affine on II;

are equivalent. In particular, the answer to the above question is positive when ¢ is
concave.

Corollary 4.5.9. — Let ¥ be a complete fan and ¥ a support function on ¥. Let ¢ be
a rational piecewise affine concave function on Ng with rec(¢) = U. Then the metric
Il - llorx s algebraic and has a semipositive toric model.

Proof. — By Theorem 3.7.3, the concave function ¢ determines an equivalence class
of semipositive toric models of (Xx,L). Any toric model in this class defines an
algebraic metric on L?". By Proposition 1.3.6, this metric only depends on ¢ and we
denote it by || - ||. Proposition 4.5.3 implies that || - [|ox, = || - ||, hence this metric is
given by a semipositive toric model. O

We have seen that rational piecewise affine functions give rise to toric algebraic
metrics. We now study the converse. In fact this converse is more general, in the
sense that any algebraic metric determines a rational piecewise affine function.

Theorem 4.5.10. — Let 3 be a complete fan, ¥ a virtual support function on ¥ and
(L, s) the corresponding toric line bundle and section. Let || - || be an algebraic metric
on L?".

1. The function ¢, is rational piecewise affine.
2. If || - || is toric and ¢y. is concave, then this metric has a semipositive toric

model.

Before proving the theorem, we introduce a variant of the function ¢ for ratio-
nal functions. Let g be a rational function on Xy. Then we consider the function
¢g: Ngp — R defined, for u € Ng, as

log [g o 0y o ek (u)]
(bg(u) = )\OK

where ¢ is defined in Proposition-Definition 4.2.12 and ex in (4.1.4).
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Lemma 4.5.11. — Let g be a rational function on Xx. Then the function ¢g is an
H-lattice function (Definition 2.6.6). In particular, it is piecewise affine.

. . amx™
Proof. — The function g can be written as g = —%% Then
meM Fm

1
bg(u) = ~—log|g oty oex(u)
AK

1 , 1
= log E | am X" (0 o ex(u))| — e log| > Bmx™ (0o 0 eK(U))‘
meM meM
max ( log Jan| (m, >) max ( 108 | | ( >>
= max | ——— — (m,u) ) — max | ——— — (m,u
meM AK ! meM AK

= r}gleaﬁ(ivalK(a"") — (m,u)) — nrtleaﬁ(—valK(ﬁm) — (m,u))

= min ((m, u) + valg(8,,)) — min ({m, u) + valg (am)).

meM meM
Thus, it is the difference of two H-lattice concave functions. O
Proof of Theorem 4.5.10. — Since the metric is algebraic, there exist a proper K°-

scheme X and a line bundle £ on & such that the base change of (X,L) to K is
isomorphic to (X, L%¢). Let {U;, s;} be a trivialization of £. Let C; = red” " (U;NX,).
The subsets C; form a finite closed cover of X3". On U; we can write s‘\%e = g;s; for
a certain rational function g;. Therefore, on C;, we have log||sy(p)| = I—OM. By
Lemma 4.5.11, it follows that there is a finite closed cover of Ng and the restriction
of ¢ to each of these closed subsets is rational piecewise affine. Therefore ¢ is
rational piecewise affine. This proves (1).

We now prove the statement (2). By (1) and Proposition 4.3.10(1), the concave
function ¢y is rational piecewise affine with recession function equal to V. Since
| - || is toric, Proposition 4.3.10(2) implies that it agrees with the metric associated
to ¢y Ax. The statement then follows from Corollary 4.5.9. O

We now study the effect of taking a field extension.

Proposition 4.5.12. — Let X be a complete fan in Ng and Il a complete SCR polyhedral
complex in Ng with 3 = rec(IT). Let II' be the polyhedral complex in Ny obtained from
II by applying a homothety of ratio e . Then

[e]
Xn/’}(/o = N()I‘(XH,KO X Spec(K' )),
where Nor denotes the normalization of a scheme.

Proof. — The statement can be checked locally. Let A be a polyhedron of II. Let
A = egr/gA. Then it is clear that

K°[X] 2 K'® ¢ K"°[X0).
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Since the right-hand side ring is integrally closed, the integral closure of the left side
ring is contained in the right side ring. Therefore we need to prove that K’ []T/f /] is
integral over the left side ring. Let (a,l) € My,. Thus (exr/ka,l) € M,. Then the
monomial x%w’t € K'°[X,/] satisfies

(x*@'!)er i = (xor/xtml) € KO[Xy] ke R

Hence %’ is integral over K°[X] ® K'°. Since these monomials generate K'°[X/],
KO

we obtain the result. (|

4.6. The one-dimensional case

We now study in detail the non-Archimedean one-dimensional case. Besides being
a concrete example of the relationship between functions, models, algebraic metrics,
and measures, it is also a crucial step in the proof that a toric metric is semipositive
if and only if the corresponding function is concave. Of this equivalence, up to now
we have proved only one implication and the reverse implication will be proved in the
next section.

The only one-dimensional proper toric variety over a field is the projective line.
Algebraic metrics over this toric variety come from integral models of line bundles.
We will describe these in detail. The first part of this section dissects models of the
projective line itself, while the second part turns to models of line bundles and metrics.
A good reference for curves over local rings or more generally over Dedekind domains
is the book [Liu02], where the reader can find most of the results that we need.

Let K be a field which is complete with respect to an absolute value associated to
a nontrivial discrete valuation. We will use the notation in §1.2. In particular, K°
denotes the valuation ring of K.

Definition 4.6.1. — Let X be an integral projective curve over K. A semi-stable
model of X is an integral projective scheme X' of finite type over Spec(K°) with an
isomorphism X — &), such that the special fibre &), after extension of scalars to the
algebraic closure of the residue field, is reduced and its singular points are ordinary
double points. We will say that the model is regular if the scheme X' is regular.

This definition is the specialization of [Liu06, Definition 2.1] to models of curves
over a DVR. Note that a semi-stable model as in Definition 4.6.1 is a semi-stable
curve over Spec(K°) in the sense of [Liu02, Definition 10.3.14] because, by [Liu02,
Proposition 4.3.9] the hypothesis on X imply that it is flat over Spec(K°).

To a semi-stable model whose special fibre has split double points, we can as-
sociate the dual graph of the special fibre. This graph contains one vertex for
each irreducible component of the special fibre and one edge for each double point,
see [Liu02, Definition 10.3.17].
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We will use the following result to eventually reduce any integral model of P} to
a simpler form.

Proposition 4.6.2. — Let X be a projective model over K° of Pk-. Then there erists a
finite extension K' of K with valuation ring K'°, a reqular semi-stable model X' of
P, and a proper morphism of models X’ — X x Spec(K'°).

Proof. — The existence of the finite extension K’ and a semi-stable model dominating
X x Spec(K'?) is guaranteed by [Liu06, Corollary 2.8]. Then [Liu06, Proposition 2.7]
implies the existence of a regular semi-stable model dominating X x Spec(K’°). O

Consider the toric variety Xy ~ P!, We can choose an isomorphism N ~ Z and
Ng ~R. Then ¥ = {R_,{0},R,}. Let O denote the invariant point of P} corre-
sponding to the cone R, and oo the invariant point corresponding to the cone R_.

Let X be a regular semi-stable model of P}.. We will assume that all the com-
ponents and double points of the special fibre are defined over the residue field
k = K°/K°° and that each irreducible component contains a rational point. Since
the generic fibre &), ~ P1- is connected and of genus zero, by [Liu02, Lemma 10.3.18],
we deduce that all components of the special fibre are rational curves and that its
dual graph is a tree. Let Dy and D, denote the horizontal divisors corresponding
to the point 0 and oo of P}.. Then, there is a chain of rational curves that links
the divisor Dy with D, and that is contained in the special fibre. We will denote
the irreducible components of the special fibre that form this chain by Ey, ..., E;, in
such a way that the component Ey meets Dy, the component E; meets D, and, for
0 < i < I, the component E; meets only F; 7 and E;;;. The other components of
X, will be grouped in branches, each branch has its root in one of the components
E;. We will denote by F; ;, j € ©; the components that belong to a branch with root
in E;. We are not giving any particular order to the sets ©;.

We denote by E - F' the intersection product of two 1-cycles of X'. Since the special
fibre is reduced, we have

l
div(w) = Z <E7- + Z Fi’j>.
i=0 JEO;

Again by the assumption of semi-stability, the intersection product of two different
components of X, is either 1, if they meet, or zero, if they do not meet. Since the
intersection product of div(cw) with any component of X, is zero, we deduce that,
if F is any component of X,, the self-intersection product £ - E is equal to minus
the number of components that meet E. In particular, all components F; ; that are
terminal, are (—1)-curves. By Castelnuovo’s criterion [Liu02, Theorem 9.3.8], we can
successively blow-down all the components F; ; to obtain a new regular semi-stable
model of PL whose special fibre consist of a chain of rational curves. For reasons that
will become apparent later, we denote this model as As.
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Lemma 4.6.3. — If we view x' as a rational function on X, then there is an integer
a such that
l
a0 =Dy - D+ 3B+ 3y ).
i=0 JEO;

Proof. — Tt is clear that

1
div(x') = Dy — Do + Z%‘Ei + Z a; ; Fi
i=0 jeo,

for certain coefficients a; and a; ; that we want to determine as much as possible.

If a component F of &, with coefficient a, does not meet Dy nor D, but meets
r > 1 other components, and the coeflicients of » — 1 of these components are equal
to a, while the coefficient of the remaining component is b, we obtain that

0=divix!)-F=aF -F+4a(r—1)+b=-rata(lr—1)+b=>b—a

Thus b = a. Starting with the components F; ; that are terminal, we deduce that, for
all i and j € ©;, a; = a; ;. Therefore,

!
diV(Xl) = DO —_ Doo =+ Z(Li (E, + Z Fi,j)-
=0

In particular, the lemma is proved for [ = 0. Assume now that [ > 0.
It only remains to show that a; = ag — i, that we prove by induction. For i = 1,

we compute
0 =div(x") - Ey = Do - Ey + aoFq - Eg + ap Z Foj-Ey+a1 B -Ey=1-ag+a.
J€Bo
Thus a; = ap — 1. For 1 < i <, by induction hypothesis, a; 1 = a;_o — 1. Then
0=divix") - Ei1 =aj—9 —2a;_1 +a; =1 —a;_| +aj.
Hence a; = a;—1 — 1. Applying again the induction hypothesis, we deduce a; = ag — i,

proving the lemma. O

The determination of div(x!) allows us to give a partial description of the map
red: X§" — A,. The points of &, appearing in this description, are the points
q:=DoNEy q:=E_1NE,t=1,....0, @41 := E; N Dy and the generic points
of the components E; that we denote n;, i =0,...,1[.

Lemma 4.6.4. — Let p € X", Then

qo if x!'(p)| < |w|”,

¢ if =T <X )] < [l
@ if @< I D)),

n; if IX'(p)| = |@|*" and p € im(0y).

red(p) =
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Proof. — Let 1 < i < [. The rational function x := y'w " has a zero of order
one along the component F; 1 and the support of its divisor does not contain the

component E;. On the other hand, the rational function y := Y~ 'ew® *!

has a zero
of order one along the component F; and the support of its divisor does not contain
the component F;_ ;. Thus {z,y} is a system of parameters in a neighbourhood of ¢;.

We denote
A=K [x'o " x o ~ KO,y (xy — w).

The local ring at the point ¢; is A, ). Let p be a point such that |o|e—itt <
IX!(p)| < |w|*"%. Therefore, for f € A we have |f(p)| < 1. Moreover, if f € (x,vy),
then |f(p)| < 1. Since the ideal (z,y) is maximal, we deduce that, for f € A, the
condition |f(p)| < 1 is equivalent to the condition f € (x,y). This implies that
red(p) = ¢;. A similar argument works for gg and g41.

Assume now that p € im(6s;) and that |x!(p)| = ||*~". If i # 0 we consider again
the ring A, but in this case |2(p)| = X' (p)w T =1. Let I = {f € A||f(p)] < 1}.
It is clear that (y, o) C I. For f =3, 3,x™ € A, since p € im(fs), we have

[F(p)] = sup (1B, I (p)™).

This implies that I C (y,@). Hence [ is the ideal that defines the component E; and
this is equivalent to red(p) = n;. The case i = 0 is analogous. O

The image by red of the remaining points of X3" is not characterized only by the
value of |x!(p)|. Using a proof similar to that of the lemma, one can show that, if
IX'(p)| = |=|*" then red(p) belongs either to E; or to any of the components F; ;,
j €0,

We denote by &; (respectively & ;) the point of X" associated by Proposition 1.3.3
to the component E; (respectively Fj ;). These points satisfy red(§;) = #; and
red(&; ;) = ni;j, where 1 ; is the generic point of Fj ;.

Lemma 4.6.5. — Let 0 < i <1[. Then, for every j € ©,,
valg (&) = valg (&) = a — i,

where a is the integer of Lemma 4.6.3. Furthermore, for j € ©; we have
§i = 0s(px(&) = Os(ps(&iy))-

Proof. — We consider the rational function w~™**iy!.  Since the support of
div(z=2t ') does not contain the component E; nor any of the components

Fi ;, we have

lw—qui’\,l(&)l = |w’”+",><’l(fli.j)| =1L
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Then, using (4.1.2) we deduce

L —log X&)l —loglw Tt
valg (&) = e = Tloglm a—1

and similarly with &; ;, which proves the first part of the statement.
From these equalities and the definitions (4.1.1) and 4.2.12 of the maps 6y and py,
the point 05 (px(&;)) € X&" is the multiplicative seminorm

z ()éme —_— Ineaﬁ |a7n,X‘m(€i)| — |w|minm€M(valK(am)+(a,7i)m,)'
me M
meM "

By Proposition 1.3.3, the point §; € X&" is the multiplicative semi-norm

E Oém,X"L — |w|0rdE1(Zm€M amX )
meM

Using the same notations as in the proof of Lemma 4.6.4, any element f =
e GmX™ € A can be written f = 3, By wvels(@n)tazithmymm where
the 8,,’s are units in K°. Now, the ideal of definition of E; is (y,w) and there-
fore ordg, (f) = mingez(valg (m) + (@ —i)m). Thus, the point & coincide with
05 (ps(&;)). This shows the equality & = 0s(ps(&;)). The remaining equality follows
then from the fact that px(& ;) = ps(&), § € O;, the image by py; depending only on
the valuation valg (&;) = valg (& ;). This completes the proof of the statement. O

Let now U be a virtual support function on ¥ and L = O(Dyg) the associated
toric line bundle on Xy,. Let ¢ > 1 and £ a line bundle on X which is a model over
Spec(K°) of L®¢. Let || - || be the metric on L*" given by the proper model (X, L, ¢)
and ¢y the corresponding function on Ng =~ R.

Let mg, ms € M ~ Z such that

¥ (u) Mmoot if u <0,
u) =
mou if u>0.

Then the divisor of the toric section sy is given by div(sg) = —mg[0] + mao[o0], and
80 L ~ O(mes —my).

Let’s now consider s(\%“ as a rational section of £ and denote by D its associated
Cartier divisor, so that £ ~ O(D). Then

l
D = —emgDgy + emo Do + E <oziEi + E ai,jFi’j> (4.6.1)
i=0 JjEO;
for certain coefficients a; and «; ;. To have more compact formulae, we will use the
conventions
E_ =Dy, a.1=-emg, O_; =0,

4.6.2
Ei1 =Dy, app1=emey, O =0. (4.6.2)
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For example, the equation (4.6.1) can then be written as

+1
D= Z (OéiEi + Z ai,jFi’j).

i=—1 jEO,

Lemma 4.6.6. — The function ¢ is given by

mou — moa — 22 ifu>a
0 - ) )
¢“'” (u) _ (aH]4¢v,v)u~(ai:1Aa,,)(a41)~ai fa—i>u>a—i—1,
u— A1} i .
Mool — Moo(a —1) — = ifa—12> u.

In other words, if Il is the polyhedral complex in Ng given by the intervals
(—oc,a—1], la—d,a—i+1],i=1,...,0, [a,00),
then ¢ is the rational piecewise affine function on I characterized by the conditions
1. rec(o.) =V,
2. the value of ¢. at the point a —i is —a;/e.
Proof. — Let p € im(fx) be such that valx(p) > a, hence |x'(p)| < |@|*. By

Lemma 4.6.4, this implies that red(p) = ¢o. In a neighbourhood of qo, the divisor of

X of the rational section s‘é’ex“m”w*o‘“‘em”a is zero, and so
||S<}\I§>C(p)xe7n()(p)wfa(]feml)a“ =1.

Let uw € Ng and p € im(fy) such that valg(p) = u. Then, by definitions 4.3.6
and 4.3.3,

log ||s5° (p)|l

() = = -
_ ~¢mo log |[x' (p)| + (ag + emga) log ||
—elog|w|
_ _a -2
=mo(u —a) ~
The other cases are proved in a similar way. O

Since rec(Il) = X, by Theorem 3.5.3, this polyhedral complex defines a toric model
XH of XE.

Proposition 4.6.7. — The identity map of Xx extends to an isomorphism of models
Xg — An1-
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Denote temporarily this measure by p. Then, using the conventions (4.6.2) and
Lemma 4.6.5, for [ > 0, we obtain,

l

(05).(ps)e = -3 ((dewc(B) + Y dese(Fiy) ),

i=0 jEO;
1 l
eZ(D-EiJr > D-Fi,j>5&
=0 JEO,;
+1
S5 30 S (RS SRRV NERD LS
1=0r=—1 S€EO,. JEO;
1 l
= - Yi_ Ei— ,iE,' X EL . El Fz i 0 .
e;<a, 1 1+ oLy + Qg +1> ( —l—jeze ,]> 3

1 1
= Z(O@q — 20 + @it1)0¢, + - .;l(ozi,l - + ait1)0¢,

while, for [ = 0, we obtain

(0s)x(ps)ept = (1 + @1)d,.

In the previous computation we have used that, since E,-div(w) = F; ;-div(w) = 0,

then, for all 4, j, r, s,
s (B + ZFi,j)—
JEO;

and
0  ifr#i—1lyi+1,

1 ifr=i—1,i+1,
E,-(EﬁZFi,j): —2 if0<r=i<l,
7€ —1 ifo<lr=i=0,1
0 ifr=i=10=0.

An analogous computation with the model (X5, O(Ds), e) shows that

l

1
ci(L |l - lls) Aoxy = - Zdego Ei)oe, = Z(DS'W*Ei)55,

=0

where the intersection product now is on Xs. Using again the conventions (4.6.2)
and (4.6.3), we get

I+1 o1 — 205 + [eFRN] if0<i<l,
Ds . B; = Z o (Mo By - T Ey) = oyt — o + iy if0<1,i=0,1,
r=t a+o if0=1,i=0.
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Proof. — The special fibre of A7y is a chain of rational curves E;, ¢ =0,...,[, corre-
sponding to the points ¢ —4. The monomial x' is a section of the trivial line bundle on
Xn and corresponds to the function ¢(u) = —u. Using Proposition 3.6.10 we obtain

that
l

div(x") = Do — Do + 3 _(a —i)E;,
i=0
where Dy and D, are again the horizontal divisors determined by the points 0 and co.
Since the vertices of the polyhedral complex II are integral, using the equa-
tion (3.6.2) we deduce that div(w) is reduced.
Then the result follows from [Lic68, Corollary 1.13] using an explicit description
of the local rings at the points of the special fibre as in the proof of Lemma 4.6.4. [

From Proposition 4.6.7, we obtain a proper morphism 7: X — Xs ~ Ap. Set
Dg = m,.D with D the divisor on X in the equation (4.6.1). Then
l I+1
Dg = —emom. Do + emoeTx Doo + Zaﬂr*Ei = Z oL Ey, (4.6.3)
i=0 i=—1
where in the last expression we use the conventions (4.6.2).

Let Deg,., be the T-Cartier divisor on Aj determined by the function eg) . as
in (3.6.1). Using equation (4.6.3), Proposition 3.6.10 and Lemma 4.6.6, we see that
Dg = Deg,,- Thus (X5, O(Ds)) is the toric model of (Xy, L®¢) induced by (I, egy.|)
through Theorem 3.6.8 and Proposition 3.6.5. Let || - ||s be the toric metric associated
to || - || (Definition 4.3.3). By Propositions 4.5.3 and 4.3.10, the metric || - ||s agrees
with the toric metric defined by the model (X5, O(Ds), e). Thus, we have identified a
toric model that corresponds to the metric || - ||s. This allows us to compute directly

the associated measure.

Lemma 4.6.8. — Let Xx, ~ Pk be a one-dimensional toric variety over K and L =~
O(Dy) a toric line bundle on Xx;. Let || -|| be an algebraic metric defined by a reqular
semi-stable model whose components and double points of the special fibre are defined
over the residue field K°/K°° and such that each irreducible component contains a
rational point. Let || - ||s the associated toric metric. Then

ct(L |- lls) A by, = (B)a(px)e (a(La || ) A Bx) = (Bs)exc)o (0],

where the second derivative Q%I/‘JI 1s taken in the sense of distributions.

Proof. — Let (X, L,e) be a regular semi-stable model defining the metric | - ||. Let
D be the divisor on X defined by the rational section s§¢, so that £ ~ O(D). Since
the special fibre is reduced, by the equation (1.3.6) we have

l
1
(Ll ) A = ¢ Y ((doge(Boe + 3 denelF i, ).

i=0 JEO;
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For | > 0, we obtain

-1
1 1
(,'1(L7 || . HS) /\(SXE = g Z(ai_l — 20 +Oti+1)55i + g Z (ai—l — +ai+1)6§i (464)
i=1 i=0,1
while, for [ =0,
1
cr(Ly [l - lls) A oxs = — (a1 + a1)dg,. (4.6.5)

The first equality follows then by comparing equations (4.6.4) and (4.6.5) with the
previous computation of (0y:).(ps)«u.

For the second equality, Lemma 4.6.4 and the definition of & imply that & =
Os.(ex(a —1i)). Hence

(92)*(91\")*(5(1-1') = 55; .
The result follows from the explicit description of ¢ in Lemma 4.6.6 and the explicit
description of ¢1 (L, || - [|s) A dxy given by (4.6.4) and (4.6.5). d

Using Proposition 4.6.2, we can extend Lemma 4.6.8 to the case when the model
is not semi-stable.

Theorem 4.6.9. — Let Xy, ~ ]P)}( be a one-dimensional toric variety over K. Let
L ~ O(Dy) be a toric line bundle, || - || an algebraic metric and || - ||s the associated
toric metric. Then

er(La | 16 A by = (B) (o) (ea(Le || ) A Bxy) = (B5)exc)o (0] ).

where the second derivative %’_” is taken in the sense of distributions.

Proof. — Let (X,L,e) be a proper model of (Xy, L®¢) that realizes the algebraic

metric || - ||. For short, denote
p=ci(L |- 1) Aoxy,  ps=ci(L, || - [ls) Adxy.

By Proposition 4.6.2, there is a finite extension K’ of K, a regular semi-stable model
X’ of X i+ and a proper morphism of models X’ — X x Spec(K'®). We may further
assume that all the components and the double points of the special fibre of X7 are
defined over K’°/K’°° and that each irreducible component contains a rational point.
Let (L',]| - |I') be the metrized line bundle obtained by base change to K’. Using
propositions 1.3.6 and 4.3.8, it is possible to show that the toric metric (]| - ||')s agrees
with the metric obtained from [ - [|s by base change. We denote by v: X", — X&'y
the map of analytic spaces and by p', uf, 65 and p§, the corresponding objects for
Xy k. Then, by the propositions 1.4.7, 4.2.16 and 4.1.5 and the first equality in
Lemma 4.6.8,

ps = vapig = vi(05)4 (px) " = (05)4(p%) " = (05)+(p)pt,

which proves the first equality of the theorem.
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Using the second equality in Lemma 4.6.8 and Proposition 4.2.16, we deduce that

Vefig = V*(G/E)*(QKJ*(_#(A”/) = (92)*(91(/)*(—(?1(,”/). (4.6.6)
We have that, for u € Ng,

Hs

u

)o o) = exyre o (—— ),

ex(u) :eK( -
K'JK

eK’/K
where the second equality follows from Proposition 4.3.8. Using these formulae, one
can verify that

1

(fK’/K

(eK’)* = (el\"’)*< )*7 (bﬁnf = ((’/K’/K)*(/)ﬁ.ua

where - } and e /i denote the corresponding homotheties of Ng. This implies
KK

(exr)(¢]1) = (ex ) (4] )-

The second equality in the statement then follows from this equation together
with (4.6.6). O

We can now relate semipositivity of the metric with concavity of the associated
function in the one-dimensional case.

Corollary 4.6.10. — Let Xy, ~ PL. be a one-dimensional toric variety over K. Let
(L, s) be a toric line bundle with a toric section and || -|| a metric with a semipositive
model. Then the function ¢.| is concave and the toric metric ||-||s has a semipositive
model.

Proof. — Since the metric || - || has a semipositive model, ¢;(L.| - |

) A\ 5)(2 is a
measure, and not just a signed measure. Theorem 4.6.9 implies that the direct image
by (valg).«(0s)«(ex )« of this measure coincides with _(Pill'll' Hence _(bi!/-ll is also a
measure and so ¢.| is concave, proving the first statement.

For the second statement, observe that ¢.;. = ¢.|. By Proposition 4.3.10(1), the
recession of this function agrees with W. Corollary 4.5.9 then implies that the metric
Il - I|s has a semipositive toric model. O

4.7. Algebraic metrics and their associated measures

We come back to the setting of §4.5. We assume that K is a complete field with
respect to an absolute value associated to a nontrivial discrete valuation and that X
is a complete fan. Let W be a virtual support function on ¥ and set (L, s) = (L, s¢).

Proposition 4.7.1. — Let || - || be a metric with a semipositive model on L*". Then
both functions v and ¢y are concave.
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Proof. — Assume that || - || has a semipositive model. Since the condition of being
concave is closed, if we prove that, for all choices of ug € Ax Ng and vy € N primitive,
the restriction of 1. to the line ug +Ruvy is concave, we will deduce that the function
Wy is concave. Fix uy € AxNg and vg € N primitive and let e > 1 such that
eug € AxN. Then K' := K(w!/¢) is a finite extension of K and there is a unique
extension of the absolute value of K to K'. We will denote with ’ the objects obtained
by base change to K’.

We consider the affine map A: Z — N given by [ +— eug + lvg, and let H be the
linear part of A. By Theorem 1.2.2(6), the subset of X $'xc of algebraic points is dense.
By [Poil2, Théoreme 5.3], we can choose a sequence K/, i € N, of finite extensions
of K" and a sequence of points ¢; € X o(K}), i € N, such that, if we denote by ¢; the
image of g; in X&"/, then val(q;) = up and

lim g; = Ox(e(uo))-
Recall the equivariant morphisms ¢z, 5 : P}(, = Xy k! of Theorem 3.2.4. By Defini-
tion 4.3.6 and Proposition 4.3.24(2), we have

Vi (o + wvo) = lm ge e, (4)-
By Corollary 4.6.10, for each i € N, the function 1/@;3 LIl 18 concave. Since the

limit of concave functions is concave, the restriction of ¢ to ug + Rug is concave.

We conclude that 1. is concave. Hence, ¢).; is concave too. O
Corollary 4.7.2. — Let || - || be a metric with a semipositive model on L**. Then the
toric metric || - ||s has a semipositive toric model.

Proof. — By Proposition 4.7.1, the function ¢ = ¢ is concave. By Theo-
rem 4.5.10(1), it is also rational piecewise affine. By Proposition 4.3.10(1), its
recession agrees with W, hence this latter is concave. Corollary 4.5.9 then implies
that the metric || - ||s = || - |[sr, has a semipositive toric model. O

Putting together Proposition 4.7.1 and Theorem 4.5.10, we see that the relationship
between semipositivity of the metric and concavity of the associated function given in
the Archimedean case by Proposition 4.4.1 carries over to the non-Archimedean case.

Corollary 4.7.3. — Let ||| be a toric algebraic metric and ). the associated function.
Then || - || has a semipositive model if and only if the function ¢|. is concave.

We can now characterize the Chambert-Loir measure associated to a toric metric
with a semipositive model.

Theorem 4.7.4. — Let || - || be a toric metric on L™ with a semipositive model and
¢ = ¢|.| the associated function on Ng. Let ¢y (L) Adx,, be the associated measure.
Then

valg . (e (D)™ A dxy) = nl Mas(8), (4.7.1)
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where My () is the measure in Definition 4.4.3. Moreover,
c1 (D) A dxy = (0s).(ex) ! Mar(¢). (4.7.2)

Proof. — Since the metric has a semipositive model, by Proposition 4.7.1 the func-
tion ¢ is concave. By Theorem 4.5.10 it is defined by a toric model (A, Dy, e) of
(X5, Dy) in the equivalence class determined by ¢. As in Remark 3.5.9, the irre-
ducible components of A1, are in bijection with the vertices of II. For each vertex
v € 117 let &, be the point of X" corresponding to the generic point of V(v) given
by Proposition 1.3.3. Then, by the equations (1.3.6) and (3.6.2),

1
— Z mult(v) degp, (V(v))dg, .

(&
vell?

(D)™ A Sy =

Thus, by Corollary 4.5.2,

— - 1
valg . (c1(D)" A dxy) = o Z mult(v) degp, (V(v))dy.

vell?

But, using Proposition 2.7.4 and Proposition 3.7.8, the Monge-Ampere measure is
given by

1
M (0) = ;Mz\l(f@)
1 X
= Z volas (v™)d,

vell?

1
= g mult(v) degp, (V(v))d,.
nten
vell?

Since Mj;(¢) is a finite sum of Dirac delta measures, we obtain that

-— 1
My (o) = o Z mult(v) degp, (V(v))d,.
UE]—[“
Hence we have proved (4.7.1). To prove (4.7.2), we just observe that &, = 6y o
ek (v). 0

We can rewrite Theorem 4.7.4 in terms of the function ¢ of Definition 4.3.5.

Corollary 4.7.5. — Let || - || be a toric metric on L™ with a semipositive model and

=y the associated function on Ng. Let ¢y (L) Ndx,, be the associated measure.
Then

val, (e (D)™ Ay, ) = n! My ().
Moreover,
Cq (Z)An N (5‘\»): = (91})*(8)*11!M1\[(lﬁ)_
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4.8. Semipositive and DSP metrics

Let K be a valued field and T an n-dimensional split torus over K, as in the
beginning of the chapter. In the non-Archimedean case assume furthermore that the
valuation is discrete. Let ¥ be a complete fan in Ng and ¥ a virtual support function
on %, and denote by (L, s) the corresponding toric line bundle and section.

We are now in position to characterize toric semipositive metrics.

Theorem 4.8.1. — Let notation be as above.

1. The assignment || -|| = 1. is a bijection between the space of semipositive toric
metrics on L* and the space of concave functions v on Ng such that |1 — ¥|
is bounded.

2. Assume that ¥ is a support function and let Ay be the corresponding polytope.
The assignment || - || — z/)m is a bijection between the space of semipositive toric
metrics on L*™ and the space of continuous concave functions on Ay .

Proof. — To prove the statement (1), consider a toric semipositive metric || - |. By
Corollary 4.3.13 the function [¢.| — ¥| is bounded. By Definition 1.4.1, there is
a sequence (|| - ||1)i>1 of smooth (respectively algebraic) semipositive metrics that
converges to || - ||. Since || - || is toric, || - |ls = || - ||. Hence, by Proposition 4.3.4, the
sequence of toric metrics (|| - [|;5)i>1 also converges to || - [|. We set ¢y = ., ;. By
the propositions 4.4.2 and 4.4.1 in the Archimedean case and Proposition 4.7.1 and
Corollary 4.7.2 in the non-Archimedean case, the functions ¢; are concave. Since, by
Proposition 4.3.14(3), the sequence (¢;);>1 converges uniformly on Ng to ., the
latter is concave.

Conversely, let now 1 be a concave function on Nr such that |¢p — V| is bounded.
Then ¥ is a support function and stab(¢) = stab(W¥) agrees with the polytope Ay.
Let || - || be the metric on the restriction of L*" to X§" determined by . Write
¢ = 1/})\;<1, By Proposition 2.5.24 there is a sequence of rational piecewise affine
concave functions (¢;);>1 with stability set Ay, that converge uniformly to ¢. Since
stab(¢;) = Ay, by Proposition 2.3.10, rec(¢;) = W. Since ¢; is a piecewise affine
concave function, by Remark 4.5.8, ¢; — ¥ can be extended to a continuous function
on Ny,. Therefore, ¢ — ¥ and hence 1) — ¥, can be extended to a continuous function
| || can be extended to X&". Let || - ||; be the metric

on Ny. Consequently the metric
associated to ¢;Ax. Then the sequence of metrics (|| - ||;);>1 converges to || - ||. By
Corollary 4.3.23, the metric
non-Archimedean cases. We deduce that || - || is semipositive, which completes the

[ - ||; is semipositive, both in the Archimedean and in the

proof of (1).
The statement (2) follows from (1) and propositions 2.5.23 and 2.5.20(2). O
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Remark 4.8.2. — With notations as in Theorem 4.8.1, if ¥ is a support function, then
the space in (1) coincides with Z2(Ng, Ay) (Definition 2.5.19), otherwise it is empty.
The space in (2) coincides with Z(Ay, Ng).

Remark 4.8.3. — For the case K = C, statement (2) in the above result is related to
the Guillemin-Abreu classification of Kéhler structures on symplectic toric varieties
as explained in [Abr03]. By definition, a symplectic toric variety is a compact sym-
plectic manifold of dimension 2n together with a Hamiltonian action of the compact
torus S ~ (S1)™. These spaces are classified by Delzant polytopes of Mg, see for in-
stance [Gui95, Definition page 8] for the definition of Delzant polytope and [Gui95,
Appendix 1] for the classification. For a given Delzant polytope A C Mg, the possi-
ble (S1)"-invariant Kihler forms on the symplectic toric variety corresponding to A
are classified by smooth convex functions on A° satisfying some conditions near the
border of A. Several differential geometric invariants of a Kéhler toric variety can be
translated and studied in terms of this convex function, also called the “symplectic
potential”.

For a smooth positive toric metric ||-|| on Ly, (C), the Chern form defines a Kéhler
structure on the complex toric variety X, (C). It turns out that the corresponding
symplectic potential coincides with minus the function I/JN'H' It would be most inter-
esting to explore further this connection.

Proposition 4.8.4. — Let || - | be a semipositive metric on L. Then || - |ls is a
semipositive toric metric. In particular, Y| 18 concave.

Proof. — Let (]| - |l1)i>1 be a sequence of smooth (respectively algebraic) semipositive
metrics on L*" that converges to || - ||. By Proposition 4.3.4, the sequence of toric
metrics (|| - |lis)i>1 converges to || - ||s. By Proposition 4.4.2 in the Archimedean
case and Corollary 4.7.2 in the non-Archimedean case, the metrics || - [|;,s are smooth
(respectively algebraic) semipositive. Hence, || - ||s is semipositive. The last statement
follows from Theorem 4.8.1(1). d

Corollary 4.8.5. — The line bundle L*" admits a semipositive metric if and only if L
is generated by global sections.

Proof. — Suppose that L®" admits a semipositive metric | - ||. By Proposition 4.8.4,
). s concave. Hence, ¥ = rec(ty.;) is concave too which, by Proposition 3.4.1(1),
is equivalent to the fact that L is generated by global sections.

Reciprocally, if L is generated by its global sections, then the function W is concave
and therefore defines a semipositive toric metric on L*", by Theorem 4.8.1(1). O

Here is what we can say about toric DSP metrics.
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Theorem 4.8.6. — Let ¥ be a virtual support function on X.. Then the map ||-[| — )
is a bijection between:

e the space of toric metrics on L3 such that there is a refinement X' of ¥ with
associated birational toric morphism ¢: Xsy — Xy, so that o*||-|| is a DSP toric
metric on @ LY’ ;

o the space of functions ¢ € P(Ng)z (Definition 2.6.1) with rec(y)) = V.

Proof. — Let || - || be a toric metric on L3" and ¥’ a refinementof ¥ with associated
birational toric morphism ¢: Xy — Xsx so that ¢*| - || is a DSP toric metric on
©*L3". By definition, there exists semipositive metrized line bundles (Lq, || - ||1) and
(L2, - ||2) on Xy such that

(0 Ly, "l - ) = (L, Il 1) @ (L I [12)97

By propositions 4.3.4 and 4.8.4, (¢*Ly,o*|| - |) = (L1, || - |lis) @ (La, | - [l28)®7!
and || - [lis, i = 1,2, is a semipositive toric metric. By Theorem 4.8.1(1), )., €

P(Ng, A;), where A; denotes the lattice polytope corresponding to L;. In particular,
V|5 € P(Nr)z (Definition 2.5.19), hence using Proposition 4.3.19,

VIl = Lol = llle — Ylllles € Z(Nr)z

and rec(yy.) = rec(yy, 5) — rec(yy ) = V.

Conversely, let ¥ € P(Ngr)z such that rec(yp) = ¥. Let ¢ = ¢y — o with ¢; €
P(Ngr)z. By Definition 2.5.19 and Corollary 2.5.9, there are lattice polytopes A;,
i = 1,2, such that v; € Z(Ng,A;). We can assume without loss of generality that
these lattice polytopes have dimension n. Let (Xx,, D;) be the polarized toric variety
determined by A; by the correspondence in Theorem 3.4.6. Let ¥’ be a fan on Ny
simultaneously refining ¥ and ¥£;, ¢ = 1,2, and let ¢: Xs» = Xy and ¢;: X5y = X5,
be the associated birational toric maps. Set L; = ¢rO(D;), i = 1,2.

Since ¥ = rec(1) — rec(¢q), we have ¢*Ly = L; ® L?’l. By Theorem 4.8.1(1),
the function ; determines a semipositive toric metric on L3" that we denote by || - ||;.
Then

(@ Lu, @l 1) == (L1, | - 1) @ (L2, || - [|2)® 7
is a toric DSP metrized line bundle on Xy and 9. = 1. O

Example 4.8.7. — Let ¥ be a virtual support function on ¥. By Corollary 2.6.3,
U € 9(Ng)z C 2(Ng)z and, moreover rec(¥) = W. Therefore, by Theorem 4.8.6,
there is a birational toric morphism ¢: Xy» — Xy so that the inverse image ©*| - ||w

an

of the canonical metric on L§ is a DSP toric metric on ¢*L§". Note that ¢*|| - ||
coincides with the canonical metric on ¢*L§".

By Theorem 4.8.1, if the function ¥ is concave or, equivalently by Proposi-
tion 3.4.1(1), if the line bundle O(Dy) is generated by global sections, then || - ||¢ is

semipositive.
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Remark 4.8.8. — The correspondence in Theorem 4.8.6 gives also a bijection between
the space of DSP toric metrics on L3" and the space of functions 1) € Z(Ng)z such
that rec(y)) = W that can be written as ¢ = ¢; — 1p with v; € Z(Ng, A;) for a
lattice polytope A; whose support function is compatible with the fan 3 in the sense
of Definition 2.5.4. This follows easily from the proofs of theorems 3.4.6 and 4.8.6.
Whether these spaces coincide with those in Theorem 4.8.6 is yet to be decided.

We now study the compatibility of the restriction of semipositive toric metrics to
toric orbits and its inverse image by equivariant maps with direct and inverse image
of concave functions. This is an extension of propositions 3.7.5 and 3.7.10. We start
with the case of orbits, and we state a variant of Proposition 4.3.17 for semipositive
metrics.

Proposition 4.8.9. — Let ¥ be a support function on ¥, set L = Ly and s = sy. Let
| - || be a semipositive toric metric on L*", denote L = (L, | - ||) and ¢ = Y1, the
associated concave function on Ng. Let 0 € & and m, € M such that ¥|, = my|,.
Let my: Ng — N(o)r be the projection, 7 : M(c)g — Mg the dual inclusion and
t: V(o) = Xx the closed immersion. Set s, = x™s. Then

VT oes, = (o) (Y — myg). (4.8.1)
Dually, we have

fowsn = (7} +my) Y. (4.8.2)
In other words, the Legendre-Fenchel dual of v,.7, ., s the translate by —m, of the
restriction of 1Y to the face F,.
Proof. — As in the proof of Proposition 3.7.5, it is enough to prove the equa-

tion (4.8.1). By replacing ¢ by ¥ — m,, we assume without loss of generality that
my = 0. By the continuity of the metric, the function ¥ can be extended to a con-
tinuous function Eo on N, where N, is the compactification of N in the directions
of the cone o (see (4.1.5)). In this way, the function 9.7 .  is the restriction of
Y, to N(0)g. Fix ug € N(o)g and write s = ¢, (ug). By continuity, for any ¢ > 0
there exists a neighbourhood W of ug in N, such that for all u € W N Ng we have
|f(u) — s| < e. By the definition of the topology of N, (see (4.1.6)), such a set
W N Ng is of the form U + p + o with U a neighbourhood of a point v € N such
that 7, (u) = up and p € Ro. Therefore, we conclude that for any € > 0 there exists
u € Ng satisfying 7, (u) = ug and p € Ro such that, for all » € p + o,

s—e<yP(u+r)<s+e.

Now, by definition

(7o)« (V) (up) =  sup  (u).
we Np
T (U)=ug
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Thus it is clear that (m,)«(¢)(ug) > s, suppose (7q)«(¥)(ug) > s. Let v € Ny
satisfying 7,(v) = wp be such that ¥(v) > s and set € = ¥(v) —s > 0. By the
previous discussion, there exists u € Ng satisfying 7, (u) = ug and p € Ro such that,
for all r € p+ o,

s—e<tPlutr)<s+e=y). (4.8.3)

Write ¢ = v — u € Ro, since o is a cone of maximal dimension in Ro, there exists a
point r € (¢+0)N(p+ o). By the right inequality of (4.8.3) ¥(u+r) < ¢ (u-+¢q) and
the function g(\) := ¥(u+r + A(r — q)) of the variable A € R, satisfies g(0) < g(—1).
Furthermore, since the function v is concave, so is g which therefore stays for A > 0
below a line of negative slope g(0) — g(—1). This implies limy_, 4o g(A) = —o0, that
i

v

lim ¢Y(u+r+Ar—gq))=—o0. (4.8.4)

A——+o0
Since, by construction 7 + R>o(r — ¢) is contained in p + o, the equation (4.8.4)
contradicts the left inequality of (4.8.3). Hence, for ug € N(o)g,
(o)« (o) = sup  P(u) = s =, (u0) = V,.7 -, (uo),

wENg
o (u)=ug

which proves equation (4.8.1). O

We now interpret the inverse image of a semipositive toric metric by an equivariant
map whose image intersects the principal open subset in terms of direct and inverse
images of concave functions.

Proposition 4.8.10. — Let Ny and Ny be lattices and 3; be a complete fan in N;g,
it =1,2. Let H: Ny — N3 be a linear map such that, for each o1 € ¥y, there exists
0y € Xy with H(oy) C 03. Let p € X5, .0(K) and write A: Ny g — Nog for the affine
map A = H + val(p). Let Wy be a support function on Yo and || - || a semipositive

an

toric metric on LY,. Then
Yoz -l = A"

Moreover, the Legendre-Fenchel dual of this function is given by

Vg i = (H) () = val(p)).

Proof. The first statement is a direct consequence of Proposition 4.3.19 while the
second one follows from Proposition 2.5.21(1). O

Finally, we characterize the measures associated to semipositive metrics.

Theorem 4.8.11. — Let ¥ be a support function on ¥ and set L = Ly. Let || -] be a

an

semipositive metric on L™ and ¢ = 1. the corresponding concave function. Then

val, (¢ (L) A dxy) = n! M (1). (4.8.5)
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Moreover, the measure c¢1 (L) A dx, is characterized, in the Archimedean case, by
the equation (4.8.5) and the fact of being toric, while in the non-Archimedean case it
s gwen by

(D) A Oxy, = (05) . (€)un M (1)

Proof. — For short, denote p = val.(ci (L) A dxy). Let || - ||; be a sequence of
semipositive smooth metrics (respectively metrics with a semipositive model) con-
verging to || - ||. By Proposition 1.4.5, the measures ¢1(L, || - [|))"™ A dx,, converge to
c1(L)"™ A dx.. Therefore, the measures val,(ci(L, || - [|;)"™ A dx) converge to the
measure g on Ny. Theorem 1.4.10(1) implies that the measure of X3 \ X§" with
respect to ci (L) A dx,. is zero. Therefore Ny, \ Ng has p-measure zero. Denote
Y1 = ().~ By Proposition 2.7.2, the measures My;(¢) converge to the measure
M (¥). Thus pln, = n!Mp(¢) by (4.4.3) and (4.7.1). Then, (4.8.5) follows from
this and the fact that the measure of Ny; \ Ng is zero.

The last statement of the theorem follows from Theorem 4.4.4 in the Archimedean

case and Corollary 4.7.5 in the non-Archimedean case by a limit argument. O

Corollary 4.8.12. — Fori =0,....,n— 1, let ¥, be a support function on ¥ and set
Li = Ly,. Let ||-||; be a semipositive metric on Li" and 1; = 1.y, the corresponding
concave function. Then

Val*(Cl(ZQ) VARERIVAN C](Z”-l) A (5)(2) = 'L!M}u(’@bo, N ,’lﬁn,l).

Proof. — This follows from Theorem 4.8.11 by multilinearity. O

4.9. Adelic toric metrics

Now let (K, 1) be an adelic field (Definition 1.5.1). We fix a complete fan 3 in
Ng and a virtual support function ¥ on . Let X be the associated toric variety and
(L, s) the associated toric line bundle and section.

Definition 4.9.1. — A toric metric on L is a family (|| - ||, )vem, where || - ||, is a toric
metric on L3". A toric metric is adelic if ¥, = W for all but finitely many v.

The following result is a direct consequence of Theorem 4.8.1.

Proposition 4.9.2. — With the previous notations,

1. there is a bijection between the set of semipositive adelic toric metric on L and
the set of families of continuous concave functions (V¥y)yem on Ng such that
[th, — U] is bounded and v, =¥ for all but finitely many v;

2. there is a bijection between the set of semipositive adelic toric metric on L and
the set of families of continuous concave functions (¢, )peom on Ay such that
¥y =0 for all but finitely many v.
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For global fields, the notions of quasi-algebraic toric metric and of adelic toric
metric agree.

Theorem 4.9.3. — Let K be a global field. A toric metric on L is quasi-algebraic
(Definition 1.5.13) if and only if it is an adelic toric metric.

Proof. — Let (|| - ||o)veon, be a metric on L and write L = (L, (|| - ||s)veony ). Suppose
first that L is toric and quasi-algebraic. Let S C 9k be a finite set containing the
Archimedean places, K¢ as in Definition 1.5.12, e > 1 an integer and (X, £) a proper
model over K¢ of (X, L®¢) so that || - |, is induced by the localization £, for all
v ¢ S. The generic fibre of (X, L) is isomorphic with that of the canonical model
(X5, O(D.w)) (Definitions 3.5.6 and 3.6.3). Since K is Noetherian, this isomorphism
and its inverse are defined over K¢, for certain finite subset S’ containing S. Thus,
enlarging the finite set S if necessary, we can suppose that, over Kg, (X, L) agrees
with the canonical model (X5, O(Dey)). Hence, |||, = | - [|71]/:\I, = |lo,w for all
places v ¢ S. In consequence, it is an adelic toric metric.

Conversely, suppose that L is a toric adelic metrized line bundle. Let S be the
union of the set of Archimedean places and {v € Mk|¢, # U}. By definition, this is
a finite set. Let (Xx, O(Dy)) be the canonical model over K¢ of (Xy;, L). Then | - |,
is the metric induced by this model, for all v ¢ S. Hence L is quasi-algebraic. O
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CHAPTER 5

HEIGHT OF TORIC VARIETIES

In this chapter, we will state and prove a formula to compute the height of a toric
variety with respect to a toric line bundle.

5.1. Local heights of toric varieties

Let K be either R, C or a complete field with respect to an absolute value associated
to a nontrivial discrete valuation. Let N ~ Z" be a lattice and M = NV the dual
lattice. We will use the notations of §3 and we recall the definition of Mg in (4.1.4).

Let ¥ be a complete fan on N and Xy, the corresponding proper toric variety. In
Definition 1.4.11 we recalled the definition of local heights. These local heights depend,
not only on cycles and metrized line bundles, but also on the choice of sections of the
involved line bundles. For toric line bundles, Proposition-Definition 4.3.15, provides
us with a distinguished choice of a toric metric, the canonical metric. This metric
is DSP and, if the line bundle is generated by global sections, it is semipositive (see
Example 4.8.7). By comparing any DSP metric to the canonical metric, we can define
a local height for toric line bundles that is independent from the choice of sections.

Definition 5.1.1. — Let L; = (L;,||-||;), i =0,...,d, be a family of toric line bundles,
with DSP toric metrics. Denote by Zj”“ the same line bundles equipped with the
canonical metric. Let Y be a d-dimensional irreducible subvariety of Xy, and ¢: Y’ —
Y a birational morphism with Y’ projective. Then the toric local height of Y with

respect to Lo, ..., Lq is
tor _ _ _ !, N . . /. )
hZ(),.,.,Zd(Y) - h‘/P*LOp--,iP*Ld(Y 3505+ ‘Sd) - hgp*LB‘"‘,..,,@*L;A"(Y 380y 5(1)7
where sg,...,8q are sections meeting Y’ properly. We extend the definition to d-
dimensional cycles by linearity. When Ly = --- = Ly = L we will denote

h%‘"(Y) = h%:)r,_“’zd(Y).
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Remark 5.1.2. — Even if the notion of toric local height in the above definition differs
from that of local height of Definition 1.4.11, we will be able to use it to compute
global heights because, for toric subvarieties and closures of orbits, the sum over all
places of the local canonical heights is zero (see Proposition 5.2.4). This is the case,
in particular, for the height of the total space Xx.

By Theorem 1.4.17 (2, 3), the toric local height h%’orﬂ(Y) does not depend
on the choice of Y’ nor on the choice of sections. However, it does depend on the
toric structure of the line bundles (see Definition 3.3.4), because the canonical metric
depends on the toric structure.

Proposition 5.1.3. — The toric local height is symmetric and multilinear with respect
to tensor product of metrized toric line bundles. In particular, let ¥ be a complete
fan, L; a family of d+ 1 toric line bundles with DSP toric metrics and Y an algebraic
cycle of Xy, of dimension d. Then

1 .
t _ d—: t
bz Y) = G DDy b (V). (5.1.1)
j=0 0<in<+<i;<d ‘
Proof. — 1t is enough to treat the case when Y is a d-dimensional irreducible subva-

riety. Let p: Y’ — Y be a birational map with Y’ projective. By abuse of language
we will denote p*L; by L;. By the Moving Lemma, we can choose sections s; of L;,
1=20,...,d, such that sq,...,ss meet Y’ properly.

The symmetry of the toric local height follows readily from the analogous property
for the local height, see Theorem 1.4.17(1). For the multilinearity, let Z:z be a further
metrized line bundle. Again by the moving lemma, there is a section s/, of L), such
that so, ..., sq—1, s, meets Y’ properly too. By Theorem 1.4.17(1),

., SN —he (V) )
hfo,AAAId,],Ed@Z;(Y 580y -5 Sd—1,5d R §y) = hLu,m,Ld(Y 180, -5 8d)
‘. . S
+ hfmu-,zdflyfil(y 1805y éd,hbd)

and a similar formula holds for the canonical metric. By the definition of the toric
local height,

tor 1 tor tor
Wy Tu Lo, V) =0 g, (V) +hgl g o (V).
The inclusion-exclusion formula follows readily from the symmetry and the multilin-
earity of the local toric height. O
Definition 5.1.4. — Let (L,s) be a metrized toric line bundle with a toric section.

Then the roof function associated to (L,s) is the concave function ¥7 .: Ay — R
defined as

AV Y
l?L,H = 1/JZ.S = Ak (bf,s'
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The concave function d)% . will be called the rational roof function. When the toric
section s is clear from the context, we will denote ¢z ; and ¥ ; by ¢y and D
respectively.

In the non-Archimedean case, recall that the function ¢. is not invariant under
field extensions (see Proposition 4.3.8) but it has the advantage that, if the metric
|| - || is algebraic, then it is rational with respect to the lattice N. By contrast, the
function 1. is invariant under field extensions. It is not rational, but it takes values
in AkQ on Ax Ngy. This is the function that appears in [BPS09]. In particular, the
roof function is also invariant under field extension.

Lemma 5.1.5. — Let K'/K be a finite extension of valued fields of the type considered
at the beginning of this section. Let L, s be as before and Ly, sg: the toric metrized
line bundle with toric section obtained by base change. Then

In case ¢).| is a piecewise affine concave function, 9. and (ZSI\I/-II parameterize the
upper envelope of some extended polytope, as explained in Lemma 2.5.22, hence the
terminology “roof function”. In case K is non-Archimedean and || - || is algebraic, the
function qﬁm is a rational piecewise affine concave function.

Theorem 5.1.6. — Let 3 be a complete fan on Ng. Let L = (L,
bundle on Xy, equipped with a semipositive toric metric. Choose any toric section s
of L, let ¥ be the associated support function on ¥ and put Ay = stab(V) for the

|- be a toric line

associated polytope. Then, the toric local height of Xs. with respect to L is given by
Wt (X)) = (n+1)! A 07 dvola = (n+ D! Ak A o7, dvolar, (5.1.2)
W w

where dvolys is the unique Haar measure of My such that the covolume of M is one
and ¢)¥g is the Legendre-Fenchel dual to the function ¢ (Definition 4.3.5).

Proof. — We note that, by Theorem 4.8.1(2), the function 7 , is concave because
the metric || - || on L* is semipositive. For short, we set A = Ay, ¢ = ¢ and
9 =Y.

We first reduce to the case of an ample line bundle. Let X5 be the fan associated
to A as in Remark 3.4.7. There is a toric morphism ¢: Xy, = Xy5,. By Theorem
4.8.1, the function ¢V defines a semipositive metric ||-||o on the line bundle O(Dy  )*"
over Xy, . We denote Ly = (O(Dy,), | - |lo). Then there is an isometry o*(Lo) = L.
By Corollary 4.3.20 there is an isometry c,o*(fgan) =™

If the dimension of A is less than n, then the right-hand side of equation (5.1.2)
is zero. Moreover, n = dim(Xy) > dim(Xy, ) and the metrized line bundles L and
™" come from a variety of smaller dimension. Therefore, by Theorem 1.4.17(2),
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the left-hand side of the equation (5.1.2) is also zero, because ¢, Xy = 0. If A has
dimension n then ¢ is a birational morphism, so, by Theorem 1.4.17(2),

h%or(Xg) = h%)‘f(XEA)

Therefore it is enough to prove the theorem for Xs,. By construction, the fan ¥ is
regular; hence the variety Xx, is projective and Ly is ample. Thus we are reduced
to prove the theorem in the case when ¥ is regular and L is ample.

Now the proof is done by induction on n, the dimension of Xy. If n = 0 then
Xy =P U =0, A = {0} and L = O(Dy) = Opo. By the equation (4.3.3),
log ||s|| = ¥(0) and log ||s]lcan = ¥(0) = 0. The Legendre-Fenchel dual of ¢ satisfies
9¥(0) = —v(0). By the equation (1.4.2), hi(Xx:;s) = —1(0) and hpean (Xy:5) = 0.
Therefore

W (Xx) = —4(0) = 9(0) = 1 /A ddvolys .

Let n > 1 and let sq,...,s,_1 be rational sections of O(Dy) such that sg,...,8,-1,8
intersect Xy, properly. By the construction of local heights (Definition 1.4.11),

hi (X580, ... 8p-1.5) = hp(div(s)isg, ..., 5n-1) (5.1.3)

- [ sl (@) Adx,

and a similar formula holds for the canonical metric.
For each facet F' of A, let vy € N be as in Notation 2.7.9. Since L is ample,
Proposition 3.4.10 implies

hy(div(s): so, - sno1) = —(Fop) hp(V(TF)i 50, 80 1), (5.1.4)
7

where the sum is over the facets F' of A. Observe that the local height of V (7p) with
respect to the metrized line bundle L coincides with the local height associated to
the restriction of L to this subvariety. Moreover by Corollary 4.3.18, the restriction
of the canonical metric of L®" to this subvariety agrees with the canonical metric of
L* |y (r,)- Hence, by substracting from the equation (5.1.4) the analogous formula
for the canonical metric, we obtain

> - uzF)ht;lr\ (V(7r)) = hp(div(s)iso. .-, 5n1) (5.1.5)
o

— hyean (div(s); o, ... 8n-1).

Theorem 1.4.10(1) implies that the measure of X&'\ X & with respect to ¢ (L) A
dx,, is zero. Hence,

/_ g lsl 12" s = [ g sflen(D) A o,

)"(l
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By the equation (4.3.3), log ||s|| = val*(¢), where val is the valuation map introduced
in the diagram (4.1.7). Moreover

J,

and by Theorem 4.8.11, val, (c1 (L) A §x,.) = n!M(3)). Hence,

val*(¥) ¢y (D) A dxy = /N tval, (e (L) A dx,.)

an
=,0

/ log ||s]|c1 (D)™ Abxy, =nl [ 9 d Mo (). (5.1.6)
X

an
= Ng

By Example 2.7.5, My (¥) = volpr(A)dg. Therefore, in the case of the canonical
metric, the equation (5.1.6) reads as

/ 108 [15Jean €1 (T")™ A Gy, = n! volar (A)T(0) = 0. (5.1.7)
Jxan

Thus, substracting from (5.1.3) the analogous formula for the canonical metric and
using the equations (5.1.5), (5.1.6) and (5.1.7), we obtain

W (Xs) =Y —(Fop) b — (V(rp)) —n! [ dMu(y).

Tlvr
7 Vi(Tp) Ng

By the induction hypothesis and the equation (4.8.2)

J,tor (V(tp)) = n! / ﬁdVOlM(F).
F

Llv (e

Hence, by Corollary 2.7.10,

htLjr(XZ) = —n! Z<F77)F>/FT9(1V01M(F) —n! . Y dMps ()
F u«

=(n+1)! / Y dvolyy,
A

proving the theorem. O

Remark 5.1.7. — The left-hand side of the equation (5.1.2) only depends on the struc-
ture of toric line bundle of L and not on a particular choice of toric section, while
the right-hand side seems to depend on the section s. We can see directly that the
right hand side actually does not depend on the section. If we pick a different toric
section, say s', then the corresponding support function ¥’ differs from ¥ by a linear
functional. The polytope Ay is the translated of Ay by the corresponding element
of M. The function ¢y , differs from Yz ¢ by the same linear functional and ¥ , is
the translated of 97 l;y the same element of M. Thus the integral on the right has
the same value whether we use the section s or the section .

Theorem 5.1.6 can be reformulated in terms of an integral over Ng.

SOCIETE MATHEMATIQUE DE FRANCE 2014



170 CHAPTER 5. HEIGHT OF TORIC VARIETIES

Corollary 5.1.8. — Let notation be as in Theorem 5.1.6 and write ¢ = g for short.
Then
h%or(Xg) =(n+1)! / (9 0 O) dM ps (),

JNg
where 9 o O is the integrable function defined by (2.7.7). When 1 € C*(Ng),

h%’r(Xg) =(=1)"(n+ 1)! / (Vip(u),u) — (u))det(Hess(1))) dvoly .
J Ng
When ) is piecewise affine,

h%’r(Xg) (n+1 Z / x,v) — (v)) dvoly(x),
vel(¢)°
where v* € TI(9) is the polytope corresponding to the vertex v with respect to the dual
pair of convex decompositions induced by i (definitions 2.2.11 and 2.2.13).

Proof. — The first statement follows readily from Theorem 5.1.6 and the equa-
tions (2.7.7) and (2.2.2). The second statement follows from Proposition 2.7.3
and Example 2.7.11(1), while the third one follows from Proposition 2.7.4 and
Example 2.7.11(2). O

Theorem 5.1.6 can be extended to compute the local toric height associated to
distinct line bundles in term of the mixed integral of the associated roof functions.

Corollary 5.1.9. — Let ¥ be a complete fan on Ng and L; = (L;, | - |l:), i = 0,...,n,
be toric line bundles on Xx equipped with semipositive toric metrics. Choose toric
sections s; of L; and let VU; be the corresponding support functions. Then the toric
height of Xy with respect to Lo, ..., Ly is given by

htor Zn(XE) = MIA/I(’&”'H(N ey ’l9”_”n’) = )\K Mljw((ﬁl\l/,“(), ceay ¢l\|/“")

.....

Proof. — Let 0 <ig < --- <1i; <n. By the propositions 4.3.14 (1) and 2.3.1 (3)

(YL, o ®Li ;815 ® ®s1) =Yz Bﬂwv,

io 2 Sij

) ’Sio

The result then follows from (5.1.1), the definition of the mixed integral (Defini-
tion 2.7.16) and Theorem 5.1.6. O

Remark 5.1.10. — In the DSP case, the toric height can be expressed as an alternating
sum of mixed integrals as follows. Let L; = (L;,| - |l;), i = 0,...,n, be toric line
bundles on Xy equipped with DSP toric metrics and set L; = fior ® Z?:l for some
semipositive metrized toric line bundles L; ;, L; . Choose a toric section for each
line bundle and write ¥; + and ¥; _ for the corresponding roof functions. Then

tor y ,
h _____ I, (Xy) = E €0 €n MIpnr (Do -+ sUnie,, )-
€0, €n€{£1}

We have defined and computed the local height of a toric variety. We now will
compute the toric height of toric subvarieties. We start with the case of orbits.
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Proposition 5.1.11. — Let X be a complete fan on Ng and o € ¥ a cone of codimension
d. Let V(o) be the closure of the orbit associated to o and ts: X5, — Xs the closed
immersion of Proposition 3.2.1. Let L be a toric line bundle on Xy, s a toric section,
W the corresponding support function and || -|| a semipositive toric metric on L*". As
usual write L = (L, || - ||). Then

h%)r(V(U» == h:;%(Xg(U)) = (d + 1)' /F ﬁf,s dVOl]\,{(FG),

where F, is the face of Ay corresponding to o, M(Fy) is the lattice induced by M
on the linear space associated to F, and 5L has the toric line bundle structure of
Proposition 3.3.16.

Proof. — By Corollary 4.3.18 the restriction of the canonical metric of L*" is the
. . *® . r t
canonical metric of ¢} L®". Therefore, the equality htLi’ V(o)) = hbg
from Theorem 1.4.17(2).
To prove the second equality, choose m, € F, N M. We use the notation of
Proposition 4.8.9. By Theorem 5.1.6,

2 (X)) = (d+ 1) [ 9. dvolao) -
(¥ —mg)(o)

r

7 (Xs(e)) follows

By Proposition 3.4.11, Ay, ) (o) = (75 + my) ' F,. By Proposition 4.8.9
.y, = 1%-”” = (m) + mo)*i/)ﬁ.n = (n] + ma)*ﬁ”.”.
Since M (F,) = M(o), we obtain

/ )ipo dvolar(o) :/ V) dvola(r,),
JAW—mg) (o) F

a

proving the result. O

We now study the behaviour of the toric local height with respect to toric mor-
phisms.

Notation 5.1.12. — Let N; be a lattice of rank d and M, the dual lattice. Let H: N; —
N be a linear map and ¥; a complete fan on N; g such that, for each cone o € ¥4,
H(o) is contained in a cone of ¥. Let ¢: X5, — Xy be the associated morphism of
proper toric varieties over K. Denote = H(N)%*" the saturated sublattice of N
and let Yy be the image of Xy, under ¢. Then Yy is equal to the toric subvariety
Ys.0 = 5,04, of Definition 3.2.6, where we recall that zy denote the distinguished
point of the principal orbit of Xy.

Proposition 5.1.13. — With Notation 5.1.12, let L be a toric line bundle on Xy
equipped with a semipositive toric metric. We put on ¢*L the structure of toric line
bundle of Remark 3.3.18. Choose a toric section s of L and let ¥ be the associated
support function.
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1. If H is not injective, then h”'p(Xx,) = 0.

2. If H is injective, then h:oofz(XEl) = [Q: H(N)| b2 (Yg). Moreover

hf:ff(Xgl) = (d+1)!/ (Hv)*(19|H|)dV01M1 .
HY (Av)
Proof. — By Corollary 4.3.20, the inverse image of the canonical metric by a toric
morphism is the canonical metric. Thus (1) and the first statement of (2) follow from
Theorem 1.4.17 (2) and the equation (3.2.5).
By the propositions 2.3.8 and 4.3.19 and Theorem 5.1.6 we deduce

hr (Xy,) = ((1+1)!AK/ (H™¢).)" dvoly,

WoH
=(d+ l)!/ (HV)*(19||.||)dV01Ml,
HY(Aw)

proving the result. O

We now study the case of an equivariant morphism. Let N, Ny, d, H, ¥ and ¥; as
in Notation 5.1.12. For simplicity, we assume that H: N7 — N is injective and that
Q@ = H(N;) is a saturated sublattice, because the effect of a non-injective map or a
non-saturated sublattice can be deduced from Proposition 5.1.13. Let p € X5 o(K)
be a point of the principal open subset and u = val(p) € Ng. Denote ¢ = ¢, i the
equivariant morphism determined by H and p as in (3.2.3), also denote Y = Y5 g
the image of Xy, by ¢ as in (3.2.6). Finally write A = H + u for the associated affine
map.

Let L be a toric line bundle equipped with a semipositive toric metric. As explained
in Remark 3.3.18, there is no natural structure of toric line bundle on the inverse image
¢*L. To obtain one, we choose a toric section s of L and we denote by L; the line
bundle ¢*L with the metric induced by || - || and the toric structure induced by the
chosen section s. We denote by ¥ the support function associated to (L, s).

Proposition 5.1.14. — With the previous hypothesis and notations, the equality

hET(Xy,) = (d+ 1) / (A%yr )" dvoly,

HY(Ay)
= (d+1)! / (HY)u(f , —u)dvolar,  (5.1.8)
Jivia
holds. Moreover
h%’]r(Xxl) - htL-Or(Y) =(d+1)! /Hv(A )(A*\II)V dvolyy,

= ((f—f— 1)' / (Hv)*(LAW — u) dVOl]\j], (519)
JHY(Ag)

where 1a,, is the indicator function of Ay (see Example 2.2.1).
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Proof. — By Proposition 4.3.19, ¢z ., = A"z . By Proposition 2.3.8(3) we ob-
tain that stab(A*y; ) = H"(Ay) and that

(A"pp )Y = H! (Vg —u).

Then (5.1.8) follows from Theorem 5.1.6.

To prove (5.1.9), possibly replacing ¥; by a refinement, we assume that Xy, is
projective. Since H is injective and @ is saturated, by (3.2.5), the map Xy, — Y has
degree one. Then, by Definition 5.1.1,

ht_lj)r(Y) = hz1 (XZI;SQ, ey Sd—l) - ll(p*(’l—lt:;u:)(le;sO’ c 3d71)7 (5,1,10)

where s;, i = 0,...,d — 1, is a collection of rational sections of ¢*L meeting Xy,
properly, and ¢* (fcan) has the toric structure induced by s and the metric induced
by the canonical metric of L. We recall that this metric may differ from the canonical
metric of ¢*L. Anyway, subtracting hﬁcun(Xgl;so, ...,84—1) from both terms of
the difference in the right hand side of (5.1.10) and rearranging the equation, we
get

htfolr(XEl) - h%Or(Y) = hfpo*r(fc“‘")(XZh )
Now (5.1.9) follows from (5.1.8), Example 2.2.1 and the definition of the canonical
metric. U

Corollary 5.1.15. — With the previous hypothesis

h;o*r(f"ﬂ“)(le) = (d + 1)' /HV(AW)(A*\I/)V d VOIA[l .
Example 5.1.16. — We continue with Example 4.3.21. Let Z" be the standard lattice
of rank r; A" the standard simplex of dimension r and YA the fan of R" associated
to A”. The corresponding toric variety is P". Let H: N — Z" be an injective linear
morphism such that H(N) is a saturated sublattice. Denote m; = e o H € M,
i=1,...,r. Let ¥ be the regular fan on N defined by H and ¥ar. Let WA~ be the
support function of A™ and let ¥ = War o H. Explicitly,

U(v) = min(0, mq(v),...,m.(v)).

Let p € P5(K) and u = val(p) € R". Write u = (uy,...,uy). Ip=(1:ay:...:
@), then u; = —log|a;|. There is an equivariant morphism ¢ = @, g: Xy — P".

Consider the toric line bundle with toric section determined by War» with the canonical
metric and denote by (L,s) the induced toric line bundle with toric section on Xy,
equipped with the induced metric. Then

Yz, (v) = min(0,m1 (v) + uy, ..., mp (V) + ur).
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Thus A = stab(yg ) = conv(0,my,...,m;) = H'(A"). By Proposition 2.5.5 the
Legendre-Fenchel dual 19375: A — R is given by

Uz ((x) = sup { Z —Aju;
1

Jj=

Aj > O,Z/\j <1, Z/\jmj = a:} for x € A.
j=1 j=1

Thus the roof function g, = ’z/)ll , s the upper envelope of the extended polytope

conv ((0,0), (my, —uy), ..., (m,, —u,))

= conv ((0,0), (m1,log|ai]),. .., (m,,log|a.|)).

5.2. Global heights of toric varieties

In this section we prove the integral formula for the global height of a toric variety.
Let (K,9%) be an adelic field as in Definition 1.5.1. Let ¥ be a complete fan on Ng
and U;, i = 0,...,d, be virtual support functions on ¥. For each i, let L; = Ly, and
sy, be the associated toric line bundle and toric section, and || - ||; = (|| - |li,0)vem
a DSP adelic toric metric on L;. Write L; = (L;, || - ||;) and L; " for the same line
bundles equipped with the canonical metric at all the places. By Example 4.8.7, it is
also a DSP adelic toric metric.

From the local toric height we can define a toric (global) height for adelic toric
metrics as follows.

Definition 5.2.1. — Lct Y be a d-dimensional cycle of Xs. The toric height of Y with
respect to Lo, ..., Lq is

W )= Y m b (V) ek

vEM
where hi”" denotes the local toric height of Y.
Remark 5.2.2. — Definition 5.2.1 makes sense because the condition of the metrics

being adelic imply that only a finite number of terms in the sum are nonzero. More-
over, the value of the toric height depends on the toric structure of the involved line
bundle, but its class in R/def(K*) does not.

Remark 5.2.3. — In general, the toric height is not a global height in the sense
of Definition 1.5.9. When the d-dimensional cycle Y is integrable with respect to
Zga”, . ,f;‘m (Definition 1.5.7), then it is also integrable with respect to Lo,...,Lqg
and

t
hpr o, (Y)=hg, 7, (Y) = hgen  gen(Y).

Observe also that, by Proposition 1.5.14 and Theorem 4.9.3, when K is a global field,
all cycles are integrable with respect to line bundles with DSP adelic toric metrics.
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The next result shows that the closure of an orbit or a toric subvariety is always
integrable, even if the adelic field is not a global field, and that its global height agrees
with its toric height.

Proposition 5.2.4. — With notations as above, let Y be either the closure of an orbit
or a toric subvariety. Then'Y is integrable with respect to Lo, ..., Ly. Moreover, its
global height is given by

hp, z,(Y)= [hgw’zd(Y)] € R/def(K*).
Proof. — In view of the propositions 5.1.11 and 5.1.13 and the fact that the restriction
of the canonical metric to closures of orbits and to toric subvarieties is the canonical
metric (corollaries 4.3.18 and 4.3.20), we are reduced to treat the case Y = Xy5. By
the toric Chow’s lemma [Oda88, Proposition 2.17], Proposition 1.5.8(2) and Theo-
rem 1.5.11(2), we can reduce to the case when Xy is projective.

Thus we assume that Xy has dimension d. We next prove that Xy is integrable
with respect to fgan, e ,fzan and that the corresponding global height is zero. By a
polarization argument as in (5.1.1), we can reduce to the case Vg = -+ = W, = V.
The proof is done by induction on d. For short, write L = O(Dyg) and s = sy.

Let d = 0. Then Xy, reduces to the point xzg. By the equation (1.4.2), for each
v e IM,

S(ZI"D)HM\I’ = \IJ(O) =0.

Furthermore, hzean (Xs1s) = 37 ny b, zean (X535 s) = 0.
Now let d > 1. Choose sections (non-necessarily toric) sg,...,8q—1 such that
S0, -+ 8d—1, s meet Xy properly. By the construction of local heights, for each v € I,

h, e (Xx55) = —log

th«m(Xz; 80y +vs8d_1,8) = h,, gean (div(s); 80+ -+ 8a-1) (5.2.1)
- / log I51]u.5 1 (L") A b,
X8,

As shown in (5.1.7), the last term in the equality above vanishes. Hence
hv'van(Xz; SOy Sd—1- S) = h,u’f““' (diV(S); S0+ -0y Sdfl)'

The divisor div(s) is a linear combination of subvarieties of the form V(7), 7 € £!, and
the restriction of the canonical metric to these varieties coincides with their canonical
metrics. With the inductive hypothesis, this shows that Xy, is integrable with respect
to L. Adding up the resulting equalities over all places,

}lz('zul ()('27 S0y ySd—1> S) = hzmn (le(é), S0y ey 8(1_1).

Using again the inductive hypothesis, hyean (X550, ..., 54-1,5) € def(K*).
We now prove the statements of the theorem. Again by a polarization argument, we
can also reduce to the case when Lo = --- = Lg = L. By the definition of semipositive
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adelic toric metrics, Xy is also integrable with respect to L. Furthermore,
h%or(Xz;) = hf(XE; S04y ,Sd) - hft'au(XE; S0, - .- ,Sd)

for any choice of sections s; intersecting Xy properly. Hence, the classes of h%’r(Xg)
and of hy(Xs:s0,...,54) agree up to def(K*). But the latter is the global height of
Xy, with respect to L. hence the second statement. O

Summing up the preceding results we obtain a formula for the height of a toric
variety.

Theorem 5.2.5. — Let X be a complete fan on Np. Let L;, i = 0,...,n, be toric line
bundles on Xx, equipped with semipositive adelic toric metrics. For each i, let s; be a

toric section of L. Then the height of Xs. with respect to Lo, ..., Ly, is

€ R/def(K*),

— (¢ — p—
hzn,---qfn (XE) o l:z i NHM (U':;,L(,,s(,’ T ’ﬂthn,Sn)
vEM

where U, ¢, denotes the local roof function. In particular, if Lo=---=L,=1L, let
s be a toric section and put A = stab(Vy, ). Then

h(Xx) = |(n+1)! Z Ty / 19,”‘fwsdvolM} .
veM JA
Proof. — This follows readily from Corollary 5.1.9 and Proposition 5.2.4. O

Corollary 5.2.6. — Let H: N — 7" be an injective map such that H(N) is a saturated
sublattice of Z", p € P(K) a point in the principal open subset andY C P the closure
of the image of the map ¢y p: T — P". Let mg € M and m; = ¢/ o H +mgy € M,
i=1,...,7, and write p = (pg : ... : p,) with p; € K*. Let A = conv(mg,...,m,) C
Mg and ¥,: A — R the function parameterizing the upper envelope of the extended
polytope
conv ((mo,log |polv)s - -, (M, log |prly)) C Mg x R.

Let mcan be the universal line bundle on P™ with the canonical metric as in Exam-
ple 4.3.9(1). Then Y is integrable with respect to Wmn and

(n+1)! Z ’n,v/ ¥, dvolys
A

veM

hagrrem (Y) =

55 € R/def (K*).

Proof. — By the definition of adelic field, valk,(p) = 0 for almost all v € 9. There-
fore, the integrability of Y follows as in the proof of Proposition 5.2.4.

Let ¥ be the complete regular fan of Ni induced by H and X a», and let Xy, be the
associated toric variety. Write ¢ = ¢, g for short. The fact that H(N) is saturated
implies that ¢ has degree 1 and so Y = ¢, Xy. By the functoriality of the global
height (Theorem 1.5.11(2)),

7 () = s iy (¥2),
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Let v € 9. Using the results in Example 5.1.16, it follows from Theorem 5.2.5 that

b @1y (X5) = [(n + DY /anvdvow} .
v
where A = conv(0,my —mo,...,m—mg) C Mg and ¥, is the function parameterizing
the upper envelope of the extended polytope
conv ((0,0), (my — mo,log |p1/polv), - - -, (m, —mo,log|p./pols)) C Mg x R.
We have that A = A —mg and 9, = 7,9, — log |pol,. Hence,

/7§vdV011u:/ 19UdV01/\{—10g|p0|vV011\/[(A).
A

A
Using that ) n,log|pol, € def(K*) and that, by Proposition 3.4.3, n!voly/(A) =
degp(1)(Y) € Z, we deduce the result. a
Remark 5.2.7. — The above corollary can be easily extended to the mixed case by us-

ing an argument similar to that in the proof of Corollary 5.1.9. Applying the obtained
result to the case when K is a number field (respectively, the field of rational func-
tions of a complete curve) we recover [PS08a, Théoreme 0.3] (respectively, [PS08b,
Proposition 4.1]).
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CHAPTER 6

METRICS FROM POLYTOPES

6.1. Integration on polytopes

In this chapter, we present a closed formula for the integral over a polytope of
a function of one variable composed with a linear form, extending in this direction
Brion’s formula for the case of a simplex [Bri88], see Proposition 6.1.4 and Corol-
lary 6.1.10 below. In the next section, these formulae will allow us to compute the
height of toric varieties with respect to some interesting metrics arising from poly-
topes.

We consider the vector space R™ with its usual scalar product, that we denote (-, -)
and its Lebesgue measure, that we denote vol,,. We also consider a polytope A C R™

of dimension n.

Definition 6.1.1. — Let u € R™ be a vector. For each ¢ € R, an aggregate of A in the
direction u is the union of all faces of A contained in the affine subspace

{r e R" | (x,u) = c}.
We denote by dim (V') the maximal dimension of a face of A contained in V. In
particular, dim(@) = —1. ‘

We write A(u) for the set of non-empty aggregates of A in the direction u. In
particular, A(0) = {A}. Note that, if V € A(u) and x is a point in the affine space
spanned by V, then the value (r,u) is independent of . We denote this common
value by (V,u).

For any two aggregates Vi,V € A(u), we have V; = V4 if and only if (Vi,u) =
(Va,u).

Example 6.1.2

1. Every facet of a polytope is an aggregate in the direction orthogonal to the
facet.



180 CHAPTER 6. METRICS FROM POLYTOPES

2. If u is general enough, the set A(u) agrees with the set of vertices of A.

3. Let A = {(z,y) € R? | 0 < 2,y < 1} be the unit square and u = (1,1).
Then the set of aggregates A(u) contains three elements: {(0,0)}, {(1,0),(0,1)}
and {(1,1)}.

In each facet F' of A we choose a point mp. Let Lp be the linear hyperplane
defined by F and mwp the orthogonal projection of R™ onto Lr. Then, F' — mp is a
polytope in L of full dimension n — 1. To ease the notation, we identify F' — mp
with F. Observe that, with this identification, for V' € A(u), the intersection V N F
is an aggregate of F' in the direction mp(u). We also denote by up the inner normal
vector to F of norm 1.

Definition 6.1.3. — Let u € R™ be a vector. For each aggregate V' in the direction of
u, we define the coefficients Cy (A, u, V), k € N, recursively. If u = 0, then V is either
& or A. For both cases, we set

1,(V) ifk=n,
Ck(A,O,V)—{SO ( ) 1 n

otherwise.

If w # 0, we set

CelAu V) ==Y <7|’|’Z|’l§> Cu(F,mp(u),V N F),
F

where the sum is over the facets F' of A. This recursive formula implies that
Cr(A,u, V) =0 for all k> dim(V).
Finally, we define the polynomial associated to an aggregate by

dim(V)
C(A,u, V) Z dlm Ck(A u, V)zimVI=k ¢ R[2].

In particular, we have always C(A,u, @) = 0.

As usual, we write €"(R) for the space of functions of one real variable which are
n-times continuously differentiable. For f € €"(R) and 0 < k < n, we write &) for
the k-th derivative of f.

We want to give a formula that, for f € €™ (R), computes [ f" ((z,u))dvol,(z)
in terms of the values of the function x — f({z,u)) at the vertices of A. How-
ever, when u is orthogonal to some faces of A of positive dimension, such a formula
necessarily depends on the values of the derivatives of f.
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Proposition 6.1.4. — Let A C R" be a polytope of dimension n and u € R™. Then,
for any f € €"(R),

/ FO ) dvolam) = 37 >0 Cu(Au, VIFI((V.u)) (6.1.1)
A VeA(u) k>0
ddim(V)
=y W(C(A,u,‘/)(z)‘f(z—l— (Vou))|._y-
VeA(u)

The coefficients Cr.(A,u, V') are uniquely determined by this identity.

Proof. — In view of Definition 6.1.3, both formulae in the above statement are equiv-
alent and so it is enough to prove the first one. In case u = 0, we have A(u) = {A}
and formula (6.1.1) holds because

/ F (2. 0)) dvol, (x) = vol(A) £ (0) = > Cr(A,0.4) fF)(0),

A E>0

We prove (6.1.1) by induction on the dimension n. In case n = 0, we have u = 0 and
so the verification reduces to the above one. Hence, we assume n > 1 and u # 0. For
short, we write do = day A--- A dx,. Choose any vector v € R™ of norm 1 such that
(v,u) # 0. Performing an orientation-preserving orthonormal change of variables, we

may assume v = (1,0,...,0). We have

Oz, u)) de = ﬁ d(f““”((m, w))dag A+ A day,).

With Stokes’ theorem, we obtain
/ FO (2, u)) dvol, (@) = / M (2, u)) de (6.1.2)
Ja Ja
1
- (n=1) (/o . To A -e- .
o ;Lf ((z,u))dag A -+ A day,.

where the sum is over the facets F' of A, and we equip each facet with the induced
orientation.

For each facet F' of A, we let t,,.(dz) be the differential form of order n — 1
obtained by contracting dz with the vector up. The form dzy A--- A da,, is invari-
ant under translations and its restriction to the linear hyperplane L coincides with
(v, up)ty,(da). Therefore,

/ FUO D u)) dag A A day, = (v, up) / F D + mp,u))i, (dx).
JF JEF—mp

Let vol,,—; denote the Lebesgue measure on Lgp. We can verify that vol, _; coincides
with the measure associated to the differential form —¢,, . (dx) |1, and the orientation
of Lp induced by up. Let g: R — R be the function defined as g(z) = f(z+ (mp.u)).
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Then fOD((z + mp,u)) = gV ((x, 7p(u))) for all z € Lp. Hence,

/ f("_l)((x +mp,u))t,,.(dz) = —/ g("”l)(<:1:,7rp(u))) dvol,_1(x).
F—mp F—mpg

Applying the inductive hypothesis to F' and the function g we obtain

/Fg<”*1><<:y,7rF(u)>)dvoxn,l(g;)— o > CuFEmp(u), Vg P (V! e (u)))

V'eF(rp(u)) k>0

Z ZCA-,(F,WF(U), VYFE (V).

VIEF (np(u)) k>0

|

Each aggregate V' € F(mwp(u)) is contained in a unique V' € A(u) and it coincides
with V' N F. Therefore, we can transform the right-hand side of the last equality in

S > CuE (), V O ) PV,

VeA(u) k>0

where, for simplicity, we have set Ci(F,7p(u),V N F) = 0 whenever VN F = &.
Plugging the resulting expression into (6.1.2) and exchanging the summations on V
x

and F, we obtain that [, f" ((z,u))dvol,(z) is equal to

> Z( S @, ’““>>Ck(F mr(u), VmF)f<k>(<v,u>)>, (6.1.3)

VeA(u) k>0 F

Specializing this identity to v = u, we readily derive formula (6.1.1) from Defini-
tion 6.1.3 of the coefficients Ci (A, u, V).

For the last statement, observe that the values f*)((V,u)) can be arbitrarily cho-
sen. Hence, the coefficients Ci (A, u, V) are uniquely determined from the linear
system obtained from the identity (6.1.1) for enough functions f. O

Corollary 6.1.5. — Let A C R™ be a polytope of dimension n and uw € R™. Then,

min{i,dim(V)}

’ <V,u>i’/‘"7 0 fori=0,...,n—1,
22 C“A*“’”or-—w*{wlnm -

VeA(u) k=0 fori=n.
Proof. — This follows from formula (6.1.1) applied to the function f(z) = z%/il. O

Proposition 6.1.6. — Let A C R™ be a polytope of dimension n and v € R™. Let
Ve A(u) and k > 0.

1. The coefficient Cr(A,u, V') is homogeneous of weight k — n in the sense that,
for A € R*,

Cr(A M, V) = N"CL(A u, V).
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2. The coefficients Ci(A,u, V) satisfy the vector relation

CrolA o, V) u= =Y Cp(Fmp(u),VAF)-up, (6.1.4)
F

where the sum is over the facets F' of A.

3. Let Ay, Ay CR™ be two polytopes of dimension n intersecting along a common
facet and such that A = Ay UAy. Then VN A; =@ or VNA; € Aj(u) and

C;,-,(A/U,, V) = Ck(A],u, Vn A]) + C’k(Az,u,V n Az)

Proof. — Statement (1) follows easily from the definition of Cx(A,u, V). For state-
ment (2), we use that, from (6.1.3), the integral formula in Proposition 6.1.4 also
holds for the choice of coefficients

= <'<”1’) "‘UF>> Cw(F,mp(u), VN F)
—~ (v,

for any vector v of norm 1 such that (v,u) # 0. But the coefficients satisfying that
formula are unique. Hence, this choice necessarily coincides with C (A, u, V) for all

such v. Hence,

(0. w)Cr(A 1w, V) = = (0, up)Cr(F,wp(u),V N F)
F
and formula (6.1.4) follows. Statement (3) follows from formula (6.1.1) applied to A,
A; and A, together with the additivity of the integral and the fact that the coefficients
Cr(A,u, V) are uniquely determined. |

In case A is a simplex, the linear system given by Corollary 6.1.5 has as many
unknowns as equations. In this case, the coefficients corresponding to an aggregate
in a given direction are determined by this linear system. The following result gives
a closed formula for those coefficients.

Proposition 6.1.7. — Let A C R™ be simplex and v € R™. Write dyw = dim(W) for
W e A(u). Then, for Ve A(u) and 0 < k < dim(V),

. ol (dw;l‘H/M )
, —(_1)dv—k = v
Cr(Au, V) =(-1) X vol,, (A) Z H (V—Ww, u>dw+nw+1 ’
neNAOMVY WeA(u)\{V}
[nl=dv —k
Proof. — Consider the Hermite interpolation polynomial py; € R[t] of degree n

characterized by the conditions that, for W € A(u) and [ =0,...,dw,

' ifW=Vandl =%k,
Y <<u,w>>:{ ‘ /

Dy
Vik 0  otherwise.
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By Proposition 6.1.4 and the choice of py x,
/ pi}f,l((u,x))dvoln(af) =Kkl Cp(Au, V).
A

Furthermore, [, py (m L ((u, z)) dvol, (z) = nlvol, (A) coeffn (py.i ), where coeffin (py i)
denotes the lea(hng coefﬁ(:ient of pyk.

An explicit formula for pyy can be found, for instance, in [DKS13, Proposi-
tion 2.3]. From that formula, we deduce that

(dw +'rlw)
. _ (_1\dv—k dw
coeffen (pv) = (=1) > 11 VW, uydw e+t
nENAENVY WeA(u)\{V} '
In|=dyv —k
which concludes the proof. O
Remark 6.1.8. — We can rewrite the formula in Proposition 6.1.7 in terms of vertices

instead of aggregates as follows:

n!
Ce(A,u, V) = (=1)dvF Vol,, Z H —vu) P (6.1.5)
|Bl=dy —k v¢V
where the product is over the vertices v of A not lying in V' and the sum is over the
tuples § of non negative integers of length dy — k, indexed by those same vertices of
A that are not in V, that is, 3 € N*=% and |3| = dy — k.

Example 6.1.9. — Let A C R” be a simplex and v € R". If a vertex vy of A is an
aggregate in the direction of u, then formula (6.1.5) reduces to

Co(A u, 1) = ntvol, (A) T (vo = vou) ™", (6.1.6)
v#£vg

where the product runs over all vertices of A different from 1. Suppose that the
simplex is presented as the intersection of n + 1 halfspaces as

n

A= ﬂ{:l; € R"| (z,u;) — A; > 0}

i=0
with u; € R™\ {0} and A; € R. Up to a reordering, we can assume that up is an inner
normal vector to the unique face of A not containing vy. We denote by ¢ the sign of

(=1)™det(uq,...,u,). Then the above coefficient can be alternatively written as
—1
edet(uy, ... uy)"
C’()(A,U,l/()) = ) ’ ) ) .
[, det(ur, ..oy uim s wywigrs - Uy

From the equation (6.1.6), we obtain the following extension of Brion’s “short
formula” for the case of a simplex [Bri88, Théoreme 3.2, see also [BBD111].

ASTERISQUE 360



CHAPTER 6. METRICS FROM POLYTOPES 185

Corollary 6.1.10. — Let A C R™ be a simplex of dimension n that is the convexr hull
of points v;, i = 0,...,n, and let u € R™ such that (v;,u) # (vj,u) for i # j. Then,
for any f € €™(R),

- f(<Vi’ u>)

(") ({2, u)) d vol, (z) = n!vol, )
/Af (1) dvola() = mivoly () 3 g )

Proof. — This follows from Proposition 6.1.4 and the equation (6.1.6). O

In the next section, we will have to compute integrals over a polytope of functions
of the form ¢(x)log(¢(x)) where ¢ is an affine function. The following result gives the
value of such integral for the case of a simplex.

Proposition 6.1.11. — Let A C R™ be a simplex of dimension n and let £: R" — R
be an affine function which is non-negative on A. Write £(x) = (x,u) — A for some

1
vector u and constant \. Then VLA ./A 0(x)log(¢(x))dvol,(x) equals

(6.1.7)

> 2

VeA(u) B’

< ) (V) (Tog(e(vy) = 25 1)
n— |3 |/3’|+1)H,,¢v<—(f((v)) )V>7

where the second sum runs over 3 € (N*)"=dmV) ith |3'| < n and the product is

over the n — dim(V') vertices v of A not in V.
If £(z) is the defining equation of a hyperplane containing a facet F of A, then

n+1
Voln / {(x) log(£(x)) da = é(fi <log(e(uF)) -3 1> (6.1.8)

=

where vi denotes the unique vertex of A not contained in F.

Proof. This follows from the formulae (6.1.1) and (6.1.5) with the function
fU(2) = (z — N)log(z — A), a (n — k)-th primitive of which is

(k)N (z —)\)”*’“rl nktly
f(k)(p)—m@og(zf)\)_ J; ;) 0

We end this section with a lemma specific to integration on the standard simplex.

Lemma 6.1.12. — Let A" be the standard simplex of R" and 8 = (8o, ..., Br—1) € N".
Let f € €1°%7([0,1]) where |8] = Bo 4 -+ + Br_1. For (wy,...,w,) € A" write
wyg=1—wy —--—w,. Then
. r—1 1177 |B|+r—1 f
UB1+7) (4 ) )
/(gﬁ')i (wy)dwy A=+ A dw, = f(1 JZ;
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Proof. — We proceed by induction on r. Let r = 1. Applying By + 1 successive
integrations by parts, the integral computes as

Bo —w) 1 Bo  £(5)
3 [‘—1.—’.}“”(%)}( - -y 20,

I
=L T i=0
as stated. Let r > 2. Applying the case r — 1 to the function f(z) = %,
1 1
Bo Br-1
- w w ooow tdug AN dwpn) = ——m——
/J’o!.-ﬂ,q!./y—l 0 e (B =)

and, after rescaling,
(1 — U7T)IB}+T_—1
(18] +r—1)!

wﬂ“w?’ ﬁ’ Ldwy Ao A dwpg =

ol
[30! - .[37_1! (1—w,)Ar=1

Therefore, the left-hand side of the equality to be proved reduces to

1
1 >/ (1= w,) A fUAH) (0, ) du
0

I3+ — 1)l
Applying the case r = 1 and index || + r — 1 € N, we find that this integral equals
f( ZWHT*I 7(0)/4!, which concludes the proof. O
Corollary 6.1.13. — Let o € N"tL. For (wy,...,w,) € A", write wy = 1—wy— - -—w,.
Then
. | |
/ ) wh wt wt dwg Ao A dwy = H
and, fori=20,..., r,
/. ()10' al Jal4+r 1
@p 0y (&30 . ] A
wywit . w log(w;) dwy A A dwy = = Z -
- (Jo| +1)! Py
Proof. — The formula for the first integral follows from Lemma 6.1.12 applied with
B = (ap,...,p—1) and f(z) = (f%;%' The second one follows similarly, apply-
ing Lemma 6.1.12 to the function f(z2) = ﬁ%(log z) — Z‘;’I(J:"'Jrl %), after some
possible permutation (fori =1,..., ,—1) or linear change of variables (for i =0). O

6.2. Metrics and heights from polytopes

In this section we will consider some metrics arising from polytopes. We will use
the notation of §4 and §5. In particular, we consider a split torus over the field of
rational numbers T ~ G}, 5 and we denote by N, M, Ng., Mg the lattices and dual
spaces corresponding to T.

Let A C Mg be a lattice polytope of dimension n. Let ¢;, i = 1,...,r, be affine
functions on Mg defined as ¢;(x) = (z,u;) — A; for some u; € Ng and A\; € R such
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that ¢; > 0 on A and let also ¢; > 0. Write £ = (¢1,...,¢,) and ¢ = (¢1,...,¢.). We
consider the function 9 ¢.: A — R defined, for z € A, by
Dae(@) == cili(z)log(li()). (6.2.1)
i=1

When A, /, c are clear from the context, we write for short ¥ = 94 ¢c.

Lemma 6.2.1. — Let notation be as above.
1. The function Va ¢ is concave.
2. If the family {u;}; generates Ng, then Ua 4. is strictly concave.

3. If A =, {x € Mg|l;(x) > 0}, then the restriction of Vae. to A°, the interior
of the polytope, is of Legendre type (Definition 2.4.1).

Proof. — Let 1 <4 < r and consider the affine map ¢;: A — R>o. We have that
—zlog(z) is a strictly concave function on Rx¢ and —¢; log(¢;) = £;(—zlog(z)). Hence,
each function —c;¢;(x)log(¢;(x)) is concave and so is 9, as stated in (1).

For statement (2), let x1, z2 be two different points of A. The assumption that {u; };
generates Ny implies that ¢; (1) # €;,(z2) for some iy. Hence, the affine map ¢;,
gives an injection of the segment Ti@y into R>g. We deduce that —c¢;,¢;, log(¥;,) is
strictly concave on T;rs and so is ¢. Varying x1, 22, we deduce that 9 is strictly
concave on A.

For statement (3), it is clear that 9¥|ae is differentiable. Moreover, the assumption
that A is the intersection of the halfspaces defined by the ¢;’s implies that the u;’s
generate Nr and so ¥ is strictly concave. The gradient of ¥ is given, for x € A°, by

Vi(z) = = > ciui(log(ti(z)) + 1). (6.2.2)
i=1
Let || - || be a fixed norm on Mg and (z;);>0 a sequence in A° converging to a point

in the border. Then there exists some i; such ¢;, (z;) % 0. Thus, |Vd(zx;)]| 2 oo
and the statement follows. O

Definition 6.2.2. — Let X A and WA be the fan and the support function on Ng induced
by A. Let (X%, , Dy, ) be the associated polarized toric variety over Q and write L =
O(Dyg,). By Lemma 6.2.1(1), ¥a ¢ is a concave function on A. By Theorem 4.8.1,
it corresponds to some semipositive toric metric on L(C). We denote this metric by
| - lla,ee. We write L for the line bundle L equipped with the metric || - ||a.¢.c at
the Archimedean place of @ and with the canonical metric at the non-Archimedean
places. This is an example of an adelic toric metric.

Example 6.2.3. — Following the notation in Example 2.4.3, consider the standard sim-
plex A™ and the concave function ¥ = %sn on A™. From examples 2.4.3 and 4.3.9(1),
we deduce that the corresponding metric is the Fubini-Study metric on O(1)2* over C.
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In case A is the intersection of the halfspaces defined by the ¢;’s, Lemma 6.2.1(3)
shows that J]a- of Legendre type (Definition 2.4.1). By Theorem 2.4.2 and equa-
tion (6.2.2), the gradient of ¥ gives a homeomorphism between A° and Ny and, for
z € A°,

OV (VI(x)) = — Z(’ (N log(4s(z)) + (z,u5)) .

This gives an explicit expression of the function ., ,. = ¢V, and a fortiori of the
metric || - ||a e, in the coordinates of the polytope. Up to our knowledge, there is
no simple expression for ¥ in linear coordinates of N, except for special cases like
Fubini-Study.

Remark 6.2.4. — This kind of metrics are interesting when studying the Kéhler geom-
etry of toric varieties. Given a Delzant polytope A C Mg (Remark 4.8.3), Guillemin
has constructed a “canonical” Kéhler structure on the associated symplectic toric va-
riety [Gui95]. The corresponding symplectic potential is the function —9a ¢, for
the case when r is the number of facets of A, ¢; = 1/2 for all 4, and u; is a primitive
vector in N and ); is an integer such that A = {& € Mg|(r,u;) > Nj,i =1,...,r},
see [Gui95, Appendix 2, (3.9)].

In this case, the metric || -||a ¢, on the line bundle O(Dyg)*" is smooth and positive
and, as explained in Remark 4.8.3, its Chern form gives this canonical Kéhler form.

We obtain the following formula for the height of X5, with respect to the line
bundle with adelic toric metric L, in terms of the coefficients Cy (A, u;, V).

Proposition 6.2.5. — Let notation be as in Definition 6.2.2. Then h(Xx,) equals

dim(V)

r ] n—k41 n—k+1
n+D!D e >N Ck(A,ui,V)%ﬁﬁ< Z %—log(&;(V))).

i=1  VeA(u;) k=0 j=2

Suppose furthermore that A C R™ is a simplex, r =n—+1 and that {;, i =1,... ,n+1,
are affine functions such that A = (,{x € Mg|¢;(x) > 0}. Then

n+1 n—+1
hi(Xs, ) = nlvolp(A) Z cili(v;) < Z % - log(&(uﬁ)), (6.2.3)

j=2 "

where v; is the unique vertex of A not contained in the facet defined by ¢;.

Proof. — The first statement follows readily from Theorem 5.2.5 and Proposi-
tion 6.1.4 applied to the functions f;(z) = (log(z—X;) — Z;’;l %) (z=X)"/(n+1)\.
The second statement follows similarly from Proposition 6.1.11. O
Example 6.2.6. — Let O(1) be the universal line bundle of P*. As we have seen
in Example 6.2.3, the Fubini-Study metric of O(1)*" corresponds to the case of the
standard simplex, ¢;(z) = z;, i =1,...,n, and {41 (z) =1 — Z:’/:, 2; and the choice
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¢; = 1/2 for all i. Hence we recover from (6.2.3) the well known expression for the
height of P™ with respect to the Fubini-Study metric in [BGSQ4, Lemma 3.3.1]:

n+1 n

" n + 1
hom (") = Z =2 Z
h=1j=1
Example 6.2.7. — In dimension 1, a polytope is an interval of the form A = [mg, m;]

for some m; € Z. The corresponding roof function in (6.2.1) writes down, for z €

[mo, m1], as
-

Ix) = — Z cili(x)log(¢;(x))
i=1

for affine function ¢;(x) = u;x — A; which take non negative values on A and ¢; > 0.

The polarized toric variety corresponding to A is P! together with the ample divisor
m[(0 : 1)] — mo[(1 : 0)]. Write L = Op1(x1 — x) for the associate line bundle and
L for the line bundle with adelic toric metric corresponding to the function 9. The
Legendre-Fenchel dual to —c¢;¢;(z)log(¢;(x)) is the function f;: R — R defined, for
v € R, by

v,

i 1
filv) = 2o — e -0

i
Therefore, the function 1 = 9V is the sup-convolution of these function, namely
Y= fiB---B f,. For the height, a simple computation shows that

mi

hp(P) =2 | vdr=3 6@ (1= 210g(ti(2))) |

mo 2u;

™my

mo

6.3. Heights and entropy

In some cases, the height of a toric variety with respect to the metrics constructed
in the previous section has an interpretation in terms of the average entropy of a
family of random processes.

Let I" be an arbitrary polytope containing A. For a point « € ri(A), we consider
the partition II, of I' which consists of the cones n, r of vertex x and base the relative
interior of each proper face F of I'. We consider I' as a probability space endowed
with the uniform probability distribution. Let 8, be the random variable that maps
a point y € I' to the base F' of the unique cone 7, p that contains y. Clearly, the
probability that a given face F is returned is the ratio of the volume of the cone based
on F to the volume of I'. We have vol,(n, r) = n~dist(x, F) vol,_; (F) where, as
before, vol,, and vol,,_; denote the Lebesgue measure on R™ and on L, respectively.
Hence,

ist(x. F o
dist(x, ) vol—(F) if dim(F)=mn -1,
P(/B.'L' = F) = n V()ln(r) (()31)
0 if dim(F) <n-—2.
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The entropy of the random variable (3, is

— Y P(B. = F)loa(P(B. = F)),
F

where the sum is over the facets I of I.

For each facet F of T we let u/» € R™ be the inner normal vector to F of Euclidean
norm (n — 1)!vol,,_; (F). Therefore v} = (n — 1)!vol,,_1(F)up, with up as in §6.1.
Set

MF) =¥p(up) = (n—1)vol, 1 (F)¥r(up).
Consider the affine form defined as £p(z) = (x, u}) — AMF), so that
I'= {.77 S ATRMF(.T) >0, VF}

Set A(I') = > A(F'), where the sum is over the facets F' of I'. Since, by [Sch93,
Lemma 5.1.1], the vectors v/ satisfy the Minkowski condition ) . u}» = 0, we deduce

that
>t ==Y AMF) = -AD).

Let ¢ > 0 be a real number. The concave function ¥(z) = = clp(x)log(fp(x))
belongs to the class of functions considered in Definition 6.2.2. Thus, we obtain a line
bundle with an adelic toric metric L on Xa. For short, we write X = Xa.

The following result shows that the average entropy of the random variable 3, with
respect to the uniform distribution on A can be expressed in terms of the height of
the toric variety X with respect to L.

Proposition 6.3.1. — With the above notation,

# dvol,, = ! hZ(X) — og(n!vo
vo1n(A)/A€1 L, n!voln(f‘)<C(n+1)degL(X) A(D)log(n! 1,,(F))).

In particular, if I = A,

1 B h+(X) log(deg (X))
vol, (A) /Aé'd voln = e(n + I)LdegL(X)2 - AL deg; (X)

Proof. — For z € ri(A) and F a facet of I', we deduce from the equation (6.3.1) that
P(p, =F) = éF(CC)/(Tl!V()l”(F)). Hence,

(r(a) fr(x)
E(x) = — Z rz'vol a (1) o (7L!VI;1"(F))
2 ,

= ( Zﬁp )log(Cp(x)) — A(F)log(n!vol,,,(r))>

n!vol, (') V()ln

1 19(:1;) e
= m( P A(T) 10g(n,!w)l,,,(F))>.

The result then follows from Theorem 5.2.5 and (3.4.2). O
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Example 6.3.2. — The Fubini-Study metric of O(1)*" corresponds to the case when
I' and A are the standard simplex A™ and ¢ = 1/2. In that case, the average entropy
of the random variable 3, is

| 2B
= | &dvol, = 2L =%
n! Jan (n+1) =
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CHAPTER 7

VARIATIONS ON FUBINI-STUDY METRICS

7.1. Height of toric projective curves

In this chapter, we study the Arakelov invariants of curves which are the image of
an equivariant map into a projective space. In the Archimedean case we equip the
projective space with the Fubini-Study metric, while in the non-Archimedean case we
equip it with the canonical metric. For each of these curves, the metric, measure and
toric local height can be computed in terms of the roots of a univariate polynomial
associated to the relevant equivariant map.

Let K be either R, C or a complete field with respect to an absolute value associated
to a nontrivial discrete valuation. On P, we consider the universal line bundle O(1)
equipped with the Fubini-Study metric in the Archimedean case, and with the canon-
ical metric in the non-Archimedean case. We write @m for the resulting metrized
line bundle. We also consider the toric section s of O(1) whose Weil divisor is
the hyperplane at infinity. The next result gives the function 1. associated to the

induced metric on a subvariety of P which is the image of an equivariant map.

Proposition 7.1.1. — Let H: N — Z" be an injective map such that H(N) is a sat-
urated sublattice of Z", and p € P{(K). Consider the map oup: T — P7, set
L= cp’;l,p(’)_(ﬁ and s = Py S0, and let g o Ng — R be the associated concave func-
tion. Let ey be the ith vector in the dual standard basis of Z" and set m; = e oH € M,
i=1,...,r,andp=(1:py:...:p.) with p; € K*. Then, for u € Ng,

b (u) = {—% log(1 4 >°7_, [pil?e=2mew)) i the Archimedean case,
L,s\"/) —

ming <;<,{0, (m;,u) + val(p;)}  in the non-Archimedean case.

Proof. — In the Archimedean case, the expression for the concave function 1 follows
from that for P} (Example 4.3.9(2)) and Proposition 4.3.19. The non-Archimedean
case follows from Example 4.3.21. O
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Let Y C P" be the closure of the image of the map ¢ ,. In the Archimedean case,
the roof function seems difficult to calculate. Hence it is difficult to use it directly to
compute the toric local height (see Example 2.4.5). A more promising approach is to
apply the formula of Corollary 5.1.8. Writing ¢ = ¢ this formula reads

DY) = (n+ 1) [ w0y dMa (). (7.1.1)
Ng

To make this formula more explicit in the Archimedean case, we choose a basis of N,
hence coordinate systems in Ng and Mg and we write

g=1(91,---.9n) = Vp: Np — A,

where A = stab(v)) is the associated polytope. Then, from Proposition 2.7.3 and
Example 2.7.11(1), we derive

h'(Y) = (n+ 1)!/ (Vp(u),uy —(u)) (—=1)" det(Hess(¢)) d voly

N
=+ 1) [ (gl ) = () (<1)" dgy -1 dgs.

When K is not Archimedean, we have M (¢) = Zuen(w)o volar (v*)d, and, for
v e TI(y)°,
Y o Op(v) = m /U* (z,v) dvoly —¢(v),
see Proposition 2.7.4 and Example 2.7.11(2). Thus, if now we denote by g: Ng — Mg
the function that sends a point u to the barycentre of 9y (u), then
W' (Y) =+ 1! Y ((g(v),0) = $(v)).
vell(1)°
In the case of curves, the integral in (7.1.1), can be transformed into another
integral that will prove useful for explicit computations. We introduce a notation for
derivatives of concave functions of one variable. Let f: R — R be a concave function.
For u € R, write
J'(w) = 5(Dy () + D_f(w), (7.1.2)
where D f and D_ f denote the right and left derivatives of f respectively, that exist
always [Roc70, Theorem 23.4]. Then f’ is monotone and is continuous almost ev-
erywhere (with respect to the Lebesgue measure). The associated distribution agrees
with the derivative of f in the sense of distributions. This implies that, if (f,), is
a sequence of concave functions converging uniformly to f on compacts, then (f},)n

n
converges to f’ almost everywhere.

Lemma7.1.2. — Lety: R — R be a concave function whose stability set is an interval
[a,b] and Y o O the Myz(v)-measurable function defined in (2.7.7). Then

2 / Y 0 O dMz(¥) = (b—a)(¥(a) + ¢ (b)) + /(1//(u) —a)(b— ' (u))du.
Jr JR
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Proof. — We argue as in the proof of Theorem 2.7.6. By the properties of the
Monge-Ampere measure (Proposition 2.7.2) and of the Legendre-Fenchel dual (Propo-
sition 2.2.3), the left-hand side is continuous with respect to uniform convergence of
functions. Again by Proposition 2.2.3 and the discussion before the lemma, the right-
hand side is also continuous with respect to uniform convergence of functions. By
the compacity of the stability set of ¥, Lemma 2.7.7 implies that there is a sequence
of strictly concave smooth functions (¢,,),>1 converging uniformly to ). Hence, it is
enough to treat the case when v is smooth and strictly concave.
Using Example 2.7.11(1), we obtain

/1/)\/ o Y dMz(¢) = /(1/)(u) —ut) (u) )" (u) du.
R JR

Consider the function

10 = (90 = ) ) - oL 2
= () ~ TV W ) — S ) — )b~ ().
Then
Jm () = 220w, lm () = S )
and
= (§ — !y du— ('~ )b~ ¥
from which the result follows. O

With the notation in Proposition 7.1.1, assume that N = Z. The elements m; €
NV can be identified with integer numbers and the hypothesis that the image of H is
a saturated sublattice is equivalent to ged(my,...,m,) = 1. Moreover, by reordering
the variables of P™ and multiplying the expression of ¢, by a monomial (which does
not change the equivariant map), we may assume that 0 < my < --- < m,. We make
the further hypothesis that 0 < my < -+ < m,. With these conditions, we next
obtain explicit expressions for the concave function 1) and the associated measure and
toric local height in terms of the roots of a univariate polynomial. We consider the
absolute value | - | of the algebraic closure K extending the absolute value of K.

Theorem 7.1.3. — Let 0 <'my < --- < m, be integers with ged(mq,...,m,) =1, and
P1,y---,pr € KX, Let o: T — P be the map given by o(t) = (1 : prt™ : ... : pt™)
and let Y be the closure of the image of w. Consider the polynomial q € K|[z] defined
as

{1 +3 Ip;|22™  in the Archimedean case,

- , .
L+ 3 pj™ in the non-Archimedean case.
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Let {&}; C K™ be the set of roots of ¢ and, for each i, let ¢; € N be the multiplicity
of &. Let L and s be as in Proposition 7.1.1. Then, in the Archimedean case,

1
1. ¢z (u) = —log |p,| — 3 Zfi log|e " —&| for u € R,

du,

gi e2'u,
2. Mz(vg ) = *QZ&W

%

1 .
3. h2"(Y) = m, log|p,| + 3 Zﬂf ZK 2 Sit 5] (log( &) —log(—¢;)), where

l<J
log is the principal determination of the logamthm.

While in the non-Archimedean case,

4 g J(u) = val(p;) ZE min{u, val(&;)} for u € R,

i) = D libdualgen)s

6. }ltor(y) =m, log lpri + Z €z€j| log |£1,' — log l&]”

i<j

&

Remark 7.1.4. — The real roots of the polynomial ¢ are all negative, which allows the
use of the principal determination of the logarithm in (3). Introducing the argument
0; € |—m, | of =¢;, the last sum in (3) can be rewritten

(|§L|2 |€]l log (€Z/£]| + 2|€1H£7( 9]) Sin(ei - ej)
3 26l G+ 167 — 266 costr = )

1<]

showing that it is real.

Proof of Theorem 7.1.3. — Write ¢ = 7 _ for short. First we consider the Archime-
dean case. We have that ¢ = |p,.|? [[;(z — &)%. By Proposition 7.1.1,

1 1
Y(u) = 3 log(q(e™**)) = —log |pr| — 2 Z&: log |e™ %" =&,

which proves (1). Hence,

1 2u
/ _ ) //
P'(u) = Z€1~———1 ¢ o and ¢"( ZQL/ a 45 ezu)
The Monge-Ampere measure of 1 is given by —1” du, and so the above proves (2).
To prove (3) we apply the equation (7.1.1) and Lemma 7.1.2. We have that stab(y)) =
[0,m,], ¥V (0) = 0, and ¢"(m,) = log|p,|. Thus,

o0

h" (V) = m,. log |pr| +/ (my — ")y du. (7.1.3)

— o0
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We have m, — Zf < e2“> = —Z@ 1515 . Hence,
1
(e (Zfl-seﬁ@@ﬁ?@)
z gl 2u
__ZKQ €; c2u)2 ng € e2n)(1— ¢ e2n)

% e 1 > 1
Moreover / (L du = {(——‘)] = ——and

oo (L =& e%)2 2(1 — & ev B
o0 L a2u -
/; (1-— g.eil)e(l & o) du = [ T & {J)(l()g(l — fj ") —log(l —¢& e2u))
& N
2 — ;) (o84 ~ los(=6)

for the principal determination of log. These calculations together with the equa-
tion (7.1.3) imply that

or 1
h% (Y) =m,log |p.| + 3 g 2+ E 4 8 log( &) —log(—=¢5))
i Z;ﬁj

— meloglpr + 232+ ZMJ“@ 08(—&) — log(—E,)).
2i

1<]
which proves (3).
Next we consider the non-Archimedean case. Let ( € K™ and write v; = val(§;)

for short. Proposition 7.1.1 and the condition m; # m; for ¢ # j, imply, after possibly
multiplying ¢ by a sufficiently general root of unity, that

b(val(€)) = min{0, mval(C) + val(p:) } = val(q(C))-
By the factorization of ¢,

val(q(¢)) = val(p,) + Z&-val(( — &) =val(p,) + Z ¢; min{val(¢), v; }.
The image of val: K™ — R is a dense subset. For u € R, we deduce that
P(u) = val(p,) + Z ¢; min{u, v; },
which proves (4). The sup-differential of this function is, for u € R,

[Zj:v]>v,¢ €.7'7 Zj:vj >v; (/]} if u= Vi for some 3

otherwise.

oY(u) =

Jivg>u gj
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Hence, the associated Monge-Ampere measure is >, £;d,,, which proves (5). The
derivative of 1 in the sense of (7.1.2) is, for u € R,

1 . )
! — Zj:uj>vi éj + 2 Zj;vj:vi éj if u = v; for some 1,
P(u) = .
Zj:vj — otherwise.

Moreover, stab(y) = [0,m,], ¥¥(0) = 0 and ¥¥(m,) = —val(p,). By (7.1.1) and
Lemma 7.1.2

W (Y) = —m,val(p,) + / (my — ")y’ du. (7.1.4)
If we write
0 ifu<uwy
\u) =
fiw) {& if u> vy,
then, we have that ¢'(u) = >, ¢; — ) and m, — 4’ (u) = >, f; almost everywhere.
Therefore
/ (my — Y)Y du = Z/ fill; — fj)du = Zéi@ max{0,v; —v;}. (7.1.5)
—o0 i Yoo 0rj

Thus, joining together (7.1.4), (7.1.5) and the relation log |(| = —val({) we deduce
W (V) = m, log |p,| + Y €:¢; max{0,log(1&]/1€;)},
,J

finishing the proof of the theorem since, for i < j,
max{0,log(|&:(/1¢,1)} + max{0,log(|¢;/[&:1)} = [log|&| — log [&]]. O

We now treat the global case.

Corollary 7.1.5. — Let K be a global field. Let 0 < my < --- < m, be integer numbers
with ged(my,...,my) =1, and p1,...,pr € K*. Let ¢: T — P" be the map given by
o(t) = (1 : pit™ = ... :pt™), Y the closure of the image of p, and L = ©*O(1),
where W 18 equipped with the Fubini-Study metric for the Archimedean places and
with the canonical metric for the non-Archimedean places. For v € Mg, set

X IpilRz™ if v is Archimedean,
! 1+ 22:1 p;2" if v is not Archimedean.

Let {&,:} C K: be the set of roots of q, and, for each i, let £,; € N denote the
multiplicity of &,.. Then

hy (YY) = Z nv< ZE L4 = Zﬁv ily j gv it ?’J (log(—&v,i) — IOg(*fu,j))>
v, v,J

v|oo Z<J
+ Z “’U(Z eu,igv,j‘ IOg Igv,il - lOg Igv,jH) .

vioo 1<J
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Proof. — This follows readily from Proposition 5.2.4, Theorem 7.1.3, and the product
formula. O

Corollary 7.1.6. — Let C. C Pg be the Veronese curve of degree v and O(1) the
universal line bundle on Py, equipped with the Fubini-Study metric at the Archimedean
place and with the canonical metric at the non-Archimedean ones. Then

|r/2] .
ot ([ T2 Vel 110
ho(])( +7TZ < r+1) cot(r+1>€2+7r(@.
Proof. — The curve C). coincides with the closure of the image of the map ¢: T — P"
given by o(t) = (1 :¢:t>:...:¢"). With the notation in Corollary 7.1.5, this map
corresponds to m; = i and p; = 1, for i = 1,...,7. Then q, = >-7_, 2/ for all v €

Mg. Consider the primitive (r + 1)-th root of unity w = e, The polynomial g, is
separable and its set of roots is {w'};=1, . Since |w'|, = 1 for all v, Corollary 7.1.5
implies that

wh+ Wl ,
hy(C, + sz —; (log(~ wh) = log(—w?))
r 1 wh + wl .
—§+2;wl—w log(—w'). (7.1.6)

We have that

T

w1l & 1 1 1
Zwa‘q Z »1+lea~1 le—wj+zlwa‘—1zo'
j=1 J

Jj=1 = J=
This implies, for { =1,...,r,
wh + w? wh+1 . ml
Z T j:—l_1:2COt<—:—l>.
1< Y T Y v "
Hence,
1 wh 4w . i wl .
3 2 i ) =g 2ot (77) tor(=h)

:”;mt(%ﬂl_rfl)’

(E%ﬂ)log(fwr“*l) = cot(; 7 L)log(—w!) for I = 1,...,[r/2] and
r41

log(—w_;“) = 0 whenever r is odd. The statement follows from these calculations

together with (7.1.6). O

since cot
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Here follow some special values:

2 3 5 7

r H 1
' % ! S+ (1+V2)

7T

hO(l) ) 7

N | Ot

7
+—=7
3V3
Corollary 7.1.7. — With the notation of Corollary 7.1.6, ho(l)( C,) = rlogr + O(r)

forr — oc.

1
- T
2

N W

1
Proof. — We have that 7 cot(mz) = — + O(1) for x — 0. Hence,
T

Lr/2] 2] 1 Lr/2] 1
by (Cr) = Z <1_7.j@1) —+0(r) = ( Z —.>+O(7’) =rlogr+0(r). O

= J =

By the theorem of algebraic successive minima [Zha95a, Theorem 5.2],

om(Cr)
/,LCSS(CT) S o(l) <
degp(1)(Cr)
The essential minimum of C, is p®(C,) = §log(r +1) [Som05, Théoréme 0.1].

Hence, the quotient % is asymptotically closer to the upper bound than to
O(1)

2,UCSS (C,)

the lower bound.

7.2. Height of toric bundles

Let n > 0 and write P = P& for short. Given integers a, > --- > ag > 1, consider
the bundle P(E) — P" of hyperplanes of the vector bundle

E =0(ap) ®0O(ay) & - @ O(a,) — P,

where O(a;) denotes the a;-th power of the universal line bundle of P*. Equivalently,
P(E) can be defined as the bundle of lines of the dual vector bundle EV. The fibre of
the map m: P(E) — P" over each point p € P"(Q) is a projective space of dimension r.
This bundle is a smooth toric variety over Q of dimension n+r, see [Oda88, p. 5859,
[Ful93, page 42]. The particular case n = r = 1 corresponds to Hirzebruch surfaces:
for b > 0, we have F, = P(O(0) ® O(b)) ~ P(O(ag) ® O(ag + b)) for any ag > 1.

The tautological line bundle of P(I), denoted Op(gy(—1), is defined as a subbundle
of m*EY. 1Its fibre over a point of P(E) is the inverse image under 7 of the line in
EVY which is dual to the hyperplane of E defining the given point. The universal line
bundle Op(z)(1) of P(E) is defined as the dual of the tautological one. Since O(a;),
j=0,...,r, is ample, the universal line bundle is also ample [Har66, propositions 2.2
and 3.2]. This is the line bundle corresponding to the Cartier divisor apDg + Dy,
where Dy denotes the inverse image in P(E) of the hyperplane at infinity of P and
D, =P(0® O(a1) ®--- & O(a,)). Observe that, although P(E) is isomorphic to the
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bundle associated to the family of integers a; + ¢ for any ¢ € N, this is not the case
for the associated universal line bundle, that depends on the choice of c.

Following Example 3.1.3, we regard P™ as a toric variety over Q equipped with the
action of the split torus G},. Let s be the toric section of O(1) which corresponds to
the hyperplane at infinity Hy and let s; = s®7%, which is a section of O(—a;). Let
U =P"\ Hy. The restriction of P(E) to U is isomorphic to U x P" through the map
@ defined, for p € U and ¢ € P", as

(P, q) — (p,qos0(p) ® -+ - © qr5-(p))-

The torus T := G™" can then be included as an open subvariety of P(F) through the
map ¢ composed with the standard inclusion of G4 into U x P". The action of T
on itself by translation extends to an action of the torus on the whole of P(F). Hence
P(E) is a toric variety over Q. With this action the divisor agDy + D is a T-Cartier
divisor.

By abuse of notation, we also denote EY the total space associated to the vector
bundle EY. The map G;'" — EV defined as

(zyw) — ((1:2),(s0(1l:2) Bwisi(1:2) P Bw,s,(1l:2))) (7.2.1)

induces a nowhere vanishing section of the tautological line bundle of P(E) over the
open subset T. Its inverse defines a rational section of Op(gy(1), denoted sp( E), that
is regular and nowhere vanishing on T. In particular, this section induces a structure
of toric line bundle on Op(g)(1). The divisor of sp(g) is precisely the T-Cartier divisor
apDg + D; considered above.

We now introduce an adelic toric metric on OP(E)(l). For v = oo, we consider
the complex vector bundle F(C) that can be naturally metrized by the direct sum of
the Fubiny-Study metric on each factor O(a;)(C). By duality, this gives a metric on
EY(C), which induces by restriction a metric on the tautological line bundle. Apply-
ing duality one more time, we obtain a smooth metric, denoted || - ||, on Op(gy(c)(1).
Since the Fubini-Study metric on each O(a;)(C) is toric, then || - || is toric too.
For v € Mg \ {00}, we equip Op(p)(1) with the canonical metric (Proposition-
Definition 4.3.15). We write Op(g)(1) = (Opg)(1), (|| - [[v)vem,) for the obtained
adelic metrized toric line bundle.

We have made a choice of splitting of T and therefore a choice of an identification
N = Z™". Thus we obtain a system of coordinates in the real vector space associated
to the toric variety P(F), namely Ny = R"*" = R” x R". Since the metric considered
at each non-Archimedean place is the canonical one, the only nontrivial contribution
to the global height will come from the Archimedean place. The restriction to the
principal open subset P(E)o(C) ~ (C*)"*" = (C*)™ x (C*)" of the valuation map is
expressed, in these coordinates, as the map val: (C*)"*" — Ng defined by

val(z,w) = (= log|z1],..., —log|zn|, — log [wy], ..., —log |w.|).
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Write ¥ : Ng — R for the function corresponding to the metric || - ||o and the
toric section sp(p) defined above.

Lemma 7.2.1. — The function ¢ is defined, for u € R™ and v € R", as
1 r n aj
Yoo (U, v) = —5 log (Ze‘zvi (Zehi> ),
7=0 i=0
with the convention ug = vy = 0. It is a strictly concave function.

Proof. -— The metric on EY(C) is given, for p € P*(C) and qq, ..., q € C, by

1% + 12

sr(p)

where ||s;(p)|| is the norm of s;(p) with respect to the Fubini-Study metric on
O(—a;)*". By Example 1.1.2,

. ,p0|2 —a;
ls; ()2 = ( | '
’ |p0|2+"'+|pn|2

Using Definition 4.3.5 and Proposition 4.3.14(2), we compute the function 1, via the

llgoso(p) @ -+ @ grs.()|[% = la0[*]|50(p) g |?

Green function — log ||5%@1)H relative to the toric section S]P,(E , defined in (7.2.1), of
the tautological bundle, dual Op(gy(1). The explicit description (7.2.1) of the section

S%)(El) implies that, for (z,w) = (21,...,zp, w1, ..., w,) € G, writing 20 = wp = 1,
we have

J

HSP(E) z,w)||* = Z|11)J|2<Z|Zzl2> ) (7.2.2)

If val(z,w) = (uy,...,Un,v1,...,0y) and writing ug = vy = 0, equation (7.2.2) can be

55 (2, w)I* = Ze (Ze”“”) . (7.2.3)
1=0

Now 9o (u, v) equals — log \Iap(E)(z, w) ||7 that is —1/2 times the logarithm of the right

written as

hand side in (7.2.3). This proves the equality of the lemma.

For the last statement, observe that the functions e=2Vi (37 6“2“‘)(”

are log-
strictly convex, because —1/2 times their logarithm is the function associated to the

Fubini-Study metric on O(a;)*", which is a strictly concave function. Their sum is

also log-strictly convex [BVO04, §3.5.2]. Hence, ¢ is strictly concave. O
Corollary 7.2.2. — The metric || - ||~ is a semipositive smooth toric metric.

Proof. — The facts that || - || is smooth and toric follow from its construction. The
fact that it is semipositive follows from Lemma 7.2.1 and Theorem 4.8.1(1). O

In the following result, we summarize the combinatorial data describing the toric
structure of P(E) and Op(g)(1).
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Proposition 7.2.3
1. Let e;, 1 < i <mn, and f;, 1 < j <, be the i-th and (n + j)-th vectors of the
standard basis of N = Z""". Set fo = —f1 — -+ — fr and eg = aofo + - +
arfr —e1 — - —en. The fan T corresponding to P(E) is the fan in Ng whose
mazximal cones are the convexr hull of the rays generated by the vectors

€0, 5 €E—1,Ck41," " 7€n7f03"' 7,f€717.f[+17". 7f7'
for 0 <k <n,0</{¢<r. This is a complete regular fan.
2. The support function W: Ng — R corresponding to the universal line bundle
Op(g)(1) and the toric section sp(gy is defined, for u € R™ and v € R", as
U(u,v) = min (apug + ve),

0<k<n
0<e<r

where, for short, we have set uy = vg = 0.

3. The polytope A in Mg = R™ x R" associated to (X, V) is

{(xvy)|y1?"'ay7‘ Z 07 Zyé S 17 :Elv"‘v:E?L 2 07 Zxk S L(y)}
(=1 k=1

with L(y) = ao +Y_y—, (ar — ao)ye. Using the convention yo =1 —3",_; y¢ and
zo = L(y) — Y p—, Tk, then L(y) = >_,_, arye and the polytope A can be written
as

{(x,y)]yo, oy >0, oy, Ty > 0}.

4. The Legendre-Fenchel dual of Vo is the concave function 9. : A — R defined,
for (z,y) € A, as
1 | Ln
Doc(ty) = > (erlnee ) 4 Ly) ¢ (*_))
@) = 5 (et + L) e (50 2
where, for k > 0, e is the function defined in (2.4.1). For v # oo, the concave
function ¥, =, is the indicator function of A.

Proof. — By Corollary 4.3.13, we have ¥ = rec(¢). By the equation (2.3.3), we
have rec(1oo)(t, v) = limy 00 A" oo (A(u,v)). Statement (2) follows readily from
this and from the expression for 1, in Lemma 7.2.1.

The function W is strictly concave on ¥, because Op(g)(1) is an ample line bundle.
Hence ¥ = II(¥) and this is the fan described in statement (1).

Let (e),...,e), fr's-.., fY) be the dual basis of M induced by the basis of N. By
Proposition 2.5.5 and statement (2), we have

A = conv (0, (aoey)1<ks<n, (fe )1<e<r, (ase) + ff\/)ﬁék;g”)'
sSeEsr

Statement (3) follows readily from this.
For the first part of statement (4), it suffices to compute the Legendre-Fenchel dual
of Y at a point (z,y) in the interior of the polytope. Lemma 7.2.1 shows that
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is strictly concave. Hence, by Theorem 2.4.2(3), Vi is a homeomorphism between
Ng and A°. Thus, there exist a unique (u,v) € Ng such that, for i = 1,...,n and

7=1...,r
O O,
Ty = 8ui (U,’U), y] - 87}]’ (u7 U)-

We use the conventions zg = L(y) — Y1, #;, yo = 1 — 25:1 yj, and ug = v9 = 0 as
before, and also n = Y. je %" and 1) = 1, so that —2¢ = log (E; 0 € ).

Computing the gradient of ¢, we obtain, fori=1,...,nand j=1,...,r,
-
rie W = ( E ajn® e 2 ) e 2y e W = pue 2,
7=0

Combining these expressions, we obtain, for i =0,...,nand j =0,...,r,
T e 2ui

Lly) 7
From the case i = 0 we deduce n = L(y)/xo and from the case j = 0 it results
2y = log(yo) + ao log(xo/L(y)) From this, one can verify

Zo Yo 0 — Qj Zo

71 (%)’ inl (yj)+ 2 1Og(L(y))'

From Theorem 2.4.2(4), we have ¢¥(z,y) = {(x,u) + (y,v) — ¥(u,v). Inserting the
expressions above for ¢, u; and v; in terms of x,y, we obtain the stated formula.

oy =1 —20;+2¢

For v # oo, we have 1, = W. The last statement follows from Example 2.2.1. O

Proposition 3.4.3 and Theorem 5.2.5 imply
dego, ., (1)(P(E)) = (n +r)lvol(A),

b (P(E)) = <n+r+1)!/Aw:o da dy,

where, for short, do and dy stand for dz; ... dz, and dy; ... dy,, respectively.
We now compute these volume and integral giving the degree and the height of
P(E). We show, in particular, that the height is a rational number. Recall that A"

(7.2.4)

and A™ are the standard simplexes of R" and R", respectively.

Lemma 7.2.4. — With the above notation, we have
(n+r) .
dego, ., (1) (P(E)) = I L(y)" dy,
(TL+T'+ 1)' n n+1
b (BUE) = Vo b (B [ L)y
1)!
H Ot Lre ).

where ho(l)( =30 Z?:l 21—7 is the height of the projective space relative to the

Fubini-Study metric‘
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Proof. — The equation (7.2.4) shows that the degree of P(E) is equal to (n +
r)!1vol(A). The same equation together with Proposition 7.2.3(4) gives that the
height of P(E) is equal to

(TL—+—T2+—1)!</A6,.(y) dz (1y+/A L(y) - en(L(y) " '2) dxdy). (7.2.5)

Let I; and I be the two above integrals. Observe A = (J,ca-({y} x (L(y) - A™)).

Then
1
vol(A) z/ </ da:) dy = —'/ L(y)" dy,
r L(y)-An n. Jar

1
I = / (/ da:) er(y)dy = - L(y)"er(y) dy,
"\ JrLw)ar A

since fL(y)»A" dz = L(y)™/nl. For the second integral, we have that

I /NVL(y)(/L(y)‘An an(L(y)lx)dx) d
- </ L(y)"“dy) (/nan(fv) dx) = %ﬁiﬁﬂ/ L(y)"** dy,

since [}y an en(L(y)~tx)dz = L(y)" [ en(2) dz and, by Example 6.2.6,

Pm)
0(1)(
RIS > Z Tom )
|
n rz+1 passi i (n+1)!
The expression for vol(A) gives the formula for the degree. Lemma 7.2.4 then follows
by carrying up the expressions of I; and Iy into (7.2.5). O

Theorem 7.2.5. — With the above notation, we have

dego, ., iy(P(E) = > alf...ar

igttip=n

ho o (P(E) = ( > ap. --““) oy (")
0

g+ tir=n+l

Z(J '3 . .
+ E ag . ..oy Apr(io,y ... 0r),
iQreenrip €N
g+ tir=n

where Ay (ioy ... ip) = D0 _o(im +1) Z?T:i? 3;- In particular, the height of P(E)
s a positive rational number.
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Proof. — To prove this result it suffices to compute the two integrals appearing in
Lemma 7.2.4. However

T
L(y) = ao + Z(aé = ao)ye = aoyo + -+ + aryr,

=1
with yo =1 —y; — -+ — v, and therefore
T
n
L n __ Qg
o= (o " o) e
n‘irﬂ:l =0

n+1

and similarly for L(y)"*!. Now, Corollary 6.1.13 gives

ag!l. ..oyl

Q0O g0 gy = 0T
/1y Y1 Yr Yy ('(Y|+T)'
laj+r

ap!. .. a,! 1

oyt log(yy) dy = — == > =

/190 Yty log(y;) dy (ol + 1)}, 2 ¥
1

which, combined with the above expression for L(y)™ and L(y)" ™!, gives

T

n! e n! . i
o= ¥ Gl oty X T

aeNT+1 i0nees ir€N =0
lal=n igttir=n
s
il g (n+1)! a _ (n+1)
R = | G s D O
aenNT+1 =0 iQ0eees irEN
|laj=n+1 it Fir= n+1

and

[ s3> 5 el (1) 'S
Ar 2 v= n+1+r)’ e 14

l=am+2
|a\ n
= ay (i + 1) -
! ¢ ) m
(n +1+ T)' Qs yir €N =0 m=0 b=, +2 ¢

igttip=n

2n!
i 2

i

Haf{z)An,T(io,...,u),

Qg ir€N £=0
g+ Fip=n
The statement follows from these expressions together with Lemma 7.2.4. O

Remark 7.2.6. — We check A;1(0,1) = A;1(1,0) = 3/4. Let b > 0 and let O, (1)
the adelic line bundle on [y associated to ag = 1 and a; = b+ 1. Putting n =r =1,
ao = 1 and a; = b+ 1 in Theorem 7.2.5, we recover the expression for the height of
Hirzebruch surfaces established in [Mou06|: hz—y (1)( p) = 1%+ 2b+ 3.
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polyhedral complexes, 60
DVR (discrete valuation ring), 20
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SCR (strongly convex rational), 43
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polyhedral cone, 40
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lattice, 43
rational, 43
strongly convex, 40
polytope, 40
associated to a virtual support function, 90
lattice, 77
product formula, 33
projective space, 134
as a toric scheme, 97
as a toric variety, 79
proper intersection, 29
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recession function
of a concave function, 53
of a difference of concave functions, 67
reduction map, 21
right scalar multiplication, 50
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rational, 167

semigroup algebra, 78
semipositive metric, 27
over an adelic field, 34
smooth metric, 16
positive, 17
semipositive, 17, 138
signed measure associated to, 17
special fiber of a scheme over S, 21
special point of S, 21
stability set of a concave function, 44
standard simplex, 55, 59, 130
star
of a cone in a fan, 80
of a cone in a polyhedral complex, 98
of a polyhedron in a polyhedral complex,
98
strictly concave function, 54
on a polyhedral complex, 58
successive minima, 200
sup-convolution of concave functions, 49
sup-differential of a concave function, 45
image of, 45
support function
of a convex set, 44
of the standard simplex, 59
on a fan, 84
virtual, see virtual support function
symplectic potential, 158

T-Cartier divisor
on a toric scheme, 102
on a toric variety, 84
T-WEeil divisor, 87, 105
toric curve, 194
height of, 198
toric line bundle
on a toric scheme, 103
toric section of, 103
on a toric variety, 85
toric section of, 85
toric metric, 128, 162
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toric model
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equivalence of, 103
proper, 102
semipositive, 108
of a toric variety, 95
morphism of, 95
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toric scheme, 95
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toric structure on a line bundle, 85, 90, 103
toric subvariety, 83
translated, 83
toric variety, 77
affine, 78
associated to a fan, 78
associated to a polytope, 90
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polarized, 91
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symplectic, 158
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translate of a function, 50
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V-representation
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valuation map
of a non-Archimedean field, 94
of a torus, 101
of an Archimedean field, 117
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residue field of, 18
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