@incollection{AST_2013__352__315_0, author = {Garban, Christophe}, title = {Quantum gravity and the {KPZ} formula [after {Duplantier-Sheffield]}}, booktitle = {S\'eminaire Bourbaki volume 2011/2012 expos\'es 1043-1058}, series = {Ast\'erisque}, note = {talk:1052}, pages = {315--354}, publisher = {Soci\'et\'e math\'ematique de France}, number = {352}, year = {2013}, mrnumber = {3087350}, zbl = {1295.83034}, language = {en}, url = {http://www.numdam.org/item/AST_2013__352__315_0/} }
TY - CHAP AU - Garban, Christophe TI - Quantum gravity and the KPZ formula [after Duplantier-Sheffield] BT - Séminaire Bourbaki volume 2011/2012 exposés 1043-1058 AU - Collectif T3 - Astérisque N1 - talk:1052 PY - 2013 SP - 315 EP - 354 IS - 352 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2013__352__315_0/ LA - en ID - AST_2013__352__315_0 ER -
%0 Book Section %A Garban, Christophe %T Quantum gravity and the KPZ formula [after Duplantier-Sheffield] %B Séminaire Bourbaki volume 2011/2012 exposés 1043-1058 %A Collectif %S Astérisque %Z talk:1052 %D 2013 %P 315-354 %N 352 %I Société mathématique de France %U http://www.numdam.org/item/AST_2013__352__315_0/ %G en %F AST_2013__352__315_0
Garban, Christophe. Quantum gravity and the KPZ formula [after Duplantier-Sheffield], dans Séminaire Bourbaki volume 2011/2012 exposés 1043-1058, Astérisque, no. 352 (2013), Exposé no. 1052, 40 p. http://www.numdam.org/item/AST_2013__352__315_0/
[1] Growth and percolation on the uniform infinite planar triangulation", Geom. Fund. Anal. 13 (2003), no. 5, p. 935-974. | DOI | MR | Zbl
- "[2] Percolations on infinite random maps", in preparation. | Zbl
& - "[3] Gaussian multiplicative chaos and KPZ duality", preprint arXiv:1202.5296. | DOI | MR | Zbl
, , & - "[4] Simple random walk on the uniform infinite planar quadrangulation: Subdiffusivity via pioneer points", preprint arXiv:1202.5454. | DOI | MR | Zbl
& - "[5] KPZ in one dimensional random geometry of multiplicative cascades", Comm. Math. Phys. 289 (2009), no. 2, p. 653-662. | DOI | MR | Zbl
& - "[6] Scaling limit of random planar quadrangulations with a boundary", preprint arXiv:1111.7227. | DOI | Numdam | MR | Zbl
- "[7] SLE and the free field: partition functions and couplings", J. Amer. Math. Soc. 22 (2009), no. 4, p. 995-1054. | DOI | MR | Zbl
- "[8] Random walks and quantum gravity in two dimensions", Phys. Rev. Lett. 81 (1998), no. 25, p. 5489-5492. | DOI | MR | Zbl
- "[9] Conformal fractal geometry & boundary quantum gravity", in Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc, 2004, p. 365-482. | MR | Zbl
, "[10] Conformal invariance and intersection of random walks", Phys. Rev. Lett. 61 (1988), p. 2514-2517. | DOI
& - "[11] Liouville quantum gravity and KPZ", Invent. Math. 185 (2011), no. 2, p. 333-393. | DOI | MR | Zbl
& - "[12] Sur le chaos multiplicatif", Ann. Sci. Math. Québec 9 (1985), no. 2, p. 105-150. | MR | Zbl
- "[13] Ising model on a dynamical planar random lattice: exact solution", Phys. Lett. A 119 (1986), no. 3, p. 140-144. | DOI | MR
- "[14] Fractal structure of -quantum gravity", Modern Phys. Lett A 3 (1988), no. 8, p. 819-826. | DOI | MR
, & - "[15] Random walk: a modern introduction, Cambridge Studies in Advanced Math., vol. 123, Cambridge Univ. Press, 2010. | MR | Zbl
& -[16] Values of Brownian intersection exponents. I. Half-plane exponents", Acta Math. 187 (2001), no. 2, p. 237-273. | DOI | MR | Zbl
, & - "[17] Values of Brownian intersection exponents. II. Plane exponents", Acta Math. 187 (2001), no. 2, p. 275-308. | DOI | MR | Zbl
, & , "[18] Intersection exponents for planar Brownian motion", Ann. Probab. 27 (1999), no. 4, p. 1601-1642. | DOI | MR | Zbl
& - "[19] The topological structure of scaling limits of large planar maps", Invent. Math. 169 (2007), no. 3, p. 621-670. | DOI | MR | Zbl
- "[20] Uniqueness and universality of the Brownian map", preprint arXiv:1105.4842. | MR | Zbl
, "[21] Scaling limits of random planar maps with large faces", Ann. Probab. 39 (2011), no. 1, p. 1-69. | DOI | MR | Zbl
& - "[22] Scaling limits of random trees and planar maps", preprint arXiv:1101.4856. | MR | Zbl
& , "[23] Scaling limits of bipartite planar maps are homeomorphic to the -sphere", Geom. Fund. Anal. 18 (2008), no. 3, p. 893-918. | DOI | MR | Zbl
& - "[24] On the sphericity of scaling limits of random planar quadrangulations", Electron. Commun. Probab. 13 (2008), p. 248-257. | DOI | EuDML | MR | Zbl
- "[25] The Brownian map is the scaling limit of uniform random plane quadrangulations", preprint arXiv:1104.1606. | DOI | MR | Zbl
, "[26] Crystal statistics. I. A two-dimensional model with an order-disorder transition", Phys. Rev. 65 (1944), p. 117-149. | DOI | MR | Zbl
- "[27] KPZ formula for log-infinitely divisible multifractal random measures", ESAIM Probab. Stat. 15 (2011), p. 358-371. | DOI | EuDML | Numdam | MR | Zbl
& - "[28] Gaussian multiplicative chaos revisited", Ann. Probab. 38 (2010), no. 2, p. 605-631. | DOI | MR | Zbl
& - "[29] Exact determination of the percolation hull exponent in two dimensions", Phys. Rev. Lett. 58 (1987), no. 22, p. 2325-2328. | DOI | MR
& - "[30] Gaussian free fields for mathematicians", Probab. Theory Related Fields 139 (2007), nos. 3-4, p. 521-541. | DOI | MR | Zbl
- "[31] Conformai weldings of random surfaces: SLE and the quantum gravity zipper", preprint arXiv:1012.4797. | MR | Zbl
, "[32] Conformai invariance in random cluster models. I. Holomorphic fermions in the Ising model", Ann. of Math. 172 (2010), no. 2, p. 1435-1467. | DOI | MR | Zbl
- "