Voter model perturbations and reaction diffusion equations
Astérisque, no. 349 (2013) , 119 p.
@book{AST_2013__349__R1_0,
     author = {Cox, J. Theodore and Durrett, Richard and Perkins, Edwin A.},
     title = {Voter model perturbations and reaction diffusion equations},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {349},
     year = {2013},
     mrnumber = {3075759},
     zbl = {1277.60004},
     language = {en},
     url = {http://www.numdam.org/item/AST_2013__349__R1_0/}
}
TY  - BOOK
AU  - Cox, J. Theodore
AU  - Durrett, Richard
AU  - Perkins, Edwin A.
TI  - Voter model perturbations and reaction diffusion equations
T3  - Astérisque
PY  - 2013
IS  - 349
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2013__349__R1_0/
LA  - en
ID  - AST_2013__349__R1_0
ER  - 
%0 Book
%A Cox, J. Theodore
%A Durrett, Richard
%A Perkins, Edwin A.
%T Voter model perturbations and reaction diffusion equations
%S Astérisque
%D 2013
%N 349
%I Société mathématique de France
%U http://www.numdam.org/item/AST_2013__349__R1_0/
%G en
%F AST_2013__349__R1_0
Cox, J. Theodore; Durrett, Richard; Perkins, Edwin A. Voter model perturbations and reaction diffusion equations. Astérisque, no. 349 (2013), 119 p. http://numdam.org/item/AST_2013__349__R1_0/

[1] D. G. Aronson & H. F. Weinberger - "Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation", in Partial differential equations and related topics (Program, Tulane Univ., New Orleans, La., 1974), Lecture Notes in Math., vol. 446, Springer, Berlin, 1975, p. 5-49. | MR | Zbl | DOI

[2] D. G. Aronson & H. F. Weinberger, "Multidimensional nonlinear diffusion arising in population genetics", Adv. in Math. 30 (1978), no. 1, p. 33-76. | MR | Zbl | DOI

[3] M. Bramson - "Convergence of solutions of the Kolmogorov equation to travelling waves", Mem. Amer. Math. Soc. 44 (1983), no. 285. | MR | Zbl

[4] Y.-T. Chen - "Robustness of two simple rules for the evolution of cooperation on regular graphs", to appear in Ann. Appl. Probab. | MR | Zbl

[5] J. T. Cox, R. Durrett & E. A. Perkins - "Rescaled voter models converge to super-Brownian motion", Ann. Probab. 28 (2000), no. 1, p. 185-234. | MR | Zbl | DOI

[6] J. T. Cox, M. Merle & E. Perkins - "Coexistence in a two-dimensional Lotka-Volterra model", Electron. J. Probab. 15 (2010), p. no. 38, 1190-1266. | MR | Zbl | DOI

[7] J. T. Cox & E. A. Perkins - "Rescaled Lotka-Volterra models converge to super-Brownian motion", Ann. Probab. 33 (2005), no. 3, p. 904-947. | MR | Zbl | DOI

[8] J. T. Cox & E. A. Perkins, "Survival and coexistence in stochastic spatial Lotka-Volterra models", Probab. Theory Related Fields 139 (2007), no. 1-2, p. 89-142. | MR | Zbl | DOI

[9] J. Cox & R. Durrett - "Nonlinear voter models", in Random walks, Brownian motion, and interacting particle systems (R. Durrett & H. Kesten, eds.), Progr. Probab., vol. 28, Birkhäuser, Boston, MA, 1991, p. 203-213. | Zbl | MR

[10] M. Csörgö & L. Horváth - Weighted approximations in probability and statistics, Wiley Ser. Probab. Stat., John Wiley & Sons Ltd., Chichester, 1993. | MR | Zbl

[11] A. De Masi, P. A. Ferrari & J. L. Lebowitz - "Reaction-diffusion equations for interacting particle systems", J. Statist. Phys. 44 (1986), no. 3-4, p. 589-644. | MR | Zbl | DOI

[12] R. Durrett - "Oriented percolation in two dimensions", Ann. Probab. 12 (1984), no. 4, p. 999-1040. | MR | Zbl | DOI

[13] R. Durrett, "Multicolor particle systems with large threshold and range", J. Theoret. Probab. 5 (1992), no. 1, p. 127-152. | MR | Zbl | DOI

[14] R. Durrett, "Ten lectures on particle systems", in Lectures on probability theory (Saint-Flour, 1993), Lecture Notes in Math., vol. 1608, Springer, Berlin, 1995, p. 97-201. | MR | Zbl | DOI

[15] R. Durrett, "Mutual invadability implies coexistence in spatial models", Mem. Amer. Math. Soc. 156 (2002), no. 740. | MR | Zbl

[16] R. Durrett & D. Griffeath - "Contact processes in several dimensions", Z. Wahrsch. Verw. Gebiete 59 (1982), no. 4, p. 535-552. | MR | Zbl | DOI

[17] R. Durrett & S. Levin - "The importance of being discrete (and spatial)", Theoret. Pop. Biol. 46 (1994), p. 363-394. | Zbl | DOI

[18] R. Durrett & C. Neuhauser - "Particle systems and reaction-diffusion equations", Ann. Probab. 22 (1994), no. 1, p. 289-333. | MR | Zbl | DOI

[19] R. Durrett & D. Remenik - "Evolution of dispersal distance", J. Math. Biol. 64 (2012), no. 4, p. 657-666. | MR | Zbl | DOI

[20] R. Durrett & I. Zähle - "On the width of hybrid zones", Stochastic Process. Appl. 117 (2007), no. 12, p. 1751-1763. | MR | Zbl | DOI

[21] P. C. Fife & J. B. Mcleod - "The approach of solutions of nonlinear diffusion equations to travelling front solutions", Arch. Ration. Mech. Anal. 65 (1977), no. 4, p. 335-361. | MR | Zbl | DOI

[22] P. C. Fife & J. B. Mcleod, "A phase plane discussion of convergence to travelling fronts for nonlinear diffusion", Arch. Rational Mech. Anal. 75 (1980/81) , no. 4, p. 281-314. | MR | Zbl | DOI

[23] T. E. Harris - "Nearest-neighbor Markov interaction processes on multidimensional lattices", Advances in Math. 9 (1972), p. 66-89. | MR | Zbl | DOI

[24] A. Hatcher - Algebraic topology, Cambridge University Press, Cambridge, 2002. | MR | Zbl

[25] A. Kolmogorov, I. Petrovsky & N. Piscounov - "Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique", Moscow Universitet. Bull. Math. 1 (1937), p. 1-25. | Zbl

[26] R. Lambiotte & S. Redner - "Vacillating voter models", J. Stat. Mech.: Theory and Experiment (2007), L10001.

[27] R. Lambiotte, J. Saramäki & V. D. Blondel - "Dynamics of latent voters", Phys. Rev. E (3) 79 (2009), no. 4, paper 046107. | MR | DOI

[28] T. M. Liggett, R. H. Schonmann & A. M. Stacey - "Domination by product measures", Ann. Probab. 25 (1997), no. 1, p. 71-95. | MR | Zbl | DOI

[29] T. M. Liggett - Interacting particle systems, Grundlehren Math. Wiss., vol. 276, Springer-Verlag, New York, 1985. | MR | Zbl | DOI

[30] T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Grundlehren Math. Wiss., vol. 324, Springer-Verlag, New York, 1999. | MR | Zbl | DOI

[31] H. P. Mckean - "Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov", Comm. Pure Appl. Math. 28 (1975), no. 3, p. 323-331. | MR | Zbl | DOI

[32] J. Molofsky, R. Durrett, J. Dushoff, D. Griffeath & S. Levin - "Local frequency dependence and global coexistence", Theor. Pop. Biol. 55 (1999), p. 270-282. | Zbl | DOI

[33] C. Neuhauser & S. W. Pacala - "An explicitly spatial version of the Lotka-Volterra model with interspecific competition", Ann. Appl. Probab. 9 (1999), no. 4, p. 1226-1259. | MR | Zbl | DOI

[34] H. Ohtsuki, C. Hauert, E. Lieberman & M. Nowak - "A simple rule for the evolution of cooperation on graphs and social networks", Nature 441 (2006), p. 502-505. | DOI

[35] F. Spitzer - Principles of random walk, second ed., Grad. Texts in Math., vol. 34, Springer-Verlag, New York, 1976. | MR | Zbl

[36] H. F. Weinberger - "Long-time behavior of a class of biological models", SIAM J. Math. Anal 13 (1982), no. 3, p. 353-396. | MR | Zbl | DOI