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ARITHMETIC GEOMETRY OF TORIC VARIETIES. 
METRICS, MEASURES AND HEIGHTS 

José Ignacio Burgos Gil, Patrice Philippon, Martín Sombra 

Abstract. — We show tha t the height of a toric variety with respect to a toric metrized 
line bundle can be expressed as the integral over a polytope of a certain adelic family 
of concave functions. To state and prove this result, we study the Arakelov geometry 
of toric varieties. In particular, we consider models over a discrete valuation ring, 
metrized line bundles, and their associated measures and heights. We show tha t 
these notions can be translated in terms of convex analysis, and are closely related to 
objects like polyhedral complexes, concave functions, real Monge-Ampere measures, 
and Legendre-Fenchel duality. 

We also present a closed formula for the integral over a polytope of a function of one 
variable composed with a linear form. This formula allows us to compute the height 
of toric varieties with respect to some interesting metrics arising from polytopes. We 
also compute the height of toric projective curves with respect to the Fubini-Study 
metric and the height of some toric bundles. 

Résumé (Géométrie arithmétique des variétés toriques. Métriques, mesures et hauteurs) 
Nous montrons que la hauteur d'une variété torique relative à un fibre en droites 

métrisé torique s'écrit comme l'intégrale sur un polytope d'une certaine famille adé-
lique de fonctions concaves. Afin d'énoncer et démontrer ce résultat, nous étudions 
la géométrie d'Arakelov des variétés toriques. En particulier, nous considérons des 
modèles de ces variétés sur des anneaux de valuation discrète, ainsi que les fibres en 
droites métrisés et leurs mesures et hauteurs associées. Nous montrons que ces no­
tions se traduisent en termes d'analyse convexe et sont intimement liées à des objets 
tels que les complexes polyhédraux, les mesures de Monge-Ampère et la dualité de 
Legendre-Fenchel. 

Nous présentons également une formule close pour l 'intégration sur un polytope 
d'une fonction d'une variable composée avec une forme linéaire. Cette formule nous 
permet de calculer la hauteur de variétés toriques relativement à plusieurs métriques 
intéressantes, provenant de polytopes. Nous calculons aussi la hauteur des courbes 
toriques projectives relativement à la métrique de Fubini-Study et la hauteur des 
fibres toriques. 

© Astérisque 360, SMF 2014 
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INTRODUCTION 

Systems of polynomial equations appear in a wide variety of contexts in both pure 
and applied mathematics. Systems arising from applications are not random but come 
with a certain structure. When studying those systems, it is important to be able to 
exploit tha t structure. 

A relevant result in this direction is the Bernstein-Kusnirenko-Khovanskii theorem 
[Kus76, Ber75]. Let K be a field with algebraic closure K. Let A C Rn be a 
lattice polytope and / 1 , . . . , fn G Kltf1,...,^1] a family of Laurent polynomials 
whose Newton polytope is contained in A. The BKK theorem says tha t the number 
(counting multiplicities) of isolated common zeros of / 1 , . . . , fn in (KX)n is bounded 
above by n! times the volume of A, with equality when / 1 , . . . , fn is generic among 
the families of Laurent polynomials with Newton polytope contained in A. This 
shows how a geometric problem (the counting of the number of solutions of a system 
of equations) can be translated into a combinatorial, simpler one. It is commonly 
used to predict when a given system of polynomial equations has a small number 
of solutions. As such, it is a cornerstone of polynomial equation solving and has 
motivated a large amount of work and results over the past 25 years, see for instance 
[GKZ94, Stu02, PS08b] and the references therein. 

A natural way to study polynomials with prescribed Newton polytope is to asso­
ciate to the polytope A a toric variety X over K equipped with an ample line bundle 
L. The polytope conveys all the information about the pair (X, L). For instance, the 
degree of X with respect to L is given by the formula 

iegL(X) = n!vol(A). 

where vol denotes the Lebesgue measure of Rn. The Laurent polynomials fi can 
be identified with global sections of L, and the BKK theorem can be deduced from 
this formula. Indeed, there is a dictionary which allows to translate algebro-geometric 
properties of toric varieties in terms of combinatorial properties of polytopes and fans, 
and the degree formula above is one entry in this "toric dictionary". 



2 INTRODUCTION 

The central motivation for this text is an arithmetic analogue for heights of this 
formula, which is the theorem stated below. The height is a basic ari thmetic invariant 
of a proper variety over the field of rational numbers. Together with its degree, it 
measures the amount of information needed to represent this variety, for instance, 
via its Chow form. Hence, this invariant is also relevant in computational algebraic 
geometry, see for instance [ G H H + 9 7 , A K S 0 7 , D K S 1 2 ] . The notion of height of 
varieties generalizes the height of points already considered by Siegel, Northcott , Weil 
and others, it is an essential tool in Diophantine approximation and geometry. 

For simplicity of the exposition, in this introduction we assume tha t the pair (X: L) 
is defined over the field of rational numbers Q, although in the rest of the book we 
will work with more general adelic fields (Definition 1.5.1). Let dJlq denote the set of 
places of Q and let (^v)vemQ be a family of concave functions on A such tha t $v = 0 
for all but a finite number of v. We will show that , to this data, one can associate 
an adelic family of metrics (|| • \\v)v on L. Write L = (L, (|| • \\v)v) for the resulting 
metrized line bundle. 

Theorem. — The height of X with respect to L is given by 

hT(X) = (n + 1)! 

u C mm 'A 
tf„dvol. 

This theorem was announced in [BPS09] and we prove it in the present text. To 
establish it in a wide generality, we have been led to study the Arakelov geometry of 
toric varieties. In the course of our research, we have found tha t a large part of the 
ari thmetic geometry of toric varieties can be translated in terms of convex analysis. In 
particular, we have added a number of new entries to the arithmetic geometry chapter 
of the toric dictionary, including models of toric varieties over a discrete valuation 
ring, metrized line bundles, and their associated measures and heights. These objects 
are closely related to objects of convex analysis like polyhedral complexes, concave 
functions, Monge-Ampere measures and Legendre-Fenchel duality. 

These additions to the toric dictionary are very concrete and well-suited for com­
putat ions. In particular, they provide a new wealth of examples in Arakelov geometry 
where constructions can be made explicit and properties tested. In relation with ex­
plicit computations in these examples, we present a closed formula for the integral 
over a poly tope of a function of one variable composed with a linear form. This 
formula allows us to compute the height of toric varieties with respect to some in­
teresting metrics arising from polytopes. Some of these heights are related to the 
average entropy of a simple random process on the poly tope. We also compute the 
height of toric projective curves with respect to the Fubini-Study metric and of some 
toric bundles. 

There are many other arithmetic invariants of toric varieties tha t may be studied 
in terms of convex analysis. For instance, in the subsequent paper [ B M P S 1 2 ] we give 
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INTRODUCTION 3 

criteria for the positivity properties of a toric metrized line bundle and give a formula 

for its arithmetic volume. In fact, we expect that the results of this text are just the 

start ing point of a program relating the arithmetic geometry of toric varieties and 

convex analysis. In this direction, we plan to obtain an arithmetic analogue of the 

BKK theorem bounding the height of the solutions of a system of Laurent polynomial 

equations, refining previous results in [MaiOO, Som05]. 

In the rest of this introduction, we will present the context and the contents of 

our results. We will refer to the body of the text for the precise definitions and 

statements. 

Arakelov geometry provides a framework to define and study heights. We leave 

for a moment the realm of toric varieties, and we consider a smooth projective va­

riety X over Q of dimension n equipped with a regular proper integral model X. 

Let X(C) the analytic space over the complex numbers associated to X. The main 

idea behind Arakelov geometry is tha t the pair (X,X(C)) should behave like a com­

pact variety of dimension n -f 1 [Ara74]. Following this philosophy, Gillet and Soule 

have developed an arithmetic intersection theory [GS90a]. As an application of 

this theory, one can introduce a very general and precise definition, with a geo­

metric flavor, of the height of a variety [BGS94]. To the model X, one associates 

the arithmetic intersection ring CH (X)Q. This ring is equipped with a trace map 

J: CH (X)Q —» IR. Given a line bundle L on I , an arithmetic line bundle L is 

a pair (£ , || • | |), where C is a line bundle on X which is an integral model of L, and 

|| • || is a smooth metric on the analytification of L, invariant under complex conjuga­

tion. In this setting, the analogue of the first Chern class of L is the arithmetic first 

Chern class c i (L) G CH (X)Q. The height of X with respect to L is then defined 

as 

h-l(X) = Ci(L)n+1 G l . 

This is the arithmetic analogue of the degree of X with respect to L. This formalism 

has allowed to obtain arithmetic analogues of important results in algebraic geom­

etry like Bezout's theorem, Riemann-Roch theorem, Lefschetz fixed point formula, 

Hilbert-Samuel formula, etc. 

This approach has two technical issues. In the first place, it only works for smooth 

varieties and smooth metrics. In the second place, it depends on the existence of an 

integral model, which puts the Archimedean and non-Archimedean places in differ­

ent footing. For the definition of heights, both issues were addressed by Zhang by 

taking an adelic point of view and considering uniform limits of semipositive metrics 

[Zha95b]. 
Many natural metrics tha t arise when studying line bundles on toric varieties 

are not smooth, but are particular cases of the metrics considered by Zhang. This 

is the case for the canonical metric of a toric line bundle introduced by Batyrev 
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4 INTRODUCTION 

and Tschinkel [BT95], see Proposition-Definition 4.3.15. The associated canonical 

height of subvarieties plays an important role in Diophantine approximation in tori, 

in particular in the generalized Bogomolov and Lehmer problems, see for instance 

[DP99, AV09] and the references therein. Maillot has extended the arithmetic in­

tersection theory of Gillet and Soulé to this kind of metrics at the Archimedean place, 

while maintaining the use of an integral model to handle the non-Archimedean places 

[MaiOO]. 
The adelic point of view of Zhang was developed by Gubler [Gub02, Gub03] and 

by Chambert-Loir [Cha06]. From this point of view, the height is defined as a sum 

of local contributions. In what follows we outline this procedure, tha t will be recalled 

with more detail in Chapter 1. 

For the local case, let K be either R, C, or a field complete with respect to a 

nontrivial non-Archimedean absolute value. Let X be a proper variety over K and L 

a line bundle on A , and consider their analytifications, respectively denoted by Xan 

and Lan. In the Archimedean case, Xan is the complex space X(C) (equipped with 

an anti-linear involution, if K = R), whereas in the non-Archimedean case it is the 

Berkovich space associated to X. The basic metrics that can be put on Lan are 

the smooth metrics in the Archimedean case, and the algebraic metrics in the non-

Archimedean case, tha t is, the metrics induced by an integral model of a pair (X, L®e) 

with e > 1. There is a notion of semipositivity for smooth and for algebraic metrics, 

and the uniform limit of such metrics leads to the notion of semipositive metric on 

Lan. More generally, a metric on Lan is called DSP (for "difference of semipositive") 

if it is the quotient of two semipositive metrics. 

Let L be a DSP metrized line bundle on X and Y a ^-dimensional cycle of X. 

These da ta induce a (signed) measure on Aan, denoted ci(L)Ad ASy by analogy with 

the Archimedean smooth case, where it corresponds with the current of integration 

along Yan of the d-th power of the first Chern form. This measure plays an important 

role in the distribution of points of small height in the direction of the Bogomolov 

conjecture and its generalizations, see for instance [SUZ97, BÍ197, Yua08]. Fur­

thermore, if we have sections s¿, i = 0 , . . . ,(¿, tha t meet Y properly, one can define 

a notion of local height h^-(F; so, • • •, s<¿). The metrics and their associated measures 

and local heights are related by the Bézout-type formula: 

h r ( Y - d i v ( s d ) ; s 0 , . - - , S d - i ) = hr(F;s0,... ,sd) + 
df 

log IMI Cl(L)AdA¿y. 

For the global case, consider a proper variety X over Q and a line bundle L 

on X. For simplicity, assume tha t X is projective, although this hypothesis is 

not really necessary. A DSP quasi-algebraic metric on L is a family of DSP met­

rics || • \\v on the analytic line bundles Lan, v £ 9JIQ, such tha t there is an integral 
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INTRODUCTION 5 

model of (X, L®e), e > 1, which induces || • \\v for all but a finite number of v. 

Write L — (L, (|| • \\v)v\ and Lv = (Lv, || • \\v) for each i> G 9JIQ. Given a d-dimensional 

cycle 7 of X , its g/ofoz/ height is defined as 

h-l-(Y) = 

sCmc 
h z (y;s0, . . . ,Sd) : 

for any family of sections i — 0 , . . . , c/, meeting Y properly. The fact tha t the 

metric is quasi-algebraic implies tha t the right-hand side has only a finite number of 

nonzero terms, and the product formula implies tha t this definition does not depend 

on the choice of sections. This notion can be extended to number fields, function 

fields and, more generally, to M-fields [Zha95b, Gub03]. 

Now we review briefly the elements of the construction of toric varieties from com­

binatorial data, see Chapter 3 for details. Let K be a field and T ~ G7^ a split torus 

over K. Let N = Hom(Gm,T) ~ Zn be the lattice of one-parameter subgroups of T 

and M = Nv the dual lattice of characters of T. Set NR = N®ZR and MR = M®ZR. 

To a fan E on NR one can associate a toric variety XY, of dimension n. It is a normal 

variety tha t contains T as a dense open subset, denoted X^}o, and there is an action of 

T on X ^ which extends the natural action of the torus on itself. In particular, every 

toric variety has a distinguished point XQ tha t corresponds to the identity element 

of T. The variety X ^ is proper whenever the underlying fan is complete. For sake of 

simplicity, in this introduction we will restrict to the proper case. 

A Cartier divisor invariant under the torus action is called a T-Cartier divisor. In 

combinatorial terms, a T-Cartier divisor is determined by a virtual support function 

on E, that is, a continuous function ^: NR —>• R whose restriction to each cone of E 

is an element of M. Let denote the T-Cartier divisor of X ^ determined by ^ . 

A toric line bundle on X ^ is a line bundle L on this toric variety, together with the 

choice of a nonzero element z G LXo. The total space of a toric line bundle has a 

natural structure of toric variety whose distinguished point agrees with z. A rational 

section of a toric line bundle is called toric if it is regular and nowhere zero on the 

principal open subset X^;o, and s(xo) = z. Given a virtual support function ^ , the 

line bundle = O(D^) has a natural structure of toric line bundle and a canonical 

toric section Sx$, such tha t d iv(s^) = D^. Indeed, any line bundle on X ^ is isomorphic 

to a toric line bundle of the form for some ^ . The line bundle is generated by 

global sections (respectively, is ample) if and only if ^ is concave (respectively, \£ is 

strictly concave on E) . 

Consider the lattice polytope 

= {x G M R : (x,u) > V(u) for all u G NR} C MR. 

This polytope encodes a lot of information about the pair ( X s , L ^ ) . In case the 

virtual support function ^ is concave, it is determined by this polytope, and the 
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6 INTRODUCTION 

degree formula can be writ ten more precisely as 

d e S L ^ № ) =n!volM(A^), 

where the volume is computed with respect to the Haar measure VOIM on M R nor­
malized so tha t M has covolume 1. 

In this text we extend the toric dictionary to metrics, measures and heights as 
considered above. For the local case, let K be either R, C, or a field complete with 
respect to a nontrivial non-Archimedean absolute value associated to a discrete valu­
ation. In this latter case, let K° be the valuation ring, K°° its maximal ideal and w 
a generator of K°°. Let T be an n-dimensional split torus over X a toric variety 
over K with torus T, and L a toric line bundle on X. The compact torus § is a closed 
analytic subgroup of the analytic torus Tan (see Example 1.2.4) and it acts on XAN. 
A metric || • || on Lan is toric if, for every toric section s, the function | |s| | is invariant 
under the action of §. 

The correspondence tha t to a virtual support function assigns a toric line bundle 
with a toric section can be extended to semipositive and DSP metrics. Assume tha t 
Vl> is concave, and let A ^ , and be as before. For short, write X = X ^ , L = 
and s = s^. There is a fibration 

v a l : X a n ^ 7 V R 

whose fibers are the orbits of the action of S on XQ11. NOW let I/J: —> R be a 
continuous function. We define a metric on the restriction Lan|x^n by setting 

|s(Q)||Y — e^(val(p)) ^ 

Our first addition to the toric dictionary is the following classification result. As­
sume tha t the function ip is concave and tha t \ip — \£| is bounded. Then || • ||^ extends 

to a semipositive toric metric on Lan and, moreover, every semipositive toric metric 

on Lan arises in this way (Theorem 4 . 8 . 1 ( 1 ) ) . There is a similar characterization of 

DSP toric metrics in terms of differences of concave functions (Theorem 4.8.6) and a 

characterization of toric metrics tha t involves the topology of the variety with corners 

associated to X% (Proposition 4 . 3 . 1 0 ) . As a consequence of these classification results, 

we obtain a new interpretation of the canonical metric of Lan as the metric associated 

to the concave function ^ under this correspondence. 

We can also classify semipositive metrics in terms of concave functions on polytopes: 

there is a bijective correspondence between the space of continuous concave functions 

on and the space of semipositive toric metrics on LAN (Theorem 4 . 8 . 1 ( 2 ) ) . 

This correspondence is induced by the previous one and the Legendre-Fenchel 

duality of concave functions. Namely, let || • || be a semipositive toric metric on 

Lan, write L — (L, || • ||) and tp the corresponding concave function. The associated 
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INTRODUCTION 7 

roof function s: A# —> R is the concave function defined as the Legendre-Fenchel 

dual One of the main outcomes of this text is tha t the pair (A^,^s) plays, in 

the arithmetic geometry of toric varieties, a role analogous to tha t of the polytope in 

its algebraic geometry. 

Our second addition to the dictionary is the following characterization of the mea­

sure associated to a semipositive toric metric. Let X , L and xj; be as before, and write 

^ — c±n(L) A for the induced measure on Xan. Then (Theorem 4.8.11) 

( v a l ) * ( ^ | x - n ) =n\MM{^)i 

where MM(^) is the (real) Monge-Ampere measure of ip with respect to the lattice M 

(Definition 2.7.1). The measure ¡1^ is determined by this formula, and the conditions 

of being invariant under the action of § and tha t the set Xan \ X$n has measure 

zero. This gives a direct and fairly explicit expression for the measure associated to 

a semipositive toric metric. 

The fact that each toric line bundle has a canonical metric allows us to introduce 

a notion of local toric height tha t is independent of a choice of sections. Let X be an 

n-dimensional projective toric variety and L a semipositive toric line bundle as before, 

and let Lcan be the same toric line bundle L equipped with the canonical metric. The 

toric local height of X with respect to L is defined as 

htorL(X) = hL-(X;So, .....sn h^can(X; s o , . . . , sn)i 

for any family of sections s^, i = 0 , . . . , n, tha t meet properly on X (Definition 5.1.1). 

Our third addition to the toric dictionary is the following formula for this toric local 

height in terms of the roof function introduced above (Theorem 5.1.6): 

htor/L(X)=(n+1) 
Ay 

tfrsdvolM . 

More generally, the toric local height can be defined for a family of n + 1 DSP toric 

line bundles on X. The formula above can be extended by multilinearity to compute 

this toric local height in terms of the mixed integral of the associated roof functions 

(Remark 5.1.10). 

For the global case, let E and ^ be as before, and consider the associated toric 

variety X over Q equipped with a toric line bundle L and toric section s. Given a 

family of concave functions (i/jv)ve(dJi® such tha t \ijjv — ^ | is bounded for all v and 

such that tpv = ^ for all but a finite number of v, the metrized toric line bundle 

L — (L, (|| • | | ^ ) v ) is quasi-algebraic. Moreover, every semipositive quasi-algebraic 

toric metric on L arises in this way (Proposition 4.9.2 and Theorem 4.9.3). The 

associated local roof functions dv ^ s : A^ —> R are identically zero except for a finite 
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8 INTRODUCTION 

number of places. Then, the global height of X with respect to L can be computed 

as (Theorem 5.2.5) 

h-L(X) = 

rCm 

tor (Xv) = (n + 1 ) ! 

v£WlQ gh 
Wu.L;s dnol M 

which precises the theorem stated at the beginning of this introduction. Here, 

h*°^(Xi;) is the toric local height for the place v. 

A remarkable feature of these results is tha t they read exactly the same in the 

Archimedean and in the non-Archimedean cases. For general metrized line bundles, 

these two cases are analogous but not identical. By contrast, the classification of 

toric metrics and the formulae for the associated measures and local heights are the 

same in both cases. We also point out that these results holds in greater generality 

than explained in this introduction: in particular, they hold for proper toric varieties 

which are not necessarily projective and, in the global case, for general adelic fields 

(Definition 1.5.1) . We content ourselves with the case when the torus is split. For the 

computat ion of heights, one can always reduce to the split case by considering a suit­

able field extension. Still, it would be interesting to extend our results to the non-split 

case by considering the corresponding Galois actions as, for instance, in [ELST14]. 

The toric dictionary in arithmetic geometry is very concrete and well-suited for 

computations. For instance, let K be a local field, X a toric variety and cp: X —>• PR 

an equivariant map. Let L be the toric semipositive metrized line bundle on X induced 

by the canonical metric on the universal line bundle of PR, and s a toric section of L. 

The concave function i[): TVR —> R corresponding to this metric is piecewise affine. 

Hence, it defines a polyhedral complex in A^, and it turns out tha t ( va l )* ( / ^ | x^ )? 

the direct image under val of the measure induced by L, is a discrete measure on 

supported on the vertices of this polyhedral complex (Proposition 2.7.4). The 

roof function s is the function parameterizing the upper envelope of a polytope in 

A:/K x R associated to ip and the section s (Example 5 .1 .16 ) . The toric local height of 

X with respect to L can be computed as the integral of this piecewise affine concave 

function. 

Another nice example is given by toric bundles on a projective space. For a finite 

sequence of integers ar > • • • > ao > 1, we consider the vector bundle on P G 

£ = 0 ( a O ) 0 - - - e 0 ( a r ) . 

The toric bundle F(E) —» Pq is defined as the bundle of hyperplanes of the total space 

of E. This is an (n -f r)-dimensional toric variety over Q which can be equipped with 

an ample universal line bundle 0p(£) ( l ) , see §7.2 for details. 

We equip Ow(e)O) w ^ h a semipositive adelic toric metric as follows: the Fubini-

Study metrics on each line bundle 0(a,j) induces a semipositive smooth toric metric 

on CV(£7)(1) for the Archimedean place of Q , whereas for the finite places we consider 

the corresponding canonical metric. We show tha t both the corresponding concave 
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functions i[)v and roof functions dv can be described in explicit terms (Lemma 7.2.1 

and Proposition 7.2.3). We can then compute the height of F(E) with respect to this 

metrized line bundle as (Theorem 7.2.5) 

^CWE) (i) (F(E)) = h/O(1) (P") 

|i|=n + l 

ai + 

\i\=n 

An,r(i) ai 

where for i = (i0,...,ir) £ Nr+i , we set \i\ = z0 + • • • + zr, a1 = a0° . . . alrr 

and An,r(i) = Em=o(*m + 1) E " = C f 2 57 > while ho(iy(1PQ) = 5 X i £ } = i denotes 
the height of the projective space with respect to the Fubini-Study metric. In 
particular, the height of ¥(E) is a positive rational number. 

The Fubini-Study height of the projective space was computed by Gillet and Soule 

[GS90b, §5.4]. Other early computations for the Fubini-Study height of some toric 

hypersurfaces where obtained in [Dan97, CMOO]. Mourougane has determined the 

height of Hirzebruch surfaces, as a consequence of his computations of Bott-Chern 

secondary classes [Mou06]. A Hirzebruch surface is a toric bundle over P Q , and the 

result of Mourougane is a particular case of our computations for the height of toric 

bundles (Remark 7.2.6). 

The fact that the canonical height of a toric variety is zero is well-known. It results 

from its original construction by a limit process on the direct images of the toric 

variety under the so-called "powers maps". Maillot has studied the Arakelov geometry 

of toric varieties and line bundles with respect to the canonical metric, including the 

computation of the associated Chern currents and their product [MaiOO]. 
In [PS08a], Philippon and Sombra gave a formula for the canonical height of a 

"translated" toric projective variety, a projective variety which is the closure of a 

translate of a subtorus, defined over a number field. In [PS08b], they also obtain a 

similar formula for the function field case. Both results are particular cases of our 

general formula (Remark 5.2.7). Indeed, part of our motivation for the present text 

was to understand and generalize this formula in the framework of Arakelov geometry. 

For the Archimedean smooth case, our constructions are related to the Guillemin-

Abreu classification of Kahler structures on symplectic toric varieties [Abr03]. The 

roof function corresponding to a smooth metrized line bundle on a smooth toric variety 

coincides, up to a sign, with the so-called "symplectic potential" of a Kahler toric 

variety (Remark 4.8.3). In the Archimedean continuous case, Boucksom and Chen 

have recently considered a similar construction in their study of arithmetic Okounkov 

bodies [BC11]. It would be interesting to further explore the connection with these 

results. 

We now discuss the contents of each chapter, including some other results of 

interest. 

Section 1 is devoted to the first half of the dictionary. Namely, we review DSP 

metrized line bundles both in the Archimedean and in the non-Archimedean cases. For 
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10 INTRODUCTION 

the latter case, we recall the basic properties of Berkovich spaces of schemes. We then 
explain the associated measures and heights following [Zha95b, Cha06, Gub03]. 
For simplicity, the theory presented is not as general as the one in [Gub03]: in the 
non-Archimedean case we restrict ourselves to discrete valuation rings and in the 
global case to adelic fields, while in loc. cit. the theory is developed for arbitrary 
valuations and for M-fields, respectively. 

Section 2 deals with the second half of the dictionary, tha t is, convex analysis with 
emphasis on polyhedral sets. Most of the material in this section is classical. We have 
gathered all the required results, adapting them to our needs and adding some new 
ones. We work with concave functions, which are the functions which naturally arise 
in the theory of toric varieties. For later reference, we have translated many of the 
notions and results of convex analysis, usually stated for convex functions, in terms 
of concave functions. 

We first recall the basic definitions about convex sets and convex decompositions, 
and then we study concave functions and the Legendre-Fenchel duality. We introduce 
a notion of Legendre-Fenchel correspondence for general closed concave functions, as a 
duality between convex decompositions (Definition 2.2.10 and Theorem 2.2.12). This 
is the right generalization of both the classical Legendre transform of strictly concave 
differentiable functions, and the duality between polyhedral complexes induced by a 
piecewise affine concave function. We also consider the interplay between Legendre-
Fenchel duality and operations on concave functions like, for instance, the direct and 
inverse images by affine maps. This latter study will be important when considering 
the functoriality with respect to equivariant morphisms between toric varieties. We 
next particularize to two extreme cases: differentiable concave functions whose sta­
bility set is a polytope tha t will be related to semipositive smooth toric metrics in the 
Archimedean case, and to piecewise affine concave functions tha t will correspond to 
semipositive algebraic toric metrics in the non-Archimedean case. Next, we treat dif­
ferences of concave functions, tha t will be related to DSP metrics. We end this section 
by studying the Monge-Ampere measure associated to a concave function. There is 
an interesting interplay between Monge-Ampere measures and Legendre-Fenchel du­
ality. In this direction, we prove a combinatorial analogue of the ari thmetic Bezout's 
theorem (Theorem 2.7.6), which is a key ingredient in the proof of our formulae for 
the height of a toric variety. 

In Chapter 3, we study the algebraic geometry of toric varieties over a field and of 
toric schemes over a discrete valuation ring (DVR). We start by recalling the basic 
constructions and results on toric varieties, including Cartier and Weil divisors, toric 
line bundles and sections, orbits and equivariant morphisms, and positivity proper­
ties. Toric schemes over a DVR where first considered by Mumford in [KKMS73], 
who studied and classified them in terms of fans in x M>o- In the proper case, 
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these schemes can be alternatively classified in terms of complete polyhedral com­
plexes in NR [BS11]. Given a complete fan E in TVR, the models over a DVR of the 
proper toric variety are classified by complete polyhedral complexes on NR whose 
recession fan (Definition 2.1.5) coincides with E (Theorem 3.5.4). Let II be such a 
polyhedral complex, and denote by An the corresponding model of X^. Let ^ be a 
virtual support function on E and (L, s) the associated toric line bundle on X^ and 
toric section. We show tha t the models of (L, s) over An are classified by functions 
tha t are rational piecewise affine on II and whose recession function is ^ (Theo­
rem 3.6.8). We also prove a toric version of the Nakai-Moishezon criterion for toric 
schemes over a DVR, which implies tha t semipositive models of (L, s) t ranslate into 
concave functions under the above correspondence (Theorem 3.7.1). 

In Chapter 4, we study toric metrics and their associated measures. For the present 
discussion, consider a local field a complete fan E on NR and a virtual support 
function ^ on E, and let (X, L) denote the corresponding proper toric variety over 
K and toric line bundle. We first introduce a variety with corners which is a 
compactification of A^, together with a proper map val: X^1 —>> N% whose fibers are 
the orbits of the action of S on X^1. We first t reat the problem of obtaining a toric 
metric from a non-toric one (Proposition 4.3.4) and prove the classification theorem 
for toric metrics on Lan (Proposition 4.3.10). We next t reat smooth metrics in the 
Archimedean case. A toric smooth metric is semipositive if and only if the associated 
function is concave (Proposition 4.4.1). We make explicit the associated measure in 
terms of the Hessian of this function, hence in terms of the Monge-Ampere measure 
of ip (Theorem AAA). We also observe that an arbitrary smooth metric on L can be 
turned into a toric smooth metric by averaging it by the action of S. If the given 
metric is semipositive, so is the obtained toric smooth metric. 

Next, in the same section, we consider algebraic metrics in the non-Archimedean 
case. We first show how to describe the reduction map for toric schemes over a DVR 
in terms of the corresponding polyhedral complex and the map val (Lemma 4.5.1). 
We then study the triangle formed by toric metrics, rational piecewise affine functions 
and toric models (Proposition 4.5.3 and Theorem 4.5.10) and the effect of taking a 
field extension (Proposition 4.5.12). Next, we treat in detail the one-dimensional case, 
were one can write in explicit terms the metrics, associated functions and measures. 
Back to the general case, we use these results to complete the characterization of 
toric semipositive algebraic metrics in terms of piecewise affine concave functions 
(Proposition 4.7.1). We also describe the measure associated to a semipositive toric 
algebraic metric in terms of the Monge-Ampere measure of its associated concave 
function (Theorem 4.7.4). 

Once we have studied smooth metrics in the Archimedean case and algebraic met­
rics in the non-Archimedean case, we can study semipositive toric metrics. We show 
tha t the same classification theorem is valid in the Archimedean and non-Archimedean 
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cases (Theorem 4.8.1). Moreover, the associated measure is described in exactly the 
same way in both cases (Theorem 4.8.11). We end this section by introducing and 
classifying adelic toric metrics (Definition 4.9.1, Proposition 4.9.2 and Theorem 4.9.3). 

In Chapter 5, we prove the formulae for the toric local height and for the global 
height of toric varieties (theorems 5.1.6 and 5.2.5). By using the functorial properties 
of the height, we recover, from our general formula, the formulae for the canonical 
height of a translated toric projective variety in [PS08a, Theoreme 0.3] for number 
fields and in [PS08b, Proposition 4.1] for function fields. 

In Chapter 6, we consider the problem of integrating functions on polytopes. We 
first present a closed formula for the integral over a polytope of a function of one 
variable composed with a linear form, extending in this direction Brion's formula 
for the case of a simplex [Bri88] (Proposition 6.1.4 and Corollary 6.1.10). This 
allows us to compute the height of toric varieties with respect to some interesting 
metrics arising from polytopes (Proposition 6.2.5). We can interpret some of these 
heights as the average entropy of a simple random process defined by the polytope 
(Proposition 6.3.1). 

In Chapter 7, we study some further examples. We first consider translated toric 
curves in P Q . For these curves, we consider the line bundle obtained from the re­
striction of 0(1) to the curve, equipped with the metric induced by the Fubiny-Study 
metric at the place at infinity and by the canonical metric for the finite places. We 
compute the corresponding concave function vp and toric local height in terms of the 
roots of a univariate polynomial (Theorem 7.1.3). We finally consider toric bundles as 
explained before, and compute the relevant concave functions, measures and heights. 
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CONVENTIONS AND NOTATIONS 

For the most part , we follow generally accepted conventions and notations. We 
also use the following: 

- N and NX denote the set of natural numbers with 0 and without 0, respectively; 
- a multi-index is an element i G N 5 , where S is a finite set. For a multi-index i, 

we write \i\ = ^2seSis', 
- A semigroup is a set with an associative binary operation and an identity element. 

In particular, a morphism of semigroups will send the identity element to the 
identity element. All considered semigroups will be commutative; 

- all considered rings are commutative and with a unit; 
- a scheme is a separated scheme of finite type over a Noetherian ring; 
- a variety is a reduced and irreducible separated scheme of finite type over a field; 
- PN is a projective space of dimension n over a field, with a fixed choice of homo­

geneous coordinates; 
by a line bundle we mean a locally free sheaf of rank one; 

- compact spaces are Hausdorff; 
- measures are non-negative and a signed measure is a difference of two measures. 
For the notations and terminology introduced in this text, the reader can locate 

them using the list of symbols and the index at the end of the book. 





CHAPTER 1 

METRIZED LINE BUNDLES AND THEIR ASSOCIATED 
HEIGHTS 

In this chapter, we recall the adelic theory of heights as introduced by Zhang 
[Zha95b] and developed by Gubler [Gub02, Gub03] and Chambert-Loir [Cha06]. 
These heights generalize the ones tha t can be obtained from the arithmetic intersection 
theory of Gillet and Soule [GS90a, BGS94]. 

To explain the difference between both points of view, consider a smooth variety X 
over Q . In Gillet-Soule's theory, we choose a regular proper model X over Z of X , and 
we also consider the real analytic space Xan given by the set of complex points X(C) 
and the anti-linear involution induced by the complex conjugation. By contrast, in 
the adelic point of view we consider the whole family of analytic spaces Xan, v G 9JIQ. 
For the Archimedean place, Xan is the real analytic space considered before, while 
for the non-Archimedean places, it is the associated Berkovich space [Ber90]. Both 
points of view have advantages and disadvantages. In the former point of view, there 
exists a complete formalism of intersection theory and characteristic classes, with 
powerful theorems like the arithmetic Riemann-Roch theorem and the Lefschetz fixed 
point theorem, but one is restricted to smooth varieties and needs an explicit integral 
model of A . In the latter point of view, one can define heights, but does not dispose 
yet of a complete formalism of intersection theory. Its main advantages are tha t it can 
be easily extended to non-smooth varieties and tha t there is no need of an integral 
model of X. Moreover, all places, Archimedean and non-Archimedean, are set on a 
similar footing. 

1.1. Smooth metrics in the Archimedean case 

Let X be a variety over C and Xan its associated complex analytic space. We 
recall the definition of differential forms on Xan introduced by Bloom and Herrera 
[BH69]. The space Xan can be covered by a family of open subsets {Ui}i such tha t 
each Ui can be identified with a closed analytic subset of an open ball in Cr for some 
r. On each U^ the differential forms are defined as the restriction to this subset of 
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smooth complex-valued differential forms defined on an open neighbourhood of Ui in 

Cr. Two differential forms on U% are identified if they coincide on the non-singular 

locus of Ui. We denote by g/*(Ui) the complex of differential forms of £/¿, which is 

independent of the chosen embedding. In particular, if Ui is non-singular, we recover 

the usual complex of differential forms. These complexes glue together to define a 

sheaf ^ a n . This sheaf is equipped with differential operators d, dc, <9, <9, an external 

product and inverse images with respect to analytic morphisms: these operations are 

defined locally on each <&/*(Ui) by extending the differential forms to a neighbourhood 

of Ui in Cr and applying the corresponding operations for Cr. We write Oxan and 

CjJ?an = £^xan f°r ^ne sheaves of analytic functions and of smooth functions of Xan, 

respectively. 

Let L be an algebraic line bundle on X and Lan its analytification. 

Definition 1.1.1. — A metric on Lan is an assignment that , to each open subset U C 

Xan and local section s of Lan on U, associates a continuous function 

| K ) | | : E/—>R>o 

such tha t 

1. it is compatible with the restrictions to smaller open subsets; 

2. for all p G U, \\s(p)\\ = 0 if and only if s(p) = 0; 

3. for any p G U and A G Ox™(U), it holds ||(As)(p)|| = \X(p)\\\s(p)\\. 

The pair L := (L, || • ||) is called a metrized line bundle. The metric || • || is smooth if 
for every local section s of Lan, the function ||s(-)||2 is smooth. 

We remark tha t what we call "metric" in this text is called "continuous metric" in 

other contexts. 

Let L = (L, || • ||) be a smooth metrized line bundle. Given a non-vanishing local 

section s of Lan on an open subset /7, the first Chern form of L is the (1, l)-form 

defined on U as 

d(L) = ddlog\\s\\2 e ^{U). 

It does not depend on the choice of local section and can be extended to a global 

closed (1, l)-form. Observe tha t we are using the algebro-geometric convention, and 

so c i (L) determines a class in H2(Xan, 2ni Z ) . 

Example 1.1.2. — Let X = and L = 0 ( 1 ) , the universal line bundle of Pg. A 

rational section s of 0 ( 1 ) can be identified with a homogeneous rational function 

ps G C(xo, • • • ixn) of degree 1. The poles of this section coincide which those of ps. 

For a point p — (po : ... : pn) G Pn(C) and a rational section s as above which is 

regular at p, the Fubini-Study metric of 0 ( l ) a n is defined as 

II*(p)IIfs = 
PsiPQ, • • • ,Pn)\ 

( £ I l o N 2 ) 1 / 2 
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Clearly, this definition does not depend on the choice of a representative of p. The 
pair (0(1), || • | |FS) is a metrized line bundle. 

Many smooth metrics can be obtained as the inverse image of the Fubini-Study 
metric. Let X be a variety over C and L a line bundle on X , and assume tha t there 
is an integer e > 1 such tha t L®e is generated by global sections. Choose a basis of 
the space of global sections T(X, L®e) and let (p: X —> F^f be the induced morphism. 
Given a local section s of L, let sf be a local section of 0(1) such tha t s®e — (p*sf. 
Then, the smooth metric on Lan obtained from the Fubini-Study metric by inverse 
image is given by 

\\s(p)\\ = \\s'(<p(p))\\Xs 
for any p G Xan which is not a pole of s. 

Definition 1.1.3. — Let L be a smooth metrized line bundle on X and D = {z G 
C | \z\ < 1}, the unit disk of C . We say tha t L is semipositive if, for every holomorphic 
map lp\ D —> Xan, 

1 
2m 

(p* c i(L) > 0. 

We say tha t L is positive if this integral is strictly positive for all non-constant holo­
morphic maps as before. 

Example 1.1.4. — The Fubini-Study metric (Example 1.1.2) is positive because its 
first Chern form defines a smooth metric on the holomorphic tangent bundle of P N ( C ) 
[GH94, Chapter 0, §2]. All metrics obtained as inverse image of the Fubini-Study 
metric are semipositive. 

A family of smooth metrized line bundles Lq, . . . , Ld-i on X and a ^-dimensional 
cycle Y of X define a signed measure on Xan as follows. First suppose tha t Y is 
a subvariety of X and let Sy denote the current of integration along the analytic 
subvariety Fan, defined as 5y(uS) = ^2li)d Jran 00 ^or 00 ^ WC A2dXam Then the current 

ci(L0) A-- - Ac i (Ld_ i ) Aöy 

is a signed measure on Xan. This notion extends by linearity to Y G Zd(X). If Li, 
i = 0 , . . . , d — 1, are semipositive and Y is effective, this signed measure is a measure. 

Remark 1.1.5. — We can reduce the study of algebraic varieties and line bundles 
over the field of real numbers to the complex case by using the following standard 
technique. A variety X over R induces a variety Xc over C together with an anti-linear 
involution ^: Xc —> Xc such tha t the diagram 

Xr h X c 

Spec(C) h Spec(C) 
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commutes, where the arrow below denotes the map induced by complex conjugation. 

Following this philosophy, we define the analytification of X as X^n = (X^n,c) . 

A line bundle L on X determines a line bundle Lc on Xc and an isomorphism 

a: c*Lc —> Lc such tha t a section s of Lc is real if and only if a(s*s) = s. Thus we 

define Lf»n = (L^n,a) . By a metric on Lf/1 we will mean a metric || • || on L^n such 

tha t the map a: s*(Lcj \\ • ||) —> (Lc, || • ||) is an isometry. 

In this way, the above definitions can be extended to metrized line bundles on 

varieties over R . For instance, a real smooth metrized line bundle is semipositive if 

and only if its associated complex smooth metrized line bundle is semipositive. The 

corresponding signed measure is a measure over X^n which is invariant under c. 

In the sequel, every time we have a variety over M, we will work instead with the 

associated complex variety and quietly ignore the anti-linear involution c7 because it 

will not play an important role in our results. In particular, if X is a real variety, we 

will denote Xan = X^n for the underlying complex space of X^1. Similarly, we will 

denote Lan = Z£n. 

1.2. Berkovich spaces of schemes 

In this section we recall Berkovich's theory of analytic spaces. We will not present 

the most general theory developed in [Ber90] but we will content ourselves with the 

analytic spaces associated to algebraic varieties, tha t are simpler to define and enough 

for our purposes. 

Let K be a field which is complete with respect to a nontrivial non-Archimedean 

absolute value | • |. Such fields will be called non-Archimedean fields. Let K° = {a G 

K \ \a\ < 1} be the valuation ring, K°° = {a G K \ \a\ < 1} the maximal ideal and 

k = K°/K°° the residue field. 

Let I be a scheme of finite type over K. Following [Ber90], we can associate an 

analytic space Xan to the scheme X as follows. First assume tha t X = Spec(yl), where 

A is a finitely generated X-algebra. Then, the points of Xan are the multiplicative 

seminorms of A tha t extend the absolute value of K, see [Ber90, Remark 3.4.2]. 

Every element a of A defines a function |a(-) | : Xan —> IR>o given by evaluation of the 

seminorm. The topology of Xan is the coarsest topology tha t makes the functions 

|a(-)| continuous for all a G A. 

A point p G A"an defines a prime ideal {a G A | \a(p)\ = 0} C A. This induces a 

map 

7 r : X a n - > X = Spec(yl). 

Let K(TT(P)) denote the function field of n(p), tha t is, the field of fractions of the 

quotient ring A/ir(p). The point p is a multiplicative seminorm on A and so it induces 

a non-Archimedean absolute value on K(n(p)). We denote by Jff(p) the completion 

of this field with respect to tha t absolute value. 
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Let U be an open subset of Xan. An analytic function on U is a function 

f : U 

peu 

H (p) 

such that , for each p £ U, f(p) £ ^(p) and there is an open neighbourhood U' C U 

of p with the property that , for all e > 0 and q £ U', there are elements a,b £ A 

with 6 0 7r(g) and | / (#) — a(q) / b(q) | < £. The analytic functions form a sheaf, de­

noted Oxan, and (Xan, Ox^) is a locally ringed space [Ber90, §1.5 and Remark 3.4.2]. 

In particular, every element a £ A determines an analytic function on Xan, also de­

noted a. The function |a(-)| can then be obtained by composing a with the absolute 

value map 

qCX am 

H(p) R>o, 

which justifies its notation. 

Now, if X is a scheme of finite type over K, the analytic space XAN is defined by 

gluing together the affine analytic spaces obtained from an affine open cover of X. If 

we want to stress the base field, we will denote XAN by Aj£\ 

Let K' be a complete extension of K and X^F the analytic space associated to 

the scheme XK> • There is a natural map Xffi —> X^1 defined locally by restricting 

seminorms. 

Definition 1.2.1. — A rational point of X^ is a point p £ X^ satisfying J4?(p) — 

K. We denote by Xan(K) the set of rational points of Xf^. More generally, for 

a complete extension K' of K, the set of K''-rational points of Xf? is defined as 

Xan(Kf) = X™,(Kf). There is a map X&n(K') -» X%\ defined by composing the 

inclusion Xan(K') ^ Xffi with the map Xf^, -» X^ as above. The set of algebraic 

points of Xan is the union of Xan(K') for all finite extensions K' of K. Its image in 

Xan is denoted X™. We have tha t X™ = {p £ Xan\ [Jf?(p) : K] < oo}. 

The basic properties of Aan are summarized in the following theorem. 

Theorem 1.2.2. — Let X be a scheme of finite type over K and Xan the associated 

analytic space. 

1 . Xan is a locally compact and locally arc-connected topological space. 

2. Xan is Hausdorff (respectively compact, arc-connected) if and only if X is sep­

arated (respectively proper, connected). 

3. The map TT: Xan —>> X is continuous. A locally constructible subset T C X 

is open (respectively closed, dense) if and only if 7r_1(T) is open (respectively 

closed, dense). 

4. Let ip: X —> Y be a morphism of schemes of finite type over K and 

i[jan : Xan —> Yan its analytification. Then ip is flat (respectively unramified, 
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étale, smooth, separated, injective, surjective, open immersion, isomorphism) if 
and only if ipan has the same property. 

5. Let K' be a complete extension of K. Then the map IXK> ' A^n, -> XK> induces 
a bisection between XAN(KF) and X{K'). 

6. Set XA\G = {p G X\ [K(p) : K] < oo}, where K(p) denotes the function field 
of p. Then ii induces a bisection between X^G and XA\G. The subset XA^G C X"an 
is dense. 

7. Let K be the completion of the algebraic closure K of K. Then the map X^ —> 
X^ induces an isomorphism XamR Gal(ATsep/K) ~ X^. 

Proof. — The proofs can be found in [Ber90] and the next pointers are with respect 
to the numeration in this reference: (1) follows from Theorem 1.2.1, Corollary 2.2.8 
and Theorem 3.2.1, (2) is Theorem 3.4.8, (3) is Corollary 3.4.5, (4) is Proposition 3.4.6, 
(5) is Theorem 3.4.l(i), while (6) follows from Theorem 3.4.1 (i) and Proposition 2.1.15 
and (7) follows from Corollary 1.3.6. • 

Remark 1.2.3. — Not every analytic space in the sense of Berkovich can be obtained 
as the analytification of an algebraic variety. The general theory is based on spectra 
of affinoid K-algebras, tha t provide compact analytic spaces tha t are the building 
blocks of the more general analytic spaces. 

Example 1.2.4. — Let M ~ Zn be a lattice of rank n and consider the associated 
group algebra K[M] and algebraic torus TM = Spec(AT[M]). The corresponding 
analytic space is the set of multiplicative seminorms of K[M] tha t extend the 
absolute value of K. This is an analytic group. We warn the reader tha t the set of 
points of an analytic group is not an abstract group, hence some care has to be taken 
when speaking of actions and orbits. The precise definitions and basic properties can 
be found in [Ber90, §5.1]. 

The analytification T^? is an analytic torus as in [Ber90, §6.31. The subset 

$ = {pe T5J| \xm(p)\ = 1 for all m G M}. 

is a compact analytic subgroup, called the compact torus of T ^ . 

1.3. Algebraic metrics in the non-Archimedean case 

Let K be a field which is complete with respect to a nontrivial non-Archimedean 
absolute value. Let K° and K°° be as in the previous section. For simplicity, we will 
assume from now on tha t K° is a discrete valuation ring (DVR), and we will fix a 
generator zu of its maximal ideal K°°. This is the only case we will need in the sequel 
and it allows us to use a more elementary definition of measures and local heights. 
The reader can consult [Gub03, Gub07] for the general case. 
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Let X be a variety over K and L a line bundle on X. Let Xan and Lan be their 
respective analytifications. 

Definition 1.3.1. — A metric on Lan is an assignment that , to each open subset U C 
Xan and local section s of Lan on U, associates a continuous function 

||S(.)| |: E/—>R>o, 

such tha t 

1. it is compatible with the restriction to smaller open subsets; 

2. for all p G U, \\s(p)\\ = 0 if and only if s(p) = 0; 

3. for any A G Ox«»{U), it holds \\(\s)(p)\\ = \\(p)\\\s(p)\\. 

The pair L := (L, || • ||) is called a metrized line bundle. 

Models of varieties and line bundles give rise to an important class of metrics. To 
introduce and study these metrics, we first consider the notion of models of varieties. 
Write S = Spec(K°). The scheme S has two points: the special point o and the generic 
point 7]. Given a scheme X over S, we set XQ = X x Spec(fc) and Xv = X x Spec(K) 
for its special fibre and its generic fibre, respectively. 

Definition 1.3.2. — A model over S of X is a flat scheme X of finite type over S 
together with a fixed isomorphism X ~ Xv. This isomorphism is part of the model, 
and so we can identify Xv with X. When X is proper, we say tha t the model is proper 
whenever the scheme X is proper over S. 

Given a model X of X , there is a reduction map defined on a subset of Xan with 
values in XQ [Ber90, §2.4]. This map can be described as follows. Let {Ui}i^i be a 
finite open cover of X by affine schemes over S of finite type and, for each i, let Ai 
be a K°-algebra such tha t Ui = S p e c ( ^ ) . Set Ui = Ui D X and let Ci be the closed 
subset of Uan defined as 

Ci = {P€Ur\\a(p)\<hVaeAi} (1.3.1) 

For each p G the prime ideal qp := {a G Ai | \a(p)\ < 1} C Ai contains K°°Ai 
and so it determines a point red(p) := qp/KQOAi G Ui,0 C XQ. Consider the subset 
C = | J • d C Xan. The above maps glue together to define a map 

red: C —> X0. (1.3.2) 

This map is surjective and anti-continuous, in the sense tha t the preimage of an open 
subset of XQ is closed in C [Ber90, §2.4]. If both X and X are proper then, using the 
valuative criterion of properness, one can see tha t C = Xan and the reduction map is 
defined on the whole of Xan. 
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Proposition 1.3.3. — Assume that X and X are normal. For each irreducible compo­
nent V of XQ, there is a unique point £y E C such that 

red(£vO = Vv, 

where rjy denotes the generic point of V. If we choose an affine open subset hi = 
Spec(^4) C X containing rjy and we write A = A ®K° K and U = hi fi X, then £y 
lies in £/an and it is the multiplicative seminorm on A given, for a E A, by 

Hiv)\ = M ord y (a)/ord v (1.3.3) 

where o rdy(a ) denotes the order of a at ny. 

Proof. — We first assume tha t X and X are affine. Let A be a K°-algebra such tha t 
X = Spec(*4) and set A — A 0 K. Since X is normal, A^ is a discrete valuation 
ring. Let ordy denote the valuation in this ring. 

We first show the existence of £y. Since ordy(vu) > 1, the right hand side of the 
equation (1.3.3) determines a multiplicative seminorm of A tha t extends the absolute 
value of K and hence a point ^y E Uan C ATan. From the definition, it is clear tha t 
la(4V)| < 1 for all a E A and < 1 if and only if a E rjy. Hence ^y E C and 
red(£y) = rjV. 

We next prove the unicity of £y. Let p E C such tha t red(p) = rjy. This implies 
tha t p is a multiplicative seminorm of A tha t extends the absolute value of K such 
tha t \a(p)\ < 1 for all a E A and \a(p)\ < 1 if and only if a E rjy. In particular, 
this multiplicative seminorm can be extended to A^y Let r be a uniformizer of 
the maximal ideal rjvAVv and a E A. Write a = ^rord^(a) with u E A*v. Since 
\u(v)\ = 1, we deduce \a(p)\ = \r(p)\ordv^a\ Applying the same to w, we deduce tha t 

\a(p)\ = \w\ ordv (a) Jordv (^) 

Hence p = £y. 
To prove the statement in general, it is enough to observe tha t , if hi\ C U2 are two 

affine open subsets of X containing rjy, then the corresponding closed subsets verify 
C\ C C2. The result follows by the unicity in C2 of the point with reduction rjy. • 

Next we recall the definition of models of line bundles. 

Definition 1.3.4. — A model over S of (X, L) is a triple (X, £ , e), where X is a model 
over S of X, £ is a line bundle on X and e > 1 is an integer, together with an 
isomorphism C\x — L®e. When e — 1, the model (X, £ , 1) will be denoted (X', C) for 
short. A model (X,C, e) is called proper whenever X is proper. 

We assume tha t the variety X is proper for the rest of this section. To a proper 
model of a line bundle we can associate a metric. 

Definition 1.3.5. — Let (X, £ , e) be a proper model of (A, L). Let s be a local section 
of Lan defined at a point p E Xan. Let hi C X be a trivializing open neighbourhood 

ASTERISQUE 360 



C H A P T E R 1. METRIZED LINE BUNDLES AND THEIR ASSOCIATED HEIGHTS 23 

of recl(p) and a a generator of C\u- Let U = UnX and A G Ou^ such tha t s®e = Act 
on Uan. Then, the metric induced by the proper model (X,£,e) on Lan, denoted 
II • \\x,c,e, is given by 

\\s(p)\\XX,e = \№\1/e' 

This definition does neither depend on the choice of the open set U nor of the section cr, 
and it gives a metric on Lan. The metrics on Lan obtained in this way are called 
algebraic, and the pair L : = (L, || • ||;r,£,e) is called an algebraic metrized line bundle. 

Different models may give rise to the same metric. 

Proposition 1.3.6. — Let (X,£,e) and (Xf,£,e') be proper models of (X, L), and 

f: X' —>• X a morphism of models such that (£)®e ~ j *£®e m Then the metrics on 

Lan induced by both models agree. 

Proof. — Let s be a local section of Lan defined on a point p G Xan. Let hi C X be 

a trivializing open neighbourhood of red^(p) , the reduction of p with respect to the 

model X and cr a generator of C\u- Let A be an analytic function on (U D X)an such 

tha t s®e = An. 

We have tha t f(redx'(p)) = red^(p) and W := f 1(U) is a trivializing open set 

of C!®e with generator / V 0 6 ' . Then s®ee' = \e' f*a®e' on (W D X)an = (U n X)an. 

Now the proposition follows directly from Definition 1.3.5. • 

The inverse image of an algebraic metric is algebraic. 

Proposition 1.3.7. — Let ip: X\ -> X2 be a morphism of proper algebraic varieties 

over K and L2 an algebraic metrized line bundle on X2. Then tp*L2, the inverse 

image under <p of L2, is an algebraic metrized line bundle on X\. 

Proof — Let (X2,C2,e) be a proper model of (X2,L2) which induces the metric 

in L2. From Nagata 's compactification theorem (see for instance [Con07]) we can 

find a proper model X[ of X\. Let X\ be the Zariski closure of the graph of cp 

in X[ Xs X2. This is a proper model of X\ equipped with a morphism cps'- X\ —>• 

Xo. Then (Xi,(p%Co,e) is a proper model of (X\,(p*Lo) which induces the metric 

of p*L2. 

Next we give a second description of an algebraic metric. As before, let X be a 

proper variety over K and L a line bundle on X , and || • ||;r,£,e an algebraic metric on 

Lan. Let p G Xan and put F — J$?(p): which is a complete extension of K. Let F° 

denote its valuation ring, and o and 77 the special and the generic point of Spec(F°) , 

respectively. The point p induces a morphism of schemes Spec(F) —>> X. By the 

valuative criterion of properness, there is a unique extension 

v: $vec(F°) —y X. ( 1 . 3 . 4 ) 

It satisfies p(rj) — n(p), where n: Xan —> X is the natural map introduced at the 

beginning of §1.2, and p(o) — red(p). 
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Proposition 1.3.8. — With notation as above, let s be a local section of L in a neigh­
bourhood ofn(p). Then 

Ш\\*Х,е = i n f | H i / e | a e F x a -1 p* SXe C p* lL ( 1 . 3 . 5 ) 

Proof — Write || • || = || • ||дг,£,е f°r short. Let U — 8рес(Д) Э red(p) be a trivializing 
open affine set of С and a a generator of С\ц. Then s®e = Лег with Л in the fraction 
field of A. We have tha t X(p) G F and, by definition, | |s(p)|| = \X(p)\1/e. If X(p) = 0 , 
the equation is clearly satisfied. Denote temporarily by 7 the right-hand side of ( 1 . 3 . 5 ) . 
If X(p) ± 0 , then 

A(p)-fs®e - p a G p L. 

Hence > 7- Moreover, if a G Fx is such tha t a lp*s®e G p*£>, then there 

is an element a G F° \ { 0 } with a-1p»*s®e = ap*a. Therefore, a = a~1X(p) and 

la]1/6 = H " 1 / 6 ^ ) ! 1 / 6 > \X(p)\^e. Thus, | |s(p)|| < 7, completing the proof. • 

We give a third description of an algebraic metric in terms of intersection theory 

tha t makes evident the relationship with higher dimensional Arakelov theory. Let 

(X,C,e) be a proper model of (X,L) and i\ y —>• X a closed algebraic curve. Let 

y be the normalization of 3^ and T: y —> X and p: y —> Spec(K°) the induced 

morphisms. Let s be a rational section of C such tha t the Cartier divisor div(s) 

intersects properly y. Then the intersection number (¿ • div(s)) is defined as 

(l • div(s)) = deg(p*(div(rs))). 

Proposition 1.3.9. — With the above notation, let p G X^g and denote by p the image 

of the map in ( 1 . 3 . 4 ) . This is a closed algebraic curve. Let s be a local section of L 

defined at p and such that s(p) 7̂  0 . Then 

log|Hp)IU,£,e 
(p-div(s®e)) 

е[Ж(р) : К] 
.og\w\. 

Proof. — We keep the notation in the proof of Proposition 1.3.8. In particular, 
s®e = Act with À in the fraction field of A, and J4?(p) = F. Then 

l0g||sCp)|U,£,e 
log IШI 

log|A(p)| 
e l o g i t i I 

log|NF/Ar(A(p))| 

e F : К] log M 
ordro(NF/K(A(p)) ) 

e[F : К] 

where ~NF/K is the norm function of the finite extension F/K. We also verify 

(p .div(s®e)) = deg (p* (d iv ( j r ^e ) ) ) :deg(p.(div(A(p)))) 

= deg d iv№F/K А Ы = OTd„(NF/K(\(p))), 

which proves the statement. 
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Example 1.3.10. — Let X = P ^ = Spec(if) . A line bundle L on X is necessarily 

trivial, tha t is, L ~ K. Consider the model (X, £ , e) of (X, L) given by X = Spec(if °), 

e > 1, and C a free i f °-submodule of L®e of rank one. Let v G L®e be a basis of C. 

For a section s of L we can write s®e = av with a G if. Hence, 

||S|| X, L,e = |a|1/c 

All algebraic metrics on Lan can be obtained in this way. 

Example 1.3.11. — Let X = P™ and L = 0 ( 1 ) , the universal line bundle of P £ . As 

a model for (X, L) we consider X = P^o, the projective space over Spec(if°) , C = 

O ( 1 ) , and e = 1. A rational section s of L can be identified with a homogeneous 

rational function ps G K(xq, . . . ,xn) of degree 1. 

Let p = (p0 : . • • : pn) G (P^)an \ div(s) and set F = Let 0 < i0 < n be 

such tha t \pio \ = max^{|pi |}. Take U ~ (respectively ~ A^0) as the affine set 

Xi0 ^ 0 over F (respectively F°). The point p corresponds to the morphism 

p* : i f [X0, . . . , X^0_i, Xi0+i,..., An] —^ F 

tha t sends X^ to Pi/pi0. The extension p factors through the morphism 

p* : K°[Xi,..., Xio_i , X i 0 + i , . . . ,Xn] —> F° 

ith the same definition. Then 

*(p ) | | = i n f { | * | | zeFx1z-1p*sep*jC} 

= i n f { b | \ z e Fx * VS(PoMov,lr--,PnMo) e F°} 

\ps(P0, • • • ,Pn) 

Pro 

\ps(pO,...,Pn)\ 
maxi{\pi\} 

We call this the canonical metric of ( 9 ( 1 )an and we denote it by || • ||can. 

Many other algebraic metrics can be obtained from Example 1 . 3 . 1 1 , by considering 

maps of varieties to projective spaces. Let X be a proper variety over i f equipped 

with a line bundle L such tha t L®e is generated by global sections for an integer 

e > 1. A set of global sections in T(X, L®e) tha t generates L®e induces a morphism 

(p: X -» P ^ and, by inverse image, a metric ip*\\ • ||can on L. Then Proposition 1 .3 .7 

shows that this metric is algebraic. 

Now we recall the notion of semipositivity for algebraic metrics. A curve C in X 

is vertical if it is contained in XQ. 
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Definition 1.3.12. — Let X be a proper algebraic variety over K, L a line bundle on 

X and e) a proper model of (X,L). We say tha t e) is a semipositive 

model if, for every vertical curve (7 in X, 

deg£(C) > 0 . 

Let || • || be a metric on L and set L = (L, || • | |). We say tha t L has a semipositive 

model if there is a semipositive model (X,£,e) of (X,L) tha t induces the metric. 

Proposition 1.3.13. — Let (p: X\ —> X2 be a morphism of proper algebraic varieties 

over K and L2 a metrized line bundle on X2 with a semipositive model. Then (p*L2 

is a metrized line bundle on X\ with a semipositive model. 

Proof — Let (A2,£27e) be a semipositive model inducing the metric of L2. Wi th 

notations as in the proof of Proposition 1.3.7, (Xi,(p*s£2,e) is a model inducing the 

metric of Let C be a vertical curve in X\. By the projection formula, 

degv.£2(C) d e g £ > . C ) > 0 . 

Hence, (Xi, (p*s£2, e) is semipositive. 

Example 1.3.14. — The canonical metric in Example 1.3.11 has a semipositive model: 

for a vertical curve C, its degree with respect to Of^o (1) equals its degree with 

respect to the restriction of this model to the special fibre. This restriction identifies 

with Op^( l ) , the universal line bundle of PjJ, which is ample. Hence, all the metrics 

obtained by inverse image of the canonical metric of (9(l)an have semipositive models. 

Finally, we recall the definition of the signed measures associated with a family of 

algebraic metrics. 

Definition 1.3.15. — Let L^, i — 0 , . . . , d — 1, be line bundles on X equipped with 

algebraic metrics. For each i, choose a model (A^, £¿7 ei) tha t induces the metric of Li. 

We can assume without loss of generality tha t the models Xi agree with a common 

model X. Let Y be a d-dimensional subvariety of X and y C X be the closure of Y. 

Let y be its normalization, yo the special fibre, y ^ the set of irreducible components 

of yo, Y = y^ the generic fibre, and Yan the analytification of Y. For each V £ yo°\ 

consider the point £v £ ^an given by Proposition 1.3.3. Let S^v be the Dirac delta 

measure on Xan supported on the image of £y. We define a discrete signed measure 

on Xan by 

Ci(L0) A A Ci(Ld-i) A öy = 

vey{o0) 

ordy (m) 
deg Ln ... ,Ld-1 (V) 

e0... ed_! 
W (1.3.6) 

This notion extends by linearity to the group of d-dimensional cycles of X. 

This signed measure only depends on the metrics and not on the particular choice 

of models [Cha06, Proposition 2.7]. Observe tha t ordy(w) is the multiplicity of the 
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component V in yo and tha t the total mass of this measure equals degLo L d ^ ( F ) . 
If Li has a semipositive model for all i and Y is effective, this signed measure is a 
measure. 

Remark 1.3.16. — The above measure was introduced by Chambert-Loir in [Cha06j. 
For the subvarieties of a projective space equipped with the canonical metric, it is 
also possible to define similar measures through the theory of Chow forms [Phi94]. 

Remark 1.3.17. — Let K be the completion of the algebraic closure K of K. In 
analogy with Remark 1.1.5, we could have defined a continuous metric on Lan as a 
continuous metric on the line bundle LJ? over tha t is invariant under the action of 
the Galois group Gal(Ksep / K). The obtained theory is equivalent to the one outlined 
here and the reader should have no difficulties in translating results from one to the 
other. This point of view is closer to Zhang's approach in [Zha95b], 

1.4. Semipositive and DSP metrics, measures and local heights 
Let K be either R or C (the Archimedean case) as in §1.1, or a field which is 

complete with respect to a nontrivial non-Archimedean discrete absolute value (the 
non-Archimedean case) as in §1.3. Let X be a proper variety over K. Its analytifi-
cation Xan will be a complex analytic space in the Archimedean case (equipped with 
an anti-linear involution when K — IR), or an analytic space in the sense of Berkovich 
in the non-Archimedean case. A metrized line bundle on X is a pair L = (L, || • | |), 
where L is a line bundle on X and || • || is a metric on Lan. Recall tha t the operations 
on line bundles of tensor product, dual and inverse image under a morphism extend 
to metrized line bundles. 

Given two metrics || • || and || • ||' on Lan, their quotient defines a continuous function 
Xan —> M>o given by Hs^l l / l l^p)!! ' for any local section s of L not vanishing at p. 
The distance between || • || and || • ||' is defined as the supremum of the absolute value 
of the logarithm of this function. In other words, 

distai .y, h-in sup 
pGXan\div(s) 

|l0g(||5(p)||/||S(p)|r)| ( 1 . 4 . 1 ) 

for any nonzero rational section s of L. 

Definition 1.4.1. — Let L = (L, || • ||) be a metrized line bundle on X. The metric || • || 
is semipositive if there exists a sequence (|| • ||/)z>o of semipositive smooth metrics (in 
the Archimedean case) or metrics with a semipositive model (in the non-Archimedean 
case) on Lan such tha t 

lim 
Z—»oc 

distai-H,il-110 = 0. 
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If this is the case, we say tha t L is semipositive. The metrized line bundle L is called 
DSP (for "difference of semipositive") if there are semipositive line bundles M , N 
such tha t L = M (g)7V0_1. 

Remark 1.4.2. — In the Archimedean case, if || • || is a smooth metric, one can verify 
tha t definitions 1.4.1 and 1.1.3 are equivalent. Thus there is no ambiguity in the use 
of the term semipositive metric. 

In the non-Archimedean case, a metric with a semipositive model is semipositive. 
In the general case, we do not know whether an algebraic and semipositive metric has 
a semipositive model. 

Remark 1.4.3. — Although we define our notion of semipositivity through a limit pro­
cess, we believe tha t a "good" definition should be intrinsic. For example, for smooth 
projective varieties, in the Archimedean case [MaiOO, Theoreme 4.6.1] and in the non-
Archimedean case of equi-characteristic zero [BFJ11 , Theorem 5.11] our definition 
is equivalent to the fact tha t the logarithm of the norm of a section is a plurisub-
harmonic function. We hope our definition will still agree with such an intrinsic one 
when the theory of plurisubharmonic functions on Berkovich spaces matures. 

We adopt the terminology of "DSP metric" by analogy with the notion of DC 
function, used in convex analysis to designate a function tha t is a difference of two 
convex functions. 

The tensor product and the inverse image of semipositive line bundles are also 
semipositive. The tensor product, the dual and the inverse image of DSP line bundles 
are also DSP. 

Example 1.4.4. — Let X — Pn be the projective space over C and L = 0(1). The 
canonical metric of G(l)an is the metric given, for p = (po : ... : pn) G Pn(C) , by 

I K r f l l c a n = 
IpsCpo, • • • ,Pn) | 

max, {\pi\} 

for any rational section s of L defined at p and the homogeneous rational function 
ps G C ( x o , . . •, xn) associated to s. 

This is a semipositive metric. Indeed, consider the ra-power map [m] : Pn -> Pn 
defined as [m](po : • • • - Pn) — {p™ : • • • : V™)- The m~th root of the inverse image by 
[m] of the Fubini-Study metric of (9(1 )an is the semipositive smooth metric on Lan 
given by 

b(p)\\m 
\Ps{P0,---,Pn)\ 
( E * \Pi\2my'2m 

The family of metrics obtained varying m converges uniformly to the canonical metric. 

Proposition 1.4.5. — Let Y be a d-dimensional subvariety of X and (Li, \\ • \\i), i = 
0 , . . . , d — 1; a collection of semipositive metrized line bundles on X. For each i, let 
( I I • | |z,/)/>o be a sequence of semipositive smooth metrics (in the Archimedean case) or 
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metrics with a semipositive model (in the non-Archimedean case) on LAN that converge 
to || • ||^. Then the measures C I ( L Q , || • ||o,z) A • • • A c\(Ld-i, || • ||d-i,z) A Sy converge 
weakly to a measure on Xan. 

Proof. — The non-Archimedean case is established in [Cha06, Proposition 2.7(b)] 
and in [Gub07, Proposition 3 . 1 2 ] . The Archimedean case can be proved similarly. • 

Definition 1.4.6. — Let Li = (Li, || • | | ^ ) , 2 = 0 , . . . , d— 1, be a collection of semipositive 
metrized line bundles on X. For a d-dimensional subvariety Y C X, we denote 
by ci(Lo) A • • • A ci(Ld-i) A ôy the limit measure in Proposition 1.4.5. For DSP 
bundles Li and a d-dimensional cycle Y of X, we can associate a signed measure 
CI (LQ) A • • • A c i ( L d - i ) A ôy on Aan by multilinearity. 

This signed measure behaves well under field extensions. 

Proposition 1.4.7. — With the previous notation, let Kr be a finite extension of K. Se 
(X',Y') = (X,Y) x Spec(iT) and let <p: AT/an Xan be the induced map. Let ^L% 
i — 0 , . . . , d — 1 , be the line bundles with algebraic metrics on X' obtained by bast 
change. Then 

ip* (ci(<p*L0) A • • • A ci(<p*Ld_i) A 5Y>) - C i ( L o ) A Ac i (Ld_ i ) AôY> 

Proof. — This follows from [Gub07, Remark 3 . 1 0 ] . 

We also have the following functorial property. 

Proposition 1.4.8. — Let (p: X' —>• X be a morphism of proper varieties over K, Yf a 
d-dimensional cycle of X', and Li, i = 0 , . . . , d — 1 , a collection of DSP metrized line 
bundles on X. Then 

(p* (ci((^*L0) A A Ci(ip*Ld-i) A ôy') ci(L0) A • \ c i ( L d - i ) A Scp^y. 

Proof. — In the non-Archimedean, this follows from [Gub07, Corollary 3 . 9 ( 2 ) ] . In 
the Archimedean case, this follows from the functoriality of Chern classes, the pro­
jection formula, and the continuity of the direct image of measures. • 

Definition 1.4.9. — Let Y be a d-dimensional cycle of X and (Li, Si), i — 0 , . . . , d, a 
collection of line bundles on X with a rational section. We say tha t so,... ,Sd meet Y 
properly if, for all I C { 0 , . . . , d}, each irreducible component of Y fl f]ieI | div(s^)| 
has dimension d — # 7 . 

The above signed measures allow to integrate continuous functions on Aan. Indeed, 
it is also possible to integrate certain functions with logarithmic singularities tha t 
play an important role in the definition of local heights. Moreover, this integration is 
continuous with respect to uniform convergence of metrics. 
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Theorem 1.4.10. — Let Y be a d-dimensional cycle of X, Li, i = 0 , . . . , d — 1 , a 

collection of semipositive metrized line bundles and (Ld,Sd) a metrized line bundle 

with a rational section meeting Y properly. 

1 . The support ofdiv(sd) has measure zero and the function log \\sd\\d is integrable 

with respect to the measure C I ( L Q ) A • • • A c\(Ld-\) A 8y. 

2. Let (|| • ||i,n)n>i be a sequence of semipositive metrics that converge to || • ||¿ for 

each i. Then 

/Xan 
log | | sd | |dCi (L0) A c i ( L d _ i ) ASy 

lim 
nn,...,nw-^00 df 

Og\\sd\\d,nd Cl(^0,no) A c ^ L ^ - i ^ ^ J ASY. 

Proof — In the Archimedean case, when X is smooth, this is proved in [MaiOO, 

théorèmes 5 . 5 . 2 ( 2 ) and 5 . 5 . 6 ( 6 ) ] . For completions of number fields this is proved in 

[CT09, Theorem 4 . 1 ] , both in the Archimedean and non-Archimedean cases. Their 

argument can be easily extended to cover the general case. • 

Definition 1.4.11. — The local height on X is the function that , to each d-dimensional 

cycle Y and each family of DSP metrized line bundles with sections ( L , , S i ) , 

i = 0 , . . . , <i, such tha t the sections meet Y properly, associates a real number 

NZ0 Ld(^ ' s°> • * • ' Sd) determined inductively by the properties: 

1. h ( 0 ) - 0; 

2. if Y" is a cycle of dimension d > 0, then 

nLo, . . . ,Ld(y;5o, . . . , sd) = h7 J (Y • d ivs¿ ; s0 , • • • 

'xan 
log | | sd | |dCi(L0) A c i ( L d _ i ) ASy 

In particular, for p G X{K) \ \ div(so)|, 

h-Lo5p;So) log||so(p)||o ( 1 . 4 . 2 ) 

Remark 1.4.12. — Definition 1 . 4 . 1 1 makes sense thanks to Theorem 1 .4 .10 . We have 

chosen to introduce first the measures and then heights for simplicity of the exposition. 

Nevertheless, the approach followed in the li terature is the inverse, because the proof 

of Theorem 1 . 4 . 1 0 relies on the properties of local heights. The interested reader can 

consult [ C h a l l ] for more details. 

Remark 1.4.13. — Definition 1 . 4 . 1 1 works bet ter when the variety X is projective. 

In this case, for every cycle Y there exist sections tha t meet Y properly, thanks to 

the moving lemma. This does not necessarily occur for arbitrary proper varieties. 

Nevertheless, we will be able to define the global height (Definition 1 .5 .9 ) of any cycle 
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of a proper variety by using Chow's lemma. Similarly we will be able to define the 

toric local height (Definition 5.1.1) of any cycle of a proper toric variety. 

Remark 1.4.14. — When X is regular and the metrics are smooth (in the Archimedean 

case) or algebraic (in the non-Archimedean case), the local heights of Definition 1.4.11 

agree with the local heights tha t can be derived using the Gillet-Soule arithmetic 

intersection product. In particular, in the Archimedean case, this local height agrees 

with the Archimedean contribution of the Arakelov global height introduced by Bost, 

Gillet and Soule in [BGS94] . In the non-Archimedean case, the local height with 

respect to an algebraic metric can be interpreted in terms of an intersection product. 

Assume tha t Y is prime and choose models ( A ^ , / ^ , ^ ) of (X,Li) tha t realize the 

algebraic metrics of Li. Without loss of generality, we assume tha t all the models Xi 

agree with a common model X. The sections sfCi can be seen as rational sections of 

Ci over X. Wi th the notations in Definition 1.3.15, the equation (1.3.3) implies tha t 

l o g | M f r ) l l 
\og\w\ovàv{sfd) 

edordy(ro) 

Therefore, in this case the recurrence in Definition 1.4.11(2) can be written as 

(Y •div(sdyìsoì...,sd-i) 
•L^O ,...,L>D-L (Ydiv(sdyìsoì...,sd-i) 

log M 

e0.. .ed 
vey(00) 

ordy 0 0 degCo,...,cd.AV). 

Remark 1.4.15. — It is a fundamental observation by Zhang [Zha95b] tha t the non-

Archimedean contribution of the Arakelov global height of a variety can be expressed 

in terms of a family of metrics. In particular, this global height only depends on 

the metrics and not on a particular choice of models, exhibiting the analogy between 

the Archimedean and non-Archimedean settings. The local heights were extended by 

Gubler [Gub02, Gub03] to non-necessarily discrete valuations and he also weakened 

the hypothesis of proper intersection. 

Remark 1.4.16. — The local heights of Definition 1.4.11 agree with the local heights 

introduced by Gubler, see [Gub03, Proposition 3.5] for the Archimedean case and 

[Gub03, Remark 9.4] for the non-Archimedean case. In the Archimedean case, the 

local height in [Gub03] is defined in terms of a refined star product of Green currents 

based on [Bur94]. The hypothesis needed in Gubler's definition of local heights are 

weaker than the ones we use. We have chosen the current definition because it is more 

elementary and suffices for our purposes. 

Theorem 1.4.17. — The local height function satisfies the following properties. 

1 . It is symmetric and multilinear with respect to (g) in the pairs (Li,S{), i — 

0 , . . . , d, vrovided that all terms are defined. 
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2. Let Lp: X' —>• X be a morphism of proper varieties over K, Y a d-dimensional 

cycle of X', and (Li, Si), i = 0 , . . . , d, a collection of DSP metrized line bundles 

on X with a section. Then 

h - — 
ip* L0,...,(f* Ld 

(Y]ip*s0i... ,^sd) (Y •div(sdyìsoì...,sd-i) 

provided that both terms are defined. 

3. Let X be a proper variety over K, Y a d-dimensional cycle of X, and (Li, s^), i = 

0 , . . . , d, a collection of DSP metrized line bundles on X with sections that meet 

Y properly. Let f be a rational function such that the sections SQ, ..., Sd-i, fsd 

also meet Y properly. Let Z be the zero-cycle Y • div(so) • • • d iv(sd_i) . Then 

hL0,...,Ld(F' so, • • •, Sd- i , sd) - hTo^^d(Y; 50, . . . , sd-ufsd) = log \f(Z)\, 

where, if Z = Y,i mpi, then f(Z) = Ht f(pi)rni. 

4- Let Ld = (Ld, || • HO be another choice of metric. Then 

(Y •div(sdyìsoì...,sd-i) (Y;s0, -..,sd) ^Lo,...,Ld-i,Ld (Y;s0,---,sd) = 

Xb 
l o g d l ^ ^ l l / H ^ ^ I I O c x ^ A Ac i (Ld_ i ) Aöy 

is independent of the choice of sections. 

Proof. — In the Archimedean case, s tatement (1) is [Gub03, Proposition 3.4], state­

ment (2) is [Gub03, Proposition 3.6]. In the non-Archimedean case, s tatement (1) 

and (2) are [Gub03, Remark 9.3]. The other two statements follow easily from the 

definition. • 

1.5. Metrics and global heights over adelic fields 

To define global heights of cycles, we first introduce the notion of adelic field, which 

is a generalization of the notion of global field. In [Gub03] one can find a more general 

theory of global heights based on the concept of M-fields. 

Definition 7.5.1. — Let K be a field and dJl a family of absolute values on K. with 

positive real weights. The elements of DJl are called places. For each place v G 9)1 we 

denote by | • \v the corresponding absolute value, by nv G M>o the weight, and by Kv 

the completion of IK with respect to | • \v. We say tha t (K, 9JI) is an adelic field if 

1. for each v G the absolute value | • \v is either Archimedean or associated to 

a nontrivial discrete valuation; 

2. for each a G K x , \a\v — 1 except a for a finite number of v. 

For an adelic field (IK, 971) and a G IKX, the defect of a is 

def (a) = 

xC m 
nv l og l aL 
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Since def: 1KX —> R is a group homomorphism, we have that def(IK x) is a subgroup 

of R. If def(IK x) = 0, then K is said to satisfy the product formula. The group of 

global heights of K is R/def ( IK x ) . 

Observe tha t the complete fields Kv are either R, C or of the kind of fields consid­

ered in § 1 . 3 . 

Definition 1.5.2. — Let (K, 971) be an adelic field and F a finite extension of IK. For 

each v G 971, put yiv for the set of absolute values | • \ w of F tha t extend \ • \ V l with 

weight 

nw — 
\¥w : Kv] 

[F : K] •nv. 

Set 0 1 = J J ^ ÇKU. Then (F, 91 ) is an adelic field. In this case, we say that (F, 0 1 ) is an 

adelic field extension of (IK, 971). 

The classical examples of adelic fields are number fields and function fields of curves. 

Example 1.5.3. — Let 971Q be the set of the Archimedean and p-adic absolute values 

of Q, normalized in the s tandard way, with all weights equal to 1. Then (Q, 971Q) 

is an adelic field tha t satisfies the product formula. We identify 97TQ with the set 

{oc} U {primes of Z} . For a number field IK, the construction in Definition 1.5.2 gives 

an adelic field (IK, 97TJK) which satisfies the product formula too. 

Example 1.5.4. — Consider the function field K(C) of a smooth projective curve C 

over a field A:. For each closed point v G C and a G K(C)X, we denote by oidv(a) the 

order of a in the discrete valuation ring Oc,v We associate to each v the absolute 

value and weight given by 

\a\v = ck 

ordv (a) nv = [k(v) : k] 

with 

Ck = 
e if #/c = oo, 

#k if #/c < oo. 

Let WIK(C) denote this set of absolute values and weights. The pair (K(C), 9JIK(C)) 

is an adelic field which satisfies the product formula, since the degree of a principal 

divisor is zero. 

More generally, let K be a finite extension of K(C). Following Definition 1.5.2 

we obtain an adelic field extension (K, 971k/k(C))- I N this geometric setting, this 

construction can be explicited as follows. Let it: B -> C be a dominant morphism 

of smooth projective curves over k such tha t the finite extension K(C) ^ IK can be 

identified with 7r*: K(C) ^ K{B). For a closed point v G (7, the absolute values 

of IK tha t extend \ - \ v are in bijection with the closed points of the fiber of v. For each 
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closed point w £ TT 1(V), the corresponding absolute value and weight are given, for 

6 £ K(B)X, bv 

\ß\w = Ck 
ordw(ß) 

7lw — 
ew[k(w) : k] 

[K(B):K(C)Y 

where ew is the ramification index of w over v. Observe tha t the structure of adelic 

field on IK depends on the extension and not just on the field K(B). For instance, 

(K(C), 9JIK(C)) corresponds to the identity map C —> C in the above construction, 

but other finite morphism TT : C —>> C may give a different structure of adelic field on 

K(C). The projection formula for the map TT implies that , for each v £ %RK(C)-> the 

equation 

[K : K{C)\ : 

w\v 

JK«, : K(CU 

is satisfied. From this, it is easy to deduce tha t (IK,$JIk/K(C)) satisfies the product 

formula. 

A simple example of an adelic field tha t does not satisfy the product formula is 

constructed below. This kind of adelic fields can be useful when studying arithmetic 

intersection on moduli spaces (see for instance [BBK07, §6]). 

Example 1.5.5. — Let iV > 2 be an integer write 9JIn — {p £ 9JTQ | p \ N} and 

K = (O, Mm). Then IK is an adelic field and 

def(Kx) = 

p\JN 

Zlog(p) . 

Definition 1.5.6. — Let (IK, 9JI) be an adelic field. Let X be a proper variety over IK and 

L a line bundle on X. For each v £ 9JI set Xv = XxSpec(Kv) and Lv = LxSpec(Kv). 

A metric on L is a family of metrics || • \\v, v £ OT, where || • \\v is a metric on L^n. We 

will denote by L = (L, (|| • \\v)v) the corresponding metrized line bundle. This metric is 

said to be semipositive (respectively DSP) if || • \\v is semipositive (respectively DSP) 

for all v £ №. 
Let Y be a d-dimensional cycle of X and (Z^, s^), i — 0 , . . . , DSP metrized line 

bundles on X with rational sections meeting Y properly. For v £ 9Jt, we note 

hv,L0,...,Ld (Y;s0,...,sd) LqíV ,...,Ld:v (Y •div(sdyìsoì...,sd-i) 

where s¿jV is the rational section of Ll:V induced by s¿. 

For cycles defined over an arbitrary adelic field, the global heights with respect to 

DSP metrized line bundles may not be always defined. An obvious class of cycles 

where the global height is well-defined is the following. 

Definition 1.5.7. — Let (IK, IDT) be an adelic field, X a proper variety over IK and L¿, 

i = 0 , . . . , d, a family of DSP metrized line bundles on X. Let Y be a d-dimensional 

irreducible subvariety of X. We say tha t Y is integrable with respect to L o , . . . , Ld if 

there is a birational proper map (p: Y' —> Y with Y' projective, and rational sections 
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Si of if*Li, i — 0 , . . . , d, meeting Y' properly, such that for all but a finite number of 

v em, 

h — — 
v,ip* L0,...,ip*Ld 

{Y';s0,...,sd) = 0. 

A d-dimensional cycle is integrable if all its components are integrable. 

It is clear from the definition tha t the notion of integrability of cycles is closed under 

tensor products of DSP metrized line bundles. In addition, it satisfies the following 

properties. 

Proposition 1.5.8. — Let (K, 97T) be an adelic field, X a proper variety over K and Li, 

i — 0 , . . . , d, a family of DSP metrized line bundles on X. 

1 . Let Y be a d-dimensional irreducible subvariety of X which is integrable with 

respect to Li, i = 0 , . . . , d. Let Lp:Y'-^Y be a proper birational map, with Y' 

projective, and Si, i = 0 , . . . ,d, rational sections of ip*Li meeting Y' properly. 

Then 

h - -v,(f* L0,...,(f* Ld (Y'',s0,...,sd) = 0 

for all but a finite number of v G 97t. 

2. Let vp: X' —> X be a morphism of proper varieties over K and Y a d-dimensional 

cycle of X'. Then Y is integrable with respect to IJJ*LQ, ..., ip*Ld if and only if 

ijj*Y is integrable with respect to LQ, ..., Ld. 

Proof — To prove (1), we start by assuming that there are rational sections s[, 

i = 0 , . . . , d, of ^p*Li meeting Y' properly such that 

nv,<¿>* L0,...,(f* Ld (Y';S'...,s')=0 

for all but a finite number of v G 971. Since Y' is projective, there are rational sections 

s'( of if* Li, i = 0 , . . . , d, such that , for any parti t ion / U J = { 0 , . . . , d } , both families 

of sections {si,i G I,s",j G J} and {s[,i G I,s",j G J} meet Y' properly. Using the 

definition of adelic field and Theorem 1.4.17(3) we can deduce tha t 

h — — (Y'',s0,...,sd)=0 

for all but a finite number of v G 971, which proves the statement in this case. 

We prove now the general case. Then there is a birational proper map 

Y" ^ Y, 

with Y" projective, and sections s[ of <p'*Li, i = 0 , . . . ,d, meeting Y" properly such 

tha t 

Lo,•••>¥'* Ld (Y";S'o,...,s'd) = 0 
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for all but a finite number of v € SDT. There is a commutative diagram of proper 

birational morphisms 

Y" 
y' 

Y 

y 

Y'. 
ym 

yin 

y''' 

Since Y' and Y" are projective, we can find rational sections s'^ i = 0 , . . . , d, of <p*Li 

meeting Y' properly and such tha t the family of sections i = 0 , . . . , d, meet 

Y'" properly, and rational sections s", i = 0 , . . . , d, of (pf*Li meeting Y" properly and 

such tha t the family of sections <//"*s", i = 0 , . . . , d, meet Y"' properly. Then we 

deduce the result in this case from the previous case and Theorem 1.4.17(2). 

The proof of (2) can be done in a similar way. • 

Definition 1.5.9. — Let X be a proper variety over IK, Lo, . • •, L¿ DSP metrized line 

bundles on X, and Y an integrable d-dimensional irreducible subvariety of X. Let 

Y' and s o , . . •, Sd be as in Definition 1.5.7. The global height of Y with respect to 

SQ, . . . , Sd is defined as 

^L0:...,Ld ( F ; s 0 , ...,sd) = 

d xM 
nv K^*L0,.fhfh..^*Ld ( y , ; s 0 , . . . , S d ) e R . 

The global height of Y, denoted hj;o zd0^), ŝ ^ne class °f nL0 Ld(¥', «o? • • • ? sd) in 

the quotient group R /de f (Kx) . The global height of integrable cycles is defined by 

linearity. 

Observe tha t the global height is well-defined as an element of R/def (Kx) because 

of Theorem 1.4.17(3). In particular, if IK satisfies the product formula, the global 

height is a well-defined real number. 

Proposition 1.5.10. — Let (F, 01) be a finite adelic field extension o / (K, Let X be 

a K-variety, Li, i = 0 , . . . , d, DSP metrized line bundles on X and Y a d-dimensional 

integrable cycle on X. Let TT: Xf —> X be the morphism obtained by base change. 

Denote by Yy and 7r*L¿; i — 0 , . . . ,d — \, the cycle and DSP metrized line bundles 

obtained by base change. Then 

n7r*L0,...,7T*Ld ( ^ F ) = h r o _ r d ( y ) in R / def(F). 

Proof. — This is proved by induction using Proposition 1.4.7 in the algebraic case 

and the formula for the change of variables of an integral in the smooth case. Then 

the semipositive case follows by continuity and the DSP case by multilinearity. • 

Theorem 1.5.11. — The global height of integrable cycles satisfies the following prop­

erties. 

1 . It is symmetric and multilinear with respect to tensor products of DSP metrized 

line bundles. 
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2. Let (f : X' —X be a morphism of proper varieties over K, Li, i = 0 , . . . , d, DSP 

metrized line bundles on X. Let Y be a d-dimensional cycle of X', integrable 

with respect to the metrized line bundles ip*LQ, . . . , <p*L¿. Then 

(Y •div(sdyìsoì...,sd-i) = h l o . . . . J > . n 

Proof — The first s tatement follows from Theorem 1.4.17(1), while the second fol­

lows readily from Proposition 1.5.8(2) and Theorem 1.4.17(2). • 

We turn now our at tention to number fields and function fields. 

Definition 1.5.12. — A global field is a finite extension IK/Q or K/K(C) for a smooth 

projective curve C over a field /c, with the structure of adelic field given in exam­

ples 1.5.3 or 1.5.4, respectively. To lighten the notation, we will usually denote those 

global field by K and the set of places by although, in the function field case, 

the structure of adelic field depends on the particular extension. 

Our use of the terminology "global field" is slightly more general than the usual one 

where, in the function field case, the base field is finite and the extension is separable. 

Definition 1.5.13. — Let IK be a global field. Let X be a proper variety over IK and L a 

line bundle on X. For each v £ set Xv = XxSpec(IKv) and Lv = LxSpec(IKv). A 

metric on L is called quasi-algebraic if there exists a finite subset S C 9JIk containing 

the Archimedean places, an integer e > 1 and a proper model (X,C,e) over IK^ of 

(X,L) such that , for each v ^ 5 , the metric || • \\v is induced by the localization of 

this model at v. 

For global fields and quasi-algebraic metrics, all cycles are integrable. 

Proposition 1.5.14. — Let IK be a global field and X a proper variety over IK of di­

mension n. Let d < n and Li, i = 0 , . . . , d, a family of line bundles with quasi-

algebraic DSP metrics. Then every d-dimensional cycle of X is integrable with respect 

to L 0 , . . • , L¿. 

Proof. — It is enough to prove tha t every prime cycle is integrable. Applying Chow's 

lemma to the support of the cycle and using tha t the inverse image of a quasi-algebraic 

metric is quasi-algebraic, we are reduced to the case when X is projective. 

We proceed by induction on the dimension of Y. For Y — 0 , the statement is 

clear, and so we consider the case when d — d i m ( y ) > 0. Let Y be a d-dimensional 

cycle of X and s¿, i = 0, . . . , d , rational sections of Li tha t intersect Y properly. 

Let Y be the normalization of Y. By the hypothesis of quasi-algebricity, there is a 

finite subset S C 9JIK containing the Archimedean places such tha t there exists a 

normal proper model y over ~K°S of Y and models £¿ of Lfei \y, i = 0 , . . . , d, for some 

integers ei > 1, all of them being line bundles over y. Then sfGd\y is a nonzero 

rational section of C¿ and so it defines a finite number of vertical components. Let 

v £ S be a place tha t is not below any of these vertical components. Let yv be 
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the fibre of y over v. Let V}, j = 1 , . . . b e the components of this fibre, and £j 

the corresponding points of Fan given by Proposition 1.3.3. On the one hand, the 

measure Ci(Lo) A • • • A c i ( L ^ - i ) A 8y is concentrated on these points. On the other 

hand, by Proposition 1.3.8, ||sd(£j)IU,̂  — 1 f°r j - Hence, 

K,L0,...,Ld 
(Y •div(sdyìsoì...,sd-i) 

nv,L0,...,Ld_i (Y - d i v ( s d ) ; s o , . . . , S d _ i ) , 

because of the definition of local heights. The statement follows then from the induc­

tive hypothesis. • 

ASTÉRISQUE 360 



CHAPTER 2 

THE LEGENDRE-FENCHEL DUALITY 

In this chapter, we explain the notions of convex analysis tha t we will use in our 
study of the arithmetic of toric varieties. The central theme is the Legendre-Fenchel 
duality of concave functions. A basic reference in this subject is the classical book by 
Rockafellar [Roc70] and we will refer to it for many of the proofs. 

Although the usual references in the literature deal with convex functions, we 
will work instead with concave functions. These are the functions which arise in the 
theory of toric varieties. In this respect, we remark tha t the functions which are called 
"convex" in the classical books on toric varieties [KKMS73, Ful93] are concave in 
the sense of convex analysis. 

2.1. Convex sets and convex decompositions 

Let ~ Rn be a real vector space of dimension n and = its dual space. 
The pairing between x G MJR and u G will be alternatively denoted by (x, u), x(u) 
or u(x). 

A non-empty subset C of is convex if, for each pair of points u\,U2 G C, the 
line segment 

U\U2 = {tui + {l-t)u2 | 0 < t < 1} 

is contained in C. Throughout this text, convex sets are assumed to be non-empty. 
A non-empty subset a C ATR is a cone if Xa = a for all A G M>o-

The affine hull of a convex set C, denoted aff(C), is the minimal affine space which 
contains it. The dimension of C is defined as the dimension of its affine hull. The 
relative interior of (7, denoted r i (C), is defined as the interior of C relative to its 
affine hull. The recession cone of C, denoted by rec(C), is the set 

rec(C) = { ^ G A r M | C + ^ C C 7 } . 
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It is a cone of N^. The cone of С is defined as 

c C = R>0(Cx {!}; С iVM x M>0. 

It is a closed cone. If С is closed, then r e c ( L 7 ) x { 0 } - c ( u 7 ) n ( 7 V M x { 0 } ) . 

Definition 2.1.1. — Let C be a convex set. A convex subset F C C is called a /ace 
of C if, for every closed line segment u\U2 C C such tha t r i ^ i ^ ) n F / 0 , the 
inclusion u\U2 C .F holds. A face of C of codimension 1 is called a facet. A non­
empty subset F C C is called an exposed face of (7 if there exists x G such 
tha t 

F = {и G С I (ж, и) < (ж, v), W G С } . 

Any exposed face of a convex set is a face, and the facets of a convex set are always 
exposed. However, a convex set may have faces which are not exposed. For instance, 
think about the four points of junction of the straight lines and bends of the boundary 
of the inner area of a racing track in a stadium. 

Definition 2.1.2. — Let II be a non-empty collection of convex subsets of A^. The 
collection n is called a convex subdivision if it satisfies the conditions: 

1. every face of an element of n is also in n; 

2. every two elements of n are either disjoint or they intersect in a common face. 

If n satisfies only (2), then it is called a convex decomposition. The support of n is 
defined as the set |XT| = Ucen ^- We sa^ tha t ^ is complete if its support is the 
whole of N^. For a given set E C A^, we say tha t n is a convex subdivision (or 
decomposition) in E whenever IIII C E. A convex subdivision in E is called complete 
if |П| = E. 

For instance, the collection of all faces of a convex set defines a convex subdivision of 
this set. The collection of all exposed faces of a convex set is a convex decomposition, 
but it is not necessarily a convex subdivision. 

In this text, we will be mainly concerned with the polyhedral case. Since we will 
only deal with polyhedra which are convex, we call them polyhedra for short. 

Definition 2.1.3. — A polyhedron of is a convex set defined as the intersection of 
a finite number of closed halfspaces. It is called strongly convex if it does not contain 
any line. A polyhedral cone is a polyhedron a such tha t Xa = a for all Л > 0. A 
polytope is a bounded polyhedron. 

For a polyhedron, there is no difference between faces and exposed faces. 
By the Minkowski-Weyl theorem, polyhedra can be explicitly described in two 

dual wavs. either bv the H-revresentation, as an intersection of half-spaces, or by 
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the V-representation, as the Minkowski sum of a cone and a polytope [Roc70, The­

orem 19.1]. An H-representation of a polyhedron A in A R is a finite set of affine 

equations <^j)}i<j<fc C M R x R so tha t 

A = 

f< j<K 
|i¿ G AR I {a3lu) -\- cij > Uj. (2.1.1) 

With this representation, the recession cone can be writ ten as 

rec(A) = 

d<j<k 
{ue NR I (aj,u) > 0 } . 

A V-representation of a polyhedron A ' in A R consists in a set of vectors {bj}i<j<k 

in the tangent space TQNu(— A R ) and a non-empty set of points {bj}k+i<j<i C A R 

such tha t 

A' — c o n e ( ò i , . . . , bk) conv(6fc+i,... ,0/) (2.1.2) 

where 

cone (6 i , . . . ,6fc) : = 
fg 

fgf.7 = 1 

fg A7 > 0 

is the cone generated by the given vectors (with the convention that cone(0) = {0}) 

and 

conv(6fe+i, . . . ,6/) := 

j = k+1 
Xjbj A7 > 0. 

i 

7=/c+l 

yj = 1 

is the convex hull of the given set of points. With this second representation, the 

recession cone can be obtained as 

rec(A ) = cone(&i, ...,&&). 

Definition 2.1.4. — A polyhedral complex in A R is a finite convex subdivision whose 

elements are polyhedra. A polyhedral complex is called strongly convex if all of its 

polyhedra are strongly convex. It is called conic if all of its elements are cones. A 

strongly convex conic polyhedral complex is called a fan. If II is a polyhedral complex, 

we will denote by IP the subset of ¿-dimensional polyhedra of ^ . In particular, if £ 

is a fan, is its subset of ¿-dimensional cones. 

There are two natural processes for linearizing a polyhedral complex. 

Definition 2.1.5. — The recession of II is defined as the collection of polyhedral cones 

of A R given by 

rec(n) = {rec(A) | A G I I} . 

The cone of II is defined as the collection of cones in A R x R given by 

c(n) - { c(A) I A G n } U {a x {0} I a G rec(IT)}. 
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It is natural to ask whether the recession or the cone of a given polyhedral complex 
is a complex too. The following example shows that this is not always the case. 

Example 2.1.6. — Let II be the polyhedral complex in R3 containing the faces of the 
polyhedra 

A: = {(x1,x2,0)\xi,x2 > 0 } , A2 = {(X1,X2, 1) | X] +x2,xi -x2> 0 } . 

Then rec(Ai) and rec(A2) are two cones in R2 x { 0 } whose intersection is the cone 
{(xi,x2,0)\x2,x\ — x2 > 0 } . This cone is neither a face of rec(Ai) nor of rec(A2). 
Hence rec(II) is not a complex and, consequently, neither is c(II). In Figure 1 we 
see the polyhedron Ai in light grey, the polyhedron A2 in darker grey and rec(A2) as 
dashed lines. 

x1 

X-2 

X3 

FIGURE 1. 

Therefore, to assure that rec(LT) or c(II) are complexes, we need to impose some 
condition on II. This question has been addressed in [BS11]. Because of our appli­
cations, we are mostly interested in the case when II is complete. It turns out that 
this assumption is enough to avoid the problem raised in Example 2.1.6. 

Proposition 2.1.7. — Let II be a complete polyhedral complex in JVR. Then rec(LI) 
and c(n) are complete conic polyhedral complexes in NR and NR X R>O, respectively. 
If, in addition, II is strongly convex, then both rec(II) and c(II) are fans. 

Proof. — This is a particular case of [BS11, Theorem 3.4]. 

Definition 2.1.8. — Let LTi and II2 be two polyhedral complexes in NR. The complex 
of intersections of LTx and LT2 is defined as the collection of polyhedra 

ni • n2 = {Ai n A2 Ai eIIi,A2 en2}. 
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Lemma 2.1.9. — The collection Hi • n2 is a polyhedral complex. If Hi and n2 are 
complete, then 

rec(Ili • n2) = rec(IIi) • rec(n2). 

Proof. — Using the H-representation of polyhedra, one verifies that , if Ai and A2 are 
polyhedra with non-empty intersection, then any face of Ai D A2 is the intersection 
of a face of Ai with a face of A2. This implies tha t II1 • II2 is a polyhedral complex. 

Now suppose tha t II1 and LT2 are complete. Let a G rec(IIi • II2). This means tha t 
a = rec(A) and A = Ai D A2 with A^ G HV It is easy to verify tha t A / 0 implies 
rec(A) = rec(Ai) D rec(A2). Therefore a G rec(IIi) • rec(il2). This shows 

rec (ni • n2) C rec (n i ) • rec(n2). 

Since both complexes are complete, they agree. 

We consider now an integral structure in A R . Let N ~ Zn be a lattice of rank n 
such tha t NR = Set M = Nv = Hom(N, Z) for its dual lattice so M R = M ® R . 
We also set NQ = A" ® Q and M Q = M ® Q. 

Definition 2.1.10. — Let A be a polyhedron in A R . We say tha t A is a lattice polyhe­
dron if it admits a V-representation as (2.1.2) with integral vectors and points, tha t is, 
with bj G A^ for j — 1 . . . , I. We say tha t it is rational if it admits a V-representation 
with bj G A Q for j = 1 , . . . , /. 

Observe tha t any rational polyhedron admits an H-representation as (2.1.1) with 
dj G M and ctj G Z, for j = 1 , . . . .k. 

Definition 2.1.11. — Let II be a strongly convex polyhedral complex in ATR. We say 
that n is lattice (respectively rational) if all of its elements are lattice (respectively 
rational) polyhedra. For short, a strongly convex rational polyhedral complex is called 
an SCR polyhedral complex. A conic SCR polyhedral complex is called a rational fan. 

Remark 2.1.12. — The statement of Proposition 2.1.7 is compatible with rational 
structures. Namely, if n is rational, the same is t rue for rec(n) and c(II). 

Corollary 2.1.13. — The correspondence H H> c(Il) is a bisection between the set of 
complete polyhedral complexes in NR and the set of complete conical polyhedral com­
plexes in A R x M>o. Its inverse is the correspondence that, to each conic polyhedral 
complex E in A R xR>0 corresponds the complex in NR obtained by intersecting H with 
the hyperplane A R X {1}. These bisections preserve rationality and strong convexity. 

Proof. — This is [BS11, Corollary 3.121. 
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2.2. The Legendre-Fenchel dual of a concave function 

Let A/r and M R be as in the previous section. Set R = R U {—oo} with the natural 
order and arithmetic operations. A function / : A R —>> R is concave if 

f(tUl + (1 - *)u2) > if(ui) + (1 - *)/(u2) 
for all г¿l,г¿2 G A^R, 0 < ^ < 1 and / is not identically — oo. Observe tha t a function 

/ is concave in our sense if and only if — / is a proper convex function in the sense 

of [Roc70]. The effective domain d o m ( / ) of such a function is the subset of points 

of A/^ where / takes finite values. It is a convex set. A concave function / : A R - > R 

defines a concave function with finite values / : d o m ( / ) —>> R. Conversely, if / : C —± R 

is a concave function defined on some convex set C, we can extend it to the whole of 

A^R by declaring tha t its value at any point of A R \C is — oo. We will move freely 

from the point of view of concave functions on the whole of A^R with possibly infinite 

values to the point of view of real-valued concave functions on arbitrary convex sets. 

A concave function is closed if it is upper semicontinuous. This includes the case 

of continuous concave functions defined on closed convex sets. Given an arbitrary 

concave function, there exists a unique minimal closed concave function above / . 

This function is called the closure of / and is denoted by c l ( / ) . 

Let f be a concave function on A R . The Legendre-Fenchel dual of f is the function 

/V : MR > R, inf 
dgvxfg 

(Y •div(sdyìsoì... 

It is a closed concave function. The Legendre-Fenchel duality is an involution between 

such functions: if / is closed, then /vv = / [Roc70, Corollary 12.2.1]. In fact, for 

any concave function / we have / v v = c l ( / ) . 

The effective domain of / v is called the stability set of f. It can be described as 

s t a b ( / ) - d o m ( / v ) = {x G M R I (x,u) - f(u) is bounded below}. 

Example 2.2.1. — The indicator function of a convex set C C A R is the concave 

function ic defined as lc(u) — 0 for u G C and lc(u) = — oo for u 0 C. Observe tha t 

be is the logarithm of the characteristic function of C. This function is closed if and 

only if C is a closed set. 

The support function of a convex set C is the function 

: M R —> R x i—> inf (x, u). 
AC 

It is a closed concave function. A function / : —> R is called conical if f(Xx) = 

\f(x) for all A > 0. The support function is conical. The converse is also true: 

all conical closed concave functions are of the form f°r a closed convex set C. 

We have = and ~ cKLc) — l~c- Thus, the Legendre-Fenchel duality 

defines a bijective correspondence between indicator functions of closed convex subsets 

of A/r and closed concave conical functions on M r . 
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Next result shows tha t the Legendre-Fenchel duality is monotonous. 

Proposition 2.2.2. — Let f and g be concave functions such that g(u) < f{u) for 

all u G A R . Then dom(g) C d o m ( / ) ; stab(g) D s t a b ( / ) and gw (x) > fy{x) for 

all x G M R . 

Proof. — It follows directly from the définitions. 

The Legendre-Fenchel duality is continuous with respect to uniform convergence. 

Proposition 2.2.3. — Let (fi)i>i be a sequence of concave functions which converges 

uniformly to a function f. Then f is a concave function and the sequence (f^)i>i 

converges uniformly to fy. In particular, there is some io > 1 such that dom(/^) = 

d o m ( / ) and stab(fi) — stab ( / ) for all i > io-

Proof. — Clearly / is concave. Let e > 0. Then there is an io such that , for all i > ¿0, 

/ — e < fi < f + e. By Proposition 2.2.2 this implies d o m ( ^ ) = d o m ( / ± e ) = d o m ( / ) 

and s tab( / i ) = s t a b ( / ± e) — s t a b ( / ) and tha t 

/ v _ e = ( / + £ ) v < / , v < ( / - e ) v = / v + £ , 

which implies the uniform convergence of fy to / v . 

The classical Legendre duality of strictly concave differentiable functions can be 

described in terms of the gradient map V / , called in this setting the "Legendre trans­

form". We will next show tha t the Legendre transform can be extended to the general 

concave case as a correspondence between convex decompositions. 

Let / be a concave function on TVR. The sup-differential of / at a point u G NR is 

defined as the set 

df(u) = {x G M M I (x,v- u) > f(v) f(u) for all v G A U 

if u G d o m ( / ) , and the empty set if u 0 d o m ( / ) . For an arbitrary concave function, 

the sup-differential is a generalization of the gradient. In general, df(u) may contain 

more than one point, so the sup-differential has to be regarded as a multi-valued 

function. 

We say tha t / is sup-differentiable at a point u G A R if df(u) 7̂  0 . The effective 

domain of 9 / , denoted d o m ( 9 / ) , is the set of points where / is sup-differentiable. For 

a subset E c A R we define 

df(E) = 
sdgfsg 

df(u). 

In particular, the image of df is defined as im(df) = 9 / ( A R ) . 

The sup-differential df(u) is a closed convex set for all u G d o m ( 9 / ) . It is bounded 

if and only if u G r i (dom( / ) ) . Hence, in the particular case when d o m ( / ) = A R , we 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



46 CHAPTER 2. THE LEGENDRE-FENCHEL DUALITY 

have tha t df(u) is a bounded closed convex subset of M R for all u G TVR. The effective 
domain of the sup-differential is not necessarily convex but it differs very little from 
being convex since, by [Roc70, Theorem 23.4], it satisfies 

r i (dom( / ) ) C d o m ( 9 / ) C d o m ( / ) . 

Let / be a closed concave function and consider the pairing 

Pf ' M R x NM 1, (u, x) f(u) + r(x)-(x,u). (2.2.1) 

This pairing satisfies Pf(u, x) < 0 for all u, x. 

Proposition 2.2A. — Let f be a closed concave function on TVR. For u G 7VR and 
x G M R ; the following conditions are equivalent: 

1 . xe df{u); 

2. ue dfy{x); 

3. Pf(u,x) = 0. 

Proof — This is proved in [Roc70, Theorem 23.5]. • 

If / is closed, then im(df) = dom(<9/v) and so the image of the sup-differential is 
close to be a convex set, in the sense tha t 

ri(stab(/)) C im{df) C stab(/). (2.2.2) 

Definition 2.2.5. — Let / be a closed concave function on TVR. We denote by I I ( / ) 
the collection of all sets of the form 

Cx :=dfv(x) 

for some x G stab(/). 

Lemma 2.2.6. — Let f be a closed concave function on TVR. Let x G s t a b ( / ) . Then 
Cx = {u G TVR I Pf(u,x) — 0}. In other words, the set Cx is characterized by the 
condition 

f(u) = (x,u)-fv(x)foru€Cx and f(u)<{x,u)-fv{x)foru$Cx. (2.2.3) 

Thus the restriction of f to Cx is an affine function with linear part given by x, and 
Cx is the maximal subset where this property holds. 

Proof. — The first s tatement follows from the equivalence of (2) and (3) in Propo­
sition 2.2.4. The second statement follows from the definition of Pf and its non-
positivity. • 

The hypograph of a concave function / is defined as the set 

hypo( / ) = {(u,A) \ueNVi,\<f{u)}cNRxn. 
A face of the hypograph is called non-vertical if it projects injectively in ]VR. 
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Proposition 2.2J. — Let j be a closed concave function on NR. For a subset C C NR, 

the following conditions are equivalent: 

L Ce 11(f); 

2. C = {ueNR\xe df(u)} for axe MR; 

3. there exist xc e MR and Ac e R such that the set {(u, (xc,u) — Ac) | u e C} 

is an exposed face of the hypograph of f. 

In particular, the correspondence 

(Y •div(sdyìsoì...,sd-i) r(x))\ueCx} 
is a bisection between I I ( / ) and the set of non-vertical exposed faces of h y p o ( / ) . 

Proof — The equivalence between the conditions (1) and (2) comes directly from 

Proposition 2.2.4. The equivalence with the condition (3) follows from (2.2.3). • 

Proposition 2.2.8. — Let f be a closed concave function. Then U(f) is a convex 

decomposition of dom(df). 

Proof. — The collection of non-vertical exposed faces of hypo( / ) forms a convex 

decomposition of a subset of NR x R. Using Proposition 2.2.7 the projection to 

NR of this decomposition agrees with I I ( / ) and so, it is a convex decomposition of 

| I I ( / ) | = d o m ( 0 / ) . • 

We need the following result in order to properly define the Legendre-Fenchel cor­

respondence for an arbitrary concave function as a bijective correspondence between 

convex decompositions. 

Lemma 2.2.9. — Let f be a closed concave function and C e Lt( / ) . Then for any 

u0 e ri(C), 

sdg 

df(u) = df(u0). 

Proof. — Fix XQ e dom(<9fv) such tha t C — CXn and UQ e r i (C). Let x e df(uo). 

Then 

(x,v- u0) > f(v) - f(u0) for all v e NR (2.2.4) 

Let u e C. By (2.2.3), we have f(u) — f(uo) — (xo, U — UQ) and so the above inequality 

implies (x, u — UQ) > (xo, u — г¿o). The fact г¿o G ri(C) implies г¿o + A(г¿o — u) e C for 

some small A > 0. Applying the same argument to this element we obtain the reverse 

inequality (x,u — UQ) < (XQ, U — UQ) and so 

(x — Xn, u — Un) = 0. (2.2.5) 

In particular, f(u) — f(un) = (XQ, U — UQ) = (x,u — UQ) and from (2.2.4) we obtain 

(X, V - U) = (X, V - UQ) + f(u0) - f(u) > f(v) - f(u) for all v e NR. 
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Hence x E \ \uecdf\u) and so df(uo) cccr(C) = cf(c)). which implies the stated 

equality. 

Definition 2.2.10. — Let / be a closed concave function. The Legendre-Fenchel cor­

respondence of / is defined as 

cccr(C) = c n ( / v ) , c 

uec 

df(u). 

By Lemma 2 . 2 . 9 , Cf(C) — df(uo) for any UQ G r i (C). Hence, 

Cf(C) e n ( / v ) . 

Definition 2.2.11. — Let £" be subsets of NR and M R respectively, and n , n; convex 

decompositions of E and E'', respectively. We say tha t n and IT are dual convex 

decompositions if there exists a bijective map II —>- IT, (7 ^> C* such tha t 

1. for all C, D G n we have C C L> if and only if C* D L>*; 

2 . for all C G n the sets C and (7* are contained in orthogonal affine spaces of TVR 

and M M , respectively. 

Theorem 2.2.12. — Le£ f be a closed concave function, then Cf is a duality between 

11(f) and U(fv) with inverse (Cf)'1 = Cfy. 

Proof — We will prove first tha t £ / v = (Cf)'1. Fix C G II ( / ) and set C = Cf(C). 

Let yo G M R such tha t C = Cyo and let un G r i ( C ) . Hence UQ G CYO = dfv(yo) and 

so yo £ df(uo) = C by Proposition 2 .2 .4 and Lemma 2 . 2 . 9 . Hence 

cccr(C) = cr(Cf(c)).sdg 

sdg 

dfv(x)cdr(y0) = c. 

On the other hand, let XQ G ri(C"). In particular, XQ G df(un) and so i£o G dfy(xo) = 

Cfw(C) for all ix0 e C. It implies 

cccr(C) = cr(Cf(c)). 

Thus Cfy(Cf(C)) — C and applying the same argument to fy we conclude tha t 

Cfw = (Cf)~l and tha t £ / is bijective. 

Now we have to prove that £ is a duality between I I ( / ) and n ( / v ) . Let C , D G n ( / ) 

such tha t C C D. Clearly, Cf(C) D Cf(D). The reciprocal follows by applying the 

same argument to / v . The fact tha t C and Cf(C) lie in orthogonal affine spaces has 

already been shown during the proof of Lemma 2 . 2 . 9 above, see ( 2 . 2 . 5 ) . • 

Definition 2.2.13. — Let / be a closed concave function. The pair of convex decom­

positions ( n ( / ) , n ( / v ) ) will be called the dual pair of convex decompositions induced 

b y / . 
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In particular, for C G I I ( / ) put C* := Cf(C). For any u0 G ri(C) and x0 G ri(C*), 

we have 

C = {ueNR\Pf{u,xo) = 0} and C 7 * - { x G M M | P / ( 7 i O , ^ ) - 0 } . 

Following (2.2.3), the restrictions f\c and fv\c* are affine functions. Observe tha t 

we can recover the Legendre-Fenchel dual from the Legendre-Fenchel correspondence 

by writing, for x G C* and any u G C, 

/ (z) = (a?,w) - / ( u ) . 

Example 22.14. — Let || • ||2 denote the Euclidean norm on R2 and B\ the unit 

ball. Consider the concave function / ' : B\ -> R defined as f(u) — — | H | 2 - Then 

stab(/) = R2 and the Legendre-Fenchel dual is the function defined by fy(x) = 0 

if IMI2 < 1 and / v ( x ) = 1 — ||x||2 otherwise. The decompositions and II( /V) 

consist of a collection of pieces of three different types and the Legendre-Fenchel 

correspondence Cf: H(f) —> n ( / v ) is given, for z G 5 1 , by 

Cf({0}) = B1 £f([0,l]-z) = {z} Cf({z})=R>1-z. 

In the above example both decompositions are in fact subdivisions. But this is not 

always the case, as shown by the next example. 

Example 2.2.15. — Let / : [0,11 —)• R the function defined by 

f(u) = 

-ulog(u) if 0 < u < e_1, 

e"1 if e"1 < u < 1 - e _ 1 , 

-(l-u)log(l-u) if 1 - e-1 < u < 1. 

Then stab(/) = R and the Legendre-Fenchel dual is the function fy{x) = x — ex 1 for 
x < 0 and fw(x) = - e - * - 1 for x > 0. Then dom(<9f) - (0,1) and dom((9/v) = R. 
Moreover, 

n ( / ) = ( O ^ - ^ U d e - S l - e - 1 ] } (1-e"1,!), n ( / v ) = R . 

The Legendre-Fenchel correspondence sends bijectively (0, e_1) to R>o and (1—e_1,1) 

to R<o, and sends the element [e_1,1 — e-1] to the point {0}. In this example, I I ( / ) 

is not a subdivision while II( /V) is. 

2.3. Operations on concave functions and duality 

In this section we consider the basic operations on concave functions and their 

interplay with the Legendre-Fenchel duality. 

Let fi and /2 t>e two concave functions on NR such tha t their stability sets are not 

disjoint. Their sup-convolution is the function 

/ 1 EB /2 : iVjR R, v sup 
Ui+U2=V 

/ l «1 +/2 «2 . 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



50 CHAPTER 2. THE LEGENDRE-FENCHEL DUALITY 

This is a concave function whose effective domain is the Minkowski sum d o m ( / i ) + 

dom(/2) . This operation is associative and commutative whenever the terms are 

defined. 

The operations of pointwise addition and sup-convolution are dual to each other. 

When working with general concave functions, there are some technical issues in this 

duality tha t will disappear when considering uniform limits of piecewise affine concave 

functions. 

Proposition 23.1. — Let / i , . . . , f\ be concave functions on NR. 

1. 7/stab ( / i ) H • • • nstab (//) ^ 0, then 

7/stab(/i) H • • • ns 7/stab(/i) H • • • ns 

In particular, s t ab ( / i EB • • • EB / / ) = s t ab ( / i ) H • • • fl s tab(/z) . 

2. J f d o m ( M n - - - n d o m ( f i ) + 0, then 

(cl(/1) + .-- + cl(//))v ciuffi-..ffl/zv). 
3. 7 / r i (dom( / i ) ) n • • • H ri(dom(/z)) ^ 0, then 

(/ i + --- + /z)v = / i v œ - - - œ / z v . 

In particular, s t ab( / i + ••• + /«) = s t ab ( / i ) + • • • + s tab( / / ) . 

Proof. — This is proved in [Roc70, Theorem 16.4]. 

Remark 2.3.2. — When some of the say / 1 , . . . , are piecewise afhne, the state­

ment (3) of the previous proposition holds under the weaker hypothesis [Roc70, 
Theorem 20.1] 

d o m ( / i ) n • • • n dom(/fc) Pi ri(dom(//c+1)) n • • • fl ri(dom(/0) + 0. 

Let / : A R -> R be a function. For A > 0, the left and right scalar multiplication of / 

by A are the functions defined, for u G A R , by (\f)(u) — Xf(u) and (fX)(u) = Xf(u/X) 

respectively. For a point uo G A R , the translate of / by UQ is the function defined as 

( r u J ) ( u ) = f(u — un) foru G A R . If / is concave, then its left and right multiplication 

by a scalar and its translation by a point are also concave functions. 

Proposition 2.3.3. — Let f be a concave function on NR, c, A G R with A > 0, % G A R 

and XQ G M R . Then 

1 . d o m ( / + c) = d o m ( / ) , stab(/ + c) = stab(/) and (f + c)v = fv - c; 

2. dom(À/) = d o m ( / ) , s tab(A/) = As t ab ( / ) and (A/)v = /VA; 

3. dom(/A) = Adom(/ ) , s tab( /A) = s t a b ( / ) and (fX)y = A / v ; 

4. dom(rUQf) = d o m ( / ) + u0, stab(rUo/) = s t a b ( / ) and (rUo/)v = fy + it0; 

5. d o m ( / + x0) = d o m ( / ) , stab(/ + x0) = stab(/) + x0 and ( / + x0)v = r ^ / v . 

Proof. — This follows easily from the definitions. 
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We next consider direct and inverse images of concave functions by affine maps. 

Let QR be a another finite dimensional real vector space and set P R = Q R for its dual 

space. For a linear map H: QR —> NR we denote by HV: M R —>• P R the dual map. 

We need the following lemma in order to properly define direct images. 

Lemma 2.3.4. — Let H : QR —> NR be a linear map and g a concave function on QR. 

If stab(o) fl im(ifv) / 0 then, for all u G NR, 

sup 
veH-l(u) 

q(v) < oo. 

Proof — Let x G M R such tha t Hv (x) G stab(g). By the definition of the stability 

set, supveQR(g(v) - (v,Hv(x)}) < oo. Thus, for any u G TVR, 

sup 
dfg 

(v,H*(x))) sup 
v£Qr 

(g(v)-(x,H(v))) 

> SUD 
7/stab(/i) 

(g(v)-(x,H(v))) sup 
7/stab(/i) 

g(v) - (x,u) 

and so supvG^-i(u) g(v) is bounded above, as stated. 

Definition 2.3.5. — Let A : QR —>• TVR be an affine map defined as A = H + ?/o for a 

linear map i f and a point uo G NR. Let / be a concave function on NR such tha t 

dom( / )n im( j4 ) ^ 0 and g a concave function on QR such tha t stab(g) Him(Hv) ^ 0 . 

Then the inverse image of / by A is defined as 

A*f: Q R R, v i—> foA(v), 

and the direct image of g by 4̂ is defined as 

A*g: NR •R, df sup 
vGA-1^) 

9(v). 

It is easy to see tha t the inverse image A* f is concave with effective domain 

dom(A*/ ) = .A_1(dom(/)) . Similarly, the direct image A*g is concave with effec­

tive domain dom(A*g) = A(dom(g)), thanks to Lemma 2.3.4. 

The inverse image of a closed function is also closed. In contrast, the direct image of 

a closed function is not necessarily closed: consider for instance the indicator function 

tc of the set C = {(x,y) G R2 | xy > 1, x > 0}, which is a closed concave function. 

Let A: R2 -> 1 be the first projection. Then A*ic is the indicator function of the 

subset R>o, which is not a closed concave function. 

We now turn to the behaviour of the sup-differential with respect to the basic 

operations. A first important property is the additivity. 

Proposition 2.3.6. — For each i — 1 , . . . ,1, let fi be a concave function and Az > 0 a 

real number. Then, for all u G NR, 

i- 5(EiAi / i ) («)DEiWi)(«) ; 
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2. 2 / r i (dom(/ i ) ) H • • • n r i (dom(f i ) ) / 0, tten 

a 
i 

yi,fi) (u) 
i 

7/stab(/i) H •ns (2.3.1) 

Proof. — This is [Roc70, Theorem 23.8]. 

As in Remark 2.3.2, if / l 5 . . . , fk are piecewise affine, then (2.3.1) holds under the 
weaker hypothesis 

d o m ( / i ) H • • • H dom( / f c ) n r i ( d o m ( / / c + 1 ) ) D • • • D r i (dom(/ i)) + 0-

The following result gives the behaviour of the sup-differential with respect to linear 
maps 

Proposition 23.7. — Let H: Q R —> NR be a linear map, UQ G A R and A = H + UQ the 
associated affine map. Let f be a concave function on A R ; then 

1 . d(A*f)(v) D Hvdf(Av) for all v G QR; 

2. if either r i (dom( / ) ) nim(v4) ^ 0 or f is piecewise affine and d o m ( / ) Dim(A) ^ 
0, then for all v G QR we have 

d(A*f)(v) = Hydf(Av). 

Proof. — The linear case uo = 0 is [Roc70, Theorem 23.9]. The general case follows 
from the linear case and the commutativi ty of the sup-differential and the translation. 

• 
We summarize the behaviour of direct and inverse images of affine maps with 

respect to the Legendre-Fenchel duality. 

Proposition 23.8. — Let A: Q R —> NR be an affine map defined as A = H + un for 
a linear map H and a point UQ G A R . Let f be a concave function on NR such that 
dom(/ )n im(^4) ^ 0 and g a concave function on Q R such that stab(g) Dim(Hy) ^ 0. 
Then 

1 . stabler) = ( i J v ) - 1 ( s t a b ( o ) ) and 

(A*cl(/))v = cl((^v)*(/v-^0));+ou 

2. tfv(stab(/)) C stab(A*/) C # v (stabm) and 

( A * c l ( / ) ) v = c l ( ( ^ v ) * ( / v - ^ 0 ) ) ; 

3. z / r i (dom( / ) ) nim(A) ^ 0 then s t ab(A*/ ) = i f v ( s t a b ( / ) ) and, for all y in this 
set, 

(A*fr(y) = (H^Ur -u0)(y) max 
xe{HV)-i(y) 

(= cl((^v)*(/v-^0)); 

Moreover, if f is closed and y G ri(stab(A*/))> then a point x G (Hv)l(y) 
attains this maximum if and only if there exists v G Qr such that x G df(Av). 
The element v verifies y G d(A* f)(v). 
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Proof. — By Proposition 2.3.3(4,5), 

A*(f) = (H + u0y(f) (A*cl(/))v = cl((^ A*g = (H + u0)*g = rUQ (H*g) (2.3.2) 

Then, except for the second half of (3), the result follows by combining (2.3.2) with 
the case when A is a linear map, treated in [Roc70, Theorem 16.3]. 

To prove the second half of (3), we first note tha t the concave function 

( / - ^0)|(ijv)-i(y) 

at tains its maximum at a point x if and only if its sup-differential at x contains 0. 
We consider the linear inclusion 

l: k e r ( # v W M M 

and denote by lw : NR—> NR/ im(H) its dual. We fix a point 

a:0G(ffv -A 2/ n r i s t a b / , 

tha t exists because y G r i (s tab(A*/)) and stab(^4*/) = Hv(stab(/)). 
Set F = (t + xo)*( /v — uo). Up to a translation, F is the restriction of / v — 

to (Hv)~1(y). Since, by choice, XQ G r i (dom( /v — UQ)) fl im(^ + XQ), we can apply 
Proposition 2.3.7(2) to the concave function / v — UQ and the affine map i + x0 to 
deduce that , for any z G ker(Hv), we have 

dF(z) = Ls/(dfs/(z + x0)-u0). 

Therefore 0 G dF(z) if and only if dfv(z+x0)n(ker(iv)+u0) + 0- Since ker(tv)+w0 = 
im(A), a point x — z + XQ G (Hy)~l(y) at tains the maximum if and only if there is a 
v G QR such tha t Av G dfy(x). Being / closed, by Proposition 2.2.4 this is equivalent 
to x G df(Av) for some v G QR. By Proposition 2.3.7, v satisfies y G d(A*f)(v). • 

In particular, the operations of direct and inverse image of linear maps are dual 
to each other. In the notation of Proposition 2.3.8 and assuming for simplicity 
r i (dom(/ ) ) n im(H) ^ 0 , we have 

(H*gY = (J7V)*(<A (A*cl(/))v = cl((^v)*(/v-^0)); 

while the stability sets relate by stab(H*g) — (Hv) 1(stab(g)) and stab(H*f) = 
# V ( s t a b ( / ) ) . 

The last concept we recall in this section is the notion of recession function of a 
concave function. 

Definition 2.3.9. — The recession function of a concave function / : NR —>• M, denoted 
rec ( / ) , is the function 

rec(f):N, • 1 , u i inf 
wEdom(/) 

J(u + v)-f(v)). 
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This is a concave conical function. If / is closed, its recession function can be defined 
as the limit 

r e c ( / ) ( » lim 
A—>oo 

(A*cl(/))v = cl(/v-^0)); (2.3.3) 

for any VQ G d o m ( / ) [Roc70, Theorem 8.5]. 

It is clear from the definition tha t dom(rec( / ) ) C rec(dom(/ ) ) . The equality does 
not hold in general, as can be seen by considering the concave function R —» R, 
u i y exp(w). 

If / is closed then the function rec ( / ) is closed [Roc70, Theorem 8.5]. Hence it is 
natural to regard recession functions as support functions. 

Proposition 2.3.10. — Let f be a concave function. Then r e c ( / v ) is the support func­
tion ofdom(f). If f is closed, then r ec ( / ) is the support function o / s t a b ( / ) . 

Proof. — This is [Roc70, Theorem 13.3]. • 

2.4. The differentiable case 
In this section we make explicit the Legendre-Fenchel duality for smooth concave 

functions, following [Roc70, Chapter 26]. 
In the differentiable and strictly concave case, the decompositions I I ( / ) and n ( / v ) 

consist of the collection of all points of dom(df) and of dom ( d / v ) respectively. The 
Legendre-Fenchel correspondence agrees with the gradient map, and it is called the 
Legendre transform in this context. 

Recall tha t a function / : A R —» R is differentiable at a point u G A R with f{u) > 
—oo, if there exists some linear form V/(г¿) G M R such tha t 

f(v) = f(u) + (Vf(u),v-u) + o(\\v-u\\), 

where || • || denotes any fixed norm on A R . This linear form V(f)(u) is the gradient 

of / in the classical sense. It can be shown tha t a concave function / is differentiable 

at a point u G d o m ( / ) if and only if df(u) consists of a single element. If this is the 

case, then df(u) = {Vf(u)} [Roc70, Theorem 25.1]. Hence, the gradient and the 

sup-differential agree in the differentiable case. 

Let C C A R be a convex set. A function / : C —> R is strictly concave if f(tu\ + 

(1 - t)u2) > tf(u{) + (1 - t)f(u2) for all different u u u2 G C and 0 < t < 1. 

Definition 2.4.1. — Let C c A R be an open convex set and || • || any fixed norm on 

M R . A differentiable concave function / : C —» R is of Legendre type if it is strictly 

concave and l i m ^ o o | | V / ( i ^ ) | | —>> oo for every sequence (iii)i>i converging to a point 

in the boundary of C. In particular, any differentiable and strictly concave function 

on A R is of Legendre type. 
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The stability set of a function of Legendre type has maximal dimension [Roc70, 
Theorem 26.5]. Therefore its relative interior agrees with its interior and, in this case, 

we will use the classical notation stab(/)° for the interior of stab ( / ) . 

The following result summarizes the basics properties of the Legendre-Fenchel du­

ality acting on functions of Legendre type. 

Theorem 2.4.2. — Let f: C —>• R be a concave function of Legendre type defined on 

an open set C C NR and let D — V / ( C ) C MR be the image of the gradient map. 

Then 

1 . £> = s t a b ( / ) ° ; 

/ V | D is a concave function of Legendre type; 

3. V / : C -> D is a homeomorphism and ( V / ) - 1 = V / v ; 

4. for allxeD we have fy(x) = (x, ( V / ) " 1 ^ ) ) - / ( ( V / ) - 1 ^ ) ) -

Proof. — This follows from [Roc70, Theorem 26.5]. 

Example 2.4.3. — Consider the function 

/FS: Kn—>R u 
t 
2 

log 1 + 
n 

=i 

c -2 ui 

Let An = { ( x i , . . . , xn) C Rn \xi > 0, J2 xi < 1} De the standard simplex of Rn. For 

( x i , . . . , xn) G An, write XQ = 1 — X^ILi xi and set 

F.„ : An > 1R. x—> -
n 

i=0 

Xi \og(xi). (2.4.1) 

We have V / f s ( u ) 1 
1 + E r = i e - 2 " ' 

(e-2^,...,e-2u») and so 

1 

2 
• M V / f s M ) 

(A*cl(/))v = cl((^ 

(A*cl(/))v *(/v-^0)); 

i 

2 
log 1 + 

n 

2=1 

r- 2ui = (VfFS(u),u) - fFs(u), 

which shows tha t stab(fFs) = An and tha t / F S 2tn-

The fact tha t the sup-differential agrees with the gradient and is single-valued can 

simplify some statements. It is interesting to make explicit the computation of the 

Legendre-Fenchel dual of the inverse image by an affine map of a concave function of 

Legendre type. 

Proposition 2.4.4. — Let A: Q R - > TVR be an affine map defined as A = H + u0 for 

an infective linear map H and a point uo G NR. Let f: C —>- R be a concave function 

of Legendre type defined on an open convex set C C NR such that C n \m(A) ^ 0 . 

Then t4*/ is a concave function of Legendre type on A~l(C), 

s tabM*nc = i m ( V ( , 4 7 ) ) = # v ( i m ( V / ) ) = tfv(stab(/)°), 
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and, for all v G A 1C, 

(A*fy(V(A*f)(v)) fv(Vf(Av))-(Vf(Av),u0). 

Moreover, there is a section iaj of i^v|stab(/)° such that the diagram 

R 

A*f 
A~XC 

V(A*f) 
•s tab(A*/)° 

[A*fy 

R 

F -uo 

fg 

s t a b ( / ) ° 
fg 

c 
f 

A 

commutes. 

Proof — This follows readily from Proposition 2.3.8. 

The section iaj embeds s tab(A*/ )° as a real submanifold of stab(/)°. Varying UQ 
in a suitable space of parameters, we obtain a foliation of stab(/)° by "parallel" 
submanifolds. We illustrate this phenomenon with an example in dimension 2. 

Example 2.4.5. — Consider the function / : R2 -> R given by 

f(uuu2) = 
1 
2 

log h _|_ e~2ui -4- e-4m-2n2 _|_ e-2ui-4u2^ 

It is a concave function of Legendre type whose stability set is the polytope A = 
conv((0, 0), (1, 0), (2,1), (1, 2)). The restriction of its Legendre-Fenchel dual to A° is 
also a concave function of Legendre type. 

For c G R, consider the affine map 

Ac: R - > R 2 , u i—> ( — u + c). 

We write Ac = H + (0, c) for a linear function H. The dual of H is the function 
Hy : R2 —)> R, (xux2) i-> x2 - xx. Then s tab(A*/ )° = Hw(A°) is the open inter­
val ( - 1 , 1 ) . By Proposition 2.4.4, there is a map %acj embedding ( — 1,1) into A° in 
such a way tha t zAcj o V(A*f) = (Vf) o Ac. For u G l , 

(A*cl(/) cl((^v)0)); 
e-2n-4c _ e2u _ e2n-2c 

I _|_ e2u _|_ Q2U — 2C _|_ e—2n —4c e (-1,1), 

(V/)o^c(U) 
(e2" + 2 e2u"2c + e~2"-4c, e2u"2c + 2 e-2«-4c) 

]_ _|_ g2u _|_ g2n —2c _j_ g —2n —4c 
e A ° . 
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From this, we compute IACJ{X) = (£1,2:2) with 

Xl = 

_ „ - 2 c 

2(l + e-2c) 
x + 

2 + 3e"2c 

2(l+e '2c) 

X2 

PÌ + 1 - p2c X1 + pc 

Pc 

1+Pc 

X2 
2 + e~2c 

2(l + e~2c) 
x 

2 + 3e~2c 

2(1 + e-2c) 

x2 

PÌ + (1-PÎ) x2 "h Pc 

Or 

1 + pc 

where we have set pc — 2 e 2c \ / l + e_2c for short. In particular, the image of the 
map iAc,f is an arc of conic: namely the intersection of A° with the conic of equation 

(x2 - xx)2 = ( 1 - P c ) Lc(x1,x2)2 2pcLc(x1,x2)i 

with Lc(xi, x2) — 
2+3e~2c 

2+3e~2c Xi 
e-2c 

2+3e-2c 
:X2 Pc 

1 + Pc 
Varying c G l , these arcs of conies 

form a foliation of A°, they all pass through the vertex (1 ,2) as x —» 1, and their 
other end as x —» —1 parameterizes the relative interior of the edge conv((l, 0) , (2 ,1 ) ) , 

see Figure 2. 

FIGURE 2. A foliation of A ° by curves 

2.5. The piece wise affine case 

The Legendre-Fenchel duality for piecewise affine concave functions can be de­
scribed in combinatorial terms. Moreover, some technical issues of the general theory 
disappear when dealing with piecewise affine concave functions on convex polyhedra 
and uniform limits of such functions. 

Definition 2.5.1. — Let C C be a polyhedron. A function / : C —> R is piecewise 

affine if there is a finite cover of C by closed subsets such that the restriction of / to 
each of these subsets is an affine function. Such affine functions are called defining 
functions of / . A concave function / : —> R is said to be piecewise affine if dom(/) 
is a polyhedron and the restriction / |dom(/) ls piecewise affine. 
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Remark 2.5.2. — Considering a polyhedron C inside its affine envelope, we may think 

of it as a closed domain, tha t is, the closure of an open set. By an argument of general 

topology, if a closed domain C is a finite union of closed subsets C = (Jl̂ i ^ ? then 

C = Ul^i D°. Therefore, when the domain is a polyhedron, our definition of piecewise 

affine function agrees with the notion of piecewise linear function of [Ovc02]. 

Lemma 2.5.3. — Let f be a piecewise affine function defined on a polyhedron C C NR. 

Then there exists a polyhedral complex U in C such that the restriction of f to each 

polyhedron of U is an affine function. 

Proof. — This is an easy consequence of the max-min representation of piecewise 

affine functions in [Ovc02], tha t can be applied thanks to Remark 2 . 5 . 2 . • 

Definition 2.5.4. — Let C be a polyhedron, II a polyhedral complex in C and f: C 

M a piecewise affine function. We say tha t II and / are compatible if / is affine on 

each polyhedron of IT. Alternatively, we say tha t / is a piecewise affine function on 

II. If the function / is concave, it is said to be strictly concave on II if II = n ( / ) . The 

polyhedral complex II is said to be regular if there exists a concave piecewise affine 

function / such tha t II = 

As was the case for polyhedra, piecewise affine concave functions can be described 

in two dual ways, which we refer as the H-representation and the V-representation. 

For the H-representation, we consider a polyhedron 

A = 

w<k<k 

{u G NR I (aj,u)+OLj > 0 } 

as in ( 2 . 1 . 1 ) and a set of affine equations {(%•, &j)}k+i<j<i C M R x IR. We then define 

a concave function on NR as 

f(u) = 
minfc+i<7-<j((a7-,M) + a*) for u G A, 

— oo for u f. A. 
( 2 . 5 . 1 ) 

The equation ( 2 . 5 . 1 ) is an H-representation of the function / . Wi th this representa­

tion, the recession function of / is given by 

rec(/)(iz) min 
jhdfgj 

aj , u) for u G rec(A) 

and rec(/)(w) = —oo for u £ rec(A). In particular, 

iom(rec( / ) ) = rec (dom( / ) ) , s tab( rec( / ) ) = s t a b ( / ) . ( 2 . 5 . 2 ) 

For the V-representation, we consider a polyhedron 

A7 = c o n e ( 6 i , . . . , bk) + conv(frfc+i,..., bi) 
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as in (2.1.2), a set of slopes {Pj}i<j<k C R and a set of values {fi3}k+i<j<i C R . We 
then define a concave function on A R as 

^ z z i 
(/(u) - sup ] T A ^ - | Aj > 0, XJ = X> E AA = M f • (2'5-3) 

^ j = l j=fc+i j=i ) 

This equation is the V-representation of the function g. Wi th this second representa­

tion, we obtain the recession function as 

^ k k 
vec(g)(u) 

s AC rv "\ 
sup I J2 X3@3 X3 > °> XibJ =u\-

13=1 j=i } 

We will typically use the H-representation for functions on A R while we will use the 

V-representation for functions in M R . 

As we have already mentioned, the Legendre-Fenchel duality of piecewise affine 

concave functions can be described in combinatorial terms. 

Proposition 2.5.5. — Let A be a polyhedron in A R and f a piecewise affine concave 

function with d o m ( / ) = A given as 

A = p| {U G Nr I (a3Ju) + a3 > 0}, 

!<3<k 

f(u) = mm ((aj,u) + a3) for u G A 
k-\-l<j<l 

with a3 G M R and a3 G R. Then 

stab(/) = cone ( a i , . . . , ak) + c o n v ^ + i , . . . , aj), 

• z z z . 

/ v ( x ) = sup < ^ ~^jaj > 0? ^ — 15 E = x > /o r x G stab(/). 
^ j = l j = /e+l j = l > 

Proof. — This is proved in [Roc70, pages 172-174]. • 

Example 2.5.6. — Let A be a polyhedron in A^R. Then both the indicator function 

and the support function are concave and piecewise affine. We have = i\- In 

particular, if we fix an isomorphism A R ~ Rn, the function 

^ A - : A R —> R, (ui,... ,un) i—> m i n { 0 , i z i , . . . , un} 

is the support function of the standard simplex An = conv(0, e(,..., e^) C M R , 

where { e i , . . . , en} is the standard basis of Rn and { e / , . . . , e^} is the dual basis. 

Hence, s t a b ( ^ A - ) = An and ̂ n = tAn. 

Let A be a polyhedron in A R and / a piecewise affine concave function with 

d o m ( / ) = A. Then d o m ( 9 / ) = A and and II( /V) are convex decompositions 

of A and of A7 := s t a b ( / ) respectively. By Theorem 2.2.12, the Legendre-Fenchel 

correspondence 

£/:n(/)^n(/v) 
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is a duality in the sense of Definition 2.2.11. However in the polyhedral case, these de­

compositions are dual in a stronger sense. We need to introduce some more definitions 

before we can properly state this duality. 

Definition 2.5.7. — Let A be a polyhedron and K a face of A. The angle of A at K 

is defined as 

Z(K, A) = {t(u - v) | u G A, v G K, t > 0}. 

It is a polyhedral cone. 

Definition 2.5.8. — The dual of a convex cone a C A R is defined as 

crv = {x G M R I (x, u) > 0 for all u G a}. 

This is a convex closed cone. 

If a is a convex closed cone, then crvv = a. The following result is a direct 

consequence of Proposition 2.5.5. 

Corollary 2.5.9. — Let f be a piecewise affine concave function on A R . Then 

rec(dom(/ ) )v = rec(s tab( / ) ) . 

In particular, if dom(f) = A R , then s t a b ( / ) is a polytope. 

Definition 2.5.10. — Let C, C be polyhedra in A R and M^, respectively, and II, IT 

polyhedral complexes in C and Crespectively. We say tha t II and IT are dual 

polyhedral complexes if there is a bijective map n —)• n;, A i-> A* such tha t 

1. for all A, K G n , the inclusion K C A holds if and only if K* D A*; 

2. for all A,K G n , if K C A, then Z(A*,K*) = Z(K,A)y. 

For A G n , the angle Z(A,A) is the linear subspace generated by differences of 

points in A. Condition (2) above implies tha t Z(A, A) and Z(A*, A*) are orthogonal. 

In particular, dim(A) + dim(A*) = n. 

Proposition 2.5.11. — Let f be a piecewise affine concave function with A = d o m ( / ) 

and A' = s t a b ( / ) . Then I I ( / ) and n ( / v ) are polyhedral complexes in A and A' 

respectively. Moreover, they are dual of each other. In particular, the vertices of 11(f) 

are in bisection with the polyhedra ofU(fy) of maximal dimension. 

Proof. — This is proved in [PR04, Proposition 1]. • 

Example 2.5.12. — Consider the s tandard simplex An of Example 2.5.6. Its indicator 

function induces the s tandard polyhedral complex in An consisting of the collection of 

its faces. The dual of ¿A™, the support function induces a fan £A™ : = H(^An) 

of A R . The duality between these polyhedral complexes can be made explicit as 

U(LAn) —>£A« F ^ Z ( F , A n ) v . 
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Example 2.5.13. — The previous example can be generalized to an arbitrary polytope 

A C MR • The indicator function ¿A induces the s tandard decomposition of A into 

its faces and, by duality, the support function ^ A induces a polyhedral complex 

I ] A : = n ( ^ A ) made of cones. If A is of maximal dimension, then E A is a fan. 

The faces of A are in one-to-one correspondence with the cones of E A through the 

Legendre-Fenchel correspondence. For a face F of A, its corresponding cone is 

<JF := F * = {u G NR I (u,y — x) > 0 for all y G A , x G F\. 

Reciprocally, to each cone a corresponds a face of A of complementary dimension 

Fa : = CR* = fx G A I (x,u) for all u G a}. 

On a cone a G E , the function ^ A is defined by any vector ma in the affine 

space aff(Fcr). The cone a is normal to Fa. 
We will use the notation Fa in a more general context. If E is a refinement of E A 

and cr G E , we will denote by Fa the face of A given by the condition 

Fa = {xeA\{u,y-x) > o for all y G A, u G CR}. 

For piecewise affine concave functions, the operations of taking the recession func­

tion and the associated polyhedral complex commute with each other. 

Proposition 2.5.14. — Let f be a piecewise affine concave function on NR. Then 

n ( r ec ( / ) ) = rec( I I ( / ) ) . 

Proof. — Let Pf(u,x) = f(u) + fw(x) — (u,x) be the function introduced in (2.2.1). 

For each x G stab(/) write PfiX(u) = Pf(u,x) which is a piecewise affine concave 

function. Let Cx be as in Definition 2.2.5. By Lemma 2.2.6, 

Cx = {u G d o m ( / ) \Pf,x(u) = 0}. 

Write P'(v) = rec(f)(v) - (u,x). Then P' = rec(PfjX). 
We claim that , for each x G stab(/), 

rec(Cx) = {v G dom(rec( / ) ) | P\v) = 0}. 

Let v G rec(Cx). Clearly v G dom(rec( / ) ) and, since x G s t a b ( / ) , the set CX is 

non-empty. Let UQ G CX. Then, for each X > 0, u0 + \v e CX. Therefore, 

P'(v) — hm 
A—>oc 

Pf,x(u0 + Xv) ~ Pf,x{u0) 
A 

sdfg 

Conversely, let v G dom(rec( / ) ) satisfying P'(v) — 0 and u G Cx. On the one hand, 

by the properties of the function Pf, we have Pf,x(u + v) < 0. On the other hand, 

since P' = vec(PfyX) and P^x is a piecewise affine concave function, 

Pf,x(u + v)-Pf,x(u)>Pf(v) = 0. 

Thus Pf,x(u + v) > Pf^x(u) = 0 and finally Pf,x(u + v) = 0. This implies that , if 

u G Cx then u + t ; G C x , showing v G rec(Cfx). Hence the claim is proved. 
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By definition n ( / ) = {Cx}xGstab(/). Hence rec( I I ( / ) ) = {rec(Cx)}xGstab(/). For 
each x G s tab( rec( / ) ) , write 

C'x = {ve dom(rec( / ) ) | P'(v) = 0}. 

Then I l ( rec( / ) ) = {C^}a:Gstab(rec(/))- The result follows from the previous claim and 
the fact tha t s t a b ( / ) = s tab( rec( / ) ) by (2.5.2). • 

Now we want to study the compatibility of Legendre-Fenchel duality and integral 
and rational structures. 

Definition 2.5.75. — Let L be a lattice in a finite dimensional real vector space LR = 
L 0 R and Lv the dual lattice. A piecewise affine concave function / on LR is an 
H-lattice concave function if it has an H-representation as (2.5.1) with a3- G Lv and 
olj G Z for j — 1 . It is a V-lattice concave function if it has a V-representation as 
(2.5.3) with bj G L and f3j G Z, for j = 1 , . . . , L We say tha t / is a rational piecewise 
affine concave function if it has an H-representation as before with a3 G Lv 0 Q 
and Oij G Q for j — 1 , . . . o r equivalently, a V-representation with bj G I ^ Q 
and Pj G Q. 

Observe tha t the domain of a V-lattice concave function is a lattice polyhedron, 
whereas the domain of an H-lattice concave function is a rational polyhedron. 

Let A ~ Zn be a lattice of rank n such tha t NR = N 0 R. Set M = Nv = 
Hom(AT, Z) for its dual lattice, so MR = M (g) R. We also set Nq = N ® Q and 
MQ = M <g> Q. 

Remark 2.5.16. — The notion of H-lattice concave functions defined on the whole NR 
coincides with the notion of tropical Laurent polynomials over the integers, tha t is, 
the elements of the group semi-algebra Ztrop[N], where the arithmetic operations of 
the base semi-ring Ztrop = (Z, 0 , 0 ) are defined as x(By = min(x, y) and xQy = x + y. 

Proposition 2.5.17. — Let f be a piecewise affine concave function on NR. 

1 . f is an H-lattice concave function (respectively, a rational piecewise affine con­
cave function) if and only if fy is a V-lattice concave function (respectively, a 
rational piecewise affine concave function) on MR. 

2. r ec ( / ) is an H-lattice concave function if and only ifstab(f) is a lattice polyhe­
dron. In this case rec(f) is the support function o / s t a b ( / ) . 

Proof. — This follows easily from Proposition 2.5.5. • 

Example 2.5.18. — If A is a lattice poly tope, its indicator function is a V-lattice 
function, its support function is an H-lattice function and, when A has maximal 
dimension, the fan E A is a rational fan. In particular, if the isomorphism Â  ~ Rn 
of Example 2.5.6 is given by the choice of an integral basis e i , . . . , en of N, then An 
is a lattice polytope, the function is an H-lattice concave function and EA™ is 
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a rational fan. If we write eo = — Y^i=i ei> this is the fan generated by the vectors 

eo, e i , . . . , en in the sense tha t each cone of EA™ is the cone generated by a strict 

subset of the above set of vectors. Figure 3 illustrates the case n = 2. 

A2 

(A*cl(/))v(/v-^0)); 

°1 

°1 

°0 

(MI , U2) >-» 0 

(wl ,«2) ^ —u2 

FIGURE 3 . The standard simplex A2, its associated fan and support function 

Definition 2.5.19. — Let A and A7 be polyhedra in AR and in M R , respectively. We 

set ¿5*(A, A7) for the space of piecewise affine concave functions with effective domain 

A and stability set Af. We also set ^ ( A , A') for the closure of this space with respect 

to uniform convergence. We set 

(A**(/v-^0)); 
A' 

^ ( A , A ; ) , P (A) = 
A' 

^ ( A , A ' ) 

for the space of piecewise affine concave functions with effective domain A and for its 

closure with respect to uniform convergence, respectively. If we want to single out 

the elements of the previous spaces whose stability set is a lattice polyhedron we will 

write 

«^(A)z = 
A' lat. pol. 

£*»(A, A'), ^ ( A ) z = 
A' lat. pol. 

^ ( A , A ' ) , 

where the union runs over all lattice polyhedrons. We also set 

P = 
A,A' 

£*(A,A'), P =) 
A,A' 

£*(A,A') . 

When we need to specify the vector space Â R we will denote it as a subindex as 

in &>Nr or &>Nr. 

The following propositions contain the basic properties of the Legendre-Fenche] 

duality acting on . The elements in & are continuous functions on polyhedra. In 

particular, they are closed concave functions. Observe tha t when working with uni­

form limits of piecewise affine concave functions, the technical issues in §2.2 disappear. 

Proposition 2.5.20. — The piecewise affine concave functions and their uniform limits 

satisfy the following properties. 

1 . Let f G â*NR. Then /vv =/. 
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2. If f G ^ ( A , A ' ) (respectively f G 3*(A,Af)) then fv G «^(A',A) (respectively 

/ v e ^ ( A ' , A ) j . 

3. If f G W(A) then dom(rec( / ) ) = rec(A). 

4. Let fi G ^ ( A , , A - ) (respectively ft G W{KuMi))9 i = 1,2, mt/i Ax n A2 ^ 0 . 

Thenf1 + f2 G ^ ( A i n A a ^ i + A ^ ) (respectively fx + /2 e ^ ( A i nA2, Ai + A'2); 

and ( / i + / 2 ) v = /ivffl/2v. 

5. Let / i G «^(Ai,AJ) (respectively f% G 'W{KuMi))f i = 1,2, wtfft Ai MA'2 " Q 

Then fxmf2 G ^ ( A 1 + A 2 , A ; n A 2 ) (respectively fx+ f2 G ^ ( A x + A2, Ai n A2)j 

and ( / i f f l /2 )v = / i v+ /2v -

tf. Let (fi)i>i C 3# be a sequence converging uniformly to a function f. Then 

f G 

Proof — All the statements follow, either directly from the definition, or the propo­

sitions 2.5.5 and 2.2.3. • 

Proposition 2.5.21. — Let A: QR —» NR be an affine map defined as A — H -\- uo 

for a linear map H and a point UQ G NR. Let f G ^nr (respectively f G S?nr) 

with d o m ( / ) D im(A) 7̂  0 and g G ^Qr (respectively g G ^Qr) such that stab(g) D 

i m ( F v ) ^ 0 . Then A* f G ^Qm (respectively A* f G ~&Qr) and A*g G (respec­

tively A*g G &nr)- Moreover, 

1 . s t a b ( ^ * / ) = ^ v ( s t a b ( / ) ) , (A*/)v = ( f f v ) . ( / v - « 0 ) and, for all y G s t ab (A* / ) , 

(Av = cl((^v)*(/); max 
z C *g (u) 

{fy{x) - (x,n0)); 

2. stab(A*#) = (i7v)-1(stab(6/)), (A*g)y= (iLv)* (gv)+u0 and, for all u G àom{A*g), 

A*g(u) = max 
aCa (u) 

dis­

proof — These statements follow either from Proposition 2.3.8 or from [Roc70, 
Corollary 19.3.1]. • 

We will be concerned mainly with functions in & whose effective domain is either 

a polytope or the whole space NR. These are the kind of functions tha t arise when 

considering proper toric varieties. The functions in £?(NR) can be realized as the 

inverse image of the support function of the s tandard simplex, while the functions 

of ^ ( A ) can be realized as direct images of the indicator function of the s tandard 

simplex. 

Lemma 2.5.22. — Let / G £?(NR) and let f(u) = min0<i<r(ai(ii) + c^) be an H-

representation of f. Write ex = (oti — ao)z=i,...,r> and consider the linear map 

H: N^-^W given by H(u) = (di(u) - ao(^))i=i,...,r and the affine map A = H + a . 

Then 

1 . f = A * * a - + û o + û:o; 

2. fw =raJH^)^iAr-cx)-a0. 
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This second function can be alternatively described as the function which parameterizes 

the upper envelope of the extended polytope 

conv((ai , -ai),. • • , (a/, —osi)) Z MR x R. 

Proof — Statement ( 1 ) follows from the explicit description of in Example 2 . 5 . 6 . 

Statement ( 2 ) follows from Proposition 2 . 3 . 3 , Proposition 2 . 5 . 2 1 ( 1 ) and Example 2 . 5 . 6 . 

The last statement is a consequence of Proposition 2 . 5 . 5 . • 

The next proposition characterizes the elements of ^(N^) and &(A) for a poly­

tope A . 

Proposition 2.5.23. — Let A be a convex polytope of M R . 

1 . The space ^ ( A , TVR) agrees with the space of all continuous concave functions 

on A . 

2. A concave function f belongs to ^ ( 7 V R , A ) if and only if d o m ( / ) = TVR and 

\f — is bounded. 

Proof. — We start by proving ( 1 ) . By the properties of uniform convergence, it 

is clear tha t any element of ^ ( A , 7 V R ) is concave and continuous. Conversely, a 

continuous function / on A is uniformly continuous because A is compact. Therefore, 

given e > 0 there is a 6 > 0 such tha t \f(u) — f(v)\ < e for all u, v G A such 

that \\u — v\\ < S. By compactness, we can find a triangulation A = [ji Ai with 

d i am(A^) < 5. Let {b3}j be the vertices of this triangulation and consider the function 

g G ^(A,7VM) defined as 

g(u) = sup 
i 

j =1 
y jf (bj) A, > 05 

j 

A? = 1; 

3 

XjCij — x 

For u G A , let bj0,..., bjn denote the vertices of an element of the triangulation con­

taining u. We write u — Xj0Uj0 + • • - + XjnUjn for some Xj. > 0 and AJ0 + • • • + Xjn = 1. 

By concavity, we have 

f(u) > g(u) > 
n 

k=0 
X3kf(U3k) > f{u)~£, 

which shows tha t any continuous function on A can be arbitrarily approximated by 

elements of ^(A,NR). 

We now prove ( 2 ) . Let / G &(N^,A). By definition, for each e > 0 we can find 

a function g G ^ ( T V R , A ) with s u p | / — g\ < e. In particular, \f — g\ is bounded. 

Furthermore, rec(g) = ^ A and \g — rec(g)| is bounded because g G &(NR). Hence 

d o m ( / ) = dom(g) = NR and \f — ^ A | is bounded. 

Conversely, let / be a concave function such tha t d o m ( / ) = iVR and \f — ^ A | is 

bounded. Then s t a b ( / ) = s t ab (^A) = A. By [Roc70, Theorem 12 .2 ] fy is a closed 

concave function on A . Since A is a polytope, by [Roc70, Theorem 1 0 . 2 ] , / v is 

continuous on A . Hence we can apply ( 1 ) to fy to obtain functions gi G ^ ( A , TVR) 
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approaching / v uniformly. By Proposition 2.2.3, we conclude tha t the functions 

gY G ^{NR, A) approach / uniformly and so / G ̂ ( A f a , A) . • 

Proposition 2.5.24. — Let A be a lattice polytope of MR. Then the subset of rational 

piecewise affine concave functions in ^ ( A , A R ) (respectively, in £?(NRl A)) is dense 

with respect to uniform convergence. 

Proof — This follows from Proposition 2.5.23 and the density of rational numbers. 

2.6. Differences of concave functions 

Let C C NR be a convex set. A function / : C —> R is called a difference of concave 

functions or a DC function if it can be writ ten as / = g — h for concave functions 

g,h: C —>• R . DC functions play an important role in non-convex optimization and 

have been widely studied, see for instance [HT99] and the references therein. We 

will be interested in a subclass of DC functions, namely those which are a difference 

of uniform limits of piecewise affine concave functions. 

Definition 2.6.1. — For a polyhedron A in NR we set 

@(A)={-h\g,h€&>(A)\ @(A) = {g-h\g,h<E0>(A)\. 

and 

®(A)z = {g-h\g,h€0>(A)z}, @(A)z = {g-h\g,h G &(A)Z}. 

These spaces are closed under the operations of taking finite linear combinations, 

upper envelope and lower envelope. 

Proposition 2.6.2. — Let A be a polyhedron in NR and / i , . . . , / / functions in @(A) 

(respectively in S^{A), @(A)% or @(A)%). Then the functions 

1 . ^ifi for &nV Ai G R (respectively Xl G Z for @(A)% or @(A)%), 

2. max, fi, min, 

are also in @(A) (respectively in $>(A), @(A)% or @(A)z). 

Proof. — Statement (1) is obvious. For the statement (2), write fi — gi — h% with 

Qi,hi in &(A) (respectively, in â?(A)). Then the upper envelope admits the DC 

decomposition max, f?; = g — h with 

9 := 

j 

gj h := min hi + 
W"i 

9j 

which are both concave functions in ¿5̂  (A) (respectively, in ^ ( A ) ) . This shows tha t 

max^ / i is in @(A) (respectively, in f^(A)). The statement for the lower envelope 

follows similarly. • 
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In particular, if / lies in f^(A) or in ^ ( A ) , the same holds for the functions | / | , 
m a x ( / , 0) and min ( / , 0). 

Corollary 2.6.3. — The space @(A) coincides with the space of piecewise affine func­
tions on A. 

Proof — This follows from the max-min representation of piecewise affine functions 
in [Ovc02] and Proposition 2.6.2(2). • 

Some constructions for concave functions can be extended to this kind of functions. 
In particular, we can define the recession of a function in @(A). 

Definition 2.6.4. — Let A be a polyhedron in A R and / G f^(A). The recession 
function of / is defined as 

r e c ( / ) : rec(A) sdfg u i—> lirn 
f(v0 + Xu) - f(v0) 

A 
(2.6.1) 

for any VQ G A. 

Write / = g — h for any g,h G ^ ( A ) . By Proposition 2.5.20(3), the effective 
domain of both rec(g) and rec(h) is rec(A). Therefore, by (2.3.3), for all u G rec(A), 
the limit (2.6.1) exists and 

rec( f)(u) = rec(g)(u) — rec(h)(u). 

Observe tha t the recession function of a function in @(A) is a piecewise linear function 
on a subdivision of the cone rec(A) into polyhedral cones. Observe also tha t 

1/ - r e c ( / ) | < \g - rec(5)| + \h - rec(h)\ = 0(1). 

We will be mostly interested in the case when A = A R . 

Proposition 2.6.5. — Let || • || be any metric on A R and f G ^ ( A R ) . Then there exists 
a constant k > 0 such that, for all u, v G A^R, 

\f(u)-f(v)\<K\\u-v\\. 
A function which verifies the conclusion of this proposition is called Lipschitzian. 

Proof — Let / = g — h with g,h G ^ ( A R ) . The effective domain of the recessions 
of g and of h is the whole of A R . By [Roc70, Theorem 10.5], both g and h are 
Lipschitzian, hence so is / . • 

Observe tha t ^ ( A R ) is not the completion of ^ ( A R ) with respect to uniform 
convergence and neither @(N^)i is the completion of ^ ( A R ) ^ . It is easy to construct 
functions which are uniform limits of piecewise affine ones but do not verify the 
Lipschitz condition. 

We will consider the integral and rational structures on the space of piecewise affine 
functions. We will use the notation previous to Definition 2.5.15. 
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Definition 2.6.6. — Let A be a polyhedron and / G f ^ ( A ) . We say tha t / is an H-

lattice (respectively V-lattice) function if it can be writ ten as the difference of two 

H-lattice (respectively V-lattice) concave functions with effective domain A . We say 

tha t / is a rational piecewise affine function if it is the difference of two rational 

piecewise affine concave functions with effective domain A . 

Proposition 2.6.7. — If f is an H-lattice function (respectively a rational piecewise 

affine function) on a polyhedron A C A R ; then there is a polyhedral complex U in A R , 

with |II| = A , such that, for every A ' G II, 

f\A>(u) = (mA>,u) + Z A ' , 

with (rn\',l\>) G M x Z (respectively (m^',1^) G Mq X Q). Conversely, every piece-

wise affine function on A such that its defining functions have integral (respectively 

rational) coefficients, is an H-lattice function (respectively a rational piecewise affine 

function). 

Proof — We will prove the statement for H-lattice functions. The statement for 

rational piecewise affine functions is proved with the same argument. If / is an H-

lattice function, we can write / = g — h, where g and h are H-lattice concave functions. 

We obtain n as any common refinement of 11(g) and H(h) to a polyhedral complex. 

Then the statement follows from the definition of H-lattice concave functions. 

We also prove the converse only for H-lattice functions. Let gi, i = 1 , . . . , n, be the 

set of iJ-lat t ice distinct defining functions of / . By [Ovc02, Theorem 2 . 1 ] there is a 

family {Sj}j£j of subsets of { 1 , . . . , n} such that , for all x G A , 

fix) = m a x m i n Oj(x). 
o E jiE Sj 

For j G J , write fj = mhii^Sj 9%- It is an H-lattice concave function. Then we can 

write 

m = 

Jk 

fj (x) -

0 € J 

fj (x) • max fj (x) 
jEf 

Since both Z jCj fj and S j G J fj - m a x ^ j A = mmjej rE J\{j}J are H-lattice 

concave functions on A , we conclude tha t / is an H-lattice function. 

Definition 2.6.8. — Let / be a rational piecewise affine function on A ^ , and let n and 

{(mA, /A)}AGH be as in Proposition 2 . 6 . 7 . The family {(raA, ^A)}AGH is called a set of 

defining vectors of / . 

Proposition 2.6.9. — Let U be a complete SCR polyhedral complex in A R and f an 

H-lattice function on U. Then r ec ( / ) is a conic H-lattice function on the fan rec(II). 

Proof. — Let A G n and (m, /) G M x Z such tha t f(u) = (m, u) + / for u G A . Then, 

by the definition of r ec ( / ) , it is clear tha t rec(/)|rec(A)(^) = (m,u). Hence, r ec ( / ) is 

a conic H-lattice function on rec(II). • 
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2.7. Monge-Ampere measures 

Let / : C —> M be a concave function of class C2 on an open convex set C C Mn 
Its Hessian matr ix 

Hess(/)(«) := d2f 
duiduj 

(u) 
l<2,J<n 

is a negative semi-definite matr ix which quantifies the curvature of / at the point u. 
The real Monge-Ampere operator is defined as ( — l)n times the determinant of this 
matrix. This notion can be extended as a measure to the case of an arbitrary concave 
function. A good reference for Monge-Ampere measures is [RT77]. 

Let \i be a Haar measure of M R . Assume tha t we choose linear coordinates 
( x i , . . . , x n ) of M R such tha t p is the measure associated to the differential form 
oj = dx\ A • • • A dxn and the orientation of M R defined by this system of coordinates. 
Let ( ^ i , . . . ,un) be the dual coordinates of A R . We will use the induced orientation 
to identify a top differential form with a signed measure. 

Definition 2.7.1. — Let / be a closed concave function on A R . The real Monge-Ampere 
measure of / with respect to p is defined, for a Borel subset E of A^R, as 

M^f)(E)=ß{df{E)) 

It is a measure with support contained in dom(<9/). The correspondence / i—>• Ai^{f) 
is called the Monge-Ampere operator. 

When the measure p is clear from the context, we will drop it from the notation. 
Moreover, since we are not going to consider complex Monge-Ampere measures, we 
will simply call M^(f) the Monge-Ampere measure of / . 

By (2.2.2), the total mass of the Monge-Ampere measure is given by 

M»(f)(NR) = (i(stab(f)). (2.7.1) 

In particular, when s t a b ( / ) is bounded, A4fl(f) is a finite measure. 

Proposition 2.7.2. — The Monge-Ampere measure is a continuous map from the space 
of concave functions with the topology defined by uniform convergence on compact sets 
to the space of a-finite measures on A R with the weak topology. 

Proof. — This is proved in [RT77, §3]. • 

The two basic examples of Monge-Ampere measures tha t we are interested in, are 
the ones associated to smooth functions and the ones associated to piecewise linear 
functions. 
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Proposition 2.7.3. — Let C be an open convex set in A R and f G C2(C) a concave 

function. Then 

M»{f) = ( - 1 ) " det(Hess( / ) ) dui A • • • A duni 

where the Hessian matrix is calculated with respect to the coordinates (ui,... ,un). 

Proof. — This is [RT77, Proposition 3.4] 

By contrast, the Monge-Ampere measure of a piecewise affine concave function is 

a discrete measure supported on the vertices of a polyhedral complex. 

Proposition 2.7.4. — Let f be a piecewise affine concave function with d o m ( / ) = A R 

and ( I l ( / ) , n ( / v ) ) the dual pair of polyhedral complexes associated to f. Denote by 

A t-> A* the correspondence Cf. Then 

MM) = 
uen(/)° 

u(df(v))Sv = 

u C II (f) o 
p,(v )SV = 

AGH(fv). 

M(A)5A., 

where dv is the Dirac measure supported on v. 

Proof. — This follows easily from the definition of M.(f) and the properties of the 

Legendre correspondence of piecewise affine functions. • 

Example 2.7.5. — Let A c M R be a polytope and ^ A its support function. Since 

I I ( ^ A ) is a fan, it has the origin as its single vertex. Moreover, 0* = A. Therefore, 

A M * a ) = MA)5o-

The following relation between Monge-Ampère measure and Legendre-Fenchel du­

ality is one of the key ingredients in the computat ion of the height of a toric variety. 

We will consider the (n — l)-differential form on A R 

A = 
n 

i=l 

(-1 ) i-1 xi dx A • • • A dxi A • • • A dxn. 

It satisfies dA = ncu. 

Let D C A R be a compact convex set and set dD — D \ ri(D) for its relative 

boundary. If the interior of D is non-empty, by using [Roc70, theorems 25.5 and 

10.4] one can show tha t D has piecewise smooth boundary in the sense of [AMR88, 

Definition 7.2.17]. Therefore, for any continuous function g on D the integral 

'dD 
g y 

is well-defined. If the interior of D is empty, then we define this integral as zero. 

Theorem 2.7.6. — Let f: A R —> R be a concave function such that D — s t a b ( / ) is 

compact. Then 

d 
fdMJf) = (n + l) 

Id 
fVda-

JdD 

/VA. (2.7.2) 
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To prove this result, we will use the following lemma to reduce to the case of strictly 

concave smooth functions. 

Lemma 2.7.7. — Let f: NR —>- R be a concave function such that stab(jf) is bounded 

and has non-empty interior. Then there is a sequence of strictly concave smooth 

functions (//)/>i that converges to f uniformly in NR. 

Proof — Let || • || be the Euclidean norm on NR induced by the choice of linear 

coordinates. By [Roc70, Corollary 13.3.3], the hypothesis tha t s t a b ( / ) is bounded 

implies tha t there is a constant k > 0 such that , for all x, y G A%, 

\f(X)-f(y)\<K\\x-y\\. (2.7.3) 

For / > 1, consider the Gaussian function 

pl (x) = 
ln 

(2TTW2 
e 

-Z2||*||2 
2 

We define 

m = 
sd 

Pi(x -y)f{y)dp(y). 

The fact tha t pi is smooth implies tha t // is smooth too, and the facts tha t s t a b ( / ) 

has non-empty interior and tha t pi is strictly positive on the whole of NR imply tha t // 

is strictly concave. The equation (2.7.3) implies that the sequence (fk)keN converges 

uniformly to / . • 

Proof of Theorem 2.7.6. — If the interior of D is empty, then both sides of the equa­

tion (2.7.2) are zero. Therefore, the theorem is trivially t rue in this case. Thus, we 

may assume tha t D has non-empty interior. 

Since s t a b ( / ) is compact, the right-hand side of (2.7.2) is continuous with respect 

to uniform convergence of functions, thanks to Proposition 2.2.3. Moreover, Propo­

sition 2.7.2 and the fact tha t M^{f) is finite imply tha t the left-hand side is also 

continuous with respect to uniform convergence. By Lemma 2.7.7, we can find a 

sequence of strictly concave smooth functions {fi)i>\ tha t converges uniformly to / . 

Hence, we may assume tha t / is smooth and strictly concave. In this case, the 

Legendre transform V / : NR —>> D° is a diffeomorphism (Theorem 2.4.2). 

By the definition of the Monge-Ampère measure, 

Nf 
fdMJf) = 

Jd 
f((Vf)-1x)dp(x)1 (2.7.4) 

which, in particular, shows tha t the integral on the left is convergent for smooth 

strictly concave functions with compact stability set. Therefore, it is convergent for 

any concave function within the hypothesis of the theorem. 

By Theorem 2.4.2(4), 

-f((Vf)-\x)) ^r(x)-((\/f)-1(x)^x). (2.7.5) 
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Moreover, 

d ( / v A ) ( x ) = d / v A A ( x ) + / v d A ( x ) 

= (V /v (x ) , x )u ; + n / v a ; 

= ( (V/ ) -1 (x ) ,x )c^ + n / v ^ , (2.7.6) 

where the last equality follows from Theorem 2.4.2(3). The result is obtained by 

combining the equations (2.7.4), (2.7.5) and (2.7.6) with the piecewise smooth Stokes' 

theorem [AMR88, Theorem 8.2.20]. • 

We now particularize Theorem 2.7.6 to the case when the Haar measure comes 

from a lattice and the convex set is a lattice polytope of maximal dimension. 

Definition 2.7.8. — Let L be a lattice and set L i = L ® I . We denote by vol^ the 

Haar measure on L R normalized so tha t L has covolume 1. 

Let iV be a lattice of A R and set M = A^V for its dual lattice. For a concave 

function / , we denote by Mm if) the Monge-Ampere measure with respect to the 

normalized Haar measure VOIM-

Notation 2.7.9. — Let A be a rational polyhedron in M R and aff(A) its affine hull. 

We denote by L\ the linear subspace of M R associated to aff(A) and by M ( A ) the 

induced lattice M D L A - By definition, VO1M(A) is a measure on L A , and we will denote 

also by VO1M(A) tne measure induced on aff(A). If v G A R is orthogonal to L A , we 

define (A, v) = (x, v) for any x G A. Furthermore, when dim (A) = n and F is a facet 

of A, we will denote by vF G N the vector of minimal length tha t is orthogonal to 

Lp and satisfies (F,vp) < (x,vp) for each x G A. In other words, vF is the minimal 

inner integral orthogonal vector of F as a facet of A. 

Corollary 2.7.10. — Let f : A R E be a concave function such that A = s t a b ( / ) is a 

lattice polytope of dimension n . Then 

fg 
fdMiulf) = (nA 

'A 
F dvolM + 

F 
(F,vF) 

If 
f dvolM(F), 

where the sum is over the facets F of A. 

Proof. — We choose ( m i , . . . , mn) a basis of M such tha t ( m 2 , . . . , mn) is a basis of 

M(F) and m i points to the exterior direction. Expressing A in this basis we obtain 

Mf = - (FìvF)dvó[M(F) 

The result then follows from Theorem 2.7.6. • 

In §5, we will see tha t we can express the height of a toric variety in terms of 

integrals of the form jA fv dvoUf as in the above result. In some situations, it will 

be useful to translate those integrals to integrals on A R . 
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Let / : A R - ^ M b e a concave function and g: s t a b ( / ) -> R an integrable function. 

We consider the signed measure on A R defined, for a Borel subset E of A R , as 

MmgM(f)(E) = 
df(E) 

g d volM 

Clearly, M.M,g{f) is uniformly continuous with respect to M M ( / ) . By the Radon-

Nicodym theorem, there is a A ^ M ^ ) - m e a s u r a b l e function, that we denote g o df, 

such tha t 

df 
godfdMM(f) = 

E 
IMmM) = 

df{E) 
gdvo\M ( 2 . 7 . 7 ) 

Example 2.7.11. — When the function / is differentiable or piecewise affine, the mea­

surable function fv o df can be made explicit. 

1. Let / G C 2 ( A R ) . Proposition 2 . 7 . 3 and the change of variables formula imply 

godf = go V'/'. For the particular case when g = fv, Theorem 2.4.2(4) implies, 

for u G A R , 

/ v o 9 / ( « ) = ( V / W , « } - / ( « ) . 

2 . Let / a piecewise affine concave function on A R . By Proposition 2 .7 .4 , M.M\f) 

is supported in the finite set II(/)0 and so is M.M,g{f)- F°r v £ n ( / ) ° write 

v* G I I ( /v )n for the dual polyhedron. Then g o df{v) = 1/ volM(v*) Jv*gdvolM, 

which implies 

fV°df(v) 
1 

volM(^*) 
(x ,v )dvolM -f(v)-

The function / v o df is defined as a A 4 M (immeasurable function. Therefore, 

only its values at the points v G II(/)0 are well defined. Nevertheless, we can 

extend the function fv o df to the whole A R by writing 

fvodf(u) 
1 

™Udf(u)) 'df(u) 
(x,u) d/i - }[u) 

for any Haar measure \i on the affine space determined by df{u). 

The Monge-Ampere operator is homogeneous of degree n. There is an associated 

multilinear operator, introduced by Passare and Rullgard [PR04], which takes n 

concave functions as arguments. 

Definition 2.7.12. — Let / 1 , . . . , / n be closed concave functions on A R . The mixed 

Monge-Ampere measure is defined by the formula 

MM{fi,...,fn) = 
1 

ra! 
dfg 

n 
i-l)n-j 

l<ii<---<ij <n 

> U i / „ • / , . ) . 
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In principle, the mixed Monge-Ampere measure is a signed measure. Nevertheless 
it can be shown tha t it is a measure (see [PR04, §5]). Moreover, it is symmetric and 
multilinear in the concave functions fi with respect to the pointwise addition. 

Proposition 2.7.13. — The mixed Monge-Ampere measure is a continuous map from 
the space of n-tuples of concave functions with the topology defined by uniform con­
vergence on compact sets to the space of a-finite measures on A R with the weak 
topology. 

Proof. — The general mixed case reduces to the unmixed case f1 = ... = fn: which 
is Proposition 2.7.2. • 

Definition 2.7.14. — The mixed volume of a family of compact convex sets Q i , . • . , Qn 
of M R is defined as 

M V M ( Q i , - . . , Q n ) = 
n 

3 = 1 
f - i r j 

l<ii<---<ij <n 
VO1M(Qh H rQii) 

Since MVm(Qi • • • ? Q) — ri\ VO1M(0), the mixed volume is a generalization of the 
volume of a convex body. The mixed volume is symmetric and linear in each vari­
able Qi with respect to the Minkowski sum, and monotone with respect to inclu­
sion [Ewa96, Chapter IV]. 

The total mass of the mixed Monge-Ampere measure is given by a mixed volume. 

Proposition 2.7.15. — Let / i , . . . , fn be concave functions such that r i (dom(/ i ) ) n • • • D 
r i (dom(/n)) 0, then 

(A*cl(/))v = cl((^v)*(/v-^0)); 
1 

MVM(stab(A),...,stab(/n)). 
Proof. — If dom(/ i ) = A R for all z, this is proved in [PR04, Proposition 3(iv)]. In 
the general case, this follows from the definitions of mixed Monge-Ampere measure 
and mixed volume, the equation (2.7.1) and Proposition 2.3.1(3). • 

Following [PS08a], we introduce an extension of the notion of integral of a concave 
function. 

Definition 2.7.16. — Let Qi, i = 0 , . . . , n, be a family of compact convex subsets of 
M R and gi'. Qi -> R a concave function on Qi. The mixed integral of go,..., gn is 
defined as 

M W t f o , • •. ,0n) = 
n 

5=0 
" I ) 3 

d<io<---<ij <n Mio +..+q, 
9i0 gÎ3 dvolM 
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For a compact convex subset Q C M R and a concave function ^ on Q , we have 
M I M ( # , • • • ,g) = (n + 1)! J g ^ d v o l M - The mixed integral is symmetric and additive 
in each variable gi with respect to the sup-convolution. For a scalar A G M>o, we have 
M I M ( A # o , • • • , A#N) = A M I M ( # o , • • • ,9n)- We refer to [PS08a, PS08b] for the proofs 
and more information about this notion. 
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CHAPTER 3 

TORIC VARIETIES 

In this chapter we recall some basic facts about the algebraic geometry of toric 
varieties and schemes. In the first place, we consider toric varieties over a field and 
then toric schemes over a DVR. We refer to [KKMS73, Oda88, Ful93, Ewa96, 
CLS11] for more details. 

We will use the notations of the previous section concerning concave functions 
and polyhedra, with the proviso tha t the vector space A R will always be equipped 
with a lattice N and most of the objects we consider will be compatible with this 
integral structure, even if not said explicitly. In particular, from now on, by a fan 
(Definition 2.1.11) we will mean a rational fan and by a polytope we will mean a lattice 
polytope. 

3.1. Fans and toric varieties 

Let K be a field and T ~ G7^ a split torus over K. We alternatively denote it by 
TK if we want to refer to its field of definition. 

Definition 3.1.1, — A toric variety is a normal variety X over K equipped with a 
dense open embedding T ^ X and an action / i : T x X X tha t extends the action 
of T on itself by translations. When we want to stress the torus, we will call X a toric 
variety with torus T. 

Toric varieties can be described in combinatorial terms as we recall in the sequel. 
Let N = Hom(Gm,T) ~ 7Ln be the lattice of one-parameter subgroups of T and 
M — Nv = Hom(N,Z) its dual lattice. For a ring R we set Nr — N <g> R and 
Mr = M 0 R . We will use the additive notation for the group operations in Â  and 
M . There is a canonical isomorphism M ~ Hom(T, Gm) with the group of characters 
of T. For m G M we will denote by xm lne corresponding character. 
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To a fan £ we associate a toric variety over K by gluing together the affine 

toric varieties corresponding to the cones of the fan. For a G £ , let crv be the dua 

cone (Definition 2.5.8) and set 

Ma = crv H M = {m G M I (m, > 0, G a } 

for the saturated semigroup of its lattice points. We consider the semigroup algebra 

K\Ma\ = 

meMa 

am X m arn e K, arn — 0 for almost all m 

of formal finite sums of elements of Mai with the natural ring structure. It is an 

integrally closed domain of Krull dimension n. We set Xa = Spec(K[Ma]) for the 

associated affine toric variety. If r is a face of cr, then K[MT] is a localization of 

K[Ma]. Hence there is an inclusion of open sets 

XT = Spec(K[MT]) Xa = Spec{K[Ma}). 

For a, a' G £ , the affine toric varieties Xai Xat glue together through the open subset 

Xana' corresponding to their common face. Thus these affine varieties glue together 

to form the toric variety 

As = 
a s s 

Xo 

This is a normal variety over K of dimension n. When we need to specify the field of 

definition we will denote it as X^,K- We denote by Ox^ its s tructural sheaf and by 

/Cxs its sheaf of rational functions. The open subsets XA C X^ may be denoted by 

X^^a when we want to include the ambient toric variety in the notation. 

The cone {0}, tha t we denote simply by 0, is a face of every cone and its associated 

affine scheme 

X0 = Spec(K\M\) 

is an open subset of all the schemes Xa. This variety is an algebraic group over K 

canonically isomorphic to T. We identify this variety with T and call it the principal 

open subset of X^. 

For each a G E , the homomorphism 

K[Ma] K[M] (8) K[Ma], xm —> Xm X Xm 

induces an action of T on Xa. This action is compatible with the inclusion of open 

sets and so it extends to an action on the whole of X^ 

[i\ T x I E ^tX^. 

Thus we have obtained a toric variety in the sense of Definition 3.1.1. In fact, all toric 

varieties are obtained in this way. 

Theorem 3.1.2. — The correspondence E H> X^ is a bijection between the set of fans 

in TVR and the set of isomorphism classes of toric varieties with torus T. 

Proof — This result is [KKMS73, §1.2, Theorem 6(i)]. • 
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For each a G E , the set of if-rat ional points in Xa can be identified with the set 
of semigroup homomorphisms from ( M a , + ) to the semigroup (if, x ) := i fx U {0}. 
Tha t is, 

Xa ( i f )=Homsg(MCT, ( i f , x ) ) 

In particular, the set of if-rat ional points of the algebraic torus can be writ ten intrin­
sically as 

T ( i f ) = H o m s g ( M 0 , ( i f , x ) ) = Homgp(M, i fx ) ~ ( i fx )n . 

Every affine toric variety has a distinguished rational point: we will denote by xa G 
Xa(K) — Homsg(Mcr, (if, x ) ) the point given by the semigroup homomorphism 

MG 3 m 
1 if - m G Ma, 

o otherwise. 

For instance, the point xo G XQ — T is the unit of T. 
Most algebro-geometric properties of the toric scheme translate into combinatorial 

properties of the fan. In particular, XY; is proper if and only if the fan is complete in 
the sense that | £ | = N^. The variety X^ is smooth if and only if every cone a G E can 
be writ ten as a = M>o^i + • • • + R>c№ with v\,..., Vk which are part of an integral 
basis of N. The variety X^ is projective if and only if the fan E is complete and 
regular (Definition 2.5.4). 

Example 3.1.3. — Let EA™ be the fan in Example 2.5.12. The toric variety X^AN is 
the projective space P ^ . More generally, to a polytope A C M R of maximal dimension 
we can associate a complete toric variety X ^ A , where E A is the fan of Example 2.5.13. 

3.2. Orbits and equivariant morphisms 
The action of the torus induces a decomposition of a toric variety into disjoint 

orbits. These orbits are in one to one correspondence with the cones of the fan. Let 
a G E and set 

N(a) = N/(NnRcr), M(cr) = N(a)y = Mna±, (3.2.1) 

where Rcr is the linear space spanned by a and a1- is the orthogonal space to a. We 
will denote by ixG : N —> N(a) the projection of lattices. By abuse of notation, we 
will also denote by 7ra : N^ —>> N(a)j& the induced projection of vector spaces. 

The orthogonal space a1- is the maximal linear space inside ay and M (a) is the 
maximal subgroup sitting inside the semigroup Ma. Set 

0[g) = Spec(if M(cr) ), 
which is a torus over i f of dimension n — dim(cr). The surjection of rings 

K\MJ K\M(a)\ xa 
a if a G cr-1-. 

0 if a S a , 
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induces a closed immersion 0(a) Xa. In terms of rational points, the inclusion 

0(a)(K) ^ Xa(K) sends a group homomorphism 7 : M(a) —> Kx to the semigroup 

homomorphism 7 : Ma —>> (K, x ) obtained by extending 7 by zero. In particular, 

the distinguished point xa G Xa(K) belongs to the image of 0(a)(K) by the above 

inclusion. Composing with the open immersion XG ^ X ^ , we identify 0(a) with a 

locally closed subvariety of X ^ . For instance, the orbit associated to the cone 0 agrees 

with the principal open subset X Q . In fact, if we consider x (j as a rational point of 

X ^ , then 0(a) agrees with the orbit of xG by T. 

We denote by V(a) the Zariski closure of 0(a) with its induced structure of closed 

subvariety of X ^ . The subvariety V(a) has a natural structure of toric variety. To 

see it, we consider the fan on N(a)^ 

£ <r) := {nG(r) I t D a\. (3.2.2) 

This fan is called the star of a in E. For each r G E with a C r , set r = 71V (r) G E(cr). 

Then, M(a)r — M(a) fi MT. There is a surjection of rings 

K[MT] —»• /T[M(«tH 
Xm 

Xm if m G a , 

0 if m 4 a , 

tha t defines a closed immersion X ^ ^ XT. These maps glue together to give a closed 

immersion iG: Xwa) ^ X ^ . 

Proposition 3.2.1. — The closed immersion iG induces an isomorphism X^a) — ^r((J)-

Proof. - - Since the image of each X^ contains 0(a) as a dense orbit, we deduce the 

result from the construction of iG. • 

In view of this proposition, we will identify V(a) with X^a) and consider it as a 

toric variety. 

We now discuss more general equivariant morphisms of toric varieties. 

Definition 3.2.2. — Let ~ G ^ , i = 1,2, be split tori over K, and g: Ti —̂  T2 

a group morphism. Let X^, i = 1,2, be toric varieties with torus TLV A morphism 

(p: X\ —> X2 is g-equivariant if the diagram 

Tx x A] 
Mi X1 

Y 

•X2 
M2 

x2 II 

0 X 09 

is commutative. A morphism ip: X\ —>• X2 is g-toric if its restriction to Ti agrees with 

£. We say tha t cp is equivariant or tone if it is o-equivariant or £>-toric, respectively, 

for some g. 
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Toric morphisms are equivariant. Indeed, a morphism is toric if and only if it is 

equivariant and sends the distinguished point x\$ G X\(K) to the distinguished point 

x2i0eX2(K). 

The inclusion V(a) —)• X^ is an example of equivariant morphism tha t is not toric. 

Moreover, the underlying morphism of tori depends on the choice of a section of the 

projection 7ra: N -> N(a). 

A general equivariant morphism is obtained by composing an equivariant morphism 

whose image intersects the principal open subset, with the inclusion of this image as 

the Zariski closure of an orbit. 

Equivariant morphisms whose image intersects the principal open subset can be 

characterized in combinatorial terms. Let T^, i = 1,2, be split tori over K. Pu t 

Ni = Hom(Gm, T^) and let E^ be fans in Ni^. Let H: Ni —> N2 be a linear map such 

that , for every cone <j\ G E i , there exists a cone a2 G E2 with H(a\) C 02, and let 

V £ ^s2,o(^0 be a rational point. The linear map induces a group homomorphism 

gH: Ti —> T2. 

Let ai G E^, i = 1,2, be cones such tha t H(ai) C a2. Let Hy: M2 -» Mi be 

the map dual to H. Then there is a homomorphism of semigroups M2j(J2 —> Mij(7l 

which we also denote by Hy. For a monomial xm £ ^[^2,cr2] we denote by 

its image in if[Mij(Tl]. The assignment xm ^ Xm(p)xHVrn induces morphisms of 

algebras K[M2i(T2] ~~̂  ^[^1 ,0-1]? that in turn, induce morphisms 

Xai= Spee(K[Mli(Tl]) Xa2=Spec(K[M2t*2]). 

These morphisms are compatible with the restriction to open subsets, and they glue 

together into a ^ - e q u i v a r i a n t morphism 

Y p,H:HXz1 —> Xe2 (3.2.3) 

In case p — #2,0? the distinguished point on the principal open subset of X^2, this 

morphism is a toric morphism and will be denoted as (fn for short. 

Remark 3.2.3. — The restriction of ipp,H to the principal open subset can be writ ten 

in coordinates by choosing bases of N\ and N2. Let Ui be the rank of Ni. The chosen 

bases determine isomorphisms X^z,o — GJJj, which give coordinates x = (x\,...,xni) 

and t = ( ¿ 1 , . . . ,tn2) for Xsl5o and X^2^0l respectively. We write the linear map H 

with respect to these basis as a matrix, and we denote its rows by a^, i — 1 , . . . , n2. 

Write p — (pi,... ,Pn2)- In these coordinates, the morphism y>p,H is given by 

<PpMx) = {Pixa\...,pn2xa^), 
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Theorem 3.2.4. — Let Ti, Ni and £^7 i = 1,2, be as above. Then the correspondence 

(p, H) h-» (fP:H is a bijection between 

1 . the set of pairs (p,H), where H: N\ —> N2 is a linear map such that for every 

cone a\ G Ei there exists a cone a2 G £2 with H(a{) C a2, and p is a rational 

point ofXv2,o(K), 

2. the set of equivariant morphisms cp: X^1 —)• X^2 whose image intersects the 

principal open subset of J \ £ 2 . 

Proof — For a point p G X^^(K) — T2(K), let tp: X^2 —>• X^2 be the morphism 

induced by the toric action. Denote by x\^ G XJ:1(K) the distinguished point of 

the principal open subset of X ^ . The correspondence ip H> (^(Xl 0) ° ^ ' ^(xi ,o)) 

establishes a bijection between the set of equivariant morphisms cp: X^ —> X^2 

whose image intersects the principal open subset of X^2 and the set of pairs (<^o>p)> 

where ipo: —>• is a toric morphism and p G X^2io(K) is a rational point in 

the principal open subset. Then the result follows from [Oda88, Theorem 1.13]. • 

Following [Oda88, Proposition 1.14], we now show how to refine the Stein factor­

ization for an equivariant morphism whose image intersects the principal open subset, 

in terms of combinatorial data . Let A^, E^, H and p be as in Theorem 3.2.4. The 

linear map H factorizes as 

Nl 
Hsur 

N3 := H(N!) 
Hsa.t N4 := sat (N3) 

hm 
N2, 

where N3 is the image of H and N4 is the saturat ion of N3 with respect to N2. Clearly 

N3^ = N4^. By restriction, the fan £2 induces a fan in this linear space. We will 

call this fan either £ 3 or £ 4 , depending on the lattice we are considering. Applying 

the combinatorial construction of equivariant morphisms, we obtain the following 

factorization of (pp,H: 

Xz 
~ "surj 

A E 3 
pH 

^ 4 
yp hinj Xz (3.2.4) 

The first morphism has connected fibres, the second morphism is finite and surjective, 

and the third morphism is also finite. Therefore, <£//surj and (Pp,Hìnj 0(PHsaLt &ve a Stein 

factorization of (pv h- Furthermore, by [Oda88, Corollary 1.16], 

deg(ipHBJ = [N4:N3]. (3.2.5) 

The morphism ^p,Hinj can be further factorized as a normalization followed by a closed 

immersion. In what follows, we describe this latter factorization with independent 

notations. 

Consider a saturated sublattice Q of N, E a fan in A R and p G X s , o ( ^ ) - Let E q 

be the induced fan in and t: Q ^ N the inclusion of Q into N. Then we have a 

finite eauivariant morphism 

Y p,i : XZQ —> XZ 
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Set P = Qv = M/Q1- and let lv : M P be the dual of .̂ Let cr G E and 

a' = cr D G E Q . The natural semigroup homomorphisms MA -> PCT/ factors as 

(A*cl(/))v =l((^v)*(/; (MA + Q±)/Q± PG, : = P n ( 0 V . 

The first arrow is the projection and will be denoted as m \-> [m], while the second 

one is the inclusion of MQ^ into its saturation with respect to P . We have a diagram 

of if-algebra morphisms 

K[M0] —»K[MQ^]—>^K[PA^ 

where the left map is given by xm ^ Xm(p)x > and the right map is given by 

Y[M] ^ M^ YAQV ~ Spec(i\ [MQ)CT]) be the closed subvariety of Xa given by 

the left surjection. Then we have induced maps 

Xai — » Ycr,Q,p c—> Xa. 

These maps are compatible with the restriction to open subsets and so they glue 

together into a factorization of <pp L: 

Xai —» Ycr,Q,p c—> Xa. (3.2.6) 

Denote by 1E,Q,P,O the orbit of p under the action of the subtorus of T determined by Q 

Then 1E,Q,P is the closure of ls,Q,p,o? while the toric variety X^Q is the normalization 

of ^s,Q,p- When p = XQ, the subvariety ls,Q,p will be denoted by 1E,Q for short. 

Observe in the previous construction that , when cr = 0, hence a1 — 0, then 

MQ)0 = Po- Therefore the difference between X^Q and 1E,Q,p is concentrated in 

the complement of the principal open subset: 

Proposition 3.2.5. — The normalization map X^Q —>• Ys,Q,p induces an isomorphism 

Xai —» Ycr,pa. 

Definition 3.2.6. — A subvariety Y of X^ will be called a toric subvariety (respectively, 

a translated toric subvariety) if it is of the form YE,Q (respectively, l s ,Q ,p ) for a 

saturated sublattice Q C N and p G o(^0-

A translated toric subvariety is not necessarily a toric variety in the sense of Defi­

nition 3.1.1, since it may be non-normal. 

Example 3.2.7. — Let N = Z2, (a, b) G N with gcd(a, b) = 1 and t: Q N the 

saturated sublattice generated by (a, 6). Let E be the fan in Njg of Example 2.5.12. 

Then XJ: = P 2 with projective coordinates (XQ : x\ : x2). The fan induced in has 

three cones: E Q = {^<o> {0}5^>o}- Thus X^Q = P 1 . Let p = (1 : pi : p2) be a point 

of XY,^{K). Then ^,¿,((1 : i)) = (1 : pi£a : p2th). Therefore, 1E,Q,P is the curve of 

equation 

p2XnX1 VlXQX2 = 0. 

In general, this curve is not normal. Hence it is not a toric variety. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



84 CHAPTER 3. TORIC VARIETIES 

We end this section by stating the compatibility between equivariant morphisms 

and orbits. 

Proposition 3.2.8. — With the notations of Theorem 3.2.4- Let o\ G Ei and let 

o~2 G £2 be the unique cone such that H(o~i) C o~2 and H(&\) n ri(<j2) 7̂  0- Let 

H': Ni(o~i) —> N2(0-2) be the linear map induced by H and let p' G 0(0-2) = 

Spec(i^[M2(<T2)]) be the point determined by the map i f ^ 2 ( 0 2 ) ] —>> K, \m ^ Xm(p)y 

m G M2(o~2). Then there is a commutative diagram 

^£l(<7l) 
<Pp',H' 

X Y2(q2) 

y q25 

x E 2 . 
y p.J 

rt 

XZi 

3.3. T-Cartier divisors and toric line bundles 

When studying toric varieties, the objects tha t admit a combinatorial description 

are those tha t are compatible with the torus action. These objects are enough for 

many purposes. For instance, the divisor class group of a toric variety is generated 

by invariant divisors. 

Let 7T2: T x X —>> X denote the projection to the second factor and /1: T x X —> X 

the torus action. A Cartier divisor D is invariant if and only if 

n^D = /i* D. 

Definition 3.3.1. — Let A be a toric variety with torus T. A Cartier divisor on X is 

called a T-Cartier divisor if it is invariant under the action of T on X. 

The combinatorial description of T-Cartier divisors is done in terms of virtual 

support functions. 

Definition 3.3.2. — Let E be a fan in A R . A function ^ : | E | R is called a virtual 

support function on E if it is a conic iiT-lattice function (Definition 2.6.6). Alterna­

tively, a virtual support function is a function ^ : | E | - > R such that , for every cone 

a G E , there exists ma G M with ty(u) = (ma,u) for all u G a. A set of functionals 

{m^jcre^ as above is called a set of defining vectors of A concave virtual support 

function on a complete fan will be called a support function. 

A support function on a complete fan in the sense of the previous definition, is the 

support function of a polytope as in Example 2.2.1: it is the support function of the 

polytope 

c o n v d m ^ j ^ e s " ) C M R , 

where E N is the subset of n-dimensional cones of E . 
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Two vectors ra, ra' G M define the same functional on a cone a if and only if 
ra — ra' G a1-. Hence, for a given virtual support function ^ on a fan E, each defining 
vector ma is unique up to the orthogonal space cr-1. In particular, ma G M is uniquely 
defined for a G En and, in the other extreme, rao can be any point of M. 

Let {racrjves be a set of defining vectors of These vectors have to satisfy the 
compatibility condition 

ma Iana' = ma>\ar]a> for all cr, cr G E. 

On each open set XAI the vector ma determines a rational function x~mcr • For 
cr, cr' G E, the above compatibility condition implies tha t X_m<7/x_m<7/ is a regular 
function on the overlap XA D Xa/ = -Xo-no-' and so \P determines a Cartier divisor 
on l v : 

Xai —» Ycr,Q,p c—> Xa. 
This Cartier divisor does not depend on the choice of defining vectors and it is a 
T-Cartier divisor. All T-Cartier divisors are obtained in this way. 

Theorem 3.3.3. — Let E be a fan in and X^ the corresponding toric variety. The 
correspondence ^ i-» is a bisection between the set of virtual support functions on 
E and the set of T-Cartier divisors on X % . Two Cartier divisors and D^2 are 
rationally equivalent if and only if the function ^ 1 — ^ 2 is linear. 

Proof. — This is proved in [KKMS73, §1.2, Theorem 9]. • 

We next recall the relationship between Cartier divisors and line bundles in the 
toric case. 

Definition 3.3.4. — Let X be a toric variety and L a line bundle on X. A toric 
structure on L is the choice of a nonzero vector z on the fibre LXO — XQL over the 
distinguished point. A toric line bundle is a pair (L, z), where L is a line bundle on 
X and z is a toric structure on L . A rational section s of a toric line bundle is a toric 
section if it is regular and nowhere vanishing on the principal open subset XQ and 
s(xo) = z. In order not to burden the notation, a toric line bundle will generally be 
denoted by L, the vector z being implicit. 

Remark 3.3.5. — Let L be a toric line bundle and denote by 0 its zero section. Let 
V(L) = Specx(Sym(Lv)) be the total space of L. Then T := V(L\T) \ 0(T) admits 
a unique structure of split torus of dimension n + 1 characterized by the properties 

1. z is the unit of V; 

2. the projection T; —>> T is a morphism of algebraic groups; 

3. every toric section s induces a morphism of algebraic groups T -> T \ 
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The terminology "toric structure", "toric line bundle" and "toric section" comes from 
the fact tha t V(L) admits a unique structure of toric variety with torus V satisfying 
the conditions: 

1. z is the distinguished point of the principal open subset; 

2. the structural morphism V(L) —> X is a toric morphism; 

3. for each point x G X and vector w G Lx, the morphism Gm —> V(L), given by 
scalar multiplication A H> \w, is equivariant; 

4. every toric section s determines a toric morphism U —>> V(L) , where U is the 
invariant open subset of regular points of s. 

This can be shown using the construction of V(L) as a toric variety in [Oda88, 
Proposition 2.1]. 

Remark 3.3.6. — Every toric line bundle equipped with a toric section admits a unique 
structure of T-equivariant line bundle such tha t the toric section becomes an invariant 
section. Conversely, every T-equivariant toric line bundle admits a unique invariant 
toric section. Thus, there is a natural bijection between the space of T-equivariant 
toric line bundles and the space of toric line bundles with a toric section. In particular, 
every line bundle admits a structure of T-equivariant line bundle. This is not the case 
for higher rank vector bundles on toric varieties, nor for line bundles on other spaces 
with group actions like, for instance, elliptic curves. 

To a Cartier divisor D , one associates an invertible sheaf of fractional ideals of JCx, 
denoted O(D). When D is a T-Cartier divisor given by a set of defining vectors 
{mcrjcrçE, the sheaf O(D) can be realized as the subsheaf of (9x-modules generated, 
in each open subset XA, by the rational function xm<T • The section 1 G JCx provides us 
with a distinguished rational section sd such tha t d iv(s^) = D. Since D is supported 
on the complement of the principal open subset, sjj is regular and nowhere vanishing 
on Xq. We set z = sd(xo). This is a toric structure on O(D). From now on, we will 
assume tha t O(D) is equipped with this toric structure. Then (((9(D), z), sp) is a 
toric line bundle with a toric section. 

Theorem 3.3.7. — Let X be a toric variety with torus T. Then the correspondence 
D i—>> ((O(D), sr)(xo)),srj) determines a bijection between the sets of 

1 . T-Cartier divisors on X, 

2. isomorphism classes of pairs (L, s) where L is a toric line bundle and s is a 
toric section. 

Proof — We have already shown tha t a T-Cartier divisor produces a toric line bundle 
with a toric section. Let now ((L, z\ s) be a toric line bundle equipped with a toric 
section and E the fan tha t defines X. Since every line bundle on an affine toric variety 
is trivial, for each a G E we can find a section sa tha t generates L on XA and such 
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tha t sa(xo) = z. Since s is regular and nowhere vanishing on X0 and s(xo) = z, 
we can find elements ma G M such tha t s — x~m<Tsa, because any regular nowhere 
vanishing function on a torus is a constant times a monomial. The elements ma glue 
together to define a virtual support function ^ on S tha t does not depend on the 
chosen trivialization. It is easy to see tha t the correspondence (L, s) H> is the 
inverse of the previous one, which proves the theorem. • 

Thanks to this result and Theorem 3.3.3, we can freely move between the languages 
of virtual support functions, T-Cartier divisors, and toric line bundles with a toric 
section. 

Notation 3.3.8. — Let ^ be a virtual support function, we write ((L\&, zy), S\&) for 
the toric line bundle with toric section associated to the T-Cartier divisor by 
Theorem 3.3.7. When we do not need to make explicit the vector Z\&, we will simply 
write ( L ^ , s # ) . Conversely, given a toric line bundle L with toric section s we will 
denote ^l,s the corresponding virtual support function. 

We next recall the relationship between Cartier divisors and Weil divisors in the 
toric case. 

Definition 3.3.9. — A T-Weil divisor on a toric variety X is a finite formal linear 
combination of hypersurfaces of X which are invariant under the torus action. 

The invariant hypersurfaces of a toric variety are particular cases of the toric sub-
varieties considered in the previous section: they are the varieties of the form V(r) 
for r G E1 a ray. Hence, a T-Weil divisor is a finite formal linear combination of 
subvarieties of the form V(r) for r G E1. 

There is a correspondence tha t to each Cartier divisor on X associates a Weil 
divisor. To the T-Cartier divisor D^, it corresponds the T-Weil divisor 

(DY) = 
res1 

-V(vt)V(t), (3.3.1) 

where vT G N is the smallest nonzero lattice point in r . 

Example 3.3.10. — We continue with the notation of examples 2.5.18 and 3.1.3. The 
fan EA™ has n + 1 rays. For each i — 0 , . . . , n, the closure of the orbit corresponding 
to the ray generated by the vector a is the s tandard hyperplane of PN 

Hi := V((ei)) {(po:...:pn)eWn\Pl = 0}. 
The function ^ A N is a support function on E A ^ and the T-Weil divisor associated to 
DfyAn is [D^An] = H0. 

For a toric variety of dimension n, we denote by Divj(X^) its group of T-
Cartier divisors, and by Z^_1(X^) its group of T-Weil divisors. Recall tha t P i c (Xs ) , 
the Picard group of X ^ , is the group of isomorphism classes of line bundles. Let 
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An-i(Xz) denote the Chow group of cycles of dimension n — 1. The following result 

shows tha t these groups can be computed in terms of invariant divisors. 

Theorem 3.3.11. — Let E be a fan in that is not contained in any hyperplane. 

Then there is a commutative diagram with exact rows 

0 - M DivT(XE) Pic(X^) 0 . 

0 fg ¿71-1 (XZ) An_i (XE) o 

Proof. — This is the first proposition in [Ful93, §3.4]. 

Remark 3.3.12. — In the previous theorem, the hypothesis tha t E is not contained in 

any hyperplane is only needed for the injectivity of the second arrow in each row of 

the diagram. 

In view of Theorem 3.3.7, the upper exact sequence of the diagram in Theo­

rem 3.3.11 can be interpreted as follows. 

Corollary 3.3.13. — Let X be a toric variety with torus T. 

1 . Every toric line bundle L on X admits a toric section. Moreover, if s and s' 

are two toric sections, then there exists m G M such that s' = x ™ 5 -

2. If the fan E that defines X is not contained in any hyperplane, and L and L' are 

toric line bundles on X, then there is at most one isomorphism between them. 

Proof — This follows from theorems 3.3.11 and 3.3.7. • 

We next s tudy the intersection of a T-Cartier divisor with the closure of an orbit. 

Let E be a fan in and ^ the virtual support function on E given by the set of 

defining vectors {mT}re^. Let a be a cone of E and ia: V(a) ^ the associated 

closed immersion. We consider first the case when = 0. Let r D a be another 

cone of E. For vectors u G r and v G Rcr such tha t u + v G r , the condition ty\a = 0 

implies 

ty(u + v) = (raT, u + v) (mT,u) = ty(u) 

because mr\ma 0. Hence, we can define a function 

^ 0 ) : N(or)R • R , u + Ro V(u + v) (3.3.2) 

for any v G Rcr such tha t u + v G UTDO- T ' 

It is easy to produce a set of defining vectors of ^(<r). For each cone r D a 

we denote by f = 7Tcr(̂ ) the corresponding cone in E ( a ) . Since rnr\Ra — 0, then 

mT G M(cr) = M H a1-. We set — mT G M(a). 
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Proposition 3.3.14. — Let notation be as above. If = 0, then intersects 
V(a) properly and taD^ = D^^y Moreover, {ra^jreEO) is a set °f defining vec­
tors of 

Proof. — The T-Cartier divisor is given by {(Xr, X_mT)}rGS- If mo — 0? the 
local equation of in Xa is x ° — 1- Therefore, the orbit 0(a) does not meet the 
support of D^. Hence V(a) and intersect properly. 

To see that {^tI tee^) is a set °f defining vectors, we pick a point u G r and we 
choose u G r such that 7ra(u) — u. Then 

^f(a)(u) = ^(г¿) = mT(u) = mT(u), 

which proves the claim. Now, using the characterization of ^(a) in terms of defining 

vectors, we have 

CD* {(XTnV(a),X mo \xTHV(a))h = {(XTlX-fn^h = Dnay 

When ^ 0, the cycles and V(a) do not intersect properly, and we can only 

intersect with V(a) up to rational equivalence. To this end, we choose any m!a 

such tha t ^(u) = (mfa,u) for every u G a. Then the divisor D^-m'^ is rationally 

equivalent to and ^ — m'a\a = 0. By the above result, this divisor intersects 

V(a) properly, and its restriction to V(a) is given by the virtual support function 

(V - m'a)(<r). 

Example 3.3.15. — We can use the above description of the restriction of a line bundle 

to an orbit to compute the degree of an orbit of dimension one. Let E be a complete fan 

and r G En_1 . Hence V(r) is a toric curve. Let o\ and a2 be the two n-dimensional 

cones tha t have r as a common face. Let ^ be a virtual support function. Choose 

v G o\ such tha t 7rr(^) is a generator of the lattice N(r). Then, by (3.3.1) and (3.3.2), 

degDJV(r)) = deg(4D*) = ma2(v) - mai(v). 

Let now (L, z) be a toric line bundle on X ^ and a G E. The line bundle iGL on 

V(a) has an induced toric structure. Let s be a toric section of L tha t is regular 

and nowhere vanishing on Xa, and set za = s(xa) G LX(r \ {0}. If s' is another 

such section, then s' = x ™ 5 f°r an ra G M such tha t m\a = 0, by Corollary 3.3.13. 

Therefore sf(xa) — s(xa). Hence, za does not depend on the choice of section and 

(iGL, is the induced toric line bundle. The following result follows easily from the 

constructions. 

Proposition 3.3.16. — Let (L, z) be a toric line bundle on X ^ and a G E. Let ^ be a 

virtual support function such that — 0 and (L, z) ~ (L\&, z^) as toric line bundles. 

Then ta(L,z) ~ (L^{ayz^{a)). 

We next study the inverse image of a T-Cartier divisor with respect to equivariant 

morphisms as those in Theorem 3.2.4. Let Ni, E^, i = 1,2, and let H: N± -» N2 
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and p G Xx2fi(K) be as in Theorem 3.2.4. Let <pp,H be the associated equivariant 

morphism, ^ a virtual support function on £2 and {m'T,}Tie^2 a se^ °f defining vectors 

of \P. For each cone r G £ i we choose a cone r' G E2 such tha t H(r) C r ' and we 

write mT = Hy (m'T,). The following result follows easily from the definitions 

Proposition 33.17. — The divisor Dq, intersects properly the image of p)P)H- The 

function \I/ o H is a virtual support function on E i and 

(ppHD^=D^oH. 

Moreover, {mT}TeCZ1 is a set of defining vectors of ^ o H. 

Remark 3.3.18. — If L is a toric line bundle on X^2 and <p is a toric morphism, then 

(p*L has an induced toric structure. Namely, (p*(L,z) = (ip*L, ip*z). By contrast, if 

(p: X-£1 —)• Xs2 is a general equivariant morphism tha t meets the principal open sub­

set, there is no natural toric structure on ip*L, because the image of the distinguished 

point xi;o does not need to agree with x2,o- If (L,s) is a toric line bundle equipped 

with a toric section, then we set ip*(L,s) = ((<p*L, (<p* s)(x\^))1 <p*s). However, the 

underlying toric bundle of tp*(L, s) depends on the choice of the toric section. 

3.4. Positivity properties of T-Cartier divisors 

Let E be a fan in A R and ^ a virtual support function on E . In this section, we 

will assume tha t E is complete or, equivalently, tha t the variety X^ is proper. 

Many geometric properties of the pair (X^ , D&) can be read directly from ^ . For 

instance, the following result relates the concavity of the virtual support function ^ 

with the positivity of D^. 

Proposition 3.4.1. — Let O(D^) be the line bundle associated to D^. 

1 . O(Dx^) is generated by global sections if and only if ^ is concave. 

2. O(Dx^) is ample if and only if ^ is strictly concave on E . 

Proof. — This is classical, see for instance [Ful93, §3.4]. • 

In the latter case, the fan E agrees with the polyhedral complex n ( ^ ) (Defini­

tion 2.2.5) and the pair (X^,D^) is completely determined by Thus, the variety 

XJ: is projective if and only if the fan E is complete and regular (Definition 2.5.4). 

We associate to \I/ the subset of 

Ay= {x G MR I (x,u) > V(u) for all u G NR}. 

This set is either empty or a lattice polytope. When O(D^) is generated by global 

sections, the polytope agrees with s t a b ( ^ ) , and \I> is the support function of A^. 

The polytope encodes a lot of information about the pair (X^,D^). For 

instance, we can read from it the space of global sections of O(D^). 
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Proposition 3.4.2. — A monomial rational section xm G /Cxs , nrt £ M, is a regular 
global section ofO(D^) if and only if m G Moreover, the set {xm}meMnA* is a 
K-basis of the space of global sections r ( X ^ , O(Dy)). 

Proof — See for instance [Ful93, §3.4]. • 

Also the intersection number between toric divisors can be read off from the cor­
responding polytopes. 

Proposition 3.4.3. — Let D^i7 i — 1 , . . . , n, be T-Cartier divisors on generated by 
their global sections. Then 

( A * ! A O = М У м ( А Ф 1 , . . . , Д Ф п ) . (3.4.1) 

where M V M denotes the mixed volume function associated to the Haar measure volA/ 
on M^ (Definition 2.7.14)- In particular, for a T-Cartier divisor generated by its 
global sections, 

degDJXz) = (Dl) = n\ V O I M ( A * ) - (3.4.2) 

Proof. — This follows from [Oda88, Proposition 2.10]. 

Remark 3.4.4. — The intersection multiplicity and the degree in the above proposition 
only depend on the isomorphism class of the line bundles 0{D^,i) and not on the 
T-Cartier divisors themselves. It is easy to check directly tha t the right-hand sides 
of (3.4.1) and (3.4.2) only depend on the isomorphism classes of the line bundles. In 
fact, let L be a toric line bundle generated by global sections and s i , s2 two toric 
sections. For i = 1,2, set Di = div(s^) and let ^ be the corresponding support 
function and A^ the associated polytope. Then s2 = Xmsi f°r some ra G M. Thus 
^2 — ̂ i — m and A2 = Ai — ra. Since the volume and the mixed volume are invariant 
under translation, we see that these formulae do not depend on the choice of sections. 

Definition 3.4.5. — A polarized toric variety is a pair (X^, D<£>), where X^ is a toric 
variety and is an ample T-Cartier divisor. 

Polarized toric varieties can be classified in terms of their polytopes. 

Theorem 3.4.6. — The correspondence (X^,D^) \-> Дф is a bisection between the set 
of polarized toric varieties and the set of lattice polytopes of dimension n of M. Two 
ample T-Cartier divisors and Dy on a toric variety X^ are rationally equivalent 
if and only г /Дф/ is the translate of A ^ by an element of M. 

Proof. — If Ф is a strictly concave function on E, then Дф is an n-dimensional 
lattice polytope. Conversely, if A is a lattice polytope in M^, then Фд, the support 
function of A, is a strictly concave function on the complete fan Е д = П(Фд) (see 
examples 2.5.13 and 2.5.18). Therefore, the result follows from Theorem 3.3.3 and 
the construction in Remark 3.4.4. • 
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Remark 3.4J. — When is only generated by its global sections, the polytope A ^ 

may not determine the variety A ^ , but it does determine a polarized toric variety tha t 

is the image of by a toric morphism. Write A = A # for short. Let M ( A ) be as 

in Notation 2 . 7 . 9 and choose m G a f f (A) n M. Set AT(A) = M ( A ) V . The translated 

polytope A — m has the same dimension as its ambient space L A = A L ( A ) R . By 

the theorem above, it defines a complete fan E A in A ^ ( A ) R together with a support 

function ^ A : N(A)—> R The projection A" - > N(A) induces a toric morphism 

¥ • Xj2 > ASa , 

the divisor D^A is ample, and D*=tp*D*A+div(X~m). 

Example 3.4.8. — The projective morphisms associated to T-Cartier divisors gener­

ated by global sections can also be made explicit in terms of the lattice points of the 

associated polytopes. Consider a toric variety X^ of dimension n equipped with a 

T-Cartier divisor generated by global sections. Let m o , . . . , mr G A ^ D M be 

such tha t c o n v ( m o , . . . , mr) = A # . These vectors determine an H-representation 

= min^=o,...,r rrii. Let H: A R —> W be the linear map defined by H(u) = 

(rrii(u) — mo(w))j=iv..)T.. By Lemma 2 . 5 . 2 2 , ^ = H*fy&r + ra0. 

In M.r we consider the fan ^ r , whose associated toric variety is Pr. One easily 

verifies that , for each a G E , there is a' G EA' - with H(a) C a'. Let p = (po : ... : pr) 

be an arbitrary rational point of the principal open subset of Pr. The equivariant mor­

phism ipp,H A —>• P ^ can be writ ten explicitly as (poXm° : • • • 1 PrXmr)- Moreover, 

DY = Y *HDYA - h d i v ( Y - M ° ) . 

The orbits of a polarized toric variety ( A ^ , D ^ ) are in one-to-one correspondence 

with the faces of A # . 

Proposition 3.4.9. — Let E be a complete fan in A R and \I/ a strictly concave function 

on E . The correspondence F i—>> 0(o~f) is a bijection between the set of faces of A ^ 

and the set of the orbits under the action of T on . 

Proof. — This follows from Example 2 . 5 . 1 3 . • 

The equation ( 3 . 3 . 1 ) gives a formula for the Weil divisor [Dy] in terms of the 

virtual support function ^ . When the line bundle O(D^) is ample, we can interpret 

this formula in terms of the facets of the polytope A # . 

Let Dxn be an ample divisor on X%. The polytope A ^ has maximal dimension n. 

For each facet F of A # , let vp be as in Notation 2 . 7 . 9 . The ray rp — M ^ O ^ F is a cone 

ot E . 

Proposition 3.4.10. — With the previous hypothesis, 

div(s^) = \D\&] -

F 
-(F,VF)V(tf), 

where the sum is over the facets F of A . 
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Proof. — Since Ф is strictly concave on E, the Legendre-Fenchel correspondence 
shows tha t the set of rays of the form TF agrees with the set E1 . Moreover, ^{vp) = 
(F,VF), because Ф is the support function of A. The proposition then follows 
from (3.3.1). • 

For a T-Cartier divisor generated by global sections, we can interpret its intersection 
with the closure of an orbit, and its inverse image with respect to an equivariant 
morphism, in terms of direct and inverse images of concave functions. 

Proposition 3.4.11. — Let E be a complete fan in NR and Ф:NR -»R M a support 
function on E. 

1 . Let a G E, Fa the associated face of A®, and m!a G Fa fi M. Let 7ra: —> 
N(o~)r be the natural projection. Then 

DY = Y *HDYA(o) =(ro)*(Y-m'a) (3.4.3) 

In particular, the restriction of Dx&-m/ to V(a) is given by the concave function 
(7rcr)*(^ — mfa). Moreover, the associated polytope is 

A(*-7<)(<7) = Fa-m'<rcM(a)R = a-L. (3.4.4) 

2. Let H: N' —> TV be a linear map and Hv: M -> M' its dual map, where M' — 
[N'Y. Let Y! be a fan in such that, for each a' G E7 there is a G E with 
H(a') C a, and let p G X^o(K). Then 

= Fa-m'<rcM(a)R = a-L. (3.4.5) 

and the associated polytope is 

Л я . * = # V ( A * ) С Л 4 . (3.4.6) 

Proof. — The equation (3.4.3) follows from (3.3.2), while the equation (3.4.5) follows 
from Proposition 3.3.17. Then (3.4.4) and (3.4.6) follow from Proposition 2.5.21. • 

As a consequence of the above construction, we can compute easily the degree of 
any orbit. 

Corollary 3.4.12. — Let E be a complete fan in N^, ty: —> R a support function 
on E, and a G E a cone of dimension n — k. Then 

degD^(V(a)) k\volM(Fa)(Fa). 

Proof. — In view of (3.4.4) and (3.4.2), it is enough to prove that M(a) = M(Fa). 
But this follows from the fact tha t Lpa — cr1- (see Notation 2.7.9). • 
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Example 3.4.13. — Let r G En 1. The degree of the curve V(r) agrees with the 
lattice length of FT. 

We will also need the toric version of the Nakai-Moishezon criterion. 

Theorem 3.4.14. — Let be a proper toric variety and a T-Cartier divisor 
on XY,-

1. The following properties are equivalent: 

(a) is ample; 

(b) (Dy • C) > 0 for every curve C in X ^ ; 

(c) (D* • V(T)) > 0 for every r G E n _ 1 ; 

(d) the function \& is strictly concave on E. 

2. The following properties are equivalent: 

(a) D^, is generated by its global sections; 

(b) (D^ • C) > 0 for every curve C in X ^ ; 

(c) (D^ • V(T)) > 0 for every r G E " " 1 ; 

(d) the function ^ is concave. 

Proof. — The equivalence between ( la) and (Id) and between (2a) and (2d) is Propo­
sition 3.4.1. The rest of (1) and (2) is proved in [MavOO], see also [Oda88, Theo­
rem 2.18] for (1) in the case of smooth toric varieties. • 

A direct consequence of theorems 3.4.14 and 3.3.11 is tha t , in a toric variety, a 
divisor is nef if and only if it is generated by global sections, and every ample divisor 
is generated by global sections. 

3.5. Toric schemes over a discrete valuation ring 
In this section we recall some basic facts about the algebraic geometry of toric 

schemes over a DVR. These toric schemes were introduced in [KKMS73, Chapter IV, 
§3], and we refer to this reference for more details or to [Gubl2] for a study of toric 
schemes over general valuation rings and their relation with tropical geometry. They 
are described and classified in terms of fans in A R X R > O - In this section we will mostly 
consider proper toric schemes over a DVR. As a consequence of Corollary 2.1.13, 
proper toric schemes over a DVR can be described and classified in terms of complete 
SCR polyhedral complexes in as, for instance, in [NS06]. 

Let i f be a field equipped with a nontrivial discrete valuation va l ^ : i f x - » R whose 
group of values is Z. In this section we do not assume i f to be complete. As usual, we 
denote by i f ° the valuation ring, by if00 its maximal ideal, by w a generator of if00 
and by k the residue field. Since the group of values of va l^ is Z, then v a l ^ ( ^ ) = 1. 
We denote by S the base scheme S — Spec(if°) , by n and o the generic and the 
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special points of S and, for a scheme X over 5 , we set Xv — X x § Spec(i^) and 
XQ = X Xs Spec(fc) for its generic and special fibre respectively. We will denote by 
Ts = TKo ~ G^j5 a split torus over S. Let T = T ^ , TV and M be as in §3.1. We will 
write N = N 0 Z and M = M 0 Z. 

Definition 3.5.1. — A toric scheme over S of relative dimension n is a normal inte­
gral separated S'-scheme of finite type, X', equipped with a dense open embedding 
TK <̂ 77 and an ^-action of over X tha t extends the action of I V on itself by 
translations. If we want to stress the torus acting on X we will call them toric schemes 
with torus Ts-

If X is a toric scheme over £, then Xv is a toric variety over K with torus T. 

Definition 3.5.2. — Let X be a toric variety over K with torus TK and let X be a 
toric scheme over S with torus T s . We say tha t A' is a toric model of X over 5 if the 
identity of TK can be extended to an isomorphism from X to X^. 

If X and A" are toric models of X and a : X —> A" is an £-morphism, we say that 
a is a morphism of toric models if its restriction to T ^ is the identity. 

Since, by definition, a toric scheme is integral and contains T as a dense open 
subset, it is flat over S. Thus a toric model is a particular case of a model as in 
Definition 1.3.2. 

Let E be a fan in Nj& x M>o- To the fan E we associate a toric scheme A~ over S. 
Let a e E be a cone and crv C MR its dual cone. Set Ma = M n a v . Let K°[Ma] be 
the semigroup K°-algebra of Ma. By definition, (0,1) G Ma. Thus (x^0'1^ — ^ ) is an 
ideal of K°[M0]. There is a natural isomorphism 

K°\MJ/(y^ - го) -

- (m,l)eMa 
am:iU7lxm OLmj G K° and amii - 0 for almost all (m, v (3.5.1) 

tha t we use to identify both rings. The ring K0[Ma]/(x^0,1^ — zu) is an integrally 
closed domain. We set 

Xa = Spec(K°[Ma}/(x{0'1) -w)\ 

for the associated affine toric scheme over S. For short we will use the notation 

K°[Xa] = Ko[Ma]/(xL0'1)-K>). (3.5.2) 
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For cones a, a' E E, with a C a' we have a natural open immersion of affine schemes 
XG ^ XA>. Using these open immersions as gluing data, we define the scheme 

XE 
oEE 

XO 

This is a reduced and irreducible normal scheme of finite type over S of relative 
dimension n. 

There are two types of cones in E. The ones that are contained in the hyperplane 
NR x {0}, and the ones that are not. If a is contained in x {0}, then (0, — 1) E Ma, 
and w is invertible in K°[XA}. Therefore K°[XA} ~ K[Ma}; hence XA is contained in 
the generic fibre and it agrees with the affine toric variety Xa. If a is not contained 
in x {0}, then XA is not contained in the generic fibre. 

To stress the difference between both types of affine schemes we will use the follow­
ing notations. Let II be the SCR polyhedral complex in obtained by intersecting 
E by the hyperplane x {1} as in Corollary 2.1.13, and E the fan in obtained 
by intersecting E with x {0}. For A E IT, the cone c(A) E E is not contained 
i n i V x {0}. We will write MA = Mc(A), K°[MA] = K°[Mc(A)}, XA = XC{A) and 
K°[XA] =K°[XcW]. 

Given polyhedrons A, A' E IT, with A C A', we have a natural open immersion of 
affine toric schemes XA ^ XA>. Moreover, if a cone a E E is a face of a cone c(A) for 
some A E II, then the affine toric variety Xa is also an open subscheme of XA. The 
open cover (3.5.2) can be written as 

XE 

Aen 
XAU 

oEE 
Xo 

We will reserve the notation XA, A E II, for the affine toric schemes that are not 
contained in the generic fibre and denote by Xa, a E E, the affine toric schemes 
contained in the generic fibre, because they are toric varieties over K. 

The scheme XQ corresponding to the polyhedron 0 := {0} is a group iS-scheme which 
is canonically isomorphic to The S-action of over X^ is constructed as in the 
case of varieties over a field. Moreover there are open immersions ^ XV ^ A~ 
of schemes over S and the action of on X^ extends the action of I V on itself. 
Thus X^ is a toric scheme over S. Moreover, the fan E defines a toric variety over K 
which coincides with the generic fibre X^ Thus, A~ is a toric model of X^. The 
special fibre X^ O — X^ x Spec(A:) has an induced action by but, in general, it 
is not a toric variety over fc, because it is not irreducible nor reduced. The reduced 
schemes associated to its irreducible components are toric varieties over k with this 
action. 

Every toric scheme over S can be obtained by the above construction. Indeed, this 
construction gives a classification of toric schemes by fans in x IR>0 [KKMS73, 
§IV.3(e)]. 
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If the fan E is complete, then the scheme Ag is proper over S. In this case the set 
{^AJAen is an open cover of Ag. Proper toric schemes over S can also be classified 
by complete SCR polyhedral complexes in TVR. This is not the case for general toric 
schemes over S as is shown in [BS11]. 

Theorem 3,5.3. — The correspondence U \-> Xc^, where c(II) is the fan introduced in 
Definition 2.1.5, is a bisection between the set of complete SCR polyhedral complexes 
in and the set of isomorphism classes of proper toric schemes over S of relative 
dimension n. 

Proof — Follows from [KKMS73, §IV.3(e)] and Corollary 2 .1 .13 . • 

If we are interested in toric schemes as toric models of a toric variety, we can restate 
the previous result as follows. 

Theorem 3.5.4. — Let E be a complete fan in N^. Then there is a bijective correspon­
dence between equivariant isomorphism classes of proper toric models over S of X^ 
and complete SCR polyhedral complexes II in such that rec(II) = E. 

Proof — Follows easily from Theorem 3.5.3. • 

For the rest of the section we will restrict ourselves to the proper case and we will 
denote by II a complete SCR polyhedral complex. To it we associate a complete fan 
c(II) in x R>0 and a complete fan rec(II) in N^. For short, we will use the notation 

<*n — ^c(n)7 
and we will identify the generic fibre An, 77 with the toric variety Xrec(n). 

Example 3.5.5. — We continue with Example 3 .1 .3 . The fan EA» is in particular an 
SCR polyhedral complex and the associated toric scheme over S is Pg, the projective 
space over S. 

This example can be generalized to any complete fan E in A%. 

Definition 3.5.6. — Let E be a complete fan in N^. Then E is also a complete SCR 
polyhedral complex. Clearly rec(E) = E. The toric scheme A^ is a model over S of 
XJ: which is called the canonical model Its special fibre 

<*n — ^c(n)7 
is the toric variety over k defined by the fan E. 

The description of toric orbits in the case of a toric scheme over a DVR is more 
involved than the case of toric varieties over a field, because we have to consider two 
kind of orbits. 

In the first place, there is a bijection between rec(IT) and the set of orbits under the 
action of TK on An,77, that sends a cone a G rec(II) to the orbit 0(a) C An,77 = ^rec(n) 
as in the case of toric varieties over a field. We will denote by V(a) the Zariski closure 
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in An of the orbit 0(a) with its structure of reduced closed subscheme. Then V(a) is a 
horizontal 5-scheme, in the sense that the structure morphism V(cr) —» S is dominant, 
of relative dimension n — dim(cr). 

Next we describe V(a) as a toric scheme over S. As before, we write N(a) = 
N/(N H Mcr) and let \ NR —> N(a)R be the linear projection. Each polyhedron 
A G n such that a C rec(A) defines a polyhedron 7r<j(A) in N(a)^. One vérifies that 
these polyhedra form a complete SCR polyhedral complex in N(cr)Rl that we denote 
n(cr). This polyhedral complex is called the star of o in II. 

Proposition 3.5.7. — There is a canonical isomorphism of toric schemes 

Ma) —• V(ff). 

Proof — The proof is analogous to the proof of Proposition 3 .2 .1 . 

In the second place, there is a bijection between II and the set of orbits under the 
action of Tfc on X0 over the closed point o. Given a polyhedron A G II, we set 

N(A) = N/(N nRc(A)), M(A) = N(A)v = Mfi c(A)x 

We denote T(A) = Spec(fc[M(A)]). This is a torus over the residue field k of dimension 
n — dim(A). There is a surjection of rings 

K°[MA] -+ k[M(A)], x(m,Z) 
^(m,l) if (m,Z) G M (A) 

lo if (m,/) i M(A). 

Since the element ( 0 , 1 ) does not belong to M ( A ) , this surjection sends the ideal 
^(o,i) to zero. Therefore, it factorizes through a surjection ^ 0 [ A A ] —fc[M(A)] , 
that defines a closed immersion T(A) ^ X\. Let 0 ( A ) be the image of this map and 
V(A) the Zariski closure of this orbit in An- The subscheme 0 ( A ) is contained in the 
special fibre An,07 because the surjection sends zu to zero. By this reason, the orbits 
of this type will be called vertical. Therefore, V(A) is a vertical cycle in the sense 
that its image by the structure morphism is the closed point o. 

The variety V(A) has a structure of toric variety with torus T(A). This structure 
is not canonical because the closed immersion T(A) ^ X\ depends on the choice of 
w. We can describe this structure as follows. For each polyhedron Af such that A is 
a face of Af, the image of c(AR) under the projection 7TA : —>• A^(A)^ is a strongly 
convex rational cone that we denote a\f. The cones CTA' form a fan of N{A)R that we 
denote 11(A). Observe that the fan 11(A) is the analogue of the star of a cone defined 
in (3 .2 .2) . For each cone a G n ( A ) there is a unique polyhedron Aa eU such that A 
is a face of Aa and a = 7TA(C(A0-)). 
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Proposition 3.5.8. — There is an isomorphism of toric varieties over k 

Xnw,k —• V(A). 

Proof — Again, the proof is analogous to the proof of Proposition 3 .2 .1 . 

The description of the adjacency relations between orbits is similar to the one for 
toric varieties over a field. The orbit V(A) is contained in V(A') if and only if the 
polyhedron A' is a face of the polyhedron A. Similarly, V(a) is contained in V(af) if 
and only if a' is a face of a. Finally, V(A) is contained in V(a) if and only if a is a 
face of the cone rec(A). 

Remark 3.5.9. — As a consequence of the above construction, we see that there is 
a one-to-one correspondence between the vertices of n and the components of the 
special fibre. For each v G Ft0, the component V(v) is a toric variety over k defined by 
the fan H(v) in A^/M(v, 1). The orbits contained in V(v) correspond to the polyhedra 
A G II containing v. In particular, the components given by two vertices v,vf G II0 
share an orbit of dimension I if and only if there exists a polyhedron of dimension 
n — I containing both v and vf. 

To each polyhedron A G II, hence to each vertical orbit, we can associate a combi­
natorial invariant, which we call its multiplicity. For a vertex v G IT0, this invariant 
agrees with the order of vanishing of w along the component V(v) (see (3 .6 .2 ) ) . 

Denote by j : N —>• N the inclusion j(u) = (u, 0) and by pr : M —> M the projection 
pr(m, I) = m. We identify N with its image. We set 

7V(A)= /(iVnMc(A)) M (A) = MHpr(c(A)^). 

Remark 3.5.10. — The lattice M(A) can also be described as M(A) = M n Lj^. 
Therefore, for a cone a C A%, the notation just introduced agrees with the one 
in (3 .2 .1) . Here, the polyhedron A is contained in N^. By contrast, for a polyhedron 
T C MR, we follow Notation 2.7.9, so M(T) = M n Lr. 

Then j and pr induce inclusions of lattices of finite index N(A) —> N(A) and 
M (A) —» M (A), that we denote also by j and pr, respectively. These inclusions are 
dual of each other and in particular, their indexes agree. 

Definition 3.5.11. — The multiplicity of a polyhedron A G II is defined as 

mult(A) = [M(A) : pr(M(A))] = [N(A) : j(N(A))]. 

Lemma 3.5.12. — / / A G II, then mult(A) = min{n > 1 | 3p G aff(A), np G A^}. 
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Proof. — We consider the inclusion Z —>• N(A) that sends n G Z to the class of (0, n). 
There is a commutative diagram with exact rows and columns 

0 0 

0 >7V(A)nZ- Z >Z/(iV(A)nZ) - ->0 

0- >7V(A)- •N(A)- N(A) /N(A) ->0 

iV(A)/(iV(A)nZ) * N(A)/Z 

0 0 

It is easy to see that the bottom arrow in the diagram is an isomorphism. By the 
Snake lemma the right vertical arrow is an isomorphism. Therefore 

mult(A) = [Z : ZfliV(A)]. 

We verify that Z n N(A) = {n G Z | 3p G aff(A), np G N}, from which the lemma 
follows. • 

We now discuss equivariant morphisms of toric schemes. 

Definition 3.5.13. — Let TTj, i = 1, 2, be split tori over S and g: Ti —» T2 a morphism 
of algebraic group schemes. Let Xi be toric schemes over S with torus and let 
¡11 denote the corresponding action. A morphism </?: X\ —>• X<2 is g-equivariant if the 
diagram 

Ti x Afi Mi X1 

£ x <P 1 

T2 x # 2 
µ2 

* 2 

commutes. A morphism ip\ X\ —>> A2 is g-toric if its restriction to T ^ , the torus over 
K, coincides with that of g. 

It can be verified that a toric morphism of schemes over 5 is also equivariant. In 
the sequel, we extend the construction of equivariant morphisms in §3.2 to proper 
toric schemes. Before that, we need to relate rational points on the open orbit of the 
toric variety with lattice points in N. 
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Definition 3.5.14. — The valuation map of the field, valx: Kx —» Z, induces a val­
uation map on T(K), also denoted val^: T(K) N, by the identifications T(K) = 
Hom(M,Kx) and N = Hom(M,Z). 

Let Ts,i, i = 1,2, be split tori over S. For each z, let be the corresponding 
lattice and H a complete SCR polyhedral complex in Ni^> Let A: Ni -> A 2̂ be an 
affine map such that, for every Ai G III, there exists a2 G n2 with A(Ai) C A2. Let 
p G A h 2 ) 0 ( ^ ) = T 2 ( i T ) such that valK(p) = -4(0). Write A = i J + valK(p), where 
if: Â i —> A/2 is a linear map. if induces a morphism of algebraic groups 

PH '• Tei > Ts , 2 -

Let Tti = rec(II^). For each cone o\ G H i , there exists a cone ^ 2 G E 2 with H{<7\) C c r 2 . 
Therefore i7 and p define an equivariant morphism <£p,# • X^x —̂  of toric varieties 
over X as in Theorem 3.2.4. 

Proposition 3.5.15. — With the above hypothesis, the morphism cpP}H can be extended 
to a QH-equivariant morphism 

ФР,А ' <MIi > <*П2-

Proof. — Let Ai G Ui such that A(Ai) C A2. Then the map M2 -> Mx given by 
(m, I) H> (i/vm, (m, val^(p)) + /) for m G M and / G Z (which is just the dual of 
the linearization of A) induces a morphism of semigroups M2,A2 ~^ ^i,Ai- Since 
Xrn(p)w~^m'valK^ belongs to K°, the assignment 

x(m,Z) • ( x m b ) ^ -(m,valx(p)) - (Hv m,(m,va\K(p))+l) 

defines a ring morphism iirO[M2;A2] —» A ^ M ^ A J - This morphism sends x - w to 
X^0,1^ — vo, hence induces a morphism K°[X\2] —>• K°[A'A1] and a map —)• ^A2-
Varying Ai and A2 we obtain maps that glue together into a map 

&P,A : ^iii —> Xn2-

By construction, this map extends ipP,H and is equivariant with respect to the mor­
phism QH. • 

As an example of the above construction, we consider the toric subschemes asso­
ciated to orbits under the action of subtori. Let N be a lattice, II a complete SCR 
polyhedral complex in and set £ = rec(II). Let Q C N be a saturated sublattice 
and let p G X^^K). We set no = val^(p). We consider the affine map A: —» ATR 
given by A(v) = v + UQ. Recall that the sublattice Q and the point p induce maps of 
toric varieties (3.2.6) 

X^Q -- У Y^Q,P -- XE.Y^Q,P 
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We want to identify the toric model of X^Q induced by the toric model Xu of X ^ . 
We define the complete SCR polyhedral complex IIq5Uo = j4_1II of Q^. Then, 
rec(IlQjlt0) = Eg. Applying the construction of Proposition 3 .5 .15, we obtain an 
equivariant morphism of schemes over S 

<*nQ,M0 —> Xu. 

The image of this map is the Zariski closure of lsQ,p and XuQ UQ is a toric model of 
XY,Q. This map will be denoted either as 3>P,A or ®P,Q- Observe that the abstract 
toric scheme XUQUQ only depends on Q and on valx(p)-

3.6. T-Cartier divisors on toric schemes 

The theory of T-Cartier divisors carries over to the case of toric schemes over 
a DVR. We keep the notations of the previous section. In particular, K is a field 
equipped with a nontrivial discrete valuation val^. Let X be a toric scheme over 
S = Spec(i^°) with torus Ts- There are two morphisms from x X to X: the toric 
action, that we denote by /i, and the second projection, that we denote by 7T2- A 
Cartier divisor D on X is called a T-Cartier divisor if fj,*D = TT^D. 

T-Cartier divisors over a toric scheme can be described combinatorially. For sim­
plicity, we will discuss only the case of proper schemes. So, let IT be a complete SCR 
polyhedral complex in A^, and Xu the corresponding toric scheme. Let (j) be an H-
lattice function on II (Definitions 2.6.6 and 2 .5 .4) . Then cf) defines a T-Cartier divisor 
in a way similar to the one for toric varieties over a field. We recall that the schemes 
{^AJAen form an open cover of Xu- Choose a set of defining vectors {(m\, ^A)}AGH 

of (j). Then we set 

D4 = {(AA,rc7-(Ax~mA)}Aen, ( 3 . 6 . 1 ) 

where we are using the identification (3 .5 .1) . The divisor only depends on </> and 
not on a particular choice of defining vectors. 

We consider now toric schemes and T-Cartier divisors over S as models of toric 
varieties and T-Cartier divisors over K. 

Definition 3.6.1. — Let E be a complete fan in NR and \£ a virtual support function 
on E . Let (XE, D ^ ) be the associated toric variety and T-Cartier divisor defined over 
K. A toric model of (X^,D^) is a triple (X,D,e), where X is a toric model over S of 
X , D is a T-Cartier divisor on X and e > 0 is an integer such that the isomorphism 
i: XY, —̂  XV that extends the identity of T^ satisfies L*(D) = eDq,. When e = 1, the 
toric model (X, D, 1 ) will be denoted simply by (X, D). A toric model will be called 
proper whenever the scheme X is proper over S. 
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Example 3.6.2. — We continue with Example 3.5.5. The function is an H-lattice 
concave function on EA™ and (Pg,D^A„) is a proper toric model of (pk, D^An). 

This example can be generalized as follows. 

Definition 3.6.3. — Let E be a complete fan in NR and \£ a virtual support function 
on E. Then E is a complete SCR polyhedral complex in TVR and ^ is a rational 
piecewise affine function on E. Then (A^, D^) is a model over S of (XE, Dy), which 
is called the canonical model 

Definition 3.6.4. — Let X be a toric scheme and C a line bundle on X. A toric 
structure on C is the choice of an element z of the fibre £Xo, where XQ £ Xv is the 
distinguished point. A toric line bundle on X is a pair (£, z\ where £ is a line bundle 
over X and z is a toric structure on C. Frequently, when the toric structure is clear 
from the context, the element z will be omitted from the notation and a toric line 
bundle will be denoted by the underlying line bundle. A toric section is a rational 
section that is regular and non vanishing over the principal open subset Xo C Xv 
and such that s(xo) = z. Exactly as in the case of toric varieties over a field, each 
T-Cartier divisor defines a toric line bundle 0{D) together with a toric section. When 
the T-Cartier divisor comes from an H-lattice function </>, the toric line bundle and 
toric section will be denoted and respectively. 

The following result follows directly form the definitions. 

Proposition 3.6.5. — Let (X^,D^) be a toric variety with a T-Cartier divisor. Every 
toric model (A,jD,e) of (XE, Dy) induces a model (X, O(D), e) of (X^, Ly), in the 
sense of Definition 1.3.4, where the identification of G{D)\xTi with L^e matches the 
toric sections determined by the Cartier divisors (Theorem 3.3.7). Such models will 
be called toric models. 

Proposition-Definition 3.6.6. — We say that two toric models (A ,̂ Z^, e^), i = 1,2, are 
equivalent, if there exists a toric model (X',D',e') of (X^^D^) and morphisms of 
toric models OLI : X' —>> A ,̂ i = 1, 2, such that e'a*Di = eiD'. This is an equivalence 
relation. 

Proof — Symmetry and reflexivity are straightforward. For transitivity assume that 
we have toric models (A ,̂ D^, e^), i = 1, 2, 3, that the first and second model are equiv­
alent through (X',D',e') and that the second and the third are equivalent through 
{X",D",e"). Then, by Theorem 3.5.4, X' and X" are defined by SCR polyhedral 
complexes IT and II" respectively, with rec(lT) = rec(II//) = E. Let IT" = IT • IT'. 
By Lemma 2.1.9, rec(n//;) = E. Thus 11'" determines a model X"' of XE. This 
model has morphisms ¡3' and (3" to X' and X" respectively. We put e'" = e'e" and 
D"' - e"p'*Df = e'P"*D". Now it is easy to verify that (A"", £>'", e'") provides the 
transitivity property. • 
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We are interested in proper toric models and equivalence classes because, by Def­
inition 1.3.5, a proper toric model of (Xx,Dy) induces an algebraic metric on L|,n. 
By Proposition 1.3.6, equivalent toric models define the same algebraic metric. 

We can classify proper models of T-Cartier divisors (and therefore of toric line 
bundles) in terms of H-lattice functions. We first recall the classification of T-Cartier 
divisors. 

Theorem 3.6.7. — Let U be a complete SCR polyhedral complex in and An the 
associated toric scheme over S. The correspondence (j) I-> is an isomorphism 
between the group of H-lattice functions on II and the group of T-Cartier divisors on 
An. Moreover, if (pi and <p2 are two H-lattice functions on U, then the divisors D(p1 
and Dfo are rationally equivalent if and only if <pi — <p>2 is affine. 

Proof. — The result follows from [KKMS73, §IV.3(h)]. • 

We next derive the classification theorem for models of T-Cartier divisors. 

Theorem 3.6.8. — Let E be a complete fan in and ^ a virtual support function on 
£. Then the correspondence (II, 0) H> (Aj i , A/>) is a bisection between: 

• the set of pairs (II, (j)), where IT is a complete SCR polyhedral complex in with 
rec(II)= E and <p is an H-lattice function on U such that rec(<p) = 

• the set of isomorphism classes of toric models (X,D) of (X^, . 

Proof. — Denote by i\ X^ = Xrec^ —» An the open immersion of the generic fibre. 
The recession function (Definition 2.6.4) determines the restriction of the T-Cartier 
divisor to the fibre over the generic point. Therefore, when 0 is an H-lattice function 
on II with rec(0) = ^ , we have that 

L*— -Drec((/>) = D^. 

Thus (An, D<f,) is a toric model of (X^,D^). The statement follows from Theo­
rem 3.5.4 and Theorem 3.6.7. • 

Remark 3.6.9. — Let E be a complete fan in and \|/ a virtual support function 
on E. Let (A,,D,e) be a toric model of (X^,D^) . Then, by Theorem 3.6.8, there 
exists a complete SCR polyhedral complex II in with rec(II) = E and a rational 
piecewise affine function <p on II such that ecp is an H-lattice function, rec(0) = ^ and 
(X,D,e) = (An, De(f), e). Moreover, if (X',D',ef) is another toric model that gives 
the function (j)', then both models are equivalent if and only if (p = (j)'. Thus, to every 
toric model we have associated a rational piecewise affine function 0 on n such that 
rec(0) = Two equivalent models give rise to the same function. 

The converse is not true. Given a rational piecewise affine function 0, with 
rec(0) = ^ , we can find a complete SCR polyhedral complex n such that (p is piece-
wise affine on n . But, in general, rec(n) does not agree with E. What we can expect is 
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that E' := rec(Il) is a refinement of E. Therefore the function cj) gives us an equivalence 
class of toric models of (X^>, D^). But <fi may not determine an equivalence class of 
toric models of (X^,D^). In Corollary 4.5.5 in next section we will give a necessary 
condition for a function (j) to define an equivalence class of toric models of (XE, D^) 
and in Example 4.5.6 we will exhibit a function that does not satisfy this necessary 
condition. By contrast, as we will see in Theorem 3.7.3, the concave case is much 
more transparent. 

The correspondence between T-Cartier divisors and T-Weil divisors has to take 
into account that we have two types of orbits. Each vertex v G II0 defines a vertical 
invariant prime Weil divisor V(v) and every ray r G rec(II)1 defines a horizontal prime 
Weil divisor V(r) . If v G II0 is a vertex, by Lemma 3.5.12, its multiplicity mult(v) is 
the smallest positive integer v > 1 such that vv G N. If r is a ray, we denote by vT 
the smallest lattice point of r \ {0}. 

Proposition 3.6.10. — Let (j) be an H-lattice function on II. Let be the associated 
T-Cartier divisor. Then the corresponding T-Weil divisor is given by 

[D(O)] 

veu° 
-u\t(v)(f)(v)V(v) 4 

rGrec(n)1 
-rec(M«T)V(r). 

Proof — By Lemma 3.5.12, for v G 11°, the vector m\ilt(v)v is the minimal lattice 
vector in the ray c(v). Now it is easy to adapt the proof of [Ful93, §3.3, Lemma] to 
prove this proposition. • 

Example 3.6.11. — Consider the constant H-lattice function (j){u) — —1. This function 
corresponds to the principal divisor div(cj). Then 

div(TU) 
veil0 

mult(v)y(i;). (3.6.2) 

Thus, for a vertex v, the multiplicity of v agrees with the multiplicity of the divisor 
V(v) in the special fibre div(vj). In particular, the special fibre Xn,o is reduced if and 
only if all vertices of n° belong to N. 

We next study the restriction of T-Cartier divisors to orbits and their inverse image 
by equivariant morphisms. Let II be a complete SCR polyhedral complex in A^, and 
(j) an H-lattice function on n . Set E = rec(II), and ^ = rec(</>). Choose sets of defining 
vectors {(mA,/A)}Aen and {mff}ffes for <j) and ^ , respectively. 

Let a G E. We describe the restriction of to V(a), the closure of a horizontal 
orbit. As in the case of toric varieties over a field, we first consider the case when 
Wo = 0. Recall that V(cr) agrees with the toric scheme associated to the polyhe­
dral complex II(<t) and that each element of II(cr) is the image by 7ra: N^ —>> N(a)^ 
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of a polyhedron A G II with a C rec(A). The condition = 0 implies that we can 
define 

0(a): N(a)R —> R, + Ra i—><j>(u + v) (3.6.3) 

for any v G Mer such that u + v e Urec(A)DCR^- ^he function 0(a) can also be 
described in terms of defining vectors. For each A G II with a C rec(A), we will 
denote A G II(a) for its image by ira. For each A as before, the condition fy\a = 0 
implies that m\ G M (a). Hence we define (m^,/^) = (TTIA,/A) for A G n with 
rec(A) z> a. 

Proposition 3.6.12. — If = 0 £/ien £/&e divisor and the horizontal orbit V(a) 
intersect properly. Moreover, the set {(m^, ^ i Â e n i » 5̂ a se^ °f defining vectors of 
0(a) and the restriction of to V(cr) is D^ay 

Proof. — The proof is analogous to the proof of Proposition 3.3.14. • 

If ^ 0, then V(a) and D<p do not intersect properly and we can only restrict 
Dfi with V(a) up to rational equivalence. To this end, we consider the divisor D^^rfla, 
that is rationally equivalent to and intersects properly with V(cr). The restriction 
of this divisor to V(a) corresponds to the H-lattice function (0 — raa)(a) as defined 
above. 

Let now A G n be a polyhedron. We will denote by TT\ : N —>> N(A) and TT\ ' N —> 
N(A) the projections and by : M (A) M and 7r)( : M (A) -> M the dual maps. 
We will use the same notation for the linear maps obtained by tensoring with R. 

We first assume that 0|A = 0. If u G N(A)^ then there exists a polyhedron A' 
with A a face of A' and a point (v,r) G c(A') that is sent to u under the projection 
TTA- Then we set 

0(A): N(A)^ —> R, u i—> r(j)(v/r) = m\'(v) + rl\>. (3.6.4) 

The condition 0|A = 0 implies that the above equation does not depend on the choice 
of (v,r). 

We can describe also 0(A) in terms of defining vectors. For each cone a G 11(A) let 
Aa G n be the polyhedron that has A as a face and such that c(A) is mapped to a by 
7TA- The condition 0|A = 0 implies that ( m A ^ I A J G M (A). We set mg = (maa, lha ) • 

Proposition 3.6.13. — If 0|A = 0 then the divisor intersects properly the orbit 
V(A). Moreover, the set {mcr}crGn(A) is a set of defining vectors of 0(A) and the 
restriction of to V(A) is the divisor D ^ A ) -

Proof. — The proof is analogous to that of Proposition 3.3.14. • 

As before, when 0|A 7̂  0, we can only restrict to V(A) up to rational equiva­
lence. In this case we just apply the previous proposition to the function 0 — m\ —1\. 

ASTÉRISQUE 360 



CHAPTER 3. TORIC VARIETIES 107 

Example 3.6.14. — We particularize (3.6.4) to the case of one-dimensional vertical 
orbits. Let A be a (n — 1)-dimensional polyhedron. Hence V(A) is a vertical curve. 
Let Ai and A2 be the two n-dimensional polyhedron that have A as a common face. 
Let v G NQ such tha t the class [(u, 0)] is a generator of the lattice N(A) and the 
affine space (v,0) + Rc(A) meets c(Ai). This second condition fixes one of the two 
generators of N(A). Then, by the equation (3.3.1) 

deg^, (V(A)) = deg ( [^ |y (A) ] ) = mA2(v) - mAl(v). (3.6.5) 

We end this section discussing the inverse image of a T-Cartier divisor by an equiv­
ariant morphism. With the notation of Proposition 3.5.15, let (ft be an H-lattice func­
tion on n2 , and {(TTIA, /A)}AGH2 a se^ of defining vectors of (ft. For each r G III we 
choose a polyhedron Tf G U2 such tha t A(T) C V. We set rar = Hy ( rar ' ) and 
lr = rar'(valx(p)) + lr*> The following proposition follows easily. 

Proposition 3.6.15. — The divisor intersects properly the image of &p,A- The 
function (ft o A is an H-lattice function on Hi and 

^ю.А^Ф = DóoA-

Moreover, {(rar , ^r)}reni is a set of defining vectors of (ft o A. 

3.7. Pos i t i v i t y o n toric schemes 

The relationship between the positivity of the line bundle and the concavity of the 
virtual support function can be extended to the case of toric schemes over a DVR. In 
particular, we have the following version of the Nakai-Moishezon criterion. 

Theorem 3.7.1. — Let U be a complete SCR complex in and Xu its associate 
toric scheme over S. Let (ft be an H-lattice function on H and D<p the corresponding 
T-Cartier divisor on Xu-

1. The following properties are equivalent: 

(a) is ample; 

(b) - C > 0 for every vertical curve C contained in Xn,0; 

(c) • V(A) > 0 for every (n — 1)-dimensional polyhedron A G n ; 

(d) The function (ft is strictly concave on II. 

2. The following properties are equivalent: 

(a) Dff, is generated by global sections; 

(b) • C > 0 for every vertical curve C contained in X^^0; 

(c) • V(A) > 0 for every (n — 1)-dimensional polyhedron A G n ; 

(d) The function (ft is concave. 
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Proof. — In both cases, the fact that (a) implies (b) and that (b) implies (c) is clear. 
The fact that (c) implies (d) follows from the equation (3.6.5). The fact that (Id) 
implies (la) is [KKMS73, §IV.3(k)]. 

Finally, we prove that (2d) implies (2a). Let 0 be an H-lattice concave function. 
Each pair (m, /) G M defines a rational section mlxrns<j> of D(f>- The section is regular 
if and only if the function m(u) + I lies above 0. Moreover, for a polyhedron A G II, 
this section does not vanish on X\ if and only if 4>(u) — m(u) + / for all u G A. 
Therefore, the affine pieces of the graph of 0 define a set of global sections that 
generate 0{D(f)). • 

Let S be a complete fan in Ar and \£ a virtual support function on E. Let XY, 
and be the associated proper toric variety over K and T-Cartier divisor. 

Definition 3.7.2. — Let (X,D,e) be a toric model of (X^,D^). Then (X,D,e) is 
semipositive if the T-Cartier divisor D satisfies any of the equivalent conditions of 
Theorem 3.7.1(2). 

Observe that, if a toric model (X,D,e) of (A^,D^) is semipositive, then 
(X, O(D), e) is a semipositive model of (X^, 0(D^)) in the sense of Definition 1.3.12. 
Equivalence classes of semipositive toric models are classified by rational concave 
functions. 

Theorem 3.7.3. — Let E be a complete fan in and ^ a virtual support function 
on E. Then the correspondence of Theorem 3.6.8 induces a bijective correspondence 
between the space of equivalence classes of semipositive toric models of (X^^D^) 
over S and the space of rational piecewise affine concave functions 0 on with 
rec(0) = \£. 

Proof. — Let (X, D, e) be a semipositive toric model. By Theorem 3.6.8, to the pair 
(A, D) corresponds a pair (II, 0'), where 0' is an H-lattice function on n , rec(n) = E 
and rec(07) = e\£. By Theorem 3.7.1, the function 0' is concave. We put 0 = '. It 
is clear that equivalent models produce the same function. 

Conversely, let 0 be a rational piecewise affine concave function. Let TV = 11(0). 
This is a rational polyhedral complex. Let Er = rec(n/). This is a conic rational 
polyhedral complex. By Proposition 2.5.14, E; = II(^) . Since ^ = rec(0) is concave, 
hence a support function on E, we deduce that E is a refinement of E7. Put n = Hf • E 
(Definition 2.1.8). Since Uf is a rational polyhedral complex and E is a fan, then n 
is an SCR polyhedral complex. Moreover, by Lemma 2.1.9, 

rec(n) - rec(n; • E) rec(n/) • rec(E) = E7 • E = E. 

Let e > 0 be an integer such that e0 is an H-lattice function. Then (An, De(p, e) is 
a toric model of (X^, D^). Both procedures are inverse of each other. • 
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A direct consequence of Theorem 3.7.3 is that the T-Cartier divisor admits 
a semipositive model if and only if ^ is concave, hence a support function. By 
Proposition 3.4.1(1), this is equivalent to the fact that is generated by global 
sections. 

Recall that, for a toric variety over a field, a T-Cartier divisor generated by global 
sections can be determined either by the support function ^ or by its stability set A#. 
In the case of toric schemes over a DVR, if (j) is a concave rational piecewise affine 
function on II and ^ = rec(^), then the stability set of <\> agrees with the stability set 
of ^ . Then the equivalence class of toric models determined by (j) is also determined 
by the Legendre-Fenchel dual function 0V. 

Corollary 3.7.4. — Let E be a complete fan in AR and ^ a support function on E . 
The correspondence of Theorem 3.7.3 and Legendre-Fenchel duality induce a bisection 
between the space of equivalence classes of semipositive toric models of ( X ^ , Dy) and 
that of rational piecewise affine concave functions on MR with effective domain A#. 

Proof. — From Theorem 3.7.3, the space of equivalence classes of semipositive toric 
models of (X%, Dy) is in bijection with the space of rational piecewise affine concave 
functions 0 on AR with rec(0) = \£. 

Let 0 be a function in this latter space. Then dom(</>) = AR and stab(0) = A#. 
By propositions 2.5.17(1) and 2.5.20(2), the function 0V is a rational piecewise affine 
concave function on MR with effective domain A#. Conversely, if $ is a rational 
piecewise affine concave function on MR with effective domain A#, then, by the same 
propositions, t9v is a rational piecewise affine concave function with effective domain 
AR and stability set A#. By Proposition 2.5.17(2), the function rec($v) agrees with 
\£. By Proposition 2.5.20(1) the above correspondences are inverse of each other, thus 
stablishing the bijection. • 

Let II be a complete SCR complex in AR and <j) an H-lattice concave function on N . 
Then the T-Cartier divisor is generated by global sections and we can interpret its 
restriction to toric orbits in terms of direct and inverse images of concave functions. 

Proposition 3.7.5. — Let U be a complete SCR polyhedral complex in AR and (j) an 
H-lattice concave function on U. Set E = rec(n) and \£ = rec(0). Let a G E 
and ma G M such that = mCT|CT. Let 7ra: AR —>> N(a)^ be the projection and 
7r^: M(<J)R —> MR the dual inclusion. Then 

(0 - ma)(a) = (7ra)*((f> - 77V), (3.7.1) 

Hence the restriction of the divisor D(f)-rna to V(a) corresponds to the H-lattice con­
cave function (7Ta )J(j) — 7?V ) . Dually, 

(ф - та){а) = {7га + та) ф . (3.7.2) 
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In other words, the Legendre-Fenchel dual of (0 — ma)(a) is the restriction of <f>y to 
the face Fa translated by —ma. 

Proof — For the equation (3 .7 .1) , we suppose without loss of generality that ma = 0, 

and hence = 0. Let u G N(a)j&. Then, the function <j)\^-i^ is concave. Let 
A G II such that rec(A) = a and TT~1(U) f ) A ^ 0 . Then, n~l(u) D A is a polyhedron 
of maximal dimension in ^^(u). The restriction of (j) to this polyhedron is constant 
and, by (3 .6 .3) , agrees with <fi(a)(u). Therefore, by concavity, 

c{(/>)(u,r) max 
v<EIR<j 1(U) 

òhi). 

agrees with (p(a)(u). Thus we obtain (3 .7 .1) . The equation (3 .7 .2) follows from the 
previous equation and Proposition 2 .5 .21(2) . To prove (3 .7 .2) when mG / 0 we use 
Proposition 2 .3 .3 (5) . • 

We now consider the case of a vertical orbit. For a function (p as before, with 
^ = rec(0), we denote by c(0) : —>• R the concave function given by 

c{(/>)(u,r) 

r<p(u/r) if r > 0, 

Ф И if r = 0, 

—oo if r < 0. 

The function c(0) is a support function on c(Il). 

Lemma 3.7.6. — The stability set of c(<p) is the epigraph epi(—(/>v) C M ^ . 

Proof — The H-representation of c(0) is 

dom(c(0)) = {(u,r) G NR I r > 0 } , 

c((p)(u, r) = min(mA(ii) + lAr). 
A 

By Proposition 2.5.5 

stab(c(</>)) = M>o(0,1) + conv({(mA, ZA)}AGII). 

Furthermore, by the same proposition, for x G stab(0), 

4>y (x) — sup 
A 

-AA/A AA > 0 , 
A 

AA = 
A 

A A ^ A = x 

Hence epi(-0v) = K > 0 ( 0 , 1 ) -f conv({(rriA, /AjJAen), which proves the statement. 

Proposition 3.7.7. — Let H and <p be as before and let A G n . Let m A G M and 
lA G Z be such that (p\A = (mA + /A)|A- Let nA: Nm ->> N(A)R be the projection, and 
TT\ : M ( A ) R ->> MR the dual map. Then 

((p - mA - I A) (A) = (7TA)*(c(</) - mA - lA)). (3 .7 .3 ) 
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Moreover, this is a support function on the fan 11(A). Its stability set is the polytope 
A^,A : = (TTA + (mA,/A))-1 epi(—0V). Hence, the restriction of the divisor Z)0_mA_/A 
to the variety V(A) is the divisor associated to the support function of A ^ A -

Proof — To prove the equation (3 .7 .3 ) we may assume that m\ = 0 and l\ — 0. Let 
u G 7V(A)R. Then, the function c(</>)|~-i^ is concave. Let A ' G I I such that A is a 
face of A ' and ^^(u) n c(A') ^ 0. Then, TT~^1{U) n c(A') is a polyhedron of maximal 
dimension of 7r^1(^) and the restriction of c(0) to this polyhedron is constant and, 
by (3 .6 .4) , agrees with (j)(A)(u). Therefore, by concavity, 

(TTA)*C((/))(?J) max 
vGir~ 1 (и) 

c(é)(v), 

agrees with (j)(A)(u). This proves the equation (3 .7 .3) . 
Back in the general case when m A and l\ may be different from zero, by Proposition 

2 .5 .21 , Proposition 2 .3 .3 (5) and Lemma 3.7.6 we have 

stab((7rA)*(c(0 - mA - /A))) (7rA) stab(c(0 - mA - /A)) 

(^)-1(s tab(c(0))-(mA,/A)) 

(TTA + (MA, 'A)) 1 stab(c((/>)) 

: (7rX + (mA, /A)) epi(-0v). 

The remaining statements are clear. 

We next interpret the above result in terms of dual polyhedral complexes. Let 
11(0) and II(0v) be the pair of dual polyhedral complexes associated to (j). Since </> is 
piecewise affine on II, then II is a refinement of n(</>). For each A G II we will denote 
by A G 11(0) the smallest element of 14(0) that contains A. It is characterized by the 
fact that ri(A) n ri(A) ^ 0. Let A* G Lt(0v) be the polyhedron A* = C<j){A). This 
polyhedron agrees with 90(г¿o) for any uo G r i(A). Then the function 0v|A* is affine. 
The polyhedron A* — mA is contained in M ( A ) R . The polyhedron 

A* = {{x,-cf)v{x))\x G A*} 

is a face of epi(—0V) and it agrees with the intersection of the image of 7rA -f (mA, I A) 
with this epigraph. We consider the commutative diagram of lattices 

M (A 
TCX + (mA,/A) 

M 

pi pr 

M (A) 
TTA + M A 

M , 
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where 7r]( is the inclusion M(A) c M, and the corresponding commutative diagram of 
real vector spaces obtained by tensoring with IR. This diagram induces a commutative 
diagram of polytopes 

A<f>,A 
тгд + (шл,/л) 

A* 

pr pr 

A* mA тгл -t- m А •A* 

where all the arrows are isomorphisms. 
In other words, the polytope A ^ A associated to the restriction of D<p-mA^iA to 

V(A) is obtained as follows. We include M(A)^ in throughout the affine map 
7TA + (THA, I A)- The image of this map intersects the polyhedron epi(—0V) in the face 
of it that lies above A*. The inverse image of this face agrees with A ^ A -

Since we have an explicit description of the polytope A^5A, we can easily calculate 
the degree with respect to of an orbit V(A). 

Proposition 3.7.8. — Let U be a complete SCR polyhedral complex in NR and <j) an 
H-lattice concave function on II. Let A G II be a polyhedron of dimension n — k, 
u0 G ri(A) and A* = d(f)(uo). Then 

mult(A) degD(V(A)) = k\ volM(A)(A*), (3.7.4) 

where mult(A) is the multiplicity of A (see Definition 3.5.11). 

Proof. — From the description of D(f>\v(A) and Proposition 3.4.3, we know that 

degDAV(A)) = k\vo\M(AJA^A). 

Since 

VO1M(A)(A^'A) : 
1 

\M(A) : M (A)] 
volM(A)(A*), 

the result follows from the definition of the multiplicity. • 

Remark 3.7.9. — If dim(A*) < fc, then both sides of (3.7.4) are zero. If dim(A*) = fc, 
then M(A) = Af(A*) and volM(A)(A*) agrees with the lattice volume of A*. 

We now interpret the inverse image by an equivariant morphism, of a T-Cartier 
divisor generated by global sections, in terms of direct and inverse images of concave 
functions. 

Proposition 3.7.10. — With the hypothesis of Proposition 3.5.15, let <p2 be an H-lattice 
concave function on II2 and D(f)2 the corresponding T-Cartier divisor. Then <I>* AD02 
is the T-Cartier divisor associated to the H-lattice concave function <fii = A* fa. More­
over the Legendre-Fenchel dual is given by 

^ = ( f fv ) . ($ -va l* r (p ) ) . 
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Proof. — The first statement is Proposition 3.6.15. The second statement follows 
from Proposition 2.5.21(1). • 

Example 3.7.11. — Let E be a complete fan in AR and ^ a support function on E . By 
Theorem 3.7.3, any equivalence class of semipositive models of (X^, Dy) is determined 
by a rational piecewise affine concave function 0 with rec(</>) = ^ . By Lemma 2.5.22, 
any such function can be realized as the inverse image by an affine map of the support 
function of a standard simplex. Using the previous proposition, any equivalence class 
of semipositive toric models can be induced by an equivariant projective morphism. 

More explicitly, let e > 0 be an integer such that ecj) is an H-lattice concave function. 
Let n be a complete SCR complex in AR compatible by e<p and such that rec(n) = E 
(see the proof of Theorem 3.7.3). Then, (An, e) is a toric model of (X^,D^) in 
the class determined by (j). 

Choose an H-representation e</)(u) = mino<i<r(rrii(u) + U) with (ml,ll) £ M for 
i = 0 , . . . , r. Put OL — (Ii — /o, • • •, lr — lo)- Let H and A be as in Lemma 2.5.22. In 
our case, H is a morphism of lattices and 

ecf) = A*VAr +m0 + Zo-

We follow examples 3.1.3, 3.3.10, 3.4.8 and 3.6.2, and consider Frs as a toric scheme 
over S. Let p = (po : ... : pr) be a rational point in the principal open subset of P ^ 
such that VSL\K(P) = OL. Observe that, in this example, the map val^ from the set of 
rational points of the principal open subset of P ^ to N (Definition 3.5.14) is given 
explicitly by the formula 

valKci : • • • : Pr) {valK{pi/Po), ., val A: (pr/po^-
One can verify that the hypothesis of Proposition 3.5.15 are satisfied. Let ®P,A : An —>• 
P^ be the associated morphism. Then 

Оеф = %,AD*&r +div(w-íox~mo)-
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CHAPTER 4 

METRICS AND MEASURES ON TORIC VARIETIES 

In this chapter, we study the metrics on a toric line bundle that are invariant under 
the action of the compact torus. Our aim is to obtain a characterization, in terms of 
convex analysis, of semipositive toric metrics and of their associated measures. 

We set the notation for most of this chapter. Let K be either M, C or a field which is 
complete with respect to a non-Archimedean absolute value. In the non-Archimedean 
case, we will use the notations of §1.3, although, for the moment, we do not assume 
that the absolute value is associated to a discrete valuation. 

Let T be an n-dimensional split torus over K. Set N and M = A"v for the cor­
responding lattices and let E be a fan in AR as in §3 .1 . For each cone a G E, we 
will denote by Xa the corresponding affine toric variety and by X^n its analytifica-
tion. These spaces glue together into a toric variety X% and an analytic space Xgn, 
respectively. When K = C , the latter agrees with the complex analytic space X^(C) 
whereas in the non-Archimedean case, it is a Berkovich space. When K = R, we will 
use the technique of Remark 1.1.5 to reduce the study of X^ to that of the associated 
complex analytic space. 

4.1. The variety with corners X E ( R > 0 ) 

The variety with corners associated to the fan E is a partial compactification of 
AR, and can be seen as a real analogue of the toric variety X^. It was introduced 
by Mumford in [AMRT75]. More recently, it has also appeared in the context of 
tropical geometry as the "extended tropicalization" of [Kaj08] and [Pay09]. 

With notations as above, for a cone a G E we set 

Xa{R>0) = Homsg(AfCT, (R>0, x)). 

On Xa(R>o), we put the coarsest topology such that, for each m G Ma, the map 
Xa(R>o) —» R>o given by 7 ^ 7(m) is continuous. Using [Ful93, §1.2, Proposi­
tion 2], we can see that, if r is a face of <r, then there is a dense open immersion 
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Xr(R>0) ^ Xa(IR>o). Hence the topological spaces Xcr(R>o) glue together to de­
fine a topological space X^(R>0). This is the variety with corners associated to Xj:. 
Analogously to the algebraic case, one can prove that this topological space is Haus-
dorff and that the spaces Aa(R>0) can be identified with open subspaces of A^(R>0) 
satisfying, for a, o1 G E, 

Acr(R>o) n Xa>(R>o) = Xan(T>(R>o)-

We have that 

T(R>0) :=Homs,(M,R>0) Homgp(M,R>0) ~ (R>0) 

is a topological Abelian group that acts on A^(R>0). 
For each a G E there is a continuous map pa : X^n —» Aa(R>o). This map is given, 

in the Archimedean case, by 

X?n = Hom8K(Ma,(C,x); \_± Homsg(Ma, (R>0, x)) = Aa(R>0). 

In the non-Archimedean case, since a point p G X^n corresponds to a multiplicative 
seminorm on K[Ma} and a point in Acr(R>o) corresponds to a semigroup homomor-
phism from Ma to (R>o, x), we define pa{p) as the semigroup homomorphism that 
to an element m G Ma corresponds \xm(p)\-

In both cases, these maps glue together to define a continuous map 

PE : -+ Xs(M>o). (4.1.1) 

Lemma 4.1.1. — For a G E7 the map p^ satisfies p^1 (Acr(R>0)) = X*n. 

Proof. — By construction, X^n C p^1 (Aa(R>0)). For the reverse inclusion we will 
write only the non-Archimedean case. Assume that p G p-1(Aa(R>0)). There is a 
cone cr' with p G X*?. Let r = a n a' be the common face. Then p is a multiplicative 
seminorm of K[Ma>] and we show next that it can be extended to a multiplicative 
seminorm of K[MT\. By [Ful93, §1.2 Proposition 2] there is an element u G Ma> 
such that MT = Ma> + Z>0(-u). Hence K[MT] = K\MG> +Z>0(-u)]. Since ps(p) G 
Xr(R>0) we have that \xu(p)\ 7̂  0- Therefore p extends to a multiplicative seminorm 
of K[MT). Hence p G X^n C X™. • 

Corollary 4.1.2. — The map p^'. Xff1 —> A^(R>o) is proper. 

Proof. — When E is complete, the analytic space A|n is compact. Since Aa(R>0) 
is Hausdorff, the map P^ is proper. Assume now that E is not necessarily complete. 
Let cr G E be a cone. Let £ ' be a complete fan that contains a. By Lemma 4.1.1, the 
fact that PY,' is proper implies that PA is proper. Since the condition of being proper 
is local on X^(R>o), the fact that PA is proper for all cones A G E implies that P^ is 
proper. • 
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We denote by e: R —> R > 0 the map u h-> exp(—u). This map induces a homeomor-
phism 

NR = Hom(M, R ) • HomSG(M, (R>0, x)) = X0(R>0) 

that we also denote by e. 
We define a valuation map in both Archimedean and non-Archimedean cases, by 

setting, for a G KX, 
val (a) = — log \a\. 

Next, we define a map val: Xqr —> AR. For p G XQ11, we denote by val(p) G 
HomSG(M, R ) = AR the morphism given by 

mi—> (m,val(p)) = - log |xm(p)|. (4.1.2) 

Then, there is a commutative diagram 
Van 

val 

NR e Xq(R>o) 

Po 

(4.1.3) 

When K is non-Archimedean and the associated valuation is discrete, we set 

\K = - logici, eK(u) = e(XKu), val *м p) 
val(p) 
YK 

(4.1.4) 

for u G AR and p G XQU. This latter map extends the map val^: T(K) -> N of Defi­
nition 3.5.14. In order to make some statements more compact, if K is Archimedean, 
we will write XK = 1, &K = e and val^ = val. 

Remark 4.1.3. — The map val only depends on the absolute value and is invariant 
under valued field extensions. It can be defined for arbitrary valued fields. The map 
valx is the valuation normalized with respect to the field K. It is only defined for 
discrete valuations. The advantage of val^ is that the image of a rational point 
belongs to the lattice, that is 

YDK(X0(K)) C N. 

The map e allows us to see Xs(R>o) as a partial compactification on AR. Fol­
lowing [AMRT75, Chapter I, §1] we can give another description of the topology of 
Xs(R>o)- For a G E, we consider the set 

No = 
T face of a 

N (T)«, (4.1.5) 

where N(r) denotes the lattice introduced in (3.2.1). 
We first extend the map e to a map Na —> X ^ R ^ q ) . For r a face of cr, we consider 

the semigroup M(r) U {—oo}. Each group homomorphisms M(r) -> (R>o, x) can be 
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extended to a semigroup morphism M(r) U {—00} —)• (R>o, x) by sending —00 to 0. 
There is a morphism of semigroups Ma —> M{r) U {—00} given by 

m 
m if m G T1-. 

—00 otherwise, 

that induces an infective map 

N(T)R e Homgp(M(r),(R>o,x)) Homsg(M(J,(]R>o, x)) J^cr(R>o). 

Glueing together these maps for all faces of a we obtain the map e: NA —>> Xa(R>0). 
One may verify that this map is a bijection. 

We next define a topology on NA. To this end, we choose a positive definite bilinear 
pairing in NR. Hence we can identify the quotient spaces N(r)R with subspaces of 
NR, that, for simplicity, we will denote also by N(T)R. For a point u £ AT(t)R, let 
U C N(T)R be a neighbourhood of u. For each r' face of r, r induces a cone 7rr/(r) 
contained in N(T')R. If p £ r, then its image 7rr/(p) in N(rf)R is contained in 7tt/(t). 
We write 

W(r,C/,p) = 

T' face of r 

7v( t / +p + T). (4.1.6) 

The topology of Na is defined by the fact that {VF(r, U,p)}u,P is a basis of neighbour­
hoods of u in Na. With this topology, the map e: Na —> XCT(R>o) is a homeomor-
phism. 

We write 
NE 

EE 

AYcrV 

and put on TVs the topology that makes { A ^ j ^ s an open cover. Then the map e 
extends to a homeomorphism between Afe and X^(R>0) and the map val in (4.1.3) 
extends to a proper continuous map val: Xyn —>> Afe such that the diagram 

Xan 

val pE 

TVs e As(R>o) 

(4.1.7) 

is commutative. 

Remark 4.1.4. — In case we are given a strictly concave support function ^ on a 
complete fan E, then Afe is homeomorphic to the polytope A# introduced in §3.4. 
An homeomorphism is obtained as the composition of e with the moment map 
fi: XS(R>0) induced by 

A^ e Xs(R>o) i A^ 

u e(u) exp( — (m,u))m 
exp(— (m,u)) 

where the sums in the last expression are over the elements m £ M fl A^. 
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We end this section stating the functorial properties of the space As(IR>o). We 
start by studying field extensions. Assume that K is non-Archimedean and let K' be 
a complete valued field extension of K. As explained before Definition 1.2.1, there is 
a map v VanE VanEK. 

Proposition 4.1.5. — The diagram 

Van 
AE,K 

V VanE 

val val PS,if PE,K 

NY 
e 

AE(M>o) 

is commutative. 

Proof. — The commutativity of the diagram follows from the fact that the map 

XY?K' ~^ "^sV is given by restricting seminorms. • 

We next study the inclusion of closed orbits. Let N and E be as before and a G E. 
Recall that there is an induced fan E(a) in N(a)R defined in (3.2.2) and a closed 
immersion ¿cг: X^(A) ~^ A^ defined before Proposition 3.2.1. We will also denote by 
ia the induced morphism of analytic spaces. The map e gives us an homeomorphism 
Ar(cr)^ —> AS(cr)5o(R>o)- Hence the natural map N(a)R ^ A^ induces an inclusion 
^E(a),o(M>0) ^XA(R>0). 

Proposition 4.1.6. — The inclusion XY(CT),OO^>O) —> Acr(R>o) extends to a continuous 
map ia\ Xs(o-)(M>o) —> As(M>o)- Moreover, there is a commutative diagram 

VanK oo XXan 

PS(a) pE 

^£((t)0&>o) 
la XE(R>o) 

Proof. — To construct the map ia at the level of varieties with corners one can imitate 
the construction of the morphism ¿cr given before Proposition 3.2.1. It is possible 
to verify that the obtained map is continuous. To prove the commutativity of the 
diagram, it is enough to restrict oneself to the principal open affine subset ^^la) o 
or Xe((t),o(^>o)) where it follows from the concrete description of points either as 
multiplicative seminorms or as semigroup homomorphisms. We leave to the reader 
the verification of the details. • 

Notation 4.1.7. — Let A^ and E^ be a complete fan in AT^R, i = 1,2. Let H : Ni -» N2 
be a linear map such that, for each cone o~\ G Ei, there is a cone a2 G E2 with 
H((ii) C 0-2- Let p G XY2^(K) and A: NiiR -> A ,̂m the affine map A — H + val(p). 
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By Theorem 3.2.4 there is an equivariant morphism tpp,H' AEl —> X^2. We denote 
also by (fp,H both, the corresponding morphism between analytic spaces, and the map 

<PP,H = e o A o e : XEl5o(M>o) As25o(R>o), (4.1.8) 

even though the latter depends only on val(p) and H and not on p itself. 

The proof of the following proposition is left to the reader. 

Proposition 4.1.8. — The map (4-1.8) extends to a continuous map XEl(M>o) —> 
X^2(R>o) that we also denote by <pPiH- Moreover, there is a commutative diagram 

xAN 
eP?h 

XE2 

P,E1 PE2 

XYX (R>o) 
<Pp,H 

XY2 (R>o) 

4.2. Analytic torus actions 

When K is Archimedean, the analytic torus Tan ~ (Cx)n is a group which acts on 
the analytic toric variety Agn = X^(C). The compact torus of Tan is defined as the 
subset 

S = { P e Tan I \xm(p) 1 for all me M} 
It is a compact topological subgroup of Tan, homeomorphic to (S1)71 and which has a 
Haar measure of total volume 1. The map p^ defined in (4.1.1) is equivariant, in the 
sense that, for all t e Tan and p e Xgn, 

Pz{t-p) = p0(t) • PE(p). 

The orbits of the action of S on X^1 agree with the fibers of the map p^ defined 
in (4.1.1): for a point p G Afn, 

S p = pE (pE (p)). (4.2.r 

Therefore the variety with corners Ae(M>o) can be understood as the quotient of A|n 
by the action of the closed subgroup S. Since the map p^ is proper, the topology of 
XE(M>o) is the final topology with respect to this map. 

In the non-Archimedean case, the analogues of these properties are more subtle. 
For the remainder of the section we will assume that K is non-Archimedean. Following 
[Ber90, Chapter 5], an analytic group G over K is an analytic space over K endowed 
with three morphisms G x G -> G (multiplication), Spec(i^)an -> G (identity) and 
G -> G (inversion), satisfying the natural conditions. 

An action of G on an analytic space X over K is a morphism 

p: G x X —> A, 

also satisfying the natural conditions in this context. 
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The rational points G(K) form an abstract group but, in general, the set of points of 
the topological space underlying the analytic space G has no natural group structure 
induced by the analytic group structure. Instead, we can define a correspondence that 
associates, to g G G and p G X, the subset of points 

g-p = /jJ(pr (g,p)). 

where pr: G x X —> G xtopoX is the projection induced from the functorial properties 
of the direct product of sets, the first product being in the category of analytic spaces 
whereas the second is in the category of topological spaces. The set g • p may contain 
more than one point as shown in Corollary 4.2.11, for example. This "multiplication" 
of points satisfies the properties that, for all g, h G G and p,q G X, 

g-(h-p) = (g-h)'p, (4.2.2) 

pe g-q qe g 1 • p, (4.2.3) 

where g~1 denotes the image of g by the inversion map [Ber90, Proposition 5.1.1 (i)]. 
If either g G G(K) or p G X(K), then g • p consists of a single point. 

A non-empty subset H C G is a subgroup if it satisfies that, for all g,h G H, 
g~l G H and g • h C H. For a subgroup H and a point x G X, the orbit of p with 
respect to H is defined as the subset 

H -p 
heH 

h • p. 

By (4.2.3), different orbits are either disjoint or coincide. 
Although we have defined g • p as a set, for some special elements of G or X we 

can single out a distinguished point of this subset with good properties. 
Let K' and K" be two complete valued field extensions of K, recall that the tensor 

product K' ®K K" has a tensor product norm defined as 

Y 
7 

ml 
i aiOB 

max 
i 

ai pi 

Then K'^K" is defined as the completion of K' ®^ K" with respect to this norm. 

Definition 4.2.1. — Let Z be an analytic space over K. A point p G Z is called 
peaked if, for any complete valued field extension K' of K, the tensor product norm 
of J^(p)®Kf is multiplicative. 

Let g G G and p G X. The set pr-1(g,p) can be identified with the set of multi­
plicative seminorms of J^(g)®Jj?(p) that are bounded by the tensor product norm. 

Definition 4.2.2. — Let g G G and p G X. It follows from the definition that if one of 
these points is peaked, then the tensor product norm of J^(g)®J^(p) is multiplicative, 
and so it defines a point of pr-1(g,p) G G x X. We denote by g *p G X the image by 
\i of this point. 
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Remark 4.23. — Assume that G and X are the analytification of an affine algebraic 
group Spec(A) and of an affine algebraic variety Spec(i?) over K respectively. Assume 
also that the action is induced by a morphism B —» A 0 B. Let g G G and p G X. 
If either g or p is peaked, then the point g * p G X is given by the multiplicative 
seminorm of B induced by the tensor product norm of J^(g)®Jrff(p) through the 
composition B A ® B Jf(g)(g)J^(p). 

Proposition 4.2.4. — Let G be an analytic group and X an analytic space with an 
action of G. 

1. The points of G(K) and of X(K) are peaked. If either g G G or p G X is 
rational, then g • p = {g * p}. 

2. If g G G and p G X are peaked, then g * p is peaked. 

3. If two of the three points g\ G G, g2 G G andp G X are peaked, then (#1*^2) *P = 

9i * {92 * p) • 

4- If 9 G G is peaked, then the map X —>• X given by p H> g * p is continuous. If 

p G X is peaked then the map G —>• X given by g H> g * p is continuous. 

Proof — The first statement follows directly from the definition. The remaining 
statements are proved in [Ber90, Proposition 5.2.8]. • 

Proposition 4.2.5. — Let </?: Y —> Z be a closed immersion of algebraic varieties over 
K. Then p G yan is peaked if and only if cpan(p) is peaked. 

Proof — Since ip is a closed immersion, we have that J^((p&n(p)) = J$?(p), which 
implies the result. • 

The example of interest for us is when G and X are the analytification of a split 
algebraic torus and an algebraic toric variety over K, respectively. Let notations be 
as at the beginning of this chapter and assume that K is non-Archimedean. Then the 
analytic torus Tan is an analytic group as above. 

The map pa is equivariant in the following sense. 

Proposition 4.2.6. — Let te Tan and p G X$n. Then 

Px(t-p) = Po(t) · pE(p). 

Proof. — We can assume that p G Aan for a cone a G E. The set pr_1(t,p) is the 
set of multiplicative seminorms of K[M] 0 K[Ma] that extend the absolute value of 
K and that satisfy, for / G K[M) and g G K[Ma], 

f O 1 |fO(t) \l®g\ |g(p)| (4.2.4 

Therefore, if m G Mai and q G t • p is the image by ¡1 of a multiplicative seminorm 
I • L of K\M] 0 K\MJ satisfying; (4.2.4), then 

Pa{q)(m) \xm(q) \xm®xm\q | ( x m ^ i ) ( i 0 x m ) | g 
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By the multiplicativity of | • \q 

Pa{q){m) \(xm®i)\ q \(i®xm)\q-

By (4.2.4), 

P*(q)(m) = \xm(t)\\xm(p)\ Po(t)(m)pa(p)(m) = (po(t) • Pa{p))(m), 

proving the result. 

The compact torus § c Tan is a subgroup in the analytic sense and its underlying 
topological space is compact. However, as discussed previously it is not an abstract 
group. Thus we cannot apply the theory of locally compact topological groups to 
obtain a Haar measure on §. The role of the Haar measure of S will be played by a 
Dirac delta measure centred at a special point of §. 

Definition 4.2.7. — The Gauss norm of lf[M] is the norm given, for / = ^ctmX171 £ 
K[M), by maxm |am|. 

The following result is classical. 

Proposition 4.2.8. — The Gauss norm is multiplicative. 

Proof. — Let / = Y,m amXm and g = ^ PiX1 and write fg = J2k ekXk wi^h ek = 
V ,/=, am/3i. Then, since the absolute value of K is ultrametric, 

max 
kEmo 

Ek max 
m G mo-

am max 
kEmo 

ßi 

Let Cf = {m G Ma \ maxm/(|am/1) = |am|} and define Cg analogously. Let r be a ver­
tex of the Minkowski sum conv(C/) + conv((7c,). Then there is a unique decomposition 
r — mr + lr with mr £ Cf and lr G Gq. Hence er = am /3/r.. Thus 

max 
keMa 

Ek \er max 
me M a 

am max 
ieMa 

ßi\ 

which concludes the proof. 

Definition 4.2.9. — The Gauss point of Tan is the point £ corresponding to the Gauss 
norm of K[M}. Thus, if / = £ amxm £ K[M], then 

/ ( 0 m a x 
m 

am 

It is clear that C G § C Tan. 

The Gauss point satisfies the following invariance property, that indicates that it is 
reasonable to consider the Dirac delta measure as the non-Archimedean analogue 
of the Haar measure on §. 

Proposition 4.2.10. — The Gauss point ( is peaked. Moreover, for any t G S one has 
t * C =C. 
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Proof. — Let K' be a complete valued field over K. We denote by K'[M] the com­
pletion of K'[M] with respect to the Gauss norm. Since there is an isometry 

K[M]êKf = ïf[M] 

and the Gauss norm is multiplicative, then [Ber90, Lemma 5.2.2] implies that the 
Gauss point is peaked. 

Let / = amXrn £ K[M}. The action of T on itself is given by the morphism of 
algebras K[M] K[M]® K[M] that sends / to £ amxm ® X™-

For t G Tan, by Remark 4.2.3, the value \f(t * ()\ is the norm of the image of / in 
Jf?(C)®JF(t). Since the map 

K[M}(S)Jf(t) Ж(С)®Ж(1) 

is an isometric embedding, it is enough to compute the norm of the image of / in 
K[M]§J^(t) = jf{t)[M]. Therefore 

l/(**C)h <*mxmWm maxi 
m 

am lxmWI). 

Assume now that t G S. Then |xm(^)| = 1 for all m G M. Thus \f(t*C)\ = maxm \am\ 
and so t * C = C O 

Corollary 4.2.11. — The Gauss point satisfies ( • ( — E>. 

Proof — Since S is a subgroup, ( • ( C S. Let now t G S. By Proposition 4.2.10, 
C = t*te(-t. By (4.2.3), t G C • C"1- Since C = C " \ we deduce that t G C • C 
proving the result. • 

On each fibre of the map there is a point with similar properties to those of the 
Gauss point, giving a continuous section of p-%. 

Proposition-Definition 4.2.12. — Let a G E. For each 7 G Homsg(Mcr, M>o), the semi-
norm that, to a function s^ctmXrn ^ A [̂Ma] assigns the value maxm(|ctm|7(771)) , is 
a multiplicative seminorm on K[Ma] that extends the absolute value of K. There­
fore it determines a point of Aan that we denote 0a(j). The maps 0a are injective, 
continuous and proper. Moreover, they glue together to define a map 

VY.: A e R > o V'ari 

that is a continuous and proper section of pyt. 

Proof. — Let 7 G Homsg(Afcr,R>o). The fact that the seminorm 6^(7) extends the 
absolute value of K is clear. That it is multiplicative is proved with an argument 
similar to the one in the proof of Proposition 4.2.8. Thus we obtain a point 0a(j) G 
XT-

We show next that the map 0a is continuous. The topology of Aan is the coarsest 
topology that makes the functions p \-> \f{p)\ continuous for all / G K[Ma]. Thus 
to show that 6a is continuous, it is enough to show that the map 7 H> |/(#o-(7))| is 
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continuous on Xa(R>0) = Homsg(Mcr, R>0). The topology of XCT(R>o) is the coarsest 
topology such that, for each m G Ma, the map 7 H> 7(771) is continuous. Since, for 

/ <meMc amXm 
\f(0Ai))\ max(|am|7(ra)), 

we deduce that 6A is continuous. 
The facts that the maps 0a glue together to give a continuous map 0£ and that 0^ 

is a section of p^ follow easily from the definitions. The analogue of Lemma 4.1.1 is 
true for OY,, hence 0a is proper by the argument of the proof of Corollary 4.1.2. • 

Observe that ( = 0n(l)- The following result extends Proposition 4.2.10 to the 
points in the image of 6%. 

Proposition 4.2.13. — Lette Tan; p G X|n; 7 G XS(R>0) and r G T(R>0). Then the 
points 0s(7) and 0Q(T) are peaked and 

**0e(7)=0E(PO(*)-7) 0O(T) *p = fe(r • pv(p)) 

Proof. — Let a G E such that 7 G Xo-(R>o). By similar arguments as those in the 
proof of Proposition 4.2.10, we see that 0a(j) is peaked and that, for f = amXm £ 
K[Mo], 

\f(t*0A(7))\ =max|am||xm(t)|7(m) = max |am|(p0(*) -7)(m) = |/(0a(po(t) • 7))I, 
m m 

which proves the first formula. The rest of the proposition can be proved along the 
same lines. • 

A direct consequence of Proposition 4.2.13 is the following equivariance result 
for 0£. It implies that (im(0o),*) is a topological group acting by * on the topo­
logical space im(0s)5 with an action isomorphic to the action of T(R>o) on Xs(R>o)-

Corollary 4.2.14. — Let r G T(R>0) and 7 G XS(R>0). Then 

0s( r -7 ) =0o(T)*0e(7) . 

The orbits of the action of § on Agn agree with the fibers of the map p%. 

Proposition 4.2.15. — Letpe X^n. Then 

S · p = p -1 (pE (p)). 

Proof — By Proposition 4.2.6, ps(§ • p) = ps(p) and so S • p C p^ (p^(p)). 
Conversely, let q G p^1(ps(^))- By Proposition 4.2.13, ( * p = ( * q. Therefore 

S • p fi S • q 7̂  0. Thus, both orbits agree and q G § • p, concluding the proof. • 

The previous proposition shows that, also in the non-Archimedean case, the space 
X^(R>o) can be understood as the quotient of by the action of the closed sub­
group §. Note that, since the map p^ is proper, the topology of X^(R>o) is the final 
topology with respect to this map. 
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We next discuss the functorial properties for the map 0 £ . Let K' be a complete 
valued field extension of K, and consider the map v. X^nK, —> X^nK. 

Proposition 4.2.16. — The diagram 

Van 
A£,1V 

V Van 

0EK 
0EK 

KR(R>O) 

is commutative. 

Proof. — The commutativity of the diagram follows from the fact that the map 

XY*K' ~^ is given by restricting seminorms. • 

The map 0^ is compatible with the inclusion of closure of orbits. The proof of the 
following proposition is left to the reader. 

Proposition 4.2.17. — With the notations of Proposition 4.1.6, there is a commutative 
diagram 

VEan La XEan 

E(o) 0E 

Xe(o) (R>0°) io AE(R>o) 

In some cases, the map 0^ is compatible with equivariant maps. 

Proposition 4.2.18. — With Notation 4.1.1, assume that the dual linear map Hy is 
infective. Then the diagram 

Xan p,p,H X*n ^2 

OS! 

XE1 

0,E2 

(M>o, 
p,p,H 

Ae2(R>o) 

is commutative 

Proof — It is enough to treat the local case. Write M% for the dual lattice of N^ 

i = 1, 2, and Hy: M2-> Mi for the dual of H. Let a G Ei be a cone, q e X*n, and 

f = Z<*mXm£K[M2,*}- Then 

\tt<PpMQ))\ 
me AU 

amxm(p)xH {m)(q) 

neMi me Mo 
H (m)=n 

amXm(p) Xn(q) 
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If 7 G XCT(R>0) and q = 6^(7) then 

\f(<PpMQ))\ •- max 
neMi mEM2 

H (m)=n 

(ffv(m)). y(n). 

Since HY is injective 

\f(VP,H(q))\ max 
meM2 

al xm p)|7(ffv(m)). 

But, by Proposition 4.1.8, \Xm(p)h(Hv(m)) = p0(p)(m)7(Jffv(m)) = <ppM{j)(m). 
Thus 

l/(¥>P,ff(0Sl(7))) max 
mgm2 

X <PPIH(l){m \f(o ^ PMi)))l 

concluding the proof. 

Corollary 4.2.19. — VK /̂i Notation J^.l.l, for any point 7 G X ^ R ^ o ) , the point 
<£p,jj(0£i(7)) «5 peaked. 

Proof. — We first treat the case when 7 G X^l5o(R>o)- Following (3.2.4), we factorize 
¥P,H as 

XE •- ma X <̂ Sat 
^ 4 yp, Hini Xan 

Since i ^ r j and i/^t are injective, by Proposition 4.2.18, we deduce that 

№sat(№urj(fel(7))> ^ ( ^ s a t C ^ s u r j (7))) 
By Proposition 4.2.13, this latter point is peaked. By Proposition 3.2.5, the map 
<pP,HINI : ^£4 ,0 ~~* ^^2,0 is a closed immersion. Therefore, by Proposition 4.2.5, we 
deduce that <^Pjij(0£i (7)) is peaked, proving the result in this case. 

The general case follows from the previous one together with propositions 3.2.8 
and 4.2.5. • 

4.3. Toric metrics 

With the notations at the beginning of this chapter, assume furthermore that £ 
is complete. Let L be a toric line bundle on and s a toric section of L (Defini­
tion 3.3.4). By theorems 3.3.7 and 3.3.3, we can find a virtual support function ^ on 
S such that there is an isomorphism L ~ O(D^) that sends s to The algebraic 
line bundle L defines an analytic line bundle Lan on X^1. Let L = (L, || • ||), where 
II • II is a metric on Lan. 

Every toric object has a certain invariance property with respect to the action of 
T. This is also the case for metrics. Since Tan is non compact, we cannot ask for 
a metric to be Tan-invariant, but we can impose S-invariance. In view of equation 
(4.2.1) and Proposition 4.2.15, a function / : Tan —>• R will be called §>-invariant if it 
is constant along the fibres of po-
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We need a preliminary result. 

Proposition 4.3.1. — With notations as above, if the function p \-> \\s(p)\\ is 
^-invariant, then, for every toric section s', the function p ^ \\s'(p)\\ is ^-invariant 
too. 

Proof. — If s' is a toric section of L, then there is an element m G M such that 
s' — Xms- Since for any element t G § we have |xm(£)l = 1 ? if the function is 
^-invariant, then the function = \\xm(p)s(p)\\ 1S a^so S-invariant. • 

Definition 4.3.2. — Let L be a toric line bundle on X$> A metric on Lan is toric if 
the function p H> is §-invariant. 

Given an arbitrary metric on a toric line bundle, we can associate to it a toric 
metric by an averaging process. 

Definition 4.3.3. — Let L be a toric line bundle on and || • || a metric on Lan. For 
a G D, let sa be a toric section of L which is regular and non-vanishing in Xa. 

If K is Archimedean, we set, for p G Aan, 

l|s<x(p)||s = exp 
S 

log 11 So-(t •p)||d/XHaarO 

where /JHaar is the Haar measure of S of total volume 1. 
If K is non-Archimedean, we set, for p G A^n, 

K ( p ) I I s = I M 0s (ps(p)))II 

where is defined in (4.1.1) and 6^ in Proposition-Definition 4.2.12. 
It is easy to verify that these functions define a toric metric || • ||§ on Lan. 

Observe that the previous definition is compatible with the idea that 5^ is the 
analogue, in the non-Archimedean case, of the Haar measure of S of total volume 1, 
because 0^(p^(p)) — ( *p. 

Proposition 4.3.4. — The averaging process in Definition 4-3.3 is multiplicative with 
respect to products of metrized line bundles, is continuous with respect to uniform 
convergence of metrics and leaves invariant toric metrics. 

Proof. — This follow easily from the definition of || • ||§. • 

To the metrized line bundle L and the section s we associate the function 
gxs: XQ11 —>• R given by g^ s(p) = — log In the Archimedean case, the 
function g-^ s is 1/2 times the usual Green function associated to the metrized line 
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bundle L and the section s. The metric || • || is toric if and only if the function g-^ s is 
S-invariant. In this case we can form the commutative diagram 

Xan 
9L,S R 

val 

VR 

(4.3.1; 

The dashed arrow exists as a continuous function because po, hence val, is a proper 
surjective map and, by S-invariance, g-^ s is constant along the fibres. This justifies 
the following definition. 

Definition 4.3.5. — Let L be a toric line bundle on and s a toric section of L. 
Let || • || be a metric on Lan and set L = (L, || • ||). We define the function tpj^ s: NR —» R 
given, for u G iVV by 

^LAu) = ^g\\s(p)\\s (4.3.2) 

for any p G Xq11 with val(p) = u. When the line bundle and the section are clear from 
the context, we will alternatively denote this function as ip\\.\\. 

The facts that || • ||§ is S-invariant and that s is a nowhere vanishing regular section 
on X$N imply that (4.3.2) gives a well-defined continuous function on NR. In the case 
when || • || is toric, we have that 

^L,s(U) = log ||s(p)|| (4.3.3) 

for u G NR and any p G X$N with val(p) = u. 
We will also use the following variant of the function ^7; s • It will be most useful 

when treating metrics induced by integral models. 

Definition 4.3.6. — Let notations be as in Definition 4.3.5 and suppose that absolute 
value of K is either Archimedean or associated to a discrete valuation. We define the 
function (j>j «: ~> ^ given, for u G NR, by 

<hJu) = 
log||s(p)||s 

NK 
for any p G XQ11 with val^(p) = u. When the line bundle and the section are clear 
from the context, we will alternatively denote this function as o||·||. 

Remark 4.3.7. — The function ^ s agrees with the right multiplication ^ that 
is, 

OL,s (u) = A-1YL,s (AKu) (4.3.4) 

for all u G NR. Hence, the functions and carry the same information and 
it is easy to move from one to the other. The difference between both functions is 
similar to the difference between val^ and val discussed in Remark 4.1.3. 
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We study the effect of taking a field extension. Let K'/K be a finite extension of 
complete valued fields. We denote by e^//K the ramification degree of K' over K. 

Proposition 4.3.8. — Let notations be as in Definition J^.3.5 and consider a finite 
extension of complete valued fields K'/K. Let V and s' be the metrized toric line 
bundle and toric section on X^ x Spec(K') obtained after base change to K'. Then 

^LAu) = ^g\\s(p)\\s <h\s> = <h,sek>ik, 

that is, </>77s,0) = eK,/K^L.S u 
EK>/K for all u G NR. 

Proof — The first statement follows from the definition of ip-^ s and propositions 4.1.5 

and 4.2.16. The second statement follows from the first one, equation (4.3.4) and the 

fact that \K = £K'/K^K'- D 

Example 4.3.9. — With the notation in examples 2.5.6 and 3.3.10, consider the stan­
dard simplex An with fan E = EA™ and support function ^ = ty^n. TO these data 
correspond the toric variety XY, = Pn, the toric line bundle L^ = 0(1), and the toric 
section sq, whose associated Weil divisor is the hyperplane at infinity HQ. 

1. The canonical metrics || • ||can in examples 1.3.11 and 1.4.4 are toric and both 

satisfy |̂|-||can = ^-

2. The Fubini-Study metric || • ||FS m Example 1.1.2 is also toric and satisfies 

^11-||FS = ^FS ' WNERE / F S is the function in Example 2.4.3. 

In general, the space of toric metrics on the line bundle L can be put into a one-
to-one correspondence with a certain class of continuous functions on N^. 

Proposition 4.3.10. — Let E be a complete fan in and ^ a virtual support function 
on E . Let X^ and L = 0{D^) be the associated proper toric variety over K and toric 
line bundle. 

1. Given a metric || • || on Lan, the function — \£ extends to a continuous 
function on N% . 

2. The correspondence || • || ^|H| ^s a bisection between the set of toric metrics 
on Lan and the set of continuous functions ip: —>• R with the property that 

— ^ can be extended to a continuous function on . 

Proof. — We first prove (1). Let {raa} be a set of defining vectors of ^ . For each 
cone a G E , the section sa = x™" s 'ls a nowhere vanishing regular section on Aan. 
By (4.1.2), for p G X^n, 

^ll-H(val(p)) - (ma,val(p)) log\\s(p)\k + log\xm°(p)\ log||sCT(p)||s. 

Since ||So-1|§ is a nowhere vanishing regular function on Xan, the function log ||So||S is 
a continuous function on Xan that is S-invariant. So it defines a continuous function 
on X<J(R>o). As a consequence, ^||.|| — ma extends to a continuous function on Na. 
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Now, if we see that \£ — ma extends also to a continuous function on Na we will be 
able to extend ^||.|| to a continuous function on Na for every a £ E and therefore 
to JVS. 

Let r be a face of a and let u £ N[r)R. Let W(r, U,p) be a neighbourhood of u 
as in (4.1.6). By taking U small enough and p £ r far away from the origin, we can 
assume that W(r, J7,p) fl is contained in the set of cones that have r as a face. 
Since ^ and mG agree when restricted to a (hence when restricted to r) it follows 
that, if w + 1 £ VF(r, LT,p) n NR with w £ /7 and £ £ p + r, then (vp - raa)(w +1) only 
depends on w and not on t. Hence it can be extended to a continuous function on 
the whole W(r, U,p). By moving r, u, U and p we see that it can be extended to a 
continuous function on A^, which completes the proof of the first statement. 

For the second statement, let now ^ be a function on A^ such that ij) — \£ extends 
to a continuous function on N^. We define a toric metric || • || on the restriction 
Lan|x^n by the formula 

||S(p)||=exp(V(val(p))). (4.3.5) 

Then, by the argument before, ip — ma extends to a continuous function on Na, which 
proves that || • || extends to a metric over Xan. Varying a £ E we obtain that || • || 
extends to a metric over X^1. We can verify that this assignment is the inverse of the 
correspondence || • || \-> when the latter is restricted to the space of toric metrics 
on Lan. • 

Remark 4.3.11. — Assume that K is non-Archimedean and with discrete valuation. 
Let i\): NR —> R be a function and consider the right multiplication <\> — if^X^1. Since 
^ is conic, ^A^1 = ^ . Therefore ijj — ^ extends to a continuous function on A^ if 
and only if cf) — ^ does. Thus the statement of Proposition 4.3.10 remains true if we 
replace the function ip by the function (j). 

Notation 4.3.12. — For a function 0: A^ —> M with the property that i\) — ^ can be 
extended to a continuous function on A^, we denote by || • the metric given by the 
correspondence in Proposition 4.3.10(2). It is the metric defined in (4.3.5) above. 

Corollary 4.3.13. — For any metric || • || on Lan; the function — ^\ is bounded. 

Proof. — Since we are assuming that E is complete, the space N% ~ A^(R>o) is 
compact. Thus the corollary follows from Proposition 4.3.10(1). • 

Proposition 4.3.14. — The correspondence (L, s) H> ̂  s satisfies the following prop­
erties. 

1. Let Li — (L^ || • \\i), i — 1, 2, be toric line bundles equipped with a metric and S{ 
a toric section of Li. Then 

||S(p)||=exp(V(val(p))). (L, s) H> ^ 
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2. Let L = (L, || • ||) be a toric line bundle equipped with a metric and s a toric 
section of L. Then 

WLO-1xs WL,S 

3. Let (L, s) be a toric line bundle and section, and (|| • ||z)/>i a sequence of metrics 
on L converging to a metric || • || with respect to the distance in (1.^.1). Then 
Ĥ-Hj converges uniformly to ip\\.\\. 

Proof — This follows easily from the definitions. • 

A consequence of Proposition 4.3.10(2) is that every toric line bundle has a distin­
guished toric metric. 

Proposition-Definition 4.3.15. — Let E be a complete fan, the corresponding toric 
variety, and L a toric line bundle on X^. Let s be a toric section of L and \£ the 
virtual support function on E associated to (L, s) by theorems 3.3.7 and 3 .3 .3 . The 
metric on Lan associated to the function ^ by Proposition 4.3.10(2) only depends on 
the structure of toric line bundle of L. This toric metric is called the canonical metric 
of Lan and is denoted || • ||can. We write Lcan = (L, || • ||can). 

Proof — Let s' be another toric section of L. Then there is an element m £ M such 
that s' = xms- The corresponding virtual support function is ^' = ^ — m. Denote 
by || • || and || • ||; the metrics associated to s , ^ and to s', respectively. Then 

\\s(p)\\'= \\x-rnsf(p)\\ (m+*,)(val(p)) e^(val(p)) ll«(p)ll-

Thus both metrics agree. 

The canonical metrics || • ||can in examples 1 .3.11 and 1.4.4 are particular cases of 
the canonical metric of Proposition-Definition 4.3.15. 

Proposition 4.3.16. — The canonical metric is compatible with the tensor product of 
line bundles. 

1. Let Li, i = 1,2, be toric line bundles on X. Then L\ 0 L2 can ¿1 can L2 :an 

2. Let L be a toric line bundle on X. Then ] -can I can. O-1 

Proof. — This follows easily from the definitions. 

Next we describe the behaviour of the correspondence of Proposition 4.3.10(2) 
with respect to equivariant morphisms. We start with the case of orbits. Let E be 
a complete fan in Â  and \£ a virtual support function on E. Let L and s be the 
associated toric line bundle and toric section, and {m^v^y: a set of defining vectors 
of \£. Let a £ E and V(a) the corresponding closed subvariety. As in Proposition 
3.3.16, the restriction of L to V^(ct) is a toric line bundle. Since V(a) and div(s) may 
not intersect properly we can not restrict s directly to V(a). By contrast, Dty^1Jla = 
div(xm<Ts) intersects properly V(a) and we can restrict the section x™a s to V(a) to 
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obtain a toric section of 0(^(^-m<T)(CT)) — L \v{a)- Denote i\ V(a) —> the closed 
immersion. For short, we write sa = xm<Ts- Then 6*scr is a nowhere vanishing section 
on O(cr). Recall that V(a) has a structure of toric variety given by the fan E(cr) on 
N(a) (Proposition 3.2.1). The principal open subset of V(a) is the orbit O(a). 

Let || • || be a metric on Lan and write L = (L, || • ||). By the proof of Proposi­
tion 4.3.10, the function ^ S ~ 771(7 ~ S can ^e exlended to a continuous function 
on Na that we denote ipz s . 

Proposition 4.3.17. — The function L*s '• ^(<j)m ~^ ^ agrees with the restriction 

°f s ¿0 the subset N(a)^ of Na. 

Proof — The section s is nowhere vanishing on X^jCr. Therefore, the function 
gz s : X$n ^ M of dia gram (4.3.1) can be extended to a continuous function on 
X^a that we also denote g-^ s^. By the definition of the inverse image of a metric, 
there is a commutative diagram 

0 ( V r 
L Van 

9L* L,L* SA 
gL,s0 

R. 

We next prove the result in the Archimedean case. Let Ta be the torus correspond­
ing to the quotient lattice Af(<r), and S>a the compact subtorus of Tan. Denote by 
7TA: S —> Sa. Let /iHaar,a be that Haar measure of of total measure 1. Then 
MHaar,a = (7Ta)*/iHaar• The inclusion i satisfies that, for t G S and p G 0(cr)an then 
i(7Ta(t) • p) — t • i(p). Thus 

iog|k*s<r(p)llsff 
S0 

Gi*L,iso (t-p) d^Haar,a(*) 

s 
gL,so t • 6(p))d/iHaar(0 log| |^(.(p))| |s 

which implies the result. 
We next prove the statement in the non-Archimedean case. By propositions 4.1.6 

and 4.2.17, 

log || ̂  (p)!|so -9l*L,L*SC (#£(a)(p£(a)(p))) 

gL,so ( M p e ( * ( p ) ) ) ) log||sa(^(p))||s, 

which implies the result. 

Corollary 4.3.18. — Let L be a toric line bundle on X^ equipped with the canonical 
metric, a G S and t: V(o~) —» X^ the closed immersion. Then the restriction ¿*L is 
a toric line bundle equipped with the canonical metric. 
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Proof. — Choose a toric section s of L whose divisor meets V(a) properly. Let \£ 
be the corresponding virtual support function. The condition of proper intersection 
is equivalent to = 0. Then ^ extends to a continuous function \£ on Na and 
the restriction of ^ to N(a) is equal to ^(cr) (Proposition 3.3.14). Hence the result 
follows from Proposition 4.3.17. • 

We next study the case of an equivariant morphism whose image intersects the 
principal open subset. Let N{, E^, i = 1, 2, H, p and A be as in Proposition 4.1.8. Let 
^ 2 be a virtual support function on E2 and let \£i = This is a virtual support 
function on Ei. Let (Li,si) be the corresponding toric line bundles and sections. By 
Proposition 3.3.17 and Theorem 3.3.7, there is an isomorphism ip* HL2 — L\ that 
sends <p* HS2 to si. We use this isomorphism to identify them. The following result 
follows from Proposition 4.1.8 and is left to the reader. 

Proposition 4.3.19. — Let || • || be a toric metric on L|n and write L2 = (L2, || • ||), 

Lx = (Li,<^*jif || • ||). The equality ^1>Sl = V>r2,S2 oA holds-

The canonical metric is stable by inverse image under toric morphisms. The fol­
lowing result follows easily from the definitions. 

Corollary 4.3.20. — Assume furthermore thatp = xo and so the equivariant morphism 
(ppih = : AT^1 X^2 is a toric morphism. If L is a toric line bundle on XE2 
equipped with the canonical metric, then tp*HL is a toric line bundle equipped with the 
canonical metric. 

The inverse image of the canonical metric by an equivariant map does not need 
to be the canonical metric. In fact, the analogue of Example 3.7.11 in terms of 
metrics shows that many different metrics can be obtained as the inverse image of the 
canonical metric on the projective space. 

Example 4.3.21. — Let E be a complete fan in and XJ: the corresponding toric 
variety. Recall the description of the projective space Pr as a toric variety given in 
Example 3.1.3. Let H: N —̂  U be a linear map such that, for each a £ E there exist 
r £ EA^ with H(cr) C r. Let p £ FQ(K). Then we have an equivariant morphism 
(fp^H '• XY, —Pr. Consider the support function ^AR on EA? Then L^Ar = (9pr(l). 
Write L = p^HLtyAr, s = ^*5#s^ar and \£ = H"^Ar. Thus (L, s) = (L^,s#) . 

Set A = H + val(p) for the affine map. Let || • || be the metric on Lan induced 
by the canonical metric of 0(D^Ar )an and let ?/; be the function associated to it by 
Definition 4.3.5. By Proposition 4.3.19, I/J — A*ty&r. This is a piecewise affine concave 
function on iV]r with rec(^) = ^ that can be made explicit as follows. 

Let { e i , . . . , er} be the standard basis of Zr and {e^7,..., e^} the dual basis. Write 
m% = e( o H £ M and k = e2v(val(p)) £ R. Then 

^ = min{0, mi , . . . , rar}, ip — min{0, mi + Zi , . . . , rnr + lr}. 
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Proof. — This follows readily from the previous result together with Example 1.4.4 
in the Archimedean case and Example 1.3.11 in the non-Archimedean case and the 
fact that the inverse image of a semipositive metric is also semipositive. • 

The conclusion of Proposition 4.3.19 is not true for non toric metrics, because the 
averaging process in Definition 4.3.3 does not commute with inverse images by equiv­
ariant morphisms. Nevertheless, with the notations before Proposition 4.3.19, we 
can compute ^y;2 S2 ° A as an average over all equivariant morphisms associated with 
the affine map A. In the non-Archimedean case, this averaging process will be de­
scribed by a limit process on algebraic points of Xf£. Recall that the algebraic points 
of a Berkovich space are dense. Since Berkovich spaces are not necessary metriz-
able, in principle, one should approximate an arbitrary point by a net of algebraic 
points. Nevertheless, thanks to [Poil2, Theoreme 5.3], Berkovich spaces are of type 
Frechet-Uryshon, which implies that every point can be approximated by a sequence 
of algebraic points. 

The next result will be needed in the proof of Proposition 4.7.1. 

Proposition 4.3.24. — With the notations previous to Proposition 4-3.19, let || • || be a 
metric on L|n. 

1. Assume that K is Archimedean. Let p G XY2JO(K) and Put uo — val(p). Then, 
for u G NhR, 

Ì J H ( U 0 + H(u)) 

s2 
^tVff IMI M d№aar2W 

where S>2 is the compact subtorus of the torus associated to the lattice N2, and 
№aar,2 is the Haar measure ofS>2 of total volume 1. 

2. Assume that K is non-Archimedean. Let u$ G A/^A^Q and (Ç^GN be a sequence 
of points qi G v a l - 1 ^ ) H Xf^ al with lim^oo Qi = fe2 0 G(UQ). For each i G N, 
let K[ be a finite extension of K and qi G XY,2^{K[) a point over qi. We denote 
by II • IIK' the metric induced on the line bundle L2,K/ by base change. Then, for 
u G Ai?R; 

*l>\\-\\(uo + H{u)) 11m 
i—>oo Wqui,H[[Ki 

U 

Proof. — We first prove (1). Let q G A|n with val(g) = u. By definition, 

'§2 
^t2-PM (u) d/̂ Haaro h) 

f§2 §1 
qyt2.p.H. % • q) d/ihaari(£l)d/xhaar2 (¿2) 

where §̂  is the compact subtorus of the torus associated to the lattice N{, and /iHaar,? 
is the Haar measure of St of total volume 1, i = 1,2. Let QH • Ti —» T2 be the 
morphism of tori induced by the linear map H. Now we compute 

^*Yp.hII-I (¿1 • q) 9\\-\\{ipt2-p,H (t1 ·q)) ' 9\\-\\{h • Qh [ti) Y(t1 ·q)) 
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We want to characterize all the functions that can be obtained with a slight gener­
alization of the previous construction. In this case we will use the function <f> instead 
of ip. 

Proposition 4.3.22. — Assume that the absolute value of K is either Archimedean or 
associated to a discrete valuation. Let E be a complete fan in N and \I/ a support 
function on E . Write L = L^ and s = sy. Let <j>: AR —>• R a piecewise affine concave 
function with rec((/>) = that has an H-representation 

4> min 
z=0,...,r 

m + Li] 

with rrii G Mq and U G R in the Archimedean case and U G Q in the non-Archimedean 
case. Then there is an equivariant morphism (p: —> Pr, an integer e > 0 and an 
isomorphism L®e ~ <p*0(l) such that the metric || • || induced on Lan by the canonical 
metric of 0(l)an satisfies 0||.|| = (j). 

Proof. — First observe that the condition li G R in the Archimedean case and U G Q 
in the non-Archimedean case is equivalent to the condition li G Q valj^(ATx). Let 
e > 0 be an integer such that enrii G M and ek G valx(A^x) for i = 0 , . . . , r. 

Consider the linear map H: AR —>• Rr given by H(u) = (errii(u) — emo(^))i=i,...,r 
and the affine map A — H + I with I = (e/̂  — e/o)i=i,...,r- By Lemma 2.5.22, 

еф — Л*Фдг + erriQ + e/o-

For each cr G E , we claim that there exists cr^ G EA^ such that i^(cr) C &iQ. Indeed, 
ty(u) = mmi{mi(u)}. Since ^ is a support function on E , for each a G E , there exists 
an ZQ such that = rrii0(u) for all ^ G a. Writing = 0, this condition implies 

min 
0<t<r 

eiv H(u))} eio H{u) for all u G cr. 

Hence, H(cr) C ai0, where ai0 G EA^ is the cone {v\mmo<i<r{e^(v)} = (v)} and 
the claim is proved. 

Therefore, we can apply Theorem 3.2.4 and given a point p G ¥r(K) such that 
val^Cp) = ,̂ there is an equivariant map ^P:H'- X^ —> Pr. By Example 3.4.8, 
there is an isomorphism L®E c± ̂ ,#-(9(1) and a £ KX with val^(a) = IQ such that 
(a~1x~rn°s)<S)e corresponds to (f^H(s^Ar). 

Let L be the line bundle L equipped with the metric induced by the above isomor­
phism and the canonical metric of 0(l)an. Then 

^L,s =<fe,a-iX-m°s+mo"f/o 
1 

e 
4*^A- +m0 + /0 = 0, 

as stated. 

Corollary 4.3.23. — Let (j) be as in Proposition 4-3.22 and ip — (J)\K- Then the metric 
|| • Ĥ , 25 semipositive. 
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Consider the morphism of compact tori g: § 2 x Si —» § 2 given by £ ( ¿ 2 ^ 1 ) = 
¿ 2 • QH(ti)- The measure £>*(̂ Haar,i x №aar,2) is an invariant measure on § 2 of total 
volume 1. Thus agrees with /XHaar,2- Hence 

S2 s1 
0||-||(*2 • qhih, (pPìH{q)) d/ÌHaan (¿l) d/iHaar2 ( ¿ 2 ) 

$2 
#11.11 ( ¿ 2 • <̂ p,ff (9)) d№aar2fe) 

Since val((^p #(#)) = + H(u), we obtain, 

§2 
fl'll-llC^ • <Pp,iî(g))d/iHaar2(C2) -0||.||(wo + H(u)) 

proving the result. 
Next we prove (2). In view of Proposition 4.3.8, it is enough to treat the case when 

K is algebraically closed and hence K[ = K and qi = qi- Then, by definitions 4.3.5 
and 4.3.3, 

lim 
i--oo Vìi, н IMI (и) lim G 

i—>oo К . н INI (ÖSl(e(«))) = - lim 
i--oo 

g||fd K , / f f e (eW))) 

Identifying Js2,o with T 2 and denoting by x0 the distinguished point of Xj22,o(K), 
we obtain, using 4.2.4(1) 

^ , / / ( 0 2 ! (e(u))) & • <Aro,#(0£i(eM)) & * ̂ xn.i/(fe1 (e(u))). 

By Corollary 4.2.19, the point v?x0,#(#£i (e(^))) is peaked. Thus, by Proposi­
tion 4.2.4(4), 

lim 
2—>00 

011-11 № *<Рх0,н :öSl(e(«)))) 0H-II (0£2(e(uo))) ^x0,^(fe1(e(?i))) 

By propositions 4.2.13 and 4.1.8 

fe2(e(tx0)) ^о,я(ОЕ!(е(гх))) = 0 E 2 ( e ( V PE2(^x0,if(fe1(e(u))))) 

fe2(e(u0) ^0,if(e(^))) 9E2(e(w0 + % ) ) ) . 
Therefore 

lirr 
i—>-oo Yqi, H|| 

(u) - 5 | | . | f e ( e S T % ) ) ) ) ip\\.\\ {u0 + H(u)), 

proving the result. 

4.4. Smooth metrics and their associated measures 

We now discuss the relationship between semipositivity of smooth metrics and 
concavity of the associated function in the Archimedean case. Moreover we will 
determine the associated measure. 

We keep the notation at the beginning of the chapter but we restrict to the case 
when K is either R or C and E is a complete fan. Let ^ be a virtual support function 
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on E, with L and s the corresponding toric line bundle and section. Let Lan be the 
analytic line bundle on Xf,n associated to L. 

Proposition 4.4.1. — Let ||• || be a smooth toric metric on Lan. Then || • || is semipositive 
if and only if the function I/J = ^ .y is concave. 

Proof. — Since the condition of being semipositive is closed, it is enough to check 
it in the open set X$n. We choose an integral basis of M = 7VV. This determines 
isomorphisms 

Xan ~ (CX)R\ Х0(Ш>о) ^ (R>o) n , Nc ~ С™, iVR ~ Rn. 

Let zi,..., zn be the coordinates of XQ11 and u\,..., un the coordinates of deter­
mined by these isomorphisms. With these coordinates, the map 

val:Xan-^7VM 

is given by 

val(2i, ...,zn) - 1 
2 

(log(zi2i), \og{znzn)) 

As usual, we set L = (L, || • ||) and 9 ~ 9~i s — — log Then the integral valued 
first Chern class is given by 

1 
2iri ci (L) - 1 

ni 
ddg i 

7T 
k,l 

d29 
dzkdzi dzk A dzi (4.4.1) 

The standard orientation of the unit disk D C C is given by dx A dy = (i/2) dz A dz. 
Hence, the metric of L is semipositive if and only if the matrix G = (dzkdzi )fc^ *s 
semi-positive definite. Since 

d2g 
dzkdzi 

- 1 
±zkzi 

d2ib 
dukdui 

(4.4.2) 

if we write Hess(t/;) = ( ^ - ) m and ^ = diag((2z1)-1,..., {2zn)~1), then G = 
— Zl Hess(^)Z. Therefore G is semi-positive definite if and only if Hess^) is semi-
negative definite, hence, if and only if ip is concave. • 

Proposition 4.4.2. — Let || • || be a smooth metric on Lan. Then || • ||§ is also smooth. 
Moreover, if || • || is semipositive, then || • ||§ 25 semipositive too. 

Proof. — The first statement follows from the definition of || • ||§ and the preservation 
of smoothness under integration of log \\sa|| along the compact subsets E>-p for p £ Aan, 
(J £ E. 

For the second statement, we have 

ci(L,| |- | |s) 
s 

t*ci(L, II |)d/iHaar(*) 

where t* denotes the inverse image under the multiplication map t: X^1 —>> Xf;n. 
Therefore, if (L, || • ||) is semipositive, then (L, || • ||§) is semipositive too. • 
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As a direct consequence of propositions 4.4.2 and 4.4.1, if the line bundle Lan admits 
a semipositive smooth metric, then its virtual support function ^ is concave. By 
Proposition 3.4.1(1), this latter condition is equivalent to the fact that L is generated 
by global sections. 

For a semipositive smooth toric metric || • || on Lan, we can characterize the as­
sociated measure on XAN in terms of the Monge-Ampere measure of the concave 
function ^||.||. 

Definition 4.4.3. — Let ip: A^ —> M be a concave function and MMW the Monge-
Ampere measure associated to I/J and the lattice M. We denote by A4M(^P) the 
measure on given by 

MM(il>)(E)=MM{il)) (EnNR) 

for any Borel subset E of N^. We will use the same notation for the mixed Monge-
Ampere measure. 

By its very definition, the measure is bounded with total mass 

MM(II>)(NS) = vow (ДФ) 

and the set Afe \ Ajr has measure zero. 

Theorem 4.4.4. — Let || • || be a semipositive smooth toric metric on Lan. Let Ci(L)An A 
Sx^ be the measure defined by L. Then, 

v a l . ( C l ( L ) A " A ^ E ) = п\Мм{Ф), (4.4.3) 

where val is the map in the diagram (4.1.7). In addition, this measure is uniquely 
characterized by the equation (4.4.3) and the property of being ^-invariant. 

Proof. — Since the measure ci(L)An A Sx^ is given by a smooth volume form and 
X^N \XQU is a set of Lebesgue measure zero, the measure ci(L)An Aôx^ is determined 
by its restriction to the dense open subset X^N. Thus, to prove (4.4.3) it is enough to 
show that 

vaU(Cl(L)An Sxv\x*n) п\Мм(Ф)- (4.4.4) 
We use the coordinate system of the proof of Proposition 4.4.1. We denote by 

e: Ac -> Aq(C) the map induced by the morphism С —» CX given by z exp(—z). 
We write Uk + ivk for the complex coordinates of Ac- Then 

—* e dzk A dzk 
ZkZk (-2i)duk A dvk. (4.4.5) 

Using now the equations (4.4.1), (4.4.2) and (4.4.5), we obtain that 

1 
(2<iri)n 

e* Cl L An —* 
e 

in 
7ГП 

n! det(G)dzi Л dzi Л \ dzn Л dzn 

-1)П 

[2пУ п det(Hess(^)) àu\ Л d^i Л Л du а Л dvn. 
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Since the map val is the composition of e_1 with the projection Nç —» A^, integrating 
with respect to the variables v\,... ,vn in the domain [0, 27r]n, taking into account the 
natural orientation of CN and the orientation of 7VR given by the coordinate system, 
and the fact that the normalization factor l/(27rz)n is implicit in the current £vs, we 
obtain 

va l* (Cl (L )A-A^EUr) : ( - l )nn! det(HessO)) dui A • • • A dun. 

Thus the equation (4.4.4) follows from Proposition 2 .7 .3 . Finally, the last statement 
follows from the fact that, in a compact Abelian group there is a unique Haar measure 
with fixed total volume. • 

We end this section by making explicit the compatibility of the previous construc­
tions with the conjugation in the case of toric varieties over R. Let S be a fan in A/R, 
and XY,R and A^,c the corresponding toric varieties over R and C . Recall that the 
underlying complex analytic spaces of Xf;nc and Xf,nM agree (see Remark 1.1.5) and 
are denoted by Xf.11. 

Proposition 4.4.5. — Let £ be a complete fan and Xf;11 —>• Xff1 the anti-linear 
involution of Remark 1.1.5. 

1. There are commutative diagrams 

x - C X -

pE pE 

^ e ( R > o ) , 

x - pE Xan 

val 
val 

XE. 

2. Let LR be a line bundle on Xe,ir and Lc the line bundle over X ^ c obtained 
by base change. The assignment that to each metric || • ||R on L^> associates 
the metric || • ||c on Lc given by forgetting the anti-linear involution, induces a 
bijection between the set of toric metrics on LR and the set of toric metrics on 
Lc- Moreover ^||.yc = ||r. 

Proof. — We first prove (1) . The first commutativity follows from the invariance of 
the absolute value under complex conjugation and the second follows from the first 
and the commutativity of diagram (4.1.7). 

To prove (2) we have to show that, if || • || is a toric metric on Lc, then it is 
compatible with complex conjugation. That is, if s a toric section of Lc defined over 
R and p G Xq11, then = Since the fibres of are orbits under S, by 
(1) , there is an element t G S such that $(p) = t(p). Since the metric is toric 

I I « ( Ç ( P ) ) I I = N * ( P ) ) I I = I I * ( P ) I I 

The last assertion is clear because the definitions of ip\\.\\c and ^Hlk agree. 
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4.5. Algebraic metrics from toric models 

Next we study some properties of algebraic metrics with particular emphasis on 
the ones that arise from toric models. We keep the notation at the beginning of 
the chapter and we assume that K is a complete field with respect to an absolute 
value associated to a nontrivial discrete valuation. We also assume that the fan E is 
complete. 

Since we will discuss the relationship between metrics and algebraic models it is 
preferable to work with the functions (j) of Definition 4.3.6 instead of the functions of 
Definition 4.3.5. 

We begin by studying the relationship between the maps val^ and red. 

Lemma 4.5.1. — Let U be a complete scr polyhedral complex of such that 
rec(II) = E. Let X :— XJJ be the model of determined by U. Let A £ II and 
p £ Xq11. Then ied(p) £ X\ if and only if YQ!K{p) £ A. 

Proof. — By the definition of the semigroup MA, the condition val^(p) £ A holds if 
and only if (m, val^(p))+/ > 0 for all (ra, I) £ M\. This is equivalent to log |x~m(p)l + 
log > 0 for all (ra, /) £ M\. In turn, this is equivalent to \xm{p)wl\ < 1? f°r an 

(ra,/) £ M\. Hence, val^(p) £ A if and only if \a(p)\ < 1 for all a £ K°[XA], which 
is exactly the condition red(p) £ XA (see (1.3.1)). • 

Corollary 4.5.2. — With the same hypothesis as in Lemma 4-5.1, red(p) £ 0(A) if 
and only z/val/<:(p) £ ri(A). 

Proof — This follows from Lemma 4.5.1 and the fact that the special fibre is 

XA,0 

A' face of A 
O(A'), 

and ri(A) = A A/ proper face of A A. 

Let ^ be a virtual support function on E and (L, s) the corresponding toric line 
bundle and section. We denote by Lan the analytic line bundle on Agn associated to 
L. Let n be a complete SCR polyhedral complex in such that rec(n) = E and (j) 
a rational piecewise affine function on n with rec(0) = \£'. Let e > 0 be an integer 
such that e<fi is an H-lattice function. By Theorem 3.6.8, the pair (n, e<j>) determines a 
toric model (An, £e^, e) of (AT ,̂ L). We will write C — Ce(^ for short. Definition 1.3.5 
gives us an algebraic metric || • \\c on Lan. The following proposition closes the circle. 

Proposition 4.5.3. — The algebraic metric || • ||£ is toric and the equality (f>\\.\\c = (p 
holds. The function (j) — \£ extends to a continuous function on and the metric 
|| • \\(f)XK associated to (J)\K (Notation 4-3.12) agrees with || • \\c-

Proof. — The tensor product s®e defines a rational section of C. Let A £ n and 

choose m A £ M, I A £ Z such that ecf)\A = m A + ZA|A- Let u £ A and p £ X$n with 
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u — val^(p). Then red(p) £ X \ . But in X\ the section xm'a^las®e is regular and 
non-vanishing. Therefore, by Definition 1.3.5, 

\\xmA(pWAs*e(p)\\c = l-

Thus 
1 

Ak 
log||s(p)|U 

1 
e\K 

loglx' -mA p)w -I A ! 1 

e 
((mAìu) + /л) = ФЫ), 

which shows that the metric is toric. Moreover, 

h-\\Au) 
1 

Ak 
log \\s(p)\\c = Ф(и), 

and therefore, (ft agrees with the function associated to the metric || • ||£. By Propo­
sition 4.3.10(1), and Remark 4.3.11, (ft — ^ extends to a continuous function on Afe 
and the metric || • ||^ak agrees with \\ - \\c- D 

Example 4.5.4. — In the non-Archimedean case, the canonical metric of Proposi­
tion-Definition 4.3.15 is the toric algebraic metric induced by the canonical model of 
Definition 3.6.3. 

Proposition 4.5.3 imposes a necessary condition for a rational piecewise affine func­
tion to determine a model of (Afe, L^). 

Corollary 4.5.5. — Let ^ be a virtual support function on E and (ft a rational piece-
wise affine function on N^7 with rec(</>) = \£, such that there exists a complete SCR 
polyhedral complex IT with rec(II) = E and (ft piecewise affine on II. Then (ft — ^ can 
be extended to a continuous function on Afe. 

Proof. — If there exists such a SCR polyhedral complex II, then II and (ft determine 
a model of O(D^) and hence an algebraic metric || • || arising from a toric model. 
By Proposition 4.5.3, (ft = (ft\\.\\ and, by Proposition 4.3.10(1), the function (ft\\.\\ — ^ 
extends to a continuous function on Afe. • 

Example 4.5.6. — Let N — I? and consider the fan E generated by the vectors 
e 0 = ( - 1 , - 1 ) , ei - (1,0) and e 2 = (0,1). Then AE = P 2 . The virtual support 
function ^ = 0 corresponds to the trivial line bundle Of>2. Consider the function 

<t){x,y) 

0 if x < 0, 

x if 0 < x < 1, 

1 ifl<x. 

Then rec(0) = ^ , but (ft does not extend to a continuous function on Afe and therefore 
it does not determine a model of (X^^O^). By contrast, let E' be the fan obtained 
subdividing E by adding the edge corresponding to e' = (0, — 1). Then IT: Afe/ Afe 
is isomorphic to a blow-up of P 2 at one point. The function (ft extends to a continuous 
function on Afe/ and it corresponds to a toric model of (X%>, TT^O^). 
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Question 4.5.7. — Is the condition in Corollary 4.5.5 also sufficient? In other words, 
let TV, E and ^ be as before and <fi a rational piecewise affine function on A% such 
that (j) — ^ can be extended to a continuous function on N%. Does it exist a complete 
SCR polyhedral complex II such that rec(II) = E and (j) is piecewise affine on II? 

Remark 4.5.8. — By the proof of Theorem 3.7.3 and Corollary 4.5.5, when 0 is a 
piecewise affine concave function, the conditions 

1. |0 — ^ | is bounded; 

2. (j) — ^! can be extended to a continuous function on A^; 

3. there exist a complete SCR polyhedral complex II with rec(II) = E and (j) 
piecewise affine on II; 

are equivalent. In particular, the answer to the above question is positive when 0 is 
concave. 

Corollary 4.5.9. — Let E be a complete fan and ^ a support function on E. Let <fi be 
a rational piecewise affine concave function on with rec(0) = ^ . Then the metric 
|| • \\cf)XK is algebraic and has a semipositive toric model 

Proof — By Theorem 3.7.3, the concave function <\> determines an equivalence class 
of semipositive toric models of (Xs,L). Any toric model in this class defines an 
algebraic metric on Lan. By Proposition 1.3.6, this metric only depends on <fi and we 
denote it by || • ||. Proposition 4.5.3 implies that || • ||</>Ak — || * ||, hence this metric is 
given by a semipositive toric model. • 

We have seen that rational piecewise affine functions give rise to toric algebraic 
metrics. We now study the converse. In fact this converse is more general, in the 
sense that any algebraic metric determines a rational piecewise affine function. 

Theorem 4.5.10. — Let E be a complete fan, ^ a virtual support function on E and 
(L, s) the corresponding toric line bundle and section. Let || • || be an algebraic metric 
on Lan. 

1. The function is rational piecewise affine. 

2. If || • || is toric and is concave, then this metric has a semipositive toric 
model. 

Before proving the theorem, we introduce a variant of the function <p for ratio­
nal functions. Let g be a rational function on X%. Then we consider the function 
(j)g: —> R defined, for u G A^, as 

<t>g(u) \og\goQ QoeK(u)\ 
AK 

where OQ is defined in Proposition-Definition 4.2.12 and in (4.1.4). 
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Lemma 4.5.11. — Let g be a rational function on Afe. Then the function <f>g is an 
H-lattice function (Definition 2.6.6). In particular, it is piecewise affine. 

Proof. — The function g can be written as g mEM am Xm 
mEM Bm Xm 

Then 

(j)g(u) 
1 

AK 
log|#o6>n oeK(u)\ 

1 
AK 

log 
meM 

arnxM (00oeK(u)] a 
AK 

log 
тем 

PmXm (0o°eK(u)) 

max 
meM 

log|am| 
AK 

(ra, u) max 
meM 

log|^m| 
AK 

(m, u) 

max 
meM 

-valK (am) - (ra, u) max 
meM 

-valKWm) - (m,u) 

mm 
meM 

'(m,u) +valK ((3m min 
meM 

(m,u) + valK(am)) 

Thus, it is the difference of two H-lattice concave functions. 

Proof of Theorem 4-5.10. — Since the metric is algebraic, there exist a proper K°-
scheme X and a line bundle C on X such that the base change of (X, C) to K is 
isomorphic to (Afe, L®e). Let {ZYZ, bea trivialization of C. Let C{ = ied~1(UinX0). 
The subsets Ci form a finite closed cover of Aff1. On U{ we can write s^e = gisi for 
a certain rational function gi. Therefore, on d, we have log \\s*{p)\\ = lQg|^(p)l. By 
Lemma 4.5.11, it follows that there is a finite closed cover of AR and the restriction 
of 0||.|| to each of these closed subsets is rational piecewise affine. Therefore 0||.|| is 
rational piecewise affine. This proves (1). 

We now prove the statement (2). By (1) and Proposition 4.3.10(1), the concave 
function 0||.|| is rational piecewise affine with recession function equal to ^ . Since 
|| • || is toric, Proposition 4.3.10(2) implies that it agrees with the metric associated 
to 4>\\.\\\K- The statement then follows from Corollary 4 .5 .9 . • 

We now study the effect of taking a field extension. 

Proposition 4.5.12. — Let I] be a complete fan in A% and U a complete SCR polyhedral 
complex in with E = rec(II). Let IT be the polyhedral complex in A^ obtained from 
II by applying a hom,othety of ratio e^ux- Then 

XYI '.K10 Nor(^n,k° x Spec(A~'°))' 

where Nor denotes the normalization of a scheme. 

Proof. — The statement can be checked locally. Let A be a polyhedron of II. Let 
A! — CK'/KA. Then it is clear that 

K° [XA] 
K° 

K'° K'° [XK.\ 
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Since the right-hand side ring is integrally closed, the integral closure of the left side 
ring is contained in the right side ring. Therefore we need to prove that K'[M\'\ is 
integral over the left side ring. Let (a,/) E MA' . Thus (eK>yKaJ) £ MA.- Then the 
monomial ^vo'1 E K'°[X\'\ satisfies 

{xa™'l)eK'/K (хек'/каъ>1) E K°[XA] K'° 

Hence xa^j/l is integral over AT°[AA] 0 K'°. Since these monomials generate K'°[X\'], 
we obtain the result. • 

4.6. The one-dimensional case 

We now study in detail the non-Archimedean one-dimensional case. Besides being 
a concrete example of the relationship between functions, models, algebraic metrics, 
and measures, it is also a crucial step in the proof that a toric metric is semipositive 
if and only if the corresponding function is concave. Of this equivalence, up to now 
we have proved only one implication and the reverse implication will be proved in the 
next section. 

The only one-dimensional proper toric variety over a field is the projective line. 
Algebraic metrics over this toric variety come from integral models of line bundles. 
We will describe these in detail. The first part of this section dissects models of the 
projective line itself, while the second part turns to models of line bundles and metrics. 
A good reference for curves over local rings or more generally over Dedekind domains 
is the book [Liu02], where the reader can find most of the results that we need. 

Let if be a field which is complete with respect to an absolute value associated to 
a nontrivial discrete valuation. We will use the notation in §1.2. In particular, K° 
denotes the valuation ring of K. 

Definition 4.6.1. — Let X be an integral projective curve over K. A semi-stable 
model of X is an integral projective scheme X of finite type over Spec(K°) with an 
isomorphism X —> X^, such that the special fibre XQl after extension of scalars to the 
algebraic closure of the residue field, is reduced and its singular points are ordinary 
double points. We will say that the model is regular if the scheme X is regular. 

This definition is the specialization of [Liu06, Definition 2.1] to models of curves 
over a DVR. Note that a semi-stable model as in Definition 4.6.1 is a semi-stable 
curve over Spec(iC0) in the sense of [Liu02, Definition 10.3.14] because, by [Liu02, 
Proposition 4.3.9] the hypothesis on X imply that it is flat over Spec(.A0). 

To a semi-stable model whose special fibre has split double points, we can as­
sociate the dual graph of the special fibre. This graph contains one vertex for 
each irreducible component of the special fibre and one edge for each double point, 
see [Liu02, Definition 10.3.17]. 
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We will use the following result to eventually reduce any integral model of to 
a simpler form. 

Proposition 4.6.2. — Let X be a projective model over K° ofF^. Then there exists a 
finite extension K' of K with valuation ring K'°, a regular semi-stable model X' of 
P^/? and a proper morphism of models X' —>> X x Spec(AT/0). 

Proof. — The existence of the finite extension K' and a semi-stable model dominating 
X x Spec(K/0) is guaranteed by [Liu06, Corollary 2.8]. Then [Liu06, Proposition 2.7] 
implies the existence of a regular semi-stable model dominating X x Spec(Kf°). • 

Consider the toric variety ~ P1. We can choose an isomorphism N ~ Z and 
NR ~ R. Then E = {R_, {0},R+}. Let 0 denote the invariant point of P^ corre­
sponding to the cone R+ and oo the invariant point corresponding to the cone R_. 

Let X be a regular semi-stable model of P^. We will assume that all the com­
ponents and double points of the special fibre are defined over the residue field 
k = K°/K°° and that each irreducible component contains a rational point. Since 
the generic fibre X^ ~ P^ is connected and of genus zero, by [Liu02, Lemma 10.3.18], 
we deduce that all components of the special fibre are rational curves and that its 
dual graph is a tree. Let DQ and denote the horizontal divisors corresponding 
to the point 0 and oo of P^. Then, there is a chain of rational curves that links 
the divisor DQ with and that is contained in the special fibre. We will denote 
the irreducible components of the special fibre that form this chain by EQ, ..., Ei, in 
such a way that the component E0 meets D0, the component E\ meets and, for 
0 < i < /, the component Ei meets only Ei-\ and i^+i- The other components of 
XQ will be grouped in branches, each branch has its root in one of the components 
Ei. We will denote by Fij, j G 0^ the components that belong to a branch with root 
in Ei. We are not giving any particular order to the sets 0^. 

We denote by E • F the intersection product of two 1-cycles of X. Since the special 
fibre is reduced, we have 

div(tu) 
l 

i=0 
Ei 

jEOi 
Fi,j. 

Again by the assumption of semi-stability, the intersection product of two different 
components of XQ is either 1, if they meet, or zero, if they do not meet. Since the 
intersection product of div(^7) with any component of XQ is zero, we deduce that, 
if E is any component of XQ, the self-intersection product E • E is equal to minus 
the number of components that meet E. In particular, all components Fij that are 
terminal, are ( —l)-curves. By Castelnuovo's criterion [Liu02, Theorem 9.3.8], we can 
successively blow-down all the components Fzj to obtain a new regular semi-stable 
model of P^ whose special fibre consist of a chain of rational curves. For reasons that 
will become apparent later, we denote this model as A§. 
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Lemma 4,6.3. — If we view x1 as a rational function on X, then there is an integer 
a such that 

divfr1) D0 - Doo 
1 

¿=0 

(a — i Ei 

jEO 

F i,j. 

Proof — It is clear that 

div(x1) = D0~Doo 
I 

i=0 
a%E% 

jeet 

ai,jEi:j 

for certain coefficients ai and dij that we want to determine as much as possible. 
If a component F of AQ, with coefficient a, does not meet Do nor £*oo> but meets 

r > 1 other components, and the coefficients of r — 1 of these components are equal 
to a, while the coefficient of the remaining component is 6, we obtain that 

0 = div(x1) - F = aF - F + a(r - 1) + b = -ra + a(r -l) + b = b-a 

Thus b = a. Starting with the components Fij that are terminal, we deduce that, for 
all i and j G Bn = a^j. Therefore, 

divix1) = D0 - Doo 
I 

1=0 

Q>i\ Ei 

jEOi 

F1 1,3 

In particular, the lemma is proved for I = 0. Assume now that I > 0. 
It only remains to show that ai = ao — i, that we prove by induction. For i — 1, 

we compute 

0 = dW(x1) En = Do - EQ + ÜQEO • Eo + ao 

jee0 

Foi3 • Eo + aiEi • E0 = 1 - a0 + ai. 

Thus ai — ao — 1. For 1 < i < I, by induction hypothesis, G^_I = ai-2 — 1. Then 

0 - d i v ( x 1 ) Ei-i = ai-2 — 2аг_1 + аг 1 - a2_i + a*. 

Hence ai = a^_i — 1. Applying again the induction hypothesis, we deduce ai — ao — i, 
proving the lemma. • 

The determination of div(x1) allows us to give a partial description of the map 
red: X^1 —> XQ. The points of XQ appearing in this description, are the points 
qo :— Do H Eo, qx := £"¿-1 H ^ , i = 1 , . . . J , qi+i := E\ D D ^ and the generic points 
of the components Ei that we denote 77̂ , i = 0 , . . . , /. 

Lemma 4.6.4. — Let p e Xff1. Then 

red(p) 

<7o if\X\ - 1 In/!0 

qi Z /M«"1 +i Ix1^)! \w\a'1 

Qi+i if\w\-1 \X \P)\ 

Ni if\xl(p)\ \vj\a~l and p G im(ös). 
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Proof. — Let 1 < i < I. The rational function x := x1^7_a+z nas a zero of order 
one along the component Ei-\ and the support of its divisor does not contain the 
component Ei. On the other hand, the rational function y := \~l^a~l+1 has a zero 
of order one along the component Et and the support of its divisor does not contain 
the component E%^\. Thus {#, y} is a system of parameters in a neighbourhood of q%. 
We denote 

A = K°[Xlvj-a+\ X-1 wa-i+1] K°[x,y]/{xy - w) 

The local ring at the point qt is A(XAJy Let p be a point such that |tz7|°~z+1 < 
Ix1^)! < |tn|a~\ Therefore, for / G A we have < 1. Moreover, if / G (x,y), 
then < 1. Since the ideal (x,y) is maximal, we deduce that, for / G A, the 
condition \f{p)\ < 1 is equivalent to the condition / G (x,y). This implies that 
red(p) = qz. A similar argument works for q$ and qi+\. 

Assume now that p G im(#£) and that = |ti7|a~\ If i ^ 0 we consider again 
the ring A, but in this case \x{p)\ = \xl(p)™~a+i\ = 1- Let I = {f e A \ \f(p)\ < 1}. 
It is clear that (y,m) C I. For / = Ylmez l^mXm £ A since p G im(^^), we have 

\f(p)\ =sup(!/3„,||y1(»)|m). 
m 

This implies that / C (y, zu). Hence I is the ideal that defines the component Ei and 
this is equivalent to red(p) = rji. The case i = 0 is analogous. • 

The image by red of the remaining points of Agn is not characterized only by the 
value of |x1 (p)|- Using a proof similar to that of the lemma, one can show that, if 
I x H p ) ! = \zu\a~l then red(p) belongs either to Et or to any of the components Fzj, 

./ e (-),. 
We denote by £2- (respectively the point of A^n associated by Proposition 1.3.3 

to the component Ej (respectively F%j). These points satisfy red(^) = 7]t and 
red(^ij) — riij, where rjij is the generic point of Fij. 

Lemma 4.6.5. — Let 0 < i < I. Then, for every j G 0?, 

valx(^) = valK(^,7) = a - h 

where a is the integer of Lemma 4-6.3. Furthermore, for j G 0* we have 

& = 0s (PS (&)) 0s(/>s(&¿))-

Proof. — We consider the rational function w~aJr%xl- Since the support of 
div(n7~0+?x1) d°es n°t contain the component E7 nor any of the components 
Fiji we have 

K - A + V ( 6 ) L 
\vj~a+iXX (Ei, j)| 1. 
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Then, using (4.1.2) we deduce 

vaU(&) - log lx1^) 
XK 

-log\wa -l\ 
-log M 

- a — i 

and similarly with which proves the first part of the statement. 
From these equalities and the definitions (4.1.1) and 4.2.12 of the maps 0^ and pE 

the point 0e(pe(&)) G X^1 is the multiplicative seminorm 

тем 
&mX max 

meM 
<*mXm(Çi)\ W minmeM(valK(ttm) + (a-î)^) 

Bv Proposition 1.3.3, the point G X£n is the multiplicative semi-norm 

meM 

a&mX \w\ ordEi m£M arnX ) 

Using the same notations as in the proof of Lemma 4.6.4, any element / = 
EmeMamXm e A can be written / = Emez ^-^valK(^)+(a"2+1)m^"m where 
the /3m's are units in K°. Now, the ideal of definition of E{ is (y,uj) and there­
fore ordei(f) = niinmG^(valK(am) + (a — i)m). Thus, the point £2 coincide with 
0e(Pe(&))- This shows the equality ^ = 0e(pe(&))* The remaining equality follows 
then from the fact that ps(^,j) = №(£i), j ^ Bj, the image by depending only on 
the valuation val^(^) = valx(^,j)- This completes the proof of the statement. • 

Let now ^ be a virtual support function on E and L = O(D^) the associated 
toric line bundle on X%- Let e > 1 and C a line bundle on X which is a model over 
Spec(K°) of L®e. Let || • || be the metric on Lan given by the proper model (X,C,e) 
and the corresponding function on ~ M. 

Let mo, moo G M ~ Z such that 

Ф(гл) moo u if u < 0, 
'm, Q a iîu > 0. 

Then the divisor of the toric section is given by div(s^) = — mo[0] + m ^ o o ] , and 
so L ~ 0{mJO0 — mo). 

Let's now consider e as a rational section of C and denote by D its associated 
Cartier divisor, so that C ~ 0(D). Then 

D = -era0 A) + em^Doc 
z 

¿=0 

ai Ei 
jEOi 

ai,j Fi,h (4.6.1) 

for certain coefficients and o ^ . To have more compact formulae, we will use the 
conventions 

E-i = Do, a_i = — erriq. 0 - i = 0, 
Ei+i = Doo, OLl + i = emoo, 6,+i = 0. 

(4.6.2) 
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For example, the equation (4.6.1) can then be written as 

D 
l+1 

i=-l 
OLiE% -f 

jeSi 

ai,j Fi,j 

Lemma 4.6.6. — The function rftn.n is given by 

011-iiN 

rri()u — mod — — if u > a. 

{oùiJr\—oci)u — {ociJr\—Oii){a — i) — Oii 
e 

ifa — i>u>a — i — 1, 

rriooU - moo(a - I) - -r if a — I > u. 

In other words, if U is the polyhedral complex in given by the intervals 

(—oo, a — I], [a — i, a — i + 1] i = 1 , . . . , /, [a, oo), 

then 0||.|| is the rational piecewise affine function on U characterized by the conditions 

1. r e c ( 0 , M I ) = # , 

2. the value of at the point a — i is —o^/e. 

Proof. — Let p G im(fe) be such that val^(p) > a, hence Ix1^) ! < \w\a• By 
Lemma 4.6.4, this implies that red(p) = qo- In a neighbourhood of go, the divisor of 
X of the rational section sSeXem°^_ao_em°a is zero, and so 

ll4e(p)xemo(p)^"QO_emooll = i 

Let u G NR and p G im(6^) such that val^(p) = u. Then, by definitions 4.3.6 
and 4.3.3, 

h-\\(u) 
i o g | l 4 » l l 

e\K 

-em0 log |x (p) I + (a0 + em0a) log \zu\ 
—e log \zu\ 

- mo(u — a) 
a0 

e 

The other cases are proved in a similar way. 

Since rec(II) = E, by Theorem 3.5.3, this polyhedral complex defines a toric model 

Xu of XE. 

Proposition 4.6.7. — The identity map of extends to an isomorphism of models 

X§ -» Xu-
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Denote temporarily this measure by ¡1. Then, using the conventions (4.6.2) and 
Lemma 4.6.5, for I > 0, we obtain, 

(0E) . (PS)* / ¿ 
1 

e 

1 

i=0 

degr (ЕЛ 
jEOi 

degL (Finj) dei 

1 

e 

i 

i=0 
D • Ei 

.7 GO, 
D · Fi, j dEi 

1 

e 

i 

i=0 

l+l 

r=- l 
arEr 

sgor 
ar,s Fr,s Ei 

jE Oi 
F i,j dEi 

1 

e 

l 

¿=0 

аг-хЕГ-1 + агЕг + аг+1Ег+1 Ei 
jEOi 

F h* 

1 
e 

/-1 

i=l 
(ai-i - 2di + al+i)ö^% + 

1 

e i=0J 
(ai-i - аг + аг+!)осг, 

while, for / = 0, we obtain 

(fe)*(PE)*M = (a_i + ai)^0. 

In the previous computation we have used that, since Er-div(zo) = FriS-div(m) = 0, 
then, for all i, j , r, 5, 

Fr,s · (Ei + 
7 GO, 

/V. 
1 i,3 J 

-- 0 

and 

Er Ei 
jE Oi 

F 

0 if r 7̂  z — 1, i, i + 1, 
1 if r = i — 1,2+1, 
- 2 if 0 < r = i < /, 

- 1 if 0 < Z,r = i = 0,/ 
0 if r = i = I = 0. 

An analogous computation with the model (A§, 0(jD§), e) shows that 

ci(L, II • ||s) A(JXl 
1 

e 

l 

2 = 0 
deg(9(D§)(^*^)% 

1 

e 

l 

¿=0 

(J9§ • 7T*£^)% 

where the intersection product now is on X§. Using again the conventions (4.6.2) 

and (4.6.3), we get 

DS · n* Ei 
1+1 

r=-l 
ar(n*Er • 7T*Ei) 

ai-i - 2ax + cti+i if 0 < i < /, 

OLi-\ -CXi+ «¿+1 if 0 < l,i = 0,1. 

Ct'_l + Oil if 0 = 1,1 = 0. 
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Proof. — The special fibre of An is a chain of rational curves Eiy i = 0 , . . . , /, corre­
sponding to the points a — i. The monomial \ l is a section of the trivial line bundle on 
An and corresponds to the function (j){u) = —u. Using Proposition 3.6.10 we obtain 
that 

divfy1) = D n - D ™ 
I 

i=0 

(a - i)Ei, 

where Do and are again the horizontal divisors determined by the points 0 and oo. 
Since the vertices of the polyhedral complex II are integral, using the equa­

tion (3.6.2) we deduce that div(ru) is reduced. 
Then the result follows from [Lic68, Corollary 1.13] using an explicit description 

of the local rings at the points of the special fibre as in the proof of Lemma 4.6.4. • 

From Proposition 4.6.7, we obtain a proper morphism TT: X A§ ~ An- Set 
D§ = 7r*D with D the divisor on X in the equation (4.6.1). Then 

D§ = -era07r*D0 + ern^n^D^ 
i 

i=0 
ai n* Ei 

l +1 

i=-l 
CYi7T*Ei, (4.6.3) 

where in the last expression we use the conventions (4.6.2). 
Let De0|M| be the T-Cartier divisor on Xu determined by the function e0||.|| as 

in (3.6.1). Using equation (4.6.3), Proposition 3.6.10 and Lemma 4.6.6, we see that 
D§ = De0|M|. Thus (As, O(Dg)) is the toric model of (ATS, L®e) induced by (II, ecj)\\.\\) 
through Theorem 3.6.8 and Proposition 3.6.5. Let || • ||§ be the toric metric associated 
to || • || (Definition 4.3.3). By Propositions 4.5.3 and 4.3.10, the metric || • ||§ agrees 
with the toric metric defined by the model (A§, (9(D§), e). Thus, we have identified a 
toric model that corresponds to the metric || • ||§. This allows us to compute directly 
the associated measure. 

Lemma 4.6.8. — Let ~ be a one-dimensional toric variety over K and L c± 
O(D^) a toric line bundle on X^. Let || • || be an algebraic metric defined by a regular 
semi-stable model whose components and double points of the special fibre are defined 
over the residue field K° /K°° and such that each irreducible component contains a 
rational point. Let II • ||s the associated toric metric. Then 

d(LA\ - ||§) Aôx* •• (fe).(PE).(ci(L,M|)A<Jx=) ( ^ ) * ( e K ) * ( - 4 „ ) 

where the second derivative ^ is taken in the sense of distributions. 

Proof. — Let (A,£,e) be a regular semi-stable model defining the metric || • ||. Let 
D be the divisor on X defined by the rational section sfe, so that C ~ O(D). Since 
the special fibre is reduced, by the equation (1.3.6) we have 

ci(L,H|)A<SxE 
1 

e 

l 

2 = 0 

degc(Ei)5^ 

jEOi 

deg L (Fi,j) dei,j. 
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For I > 0, we obtain 

ci(L,||. | |s)A5xE 
1 

e 

i-i 

i=l 
(ai-1 - 2ai + ai+1) d Ei + 

1 

e 2 = 0,1 

( a i - i + (4.6.4) 

while, for / = 0, 

ci (L,|| • ||s) A 5XE 
1 

e 
[ex-i + ai)ôç0. (4.6.5) 

The first equality follows then by comparing equations (4.6.4) and (4.6.5) with the 
previous computation of (0£)*(ps)*p. 

For the second equality, Lemma 4.6.4 and the definition of ^ imply that & = 
#s(EK(a — i)). Hence 

(OE=*(eK)*(da-i) = eEi. 

The result follows from the explicit description of 0||.|| in Lemma 4.6.6 and the explicit 
description of ci(L, || • ||§) A given by (4.6.4) and (4.6.5). • 

Using Proposition 4.6.2, we can extend Lemma 4.6.8 to the case when the model 
is not semi-stable. 

Theorem 4.6.9. — Let — P^ be a one-dimensional toric variety over K. Let 
L ~ O(D^) be a toric line bundle, || • || an algebraic metric and || • ||§ the associated 
toric metric. Then 

ci(L, | | . | |S)A(SxE ( 0 E ) . ( P E ) . ( C I ( L , | | - | | ) A 5 X E ) (^E)*(EI<:)*(-0j|.||), 

where the second derivative ,. is taken in the sense of distributions. 

Proof — Let (X,C,e) be a proper model of (X^,L®e) that realizes the algebraic 
metric || • ||. For short, denote 

/x = ci(L,| | • II) A ôx^i ^ = ci(L, II • ||§) A 5X^ 

By Proposition 4.6.2, there is a finite extension K' of AT, a regular semi-stable model 
X' of XY,,K' and a proper morphism of models X' X x Spec(AT/0). We may further 
assume that all the components and the double points of the special fibre of X' are 
defined over K'°/Kf°° and that each irreducible component contains a rational point. 
Let (1/ , || • ||') be the metrized line bundle obtained by base change to K'. Using 
propositions 1.3.6 and 4.3.8, it is possible to show that the toric metric (|| • ||')§ agrees 
with the metric obtained from || • ||§ by base change. We denote by v. X^K, —>• X^K 
the map of analytic spaces and by / / , /ig, 0^ and //s the corresponding objects for 
Xx,K'- Then, by the propositions 1.4.7, 4.2.16 and 4.1.5 and the first equality in 
Lemma 4.6.8, 

Ps = ^*Ps = *M0E)*(PE)*M ^ (fe)*(P£)*p' (#s)*(ps)*p, 

which proves the first equality of the theorem. 
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Using the second equality in Lemma 4.6.8 and Proposition 4.2.16, we deduce that 

Ms = *̂Ms г /* (#Е)* (Е^)* ( - 4 II'. - (#£)*(exO*(-0||.||') (4.6.6) 

We have that, for u G NR 

eK'(u) = eK u 
v eKt/K ФпуЫ) ек'/кФ\\.\\ 

u 
eK'/k 

where the second equality follows from Proposition 4.3.8. Using these formulae, one 
can verify that 

(eK') (eK') 1 
eKt jK 

A||'||" (eK//K)*0||.||, 

where l 
ek' I k 

and eKf iK denote the corresponding homotheties of 7V .̂ This implies 

(eK')*(0||. | | '> (e/<:)*(0||.||) 

The second equality in the statement then follows from this equation together 
with (4.6.6). • 

We can now relate sernipositivity of the metric with concavity of the associated 
function in the one-dimensional case. 

Corollary 4.6.10. — Let — be a one-dimensional toric variety over K. Let 
(L, s) be a toric line bundle with a toric section and || • || a metric with a semipositive 
model. Then the function cj>\\.\\ is concave and, the toric metric || • ||§ has a semipositive 
model. 

Proof. — Since the metric || • || has a semipositive model, ci(L, || • ||) A Sx^ is a 
measure, and not just a signed measure. Theorem 4.6.9 implies that the direct image 
by (valx)*(#s)*(ex)* of this measure coincides with — Hence — </>j(.|| is also a 
measure and so 0||.|| is concave, proving the first statement. 

For the second statement, observe that 0||.||3 = By Proposition 4.3.10(1), the 
recession of this function agrees with ^ . Corollary 4.5.9 then implies that the metric 
II • ||§ has a semipositive toric model. • 

4.7. Algebraic metrics and their associated measures 

We come back to the setting of §4.5. We assume that K is a complete field with 
respect to an absolute value associated to a nontrivial discrete valuation and that E 
is a complete fan. Let ^ be a virtual support function on E and set (L, s) — (Ly, s^). 

Proposition 4.7.1. — Let || • || be a metric with a semipositive model on Lan. Then 
both functions ^||.|| and 01j.j| are concave. 
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Proof. — Assume that || • || has a semipositive model. Since the condition of being 
concave is closed, if we prove that, for all choices of u$ G XKNq and vo £ N primitive, 
the restriction of ^||.|| to the line UQ +M^O is concave, we will deduce that the function 

is concave. Fix uo G XKNq and VQ E N primitive and let e > 1 such that 
euQ G XKN. Then K' := K(w1^e) is a finite extension of K and there is a unique 
extension of the absolute value of K to K'. We will denote with ' the objects obtained 
by base change to K'. 

We consider the affine map A: Z —> N given by I h-> euo + Ivo, and let H be the 
linear part of A By Theorem 1.2.2(6), the subset of X^K, of algebraic points is dense. 
By [Poil2, Theoreme 5.3], we can choose a sequence K[, i G N, of finite extensions 
of K' and a sequence of points qt G I E , O № ) ' 2 G N, such that, if we denote by qt the 
image of qt in AffV,, then val(^) = UQ and 

lim Qi 0s(e(uo)). 

Recall the equivariant morphisms (fq^H: ^K> ~^ of Theorem 3.2.4. By Defini­
tion 4 .3.6 and Proposition 4 .3 .24(2) , we have 

^| | . | | ( iX0 + UVQ) lim 
i—>oo Uqi, H \\K<W 

By Corollary 4 .6 .10, for each i G N , the function ^ * H||-||K/ *s concave- Since the 
limit of concave functions is concave, the restriction of to UQ + M^o is concave. 
We conclude that ^||.|| is concave. Hence, </>||.|| is concave too. • 

Corollary 4.7.2. — Let || • || be a metric with a semipositive model on Lan. Then the 
toric metric || • ||§ has a semipositive toric model. 

Proof. — By Proposition 4 . 7 . 1 , the function <j) = 0||.|| is concave. By Theo­
rem 4 .5 .10(1) , it is also rational piecewise affine. By Proposition 4 .3 .10(1) , its 
recession agrees with ^ , hence this latter is concave. Corollary 4.5.9 then implies 
that the metric || • ||§ = || • ||</>ak has a semipositive toric model. • 

Putting together Proposition 4 .7 .1 and Theorem 4 .5 .10, we see that the relationship 
between semipositivity of the metric and concavity of the associated function given in 
the Archimedean case by Proposition 4.4.1 carries over to the non-Archimedean case. 

Corollary 4.7.3. — Let ||-|| be a toric algebraic metric and 4>\\.\\ the associated function. 
Then || • || has a semipositive model if and only if the function 0||.|| is concave. 

We can now characterize the Charnbert-Loir measure associated to a toric metric 
with a semipositive model. 

Theorem 4.7.4. — Let || • || be a toric metric on Lan with a semipositive model and 
<j) = 0||.|| the associated function on N^. Let Ci(L)An Aôx^ be the associated measure. 
Then 

v a l ^ M L ) * " Aôxv) =n\MM{<t>). (4 .7 .1 ) 
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where M.M(4>) is the measure in Definition 4-4-3- Moreover, 

Cl(L)AnA(*xE (Ov)*(eK)*n\MM{<l>) (4.7.2) 

Proof. — Since the metric has a semipositive model, by Proposition 4.7.1 the func­
tion <p is concave. By Theorem 4.5.10 it is defined by a toric model ( A n , £ > 0 , e ) of 
(Xj2,Dx^) in the equivalence class determined by (p. As in Remark 3.5.9, the irre­
ducible components of An,o are m bijection with the vertices of II. For each vertex 
d G 11°, let £v be the point of A|n corresponding to the generic point of V(v) given 
by Proposition 1.3.3. Then, by the equations (1.3.6) and (3.6.2), 

C i ( L r ox. 
1 

en 
veil0 

mult(7j)degd0(n^)%,; 

Thus, by Corollary 4.5.2, 

valx. m i ) a ? A dWE 
1 

en 
vEIIo 

mult(?j)degD (V{v))6v. 

But, using Proposition 2.7.4 and Proposition 3.7.8, the Monge-Ampère measure is 
given by 

MM(<I>) 
1 

en 
MM{e(f)[ 

1 
en 

vEIIo 

volM(v*)ôv 

1 

n!en vEIIo 

mu\t(v)degD(f)(V{v))5v. 

Since A4M((/)) is a finite sum of Dirac delta measures, we obtain that 

MM{<I>) 
1 

n\en 
veil0 

mult(?j)degD (V(v))ôv 

Hence we have proved (4.7.1). To prove (4.7.2), we just observe that £v = Oo o 

eK(v)- • 

We can rewrite Theorem 4.7.4 in terms of the function tp\\.\\ of Definition 4.3.5. 

Corollary 4.7.5. — Let || • || be a toric metric on Lan with a semipositive model and 
•ip = < 0 | j . | | the associated function on nr. Let ci (L)An A 5x^ be the associated measure. 
Then 

val*(Cl(L)An A(5Xv; TI\MM(4>). 

Moreover, 

Cl(L)AnA6x^ (0s) . (e) .n!>IA/(V). 
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4.8. Semipositive and DSP metrics 

Let K be a valued field and T an n-dimensional split torus over AT, as in the 
beginning of the chapter. In the non-Archimedean case assume furthermore that the 
valuation is discrete. Let E be a complete fan in A^ and \£ a virtual support function 
on E, and denote by (L, s) the corresponding toric line bundle and section. 

We are now in position to characterize toric semipositive metrics. 

Theorem 4.8.1. — Let notation be as above. 

1. The assignment || • || H> ̂ ||-|| is a bijection between the space of semipositive toric 
metrics on Lan and the space of concave functions ip on A^ such that \ip — 
is bounded. 

2. Assume that ^ is a support function and let A^ be the corresponding polytope. 
The assignment || • || *-» is a bijection between the space of semipositive toric 
metrics on Lan and the space of continuous concave functions on A#. 

Proof. — To prove the statement (1), consider a toric semipositive metric || • ||. By 
Corollary 4.3.13 the function |^||.|| — \£| is bounded. By Definition 1.4.1, there is 
a sequence (|| • ||z)z>i of smooth (respectively algebraic) semipositive metrics that 
converges to || • ||. Since || • || is toric, || • ||§ = || • ||. Hence, by Proposition 4.3.4, the 
sequence of toric metrics (|| • | | i also converges to || • ||. We set ipi = V;||-||z §• By 
the propositions 4.4.2 and 4.4.1 in the Archimedean case and Proposition 4.7.1 and 
Corollary 4.7.2 in the non-Archimedean case, the functions ipi are concave. Since, by 
Proposition 4.3.14(3), the sequence (ipi)i>i converges uniformly on A^ to ip\\.\\, the 
latter is concave. 

Conversely, let now ip be a concave function on A^ such that \ip — ^ | is bounded. 
Then \£ is a support function and stab(^) = stab(^) agrees with the polytope A^. 
Let || • || be the metric on the restriction of Lan to X$n determined by ip. Write 
(j) = ^A^1. By Proposition 2.5.24 there is a sequence of rational piecewise affine 
concave functions ((j)i)i>\ with stability set A^, that converge uniformly to (p. Since 
stab(0/) = A^r, by Proposition 2.3.10, rec(^) = ^ . Since (pi is a piecewise affine 
concave function, by Remark 4.5.8, <p\ — ^ can be extended to a continuous function 
on N^. Therefore, cp — ^ and hence ip — ^ , can be extended to a continuous function 
on NJ:. Consequently the metric || • || can be extended to Af;11. Let || • ||/ be the metric 
associated to (piXx- Then the sequence of metrics (|| • ||z)z>i converges to || • ||. By 
Corollary 4.3.23, the metric || • ||/ is semipositive, both in the Archimedean and in the 
non-Archimedean cases. We deduce that || • || is semipositive, which completes the 
proof of (1). 

The statement (2) follows from (1) and propositions 2.5.23 and 2.5.20(2). • 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



158 CHAPTER 4. METRICS AND MEASURES ON TORIC VARIETIES 

Remark 4.8.2. — With notations as in Theorem 4.8.1, if ^ is a support function, then 
the space in (1) coincides with ^ ( A ^ , A^) (Definition 2.5.19), otherwise it is empty. 
The space in (2) coincides with ^ ( A # , N^). 

Remark 4.8.3. — For the case K = C , statement (2) in the above result is related to 
the Guillemin-Abreu classification of Kahler structures on symplectic toric varieties 
as explained in [Abr03]. By definition, a symplectic toric variety is a compact sym­
plectic manifold of dimension 2n together with a Hamiltonian action of the compact 
torus § ~ (S1)n. These spaces are classified by Delzant poly topes of MR, see for in­
stance [Gui95, Definition page 8] for the definition of Delzant polytope and [Gui95, 
Appendix 1] for the classification. For a given Delzant polytope A C MR, the possi­
ble (S1)71-invariant Kahler forms on the symplectic toric variety corresponding to A 
are classified by smooth convex functions on A° satisfying some conditions near the 
border of A. Several differential geometric invariants of a Kahler toric variety can be 
translated and studied in terms of this convex function, also called the "symplectic 
potential". 

For a smooth positive toric metric || • || on L^A ( C ) , the Chern form defines a Kahler 
structure on the complex toric variety A^A(C). It turns out that the corresponding 
symplectic potential coincides with minus the function V^y- It would be most inter­
esting to explore further this connection. 

Proposition 4.8.4. — Let || • || be a semipositive metric on Lan. Then || • ||§ is a 
semipositive toric metric. In particular, is concave. 

Proof. — Let (|| • ||;)z>i be a sequence of smooth (respectively algebraic) semipositive 
metrics on Lan that converges to || • ||. By Proposition 4.3.4, the sequence of toric 
metrics (|| • ||z,s)/>i converges to || • ||§. By Proposition 4.4.2 in the Archimedean 
case and Corollary 4.7.2 in the non-Archimedean case, the metrics || • ||/s§ are smooth 
(respectively algebraic) semipositive. Hence, || • ||§ is semipositive. The last statement 
follows from Theorem 4.8.1(1). • 

Corollary 4.8.5. — The line bundle Lan admits a semipositive metric if and only if L 
is generated by global sections. 

Proof. — Suppose that Lan admits a semipositive metric || • ||. By Proposition 4 .8 .4 , 
^||.|| is concave. Hence, ^ = rec(^||.||) is concave too which, by Proposition 3.4.1(1), 
is equivalent to the fact that L is generated by global sections. 

Reciprocally, if L is generated by its global sections, then the function ^ is concave 
and therefore defines a semipositive toric metric on Lan, by Theorem 4.8.1(1). • 

Here is what we can say about toric DSP metrics. 
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Theorem 4.8.6. — Let ^ be a virtual support function on E. Then the map || • || y-> ip\\.\\ 
is a bijection between: 

• the space of toric metrics on L^ such that there is a refinement E' of E with 
associated birational toric morphism ip: X^F —> XY: SO that </?*|| • || is a DSP toric 
metric on <p*Lyjf; 

• the space of functions ip G &(N^)z (Definition 2.6.1) with rec(tp) = \£. 

Proof — Let || • || be a toric metric on L^n and E' a refinementof E with associated 
birational toric morphism ip: X^> —> X^ so that <p*\\ • || is a DSP toric metric on 
(p*L^. By definition, there exists semipositive metrized line bundles (Li, || • ||i) and 
(L2, || • H2) on X%> such that 

(Y, LW, P*IHI) (^i, | | - Hi) ® (i2, H - Ha)®-1-

By propositions 4.3.4 and 4.8.4, (tp*, <p*\\ • ||) = || • ||i,§) 0 (L2, || • l^s)®"1 
and II • ||^s, i — 1,2, is a semipositive toric metric. By Theorem 4.8.1(1), ^||.||,s G 
£?(NR, Az), where A^ denotes the lattice polytope corresponding to Li. In particular, 
ip\\.\\-, G ^(NM)Z (Definition 2.5.19), hence using Proposition 4.3.19, 

#11 = V l l - l l = # l l i , s -^H-ll2,E G @(NR)z 

and rec(̂ ||.||) = rec(^|M^§) - rec(̂ ||.||2)S) = ̂ -
Conversely, let ip G ^(N^)z such that rec(ip) = Let ip = ip\ — ip2 with ipi G 

^ ( A R ) Z - By Definition 2.5.19 and Corollary 2.5.9, there are lattice polytopes A ,̂ 
i = 1,2, such that ipi G ^(ATK, A^). We can assume without loss of generality that 
these lattice polytopes have dimension n. Let (X^., Di) be the polarized toric variety 
determined by A^ by the correspondence in Theorem 3.4.6. Let E' be a fan on A% 
simultaneously refining E and E^, i = 1, 2, and let ip: X^> —> X^ and ipi: X%' —> X^T 
be the associated birational toric maps. Set Li = (p*0(Di), i = 1,2. 

Since ^ = rec(^i) - rec(^2), we have <p*L* = Lx <g> Lf_1. By Theorem 4.8.1(1). 
the function ^ determines a semipositive toric metric on Lfn that we denote by || • \\i, 
Then 

( ^ , ^ | | - | | ) (£i,ll-111) :^2, ii-ib O-1 

is a toric DSP metrized line bundle on X^> and ip\\.u = ip. 

Example 4.8.7. — Let ^ be a virtual support function on E. By Corollary 2.6.3, 
\£ G @(NR)z C @(NR)z and, moreover rec(^) = \P. Therefore, by Theorem 4.8.6, 
there is a birational toric morphism (p: X^> —» X^ so that the inverse image ip*\\ • ||# 
of the canonical metric on L^1 is a DSP toric metric on (p*L^. Note that ip*\\ • ||# 
coincides with the canonical metric on (p*L^. 

By Theorem 4.8.1, if the function ^ is concave or, equivalently by Proposi­
tion 3.4.1(1), if the line bundle O(D^) is generated by global sections, then || • ||# is 
semipositive. 
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Remark 4.8.8. — The correspondence in Theorem 4.8.6 gives also a bijection between 
the space of DSP toric metrics on L^1 and the space of functions ijj G @(NM)Z such 
that rec(/0) = ^ that can be written as yj = tpi — ip2 with ipi G ^ ( A R , A J for a 
lattice polytope A^ whose support function is compatible with the fan E in the sense 
of Definition 2.5.4. This follows easily from the proofs of theorems 3.4.6 and 4.8.6. 

Whether these spaces coincide with those in Theorem 4.8.6 is yet to be decided. 

We now study the compatibility of the restriction of semipositive toric metrics to 
toric orbits and its inverse image by equivariant maps with direct and inverse image 
of concave functions. This is an extension of propositions 3.7.5 and 3.7.10. We start 
with the case of orbits, and we state a variant of Proposition 4.3.17 for semipositive 
metrics. 

Proposition 4.8.9. — Let ^ be a support function on E, set L — L^ and s — s^. Let 
|| • || be a semipositive toric metric on L&n, denote L = (L, || • ||) and ip = ipj^ s the 
associated concave function on AR. Let a G E and ma G M such that = m^. 
Let 7ra: AR AT(a)R be the projection, 7r̂  : M(<t)R —>• MR the dual inclusion and 
i: Via) —> Xj2 the closed immersion. Set sa = xm<Ts. Then 

T L* L,L* Sa = (^+ ma)>vmo. (4.8.1; 

Dually, we have 

T L* L,L* Sa ( ^ + m a ) > v . (4.8.2) 

In other words, the Legendre-Fenchel dual ofipL*LT*S is the translate by —ma of the 
restriction of ipv to the face Fa. 

Proof. — As in the proof of Proposition 3.7.5, it is enough to prove the equa­
tion (4.8.1). By replacing ip by ip — ma, we assume without loss of generality that 
rna = 0. By the continuity of the metric, the function ip can be extended to a con­
tinuous function ipa on N(j, where A ^ is the compactification of AR in the directions 
of the cone a (see (4.1.5)). In this way, the function ipL*xL*s ls ^ne restriction of 
rip(J to N(a)u- Fix uo G AT(<j)R and write s = ^cr(г¿o)• By continuity, for any e > 0 
there exists a neighbourhood W of uo in Na such that for all u G W fl AR we have 
|/(г¿) — s\ < e. By the definition of the topology of Na (see (4.1.6)), such a set 
W fl AR is of the form U + p + a with U a neighbourhood of a point u G AR such 
that 7Ta(u) — uo and p G Ma. Therefore, we conclude that for any e > 0 there exists 
u G AR satisfying 7rCT(t6) = and p G Ma such that, for all r G p + a, 

S — £ < + r) < S + £. 

Now, by definition 

(7ra)*(V0Oo) SUp ^ ( i i ) . 
nE NR 

7rfT(u)=U() 

ASTÉRISQUE 360 



CHAPTER 4. METRICS AND MEASURES ON TORIC VARIETIES 161 

Thus it is clear that (7ra)*(ip)(uo) > s, suppose (7ra)*(tp)(uo) > s. Let v G TVR 
satisfying 7Ta(v) = uo be such that ip(v) > s and set e = ip(v) — s > 0. By the 
previous discussion, there exists u G Njg satisfying 7ra(u) = uo and p G Ma such that, 
for all r G p + a, 

8 — £ < ^(?i + r) < 8 + e = ^(v). (4.8.3) 

Write q — v — u G Ra, since a is a cone of maximal dimension in Ma, there exists a 
point r G + a) fl (p + a). By the right inequality of (4.8.3) ip(u + r) < ip(u + q) and 
the function g(X) := %p{u + r + A(r — (7)) of the variable A G M, satisfies g(0) < g( — l). 
Furthermore, since the function ip is concave, so is g which therefore stays for A > 0 
below a line of negative slope g(0) — g(—l). This implies limA-++oo #(A) = —oo, that 
is 

LIM 
A->+oo 

ip(u + r + A(r — 0)) = —oo (4.8.4) 

Since, by construction r + M>o(r — q) is contained in p + a, the equation (4.8.4) 
contradicts the left inequality of (4.8.3). Hence, for UQ G N(a)u, 

(ira)*(f){u0) sup 
uE NR 

7rCT(n)=n0 

tp(u) = S = ^CT(uo) Wi*L,i*so (u0). 

which proves equation (4.8.1) 

We now interpret the inverse image of a semipositive toric metric by an equivariant 
map whose image intersects the principal open subset in terms of direct and inverse 
images of concave functions. 

Proposition 4.8.10. — Let Ni and N2 be lattices and E2 be a complete fan in Ni^, 
i — 1,2. Let H: N1 —> N2 be a linear map such that, for each o\ G Ei; there exists 
a2 G E2 with H(ai) C a2. Let p G XY:2JO(K) and write A : N1^ N2,R for the affine 
map A = H + val(p). Let ^2 be a support function on E2 and || • || a semipositive 
toric metric on L^2. Then 

V><P;,H\\-\\ =a n-w-

Moreover, the Legendre-Fenchel dual of this function is given by 

<;,wihi ( J f v ) . ( ^ . | | - v a l ( p ) ) 

Proof — The first statement is a direct consequence of Proposition 4.3.19 while the 
second one follows from Proposition 2.5.21(1). • 

Finally, we characterize the measures associated to semipositive metrics. 

Theorem 4.8.11. — Let ^ be a support function on E and set L = L^. Let || • || be a 
semipositive metric on Lan and ip = ip\\\\ the corresponding concave function. Then 

vaU(Cl(L)A"AáXE) = n\MM(-ip). (4.8.5) 
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Moreover, the measure ci(L)An A 5x^ is characterized, in the Archimedean case, by 
the equation (4.8.5) and the fact of being toric, while in the non-Archimedean case it 
is given by 

Cl(L)AnASx, (6>s)*(e)*n!XM(^) 

Proof — For short, denote \i = val*(ci(L)An A Sx^)- Let || • ||/ be a sequence of 
semipositive smooth metrics (respectively metrics with a semipositive model) con­
verging to || • ||. By Proposition 1.4.5, the measures c i (L , || • ||/)An A 5x^ converge to 
ci(L)An A 5xz- Therefore, the measures val*(ci(L, || • \\i)An A Sx^) converge to the 
measure \i on A^. Theorem 1.4.10(1) implies that the measure of X^N \ XQU with 
respect to Ci(L)An A 5x^ is zero. Therefore N% \ A^ has /i-measure zero. Denote 
ipi = ^(||.||z)§- By Proposition 2.7.2, the measures MM(^I) converge to the measure 
MMW- Thus fi\NR = UIMMW by (4.4.3) and (4.7.1). Then, (4.8.5) follows from 
this and the fact that the measure of Afe \ A^ is zero. 

The last statement of the theorem follows from Theorem 4.4.4 in the Archimedean 
case and Corollary 4.7.5 in the non-Archimedean case by a limit argument. • 

Corollary 4.8.12. — For i = 0 , . . . , n — 1, let be a support function on E and set 
Li = L^i. Let || • \\i be a semipositive metric on Lan and ipz — ^H-^ the corresponding 
concave function. Then 

val*(ci(Lo) A • • • A c i ( L n _ i ) Sx*) n\MM(ipo, • • • ,^n-l)-

Proof — This follows from Theorem 4.8.11 by multilinearity. 

4.9. Adelic toric metrics 

Now let (K, 9JI) be an adelic field (Definition 1.5.1). We fix a complete fan E in 
AM and a virtual support function ^ on E. Let X be the associated toric variety and 
(L, s) the associated toric line bundle and section. 

Definition 4.9.1. — A toric metric on L is a family (|| • \\v)ve<m, where || • \\v is a toric 
metric on Lan. A toric metric is adelic if I/J\\.\\V = ^ for all but finitely many v. 

The following result is a direct consequence of Theorem 4.8.1. 

Proposition 4.9.2. — With the previous notations, 

1. there is a bijection between the set of semipositive adelic toric metric on L and 
the set of families of continuous concave functions (ipv)vem on such that 
\ipv — ^ | is bounded and ipv — ̂  for all but finitely many v; 

2. there is a bijection between the set of semipositive adelic toric metric on L and 
the set of families of continuous concave functions (i/jy)ve<m on such that 
ipv = 0 for all but finitely many v. 
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For global fields, the notions of quasi-algebraic toric metric and of adelic toric 
metric agree. 

Theorem 4.9.3. — Let K be a global field. A toric metric on L is quasi-algebraic 
(Definition 1.5.13) if and only if it is an adelic toric metric. 

Proof. — Let (|| • ||t,)t;ea% be a metric on L and write L = (L, (|| • \\V)V^K). Suppose 
first that L is toric and quasi-algebraic. Let S C 2 % be a finite set containing the 
Archimedean places, K°s as in Definition 1.5.12, e > 1 an integer and (X,C) a proper 
model over K°s of (A, L0e) so that || • \\v is induced by the localization Cv for all 
v £ S. The generic fibre of (X,C) is isomorphic with that of the canonical model 
(A's, 0{De^)) (Definitions 3.5.6 and 3.6.3). Since K°s is Noetherian, this isomorphism 
and its inverse are defined over K°s, for certain finite subset S' containing S. Thus, 
enlarging the finite set S if necessary, we can suppose that, over K°s, (X,C) agrees 
with the canonical model (X^, 0(De^)). Hence, || • \\v — || • = || • \\v^ for all 

places v ^ S. In consequence, it is an adelic toric metric. 
Conversely, suppose that L is a toric adelic metrized line bundle. Let S be the 

union of the set of Archimedean places and {v £ ^Jl^\ipv ^ By definition, this is 
a finite set. Let (A^, 0(D^)) be the canonical model over K°s of (A^, L). Then || • \\v 
is the metric induced by this model, for all v £ S. Hence L is quasi-algebraic. • 
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CHAPTER 5 

HEIGHT OF TORIC VARIETIES 

In this chapter, we will state and prove a formula to compute the height of a toric 
variety with respect to a toric line bundle. 

5.1. Local heights of toric varieties 

Let K be either R, C or a complete field with respect to an absolute value associated 
to a nontrivial discrete valuation. Let N ~ Zn be a lattice and M = Nw the dual 
lattice. We will use the notations of §3 and we recall the definition of A^ in (4.1.4). 

Let E be a complete fan on and X^, the corresponding proper toric variety. In 
Definition 1.4.11 we recalled the definition of local heights. These local heights depend, 
not only on cycles and metrized line bundles, but also on the choice of sections of the 
involved line bundles. For toric line bundles, Proposition-Definition 4.3.15, provides 
us with a distinguished choice of a toric metric, the canonical metric. This metric 
is DSP and, if the line bundle is generated by global sections, it is semipositive (see 
Example 4.8.7). By comparing any DSP metric to the canonical metric, we can define 
a local height for toric line bundles that is independent from the choice of sections. 

Definition 5.7.2. — Let Li — (L¿, || • ||¿), i = 0 , . . . , ri, be a family of toric line bundles, 
with DSP toric metrics. Denote by L^an the same line bundles equipped with the 
canonical metric. Let Y be a ¿¿-dimensional irreducible subvariety of and <p: Y' —» 
Y a birational morphism with Y' projective. Then the toric local height of Y with 
respect to LQ,..., LA is 

h - r -
Lo,...,Ld 

Y) h - -ip* LQ,...,ip* Ld Y'; s0, ..., sd) ll *TCAR ><P Ld Y' s0 , . . . ,sd). 

where so,.. . ,Sd are sections meeting Y' properly. We extend the definition to ri­
dimensionai cycles by linearity. When L0 = • • • = Ld — L we will denote 

htor (Y) htor 
..., LD 

(Y). 
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Remark 5.1.2. — Even if the notion of toric local height in the above definition differs 
from that of local height of Definition 1.4.11, we will be able to use it to compute 
global heights because, for toric subvarieties and closures of orbits, the sum over all 
places of the local canonical heights is zero (see Proposition 5.2.4). This is the case, 
in particular, for the height of the total space X^. 

By Theorem 1.4.17 (2, 3), the toric local height h^r j ; (Y) does not depend 
on the choice of Y' nor on the choice of sections. However, it does depend on the 
toric structure of the line bundles (see Definition 3.3.4), because the canonical metric 
depends on the toric structure. 

Proposition 5.1.3. — The toric local height is symmetric and multilinear with respect 
to tensor product of metrized toric line bundles. In particular, let E be a complete 
fan, Li a family of d+1 toric line bundles with DSP toric metrics and Y an algebraic 
cycle of X^ of dimension d. Then 

h-or -
Lo,...,Ld 

(Y) 
1 

(d+1) 

d 

3=0 
-1) d - j 

0<io<---<ij<d 

h-r OLi (Y) (5.1.1) 

Proof — It is enough to treat the case when Y is a d-dimensional irreducible subva-
riety. Let (f: Y' —>> Y be a birational map with Y' projective. By abuse of language 
we will denote <¿?*L¿ by L¿. By the Moving Lemma, we can choose sections s¿ of L¿, 
i = 0 , . . . , d, such that sq , . . . , s¿ meet Y' properly. 

The symmetry of the toric local height follows readily from the analogous property 
for the local height, see Theorem 1.4.17(1). For the multilinearity, let Ld be a further 
metrized line bundle. Again by the moving lemma, there is a section s'd of L'd such 
that sq , . . . , Sd-i, s'd meets Y' properly too. By Theorem 1.4.17(1), 

Lo,...,Ld-i,Ld<S>Ld y ' ; s0 , . . . , S d - i , S d ® s'd) l,Q,...,ld Y';s0,. . . ,sd) 

^Lo,...,Ld-i,Ld V ' j s o , . . . , s d _ i , s ' d ) 

and a similar formula holds for the canonical metric. By the definition of the toric 
local height, 

Lo, .,Ld-i,Ld®L'd 
Y) HL0,...,Ld Y h V o r Ld-i,Ld [Y] 

The inclusion-exclusion formula follows readily from the symmetry and the multilin­
earity of the local toric height. • 

Definition 5.1.4. — Let (L, s) be a metrized toric line bundle with a toric section. 
Then the roof function associated to (L, s) is the concave function s: —>• R 
defined as 

VL,s = WL,s = YK O L,s. 
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The concave function <pj- will be called the rational roof function. When the toric 
section s is clear from the context, we will denote ip-^ s and $ 7 ; s by ^|H| and $||-|| 
respectively. 

In the non-Archimedean case, recall that the function 0||.|| is not invariant under 
field extensions (see Proposition 4 .3 .8) but it has the advantage that, if the metric 
|| • || is algebraic, then it is rational with respect to the lattice N. By contrast, the 
function ^|| || is invariant under field extensions. It is not rational, but it takes values 
in XKQ on XRNQ. This is the function that appears in [BPS09]. In particular, the 
roof function is also invariant under field extension. 

Lemma 5.1.5. — Let K'/ K be a finite extension of valued fields of the type considered 
at the beginning of this section. Let L, s be as before and LK'^SK1 the toric metrized 
line bundle with toric section obtained by base change. Then 

VLK,sK = VKns. 

In case 0||.|| is a piecewise affine concave function, $||.|| and <p^^ parameterize the 
upper envelope of some extended polytope, as explained in Lemma 2 .5.22, hence the 
terminology "roof function". In case K is non-Archimedean and || • || is algebraic, the 
function </>ĵ || is a rational piecewise affine concave function. 

Theorem 5.1.6. — Let E be a complete fan on N^. Let L = (L, || • ||) be a toric line 
bundle on equipped with a semipositive toric metric. Choose any toric section s 
of L, let ^ be the associated support function on E and put = stab(^F) for the 
associated polytope. Then, the toric local height of X^ with respect to L is given by 

htor (XE) (ra+1)! 
Avj, 

VL,s vol M (n + l)!AK 
A* 

L,s d vol M , (5 .1 .2) 

where d VO\M is the unique Haar measure of MR such that the covolume of M is one 
and <Pj^s ^ the Legendre-Fenchel dual to the function (pj^ s (Definition 4-3.5). 

Proof. — We note that, by Theorem 4 .8 .1 (2) , the function ^pjjS is concave because 
the metric || • || on Lan is semipositive. For short, we set A = A^, ip = ^||.|| and 
d = vbw. 

We first reduce to the case of an ample line bundle. Let E A be the fan associated 
to A as in Remark 3.4.7. There is a toric morphism ip: —>• X^A. By Theorem 
4 . 8 . 1 , the function ipy defines a semipositive metric || • ||o on the line bundle 0(D^A)an 
over X^A. We denote L0 = (0(D^A), || • ||o). Then there is an isometry <£>*(L0) = L. 
By Corollary 4 .3 .20 there is an isometry (f*(LQ ) = L 

If the dimension of A is less than n, then the right-hand side of equation (5 .1 .2) 

is zero. Moreover, n — dim(X^) > dim(X^A) and the metrized line bundles L and 
Lcan come from a variety of smaller dimension. Therefore, by Theorem 1.4.17(2), 
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the left-hand side of the equation (5.1.2) is also zero, because (p*X?: = 0. If A has 
dimension n then ip is a birational morphism, so, by Theorem 1.4.17(2), 

htor (XE) Ц-ог 
Ь() 

(XEA) 

Therefore it is enough to prove the theorem for X^A . By construction, the fan E A is 
regular; hence the variety X^A is projective and LQ is ample. Thus we are reduced 
to prove the theorem in the case when E is regular and L is ample. 

Now the proof is done by induction on n, the dimension of X ^ . If n — 0 then 
XE = P ° , $ = 0, A = {0} and L = 0 (A)) = 0Po. By the equation (4.3.3), 
log ||s|| = ip(0) and log ||s||can — ^(0) = 0- The Legendre-Fenchel dual of ip satisfies 
??(0) = --0(0). By the equation (1.4.2), h r (Xs ; s ) = - ^ (0 ) and hZcan(XE;s) = 0. 
Therefore 

htor XE -ib(O) = <â(0) = 1! 
A 

v d vol M 

Let n > 1 and let so , . . . , Sn-i be rational sections of O(D^) such that so, • • •, Sn-i, s 
intersect XE properly. By the construction of local heights (Definition 1.4.11), 

hr(XE;s0, . - - , sn_i ,s ) = hT;(div(s);so,. . . , sn- i ) (5.1.3^ 

XEan 
log ||s|| c1 (L) An A dXE 

and a similar formula holds for the canonical metric. 
For each facet F of A, let vF G TV be as in Notation 2.7.9. Since L is ample, 

Proposition 3.4.10 implies 

hr(div(s);s0, • • • ,Sn-i) 
F 

-(F, vF) hT(V(rF); s 0 , . . . , sn- i ) , (5.1.4) 

where the sum is over the facets F of A. Observe that the local height of V(rF) with 
respect to the metrized line bundle L coincides with the local height associated to 
the restriction of L to this subvariety. Moreover by Corollary 4.3.18, the restriction 
of the canonical metric of Lan to this subvariety agrees with the canonical metric of 
Lan|y(TF). Hence, by substracting from the equation (5.1.4) the analogous formula 
for the canonical metric, we obtain 

F 
(F, vF) htor 

(T F {V{TF)) = hr(div(s);s0, • • •, «n-i) (5.1.5) 

-h^an(div(s);s0,.. . ,5n_i) 

Theorem 1.4.10(1) implies that the measure of X|n\X|n0 with respect to ci(L)AN A 
<5xE is zero. Hence, 

Xan 
log||S||Cl(L)AwA(JxE 

XE.0 
l o g H s l l d ^ A ^ . 
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By the equation (4 .3 .3) , log = val* (?/>), where val is the valuation map introduced 
in the diagram (4 .1 .7) . Moreover 

Van AS,0 
val*(^)Cl(L)A^ Adx^ 

NR 
!>val.(Cl(L)AnA5xE) 

jid by Theorem 4 . 8 . 1 1 , val*(ci(L)An A foE) = n\MM{^)- Hence, 

Xan 
log||S||Cl(L)Aw dXE = n! 

NR 
v dMM (v). (5.1.6) 

By Example 2 .7 .5 , M M { ^ ) = VO1M(A)#O. Therefore, in the case of the canonical 
metric, the equation (5 .1 .6) reads as 

Xan 
Og||s||canC; L can An dXE =n\ volM(A)*(0) = 0 (5.1.7) 

Thus, substracting from (5 .1 .3) the analogous formula for the canonical metric and 
using the equations (5 .1 .5) , (5 .1 .6) and (5 .1 .7) , we obtain 

htor XE 

F 
-(F,vF) htor 

LV| (rE) 
(V(rF)) -n\ 

NR 
W dMM (W) 

By the induction hypothesis and the equation (4 .8 .2) 

L\V(TF {V(Tf)) = n\ 
F 

^dvolM(F) . 

Hence, by Corollary 2 .7.10, 

htor (XE) - n ! 
F 

[F, VF) 
F 

^dvolM(F) -n! 
NR 

W DMM (W) 

= (n + 1)! $d VOIM, 

proving the theorem. 

Remark 5.1.7. — The left-hand side of the equation (5 .1 .2) only depends on the struc­
ture of toric line bundle of L and not on a particular choice of toric section, while 
the right-hand side seems to depend on the section s. We can see directly that the 
right hand side actually does not depend on the section. If we pick a different toric 
section, say s', then the corresponding support function differs from ^ by a linear 
functional. The polytope A ^ / is the translated of A ^ / by the corresponding element 
of M. The function vb^ s, differs from vb^ s by the same linear functional and s, is 
the translated of s by the same element of M. Thus the integral on the right has 
the same value whether we use the section s or the section sf. 

Theorem 5.1.6 can be reformulated in terms of an integral over JVR. 
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Corollary 5.1.8. — Let notation be as in Theorem 5.1.6 and write ip = ipj^ s for short. 
Then 

h f (XE) (n-h l ) 
NR 

(#odMd MM№), 

where # o dip is the integrable function defined by (2.7.7). When ip G C (N^), 

hf (XS) ( - l )n ( n + l ) ! 
NR 

((A W(u), u) — ib(u)) det(Hess(?/0) dvol^v 

When ip is piecewise affine, 

htor (XE) (n + 1)! 
wen(0)° v* 

Ux,v) - I/J(V)) dvolM(x) 

where v* G n(#) is the polytope corresponding to the vertex v with respect to the dual 
pair of convex decompositions induced by ip (definitions 2.2.11 and 2.2.13). 

Proof. — The first statement follows readily from Theorem 5.1.6 and the equa­
tions (2.7.7) and (2.2.2). The second statement follows from Proposition 2.7.3 
and Example 2.7.11(1), while the third one follows from Proposition 2.7.4 and 
Example 2.7.11(2). • 

Theorem 5.1.6 can be extended to compute the local toric height associated to 
distinct line bundles in term of the mixed integral of the associated roof functions. 

Corollary 5.1.9. — Let E be a complete fan on NR and Li = (Li, \\ • \\i)? i = 0 , . . . , n, 
be toric line bundles on X^ equipped with semipositive toric metrics. Choose toric 
sections Si of Li and let ^ be the corresponding support functions. Then the toric 
height of X^ with respect to LQ, . . . , Ln is given by 

hr0r,...,r„№) = MIMO?|MIo) .. .,t?„.|U) = \KmM{4>l\W • • -,4>iu)-

Proof. — Let 0 < ¿0 < • • • < ij < n. By the propositions 4.3.14 (1) and 2.3.1 (3) 

(WL io O ... OLij, si0 O...Osi 
)V = WV 

i0 >s*o 
O ... O it,* Li • ,Si . ' 

3 ' 3 The result then follows from (5.1.1), the definition of the mixed integral (Defini­

tion 2.7.16) and Theorem 5.1.6. • 

Remark 5.1.10. — In the DSP case, the toric height can be expressed as an alternating 

sum of mixed integrals as follows. Let Li = (Li, || • ||^), i — 0 , . . . ,n, be toric line 

bundles on equipped with DSP toric metrics and set Li = (g) Lf_ for some 

semipositive metrized toric line bundles L^+, -^z,-- Choose a toric section for each 

line bundle and write and for the corresponding roof functions. Then 

h- r - (XE) 

e0,...,ene{±l} 
б0 . . . еп MIM(^o ,e0 i • • • i $n,en ) • 

We have defined and computed the local height of a toric variety. We now will 
compute the toric height of toric subvarieties. We start with the case of orbits. 
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Proposition 5.1.11. — Let E be a complete fan on TVR and a G E a cone of codimension 
d. Let V{a) be the closure of the orbit associated to a and ia : ^E(o-) ~^ ^ £ the closed 
immersion of Proposition 3.2.1. Let L be a toric line bundle on X^, s a toric section, 
^ the corresponding support function and || • || a semipositive toric metric on Lan. As 
usual write L = (L, || • ||). Then 

h f : v » ) hto/T XEW) = (d + l)! 
Fa 

dZsàvo\M{Fa), 

where Fa is the face of A^ corresponding to a, M{Fa) is the lattice induced by M 
on the linear space associated to FG and i*GL has the toric line bundle structure of 
Proposition 3.3.16. 

Proof. — By Corollary 4.3.18 the restriction of the canonical metric of Lan is the 

canonical metric of 6*Lan. Therefore, the equality h^r(V(a)) = t ^ ( ^ s ( a ) ) follows 

from Theorem 1.4.17(2). 
To prove the second equality, choose ma G FG fl M. We use the notation of 

Proposition 4.8.9. By Theorem 5.1.6, 

htor XE(o)) (d+1) ! 

(̂*-mCT)(<7) 

êHadvo\M{(T). 

By Proposition 3.4.11, A(^_m \(a\ = (n^ + ma) 1Fa. By Proposition 4.8.9 

v ||·||o = W||·|| = (no + mo)* W||·|| ( ^+ma)*^ |M | 

Since M(Fa) = M(cr), we obtain 

(̂*-mff)(<7) 
%||ctdvolm(a) 

Fo 
î?||.||dvolM(FFF), 

proving the result. 

We now study the behaviour of the toric local height with respect to toric mor­
phisms. 

Notation 5.1.12. — Let N\ be a lattice of rank d and Mi the dual lattice. Let H: N\ —>• 
TV be a linear map and Ei a complete fan on N\^ such that, for each cone a G Ei, 
H(a) is contained in a cone of E. Let ip: X^X —» X^ be the associated morphism of 
proper toric varieties over K. Denote Q — H(Ni)sa,t the saturated sublattice of N 
and let YQ be the image of X^1 under (p. Then YQ is equal to the toric subvariety 
^E,Q = ^E,Q,a;o °f Definition 3.2.6, where we recall that XQ denote the distinguished 
point of the principal orbit of X%. 

Proposition 5.1.13. — With Notation 5.1.12, let L be a toric line bundle on Xs 
equipped with a semipositive toric metric. We put on p>*L the structure of toric line 
bundle of Remark 3.3.18. Choose a toric section s of L and let ^ be the associated 
support function. 
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1. If H is not infective, then hTOJ—(X^J = 0. 

2. If H is injective, then hTOJz(XEl) = [Q : tf(iVi)] h f r(YQ). Moreover 

htor -(XE1) (d+1) ! 
HV (AW) 

;яу).(1?||. |,) dvoiMl 

Proof — By Corollary 4.3.20, the inverse image of the canonical metric by a toric 
morphism is the canonical metric. Thus (1) and the first statement of (2) follow from 
Theorem 1.4.17 (2) and the equation (3.2.5). 

By the propositions 2.3.8 and 4.3.19 and Theorem 5.1.6 we deduce 

htor L(XE1) (d + l)!AK 
Aw oH 

#>| | . | | )vdvolMl 

(d+1) ! 
tfv(A*) 

;tfv)*(tfiMi)dvoiMl, 

proving the result. 

We now study the case of an equivariant morphism. Let X, Xi, d, H, £ and Si as 
in Notation 5.1.12. For simplicity, we assume that H: Ni —» N is injective and that 
Q — H(Ni) is a saturated sublattice, because the effect of a non-injective map or a 
non-saturated sublattice can be deduced from Proposition 5.1.13. Let p G XY,,Q(K) 

be a point of the principal open subset and u — val(p) £ TVR. Denote ip = tpPjH the 
equivariant morphism determined by H and p as in (3.2.3), also denote Y = 1E,Q,P 
the image of X ^ by cp as in (3.2.6). Finally write A = H + u for the associated affine 
map. 

Let L be a toric line bundle equipped with a semipositive toric metric. As explained 
in Remark 3.3.18, there is no natural structure of toric line bundle on the inverse image 
p*L. To obtain one, we choose a toric section s of L and we denote by L\ the line 
bundle cp*L with the metric induced by || • || and the toric structure induced by the 
chosen section s. We denote by ^ the support function associated to (L, s). 

Proposition 5.1.14. — With the previous hypothesis and notations, the equality 

h£rl * s , ) = (d + l)! 
HV (Aw) 

(A>rs)vdvolMl 

(d+1)! 
tfv(A*; 

(HV)*(WL,s -u) dvolMl (5.1.8; 

holds. Moreover 

htor XE1 htor (Y (d + 1)! 
tfv(A*; 

(A**)vdvolMl 

( d + 1 ) ! 
HV (AW 

(#V)*(¿A* -U) dvolMl, (5.1.9 

where is the indicator function of (see Example 2.2.1). 
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Proof. — By Proposition 4.3.19, W L1*s = A*i/^ s. By Proposition 2.3.8(3) we ob­
tain that stab(A*^£ ) = Hy'(Ay) and that 

(A* WL,s HV (WL,s - u). 

Then (5.1.8) follows from Theorem 5.1.6. 
To prove (5.1.9), possibly replacing Ei by a refinement, we assume that X^x is 

projective. Since H is injective and Q is saturated, by (3.2.5), the map X^1 —> Y has 
degree one. Then, by Definition 5.1.1, 

htor (Y) hTjl(XTLL] SQ,...,sd-i) \*(Lcan)(X^iî 5o, • • •, sd-i) (5.1.10) 

where Si, i — 0 , . . . , d — 1, is a collection of rational sections of ip*L meeting X^1 
properly, and (p*(Lcan) has the toric structure induced by s and the metric induced 
by the canonical metric of L. We recall that this metric may differ from the canonical 
metric of (p*L. Anyway, subtracting h^^cai^X^ ; so , . . . , Sd-i) from both terms of 
the difference in the right hand side of (5.1.10) and rearranging the equation, we 
get 

h f (XE1) h f (Y) h t o r 
Il „, /yean s 

(XE1). 

Now (5.1.9) follows from (5.1.8), Example 2.2.1 and the definition of the canonical 
metric. • 

Corollary 5.1.15. — With the previous hypothesis 

h t o r 

<f*(L ) 
(XE1) d + i ! 

HV (AW) 
(^**)vdvolMl . 

Example 5.1.16. — We continue with Example 4.3.21. Let 17 be the standard lattice 
of rank r, Ar the standard simplex of dimension r and EA^ the fan of RR associated 
to Ar. The corresponding toric variety is PR. Let H: N —>• 7Lr be an injective linear 
morphism such that H(N) is a saturated sublattice. Denote mi = ey{ o H £ M, 
i = 1 , . . . , r. Let E be the regular fan on TV defined by H and EA^- Let ^AR be the 
support function of Ar and let \£ = ^ar ° H. Explicitly, 

ïff(v) = min(0, mi(v),..., mr(v)). 

Let p £ P 5 ( A T ) and u = val(p) £ W. Write u = (u i , . . .,ur). If p = (1 : a± : ... : 
ar) , then Ui — — log|ai|. There is an equivariant morphism <p := ipp,H'• x^ ~^ PR-
Consider the toric line bundle with toric section determined by ^AR with the canonical 
metric and denote by (L, s) the induced toric line bundle with toric section on XE 
equipped with the induced metric. Then 

?PL,S(V) = min(0,rai(v) + ui,..., mr(v) + ur). 
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Thus A = stab(^T;s) = conv(0, m i , . . ., mr) = Hv(Ar). By Proposition 2.5.5 the 
Legendre-Fenchel dual ê-^ s : A —» R is given by 

VL,s (x) = sup 
R 

3 = 1 

XjUj A, 0 
R 

j=1 

Aj i, 
r 

j=1 

A7m7 = x for x G A. 

Thus the roof function 1&JJS~ ^ S is the upper envelope of the extended polytope 

conv ((0, 0), (mi, —t¿i),..., (mr, —ur)) 

= conv ((0, 0), (mi, log |c*iI),..., (mr, log |ov |)) . 

5.2. Global heights of toric varieties 

In this section we prove the integral formula for the global height of a toric variety. 
Let (K, DJl) be an adelic field as in Definition 1.5.1. Let E be a complete fan on NR 
and i = 0 , . . . , D, be virtual support functions on E. For each i, let Li = L^% and 
SXFRT be the associated toric line bundle and toric section, and || • ||i — (|| • \\i,v)vem 
a DSP adelic toric metric on Li. Write Li — (L^, || • \\i) and L{ for the same line 
bundles equipped with the canonical metric at all the places. By Example 4.8.7, it is 
also a DSP adelic toric metric. 

From the local toric height we can define a toric (global) height for adelic toric 
metrics as follows. 

Definition 5.2.1. — Let Y be a d-dimensional cycle of X^. The toric height of Y with 
respect to Lq, . . . , Ld is 

h t . . . , ^ ) 
vEM 

nv htor 
T T 'X) e R, 

where h^or denotes the local toric height of Yv 

Remark 5.2.2. — Definition 5.2.1 makes sense because the condition of the metrics 
being adelic imply that only a finite number of terms in the sum are nonzero. More­
over, the value of the toric height depends on the toric structure of the involved line 
bundle, but its class in R/def(5Cx) does not. 

Remark 5.2.3. — In general, the toric height is not a global height in the sense 
of Definition 1.5.9. When the d-dimensional cycle Y is integrable with respect to 
ZvQan,..., L^an (Definition 1.5.7), then it is also integrable with respect to L0 , . . . , L¿ 
and 

h- r _ 
Lo,...jLd 

Y hL0,...,Lo (Y) - ĥ ~can yean Y 

Observe also that, by Proposition 1.5.14 and Theorem 4.9.3, when K is a global field, 
all cycles are integrable with respect to line bundles with DSP adelic toric metrics. 
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The next result shows that the closure of an orbit or a toric subvariety is always 
integrable, even if the adelic field is not a global field, and that its global height agrees 
with its toric height. 

Proposition 5.2.4. — With notations as above, let Y be either the closure of an orbit 
or a toric subvariety. Then Y is integrable with respect to Lo, •. • ,L¿. Moreover, its 
global height is given by 

hL0,...,Lf (Y) htorL0,...,Lf (Y) G R/def(Kx) 

Proof. — In view of the propositions 5.1.11 and 5.1.13 and the fact that the restriction 
of the canonical metric to closures of orbits and to toric subvarieties is the canonical 
metric (corollaries 4.3.18 and 4.3.20), we are reduced to treat the case Y — X^- By 
the toric Chow's lemma [Oda88, Proposition 2.17], Proposition 1.5.8(2) and Theo­
rem 1.5.11(2), we can reduce to the case when X% is projective. 

Thus we assume that X^ has dimension d. We next prove that X^ is integrable 
with respect to L™n,..., LC¿n and that the corresponding global height is zero. By a 
polarization argument as in (5.1.1), we can reduce to the case ^0 — • • • = = ^-
The proof is done by induction on d. For short, write L — O(D^) and s = sy. 

Let d — 0. Then X ^ reduces to the point x 0. By the equation (1. 4.2), for each 
v Em. 

K t--*<x*S) = - iog| |5(x0)lk* = *(o) = o. 

Furthermore, h ^ n ( X s ; s) = J2V nv nv ,Lca» (ATS; s) = 0. 
Now let d > 1. Choose sections (non-necessarily toric) so,... ,Sd-i such that 

S o , . . . , Sd-i, s meet X^ properly. By the construction of local heights, for each v G m, 

K rcan(^s;so, ...,sd-i,s) = h T - n ( d i v ( s ) ; s 0 , • • . ,Sd-i) (5.2.1) 

Xanv 
log \\s\\v^ a(L v,can \d sXE. 

As shown in (5.1.7), the last term in the equality above vanishes. Hence 

K L c a i l ( ^ s ; s o , . - - , S d - i , s ) : K Lca» ( d i v ( s ) ; s 0 , • • •, sd -1). 

The divisor div(s) is a linear combination of subvarieties of the form V(r), T G S1, and 
the restriction of the canonical metric to these varieties coincides with their canonical 
metrics. With the inductive hypothesis, this shows that X-% is integrable with respect 
to L . Adding up the resulting equalities over all places, 

hy;can(Xs;so, . . . ,sd_i,s) h r c a n ( d i v ( s ) ; s o , . . . , 5d_i ) . 

Using again the inductive hypothesis, h^can(Xs; so, • •., sd-i, s) £ def(Kx). 
We now prove the statements of the theorem. Again by a polarization argument, we 

can also reduce to the case when L0 — • • • = Ld — L. By the definition of semipositive 
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adelic toric metrics, is also integrable with respect to L. Furthermore, 

htor XY) = hr(Xs;so, ...,sd] h-can (XE, s0, ..., sd) 

for any choice of sections s2 intersecting X^ properly. Hence, the classes of h f (X^) 
and of h^(X^\ sq , . . . , Sd) agree up to def(Kx). But the latter is the global height of 
X^ with respect to L, hence the second statement. • 

Summing up the preceding results we obtain a formula for the height of a toric 
variety. 

Theorem 5.2.5. — Let S k a complete fan on N^> Let Li, i = 0 , . . . , n, be toric line 
bundles on XY: equipped with semipositive adelic toric metrics. For each i, let st be a 
toric section of Li. Then the height of X^ with respect to L0 , . . . , Ln is 

''/ ,.:-V>: 
vEm 

nv M I M ( ^ I o , S o , . . , ^ I n ) 5 n G R/def(Kx) 

where $v T; s denotes the local roof function. In particular, if LQ = • • • = LN = L , let 
s be a toric section and put A = stab(tyLjS). Then 

hL (XE) ( n + 1)! 
vEm 

nv V v,L,s d VOIM 

Proof. — This follows readily from Corollary 5.1.9 and Proposition 5.2.4. 

Corollary 5.2.6. — Let H: N —> ZR be an injective map such that H(N) is a saturated 
sublattice ofZr, p G P q ( K ) a point in the principal open subset and Y C P7 the closure 
of the image of the map ipp,H: T —̂  PR. Let mo G M and mi = e^ o H + mo G M, 
i — 1 , . . . , r, and write p = (po : ... : pr) with p% G KX . Let A — conv (mo, • . . , mr) C 
MM and fly: A —> R the function parameterizing the upper envelope of the extended 
polytope 

conv ((m0, log I P O U ) , • • •, (mr,log |PrU)) C MR x R. 

Let 0(1) fre ¿/¿e universal line bundle on PR tó/i í/ze canonical metric as in Exam­

ple 4-3.9(1). Then Y is integrable with respect to 0(1) and 

hori)t:,ul(y) n + 1)! 

vEM 
nv i)v d volM G R/def(Kx) 

Proof. — By the definition of adelic field, val^, (p) — 0 for almost all v G 93T. There­
fore, the integrability of Y follows as in the proof of Proposition 5.2.4. 

Let E be the complete regular fan of induced by H and EA^, and let X^ be the 
associated toric variety. Write p> = p>p,H for short. The fact that H(N) is saturated 
implies that (p has degree 1 and so Y = (p^X^. By the functoriality of the global 
height (Theorem 1.5.11(2)), 

hO(1)can (Y) V ( c x n c a i l ) ( X s ) 
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Let v G 9Jt. Using the results in Example 5.1.16, it follows from Theorem 5.2.5 that 

^* (0(l)can) (XE) (n+l) 

V 

nvdv d VOIM 

where A = conv(0, mi — mo,... , mr-mo) C MR and dv is the function parameterizing 
the upper envelope of the extended polytope 

conv((0,0), (mi - ra0, log \pi/po\v), • • •, (mr - ra0, log \pr/po\v)) C MM x R. 

We have that A = A — mo and $v = T_MO#„ — log |_po U • Hence, 

$v d VOIM dv d VOIM log \po\v voim(A; 

Using that ^ v nv log |po|v £ def(Kx) and that, by Proposition 3.4.3, n ! v o i M ( A ) 
degQd^Y) G Z, we deduce the result. 

Remark 5.2.7. — The above corollary can be easily extended to the mixed case by us­
ing an argument similar to that in the proof of Corollary 5.1.9. Applying the obtained 
result to the case when K is a number field (respectively, the field of rational func­
tions of a complete curve) we recover [PS08a, Theoreme 0.3] (respectively, [PS08b, 
Proposition 4.1]). 
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CHAPTER 6 

METRICS FROM POLYTOPES 

6.1. Integration on polytopes 

In this chapter, we present a closed formula for the integral over a polytope of 
a function of one variable composed with a linear form, extending in this direction 
Brion's formula for the case of a simplex [Bri88], see Proposition 6.1.4 and Corol­
lary 6.1.10 below. In the next section, these formulae will allow us to compute the 
height of toric varieties with respect to some interesting metrics arising from poly­
topes. 

We consider the vector space W1 with its usual scalar product, that we denote (•, •) 
and its Lebesgue measure, that we denote voln. We also consider a polytope A C Mn 
of dimension n. 

Definition 6.1.1. — Let u G W1 be a vector. For each c G M, an aggregate of A in the 
direction u is the union of all faces of A contained in the affine subspace 

{x G Rn | (x,u) = c}. 

We denote by dim(Vr) the maximal dimension of a face of A contained in V. In 
particular, dim(0) = — 1. 

We write A(u) for the set of non-empty aggregates of A in the direction u. In 
particular, A(0) = {A}. Note that, if V G A(^) and x is a point in the affine space 
spanned by V, then the value (x,u) is independent of x. We denote this common 
value by (V, u). 

For any two aggregates V\,V<i G A(u), we have V\ = V2 if and only if (Vi,u) = 
(V2,u). 

Example 6.1.2 
1. Every facet of a polytope is an aggregate in the direction orthogonal to the 

facet. 
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2. If u is general enough, the set A(u) agrees with the set of vertices of A. 

3. Let A = {(x,y) G M2 | 0 < x, y < 1} be the unit square and u = (1,1). 
Then the set of aggregates A(^) contains three elements: {(0, 0)}, {(1, 0), (0,1)} 
and {(1,1)}. 

In each facet F of A we choose a point mp. Let Lp be the linear hyperplane 
defined by F and Tip the orthogonal projection of Rn onto Lp. Then, F — mp is a 
polytope in Lp of full dimension n — 1. To ease the notation, we identify F — mp 
with F. Observe that, with this identification, for V G A(u), the intersection V fl F 
is an aggregate of F in the direction 7Tp(u). We also denote by up the inner normal 
vector to F of norm 1. 

Definition 6.1.3. — Let u G W1 be a vector. For each aggregate V in the direction of 
u, we define the coefficients C^(A, u, V), k G N, recursively. If u = 0, then V is either 
0 or A. For both cases, we set 

Cfe(A, 0, V) •• 
v o l „ ( I 0 if k = n, 

0 otherwise. 

If w 0, we set 

Ck (A,u,V) 
F 

{Up, u) 
INI2 

Cfc(F,7rF(u), V n F ) , 

where the sum is over the facets F of A. This recursive formula implies that 
Cfc(A, ix, V) = 0 for all k > dim(V). 

Finally, we define the polynomial associated to an aggregate by 

C(A,u,V) (z) 
dim(V) 

k=0 

k\ 
dim (V)\ 

Ck(AlU,V)z iim(V/)-fc E R|z|. 

In particular, we have always C(A, 0 ) = 0. 

As usual, we write ^n(R) for the space of functions of one real variable which are 
n-times continuously differentiable. For / G c&n(M) and 0 < k < n, we write for 
the fc-th derivative of / . 

We want to give a formula that, for / G ̂ n(IR), computes JA f^n\(x, u)) d vo\n(x) 
in terms of the values of the function x i—>- f((x,u}) at the vertices of A. How­
ever, when u is orthogonal to some faces of A of positive dimension, such a formula 
necessarily depends on the values of the derivatives of / . 
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Proposition 6.1.4. — Let A C Rn be a polytope of dimension n and u G Rn. Then, 
for any f G tfn(R), 

f(n\(x,u)) d vo\n(x) 
veA(u k>0 

Ck(A,u,V) f (kH(V,u)) (6.1.1) 

veA(u) 

ddim(V) 

^dim(y) 
[C(A,u,V)(z).f(z + (V,u))) 

z=0' 

The coefficients Ck(A,u,V) are uniquely determined by this identity. 

Proof. — In view of Definition 6.1.3, both formulae in the above statement are equiv­
alent and so it is enough to prove the first one. In case u = 0, we have A(u) = {A} 
and formula (6.1.1) holds because 

f(n)((x,0)) d voL(x) v o l ( A ) / W ( 0 ) 

k>0 

7fe(A,0,A)/(fc)(0), 

We prove (6.1.1) by induction on the dimension n. In case n = 0, we have u = 0 and 
so the verification reduces to the above one. Hence, we assume n > 1 and u ^ 0. For 
short, we write dx = dxi A • • • A dxn. Choose any vector v G Rn of norm 1 such that 
(v,u) / 0. Performing an orientation-preserving orthonormal change of variables, we 
may assume = (1, 0 , . . . , 0). We have 

fW ((x,u))dx 
1 

(v,u) 
d(f(n-1)((x,u))dx2 A-- - A dxn). 

With Stokes' theorem, we obtain 

f^((x,u)) d voU(x) = f{n)((x,u))dx (6.1.2) 

1 
(v,u) F F 

f{n-l\(x,u))dx2 A--- A dxn. 

where the sum is over the facets F of A, and we equip each facet with the induced 
orientation. 

For each facet F of A, we let iUF(dx) be the differential form of order n — 1 
obtained by contracting dx with the vector up. The form dx2 A • • • A dxn is invari­
ant under translations and its restriction to the linear hyperplane Lp coincides with 
(v,up)tUF(dx). Therefore, 

F 
f{n-l)((x, u)) dx2 A • • • A dxn — (v, uF) 

F — rriF 
/ ( » - D « * + mF,u))i,UF(dx). 

Let voln_i denote the Lebesgue measure on Lp. We can verify that voln_i coincides 
with the measure associated to the differential form — LUF (dx) \LF and the orientation 
of Lp induced by up. Let g: R —>> R be the function defined as g(z) = f(zJr(mp1u)). 
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Then f(n-1)((x + mF, u)) g(n-1) ((x, nF (u))) for all x G LF - Hence, 

F — mp 
f(n-l)( 

кх + mF,u))LUF(àx) -
F — mp 

^"-^((x,^(U)))dvol„_1(x). 

Applying the inductive hypothesis to F and the function g we obtain 

F 
g(n-1) (x,7TF(?i)))dvoln_i(x) 

V'eF{irF{u) k>0 

Ck(F^F{u)y)g^((V' ^F(u))) 

V'eF(7TF(u)) k>0 
CK(F,Mu)X) f W((V',u)) 

Each aggregate V G F(TTF(U)) is contained in a unique V G A(u) and it coincides 
with V Pi F. Therefore, we can transform the right-hand side of the last equality in 

veA{u) k>0 
Ck(F^F(u), VnF)f ^((V,u)), 

where, for simplicity, we have set Ck(F, 7rF(u), V D F) = 0 whenever V Pi F = 0. 
Plugging the resulting expression into (6.1.2) and exchanging the summations on V 
and F , we obtain that fA f(n\(x,u)) dvoln(:r) is equal to 

veA(u] k>0 f 

(v,uF 
(v, u) 

-CkfFiTTFiu YVnF^UlViU)) ;6.i.3) 

Specializing this identity to v = u, we readily derive formula (6.1.1) from Defini­
tion 6.1.3 of the coefficients Ck(A, u, V). 

For the last statement, observe that the values f^ ((V,u)) can be arbitrarily cho­
sen. Hence, the coefficients Ck(A,u, V) are uniquely determined from the linear 
system obtained from the identity (6.1.1) for enough functions / . • 

Corollary 6.1.5. — Let A c Mn be a polytope of dimension n and u G W1. Then, 

veA(u) 

min{z,dim(V)i 

k=0 

Ck (A, u, V) (V. uY~k 
(i -k)l 

0 for i = 0 , . . . , n — 1, 

voln(A) for i = n. 

Proof — This follows from formula (6.1.1) applied to the function f(z) = z 1. 

Proposition 6.1.6. — Let A G W1 be a polytope of dimension n and u G W1. Let 
V G A(u) and k > 0. 

1. The coefficient Ck(A,u,V) is homogeneous of weight k — n in the sense that, 
for AG Rx, 

Ck(A,\u,V) = Xk-nCk(A,u,V). 
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2. The coefficients Ck(A,u,V) satisfy the vector relation 

Ck(A,u,V)-u = -

F 
Ck(F,7TF(u), VriF)-uF, (6.1.4) 

where the sum is over the facets F of A 

3. Let Ai, A2 C W1 be two polytopes of dimension n intersecting along a common 
facet and such that A = Ax U A2. Then V D Az = 0 or V D A, G A*(u) and 

Ck (A, u, V) = Cfc(A!,ix, y n Ai) + Ck(A2ìu, V H A2) 

Proof — Statement (1) follows easily from the definition of Ck(A,u, V). For state­
ment (2), we use that, from (6.1.3), the integral formula in Proposition 6.1.4 also 
holds for the choice of coefficients 

F 

{v,uF 

{v,u) 
•Ck(F, 7rF(u),VnF) 

for any vector v of norm 1 such that (v,u) ^ 0. But the coefficients satisfying that 
formula are unique. Hence, this choice necessarily coincides with Ck(A,u,V) for all 
such v. Hence, 

{vlU)C k{A,u,V) 

F 
(v,uF)Ck{F,irF{u),V KF) 

and formula (6.1.4) follows. Statement (3) follows from formula (6.1.1) applied to A, 
Ai and A2 together with the additivity of the integral and the fact that the coefficients 
Ck(A,u,V) are uniquely determined. • 

In case A is a simplex, the linear system given by Corollary 6.1.5 has as many 
unknowns as equations. In this case, the coefficients corresponding to an aggregate 
in a given direction are determined by this linear system. The following result gives 
a closed formula for those coefficients. 

Proposition 6.1.7. — Let A C Rn be simplex and u e Rn. Write dw = dim(W) for 
W G A{u). Then, for V G A(u) and 0 < k < dim(V), 

Ck(A,u,V) (-1) dy — k 7l\ 

jfc! 
voln(A) 

nGNA(u)\{V} 
\r)\=dv—k 

weA(u)\{v} 

dw + nw 
dw 

V -W u)dwJrriwJrl 

Proof. — Consider the Hermite interpolation polynomial py,k £ №[t] of degree n 
characterized by the conditions that, for W G A(u) and I = 0 , . . . , dw, 

pV,k ((u, W)) = l\ if W = V and I = jfc, 

0 otherwise. 
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By Proposition 6.1.4 and the choice of pv,k. 

pV,K (u,x))dvoln(x) = klCk(A,u,V). 

Furthermore, JA py k((u, x)) d voln(x) = n\ voln(A) coeff£n (py,k), where coefiV (py,k) 
denotes the leading coefficient of pv,k-

An explicit formula for py)k can be found, for instance, in [DKS13, Proposi­
tion 2.3]. From that formula, we deduce that 

coefftn(pv,fc) = (-1) dv - k 

NA(„) \{V} 
\n\=dv —k 

weA(u)\{vy 

dw + nw 
dw 

ry - W, u)dwJrriwJrl 

which concludes the proof. 

Remark 6.1.8. — We can rewrite the formula in Proposition 6.1.7 in terms of vertices 
instead of aggregates as follows: 

Cfc(A,iz,V) ( -1 
d\/—k n\ 

k\ 
voln(A) 

\ß\=dv -k v£V 

[V - v, u) / 3 , - 1 (6.1.5) 

where the product is over the vertices v of A not lying in V and the sum is over the 
tuples /3 of non negative integers of length dy — fc, indexed by those same vertices of 
A that are not in V, that is, /3 e Nn~dv and \/3\ = dv - k. 

Example 6.1.9. — Let A C Mn be a simplex and u G W1. If a vertex i/0 of A is an 
aggregate in the direction of u, then formula (6.1.5) reduces to 

C70(A,n,^0) = n\ voln! 

v = v0 

(v0 - v, u) -1 (6 .1 .6) 

where the product runs over all vertices of A different from z/0- Suppose that the 
simplex is presented as the intersection of n + 1 halfspaces as 

n 

¿=0 
[x G Rn\ (x,Ui) - Xi > 0} 

with ui G Rn \ {0} and Xz G M. Up to a reordering, we can assume that uo is an inner 
normal vector to the unique face of A not containing We denote by e the sign of 
( —l)n de t (^ i , . . . , un). Then the above coefficient can be alternatively written as 

Co(A,u,i/0) 
edet('*/i,... ,un) n-l 

m. 
2=1 

det(г¿l,..., г¿, Ui+i,..., uU/ 

From the equation (6.1.6), we obtain the following extension of Brion's "short 
formula" for the case of a simplex [Bri88, Theoreme 3.2], see also [BBD+11]. 
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Corollary 6.1.10. — Let A C Rn be a simplex of dimension n that is the convex hull 
of points Vi, i = 0 , . . . , n, and let u G Rn such that (z^, u) ^ u) for i 7^ j . Then, 
for any f G tfn{R), 

f^((xìu))dvóln(x) = nlvóln( 
n 

2 = 0 

f ((vi, u)) 

j=i (vi - vj, u) 

Proof — This follows from Proposition 6.1.4 and the equation (6.1.6). 

In the next section, we will have to compute integrals over a polytope of functions 
of the form £{x) log(^(x)) where £ is an affine function. The following result gives the 
value of such integral for the case of a simplex. 

Proposition 6.1.11. — Let A C 1 " be a simplex of dimension n and let £: W1 —>• R 
be an affine function which is non-negative on A. Write £{x) = (x,u) — A for some 

vector u and constant A . Then 1 

vol A) 
£(x) log(£(x)) d voln(x) equals 

veA(u) ß' 

n 
n - \ß'\ 

£(V) log(£(V)) -l/3'l + L 1 
J=2 .7 

(|B'| + 1 vEV l(v) 
k£{V) 

1 B'v 
(6.1.7) 

where the second sum runs over ft' G ( N X ) n ~ d i m ( v 0 with |/3'| < n and the product is 
over the n — dim(Vr) vertices is of A not in V. 

If £(x) is the defining equation of a hyperplane containing a facet F of A, then 

1 

voln(Ay 
£{x) \og{£(x))dx 

l(VF) 

n + 1 
\og{£(uF)\ 

n+1 

J=2 

1 

J , 
(6.1.8) 

where vF denotes the unique vertex of A not contained in F. 

Proof. — This follows from the formulae (6.1.1) and (6.1.5) with the function 
f(n)(z) = (z — A ) log(2 — A ) , a (n — k)-th primitive of which is 

fik)(z) 
(z - A ; rc-fc+1 

(n - k +1) ! 
log(z — A ^ 

n-k+1 

J=2 

1 

3 

We end this section with a lemma specific to integration on the standard simplex, 

Lemma 6.1.12. — Let Ar be the standard simplex ofW and ¡5 = (f30l..., /3r_i) G NR. 
Let f G ^ l + r ( [ 0 , l ] ) where |/3| = /30 + • • • + f3r-i- For (wu ..., wr) G Ar write 
WQ = 1 — w\ — • • • — wr. Then 

r-1 

2 = 0 

4B' 
B! 

/ № r ) ( œ r ) d œ i A - - - A d « > r = / ( l ) 
\ß\+r-\ 

3=0 

/ü)(o; 

j! 
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Proof. — We proceed by induction on r. Let r = 1. Applying /3Q + 1 successive 
integrations by parts, the integral computes as 

ßo 

J=0 

[1 -Wl)J 

ß 
f(j) (w1) 

l 

0 
/(1) 

ßo 

3=0 

fU)(Q) 

ß 

as stated. Let r > 2. Applying the case r — 1 to the function f(z) z\0\+R-L 
(|/3|+r-l)P 

1 

B0!...Br - 1 Ar-1 

W0B0W W0B0W dW1 A A àwr-i 
1 

(\ß\ + r-l)\ 

and, after rescaling, 

1 

B0!...Br - 1 (l-tt;r) AT'-] 

W0B0W WBR ̂ d^i , dwr_i 
(1 - wr) \ß\+r-l 

( | / 3 | + R - L ) ! 

Therefore, the left-hand side of the equality to be proved reduces to 

1 

( | 0 | + R - L ) ! 

1 

o 
(1 — wr] m+r-Lfm + r){Wr)dw^ 

Applying the case r = 1 and index \(3\ + r — 1 G N, we find that this integral equals 

/ ( ! ) - E ^ c T " 1 fU)(fy/jU which concludes the proof. • 

Corollary 6.1.13. — Let a G Nr+1. For (wi,..., wr) G Ar; wn£e iu0 = l—wi wr. 
Then 

Ar 
W0 Wa1 ?/;f*r dwi A dwr 

ao]. . . .arl 
(\a\ + r j ! 

and, for i = U , . . . , r, 

/A' 
W0 W1a1 w^7' log(wj) diri I dwr 

cvqI . . . ar\ 
( | « | + R ) ! 

(a) +1 

j=ai+1 

1 

j 

Proof. — The formula for the first integral follows from Lemma 6.1.12 applied with 
fj — (a0,. . . , ar_i) and f(z) = ,f ", A}. The second one follows similarly, apply-
ing Lemma 6.1.12 to the function f(z) = (fQ|+r)! (log(z) - Ej=cJ+i j)> after some 
possible permutation (for i = l , . . . , r — 1) or linear change of variables (for i = 0). • 

6.2. Metrics and heights from polytopes 

In this section we will consider some metrics arising from polytopes. We will use 
the notation of §4 and §5. In particular, we consider a split torus over the field of 
rational numbers T ~ G.™ Q and we denote by TV, M , ATK, AfK the lattices and dual 
spaces corresponding to T . 

Let A C Mf be a lattice polytope of dimension n. Let ^ , i = 1 , . . . ,r, be affine 
functions on MM defined as /,•(./•) = (./•. //,•) — A2 for some u% G and Xl G R such 
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that £i > 0 on A and let also q > 0. Write £ = ( ¿ 4 , . . . , £r) and c = ( c i , . . . , cr). We 
consider the function $a / ^: A —>> R defined, for x G A , by 

VA,l,c (x) 
r 

¿=1 
^(ai) log(^(a:)) . (6 .2 .1 ) 

When A , ^, c are clear from the context, we write for short 1? = $a,£,c-

Lemma 6.2.1. — Let notation be as above. 

1. The function $a,£,c is concave. 

2. If the family {г¿г}i generates N^, then $a 1 c is strictly concave. 

3. If A = P\i{x £ M R | ^ ( x ) > 0}7 £/zen £/ie restriction o/^a,^,c ¿0 A ° , £Ae interior 
of the polytope, is of Legendre type (Definition 2.4-1)-

Proof. — Let 1 < i < r and consider the affine map £i \ A —>• R>o- We have that 
—2; log(2;) is a strictly concave function on R>o and —£{ log(^) = £* (—z \og(z)). Hence, 
each function —Ci£i(x) log(^(x)) is concave and so is as stated in (1) . 

For statement (2) , let x\, x^ be two different points of A . The assumption that {ui}i 
generates implies that £iQ{x{) 7̂  £iQ{x2) for some ¿0. Hence, the affine map £i0 
gives an injection of the segment x\X2 into R>o- We deduce that —Ci0£i0 log(^0) is 
strictly concave on X1X2 and so is Varying x i , x 2 , we deduce that $ is strictly 
concave on A . 

For statement (3) , it is clear that $|a° is differentiable. Moreover, the assumption 
that A is the intersection of the halfspaces defined by the £^s implies that the u^s 
generate and so $ is strictly concave. The gradient of d is given, for x G A ° , by 

W ( x ) 
r 

i=l 
clul(log(£l(x)) + 1 ) (6 .2 .2) 

Let || • || be a fixed norm on and (XJ)J>Q a sequence in A ° converging to a point 

in the border. Then there exists some i\ such £il(xj) A 0. Thus, | |V^(xj) | | -4 oc 

and the statement follows. • 

Definition 6.2.2. — Let E a and ^ a be the fan and the support function on induced 
by A . Let (Aea , DX^A) be the associated polarized toric variety over q and write L = 
0(DyA). By Lemma 6 .2 .1(1) , $a,^,c is a concave function on A . By Theorem 4 . 8 . 1 , 

it corresponds to some semipositive toric metric on L(C). We denote this metric by 
II • ||a,£,c- We write L for the line bundle L equipped with the metric || • \\A,£,C at 
the Archimedean place of q and with the canonical metric at the non-Archimedean 
places. This is an example of an adelic toric metric. 

Example 6.2.3. — Following the notation in Example 2 .4 .3 , consider the standard sim­
plex AN and the concave function d — \en on AN. From examples 2 .4.3 and 4 .3 .9 (1) , 

we deduce that the corresponding metric is the Fubini-Study metric on (9(1 )an over C. 
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188 chapter 6. metrics from polytopes 

In case A is the intersection of the halfspaces defined by the ^ ' s , Lemma 6.2.1(3) 
shows that $|A° of Legendre type (Definition 2.4.1). By Theorem 2.4.2 and equa­
tion (6.2.2), the gradient of d gives a homeomorphism between A° and and, for 
x G A°, 

??v(W(:r)) 
r 

2=1 

cl (Xi \og(£i{x)) + (x,Ui)) 

This gives an explicit expression of the function ^||.||A e c — and a fortiori of the 
metric || • ||A,^,c5 in the coordinates of the polytope. Up to our knowledge, there is 
no simple expression for ip in linear coordinates of A^, except for special cases like 
Fubini-Study. 

Remark 6.2.4. — This kind of metrics are interesting when studying the Kahler geom­
etry of toric varieties. Given a Delzant polytope A C (Remark 4.8.3), Guillemin 
has constructed a "canonical" Kahler structure on the associated symplectic toric va­
riety [Gui95]. The corresponding symplectic potential is the function — I?A,£,c> for 
the case when r is the number of facets of A, ci = 1/2 for all z, and Ui is a primitive 
vector in N and Xi is an integer such that A = {x G M^\(x,U{) > A ,̂z = 1 , . . . , r} , 
see [Gui95, Appendix 2, (3.9)]. 

In this case, the metric || • ||A,£,c on the line bundle 0(D^)an is smooth and positive 
and, as explained in Remark 4.8.3, its Chern form gives this canonical Kahler form. 

We obtain the following formula for the height of X^A with respect to the line 
bundle with adelic toric metric L, in terms of the coefficients CV(A,i^, V). 

Proposition 6.2.5. — Let notation be as in Definition 6.2.2. Then h^(X^A) equals 

(n + l) 
r 

2 = 1 

Ci 
veA{ut 

dim(V) 

k=0 
Ck (A, ui, V) 

li (V) n-k+1 

n-k + l)\ 

>n-k+l 

3=2 

1 

J 
l o g ( W ) ) 

Suppose furthermore that A G Mn is a simplex, r — n + 1 and that £l7 i = 1 , . . . , n + 1, 
are affine functions such that A = C\iix ^ Mu\^i(x) > 0}. Then 

1IT;(A:Ea) = n! VOIM 
n+l 

2=1 

ci li (vi) 
n+l 

j=2 

1 

3 
log(^(^)) (6.2.3) 

where Vi is the unique vertex of A not contained in the facet defined by £i. 

Proof. — The first statement follows readily from Theorem 5.2.5 and Proposi­
tion 6.1.4 applied to the functions f(z) = ( log(z - A*) - ^ = 2 )) (z ~ A*)n+1/(n +1)!. 
The second statement follows similarly from Proposition 6.1.11. • 

Example 6.2.6. — Let 0(1) be the universal line bundle of PN. As we have seen 
in Example 6.2.3, the Fubini-Study metric of 0(l)an corresponds to the case of the 
standard simplex, £i{x) = x%, i = 1 , . . . , n, and £n+i(x) = 1 - ^ 2 = 1 x^ anô  tne choice 
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Ci = 1/2 for all i. Hence we recover from (6.2.3) the well known expression for the 
height of Pn with respect to the Fubini-Study metric in [BGS94, Lemma 3.3.1]: 

ne>(i; (Pn n + 1 

2 

n+l 

j=2 

1 

3 

n 

h=l 

h 

7 = 1 

1 

2j 

Example 6.2.7. — In dimension 1, a polytope is an interval of the form A = [mo, mi] 
for some mi G Z. The corresponding roof function in (6.2.1) writes down, for x G 
[mo, mi], as 

ti(x) 
r 

7 = 1 

Ci£i(x)log(EI{x)) 

for affine function ^(x) = UiX — \ which take non negative values on A and q > 0. 
The polarized toric variety corresponding to A is P1 together with the ample divisor 

mi[(0 : 1)] — mo[(l : 0)]. Write L = (9pi(xi — x$) for the associate line bundle and 
L for the line bundle with adelic toric metric corresponding to the function The 
Legendre-Fenchel dual to —c^(x) log(^(x)) is the function fi: R —>> R defined, for 
v G R, by 

fi{v) 
A, 

Ui 
v — C{e 

-l ciui . 

Therefore, the function ^ = $v is the sup-convolution of these function, namely 
ip = fi ffl • • • E5 /m. For the height, a simple computation shows that 

hL (P1) = 2 
•mi 

rm0 
dclx 

r 

i=l 

ci 

lUi 
li (x)2 ; i -21og(^(x) ) ) mi 

m0 

6.3. Heights and entropy 

In some cases, the height of a toric variety with respect to the metrics constructed 
in the previous section has an interpretation in terms of the average entropy of a 
family of random processes. 

Let T be an arbitrary polytope containing A. For a point x G ri(A), we consider 
the partition Ux of T which consists of the cones r]x^ of vertex x and base the relative 
interior of each proper face F of T. We consider T as a probability space endowed 
with the uniform probability distribution. Let fix be the random variable that maps 
a point y G T to the base F of the unique cone T)X^F that contains y. Clearly, the 
probability that a given face F is returned is the ratio of the volume of the cone based 
on F to the volume of T. We have V O I ^ T ^ F ) = n_1dist(x, F) voln_i(F) where, as 
before, voln and voln_i denote the Lebesgue measure on Rn and on L^, respectively. 
Hence, 

P(ßx = F) 

dist(x,F)voln_i(F) 

nvoln(r/ 
if dim(F) = n - l . 

(6.3.1) 
0 if dim(F) < n - 2. 
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190 CHAPTER 6. METRICS FROM POLYTOPES 

The entropy of the random variable ßx is 

£(x) 

F 

P(ßx = F) \og(P(ßx = F)), 

where the sum is over the facets F of Y. 
For each facet F of Y we let u'F G W1 be the inner normal vector to F of Euclidean 

norm ( n — 1 ) ! voln_i(F). Therefore u'F = (n — 1 ) ! vo ln_i (F)nF, with uF as in § 6 . 1 . 
Set 

X(F) = ^r(uF) = (n - 1 ) ! v o l n - ^ F ) ^ ^ ) . 

Consider the affine form defined as £F(x) — (x, u'F) — A ( F ) , so that 

r = { x E M R ^ W > 0 , VF}. 

Set A ( r ) = ^2FX(F), where the sum is over the facets F of Y. Since, by [Sch93, 
Lemma 5.1.1], the vectors u'F satisfy the Minkowski condition J2F U'F = 0 > we deduce 
that 

F 

£F 
F 

\(F) = -\(D. 

Let c > 0 be a real number. The concave function $(x) = — YIF C^F(X) log(£F(x)) 
belongs to the class of functions considered in Definition 6.2.2. Thus, we obtain a line 
bundle with an adelic toric metric L on For short, we write X = X A -

The following result shows that the average entropy of the random variable (3X with 
respect to the uniform distribution on A can be expressed in terms of the height of 
the toric variety X with respect to L. 

Proposition 6.3.1. — With the above notation, 

1 

voln(A 
£ d voL 

1 

n!voln(r 

hL (X) 

c(n + l)degL(X) 
A ( r ) l o g ( n ! v o l n ( r ) ) 

In particular, if Y — A, 

1 
V O U A ; 

£ d voln 
hL (X) 

c(n + l)degL(X)2 
A(T 

log(degL(X)) 

degr(X) 

Proof. — For x e ri(A) and F a facet of T, we deduce from the equation ( 6 . 3 . 1 ) that 

P(Px = F)= ^F(X)/(TI\ v o l n ( r ) ) . Hence, 

£{x\ 
F 

£F{x) 

n\ vol n ( r ) 
log 

eF{x) 

n\ vol n r 

1 

n\ voL T F 

£F(x) log(£F(x)) - X(Y) log(n! vol n(T)) 

1 

n\ vol n(Ty 
i)(x] 

c 
• A ( r ) l o g ( n ! v o l n ( r ) ) 

The result then follows from Theorem 5.2.5 and (3.4.2). 
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Example 6.3.2. — The Fubini-Study metric of (9(1 )an corresponds to the case when 
r and A are the standard simplex An and c = 1/2. In that case, the average entropy 
of the random variable f3x is 

1 
n! An 

£ d voL 
2 W ( P - ) 

(n + l) 

n+l 

.7=2 

1 

J 
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CHAPTER 7 

VARIATIONS ON FUBINI-STUDY METRICS 

7.1. Height of toric projective curves 

In this chapter, we study the Arakelov invariants of curves which are the image of 
an equivariant map into a projective space. In the Archimedean case we equip the 
projective space with the Fubini-Study metric, while in the non-Archimedean case we 
equip it with the canonical metric. For each of these curves, the metric, measure and 
toric local height can be computed in terms of the roots of a univariate polynomial 
associated to the relevant equivariant map. 

Let K be either M, C or a complete field with respect to an absolute value associated 
to a nontrivial discrete valuation. On Pr, we consider the universal line bundle C{1) 
equipped with the Fubini-Study metric in the Archimedean case, and with the canon­
ical metric in the non-Archimedean case. We write 0(1) for the resulting metrized 
line bundle. We also consider the toric section Soo of (9(1) whose Weil divisor is 
the hyperplane at infinity. The next result gives the function ^||.|| associated to the 
induced metric on a subvariety of Pr which is the image of an equivariant map. 

Proposition 7.1.1. — Let H: —> Zr be an injective map such that H(N) is a sat­
urated sublattice of Zr, and p G FQ(K). Consider the map ipH,p- T —)• Pr; set 
L = <£jy-5p£Kl) and s — W*H,psoo, and let ^ s : —> R. be the associated concave func­
tion. Let ef be the ith vector in the dual standard basis of 17 and set mi = e( oH G M, 
i = 1 , . . . , r, and p — (1 : pi : ... : pr) with pi G Kx . Then, for u G ATR 

WL,s (u) 
_ l 

2 
log(l vr 

'2=1 Vl 12 e - 2 ( m i , u ) \ in the Archimedean case. 
^mini<2<r{0, (m-i, u) + val(p,)} in the non-Archimedean case. 

Proof. — In the Archimedean case, the expression for the concave function follows 
from that for P ^ (Example 4.3.9(2)) and Proposition 4.3.19. The non-Archimedean 
case follows from Example 4.3.21. • 
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Let Y C Pr be the closure of the image of the map <fiH,p- In the Archimedean case, 
the roof function seems difficult to calculate. Hence it is difficult to use it directly to 
compute the toric local height (see Example 2.4.5). A more promising approach is to 
apply the formula of Corollary 5.1.8. Writing ip = ip-^ this formula reads 

h f (Y) (n + l)! 
NR 

Wv o dip (IMMW- (7.1.1 

To make this formula more explicit in the Archimedean case, we choose a basis of A/", 
hence coordinate systems in and and we write 

9 = (01, • • -,9n) Vip: NR —> A, 

where A = stab(-*/>) is the associated polytope. Then, from Proposition 2.7.3 and 
Example 2.7.11(1), we derive 

htor Y ( n + l ) ! 
NR 

<V#u),u) W(u)) ( - l )n det(Hess(^)) dvol^ 

= (n + l)! 
NR 

[{g(u),u) - ip{u)) -l)ndgi A--- A dgn. 

When K is not Archimedean, we have MMW = Ylveu(tp)0 v°U/(^*)^ and, for 
v e n (^ ) ° , 

ipy o dip(v) 1 
vol M(v*) b 

(x,v) d VOIM —ip(v) 

see Proposition 2.7.4 and Example 2.7.11(2). Thus, if now we denote by g: NR —> MR 
the function that sends a point u to the barycentre of dib(u), then 

hfor(f) = ( n + l ) ! 
veu{i;)Q 

{(g(v),v) - Mv)) 

In the case of curves, the integral in (7.1.1), can be transformed into another 
integral that will prove useful for explicit computations. We introduce a notation for 
derivatives of concave functions of one variable. Let / : R —>• R be a concave function. 
For u G l , write 

f'(u) l 
2 

;z?+/(«) + i?_/(«)), (7.1.2) 

where D+f and D^f denote the right and left derivatives of / respectively, that exist 
always [Roc70, Theorem 23.4]. Then f is monotone and is continuous almost ev­
erywhere (with respect to the Lebesgue measure). The associated distribution agrees 
with the derivative of / in the sense of distributions. This implies that, if (/n)n is 
a sequence of concave functions converging uniformly to / on compacts, then (ffn)n 
converges to / ' almost everywhere. 

Lemma 7.1.2. — Let ip: R —> R be a concave function whose stability set is an interval 
[a, b] and ipy o dip the Mz(ip)-measurable function defined in (2.7.7). Then 

2 
R 

Wv odiPàMzW = (b-a){ipy{a)+ipy(b)) 
R 

(iP'(u) - a)(b-iP'(u))du. 
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Proof. — We argue as in the proof of Theorem 2.7.6. By the properties of the 
Monge-Ampère measure (Proposition 2.7.2) and of the Legendre-Fenchel dual (Propo­
sition 2.2.3), the left-hand side is continuous with respect to uniform convergence of 
functions. Again by Proposition 2.2.3 and the discussion before the lemma, the right-
hand side is also continuous with respect to uniform convergence of functions. By 
the compacity of the stability set of ip, Lemma 2.7.7 implies that there is a sequence 
of strictly concave smooth functions (ipn)n>i converging uniformly to ip. Hence, it is 
enough to treat the case when ip is smooth and strictly concave. 

Using Example 2.7.11(1), we obtain 

IR 
W v o aW dMZ (w) 

R 
(ip(u)-urp'(u))ip"(u) du. 

Consider the function 

y(u) Win) 
a + b 

2 
ip{u) u 

mu ))2 
2 

u 
ab 

2 

Win) 
a + b 

2 
rl>yW(u)) u 

2 
[ip'{u) -a)(b-ip'{u)). 

Then 

lim 
u-oo 

•f(u) 
b-c 

2 
WV (a) lim 

u—> — oo 
y{u) 

a — b 
2 

0V(&) 

and 

d-y = (ip- uip')ip" du 
1 

2 
W -a){b-é')du, 

from which the result follows. 

With the notation in Proposition 7.1.1, assume that N = Z. The elements rrij G 
Â v can be identified with integer numbers and the hypothesis that the image of H is 
a saturated sublattice is equivalent to gcd(rai , . . . , mr) = 1. Moreover, by reordering 
the variables of Pr and multiplying the expression of (fH,P by a monomial (which does 
not change the equivariant map), we may assume that 0 < mi < • • • < mr. We make 
the further hypothesis that 0 < mi < ••• < mr. With these conditions, we next 
obtain explicit expressions for the concave function ip and the associated measure and 
toric local height in terms of the roots of a univariate polynomial. We consider the 
absolute value | • | of the algebraic closure K extending the absolute value of K. 

Theorem 7.13. — Let 0 < mi < • • • < mr be integers with gcd(mi , . . . , mr) — 1, and 
pi,... ,pr £ Kx. Let (p: T —>> Pr be the map given by (p(t) = (1 : p\tmi prtmr) 
and let Y be the closure of the image of (p. Consider the polynomial q G K[z] defined 
as 

Q • 
l + £ - = i \Pi\2*m* in the Archimedean case, 

1 + Ej =1 pj z mj in the non-Archimedean case 
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Let {£,i}i C K be the set of roots of q and, for each i, let £i G N be the multiplicity 
of Let L and s be as in Proposition 7.1.1. Then, in the Archimedean case, 

1. WL,s (u) -log \pr \ -
1 
2 

M O G | E ^ U &| JorueR 

2- MzWz.) -2 
i 

li 
Cie 2u 

L - £ E 2 » ) 2 
du, 

3. hf(Y) - mr log \pr\ 
1 
2 

i 

l2 1 
2 i<j 

lilj & + 0 
& - 0 

(log(-&) - log(-^-)), w/iere 

log zs £/ie principal determination of the logarithm. 

While in the non-Archimedean case, 

4- *ho,a(u val(pr 
i 

ti min{ix, val(^)} for u G K, 

5. Mz№ztS) 
i 

^dval(^); 

6. hf{Y) mr log \pr\ 
i<j 

^ • | l o g | 6 | - logfo| | . 

Remark 7.1.4. — The real roots of the polynomial q are all negative, which allows the 
use of the principal determination of the logarithm in (3). Introducing the argument 
6i G ]—7r,7r[ of — £i, the last sum in (3) can be rewritten 

1 
2 

i<3 

£%£j 
( L & | 2 - I C I 2 ) log MilijI + 2 | 6 | f o | ( 0 I - ^ ) s i n ( ^ _ e3) 

6 2 + fo2-2|& ^ c o s ^ - f l , - ) 

showing that it is real. 

Proof of Theorem 7.1.3. — Write ip = ip-^ s for short. First we consider the Archime­

dean case. We have that q = \pr\2 Yli(z ~ d)£i• By Proposition 7.1.1, 

iP(u) 
1 

2 
loz(a(e-'u)) : "log \pr\ 

1 
2 

i 

li LOG I E " 2 " - 6 | , 

which proves (1). Hence, 

W (u) 

1 

li 
L 

1 - & E2« 
and w" (u) 

i 

2£L 
&E2U 

( L - & E 2 « ) 2 

The Monge-Ampere measure of ip is given by — ip" du, and so the above proves (2). 
To prove (3) we apply the equation (7.1.1) and Lemma 7.1.2. We have that stab(^) = 
[0,mr], ^v(0) = 0, and ipw (mr) =log|pr | . Thus, 

H F (Y mr log \pr 
— oo 

(mr — ip')ip' du. (7.1.3) 
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We have rnr — tp'(u) 

i 

t, l 
l 

l - 6 e 2 « 
i 

li Ci e-2u 
1 - Ei e2i 

Hence, 

(mr — ij)'{u))xl)'(u) 
i 

L 6ez" 
1 - 6 e2u 

j 

lj 1 
1 - 6 e2u, 

i 

I2 
Ci e2u 

(1- Ci e2u)2 
li 

£i£j 
Ci e2u 

l - ^ e 2 - ) ( l - 0 e 2 w ) 

Moreover 
oo 

— oo 

&e2u 

( l - 6 e 2 a ) 2 
du 

1 

2(1 -£ie2«) 

OO 

— OO 

1 

2 
and 

oo 

-oo 

6e2" 
: i - £ i e 2 u ) ( l - ^ e 2 u ) 

du 6 
.2(6 - 6 . 

( l o g ( l - 0 e 2 u ; l o g ( l - 6 e 2 u 
OO 

— OO 
6 

2(6 " 0 
( l o g ( - & ) - l o g ( - 6 ) ) ; 

for the principal determination of log. These calculations together with the equa­
tion (7.1.3) imply that 

h f (Y) : mr log \pr\ 
1 

2 
i 

£2 1 
2 

i=1 

£{£j 6 
6 - 6 

( l o g ( - 6 ) - l o g ( - 6 ) ) 

= mr log \pr\ 
1 
2 

2 
2̂ 

1 

2 
2<j 

lilj 6 + 6 
6 - 6 

(log(~6) log( -6) ) 

which proves (3). 

Next we consider the non-Archimedean case. Let ( E K* and write V{ — val(^) 
for short. Proposition 7.1.1 and the condition mi ^ rrij for i ^ j , imply, after possibly 
multiplying C by a sufficiently general root of unity, that 

^(val(C)) min{0, ra?-val(C) •val(pi)} = val(g(0) 

By the factorization of q 

val(ç(C)) val(pr) 

i 

7?;val(C-6) = val(pr) 

i 
£i min{val(C),^} 

The image of val: K -» R is a dense subset. For u G R, we deduce that 

vb{u) val(pr) 

i 

£i min{ii, Vi] 

which proves (4). The sup-differential of this function is, for u G R, 

dip{u) ^j:Vj>Vi 
£ • 

<j:Vj>Vi lj if u = Vi for some i, 

j:vj>u 
lj otherwise 
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Hence, the associated Monge-Ampere measure is J2i£i<5Vl, which proves (5). The 
derivative of ip in the sense of (7.1.2) is, for u G R, 

ip\u) ^j:Vj>Vi 
lj 1 

2 j:vj=Vi ti 
if u = vi for some i, 

<j:vj>z tj 
otherwise. 

Moreover, stab(^) = [0,mr], ^V(0) = 0 and ipy\mr) = -val(pr). By (7.1.1) and 
Lemma 7.1.2 

h f X —mrval(prN 
»00 

— oc 
(mr — ip )ip du. (7.1.4; 

If we write 

h(u) 
0 if U < Vi 

li if U > Vi, 

then, we have that ip'{u) = ^ ^% ~~ fi(u) and mr — ip'iu) = J2i fi almost everywhere. 
Therefore 

•00 

r-oo 
(rnr — ip)ip du -

i,j 

oo 

— 00 
îi{tj - fi)àu 

i,3 

£i£j max{0, Vj — Vi}. [7.1.5) 

Thus, joining together (7.1.4), (7.1.5) and the relation log|£| = — val(£) we deduce 

h f Y mr log \pr \ -

i;j 
^ m a x { 0 , l o g ( | 6 | / | 6 | ) } 

finishing the proof of the theorem since, for i < j , 

max{0, log( |6 | / |0 | )}+max{0, log( |6 | / |6 l )} I log 1 6 1 - log fo||. 

We now treat the global case. 

Corollary 7.1.5. — Let IK be a global field. Let 0 < m\ < • • • < mr be integer numbers 
with gcd(rai,..., mr) — 1, and pi,..., pr G IKX . Let ip: T —>> Pr be the map given by 
cp(t) = (1 : prf1711 : ... : prtmr), Y the closure of the image of (p, and L = ip*0{\), 
where 0(1) is equipped with the Fubini-Study metric for the Archimedean places and 
with the canonical metric for the non-Archimedean places. For v G 9JIk, set 

qv = 
1 + V j = 1 |pj|2 zmj if v is Archimedean, 

1 + V j = 1 pjzmj if v is not Archimedean. 

Let {£,v,i} C Kv be the set of roots of qv and, for each i, let £v^ G N denote the 
multiplicity of £vj. Then 

hL(Y) 

v\oo 

nv 
1 

2 
i 

lv,i 
1 

2 
i<j 

£ •£v,j 
Ev,i + Ev,h 
Ev,i - Ev,h 

( log( -^ ,^ log( -^ , j ) 

+oo 
Tin 

i<j 
£ •£ • log |Ev,i| log \Uj I I 
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Proof. — This follows readily from Proposition 5.2.4, Theorem 7.1.3, and the product 
formula. • 

Corollary 7.1.6. — Let Cr C PQ be the Veronese curve of degree r and 0(1) the 
universal line bundle on PQ equipped with the Fubini-Study metric at the Archimedean 
place and with the canonical metric at the non-Archimedean ones. Then 

hO(1)(Cr) r 
2 

7T 
[r/2\ 

7 = 1 

1 
27 

r + 1 
cot 

7T 7 

r + 1 
e 

r 
2 

7TÛ. 

Proof. — The curve Cr coincides with the closure of the image of the map ip: T —>> PR 
given by (p(t) = (1 : t : t2 : ... : tr). With the notation in Corollary 7.1.5, this map 
corresponds to rrii = i and pi = 1, for z = 1 , . . . , r. Then qv = Y^j=o 2-7 f°r a^ ^ ^ 
SDTQ. Consider the primitive (r + l)-th root of unity UJ = . The polynomial qv is 
separable and its set of roots is {u/}z=i,...,r- Since |u;% = 1 for all v, Corollary 7.1.5 
implies that 

hr(Cr) 
r 
2 

1 

2 
i<j 

w1 + wj 

w1 + wj 
' l o g ( - w ' ) l o g ( - u ^ ) ) 

r 
2 

1 

2 
l=j 

w1 + wj 
u/ — wj 

log(-u/; (7.1.6) 

We have that 

r 

j=1 

uP 4- 1 

up - 1 

r 

j=1 

wj 

uji - 1 

r 

j=1 

1 

UP - 1 

r 

j=1 

1 

1 - c j - J 

r 

3 = 1 

1 

UP - 1 
0. 

This implies, for / = 1,. . ., r, 

1>j<r,j=m 

UT — CJ-7 

UT — CJ-7 

u;z + 1 

u;z - 1 
z cot 

irl 

r + 1 

Hence 

1 
2 

l=j 

wl + wj 

wl - wj 
l o g ( - w ' ) 

2 

2 

r 

/=1 
cot 

irl 

r + 1 
l o g ( - ^ ) 

7T 
Lr/2J 

l=1 
cot 

7tl 
t + 1 

1 
2/ 

r + 1 

since cot(^(rr+1~0)log(-a;r+1-0 = c o t ( ^ ) l o g ( - ^ ) for I = l , . . . , | r / 2 j and 

log(— cj~2~) = 0 whenever r is odd. The statement follows from these calculations 

together with (7.1.6). • 
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Here follow some special values: 

r 1 2 3 5 7 

h0(1)(Cr) 1 
2 

1 
1 

3 V3 
7T 

3 
2 

1 

2 
7T 

5 

2 
7 

3 3 
7T 

7 
2 

1 2Ì 7T 

Corollary 7.1.7. — the notation of Corollary 7.1.6, h^-y(CV) = r logr + 0(r ) 
for r —> oo. 

Proof — We have that 7 r c o t ( 7 r x ) 
1 

x 
0(1) for x 0. Hence, 

hO(1) (Cr) 
Lr/2J 

i=1 

1 
2.7 

r + 1 
r + 1 

j 
0(r) r 

[r/2\ 

j=1 

1 

j 
0( r ) r log r + 0 ( r ) . 

>y the theorem of algebraic successive minima [Zha95a, Theorem 5.2] 

/iess(Cr 
h0m(CV) 

deg0(1)(Cr) 
2/iess(Cr) 

The essential minimum of Cr is /iess (Cr) = | log(r + 1) [Som05, Theoreme 0.1]. 
Hence, the quotient h°(1)^^ is asymptotically closer to the upper bound than to 
the lower bound. 

7.2. Height of toric bundles 

Let n > 0 and write PN = PQ for short. Given integers ar > • • • > ao > 1, consider 
the bundle P(l£) PN of hyperplanes of the vector bundle 

E = O(a0) ® O(ai) © • • • 0 0(ar) —> Pn, 

where O(CLJ) denotes the a^-th power of the universal line bundle of Pn. Equivalently, 
F(E) can be defined as the bundle of lines of the dual vector bundle Ev. The fibre of 
the map 7r: F(E) —> Pn over each point p G Pn(Q) is a projective space of dimension r. 
This bundle is a smooth toric variety over Q of dimension n + r, see [Oda88, p. 58-59], 
[Ful93, page 42]. The particular case n = r — 1 corresponds to Hirzebruch surfaces: 
for b > 0, we have ¥b = P(0(O) 0 G{b)) ~ P(O(a0) 0 O(a0 + 6)) for any a0 > 1. 

The tautological line bundle of P(E), denoted 0p(£)(—l), is defined as a subbundle 
of 7r*E'v. Its fibre over a point of F(E) is the inverse image under rr of the line in 
Ev which is dual to the hyperplane of E defining the given point. The universal line 
bundle CV(£)(1) of F(E) is defined as the dual of the tautological one. Since O(a0), 
j = 0 , . . . , r, is ample, the universal line bundle is also ample [Har66, propositions 2.2 
and 3.2]. This is the line bundle corresponding to the Cartier divisor aoDo + D\, 
where Do denotes the inverse image in ¥(E) of the hyperplane at infinity of Pn and 
Di = P(0 0 0(ai) 0 • • • 0 0(ar)). Observe that, although ¥(E) is isomorphic to the 
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bundle associated to the family of integers at + c for any c G N, this is not the case 
for the associated universal line bundle, that depends on the choice of c. 

Following Example 3.1.3, we regard Pn as a toric variety over Q equipped with the 
action of the split torus G7^. Let s be the toric section of 0{1) which corresponds to 
the hyperplane at infinity Ho and let Sj = s®~aJ, which is a section of O(-CLJ). Let 
U — Fn\Ho. The restriction of F(E) to U is isomorphic to U x Pr through the map 
ip defined, for p G U and q G Pr, as 

(p, q) i—> (jp, qoS0(p) 0 • • • 0 qrsr(p)) 

The torus T := GJ^+r can then be included as an open subvariety of F(E) through the 
map Lp composed with the standard inclusion of G^+r into U x Pr. The action of T 
on itself by translation extends to an action of the torus on the whole of F(E). Hence 
F(E) is a toric variety over Q. With this action the divisor ao A) + D\ is a T-Cartier 
divisor. 

By abuse of notation, we also denote Ey the total space associated to the vector 
bundle £v . The map G£+r -> Ey defined as 

(z,w) i—> ((1 : z), (s0(l : z) © : z) ® wrsr(l : z))) (7.2.1* 

induces a nowhere vanishing section of the tautological line bundle of F(E) over the 
open subset T. Its inverse defines a rational section of 0p(£)(l), denoted Sp>(£), that 
is regular and nowhere vanishing on T. In particular, this section induces a structure 
of toric line bundle on CV(£)(1). The divisor of sp(#) is precisely the T-Cartier divisor 
aoDo + D\ considered above. 

We now introduce an adelic toric metric on 0p(£)(l). For v = oo, we consider 
the complex vector bundle E(C) that can be naturally metrized by the direct sum of 
the Fubiny-Study metric on each factor (D(aj)(<C). By duality, this gives a metric on 
£^V(C), which induces by restriction a metric on the tautological line bundle. Apply­
ing duality one more time, we obtain a smooth metric, denoted || • ||oo, on 0$>(E)(C)(1)' 
Since the Fubini-Study metric on each G(a3)(C) is toric, then || • is toric too. 
For v G dJlq \ {oo}, we equip Ojp(£)(l) with the canonical metric (Proposition-
Definition 4.3.15). We write G¥^E){\) = (0F(E)(1)? (II * \\v)vemq) for the obtained 
adelic metrized toric line bundle. 

We have made a choice of splitting of T and therefore a choice of an identification 
TV = Zn+r. Thus we obtain a system of coordinates in the real vector space associated 
to the toric variety P(i£), namely = Rn+r = Rn x IRr. Since the metric considered 
at each non-Archimedean place is the canonical one, the only nontrivial contribution 
to the global height will come from the Archimedean place. The restriction to the 
principal open subset F(E)Q(C) ~ (Cx)n+r = (Cx)n x (Cx)r of the valuation map is 
expressed, in these coordinates, as the map val: (Cx)n+r —> A% defined by 

val(z,w) = (— log |^i I, - l0g | 2n| , - l0g |wi | . -log|wr|). 
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Write ipoo: —>> IR for the function corresponding to the metric || • and the 
toric section 5p(j5) defined above. 

Lemma 7.2.1. — The function ^oo is defined, for u G l n and v eRr, as 

woo (u,v) 
1 
2 

log 
r 

i = o 

e-2vj 
n 

i=Q 

e-2«,-
aj 

with the convention UQ — VQ = 0. It is a strictly concave function. 

Proof. — The metric on £V(C) is given, for p e Pn(C) and g0, • • • ,qr G C, by 

\\qoS0(p) ® • • • ® qrSriPÌWlo = ko|2||5o(p)||2 + --- + kr|2||5r(p)||2, 

where ||sj(p)|| is the norm of Sj(p) with respect to the Fubini-Study metric on 
0(~aJYn. By Example 1.1.2, 

I M P ) I I 2 
b o l 2 

|po|2 + --- + K I 2 

-a3 

Using Definition 4.3.5 and Proposition 4.3.14(2), we compute the function ip^ via the 
Green function — log| |s®^| | relative to the toric section s ® ^ , defined in (7.2.1), of 
the tautological bundle, dual (9p(£)(l). The explicit description (7.2.1) of the section 
SP (E) implies that, for (z,w) = (z\,..., zn, w\,..., wr) G G^+r, writing zo = î o = 1, 
we have 

||SP(E) (a, w)))2 
r 

J=0 

wj12 
n 

2 = 0 
\Zi 2 

aj 
(7.2.2) 

If val(z, u?) = ( w i , . . . , un, vi,..., vr) and writing = = 0, equation (7.2.2) can be 
written as 

\KrE)(z,w)f : 
r 

3=0 

e-2vj 
n 

i=0 

e-2vj 
aj 

(7.2.3) 

Now ipoo(u, v) equals — log | | s®^(2 : , w)\\, that is —1/2 times the logarithm of the right 
hand side in (7.2.3). This proves the equality of the lemma. 

For the last statement, observe that the functions e~2vj( X l I L o e~2ui)aj are log-
strictly convex, because —1/2 times their logarithm is the function associated to the 
Fubini-Study metric on O(a0Yn, which is a strictly concave function. Their sum is 
also log-strictly convex [BV04, §3.5.2]. Hence, ip^ is strictly concave. • 

Corollary 7.2.2. — The metric || • ||oo is a semipositive smooth toric metric. 

Proof. — The facts that || • ||oo is smooth and toric follow from its construction. The 
fact that it is semipositive follows from Lemma 7.2.1 and Theorem 4.8.1(1). • 

In the following result, we summarize the combinatorial data describing the toric 
structure of F(E) and Of^(l). 
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Proposition 7.2.3 

1. Let ei, 1 < i < n, and fj,l<j< r, be the i-th and {n -f j)-th vectors of the 
standard basis of N = Zn+r. Set fo = —fi — • •' — fr and eo = aofo + • • • + 
arfr — e\ — • • • — en. The fan E corresponding to F(E) is the fan in whose 
maximal cones are the convex hull of the rays generated by the vectors 

eo,'" , efc+i, • • • , e n , / o r " , / ¿ - 1 , / ¿ + 1 , • • • , fr 

for 0 < k < n, 0 < £ < r. This is a complete regular fan. 

2. The support function ^: TVR —>> R corresponding to the universal line bundle 

OF(E){1) and the toric section sF(E) is defined, for u G RN and v G W, as 

W (u,v) min 
0<k<n 
o<e<r 

[a£uk + vt), 

where, for short, we have set UQ = VQ = 0. 

3. The volutove A in M r = Rn x Rr associated to ( E , is 

(x,y)\yi,... ,2/r > 0, 
r 

£=1 

ye < 1, x i , . . . ,xn > 0 
n 

k=l 

xk < L(y) \ 

with L(y) — ao + X ^ = i ( a ^ ~~ ao)y£- Using the convention yo = 1 — X ^ = i 2# and 
x0 = L(y) — Yl'kzzzi xk> then L(y) = Y^£=o a^ an^ ̂ he polytope A can 6e written 
as 

(x,y)\y0,...,yR>0, x0,...,xN>0 

4. The Legendre-Fenchel dual of ip^ ¿5 £ae concave function : A —» R defined, 
for (x, y) G A, as 

Voo (x;,y) 1 

2 £rU/i,.-.,2/rJ + M2/J En 
Xi 

L{y) 
xn 
L(y, 

where, for k > 0; ek is the function defined in (2.4.1). For v ^ 00, the concave 
function $v = is the indicator function of A. 

Proof. — By Corollary 4.3.13, we have \£ = r e c ( ^ o o ) . By the equation (2 .3 .3) , we 
have r e c ^ o o X ' a , v) = limA-^oo A_1'0oo(A(w, v)). Statement (2) follows readily from 
this and from the expression for in Lemma 7 .2 .1 . 

The function ^ is strictly concave on E , because 0p(£)(l) is an ample line bundle. 
Hence E = n ( ^ ) and this is the fan described in statement (1) . 

Let ( e^ , . . . , e^, . . . , fy) be the dual basis of M induced by the basis of N. By 
Proposition 2.5.5 and statement (2) , we have 

A — conv 0, (a0e^)i<k<n, (fe)i<e<r, (&£<=% ' / / ) l<fc<n ; 
l<£<r/ 

Statement (3) follows readily from this. 
For the first part of statement (4), it suffices to compute the Legendre-Fenchel dual 

of ipQQ at a point (x,y) in the interior of the polytope. Lemma 7.2.1 shows that ip^ 
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is strictly concave. Hence, by Theorem 2.4.2(3), V^oo is a homeomorphism between 
NR and A°. Thus, there exist a unique (u, v) G such that, for i = 1 , . . . , n and 
.7 = 1,. . . ,r, 

X{ 
dWoo 

dui 
[u,v) yj 

Olpoc 
dvj 

(u.v) 

We use the conventions XQ = L(y) — Yl7=i x'1^ Vo — ^ — S j = i Vj-> an<̂  — — 0 as 
before, and also ?/ = Y17=o e~2u* and ip = ip^, so that —2ip = log (]Cj=oe_2v? Vaj)-
Computing the gradient of ip, we obtain, for i — 1 , . . . , n and j = 1 , . . . , r, 

xi e-1w 
r 

j=0 

ajria'-1e-2v' r-2ui yje -2w = naj e -2vj. 

Combining these expressions, we obtain, for i = 0 , . . . , n and j — 0 , . . . , r, 

xi 
L(y) 

e~2uz 

n 
y3 =r)a*e-zv*+w. 

From the case i = 0 we deduce n = L(y)/xo and from the case j = 0 it results 
2ip = log(yo) + ao ^og(xo/L(y)). From this, one can verify 

ui 
1 
2 

log Xf) 
< X{ 

vj 
1 
2 

log 2/0 
yj 

ao — a3 
2 

log x0 
L(y) 

From Theorem 2.4.2(4), we have ipy(x,y) = (x,u) + (2/, — ip(u,v). Inserting the 
expressions above for ip, ui and v3 in terms of x,y, we obtain the stated formula. 

For v 7̂  00, we have — The last statement follows from Example 2.2.1. • 

Proposition 3.4.3 and Theorem 5.2.5 imply 

d e g o ( 1 ) ( P ( £ ) ) = (n + r)! vol(A) 

hOP(E) (1) (P(E))) (n + r + 1)! ^ dx dy, 
(7.2.4) 

where, for short, dx and dy stand for dx\ ... dxn and dyi ... dyr, respectively. 
We now compute these volume and integral giving the degree and the height of 

¥(E). We show, in particular, that the height is a rational number. Recall that Ar 
and An are the standard simplexes of W and IRn, respectively. 

Lemma 7.2.4. — With the above notation, we have 

deg OP(E) (1) (¥ (E) 
(n + r)! 

n! Ar 
L(y)ndy, 

^@F(E) ( 1 ) 
V (E)) 

n + r+1 ! 
(n + 1) 

hO(1) (Pn) 
Ar 

L(y)n+l dy 

(n + r + 1)! 

2n! A' 
L(y) ner(y)dy 

where h^yy(Pn) = YHi=i S j = i 27 ^s ^e h^Qht °f ^e projective space relative to the 
Fubini-Study metric. 
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Proof. — The equation (7.2.4) shows that the degree of F(E) is equal to (n + 
r)!vol(A). The same equation together with Proposition 7.2.3(4) gives that the 
height of F(E) is equal to 

(n + r + 1) 
2 

er(y) dx dy- L(y) • en(L(y) x)dxdy (7.2.5) 

Let li and I2 be the two above integrals. Observe A = Uye/\r({y} x (L(y) • An)). 
Then 

vol(a1 
Ar L(y)-A* 

dx dy 
1 

n Ae 
L(y)n dy, 

I1 
Ar L(v)-An 

dx £r{y) dy 
1 

n! Ar 
L(y)ner(y)dy, 

since '£(3/)-A« dx L(y)n ln\. For the second integral, we have that 

I2 
Ar 

L(y) 
L(y)-A" 

en(L(y) x)dx dy 

A' 
L(y)n+1dy 

An 
sn(x) dx 

2 h Pn 

( n + l ) ! Ae 
L(y)n+1dy 

since 
L(y).An sn{L(y)-'x)dx = L(yy An en(x) dx and, by Example 6.2.6, 

Ar 
en(x) dx 

1 

(n + l) 

n 

h=l 

h 

j=1 

1 

J 

2 h ^ -(Pn) 

( n + l ) ! 

The expression for vol(A) gives the formula for the degree. Lemma 7.2.4 then follows 
by carrying up the expressions of I\ and I2 into (7.2.5). • 

Theorem 7.2.5. — With the above notation, we have 

deg OP(E)(1) (F(E) 

i0,...,irGN 
*OH Hr = ™ 

ai0 ... airds 

^®F(E) (!) 
;p(j5) 

¿0 , • • • ,ir £N 
i0 + "-+ir=n+l 

f/0 ari hOPn(l) pn) 

ìq ,..., ir £N 
io + ...+ir=n 

CLQ ... a r

r A n ? r ( i o , • • •, i r ) i 

where An?r(io,..., ir) r 
ra=U 

im +1 n+r+1 
j=im+2 

1 
¿3 

In particular, the height of¥(E) 

is a positive rational number. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014 



206 CHAPTER 7. VARIATIONS ON FUBINI-STUDY METRICS 

Proof. — To prove this result it suffices to compute the two integrals appearing in 
Lemma 7.2.4. However 

L{y) = a0 
r 

£=1 
[at - a0)ye = a0y0 H h aryri 

with yo — 1 — yi — • • • — yr, and therefore 

L(y)n 

aENr+1 
OC =71 

n 

Ka0,... , a+ 

r 

£=0 

[am)ae 

and similarly for L(y)n+l. Now, Corollary 6.1.13 gives 

Ar 
ya0 y1A1 yat dy 

ao !... ar ! 
(LAI + R)! 

a7 
yo°y? yar \og(y3)ày ao !... ar ! 

( M + r ) 

|A|+7 

l=aj+1 

1 

l 

which, combined with the above expression for L(y)n and L(^)n+1, gives 

Ar 
L(y)ndy 

a e r i 1 
\а\=п 

n! 
(n + r) 

r 

£=0 

aal 
n! 

(n + r 
iq + ...+ir = n 

r 

£=0 

a / 

Ar 
L(y)n+1dy 

\n\=n-i-l 

( n + 1 ) 
(n + l + r)! 

r 

£=0 

a"1 (n + 1)! 
(n + l + r)! 

I0,...,IRGN 
'() " -

r 

£=0 

a/ 

and 

A 
L(y)neJy)dy 

r 

m=0 AÇNR+1 \ot\=n 

n!(am + T 
( n + l + r)! 

r 

£=0 

af 
n+l+r 

^=Am+2 

1 

n! 
(n + l + r) 

I0,...,IRGN 
ìqH \-ir=n 

r 

£=0 

ail 
r 

m=0 

'im + 1) 
n+l+r 

£=iM+2 

D 
l 

2n! 

(n + l + r I0,...,IRGN 
I0 + ...+IR=N 

r 

£=Q 

4' An r (io, ..., ir). 

The statement follows from these expressions together with Lemma 7.2.4. 

Remark 7.2.6. — We check AM(0,1) = Ai,i(l ,0) = 3/4. Let b > 0 and let 0¥b(l) 
the adelic line bundle on f5 associated to ao = 1 and a\ = 6 + 1 . Putting n = r = 1, 
ao = 1 and a± = b + 1 in Theorem 7.2.5, we recover the expression for the height of 
Hirzebruch surfaces established in [Mou06]: h.Q^ (^(Fb) = \b2 + | 6 + 3. 
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Berkovich space, 18-20 
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sup-differentiable, 45 

cone, 39 
of a convex set, 40 
of a polyhedral complex, 41 

conical function, 44 
convex decomposition, 40 
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induced by a concave function, 48 
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DVR (discrete valuation ring), 20 

effective domain 
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rational, 43, 77 
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generic fiber of a scheme over S, 21 
generic point of S, 21 

H-representation 
of a piecewise affine concave function, 58 
of a polyhedron, 40 

height of cycles 
global, 36 
local, 30 
toric, 174 
toric local, 165 

Hessian matrix, 69 
Hirzebruch surface, 200 
horizontal orbit in a toric scheme, 98 
horizontal scheme, 98 
hypograph of a concave function, 46 

non-vertical face of, 46 

indicator function of a convex set, 44 
integrable cycle, 34 
inverse image of a concave function by an 

affine map, 51 

left scalar multiplication, 50 
Legendre transform, 45, 54 
Legendre-Fenchel correspondence of a con­

cave function, 48 
Legendre-Fenchel dual of a concave function, 

44 
Lipschitzian function, 67 

measure 
associated to a DSP metric, 29 
associated to a smooth metric, 17 
associated to an algebraic metric, 26 

metric 
algebraic, see algebraic metric 
canonical, see canonical metric 
Fubini-Study, 16, 130 
induced by a model, 23 
on a line bundle 

over C , 16 
over a non-Archimedean field, 21 
over an adelic field, 34 

quasi-algebraic, 37 
semipositive, see semipositive metric 
smooth, see smooth metric 
toric, see toric metric 
with a semipositive model, 26 

metrized line bundle, 27 
algebraic, 23 
DSP, 28 
on an algebraic variety over R, 18 
semipositive, 28 

mixed integral of a family of concave func­
tions, 74 

mixed volume of a family of compact convex 
sets, 74 

model 
canonical, see canonical model 
of a line bundle, 22 

proper, 22 
of a variety, 21 

proper, 21 
semi-stable, 145 
semipositive, 26 
toric, see toric model 

moment map, 118 
Monge-Ampère measure, 69, 139 

mixed, 73 
Monge-Ampère operator, 69 
multiplicity of a polyhedron, 99 

Nakai-Moishezon criterion 
for a toric scheme, 107 
for a toric variety, 94 

non-Archimedean case, 27 
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non-archimedean field, 18 
normalized haar measure, 72 

orbit 
in a toric scheme, 97 
in a toric variety, 79 

peaked point, 121 
picard group, 87 
piecewise affine concave function, 58 

difference of uniform limits of, 66 
h-lattice, 62 
rational, 62 
v-lattice, 62 

piecewise affine function, 57 
defining functions of a, 57 
h-lattice, 68 
on a polyhedral complex, 58 
rational, 68 
v-lattice, 68 

places, 32 
polyhedral complex, 41 

compatible with a piecewise affine function, 
58 

conic, 41 
lattice, 43 
of intersections, 42 
rational, 43 
recession of, 41 
regular, 58 
s c r (strongly convex rational), 43 
strongly convex, 41 

polyhedral cone, 40 
polyhedron, 40 

angle at a face, 60 
lattice, 43 
rational, 43 
strongly convex, 40 

polytope, 40 
associated to a virtual support function, 90 
lattice, 77 

product formula, 33 
projective space, 134 

as a toric scheme, 97 
as a toric variety, 79 

proper intersection, 29 

ramification degree of a finite field extension, 
130 

recession function 
of a concave function, 53 
of a difference of concave functions, 67 

reduction map, 21 
right scalar multiplication, 50 

roof function, 166 
rational, 167 

semigroup algebra, 78 
semipositive metric, 27 

over an adelic field, 34 
smooth metric, 16 

positive, 17 
semipositive, 17, 138 
signed measure associated to, 17 

special fiber of a scheme over S, 21 
special point of S, 21 
stability set of a concave function, 44 
standard simplex, 55, 59, 130 
star 

of a cone in a fan, 80 
of a cone in a polyhedral complex, 98 
of a polyhedron in a polyhedral complex, 

98 
strictly concave function, 54 

on a polyhedral complex, 58 
successive minima, 200 
sup-convolution of concave functions, 49 
sup-differential of a concave function, 45 

image of, 45 
support function 

of a convex set, 44 
of the standard simplex, 59 
on a fan, 84 
virtual, see virtual support function 

symplectic potential, 158 

t-cartier divisor 
on a toric scheme, 102 
on a toric variety, 84 

t-weil divisor, 87, 105 
toric curve, 194 

height of, 198 
toric line bundle 

on a toric scheme, 103 
toric section of, 103 

on a toric variety, 85 
toric section of, 85 

toric metric, 128, 162 
adelic, 162 

toric model 
of a t-cartier divisor, 102 

equivalence of, 103 
proper, 102 
semipositive, 108 

of a toric variety, 95 
morphism of, 95 
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toric morphism 
of toric schemes, 100 
of toric varieties, 80 

toric projective bundles, 200 
degree of, 205 
height of, 205 

toric scheme, 95 
affine, 95 
associated to a fan, 95 
proper, associated to a SCR polyhedral 

complex, 97 
toric structure on a line bundle, 85, 90, 103 
toric subvariety, 83 

translated, 83 
toric variety, 77 

affine, 78 
associated to a fan, 78 
associated to a polytope, 90 
distinguished point of, 79 
polarized, 91 
principal open subset of, 78 
symplectic, 158 

torus 
algebraic, 20 
analytic, 20 
over S, acting on a toric scheme, 95 

translate of a function, 50 
tropical Laurent polynomial, 62 

V-representation 
of a piecewise affine concave function, 58 
of a polyhedron, 41 

valuation map 
of a non-Archimedean field, 94 
of a torus, 101 
of an Archimedean field, 117 

valuation ring, 18 
discrete, 20 
maximal ideal of, 18 
residue field of, 18 

variety with corners associated to a toric va­
riety, 116 

Veronese curve, 199 
vertical curve, 25 
vertical orbit in a toric scheme, 98 
virtual support function, 84 
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