@incollection{AST_2013__352__459_0, author = {Ducros, Antoine}, title = {Les espaces de {Berkovich} sont mod\'er\'es [d'apr\`es {Ehud} {Hrushovski} et {Fran\c{c}ois} {Loeser]}}, booktitle = {S\'eminaire Bourbaki volume 2011/2012 expos\'es 1043-1058}, series = {Ast\'erisque}, note = {talk:1056}, pages = {459--507}, publisher = {Soci\'et\'e math\'ematique de France}, number = {352}, year = {2013}, mrnumber = {3087354}, zbl = {1301.14010}, language = {fr}, url = {http://www.numdam.org/item/AST_2013__352__459_0/} }
TY - CHAP AU - Ducros, Antoine TI - Les espaces de Berkovich sont modérés [d'après Ehud Hrushovski et François Loeser] BT - Séminaire Bourbaki volume 2011/2012 exposés 1043-1058 AU - Collectif T3 - Astérisque N1 - talk:1056 PY - 2013 SP - 459 EP - 507 IS - 352 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2013__352__459_0/ LA - fr ID - AST_2013__352__459_0 ER -
%0 Book Section %A Ducros, Antoine %T Les espaces de Berkovich sont modérés [d'après Ehud Hrushovski et François Loeser] %B Séminaire Bourbaki volume 2011/2012 exposés 1043-1058 %A Collectif %S Astérisque %Z talk:1056 %D 2013 %P 459-507 %N 352 %I Société mathématique de France %U http://www.numdam.org/item/AST_2013__352__459_0/ %G fr %F AST_2013__352__459_0
Ducros, Antoine. Les espaces de Berkovich sont modérés [d'après Ehud Hrushovski et François Loeser], dans Séminaire Bourbaki volume 2011/2012 exposés 1043-1058, Astérisque, no. 352 (2013), Exposé no. 1056, 49 p. http://www.numdam.org/item/AST_2013__352__459_0/
[1] Ramification of local fields with imperfect residue fields, Amer. J. Math. 124 (2002), n° 5, p. 879-920. | DOI | MR | Zbl
& -[2] Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, Amer. Math. Soc, 1990. | MR | Zbl
-[3] Étale cohomology for non-Archimedean analytic spaces, Publ. Math. I.H.É.S. (199), n° 78, p. 5-161 (1994). | EuDML | Numdam | MR | Zbl
,[4] Smooth -adic analytic spaces are locally contractible, Invent. Math. 137 (1999), n° 1, p. 1-84. | DOI | MR | Zbl
,[5] An analog of Tate's conjecture over local and finitely generated fields, Int. Math. Res. Not. 2000 (2000), n° 13, p. 665-680. | DOI | MR | Zbl
,[6] A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures, in Algebra, arithmetic, and geometry : in honor of Yu. I. Manin. Vol. I, Progr. Math., vol. 269, Birkhäuser, 2009, p. 49-67. | DOI | MR | Zbl
,[7] Géométrie algébrique réelle, Ergebnisse Math. Grenzg., vol. 12, Springer, 1987. | MR | Zbl
, & -[8] Eine bemerkenswerte Eigenschaft der formellen Fasern affinoider Räume, Math. Ann. 229 (1977), n° 1, p. 25-45. | DOI | EuDML | MR | Zbl
-[9] Formal and rigid geometry. IV. The reduced fibre theorem, Invent. Math. 119 (1995), n° 2, p. 361-398. | DOI | EuDML | MR | Zbl
, & -[10] Parties semi-algébriques d'une variété algébrique -adique, Manuscripta Math. 111 (2003), n° 4, p. 513-528. | DOI | MR | Zbl
-[11] Espaces analytiques -adiques au sens de Berkovich, Séminaire Bourbaki, vol.2005/2006, exposé n° 958, Astérisque 311 (2007), p. 137-176. | EuDML | Numdam | MR | Zbl
,[12] Eliminating wild ramification, Invent. Math. 19 (1973), p. 235-249. | DOI | EuDML | MR | Zbl
-[13] Über die Methode der diskret bewerteten Ringe in der nicht-archimedischen Analysis, Invent. Math. 2 (1966), p. 87-133. | DOI | EuDML | MR | Zbl
& -[14] Stable domination and independence in algebraically closed valued fields, Lecture Notes in Logic, vol. 30, CUP, 2008. | MR | Zbl
, & -[15] Definable sets in algebraically closed valued fields : elimination of imaginaries, J. reine angew. Math. 597 (2006), p. 175-236. | MR | Zbl
, & -[16] Constructible sets over valued fields, http://www.singacom.uva.es/oldsite/seminarios/ConfWorkVT/archivos/Hrushovski.pdf.
-[17] Nonarchimedean tame topology and stably dominated types, prépublication arXiv:1009.0252. | MR | Zbl
& -[18] Model theory, Graduate Texts in Math., vol. 217, Springer, 2002. | MR | Zbl
-[19] Singular cohomology of the analytic Milnor fiber, and mixed Hodge structure on the nearby cohomology, J. Algebraic Geom. 20 (2011), n° 2, p. 199-237. | DOI | MR | Zbl
-[20] Un résultat de connexité pour les variétés analytiques -adiques : privilège et noethérianité, Compos. Math. 144 (2008), n° 1, p. 107-133. | DOI | MR | Zbl
-[21] A course in model theory, Lecture Notes in Logic, vol. 40, CUP, 2012. | MR | Zbl
& -