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DEFORMATION QUANTIZATION MODULES

Masaki KASHIWARA and Pierre SCHAPIRA

Abstract. — On a complex manifold (X, Ox), a DQ-algebroid #/x is an algebroid stack
locally equivalent to the sheaf €x[[#]] endowed with a star-product and a DQ-module
is an object of the derived category DP(#/x).

The main results are:

the notion of cohomologically complete DQ-modules which allows one to deduce
various properties of such a module .# from the corresponding properties of the

Ox-module ZXQL@ZX [h]///,

a finiteness theorem, which asserts that the convolution of two coherent DQ-ker-
nels defined on manifolds X; x X; (¢ = 1,2,j = i + 1), satisfying a suitable
properness assumption, is coherent (a non commutative Grauert’s theorem),
the construction of the dualizing complex for coherent DQ-modules and a du-
ality theorem which asserts that duality commutes with convolution (a non
commutative Serre’s theorem),

the construction of the Hochschild class of coherent DQ-modules and the theo-
rem which asserts that Hochschild class commutes with convolution,

in the commutative case, the link between Hochschild classes and Chern and
Euler classes,

in the symplectic case, the constructibility (and perversity) of the complex of
solutions of an holonomic DQ-module into another one after localizing with
respect to A.

Hence, these Notes could be considered both as an introduction to non commutative
complex analytic geometry and to the study of microdifferential systems on complex
Poisson manifolds.

Résumé (Modules de déformation quantification). — Sur une variété complexe (X, Ox),
un DQ-algebroide &/x est un champ d’algébroides localement équivalent au faisceau
Ox[[h]] muni d’un star-produit et un DQ-module est un objet de la catégorie dérivée
Db ().

Les résultats principaux sont :

(© Astérisque 345, SMF 2012



— la notion de DQ-module cohomologiquement complet qui permet de déduire di-
verses propriétés d’un tel module .# des propriétés correspondantes du &'x-mo-

dule Zxé’zx [h]///,

— un théoréme de finitude qui assure que la convolution de deux DQ-noyaux co-
hérents définis sur des variétés X; x X; (¢ = 1,2,j = i + 1), vérifiant certaines
hypotheéses de propreté, est cohérent (un théoréme de Grauert non commutatif),

— la construction du complexe dualisant pour les DQ-modules cohérents et un
théoréme de dualité qui assure que la dualité commute avec la convolution (un
théoréme de Serre non commutatif),

— la construction de la classe de Hochschild des DQ-modules cohérents et le théo-
réme qui assure que la classe de Hochschild commute avec la convolution,

— dans le cas commutatif, le lien entre classes de Hochschild et classes de Chern
et de Euler,

— dans le cas symplectique, la constructibilité (et la perversité) du complexe des
solutions d’'un DQ-module holonome dans un autre, aprés localisation en #.

Ces Notes peuvent donc étre considérées a la fois comme une introduction a la géomé-
trie analytique complexe non commutative et & ’étude des systémes microdifférentiels
sur les variétés de Poisson complexes.
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INTRODUCTION

In a few words these Notes could be considered both as an introduction to non com-
mutative complex analytic geometry and to the study of microdifferential systems.
Indeed, on a complex manifold X, we replace the structure sheaf &x with a formal
deformation of it, that is, a DQ-algebra, or better, a DQ-algebroid, and study mod-
ules over this ring, extending to this framework classical results of Cartan-Serre and
Grauert, and also classical results on Hochschild classes and the index theorem. Here,
DQ stands for “deformation quantization”. But the theory of modules over DQ-alge-
broids is also a natural generalization of that of Z-modules. Indeed, when the Poisson
structure underlying the deformation is symplectic, the study of DQ-modules natu-
rally generalizes that of microdifferential modules, and sometimes makes it easier (see
Theorem 7.2.3).

The notion of a star product is now a classical subject studied by many authors
and naturally appearing in various contexts. Two cornerstones of its history are the
paper [2] (see also [4, 5]) who defines *-products and the fundamental result of [48]
which, roughly speaking, asserts that any real Poisson manifold may be “quantized”,
that is, endowed with a star algebra to which the Poisson structure is associated. It
is now a well-known fact (see [37, 47]) that, in order to quantize complex Poisson
manifolds, sheaves of algebras are not well-suited and have to be replaced by algebroid
stacks. We refer to [16, 64] for further developments.

In this paper, we consider complex manifolds endowed with DQ-algebroids, that
is, algebroid stacks locally associated to sheaves of star-algebras, and study modules
over such algebroids. The main results of this paper are:

— a finiteness theorem, which asserts that the convolution of two coherent kernels,
satisfying a suitable properness assumption, is coherent (a kind of Grauert’s
theorem),

— the construction of the dualizing complex and a duality theorem, which asserts
that duality commutes with convolution,

— the construction of the Hochschild class of coherent DQ-modules and the theo-
rem which asserts that Hochschild class commutes with convolution,

— the link between Hochschild classes and Chern classes and also with Euler
classes, in the commutative case,

— the constructibility of the complex of solutions of an holonomic module into
another one in the symplectic case.
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viii INTRODUCTION

Let us describe this paper with some details.

In Chapter 1, we systematically study rings (¢.e., sheaves of rings) which are formal
deformations of rings, and modules over such deformed rings. More precisely, consider
a topological space X, a commutative unital ring K and a sheaf o of K[[/i]]-algebras
on X which is A-complete and without A-torsion. We also assume that there exists a
base of open subsets of X, acyclic for coherent modules over & := o/ /hsf .

We first show how to deduce various properties of the ring &/ from the corre-
sponding properties on 7. For example, & is a Noetherian ring as soon as & is
a Noetherian ring, and an /-module .# is coherent as soon as it is locally finitely
generated and A".# /h"t .4 is ofy-coherent for all n > 0. Then, we introduce the
property of being cohomologically complete for an object of the derived category
D(«7). We prove that this notion is local, stable by direct images and an object .#
with bounded coherent cohomology is cohomologically complete. Conversely, if .Z is
cohomologically complete, it has coherent cohomology objects as soon as its graded

module %Q% % has coherent cohomology over < (see Theorem 1.6.4). We also give
a similar criterion which ensures that an «/-module is flat.

In Chapter 2 we consider the case where X is a complex manifold, K = C, &« = Ox
and & is locally isomorphic to an algebra (€x[[h]], x) where * is a star-product. It is
an algebra over C":=C[[A]]. We call such an algebra </ a DQ-algebra. We also consider
DQ-algebroids, that is, C"-algebroids (in the sense of stacks) locally equivalent to the
algebroid associated with a DQ-algebra. Remark that a DQ-algebroid on a manifold
X defines a Poisson structure on it. Conversely, a famous theorem of Kontsevich
[48] asserts that on a real Poisson manifold there exists a DQ-algebra to which this
Poisson structure is associated. In the complex case, there is a similar result using
DQ-algebroids. This is a theorem of [47] after a related result of [37] in the contact
case.

If (X, &x) is a complex manifold X endowed with a DQ-algebroid &/x, we denote
by X the manifold X endowed with the DQ-algebroid «7y" opposite to @x.

We define the external product @x, «x, of two DQ-algebroids «/x, and &/x, on
manifolds X; and X,. There exists a canonical &x yx xa-module ¥x on X x X sup-
ported by the diagonal, which corresponds to the @/x-bimodule «/x.

On a complex manifold X endowed with a DQ-algebroid, we construct the C"-al-
gebroid 2¢, a deformation quantization of the ring Zx of differential operators. It
is a Ch-subalgebroid of &ndcn(#x). It turns out that 2§ is equivalent to Zx[[A]].
This new algebroid allows us to construct the dualizing complex w;‘?’ associated to
a DQ-algebroid «7x. This complex is the dual over @3‘7{ of &7x, similarly to the case
of Ox-modules. Note that the dualizing complex for DQ-algebras has already been
considered in a more particular situation by [23, 24].

We also adapt to algebroids a results of [42] which allows us to replace a coherent
/x-module by a complex of “almost free” modules, such an object being a locally
finite sum @;cr(L;)u,, the L;’s being free o&/x-modules of finite rank defined on a
neighborhood of U;. We give a similar result for algebraic manifolds.

ASTERISQUE 345



INTRODUCTION ix

Chapter 3. Consider three complex manifolds X; endowed with DQ-algebroids 2/,
(i = 1,2,3). Let % € Db, (ox,x xg,,) (i =1,2) be two coherent kernels and define
their convolution by setting

L
H 0 Ky =Rp1a (1 BA)®,, . Cx,)-
2

Here p14 denotes the projection of the product X; x X§ x X, x X3 to X3 x X3.

We prove in Theorem 3.2.1 that, under a natural properness hypothesis, the convo-
lution J#] o 5 belongs to ch’oh (2%, x Xg) and in Theorem 3.3.3 that the convolution
of kernels commutes with duality.

For further applications, it is also interesting to consider the localized algebroid
AP = Chloc @, @x, where CMl°¢ = C((h)). An #3°-module ./ is good if for
any relatively compact open subset U of X, there exists a coherent .o;-module which
generates ./ |y. Then we prove that there is a natural map of the Grothendieck groups
Kga (25¢°) — Keon(grp ) and that this map is compatible to the composition of
kernels.

Note that these theorems extend classical results of Cartan, Serre and Grauert on
finiteness and duality for coherent &-modules on complex manifolds to DQ-algebroids.

For papers related to DQ-algebras and DQ-algebroids on complex Poisson mani-
folds, and particularly to their classification, we refer to [7, 8, 12, 16, 9, 52, 53, 63].

Chapter 4. We introduce the Hochschild homology J¢¢(</x ) of the algebroid «/x:

L
HH (Hx) == Cx-®,, . ,Cx, an object of DP(C%),

and, using the dualizing complex, we construct a natural convolution morphism
L
R Rpi13) (pig HH (x, x x3) @3 FH (Hx,x x2)) — FH (x, x x2)-
2

To an object .# of DY, (#/x), we naturally associate its Hochschild class hhx (.#), an

element of ngpp( J/{)(X ; H (2/x)). The main result of this chapter is Theorem 4.3.5
which asserts that taking the Hochschild class commutes with the convolution:

(001) hhxlxxg(,)i/l o%) = thIXXza(Jt/l))? hhxzxxg(%).

In Chapter 5, we consider the case where the deformation is trivial. In this case,
there is no need of the parameter /& and we are in the well-known field of complex
analytic geometry. Although the results of this chapter are considered as well-known
(see in particular [35]), at least from the specialists, we have decided to include this
chapter. Indeed, to our opinion, there is no satisfactory proof in the literature of the
fact that the Hochschild class of coherent &x-modules is functorial with respect to
convolution. We recall in particular the formula, in which the Todd class appears,
which makes the link between Hochschild class and Chern classes. This formula was
conjecturally stated by the first named author around 1991 and has only been proved
very recently by Ramadoss [55] in the algebraic setting and by Grivaux [32] in the
general case. For other papers closely related to this chapter, see [17, 18, 35, 50, 59|.

SOCIETE MATHEMATIQUE DE FRANCE 2012



x INTRODUCTION

In Chapter 6 we study Hochschild homology and Hochschild classes in the case
where the Poisson structure associated to the deformation is symplectic. We prove
then that the dualizing complex w 5‘? is isomorphic to Fx shifted by dx, the complex

dimension of X, and we construct canonical morphisms
(0.0.2) RAx/2Ch [dx] — HH (Ax) — K 9x/2Ch [dx]

whose composition is the canonical inclusion. The morphisms in (0.0.2) induce an
isomorphism

(0.0.3) Chl°° [dx] ~ HH (o7°).

The first morphism in (0.0.2) gives an intrinsic construction of the canonical class
in H=9(X; 7 (/x)) studied and used by several authors (see [14, 15, 27]). The
isomorphism (0.0.3) allows us to associate an Euler class eux(.#) € HXX (X; (C;\’(’loc)
to any coherent 2/x-module .# supported by a closed set A.

Then we show how our results apply to Z-modules. We recover in particular the
Riemann-Roch theorem for Z-modules of [49] as well as the functoriality of the Euler
class of 2-modules of [58].

Finally, in Chapter 7, we study holonomic %/}°°-modules on complex symplectic
manifolds. We prove that if ¥ and .# are two holonomic &/}°°-modules, then the
complex Ritom aloe (A ,) is perverse (hence, in particular, C-constructible) over
the field CMloc,

If the intersection of the supports of the holonomic modules .# and .# is compact,
Formula (0.0.1) gives in particular

X(RHomQ,}FC(//{,Z)) = /X(eux(///)-eux(f)).

The Euler class of a holonomic module may be interpreted as a Lagrangian cycle,
which makes its calculation quite easy.

If the modules . and .# are simple along smooth Lagrangian submanifolds, then
one can estimate the microsupport of this complex. This particular case had been
already treated in [44] in the analytic framework, that is, using analytic deformations
(in the sense of [56]), not formal deformations, and the proof given here is much
simpler.

We also prove (Theorem 7.5.2) that if .%, is family of holonomic modules indexed by
a holomorphic parameter a, then, under suitable geometrical hypotheses, the complex
of global sections RHom 1o (.#, £, ), which belongs to D (C™'°c), does not depend
on a. This is a kind of invariance by Hamiltonian symplectomorphism of this complex.

We have developed the theory in the framework of complex analytic manifolds. How-
ever, all along the manuscript, we explain how the results extend (and sometimes
simplify) in the algebraic setting, that is on quasi-compact and separated smooth
varieties over C.
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The main results of this paper, with the exception of Chapter 7, have been announced
in [45, 46].

Acknowledgments. — We would like to thank Andrea D’Agnolo, Pietro Polesello,
Stéphane Guillermou, Jean-Pierre Schneiders and Boris Tsygan for useful comments
and remarks.
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CHAPTER 1

MODULES OVER FORMAL DEFORMATIONS

1.1. Preliminary

Some notations. — Throughout this paper, K denotes a commutative unital ring.

We shall mainly follow the notations of [43]. In particular, if ¢ is a category, we de-
note by €°P the opposite category. If €’ is an additive category, we denote by C(%’) the
category of complexes of € and by C*(%) (x = +, —, b) the full subcategory consisting
of complexes bounded from below (resp. bounded from above, resp. bounded). If ¥
is an abelian category, we denote by D(%) the derived category of ¥ and by D*(%¥)
(* = 4, —,b) the full triangulated subcategory consisting of objects with bounded
from below (resp. bounded from above, resp. bounded) cohomology. We denote as
usual by 72", 75" etc. the truncation functors in D(%).

If A is a ring (or a sheaf of rings on a topological space X), an A-module means
a left A-module. We denote by A°P the opposite ring of A. Hence an A°P-module is
nothing but a right A-module. We denote by Mod(A) the category of A-modules. We
set for short D(A):=D(Mod(A)) and we write similarly D*(A) instead of D*(Mod(A)).
We denote by D2, (A) the full triangulated subcategory of DP(A) consisting of objects
with coherent cohomology. If K is Noetherian, one denotes simply by Dl} (K) the full
subcategory of D?(K) consisting of objects with finitely generated cohomology.

We denote by Dy the duality functor for K x-modules:

(1.1.1) x(*):=Rdomy_ (+,Kx)
and we simply denote by (*)* the duality functor on DP(K):
(1.1.2) (*)* = RHom(+,K).

If K is Noetherian and with finite global dimension, (+)* sends (D‘;(]K))Op to D?(K).
We denote by {pt} the set with a single element.

Finiteness conditions. — Let X be a topological space and let &/ be a Kx-algebra
(i.e., a sheaf of K-algebras) on X. Let us recall a few classical definitions.

SOCIETE MATHEMATIQUE DE FRANCE 2012



2 CHAPTER 1. MODULES OVER FORMAL DEFORMATIONS

— An &/-module . is locally finitely generated if there locally exists an exact
sequence

(1.1.3) L —>M—0

such that .%; is locally free of finite rank over &7
— An &/-module .# is locally of finite presentation if there locally exists an exact
sequence

(1.1.4) Ly~ M —0

such that 4] and .4 are locally free of finite rank over «/. This is equivalent
to saying that there locally exists an exact sequence

(1.1.5) 0= H SN = M0

where ./ is locally free of finite rank and ¢ is locally finitely generated. This
is also equivalent to saying that there locally exists an exact sequence

(1.1.6) K =N > H—0

where 4 is locally of finite presentation and ¥ is locally finitely generated.

— An &/-module .# is pseudo-coherent if for any locally defined morphism
u: N — M with A of finite presentation, Ker u is locally finitely generated.
This is also equivalent to saying that any locally defined .«/-submodule of ./Z is
locally of finite presentation as soon as it is locally finitely generated.

— An &/-module .# is coherent if it is locally finitely generated and pseudo-
coherent. A ring is a coherent ring if it is so as a module over itself. One denotes
by Modcon () the full additive subcategory of Mod(%”) consisting of coherent
modules. Note that Modcon (&) is a full abelian subcategory of Mod(%/), stable
by extension, and the natural functor Modon (&) — Mod(«) is exact (see [43,
Exe. 8.23]).

— An «/-module .# is Noetherian (see [38, Def. A.7]) if it is coherent, .# is
a Noetherian &/ -module for any x € X, and for any open subset U C X,
any filtrant family of coherent submodules of # |y is locally stationary. (This
means that given a family {.#;};cr of coherent submodules of .#|y indexed by
a filtrant ordered set I, with .#; C .#; for i < j, there locally exists iy € I such
that .#;, = #; for any j > iy.) A ring is a Noetherian ring if it is so as a left
module over itself.

Mittag-Leffler condition and pro-objects. — We refer to [1] for the notions of ind-
object and pro-object as well as to [43] for an exposition. To an abelian category
%, one associates the abelian category Pro(%) of its pro-objects. Then ¥ is a full
abelian subcategory of Pro(%) stable by kernel, cokernel and extension, the natural
functor € < Pro(%) is exact, and the functor “lim”: Fct(I°P, %) — Pro(%) is exact
for any small filtrant category I. In the sequel, we identify ¥ with a full subcategory
of Pro(%). If ¢ admits small projective limits, we denote by 7 the left exact functor
m: Pro(¢) —» ¢, “lim”X;+— limX;.
1 (2
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1.1. PRELIMINARY 3

If € has enough injectives, then 7 admits a right derived functor (loc. cit.):
Rr: DY (Pro(%)) — D¥(%).

Definition 1.1.1. — We say that an object M € Pro(%) satisfies the Mittag-Lefller
condition if, for any N € ¥ and any morphism M — N in Pro(%), Im(M — N) is
representable by an object of ¥.

By the definition, any quotient of an object which satisfies the Mittag-Leffler con-
dition also satisfies the Mittag-Lefller condition.

Lemma 1.1.2. — Let {Mn}nezZl be a projective system in an abelian category €, and
set M = “lim” M,, € Pro(€). Then the following conditions are equivalent:

(i) M satisfies the Mittag-Leffler condition,
(i) {Myp}nez., satisfies the Mittag-Leffler condition (that is, for any p > 1, the
sequence {Im(M,, — M,)}n>p is stationary),
(iii) there exists a projective system {M]}nez., in € such that the morphism
M} ., — M) is an epimorphism for any n > 1 and we have an isomorphism
M =~ “lim” M;, in Pro(%).

n

Proof. — (i) = (ii). For any p > 1, Im(M — M,) ~ “lim” Im(M, — M,) is repre-
n>p

sentable by an object of . Hence, the sequence {Im(M,, — M,)},>, is stationary.

(ii) = (iii). Set M, = Im(My — M,,) for k > n. Then the morphisms M), — M,

induce a morphism f: “El_n” M — “!il_n” M,,. On the other hand, for each n, M —

n n
M, decomposes as M — M!—M,, since taking k > n such that M! = Im(M; —
M,,), we have a morphism M — M} — M. These morphisms induce a morphism
g: “Er_n” M, =M — “lim” M. It is easy to see that f and g are inverse to each

n n
other.

(iif) = (i). For any N € ¥ and any morphism f: M — N in Pro(%), there exists p
such that f decomposes into M — M; — N. Then Im(M — N) ~ “lim” Im(M;, —
n2p

N) ~ Im(M,, — N). a
Note that the following lemma is well known.

Lemma1.1.3. — Let {M,},>1 be a projective system of Z-modules. Then
R%(“l{_i_r_n” M,) ~ 0 for i # 0,1. If {M,},>1 satisfies the Mittag-Leffler condi-

tion, then H' (Rm “lim” M,,) ~ 0.
pr—

n

Here and in the sequel, we make the following convention.

SOCIETE MATHEMATIQUE DE FRANCE 2012



4 CHAPTER 1. MODULES OVER FORMAL DEFORMATIONS

Convention 1.1.4. — When we have a left exact functor ¥ —— @' of abelian cate-
gories and X € D(%), the notation R*F(X) stands for H*(RF(X)). For example,
RinRT(U; .#) means H*(RmRL(U; .#)).

Lemma 1.1.5. — Let Z be an algebra over a topological space X, and let {Mp}n>0
be a projective system of Z-modules. Set A = “lim” A4, € Pro(Mod(%)). Let U be

n
an open subset of X and let i € Z. Then we have an exact sequence

0 — Rln(“lim” H*~'(U; M) — H'(U;Rmtt) — lim H'(U; M) — 0.

Proof. — We have RI(U;Rn#) ~ RaRI(U;.#) and we also have H!(U; . #) ~
“lim” H*(U; #y). Consider the distinguished triangle
n
Rrr<'RIU;.#) — RaRI(U;.#) — Rar>*RIU;.4) - .
It gives rise to the exact sequence
0 — Riar<'RI'(U;.#) — R‘aRT(U;.#) — Rinr='RI(U; A
— R nr<'RIU; .#).
Since RF7 “lim” M, = 0 for k # 0,1 and any projective system {M,},, we obtain
Ri+17l'T<iRFElU; M) =0.
Consider the distinguished triangle
r<IRI(U; M) — <'RI(U; H) — HYU; H)[1 —i] — .
Using the isomorphism H*~'(U;.#) ~ “lim” H*~'(U;.#,) and applying the functor
R, we get the distinguished triangle "
Rar<"'RI(U;.#) — Rar<*RI(U; .#)
— R (“im” H ™Y (U; )1 — 4]) —
n

We obtain Rin7<'R[(U;.#) =~ R'm“lim” H"'(U;.#y,). Finally, we have
Rinr2RO(U; ) ~ lim H(U; 4y,). O
P
As a corollary of this lemma, we obtain the following lemma, a slight modified
version of [33, Préliminaires, Prop. (13.3.1)].

Lemma 1.1.6. — Let X be a topological space, {Fn}nez., a projective system of

abelian sheaves on X and & := !inﬂn Assume the following conditions:
n

(a) for any x € X and any integer i, we have

lim R'7 “im” HY(U;.%,) ~ 0,
— —
zeU n
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where U ranges over an open neighborhood system of x,
(b) for anyz € X and i >0, lim an HY(U; #,)) =0, where U ranges over an open
zeU n
neighborhood system of x.

Then for any i, the morphism
hi: HY(X; %) — lim H'(X; #y)

is surjective. If moreover {H'~Y(X; %,)}n satisfies the Mittag-Leffler condition, then
h; is an isomorphism.

Proof. — Set A = “lim” Z.,. By the preceding lemma, we have an exact sequence
n
0 — Rlx(“lim” H*"'(U; #,)) — H'(U;Rr) — lim H'(U; ) — 0.
n n

For any z, taking the inductive limit with respect to U in an open neighborhood
system of z, we obtain (Ri7.#), = 0 for i # 0. Hence we conclude Rm.# ~ .%. Then
the exact sequence above reads as

0 — R'n(4im” HY(X; %,)) — H'(X; ) — lim H(X; %,) — 0.
— —

n n

Hence we have the desired result. O

1.2. Formal deformations of a sheaf of rings

Now we consider the following situation: X is a topological space, & is a K-algebra
on X and h is a section of &/ contained in the center of o/. We set

Ay = o [hel
Let .# be an «/-module. We set
(1.2.1) M= MM,

n
and call it the Ai-completion of .#Z. We say that
— . has no h-torsion if A: .# — A is injective,
— M is h-separated if . # — .# is a monomorphism, i.e., (| A"# =0,
— M is h-complete if .# — .4 is an isomorphism. n20

Lemma 1.2.1. — Let .# € Mod(«/) and assume that # has no h-torsion. Then

(1) M has no h-torsion,
(i) A /WM =~ AWM,
(iii) A = M, i.e., M is h-complete.
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6 CHAPTER 1. MODULES OVER FORMAL DEFORMATIONS

Proof. — (i) Consider the exact sequence
0 — MM s M — MEEM — 0.

Applying the left exact functor @1 we get the exact sequence
n

0—>/Z/\h—a>/21\——>//1/h“//[,

which gives the result.
(ii) Consider the commutative diagram with exact rows:

0 ML MM —0

L

0 ML W — M h
(iii) Apply the functor lim to the isomorphism in (ii). ]

In this paper, with the exception of § 1.3, we assume the following conditions:

(i) & has no h-torsion,
(1.2.2) (ii) & is fi-complete,
(iii) 2% is a left Noetherian ring,

d
an (iv) there exists a base B of open subsets of X such that
(1.2.3) for any U € B and any coherent (%|y)-module %,
we have H™"(U; #) =0 for any n > 0.

It follows from (1.2.2) that, for an open set U and a, € & (U) (n > 0), 3,50 i"a, is
a well-defined element of &7 (U). N

By (1.2.2) (ii), i, is contained in the Jacobson radical of &, for any x € X.
Indeed, for any a € ha/y, 1 — a is invertible in &7, since a is defined on an open
neighborhood U of z, and 1 — a is invertible on U.

Hence Nakayama’s lemma implies the following lemma that we frequently use.

Lemma 1.2.2. — Let A be a locally finitely generated 27 -module.
(i) If A satisfies # = ht, then A = 0.
(ii) Let f: A — A be a morphism of </ -modules. If the composition N — M —
M |hAM is an epimorphism, then f is an epimorphism.

For n € Zx, set o, = & [h"*1a/. Note that there is an equivalence of categories
between the category Mod(#,) and the full subcategory of Mod(g/) consisting of
modules ./# satisfying h"t!.# ~ 0.

Lemma 1.2.3. — Let n € Z>o.

(i) An &, -module AN is locally finitely generated as an 2, -module if and only if it
is so as an < -module.
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1.2. FORMAL DEFORMATIONS OF A SHEAF OF RINGS 7

(ii) An A,-module A is locally of finite presentation as an <7,-module if and only
if it is so as an &/ -module.

(iii) An ,-module A is coherent as an n-module if and only if it is so as an
& -module.

(iv) o, is a left Noetherian ring.

Proof. — Note that since we have @, ~ &/ /«/h"t!, o, is an &/-module locally of
finite presentation.

(i) is obvious.

(ii)-(a) Let .# be an ,-module locally of finite presentation and consider an exact
sequence of &/,-modules as in (1.1.5). Then ¢ is locally finitely generated as an
&/-module, 4 is locally of finite presentation as an «/-module and v is &/-linear.
Hence, .# is locally of finite presentation as an «/-module.

(ii)-(b) Conversely assume that .# is an %/,-module which is locally of finite pre-
sentation as an &/-module. Consider an exact sequence of &/-modules as in (1.1.4).
Applying the functor <7, ®, *, we find and exact sequence of 2/,-modules as in
(1.1.4), which proves that .# is locally of finite presentation as an 27,-module.

(iii) follows from (i) and (ii) since a module is coherent if it is locally finitely generated
and any submodule locally finitely generated is locally of finite presentation.

(iv) Let us prove that &7, is a coherent ring. Since % is a coherent ring by the
assumption, 2% is a coherent &/-module. Using the exact sequences of &/-modules

Oﬁﬂn—liﬂn_’%—_’o7

we get by induction on n that 7, is a coherent «/-module. Hence (iii) implies that
&, is a coherent ring.

One proves similarly by induction on n that (2%,), is a Noetherian ring for all z € X
and that any filtrant family of coherent 7,-submodules of a coherent &,-module is
locally stationary. O

Lemma 1.2.4. — Let U € B, and n > 0.
(i) For any coherent oy,-module /%', we have H*(U; 4) =0 for k # 0.
(ii) For any epimorphism AN — A of coherent o7, -modules, N/ (U) — A (U) is
surjective.
(iif) & (U) — @, (U) is surjective.
Proof. — (i) is proved by induction on n, using the exact sequence

(1.2.4) 0> AN >N > N]EAN — 0.

(ii) follows immediately from (i) and the fact that <, is a coherent ring.
(i) By (ii), Zn+1(U) — o, (U) is surjective for any n > 0. Hence, the morphism
lim &, (U) — &, (U) is surjective. Since the functor lim commutes with the functor

m
L(U; +), #(U) = lim &, (U) and the result follows. O

m
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Properties of &/. — Recall that & satisfies (1.2.2) and (1.2.3).

Theorem 1.2.5. — (i) & is a left Noetherian ring.
(ii) Let A be a locally finitely generated o -module. Then A is coherent if and only
if A |R"Y A is a coherent ly-module for any n > 0.
(iii) Any coherent o/ -module A is h-complete, i.e., # =5 M.
(iv) Conversely, an o/ -module A is coherent if and only if it is h-complete and
"M | A" A is a coherent oy-module for any n > 0.
(v) For any coherent o/ -module .# and any U € B, we have H'(U;.#) = 0 for
any j > 0.

The proof of Theorem 1.2.5 decomposes into several lemmas.

Lemma 1.2.6. — Let £ be a locally free & -module of finite rank and let A4 be an
o -submodule of £. Assume that

(a) (N + hZL)/hZL is a coherent ofy-module,
(b) & NA"ZL C hHN + BT for anyn > 1.

Then we have

(i) A is a locally finitely generated < -module,
(ii) /' NA"YL =" AN for anyn >0,
(i) V(A +h"Z)=AN.
n>0
Proof. — First, let us show that
(1.2.5) N NhZL ChtV +R'Z for any n > 0.

Indeed, (1.2.5) is trivial for n < 1. Let us argue by induction, and let n > 2, assuming
the assertion for n — 1. We have /' NAY C A N (AN + h"1L) = bV + (A N
h"=r#) C hA + (b + B™.ZL) by the assumption (b). This proves (1.2.5).

Set

N =[N +H2).

n>0
Then A4 C 4 and
(1.2.6) N NhEL ChH.

Indeed we have /' NAZ C (A +A L L)NAY ¢ N NRL+RH YL C hV +RVHL Y =
WA + h*.Z) for any n.
Set

N = (N +h&)hEL = (N +hL)|hL.

By the hypothesis (a), .4 is ap-coherent. Hence we may assume that there exist
finitely many sections s; of 4" such that 4" = 3", @43;, where 5; is the image of s;
in Z/hZL.
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By hypothesis (a) and Lemma 1.2.4 (ii), we have for any U € B, A4 (U) =
i o(U)s;. Since & (U) — (U) is is surjective by Lemma 1.2.4 (iii), we have
./V(U) C >, A (U)s; + RZ(U). Since N NEY = kA, we have

HNU) S o U)si + EAN(U).

For v € j/ZU ), we shall define a sequence {v, }n>0 in J?/(U ) and sequences {a; » }n>0
in & (U), inductively on n: set vg = v, and write

Up = Z Qi nS; + Avpgr.
i

Hence we have h"v, = 3, A"a; »8; + i v, 41 and we obtain

V=7 = Z(Z h"ai,n)si.

i n>0

Thus we have ¥ = >_i @si. Hence A" = ¥ which proves (i) and (iii).
Since A NhEL = hA by (1.2.6), we obtain (ii) for n = 1. For n > 1 we have by
induction &/ NA"Y C ANV NA"YL = KA NA"LL) C h- A" LA O

Lemma 1.2.7. — Let £ be a locally free & -module of finite rank, and let A be an
o -submodule of . Assume that (A + h"T1.L)/A"t1.L is a coherent &/ -module for
any n > 0. Then we have

(i) A is a locally finitely generated o7 -module,

(i) MasolN +A"2) = A,
(iii) locally, "L NN C R(A"1LNA) forn >0,
(iv) A /B* A is a coherent o -module for any n > 0.

Proof. — We embed .Z into the «/[h~*]-module KA, h_l]®K[h]$ = Unez "2 . Note
that A™ induces an isomorphism

(LN N +hL)hL = (N NAL + T2 it e,
Since
(NN EL + L) P~ ((JV + h"“.i”)/h"“i”) ﬂ(h”f/h"“f)

is @/-coherent, {(Z Nh™" N + hZL)/hZL}n>0 is an increasing sequence of coherent
y-submodules of £ /h.%. Hence it is locally stationary: locally there exists ng > 0
such that ZNA " AN +h¥ =L Nh ™ AN + hZ for any n > ng. Set

(1.2.7) M= NN,
Then (A + h.L) /AL is a coherent of-module and
MOREL CRY (BN NEL) C (M + hE) C htp + EnTLE

for any n > 0. Hence by Lemma 1.2.6:
— A is locally finitely generated over &,
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10 CHAPTER 1. MODULES OVER FORMAL DEFORMATIONS

— N M +1I"Z) =,

n>0

— M NA"YL = ™A for any n > 0.

(i) Since A/ NA™.L = h™ A by (1.2.7), the module A /A" Ay =~ N /(N NE L) ~
(AN + B L) /h™0 L is of -coherent. Since h™ 44 is locally finitely generated over &,
A is also locally finitely generated over .

(ii) We have
() (AW +E2) C (N +E°L) [Nz, (A + E"Z)
nZno
N 4 B0 L () Nnzng (N + H"L)
N 4 Npsng (AL NN + BL)
N 4 N (B0 N + B L)
N+ RONg =N

N NN N

(iii) For n > ng, we have
RZnAg C W (ZnNi™A)NhtZ
C A (MNETZ)
C hn()hn—no% — hn%
C WA NETLY).

(iv) Since 4" has no fi-torsion, we have the exact sequence

0— NN L N IRIN — N [RN — 0.

Hence, it is enough to show that .#' /A" is coherent. By (i), the images of .4 and
hAt in L /h*Z are coherent. Since A NA".Z C kA for some n, by (ii), we have the
exact sequence

ANV N N
— - — — 0,
RV NRNY AN kAN
which implies that .4 /A4 is coherent. d0

Corollary 1.2.8. — Assume that # is a locally finitely generated o -module. If
MR M is a coherent o/ -module for all n > 0, then A is an o/-module locally of

finite presentation and (| "4 = 0.
n>0

Proof. — We may assume that # = £ /A for a locally free &/-module .Z of finite
rank and .4/ C .Z. From the exact sequence

0= (N + B L)L — LIFL — MM — 0,

we deduce that (A + A".Z)/h™*.% is coherent for any n. Hence .4 is locally finitely
generated by Lemma 1.2.7, which implies that .# is locally of finite presentation.
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Since () (A + ".%¥) = A by Lemma 1.2.7,
n>0
s ~ ([ (A +K2))/N

. n>0 n>0
vanishes. O

Proposition 1.2.9. — </ is coherent.

Proof. — Let # be a locally finitely generated 2/-submodule of /. Since
(F + Tl il ~ 7 /(I NP ) C o e

the &7-module .# /h™.# is coherent by Lemma 1.2.7 (iv). Hence Corollary 1.2.8 implies
that .# is locally of finite presentation. O

Lemma 1.2.10. — Any filtrant family of coherent &7 -submodules of &/ is locally sta-
tionary.

Proof. — Let {.%;}ic1 be a family of coherent &/-submodules of & indexed by a fil-
trant ordered set I, with .%; C .%; for any i < j. Then {(A=* #iNF +ha)/ht }ic1, k>0
is increasing with respect to k and ¢ € I. Hence locally there exist ip and kg such that
kg N + hod = i~k #, N o/ + het for any i > ig and k > ko. Then, for i > i,
the ideal _#; := &/ N h=*0.7; satisfies

Finhme C (™ g ne) c im(h* 7N o + het) C h g + Aot

for any m > 0. Hence Lemma 1.2.6 implies that _#; N he/ = h_#;. Since we have
Fi C Fi, + het, we have Z; C Zi, + ( FiNha) C Fi, + h_#;. Then Nakayama’s
lemma implies #; = _#;,, or equivalently, h ko ziN o = hko 7, N o for i > io.
Thus {% N ¥}, is locally stationary. Since {.%; /(% N h¥oa7)}; is a filtrant family
of coherent submodules of 7,1, it is also locally stationary and it follows that {.#;};
is locally stationary. O

Lemma 1.2.11. — For any x € X, &, is a coherent ring.

Proof. — Any morphism f: &®" — &, extends to a morphism f: o &y - Ay
for some open neighborhood U of z. Since .4/ := Ker f is coherent, .4, ~ Ker f is a
finitely generated &7,-module. O

Lemma 1.2.12. — For any x € X and a finitely generated left ideal I of </, I N
Ao, = (I N k"el,) for n>> 0.

Proof. — Let us take a coherent ideal .# of &/ defined on a neighborhood of z such
that I = .#,. Then Lemma 1.2.7 implies that #NA" 1o/ = H( I N forn > 0. O

Lemma 1.2.13. — For any x € X, &, is a Noetherian ring.
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Proof. — Set A = 4/,;. Let us show that an increasing sequence {I,}, of finitely
generated left ideals of A is stationary. Since {(A~*I, N A+ hA)/hA},  is increasing
with respect n,k, there exist ng and ko such that A ¥, N A+ hA = k™% I, N
A+ hA for n > ng and k > ko. For any n > ng there exists k > ky such that
h~*I, N hA = h(h %I, N A) by Lemma 1.2.12. Hence we have h~*I, N A c i~ %I, N
(ke I, NA+hA) C h %I, NA+(h~*I,NhA) C h=* I, , N A+h(h~*I,NA). Since
h~*I, N A is finitely generated by Lemma 1.2.11, Nakayama’s lemma implies that
h*I,NA=h"%[, NA. Hence h % I,NA=h*1I, NA for any n > ng. Therefore
I, N h*A = Rko(h=ko[, N A) is stationary. Since {I,/(I, N h*°A)}, is stationary,
{I.}n is stationary. d

Thus, we have proved that </ is a Noetherian ring.

Lemma 1.2.14. — Let {#y,}n>0 be a projective system of coherent o/ -modules. As-
sume that A" 4, = 0 and the induced morphism Mp1 /" My — My, is

an isomorphism for any n > 0. Then A := !iLn///n is a coherent of -module and
n

MM — M, is an isomorphism for any n > 0.

Proof. — Since the question is local, we may assume that X € B and there exist
a free K-module V of finite rank and a morphism V — .#,(X) which induces an
epimorphism ¥ := & Qg V—»4y. Since Mp+1(X) — A, (X) is surjective and V is
projective, we have a projective system of morphisms {V — ., (X)}n:

e %n,(X) . ;/ln_l(X) s (X)) — (X)),

which induces a projective system of morphisms {¥ — .#,},. Hence we may assume
that there exists a morphism . — .# such that the composition . — # — 4 is
an epimorphism. Since & — 4, /h#, => M, is an epimorphism, £ — #, is an
epimorphism by Lemma 1.2.2.

Set ., = Z/A"*t1.¥, and let A}, be the kernel of .%, — #,,. Set A = lim A7,

Then we have a commutative diagram with exact rows: n
0 N <z M
0 N Zn My 0.
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In the commutative diagram

0 0

l |

hn+1$n+1 s hn+1‘/%n+1 — >0

L |

0 Nt Lot M1 0
l i l

0 N, %, M, 0
| |
0 0

the rows and the columns are exact. Hence the left vertical arrow Ay, — A, is
an epimorphism. Therefore, A;11(U) — A, (U) is surjective for any U € B, and
A (U) = lim A7, (U) — A,(U) is surjective. Hence .#” — .4, is an epimorphism

m
for any n > 0, and {4;,(U)}, satisfies the Mittag-Leffler condition.
Thus in the following commutative diagram

0 N (U) 2(U) A (U)

0 lim A (U) — lim £, () — lim 4, (V) — 0

n n n

the bottom row is exact. Hence 0 — A4 — ¥ — # — 0 is exact. Since A4 — A4,
is an epimorphism, we have .# /A"t .# ~ Coker(N — £,) ~ Coker(N;,, — &L,) ~
My, Since A is locally finitely generated and .# /A" # is coherent for any n > 0,
A is coherent by Corollary 1.2.8 and Proposition 1.2.9. O

Proposition 1.2.15. — Let # be a coherent o -module. Then we have the following
properties.

(i) A 1is h-complete, i.e., M = M,

(ii) for any U € B, H*(U; . #) = 0 for any k > 0.

Proof. — (i) Since the kernel of .# — M s (| A™.#, the morphism .# — M is a
n>0
monomorphism by Corollary 1.2.8.

Let us show that .#Z — //{ 1s an epimorphism. By the preceding lemma, M s a
coherent &/-module, and A4 / hal ~ M [k . Hence Nakayama’s lemma implies that
M — A is an epimorphism.

(ii) For any U € B, the map I'U; A /k" T t) — T(U; M /" M) is surjective, and
H*¥(U; s |hn ) = 0 for any k > 0. Hence Lemma 1.1.6 implies (ii). O
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Corollary 1.2.16. — Let A be an <7 -module. If # satisfies the following conditions
(i) and (ii), then 4 is a coherent &7 -module.

(1) A is h-complete,

(ii) A" /A" A is a coherent oy-module for all n > 0.

Proof. — Set .#,, = # /A" .4 . Then it is a coherent «/-module by (ii), and lim ./,
is a coherent «/-module by Lemma 1.2.14. " a

This completes the proof of Theorem 1.2.5.

Lemma 1.2.17. — Let # be a coherent of -module without h-torsion. If A |hM is a
locally free ofy-module of rank v € Z>¢, then A 1is a locally free o/ -module of rank r.

Proof. — We may assume that there exists a morphism of &/-modules f: & :=
AO" — A such that L/h¥ — M |/h# is an isomorphism. Then, Nakayama’s
lemma implies that f is an epimorphism. Let .#" be the kernel of f. Since .# has no
h-torsion, we have an exact sequence 0 —» A /h AN — L /hE — M [h# — 0. Hence
N /hAV =0 and Nakayama’s lemma implies 4" = 0. O

The following proposition gives a criterion for the coherence of the projective limit
of coherent modules, generalizing Lemma 1.2.14.

Proposition 1.2.18. — Let {A,},>1 be a projective system of coherent o/ -modules.
Assume

(a) the pro-object “lim” A, /Ay is representable by a coherent 2/-module,

n

(b) the pro-object “lim” Ker(A, LN Ny,) is representable by a coherent ofy-module.

n

Then
(i) A :=lm A, is a coherent & -module,

(i) A /REFLN 25 “Um” A /R, for any k>0,

(ili) Ker(# % 4) 25 “lim” Ker(Ay = ).
n
(iv) Assume moreover that for each n > 1 there exists k > 0 such that h¥.4, = 0.

Then the projective system {Npn}n satisfies the Mittag-Leffler condition.
Proof. — For any k > 0, set
S 1= “liﬂl” %/hk+1%.

n

Then .% is representable by a coherent 2/-module by hypothesis (a). We shall show
that .#; is representable by a coherent &/-module for all £ > 0 by induction on k.
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Consider the exact sequences

(1.2.8) 0 — hty /BEHY A, — Ny /BT A — N /By — 0,
(1.2.9) Ker(A, 2 ) — M /BN 25 Bty JRFTL A, — 0.

Assume that .#,_; is representable by a coherent 2/-module. Applying the functor
“lim” to the exact sequence (1.2.9), we deduce that the object “lim” h 47, /AR A, is

n n
representable by a coherent /-module. Then applying the functor “lim” to the exact

n
sequence (1.2.8), we deduce that % is representable by a coherent .2/-module.
Since Ay, ~ lim A,/ R+t 47, by Theorem 1.2.5 (iii), we have
k

N~ @%/hk+1% ~ ;i%nyk.
k,n

Since F41/PF1Fr1 ~ F, Lemma 1.2.14 implies (i), (ii). The property (iii) is
obvious.
Let us prove (iv). By the assumption, .4}, ~ “!iLn” N |REA;,. Hence
k

“Um” A, = “Um” A [HE A, ~ Uim” .
“n *on %
n N

Since {% }x satisfies the Mittag-Leffler condition, {4}, satisfies the Mittag-Leffler
condition by Lemma 1.1.2. O

Remark 1.2.19. — In Proposition 1.2.18 (iv), the condition A*.4;, = 0 (k > 0) is
necessary as seen by considering the projective system A, = A"/, (n € N).

1.3. A variant of the preceding results

Here, we consider rings which satisfy hypotheses (1.2.2), but in which (1.2.3) is
replaced with another hypothesis. Indeed, as we shall see, the ring Px[[A]] of differ-
ential operators on a complex manifold X has nice properties, although 2x does not
satisfy (1.2.3). The study of modules over Zx[[A]] is performed in [20].

We assume that X is a Hausdorff locally compact space. By a basis B of compact
subsets of X, we mean a family of compact subsets such that for any z € X and any
open neighborhood U of z, there exists K € B such that z € Int(K) C U.
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We consider a K-algebra o/ on X and a section % of &/ contained in the center
of &. Set o = o/ /hef/. We assume the conditions (1.2.2) and

((iv') there exist a base B of compact subsets of X and a

prestack U — Modgq(2%|v) (U open in X) such that

(a) for any K € B and an open subset U such that K C
U, there exists K’ € B such that K C Int(K’) C
K cU,

(b) U +— Modgq(ap|u) is a full subprestack of U +—
MOdcoh(’%lU),

(c) for an open subset U and # € Modcon(%|v),
if .#|v belongs to Modgq(%|v) for any relatively
compact open subset V of U, then .# belongs

(1.3.1) to Modgd(%h]),

(d) for any open subset U of X, Modgd(h|y) is
stable by subobjects, quotients and extension
in Modcon (#%|v),

(e) for any K € B, any open set U containing K,
any # € Modgq(2%|v) and any j > 0, one has
HI(K; #) =0,

(f) for any # € Modeon(Hh|u), there exists an
open covering U = |J;U; such that #|y, €
Modga(hlu,),

(8) o € Modga().

\

Note that Lemmas 1.2.2 and 1.2.3 still hold.

The prestack U — Modgq(2%|u) being given, a coherent module which belongs
to Modgq (2%|v) will be called a good module. Note that in view of hypothesis (iv’) (f),
hypothesis (iv’) (g) could be deleted since all the results of this subsection will be of
local nature. However, we keep it for simplicity.

Example 1.3.1. — Let X be a complex manifold, &x the structure sheaf and let Zx
denote the C-algebra of differential operators. One checks easily that, taking for B
the set of Stein compact subsets and for 2 the C-algebra Zx, the prestack of good
Px-modules in the sense of [38] satisfies the hypotheses (1.3.1).

Definition 1.3.2. — A coherent &/-module . is good if both the kernel and the cok-
ernel of h: .# — M are good -modules. One denotes by Modgq(2/) the category
of good «/-modules.

Note that an @%-module is good if and only if it is good as an &/-module. This
allows us to state:

Definition 1.3.3. — An </,-module ./Z is good if it is good as an &/-module.
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1.3. A VARIANT OF THE PRECEDING RESULTS 17

Lemma 1.3.4. — The category Modgq(27) is a subcategory of Modcon (%) stable by
subobjects, quotients and extension.

Proof. — First note that hA".# /A" 1.4 is a good #-module for any .# € Modgq ()
and any integer n > 0. Indeed, it is a quotient of /# /h.# .

For an &/-module 4, set A3 := Ker(h: A — A).

We shall show that any coherent &/-submodule 4" of a good &/-module ./ is a
good &/-module. It is obvious that .4} is a good 2%-module, because it is a coherent
submodule of .#,. We shall show that A4 /(hA + .4 NA*1 4) is a good -module
for any k > 0. We argue by induction on k. For k = 0, it is a good /-module since
it is a coherent submodule of .# /h.# . For k > 0, we have an exact sequence

0o AN + N NE A . N
AN + N N RN + A NREHL A
(1.3.2)
— A —
AN 4+ N NHE A

Since (A N RA*4)/(A N A*1.4) is a coherent submodule of A*.# /h**t1. 4, it is
a good @-module. Since (At + A N A A) /(BN + A N R A) is a quotient
of (N NREA)/ (N NRETL ), the left term in (1.3.2) is a good &f-module. Hence
the induction proceeds and we conclude that .4 /(hA + A4 N B**1.4) is a good
Zp-module.
On any compact set, we have .4 N A**1.# C ht for k > 0. Hence, (A /AN )|y
is a good (|v)-module for any relatively compact subset V. Hence .# belongs
to Modgq(2) by (iv') (c).

Consider an exact sequence 0 — #' — .# — .#" — 0 of coherent &/-modules. It
gives rise to an exact sequence of coherent 2%-modules

0 — M, — My — M — M |hM — M0t — H"|hA" — 0.
If A is a good &/-module, then so is .#’. Hence the exact sequence above implies
that .#}; and .#"/h.#" are good e-modules. This shows that Modgq(</) is stable
by quotients.
Finally, let us show that Modgq (/) is stable by extension. If .#}, .#}', . #' /i’

and A" /h#" are good #p-modules, then so are .#; and .#/h.# by the exact
sequence above. O

0.

Lemma 1.3.5. — Let K € B, and n > 0.
(i) For any good <,,-module A , we have HI(K; A4) =0 for j # 0.
(ii) For any epimorphism A — A" of good <,-modules, N (K) — N'(K) is
surjective.
(iil) ' (K) — &, (K) is surjective.
Proof. — (i) is proved by induction on n, using the exact sequence (1.2.4).

(ii) follows immediately from (i) and the fact that the kernel of a morphism of good
modules is good.
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18 CHAPTER 1. MODULES OVER FORMAL DEFORMATIONS

(i) By (ii), Fnt1(K) — 2, (K) is surjective for any n > 0. Hence lim (o (K)) —

7, (K) is surjective.
For s € @,(K), there exist K’ € B and s’ € &, (K’) such that K C Int(K’) and
s'|k = s. Then ¢’ is in the image of liln(dm(K’)) — 4, (K'). Hence s is in the image

m

of o (K) — o, (K), because lim (e, (K')) — &, (K') — ,(K) decomposes into

lim (pn (K”)) — lim (e (Int(K"))) = o (Int(K")) — o (K) — (K.

m

O

The proof of the following theorem is almost the same as the proof of Theorem 1.2.5,
and we do not repeat it.

Theorem 1.3.6. — Assume (1.2.2) and (1.3.1).
(i) & is a left Noetherian ring.
(ii) Let A be a locally finitely generated of -module. Then .# is coherent if and only
if A" |h"TY M is a coherent oly-module for any n > 0.
(iii) For any coherent &/ -module .4, M is h-complete, i.e., M — M.
(iv) Conversely, an &/-module # is coherent if and only if A is h-complete and
o | W™ is a coherent @y-module for any n > 0.
(v) For any good 7 -module .# and any K € B, we have H'(K; #) = 0 for any
ji>0.

1.4. h-graduation and h-localization

In this section, &7 is a sheaf of algebras satisfying hypotheses (1.2.2) and either
(1.2.3) or (1.3.1).

Graded modules. — Let % be a Z[h]-algebra on a topological space X. We assume
that & has no h-torsion. We set

Ro = R | R

Definition 1.4.1. — We denote by gry,: D(Z) — D(%,) the left derived functor of the
right exact functor Mod(#) — Mod(%,) given by A — M |h4 . For # € D(Z) we
call gr;, () the graded module associated to .#.

We have
L L
gry (M) ~ Ho® M =~ ZX@ZX[h]‘%'

Lemma 14.2. — Let # € D(#) and let a € Z. Then we have an eract sequence
of %o-modules

0 — Bo @y HO (M) — H (gry,(M)) — Torl (Ro, H* (M)) — 0.
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1.4. ~-GRADUATION AND A-LOCALIZATION 19

Although this kind of results is well-known, we give a proof for the reader’s conve-
nience.

Proof. — The exact sequence 0 — Z# LNy RN Py — 0 gives rise to the distin-
guished triangle

///LJ//—-égrh(//{)i».
It induces a long exact sequence
H (M) = H (M) — H*(gra( M) — H*P (M) = H* (M),
The result then follows from
Ro @y H* (M) ~ Coker(H* (M) —— H (M),
Tor® (Ro, H* (M) ~ Ker(H* T (M) L H (). O
Proposition 1.4.3. — (i) Let 4 € D(#°P) and H#2 € D(#). Then

(14.1) g (B g H3) = g1 (1) B g g0 (H5).

(ii) Let % € D(%) (i = 1,2). Then
(1.4.2) gry(RAam 5 (1, H2)) ~= RHtom 5 (gry, (1), gr(A2)).
Proof. — (i) We have

L L L L
grh(t%/l(g%f%) = %®g%®leh]ZXz<%/l®ggrh(<%f2)

12

L L
Jt/l@gy%O@‘%ogrh(%))

L L
(<)£/1 ®-@%O)®-@0 grh(%)

1R

1R

L
gr(H1)® g, 8T (H2)-

(ii) The proof is similar. |
Proposition 1.4.4. — Let f: X — Y be a morphism of topological spaces. Let M €
D(Zx[h]) and A € D(Zy|[h]). Then
gryRfst ~Rf.gry A,
grpf A = [T

Proof. — This follows immediately from the fact that for a complex of Zx [A]-mod-

ules #, gr,(#) is represented by the mapping cone of .# L, 4 and similarly
for Zy [h]-modules. O
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20 CHAPTER 1. MODULES OVER FORMAL DEFORMATIONS

Recall that & is a sheaf of algebras satisfying hypotheses (1.2.2) and either (1.2.3)
or (1.3.1). The functor gry; induces a functor (we keep the same notation):

(1.4.3) gry,: Dion (9) — Doy ().
The following proposition is an immediate consequence of Lemma 1.4.2 and

Nakayama’s lemma.

Proposition 1.4.5. — Let .# € DP, (/) and let a € Z. The conditions below are
equivalent:

(i) H(grp(#)) =0,

(i) H*(#) ~ 0 and H* () has no h-torsion.

Corollary 1.4.6. — The functor gry in (1.4.3) is conservative (i.e., a morphism
n D'goh(d) is an isomorphism as soon as its image by gry is an isomorphism

in Do () )-

Proof. — Consider a morphism ¢: .# — .4 in D2, (&) and assume that it induces
an isomorphism gr,(p): gry(.#) — gry(A) in D2, (#%). Let #4 — N — &L £,
be a distinguished triangle. Then gr,.# ~ 0, and hence all the cohomologies of .¥
vanishes by the proposition above, which means that & ~ 0. O
Homological dimension. — In the sequel, for a left Noetherian K-algebra &, we shall

say that a coherent Z-module &2 is locally projective if, for any open subset U C X,
the functor

Hom 5(P, *): Modeon(Z|v) — Mod(Ky)

is exact. This is equivalent to one of the following conditions: (i) for each x € X, the
stalk &2, is projective as an #Z,-module, (ii) for each z € X, the stalk &2, is flat as
an %Z,-module, (iii) &2 is locally a direct summand of a free Z-module of finite rank.

Lemma 1.4.7. — A coherent of -module &2 is locally projective if and only if & has
no h-torsion and gry, & is a locally projective fy-module.

Proof. — We set for short A := .47, and Ag:= (%),. Note that Ay ~ grA.
Let P be a finitely generated A-module.

(i) Assume that P is projective. Then P is a direct summand of a free A-module. It
follows that P has no i-torsion and gry, P is also a direct summand of a free Ap-module.
(ii) Assume that P has no #i-torsion and gr P is projective. Consider an exact sequence
0 - N % L — P — 0in which L is free of finite rank. Applying the functor gr, we
find the exact sequence 0 — gry N LALAN gryL — gr, P — 0 and gr;, P being projective,
there exists a map v: gr,L — gr, N such that Do gryu = idg, n. Let us choose a map
v: L — N such that gr,(v) = 7. Since gry(v o u) = idg;, v, We may write

vou=idy —hyp
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1.4. -GRADUATION AND h-LOCALIZATION 21

where ¢: N — N is an A-linear map. The map idy —hp is invertible and we denote
by % its inverse. Then 1 o v o u = id, which proves that P is a direct summand of a
free A-module. |

Theorem 1.4.8. — Let d € N. Assume that any coherent /-module locally admits a
resolution of length < d by free 2y-modules of finite rank. Then

(a) for any coherent locally projective o/ -module &, there locally exists a free o/ -mod-
ule of finite rank F such that P & F is free of finite rank,

(b) any coherent & -module locally admits a resolution of length < d + 1 by free
&/ -modules of finite rank.

Proof. — (a) It is well-known (see e.g., [57, Lem. B.2.2]) that the result in (a) is
true when replacing & with %. Now, let & be as in the statement. Then gr, & is
projective and coherent. Therefore, there exists a locally free &/-module % such that
gr, P @ gr;, & is free of finite rank over . This implies that & @ & is free of finite
rank over &/ by Lemma 1.2.17.

(b)-(i) Let .# € Modcon(2) and let us first assume that .# has no A-torsion. Since
&/ is coherent, there exists locally an exact sequence

0> > Ly 11— > L > HM—0,

the &/-modules .%; (0 < i < d— 1) being free of finite rank. Applying the functor gr;,
we find an exact sequence of 2%-modules and it follows that gr,(¥) is projective and
finitely generated. Therefore /¢ is projective and finitely generated. Let # be as in
the statement (a). Replacing £ and £ with 2" @ ¥ and .Z;_1 ® % respectively,
the result follows in this case.

(b)-(ii) In general, any coherent &/-module .# locally admits a resolution 0 — A4~ —
¥ — M — 0, where .Z is a free &/-module of finite rank. Since .#" has no fi-torsion,
A& admits a free resolution with length d, and the result follows. (]

Corollary 1.4.9. — We make the hypotheses of Theorem 1.4.8. Let .#° be a complex
of @/ -modules concentrated in degrees [a,b] and assume that H'(.#) is coherent for
alli. Then, in a neighborhood of each x € X, there exists a quasi-isomorphism &£ ° —

M "° where £° is a complex of free o/ -modules of finite rank concentrated in degrees
la—d—-1,b].

Proof. — The proof uses [43, Lem. 13.2.1] (or rather the dual statement). Since we

do not use this result here, details are left to the reader. O
Localization. — For a Zx [h]-algebra & with no hi-torsion, we set
(1.4.4) R°° = Lx[h,h™] @y 1 #,

and we call Z'°° the fi-localization of %. For an %-module .#, we also set
M =R 0 M = Tx D @y M
Lemma 1.4.10. — The algebra 2/'°° is Noetherian.
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Proof. — Let T be an indeterminate. One knows by [38, Th. A.30] that &/[T] is
Noetherian. Since &7'°¢ ~ &/ [T'|/«/[T)(Th — 1), the result follows. a

1.5. Cohomologically complete modules

In order to give a criterion for the coherency of the cohomologies of a complex of
modules over an algebra & satisfying (1.2.2) and either (1.2.3) or (1.3.1), we introduce
the notion of cohomologically complete complexes.

In this section, Z is a Z[h]-algebra satisfying

(1.5.1) Z has no h-torsion.
Recall that .#'°¢ := Z[h, h™'] ® A for an Z-module 4.

Lemma 1.5.1. — For .4, #' € D®(%'°°), we have
Rtom gyoc (M, M) = RHom g (M, M").

L
Proof. — We have #'°°®,.# ~ .. Hence,

R gy (M M) ~ R e (RS g b, M)
~ Reflam (M, M. 0

The next result is obvious.

Lemma 1.5.2. — The triangulated category D(%'°°) is equivalent to the full subcate-
gory of D(Z) consisting of objects A satisfying one of the following equivalent con-
ditions:

(i) gen(#) =0,
(ii) A: HY(A) — H*'(A) is an isomorphism for any integer 1,

(iii) A4 — %1°°(§)%% is an isomorphism,
(iv) RHom 5(%"°¢, M) — M is an isomorphism,
v) R#tom ,,(#"°° | R, M) ~ 0.
%

Lemma 1.5.3. — Let K be a Z[h]-module with projective dimension < 1. Then for any
M € D(Z), any open subset U and any integer i, we have an exact sequence

0 — Exty, (K, H ' (U; M) — H' (U; RHom gy (K, )
— Homy, (K,H'(U; #)) — 0.
Proof. — We have a distinguished triangle
RHom (K, 7<'RL(U; A)) — RHom (K,RL(U; #))
— RHom . (K, T*'RI(U; ) —— .
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Since H’“RHomZ[h] (K,N) = 0 for any k # 0,1 and any Z[h]-module N, we have
H“'IRHomZ[h] (K, 7<'RI(U; #)) ~ 0. Hence we have an exact sequence
0 — H'RHom (K, 7<'RI(U; #)) — H'RHom ,, (K, RT(U; .#))
— H'RHom (K, 7>'RI(U; #)) — 0.
Then the result follows from

H'RHom ;, (K, 7<'RI(U;.#)) =~ Ext;

2 (K H (U3 )

and H*RHom (K, 7RI (U; #)) ~ Hom (K, H(U; A)). O

Recall that we set

—

(1.5.2) M= lim M B

Lemma 1.5.4. — Let # € Mod(Z%) and assume that .4 has no h-torsion.
(i) SHom 5 (R, M| M) = Euty (R R, M) = Va
(i) Ker(AM — M) ~ Hom 4(%'"°°, H). In particular, A is h-separated if and only
if Hom (%', M) ~ 0.
(iii) Coker( A — M) ~ gxtlgf(%bc,/fl ). In particular, # is h-complete if and only
if Ext] (B, M) >0 for j =0, 1.
Proof. — We have
Hom (K| R, M| M) ~ lim Hom 4(h™"R|R, M| M)

> lim Som (K" %)%, WM | M)

~ lim AR M ~ a
—

n

Since RAtom 5(%#'°°/ R, #'°°) ~ 0 by Lemma 1.5.2, applying the functor
Rtom (R | R, +) to 0 — M — M°° — M'°°/.# — 0, we obtain an iso-
morphism  H#om (%' | R, M| M) = Ext,(#'°°|/R,.#). Hence we obtain
).

By the long exact sequence associated with 0 — #Z — Z'°¢ — Z'°°/%# — 0, we
obtain

Hom (R | R, M) — Hom (R, M) — Hom (R, M)
— Ext' ) (R | R, M) — Exty(B°, M) — 0,
which reduces to
0 — Stom 4 (B, M) — M — M — Ext'y (B, M) — 0.

Hence we obtain (ii) and (iii). d
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Consider the right orthogonal category D(Z%'°°)*" to the full subcategory D(%'°°)
of D(Z). By definition, this is the full triangulated subcategory consisting of ob-
jects A € D(Z) satistying Hom p, 4\ (A", #) =~ 0 for any A € D(%'°°) (see [43,
Exe. 10.15]).

Definition 1.5.5. — One says that an object .# of D(Z) is cohomologically complete
if it belongs to D(%'°°)L".

Proposition 1.5.6. — (i) For .# € D(%), the following conditions are equivalent:
(a) A 1is cohomologically complete,
(b) RHom z(R'°°, M) ~ RHom yp (Z[0, b, M) 0,

(c) :%IEXt;[h](Z[h’ K=Y, H'(U; #)) ~ 0 for any z € X, j = 0,1 and any
x
i € Z. Here, U ranges over an open neighborhood system of x.
(ii) Rom 5(#'°| R, M) is cohomologically complete for any A4 € D(Z).
iii) For any # € D(ZX), there exists a distinguished triangle
(iii) y , g 9

M M "
with A" € D(%#"°°) and A" € D(#°°)1L.
(iv) Conversely, if
M- M "
is a distinguished triangle with .#' € D(%'°°) and 4" € D(%'°°)*", then
M~ RHom 5(%"°°, M) and A" ~ RHom 5( %' | R|-1), ).

Proof. — (i) (a)&(b) For any .4 € D(%'°), one has
Hom (N, #) =~ Hom z(R SN , M)
~ Hom (A, RHam 5(%"°°, M))

and it vanishes for all .#" € D(£'°°) if and only if R¥tam 4, (%'°°, #) ~ 0.
(i) (b)<(c) follows from Lemma 1.5.3.

(i) Since ' ,(#'°°/R) ~ 0, we have
Rtam (%%, R (% | R, M)
o Rtm, (& (| ), M) ~ 0,

and hence RHom (%' /R, #) is cohomologically complete.
(iii) We have obviously R#am ;,(%'°¢, .#) € D(%'°¢). Hence the distinguished triangle

RAom (B, M) — RHom (R, M) — RHom 5(%'°° | R|-1], M) L,

gives the result.

(iv) Since RHam 4(%#'°, #") ~ 0, we have
M~ RHum (B, M) = RHom (R, M),
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and hence 4" ~ RHom ;(#'°° | Z|-1], #). |

Note that # — RAom ,(%'°°, . #) is a right adjoint functor of the inclusion
functor D(#'°°) — D(Z), and the quotient category D(Z)/D(%'°°) is equivalent
to D(%loc)lr.

Remark that .# € D(Z) is cohomologically complete if and only if its image
in D(Zx[h]) is cohomologically complete.

Corollary 1.5.7. — Let A be an Z-module. Assume the following conditions:

(a) A has no h-torsion and is h-complete,
(b) for any z € X, denoting by %, the family of open neighborhoods of x, we have
“Uim” HY(U; #) ~ 0 fori # 0.
—
UeU:
Then A is cohomologically complete.

Proof. — For U open, we have the maps

T(U;.4) % i D(U; ) [T (U; M) 2 i D(U; M /B M) = T(U; M)
whose composition is the identity. Since b is a monomorphism, a is an isomorphism
and therefore I'(U; ) is h-complete. Consider the assertion

;;li_g’ Exth[h](Z[h, =Y, H'(U; #)) ~ 0 for j =0, 1.

This assertion is true for ¢ = 0 since I'(U; .#) is h-complete and is true for ¢ # 0 by
hypothesis (b). The same vanishing assertion remains true after replacing “li_r)n” with

lim. Applying Proposition 1.5.6 (i), we find that .# is cohomologically complete. [
Proposition 1.5.8. — Let # € D(Z) be a cohomologically complete object and a € Z.
If H(gr,(#)) = 0 for any i < a, then H'(.#) = 0 for any i < a.

Proof. — The exact sequence Hi~(gr,.#) — Hi(.#) —— Hi(.#) — Hi(gry. M)
implies that H'(.#) SN Hi(#) is an isomorphism for i < a. Hence 7<% €
D(#"°) and we have RHam 5(%'°°, 7<%.#) ~ 7<°.# . By the distinguished triangle,

RHom gp( R, < M) — RHom (%', M) — RHom gp(#'°°, 72° M) *,

we have 7<°# =~ RHom ,H(%'°°,72°4)[-1] and they belong to D<*(%Z) N
D2t (%) ~ 0. O

Corollary 1.5.9. — Let # € D(%) be a cohomologically complete object. If gr, (M) ~
0, then A4 ~ 0.

Proposition 1.5.10. — Assume that A € D(Z) is cohomologically complete. Then
Rtom 4,( N, M) € D(Zx[h]) is cohomologically complete for any A" € D(Z).
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Proof. — Tt follows from
Rftom 313 ([0, W), RHom g (N , M) = RHom (N, RHam 3y (Z[1, 1Y), ). OO
We can give an alternative definition of a cohomologically complete module.

Lemma 1.5.11. — Let # € D(Z). Then we have
L
(i) Rw((“liLn” RE™)® 5 M) ~ RHom (KB, M),

n

(i) Rer((“lim” /BN g ) = Rtam (% | R]-1], ).

Proof. — 1t is enough to show (i). Set L = “lim”(%#h"). Note that L is flat, i.e., the
n

functor L ®, ¢ from Mod(Z) to Pro(Mod(Z)) is exact.
One has the isomorphisms

1

Hom (R, M) Hom g (im Zh~", M)

n

lim Jom (%R, M)

n

R

R

lim Stom 5(%R", ) @z A

n

im (20" @, M ).

n

1

L
It remains to show that Rm(L®,+) is the right derived functor of .#Z
lim(#Zh"™ ®, #). Hence, it is enough to check that if .# is an injective #Z-module,

L
then Rm(L®,,.#) is in degree zero. Applying Lemma 1.1.5 with %, = Zh" Qg A,

. L L
we find H*(U; R (L®,.#)) ~ 0 for i > 0. Therefore, R'm(L®,.#) ~ 0 for i > 1. On
the other hand, since {I'(U; #,,)}. satisfies the Mittag-Leffler condition, we get that

L
Rin(L®g.#) ~ 0. O
Hence, .# is cohomologically complete if and only if the morphism .# —

L
R (“lim” (#/#Nh")® 4#) is an isomorphism.

Proposition 1.5.12. — Let f: X — Y be a continuous map, and .# € D(Zx[h]). If
M is cohomologically complete, then so is Rf..# .

Proof. — It immediately follows from

RAom,, iy (Zy [h B, Rfutl) ~ RERHm g gy (Zx [ 7], ). O
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1.6. Cohomologically complete o/-modules

In this section, & is a K-algebra satisfying hypotheses (1.2.2) and either (1.2.3) or
(1.3.1).

Theorem 1.6.1. — Let .# € D® (/). Then # is cohomologically complete.

coh
Proof. — Since any coherent module is an extension of a module without fA-torsion
by an A-torsion module, it is enough to treat each case.

Assume first that .# is an h-torsion coherent &/-module. Since the question is
local, we may assume that there exists n such that A".# = 0. Then the action of A on
the cohomology groups of R#am (27, .#) is nilpotent and invertible, and hence
the cohomology groups vanish.

Now assume that .# is a coherent &/-module without A-torsion. Then Corol-
lary 1.5.7 shows that ./# is cohomologically complete. O

Corollary 1.6.2. — If # € D2, (&) and A € D(&), then R¥tam (N , M) is coho-
mologically complete.

Proof. — It is an immediate consequence of Proposition 1.5.10 and the theorem
above. O

In the course of the proof of Theorem 1.6.4 below, we shall use the following
elementary lemma that we state here without proof.

Lemma 1.6.3 (Cross Lemma). — Let € be an abelian category and consider an exact
diagram in €

Xo

|

qu-Yq-Zl

Zs.
Then the conditions below are equivalent:
(a) Im(Xs — Z;) = Im(Y — Z;),
(b) IIIl(Xl — ZQ) = IIII(Y — Zz),
(¢) X1 ® X =Y is an epimorphism.
Theorem 1.6.4. — Let # € D (/) and assume:
(a) A is cohomologically complete,
(b) gry(#) € DY, ().
Then, # € DY, (), and we have the isomorphism

coh

H( M) =5 lim HY (ct® M)

foralli € Z.
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Proof. — We shall assume (1.2.3). The case of Hypothesis (1.3.1) could be treated
with slight modifications.

L . ‘

Recall that 7, := &/ /h"*'of and set My, = A, @ , M, N} := HI (My,).
(1) For each n € N, the distinguished triangle & /h"o/ L /Aty —
o |hat — induces the distinguished triangle
(1.6.1) M1 L My — My s
This triangle gives rise to the long exact sequence
(1.6.2) AT M T M — AP — ]
from which we deduce by induction on n that .#,J is a coherent «/-module for any j
and n > 0 by using the hypothesis (b).
(2) Let us show that
(16.3) “!i%n” Coker(A7 2 47 and “l%_n” Ker(AJ 2 A7) are
locally representable for all j € Z.
Consider the distinguished triangle:

pntt +1

(1.6.4) My —— Mpy1 — My —— .
It gives rise to the long exact sequence
. n+1 . . J .
(1.6.5) N —h—_)‘/‘/n]+1—_)'/%1]£—>%]+1—)”'

Now consider the exact diagram, deduced from (1.6.2) and (1.6.5):

(1.6.6) Al

L

. K . .
J 7 J
N —— N —— N

\ lwi

j

T

Here the commutativity of the triangle follows from the commutative diagram

R +1

My My, My ———
Lid Lh Lh
Mo s Mo M, +l

Hence Im(y’ ;) C Im(pf) C A7 T, Therefore, the sequence {Im 3}, of coherent
&/-submodules of %j *ois increasing and thus locally stationary. It follows from
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(1.6.6) and Lemma 1.6.3 that

the decreasing sequence {Im(#;7 — ¢’ )}y, is locally station-

1.6.7
( ) ary for any j € Z.

Since Coker (.47, LR N3) = Im(AJ — A7) by (1.6.2), we deduce that

“lim” Coker(%j = A7) ~ “lim” Coker(ﬂ{lj_1 = A9
— —

n n

is locally representable.
Since Ker(JVj L ) JVj—l/Im(./iqu‘l — 771 by (1.6.2), we get that
“lim” Ker(A7; ik o (7)) ~ “lim” Ker (A", LA A7) is locally representable.

Therefore, we have proved (1.6.3). Then by Proposition 1.2.18, lim A,J is a coherent
n

/-module and {47}, satisfies the Mittag-Leffler condition.
(3) Hence it remains to prove that H’(.#) =& =5 lim A7 J for any j. Set .4’

(“lim” )@, # € D*(Pro(Mod(e))) and A9 = Hi(#') = “lim” .4 €
Pron(Mod(.gz{ )). Lemma 1.5.11 implies that
M = R

Since the .#;7’s are coherent /-modules, for any any U € B, H'(U; 4,7) = 0 (i > 0)
and {4,/ (U)}, satisfies the Mittag-Leffler condition. Hence in the exact sequence

0 — R'n(“lim” H*"Y(U; A7) » H'(U;Rn A7) - im H*(U; A]) —
s ——
n n
the first and the last term vanish, and we obtain Riwr. 47 = 0 for any i > 0. Let
us show that H7(.#) =% lim .47 by induction on j. Assuming H7(.#) =5 lim A;}
for j < ¢, let us show that He(A) = lim A;°. By the assumption, Hi{(A )

Rr(A?) for any i < c. Hence 7<°.# = R7r(7-<°,///’). Since # - Rr.#’, we obtain

T2 M - Rr(172°4"). Hence taking the c-th cohomology, we obtain H¢(.#) =

ROmHe(.A") = lim e 0
n

The next result will be useful.

Proposition 1.6.5. — Assume that 2/°P/lie/°P is a Noetherian ring and the flabby di-
mension of X is finite. If # € DP(&f) is cohomologically complete, then for any

L
N € D, (#°P), the object #'® ,. M of D™(Z[h]x) is cohomologically complete.

Proof. — By the assumption on the flabby dimension, there exists a € Z such that
H*RHom 5y, (Z[h, h~Y), F) = 0 for any F € D=%(Zx|h]) and any i > a.
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For any n € Z we can locally find a finite complex L of free «/°P-mod-
ules of finite rank such that there exists a distinguished triangle L<I§) o —
N (% # — G where G € D<"(Zx|h]). Since Lé % is cohomologically complete,
Hin@md(dl°°,¢/V(§>d.//l) ~ H'‘RHom ,('°°,G) = 0 for i > n + a. Hence
N é -~ is cohomologically complete. O

Flatness. —

Theorem 1.6.6. — Assume that /°P/ha/°P is a Noetherian ring and the flabby di-
mension of X is finite. Let . # be an &/ -module. Assume the following conditions:

(a) A has no h-torsion,
(b) A is cohomologically complete,
(c) A /hM is a flat <fy-module.

Then A is a flat o/ -module.

Proof. — Let .4 be a coherent &/°P-module. It is enough to show that we have
L L
H' (AN ®,#) = 0 for any i < 0. We know by Proposition 1.6.5 that #'® .4
L L
is cohomologically complete. Since gry(N'®,#) ~ (gryN)®,, (gr5.#) belongs
L

to D=%(Zx), we have N® M E D2%(Z[h]x) by Proposition 1.5.8. O
Corollary 1.6.7. — In the situation of Theorem 1.6.6, assume moreover that 4 [h.4
is a faithfully flat oy-module. Then A is a faithfully flat of -module.

Proof. — Let .4 be a coherent 2/°P-module such that 4'®_, .# ~ 0. We have to show

L
that .#” ~ 0. By Theorem 1.6.6, we know that ./ is flat, so that /' ®_, M4 ~ NV ® , A .
Therefore

L
(grpH)® y, (BTl ) = gry(N @y M) >0

and the hypothesis that .# /h.# is faithfully flat implies that gr;.#" ~ 0. Since 4" is
coherent, Corollary 1.4.6 implies that .4 ~ 0. O

Proposition 1.6.8. — Assume (1.2.2) and (1.2.3). Let U be an open subset of X sat-
isfying:

(1.6.8) UNV €W for any V € B.

Then for any coherent &/ -module A , we have

(i) R"Ty(A) =0 for any n # 0,
(ii) Ty () ®, A — Ty(MA) is an isomorphism,
(iii) Ty (&) is a flat /°P-module.

ASTERISQUE 345



1.6. COHOMOLOGICALLY COMPLETE «-MODULES 31

Proof. — (i) Since R"T'y () is the sheaf associated with the presheaf V. — H™(UN
V. #), (i) follows from Theorem 1.2.5 (v).

(ii) The question being local, we may assume that we have an exact sequence 0 —
N = &L — M — 0, where .Z is a free &/-module of finite rank. Then, we have a
commutative diagram with exact rows by (i):

| ; |
Tu(4) Tu(2) Py() ——0.

Since the middle vertical arrow is an isomorphism, I'y (&) ®, # — T'y(#) is an
epimorphism. Applying this to 4/, I'y(«) ®, A — I'y(A) is an epimorphism.
Hence, I'y (%) ®,, M — T'y(.#) is an isomorphism.

(i) By (i) and (ii), # — I'y(#) ®, A is an exact functor on the category of
coherent «/-modules. It follows that for all z € X, the functor .# — (T'y(%)). ®,,
M is exact on the category Modcon (). Therefore, (I'y (&)), is a flat &Z/°P-module.

O

0

Remark 1.6.9. — The results of this chapter can be generalized in the following situ-
ation. Let o7 be a sheaf of rings on a topological space X and let .# be a both-sided
sheaf of ideals of o/. We assume that:
there exists locally a section s of .# such that & 3 a — as and & 3 a — sa give
isomorphisms &/ =~ .#.

We set oy = /5, & (—n) = I™ C & and & (n) = R¥tom ,,(o/ (—n), &) for n >
0.

Then we have &7(n) C &/(n+ 1), and &(n) @y & (m) =~ &/ (n + m).

We set 27'°¢ = lim &/ (n) and for an &/-module .#, we set .#(n) = H(N) Qo M.

We say that # is #-torsion free if #(—1) — .4 is a monomorphism. Of course,
&/ is S-torsion free. e
Finally, for an &/-module .# we set .# := lim Coker(.#(—n) — .#).
n

Instead of (1.2.2), we assume

(1.6.9) { (i) o = o,
o (ii) % is a left Noetherian ring.
Under the assumptions (1.6.9) and (1.2.3), all the results of this chapter hold with
suitable modifications.

In particular, our theory can be applied when X = T™* M is the cotangent bundle to
a complex manifold M and &/ = Z”;(O) is the ring of formal microdifferential operators
of order 0 (see Section 6.1 for more details on the ring of formal microdifferential
operators).
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CHAPTER 2

DQ-ALGEBROIDS

2.1. Algebroids

In this section, X denotes a topological space and recall that K is a commuta-
tive unital ring. A K-linear category means a category % such that Hom,(X,Y) is
endowed with a K-module structure for any X, Y € ¥, and the composition map
Hom (X,Y) x Hom (Y, Z) — Hom (X, Z) is K-bilinear for any X, Y, Z € €. One
defines similarly the notion of a K-linear stack.

The notion of an algebroid has been introduced in [47]. We refer to [21] for a more
systematic study and to [43] for an introduction to stacks. Recall that a K-algebroid
& on X is a K-linear stack locally non empty and such that for any open subset U
of X, any two objects of &/ (U) are locally isomorphic.

If A is a K-algebra (an algebra, not a sheaf of algebras), we denote by A" the
K-linear category with one object and having A as the endomorphism ring of this
object.

Let & be a sheaf of K-algebras on X and consider the prestack U — &/ (U)* (U
open in X). We denote by &/ the associated stack. Then &% is a K-algebroid and is
called the K-algebroid associated with &7. The category &/+(X) is equivalent to the
full subcategory of Mod(27°P) consisting of objects locally isomorphic to «7°P.

Conversely, if o/ is an algebroid on X and o € &/(X), then & is equivalent to the
algebroid &ndq(o)*.

For an algebroid & and o, 7 € &/ (U), the K-algebras &2y (o) and &nd 4 (7) are
locally isomorphic. Hence, any definition of local nature concerning sheaves of K-al-
gebras, such as being coherent or Noetherian, extends to K-algebroids.

Recall that for an algebroid &7, the algebroid «/°P is defined by &/°P(U) =
(& (U))°P (U open in X). Then, if & is a sheaf of K-algebras, (&/°P)* ~ (&/*)°P.

Convention 2.1.1. — If &/ is a sheaf of algebras and if there is no risk of confusion,
we shall keep the same notation &/ to denote the associated algebroid.

Note that two algebras may not be isomorphic even if the associated algebroids are
equivalent.
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Example 2.1.2. — Let X be a complex manifold, .# a line bundle on X and denote as
usual by Zx the ring of differential operators on X. The ring of #-twisted differential
operators is given by

9% =% ®y, Ix ®y, L%

In general the two algebras Zx and 93? are not isomorphic although the associ-
ated algebroids are equivalent. The equivalence is obtained by using the bi-invertible
module Ix ®,, £ ®=1 (see Definition 2.1.10 and Lemma 2.1.11 below).

Let % = {Ui}ier be an open covering of X. In the sequel we set U;; := U; N Uj,
U,'jk =U; N Uj N Ug, etc.

Consider the data of
(2.1.1) {a K-algebroid & on X,

o; € & (U;) and isomorphisms ¢;;: o;5|v,; == oilu
To these data, we associate:

- vQ{z = Mﬂ(ai)a
— fij: Fluy,; = S
— aijk, the invertible element of & (Uy;x) given by @i o pjk o 03!
Then:
fij o fix = Ad(asjx) © fir on Uyji,
(2.1.2)
aijk@ikt = fij(ajxr)aiji on Usjk.
(Recall that Ad(a)(b) = aba™?'.)
Conversely, let 7 be K-algebras on U; (i € I), let fi;: |y, = |y, (3,5 € I)
be K-algebra isomorphisms, and let a;;x (4,7, k € I) be invertible sections of <7 (U;;x)
satisfying (2.1.2). One calls

(2.1.3) ({HiYier, { fij}ier {aijn }ijrer)

a gluing datum for K-algebroids on % . The following result, which easily follows from
[30, Lem 3.8.1], is stated (in a different form) in [37] and goes back to [29].

ij°

v,;» the K-algebra isomorphism a — ¢;; 0cao <pi_j1,

Proposition 2.1.3. — Assume that X is paracompact. Consider a gluing datum (2.1.3)
on % . Then there ezist an algebroid o/ on X and {0;,¢;j}ijer as in (2.1.1) to which
this gluing datum is associated. Moreover, the data (&/,0;,p;;) are unique up to an
equivalence of stacks, this equivalence being unique up to a unique isomorphism.

We will give another construction in Proposition 2.1.13, which may be applied to
non paracompact spaces such as algebraic varieties.

For an algebroid &, one defines the K-linear abelian category Mod(&/), whose
objects are called &/-modules, by setting
(2.1.4) Mod(#) := Fetg (&, Mod(Kx)).

Here Moo(Kx) is the K-linear stack of sheaves of K-modules on X and, for two
K-linear stacks 4 and @, Fctg (24, 2% ) is the category of K-linear functors of stacks
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from o to . If o/ is the algebroid associated with a K-algebra A on X, then
Mod(&7) is equivalent to Mod(A). The category Mod(%) is a Grothendieck category
and we denote by D(%) its derived category and by DP(&) its bounded derived
category.

For a K-algebroid &, the K-linear prestack U — Mod(#/|y) is a stack and we
denote it by 9Mod(&).

In the sequel, we shall write for short “oc € &” instead of “oc € &/(U) for some
open set U”.

Definition 2.1.4. — An o/-module % is invertible if it is locally isomorphic to <,
namely for any o € &, the &nd s (0)-module £ (o) is locally isomorphic to & (o).

This terminology is motivated by the fact that for an invertible module .Z, if we set
B =6y (L))°P, then Hom (L, 7 )Q, L ~ B and £ Qg4 Hom (L, H) = A .

We denote by Inv(&/) the full subcategory of Mod(%/) consisting of invertible
&/-modules and by Jnv(%/) the corresponding full substack of 9Med(2/). Then we
have equivalences of K-linear stacks &/ = Jno(2/°P) =5 JIno(2/)°P.

Recall that for two K-linear categories ¥ and %”, one defines their tensor product
% Qg €' by setting Ob(% @ €') = Ob(¥) x Ob(%”) and

Hom g  ((M, M"),(N,N")) = Hom (M, N) ® Homcg,(M', N')
K

for M,N € € and N,N' € €'. Then € ® €' is a K-linear category.

For a pair of K-algebroids & and &', the K-algebroid &/ @y &/’ is the K-linear
stack associated with the prestack U — &/ (U) ® 2/’ (U) (U open in X). We have

Mod(« @ &) ~ Fetg (27, Mod(")).
For a K-algebroid &/, Mod(&/ & «/°P) has a canonical object given by
A Ry AP 3 (0,0"P) — Hom (o', 0) € Mod(Kx).

We denote this object by the same letter of. If & is associated with a K-algebra A,
this object corresponds to A, regarded as an (A &y A°P)-module.
For K-algebroids <% (i = 1,2, 3), we have the tensor product functor

(2.1.5) * ®y, *: Mod(# ® ") x Mod(, @ o5")
— Mod(# ®y 37),
and the ##om functor
(2.1.6) Hom , (+,+): Mod(2h ® yP)°P x Mod (% ®g Z3")
— Mod(et @y ).

In particular, we have

*®y e ¢ Mod(«/°P) x Mod(&/) — Mod(Kx),
Hom 4(+, ) : Mod(&)°® x Mod(&/) — Mod(Kx),
Hom (s, ) Mod(&/)°P —  Mod(«/°P).
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Since Mod(%) is a Grothendieck category, any left exact functor from Mod (%) to an
abelian category admits a right derived functor.

Now consider the tensor product in (2.1.5). It admits a left derived functor as
soon as /3 is K-flat. Indeed, any .# € Mod(o% ® (24)°P) is a quotient of an 2%-flat
module since there is an exact sequence

@ L — M — 0,
s€Hom (&L, #|v)

where U ranges over the family of open subsets of X and £ € (o4 ® (243)°P)°P(U).
(Recall that for a K-algebroid &7, «/°P(U) is equivalent to Ino(=/)(U).) Note that &
is ah-flat since (o#3)°P is K-flat.

The following lemma is obvious.

Lemma 2.1.5. — Let &/ and &/’ be K-algebroids. To give a functor of algebroids
p: ' — o is equivalent to giving an (&' ® &/°P)-module £ which is locally isomor-
phic to & (i.e. foro € & and o’ € &', L (0’ ®0c°P) is locally isomorphic to &nd (o)
as an &nd o (0)°P-module ).

The &' ® &/°P-module .Z corresponding to ¢ is the module induced from the
& @ &/°P-module & by ¢ ® Z°P: &' @ AP — o ® A°P.
The forgetful functor
Mod (&) — Mod(=«")

is isomorphic to A — £ ®,, A .
Let f: X — Y be a continuous map and let & be a K-algebroid on Y. We denote
by f~l4 the K-linear stack associated with the prestack & given by:

S(U) = {(o,V); V is an open subset of Y such that f(U) C V
and o € &/(V)} for any open subset U of X,
Hom g ;) ((0, V), (0',V"))) = T(U; ftstom 4(0,0")).
Then f~'of is a K-algebroid. We have functors

fer fir Mod(f ™' #/) — Mod(#),
f~1: Mod(&) — Mod(f~'a).

For two topological spaces X; and Xg, let p;: X; x Xo — X, be the projection.
Let <7 be a K-algebroid on X; (i = 1,2). We define a K-algebroid on X; x X3, called
the external tensor product of & and <%, by setting:

R oty :=py  h @p; ' .
We have a canonical bi-functor

e X «: Mod(#) x Mod(2%) — Mod (24 X 24).
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Bi-invertible modules. — The following notion of bi-invertible modules will appear
all along these Notes since it describes equivalences of algebroids.

Definition 2.1.6. — Let A and A’ be two sheaves of K-algebras. An A ® A’-module
L is called bi-invertible if there exists locally a section w of L such that A 5 a —
(a®1)w € Land A’ 5 a’ » (1 ® a’')w € L give isomorphisms of A-modules and
A’-modules, respectively.

Lemma 2.1.7. — Let L be a bi-invertible A® A’-module and let u be a section of L. If
A>aw (a®1l)u € L is an isomorphism of A-modules, then A’ > o' — (1®a')u € L
is also an isomorphism of A’-modules.

Proof. — Let w be as above. There exist a € A and b € A such that u = (e®1)w and
w = (b® 1)u. Then we have u = (ab® 1)u and hence ab = 1. Similarly w = (ba ® 1)w
implies ba = 1. Hence we have a commutative diagram

A ; L
\zl a®1
L
and we obtain the desired result. O

Remark 2.1.8. — Let A and B be two K-algebras and let L be an (A ® B°P)-module.
Even if L is isomorphic to A as an A-module and isomorphic to B°P as a B°P-module,
L is not necessarily bi-invertible, as shown by the following example.
Let I be an infinite set and take o € I. Set I* = I\ {o}. Then there exists a

bijection v: I* — I. Set

X = {a € Homg (I, I);a(o) = o},

Y = {b € Homg, (I,I);b(0) =0 and b(I*) C I*}.
Set Z = X. Then X and Y are semi-groups and X acts on Z from the left and
Y acts on Z from the right. Let v € Z be the unique element extending v. Then
id; € Z gives an isomorphism X = Z (X > a — a € Z) and v’ € Z induces
an isomorphism ¥ = Z (Y 5 b+ v ob € Z). Let A = K[X] and B = K[Y]
be the semigroup algebras corresponding to X and Y. Set L = K[Z]. Then L is an
(A ® B°P)-module and L is isomorphic to A as an A-module and isomorphic to B°P
as a B°P-module. Let u be the element of L corresponding to id;. Then u gives an
isomorphism A 5 a — (a ® 1)u € L. Since the image of B? 5 b+— (1Qb)u € L is
K[Y] # L, L is not bi-invertible in view of Lemma 2.1.7.

However the following partial result holds.

Lemma 2.1.9. — Let A and A’ be K-algebras and let L be an A® A’-module. Assume
that L is isomorphic to A as an A-module and isomorphic to A’ as an A’-module.
If we assume moreover that A, is a left noetherian ring for any x € X, then L is
bi-invertible.
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Proof. — Assume that A > a — (a®1)u € Land A’ 5d — (1®d')v € L are
isomorphisms for some u,v € L. Set v = (a ® 1)u and u = (1 ® a’)v. There exists
a” € Asuch that (1®a')u = (a” ®1)u. Then we have u = (1®a’)v = (1®a’)(a®1)u =
(e®1)(1®a)u = (aa” @ 1)u. Hence we obtain aa” = 1. Therefore the A-linear
endomorphism f: A 3 z — za” is an epimorphism (f(za) = 2). Since A, is a left
noetherian ring, f is an isomorphism. Hence, a”, as well as a, is an invertible element.
Then the following commutative diagram implies the desired result:

AN
\2L a®1
L. O

Definition 2.1.10. — For two K-algebroids &/ and &', we say that an (& ®</')-module
£ is bi-invertible if for any o € o/ and ¢’ € &', £ (0®0c’) is a bi-invertible &nd o (0)®
énd o4+ (0')-module.

~

Lemma 2.1.11. — To give an equivalence &/’ =~ & is equivalent to giving a bi-
invertible (2’ ® 2/°P)-module. More precisely, the forgetful functor Mod(/) —
Mod(') is given by M — £ ®,, M for a bi-invertible (&' ® o/°P)-module L.

Let .# € Mod(?). We shall denote by &ndk(.#) the stack associated with the
prestack & whose objects are those of &7 and Jtom g(o,0') = Hom (M (o), # (o))
for o, o' € #/(U). Then éndg (A ) is a K-algebroid and there exists a natural functor
of K-algebroids &/ — &ndx (). Note that .# may be regarded as an &ndy (.4 )-mod-
ule.

In particular, &ndk (<) is a K-algebroid, there is a functor of K-algebroids & ®
/P — bndg (), and &/ may be regarded as an &k (2/)-module.

Lemma 2.1.12. — Let & and </’ be K-algebroids and let . #4 € Mod(&), #' €
Mod(«'). Assume that # and .#' are locally isomorphic as K-modules, that is, for
any o € & and o’ € &', M (0) and A’ (d’) are locally isomorphic as Kx-modules.
Then &Gnadx(A) and Endg(A') are equivalent as K-algebroids.

Proof. — For 0 € &/ and o' € &', set L (0’ ® 0°P) = Homy (A (0), #'(c")). Then
% is an (6ndx(M') @ bndk (.4 )°P)-module. By the assumption, £ is a bi-invertible
(ndx (A'") ® Endy (A )°P)-module. Hence we obtain the desired result. d

Since Proposition 2.1.3 does not apply to algebraic varieties, we need an alternative
local description of algebroids.
Let % = {U,}ic1 be an open covering of X. Consider the data of

a K-algebroid & on X,
(2.1.7) {ai e A (U)).

To these data, we associate

— = bnd oy (04),
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— = Hom o, (95lv.;, 0ilus;), (hence Z;; is a bi-invertible o ® #/;’"-module

on Uj;),
— the natural isomorphisms
(2.1.8) Qijk: ﬁj ®.<21,- .,E,pjk 5 % in Mod(« ®%OP|UU,C).

Then the diagram below in Mod(#; ® %" |v,,,,) commutes:

(2.1.9) L ® Li ® Lot —L> L @ L
Lajkl laikl
R — L

Conversely, let o7 be sheaves of K-algebras on U; (i € I), let .%;; be a bi-invertible
2 ® sz’;’p—module on U;j;, and let a;;x be isomorphisms as in (2.1.8) such that the
diagram (2.1.9) commutes. One calls

(2.1.10) ({@itier, {Zijtiger, {aijk tijker)

an algebraic gluing datum for K-algebroids on % .

Proposition 2.1.13. — Consider an algebraic gluing datum (2.1.10) on % . Then there
ezist an algebroid of on X and {0, pij}ijer as in (2.1.1) to which this gluing datum is

associated. Moreover, the data (&7, 04,;j) are unique up to an equivalence of stacks,
this equivalence being unique up to a unique isomorphism.

Sketch of proof. — We define a category Mod(&/x) as follows. An object .# €
Mod(#x ) is defined as a family {4, gi;}i jer with #; € Mod(&%) and the g;;’s are
isomorphisms

Gij: Lij @, Mj = M
making the diagram below commutative:

i ® Lk ®%kLk-=2ﬂij ® M

l/aijk '(%‘j

Lik @ My = M.

A morphism {4;,qji}ijer — {///ilv‘I}i}i,jeI in Mod(&/x) is a family of morphisms
u;: M; — M satisfying the natural compatibility conditions. Replacing X with U
open in X, we define a prestack U — Mod(&4;) and one easily checks that this
prestack is a stack and moreover that Mod(gy, ) is equivalent to Mod(<). We denote
it by 9Mod(=/). Then we define the algebroid &/x as the substack of (9od(7))°P
consisting of objects locally isomorphic to &% on U;. O
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Invertible algebroids. — In this subsection, (X, %) denotes a topological space en-
dowed with a sheaf of commutative K-algebras. Recall (see [43, Chap.19 § 5]) that
an Z-linear stack & is a K-linear stack & together with a morphism of K-algebras
X — bnd(idg). Here, &nd(ide) is the sheaf of endomorphisms of the identity functor
idg from & to itself.

Definition 2.1.14. — (i) An Z-algebroid &2 is a K-algebroid 42 on X endowed with
a morphism of K-algebras #Z — &nd(id ).
(if) An Z-algebroid & on X is called an invertible %Z-algebroid if Zy — &l » (o)
is an isomorphism for any open subset U of X and any o € Z(U).

We shall state some properties of invertible Z-algebroids. Since the proofs are more
or less obvious, we omit them.

For two Z-algebroids &7, and 9?3, the Z-algebroid &2, @4 5 is defined as the
Z-linear stack associated with the prestack & given by

S(U) = 21(U) x Z,(U),
Hom g((01,02), (01,03))) = Hom g (01,01) Qg Hom 45 (09,03).

If £, and 9, are invertible, then so is &) Q4 Ps.
We have a functor of K-linear stacks &#; @k, P2 — 1 @z Pa.
Note that
If £, and 95 are two invertible Z-algebroids and F': 42, —

(2.1.11) P, is a functor of Z-linear stacks, then F' is an equivalence.

For any invertible %Z-algebroid &2, & Q4 H°P is equivalent

(2.1.12) to # as an Z-algebroid.

The set of equivalence classes of invertible Z-algebroids has
a structure of an additive group by the operation « ®g °

(2.1.13) defined above, and this group is isomorphic to H?(X;%>)
(see [10, 43]). Here £ denotes the abelian sheaf of invert-
ible sections of Z.

For two invertible Z-algebroids &7, and £?,, there is a nat-

ural functor

2.1.14
( ) * Qg ¢ Mod(4?;) x Mod(Z2;) — Mod(%?; @4 Ps),

and its derived version.
Invertible Ox -algebroids. — In this subsection, (X, Ox ) denotes a complex manifold.
As a particular case of Definition 2.1.14, taking K = C and Z = €x, we get the
notions of an &x-algebroid as well as that of an invertible &'x-algebroid.

Lemma 2.1.15. — Any C-algebra endomorphism of Ox is equal to the identity.

Although this result is elementary and well-known, we give a proof.

ASTERISQUE 345



2.1. ALGEBROIDS 41

Proof. — Let ¢ be a C-algebra endomorphism of &x. For z € X, denote by ¢, the
C-algebra endomorphism of €x , induced by ¢ and by m, the unique maximal ideal
of the ring Ox ;. Then ¢, sends m; to m,, ¢, induces an C-algebra homomorphism
Ug: Ox 5 /My — Ox 5 /my. Since the composition C =5 Ox ;/m, LN Ox z/my =5
C is the identity, we obtain that u, is the identity. Hence, for any f € Ox, ¢o(f)(z) =
f(z). Therefore o(f) = f. a

Lemma 2.1.16. — Let &2 be a C-algebroid on a complex manifold X. Assume that,
for any 0 € P, énd» (o) is locally isomorphic to €x as a C-algebra. Then & is
uniquely endowed with a structure of Ox -algebroid, and & is invertible.

Proof. — By Lemma 2.1.15, for an open subset U and o € Z(U), there exists a
unique C-algebra isomorphism Ox|y == & (o). It gives a structure of Ox-alge-
broid on &. The remaining statements are obvious. O

Let & be an invertible &x-algebroid. For o, ¢/ € Z(U), the two €x-module
structures on Jom 4(0,0’) induced by Snds(0) ~ Ox and by &nd»(0') ~ Ox
coincide, and #om 4(0,0’) is an invertible &x-module.

Let f: X — Y be a morphism of complex manifolds. For an invertible £y -algebroid
Py, we set

Py :=0x Of-10y f_le@y,

where the tensor product ® s-14, is defined similarly as for K-algebroids. Then f* %y
is an invertible &x-algebroid. We have functors

(2115)  f*: Mod(Py) — Mod(f* Py), Lf*: D*(Py) — DO(f* Py),
and
fis fo  :Mod(f*Py) — Mod(Py),
Rfi, Rfc :D°(f*Py) — D*(Py).

Let f: X — Y be a morphism of complex manifolds, and let £x (resp. Py ) be
an invertible Ox-algebroid (resp. an invertible &y-algebroid ). If f~1 9y — Px is a
functor of C-linear stacks, then it defines a functor of C-linear stacks f*%y — Px
and this last functor is an equivalence by the preceding results.

(2.1.16)

Remark 2.1.17. — Invertible Ox-algebroids are trivial in the algebraic case. Indeed,
for a smooth algebraic variety X, the group H?(X; O) is zero. Here the cohomology
is calculated with respect to the Zariski topology. (With the étale topology, it does
not vanish in general.) This result and its proof below have been communicated to us
by Prof. Joseph Oesterlé, and we thank him here.

Let K be the field of rational functions on X, K, the constant sheaf with the
abelian group K™ as stalks, and denote by X; the set of closed irreducible hypersur-
faces of X. One has an exact sequence

0- 0% >Ki— P zs—o.
SeXi
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Since K % is constant, it is a flabby sheaf for the Zariski topology. On the other hand
the sheaf @ gcx, Zs is also flabby. It follows that H7(X; %) is zero for j > 1.

2.2. DQ-algebras

From now on, X will be a complex manifold. We denote by dx: X — X x X
the diagonal embedding and we set Ax = §x(X). We denote by &x the structure
sheaf on X, by dx the complex dimension, by Qx the sheaf of holomorphic forms of
maximal degree and by © x the sheaf of holomorphic vector fields. As usual, we denote
by Zx the sheaf of rings of (finite order) differential operators on X and by F,,(Zx)
the sheaf of differential operators of order < n. Recall that a bi-differential operator P
on X isa C-bilinear morphism &x x Ox — Ox which is obtained as the composition
0%t X © P where P is a differential operator on X X X defined on a neighborhood of the
diagonal and 6! is the restriction to the diagonal:

(221) P(f?.‘])(m) = (ﬁ/(wlamﬁa:m7azz)(f(xl)g(xZ))|11=12=Z'

Hence the sheaf of bi-differential operators is isomorphic to Zx ® ¢, Zx, where both
9Px are regarded as Ox-modules by the left multiplications.

Star-products. —

Notation 2.2.1. — We denote by C" the ring C|[[A]] of formal power series in an inde-
terminate & and by C™!°°¢ the field C((%)) of Laurent series in A. Then C™!°¢ is the
fraction field of C".

We set
Ox[[H]] == @ﬁx ® ((Ch/h"(Ch) ~ [[ Oxh™.
n n>0

Let us recall a classical definition (see [2, 48]).

Definition 2.2.2. — An associative multiplication law x on €x[[]] is a star-product if
it is C-bilinear and satisfies
(2.2.2) fxg=)_ Pif g)k for f,g € Ox,

i>0

where the P;’s are bi-differential operators such that Py(f,g9) = fg and P;(f,1) =
P;i(1,f) =0for all f € Ox and i > 0. We call (Ox][[A]],*) a star-algebra.

Note that 1 € Ox C Ox|[[A]] is a unit with respect to x. Note also that we have

(S ) > (D)= ( F Pulfung)i"
>0 120 n>0 i+j+k=n

Recall that a star-product defines a Poisson structure on (X, €x) by setting for f, g €
17 X:

(2.2.3) {f,9} = Pi(f,9) = Pi(g,f) = 7' (f g — g ) mod hOx|[H]],
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and that locally, (globally in the real case), any Poisson manifold (X, Ox) may be
endowed with a star-product to which the Poisson structure is associated. This is a
famous theorem of Kontsevich [48].

Proposition 2.2.3. — Let x and * be star-products and let ¢: (Ox[[h]],*x) —
(Ox[[h]],*") be a morphism of Cl-algebras. Then there ezists a unique sequence
of differential operators {R;}i»o on X such that Ry = 1 and o(f) = 3,50 Ri(f)I
for any f € Ox. In particular, ¢ is an isomorphism.

First, we need a lemma. In this lemma, we set Foo (9x) = Zx

Lemma 2.2.4. — Letl € Z>_, U{oc}, and ¢ € End¢, (Ox). If [p,9] € Fi(Zx) for
all g € Ox, then ¢ € F111(Px).

Proof. — We may assume that X is an open subset of C" and we denote
by (z1,...,%ns) the coordinates. Set P; = [p, z;]. Then

(Pi, z;] = [p, zil, z5] = [, 73], 7] = [Py, 2]

This implies the existence of P € F;;1(Zx) such that [P,z;] = P; for all i. Setting
¥ 1= ¢ — P, we have

[W,z;]=0foralli=1,...,n

Let us show that ¥ € Ox. Replacing ¢ with 6 := 1 — ¢(1), we get by induction on
the order of the polynomials that 8(Q) = 0 and [0,Q] = 0 for all Q € Clzy,...,z,).
Let f € €x. We shall prove that 6(f)(z) = 0 for all z € X. It is enough to prove it
for z = 0. Then, writing f = f(0) + 3, z; fi, we get

o(f) 6(£(0)) +29(w1f1 =0(f (0))+Z z:0(fi) + 0, zi] f;)
lee(f,

which vanishes at x = 0. O

Proof of Proposition 2.2.3. — Let us write
(2.2.4) o(f) =3 Heif), feOx.

i>0
By Lemma 2.1.15, ¢o = 1. We shall prove by induction that the ¢;’s in (2.2.4) are
differential operators and we assume that this is so for all ¢ < n for n € Z+,.
Let {P;} and {P]} be the sequence of bi-differential operators associated with the
star-products x and +’, respectively. We have

o(fxg) = o _WPi(f,9)= > Hpi(Pi(f9),
j20 1,520
() ¥ ple) = D Ho(H)* D Weilg)= D KHI*PU0i(f), 5(9))-
i>0 jEN 4,5,k>0
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Since o(f * g) = ¢(f) ¥ ©(g), we get:
(2.2.5) Y wiPi(f,9)= Y. Pilei(f),%i(9))-
n=i+j n=i+j+k
By the induction hypothesis, the left hand side of (2.2.5) may be written as ¢, (fg) +
Qn(f,g) where Q,, is a bi-differential operator. Similarly, the right hand side of (2.2.5)

may be written as ¢, (f)g+ fon(g) + R.(f,g) where R, is a bi-differential operator.
For any g € Ox, considering g as an endomorphism of Ox, we get

[0ns 91(f) = @n(f9) — 9pn(f) = fion(g) + Su(f),
where S, is a differential operator. Then, the result follows from Lemma 2.2.4. O

DQ-algebras. —

Definition 2.2.5. — A DQ-algebra & on X is a CP-algebra locally isomorphic to a
star-algebra (Ox|[[A]],*) as a C"-algebra.

Clearly a DQ-algebra & satisfies the conditions:
(i) h: & — & is injective,
(2.2.6) (ii) & — lim &/ /h" &/ is an isomorphism,
(iii) & /hgf is isomorphic to Ox as a C-algebra.
For a Ch-algebra « satisfying (2.2.6), the C-algebra isomorphism &/ /he/ ~~ Ox in
(2.2.6) (iii) is unique by Lemma 2.1.15. We denote by
(2.2.7) 00: A — Ox

the C"-algebra morphism & — &7 /he/ = Ox. If ¢ is a C-linear section of 0¢: &7 —
Ox, then ¢ extends to an isomorphism of C"-modules @: Ox[[h]] == &, given

by ¢(3_; fih*) = i o(fi)h.
Definition 2.2.6. — We say that a C-linear section ¢: Ox — & of &/ — Ox is stan-
dard if there exists a sequence of bi-differential operators P; such that

(2.2.8) o(£)e(9) =Y p(Pi(f,9) for any f,g € Ox.

120

Consider a standard section ¢: Ox — & of & — Ox. Define a star-product *
on Ox|[h]] by setting

f*g = Z}D,(f,g)ﬁz for any f,g € 0x.
i>0

Then we get an isomorphism of C"-algebras
(2.2.9) G: (Ox[[hl], %) = .

We call ¢ in (2.2.9) a standard isomorphism.
Hence, a DQ-algebra is nothing but a C"-algebra satisfying (2.2.6) and admitting
locally a standard section.
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Remark 2.2.7. — We conjecture that a C"-algebra satisfying (2.2.6) locally admits a
standard section.

Let o7 be a DQ-algebra. For f, g € Ox, taking a, b € & such that op(a) = f and
oo(b) = g, we set

(2.2.10) {f,9} = oo(h(ab — ba)) € Ox.

Then this definition does not depend on the choice of a, b and it defines a Poisson
structure on X. In particular, two DQ-algebras induce the same Poisson structure
on X as soon as they are locally isomorphic.

By Proposition 2.2.3, if ¢,¢': 6x — &/ are two standard sections, then there
exists a unique sequence of differential operators {R;};>o such that ¢'(f) =
Yiso h'p(Ri(f)) for any f € Ox.

Clearly, a DQ-algebra satisfies the hypotheses (1.2.2) and (1.2.3). Hence, a DQ-al-
gebra is a right and left Noetherian ring (in particular, coherent).

Lemma 2.2.8. — Let &/ be a DQ-algebra. Then the opposite algebra </°P is also a
DQ-algebra.

Proof. — This follows from (2.2.2). a

Let X and Y be complex manifolds endowed with two star-products xx and xy.
Denote by {P;}; and {Q,}; the bi-differential operators associated to these star-
products as in (2.2.2). Let P; X Q; be a bi-differential operator on X x Y defined as
follows. Let us take differential operators E(ml,zz,aﬁ,am) and éj (y1,Y2, 0y, ,0y;)
corresponding to P; and Q; as in (2.2.1). Then we set

(PR Q;)(f, 9)(=,y)
= (Pi(wl,xz,azl,3@2)Qj(y1,y2,ayu3y2)(f($1,y1)9($2,y2)))|§1=z2=z-

1=Y2=Y
Hence, P, ® Q; is the unique bi-differential operator on X x Y such that (P; X

Q;)(f1(%)91(y), f2(2)92(y)) = Pi(f1(z), f2(z)) - Qj(91(y), 92(¥)) for any f.(z) € Ox
and g,(y) € Oy (v =1,2).

One defines the external product of the star-products xx and xy on Ox vy |[h]] by
setting

frg=> K Y (RRQ))(f9)
n>0 i+j=n
Hence:
Lemma 2.2.9. — Let X and Y be complex manifolds, and let o/x be a DQ-algebra
on X and &y a DQ-algebra on Y. Then there exists a DQ-algebra &7 on X x Y

which contains o/x Rcn 2y as a Ch-subalgebra. Moreover such an &f is unique up to
a unique isomorphism.

We call &7 the external product of the DQ-algebra &/x on X and the DQ-algebra
&y on Y, and denote it by o/x K o .
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Remark 2.2.10. — (i) Any commutative DQ-algebra is locally isomorphic to
(Ox|[A]], %) where * is the trivial star-product f x g = fg.
(ii) For the trivial DQ-algebra Ox [[A]], we have

At on o (Ox[[R]) ~ hOx([R)]) := [] "0,
n>1

(recall that ©x is the sheaf of vector fields on X) and we associate to v :=
Y n>1 P"vn the automorphism f — exp(v)f.

The ring @3‘? and another construction for DQ-algebras. — We define the C*-algebra
Px[[h]] :=1im 9x ® (C"/A"C") ~ [] 2xh".
n n>0
Then Ox|[[h]] has a Dx[[fi]]-module structure, and Px|[[h]] C &ndcr(Ox[[R]])-
Let o&/x be a DQ-algebra. Choose (locally) a standard section ¢ giving rise to

a standard isomorphism of C"-modules @: Ox[[h]] =~ /x. This last isomorphism
induces an isomorphism

(2.2.11) ®: Enden (Ox([H]]) = Enden(x).

Definition 2.2.11. — Let &/x be a DQ-algebra and let ¢ be a standard section. The
sheaf of rings 2§ is the Ch-subalgebra of &ndcn(27x), the image of Px|[[h]] C
&nden (Ox[[R]]) by the isomorphism @ in (2.2.11).

It is easy to see that 2¢ C &nden(#x) does not depend on the choice of the
standard section ¢ in virtue of Proposition 2.2.3. Hence 2§ is well-defined on X
although standard sections only locally exist.

By its construction, we have 2§ -~ lim D¢ |h" D¢ . Moreover, the image of the

algebra morphism &/x ® #x° — &nden(x), as well as the one of 63  @xxxe —
éndcn(x) is contained in 2. Hence we have algebra morphisms

Hx @ Hxa — 6)_(142{X><Xa — @f{

We shall show how to construct a star-algebra from the data of sections of Zx [[f]]
satisfying suitable commutation properties.

Let @/x := (Ox|[[h]],*) be a star-algebra. There are two C"-linear morphisms from
Ox[[A]] to Px][H] given by
(2.2.12) B fio fx, B :froxf
Hence, for f € Ox, we have:

O(f) =D P(f, ), @(f) =Y P+, fH.
i>0 >0

Then ®': @/x — Px|[[h]] and ®": 3" — PDx[[R]] are two C"-algebra morphisms,
and induce a C"-algebra morphism @x ® &y* — Zx|[A]].
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Assume to be given a local coordinate system = = (z1,...,Z,) on X and for ¢ =
1,...,n, set ®(z;) = A; and ®"(x;) = B;. Then {4;, B;}; j=1,.,n are sections
of Px|[h]] which satisfy

Ai(1) (1) = i,
(2.2.13) {Ai = z; mod h9x|[[h]], B; = z; mod hZx|[R]],
[Ai,B;] =0 (i,j=1,...,n).

Conversely, we have the following result.

Proposition 2.2.12. — Let {A;,B;}ij=1,.,n be sections of Px[[h]] which satisfy

(2.2.13). Define the subalgebra o/x C Dx|[[h]] by

(2.2.14) x ={a € Dx[[N];a,Bi]=0,i=1,...,n}

and define the C"-linear map : o/x — Ox|[[h]] by setting Y(a) = a(1). Then

(a) 9 is a C*-linear isomorphism,

(b) the product on Ox|[[h]] given by ¥ (a) x ¥ (b) :=(a - b) is a star-product, x is a
DQ-algebra and ="' is a standard isomorphism,

(c) the algebra <7y® is obtained by replacing A; with B; (i = 1,...,n) in the above
construction.

Proof. — (a)-(i) &/x N h9x|[h]] = hx, since [ha, B;] = 0 implies [a, B;] = 0. Hence
we have o/x /I ofx C Dx|[h)]/W Dx][R]] for any j.
(a)-(ii) @/x = !i_r__n&z/x/fiszfx. Indeed, let a = 352 A'a; and assume that
j
k

) hai,Bi] =0mod B! (I=1,...,n)

i=0
for all k € N. Then [a,B;)]=0forl=1,...,n
(a)-(iii) Let v; : Wy /W t1alx — W Ox /W +1Ox be the morphisms induced by 3. By
(a)-(ii) it is enough to check that all 1;’s are isomorphisms. Since all A &y /R T1.o/x
are isomorphic and all #? &x /W *160x are isomorphic, we are reduced to prove that
Yo: Ax [halx — Ox is an isomorphism.
(a)-(iv) 9o is injective. Let ag € &x/ha/x C Px. Since [ap, ;] € hDx[[h]] implies
lao, z;] = 0, we get ag € Ox. Therefore, ag(1) = 0 implies ag = 0.
(a)-(v) o is surjective. Let y = (y1,...,Yn) be a local coordinate system on a copy
of X. Notice first that the sections y; — A; of Pxxy|[h]] are invertible on the open
sets {y; # z;}. Let f(zl, ..,Zn) € Ox. Define the section G(f) of 2x|[h]] by

2. e — AV Y dur - du
(2:2.15) o f (o (v~ )™ dys - dy

Then [G(f), B;] = 0 for all i. It is obvious that G(f)— f € hDx[[}]] and ¥o(G(f)) = f.

(b) Clearly, the algebra (&x[[A]], x) satisfies (2.2.6). Moreover, f — G(f) is a standard
section since there exist P;(f) € Zx|[[h]] (i € N) such that G(f) = Y, Pi(f)i* and
P;(f) is obtained as the action of a bidifferential operator P; on f.
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(c) follows from &7°P = {b € &ndcn(x); (b, x] = 0}. a

Example 2.2.13. — Let M :={a;;}; j=1,..n» be an n X n skew-symmetric matrix with
entries in C. Let X = C™ and consider the sections of Zx|[[h]]:

h h
Ai =x; + 5 ;aijaj, B, =T; — 5 Ej:ai]’aj.

Then {A;, Bj}i j=1,..,n satisfy (2.2.13), thus define a DQ-algebra &/x. Note that the
Poisson structure associated with the DQ-algebra &7 is symplectic if and only if the
matrix M is non-degenerate.

2.3. DQ-algebroids

Let us introduce the notion of a deformation quantization algebroid, a DQ-algebroid
for short.

Definition 2.3.1. — A DQ-algebroid &7 on X is a C"-algebroid such that for each open
set U C X and each o € #(U), the Cl-algebra é&nd (o) is a DQ-algebra on U.

Note that a DQ-algebroid is called a twisted associative deformation of &x in [63].

By (2.2.10), a DQ-algebroid  on the complex manifold X defines a Poisson struc-
ture on X. It is proved in [47] that, conversely, any complex Poisson manifold X may
be endowed with a DQ-algebroid to which this Poisson structure is associated.

According to Convention 2.1.1, if &/ is a DQ-algebra, we shall often use the same
notation & for the associated DQ-algebroid.

Note that any DQ-algebroid &/ on X may be obtained as the stack associated with
a gluing datum as in (2.1.3), where the sheaves 27 are DQ-algebras.

Let &/ be a DQ-algebroid on X. For an &~module .#, the local notions of being
coherent or locally free, etc. make sense.

The category Mod(%) is a Grothendieck category. We denote by D(?) its derived
category and by DP() its bounded derived category. We still call an object of this de-
rived category an &~module. We denote by DP (&) the full triangulated subcategory

coh
of D®() consisting of objects with coherent cohomologies.

Opposite structure. — If X is endowed with a DQ-algebroid &/x, then we denote
by X® the manifold X endowed with the algebroid /4", that is:

(2.3.1) Axa = AP,
This is a DQ-algebroid by Lemma 2.2.8.

External product. — Assume that complex manifolds X and Y are endowed with
DQ-algebroids &/x and 4 respectively. By Lemma 2.2.9, there is a canonical DQ-al-
gebroid &/x X2y on X XY locally equivalent to the stack associated with the external
product «/x X o/ of the DQ-algebras and there is a faithful functor of C"-algebroids

(2.3.2) .52{)( IE,Q{Y ﬁdxgﬂy,
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which induces a functor
(2.3.3) for: Mod(«/x X oy) — Mod(2/x X o).
When there is no risk of confusion, we set

dxxy = dx X oy.

Then #/xxy belongs to Mod(#xxy ® (#xe W 2% .)) and the functor for admits a
left adjoint functor £ — Pxxy ®u, ma, K

for
(2.3.4) MOd(ﬂXxy) : Mod(ﬂx X .,Q{y)
We denote by * X « the bi-functor &/x xy . %) (¢ e):

x Nty

(2.3.5) L Bﬂ . : MOd(‘Q{x) X Mod(ﬂy) — MOd(WXxy).
Lemma 2.3.2. — If A is an &/x-module without hi-torsion, then the functor

///E * MOd(ﬂy) g MOd(dxxy)
is an ezact functor.
Proof. — We may assume that &/x and 24 are DQ-algebras. Hence it is enough
to show that for any (z,y) € X x Y, setting A := Zxxy Q, M, Nay) is a flat
module over «y" . We may assume further that .# is a coherent @/x-module without
h-torsion. For any Stein open subset U, let py: U x Y — Y be the projection. Set
N = (pu)« ((Pxxy By M )|uxy)- Then it is easy to check the conditions (a)—(c)

in Theorem 1.6.6 are satisfied ((c) follows from the &-module version of this lemma),

and we conclude that .47, is a flat %"-module. Hence, A(; ,) ~ lim (A7), is a flat

zeU
A5P),~-module. O
(y")y

Hence the left derived functor
L
. E L D(JZ{)() X D(‘Q{y) — D(%Xxy)
L
satisfies £°* R AN °* =5 #° R A ° assoon as A4 "° or A ° is a complex bounded

from above of modules without A-torsion.

Graded modules. — For a Cl-algebroid % on X, one denotes by gr;, (%) the C-alge-
broid associated with the prestack & given by

Ob(6(U)) = Ob(A(U)) for an open subset U of X,
Hom g1y (0, 0") = Hom (0, 0’) /iHom g(0,0)  for o, o' € B(U).

Let now #/x be a DQ-algebroid on X. Then it is easy to see that gr;(2/x) is an invert-
ible &x-algebroid and that we have a natural functor &/x — gr,(2/x) of C-algebroids.
This functor induces a functor

(2.3.6) for: Mod(gr(#/x)) — Mod(2Zx).

SOCIETE MATHEMATIQUE DE FRANCE 2012



50 CHAPTER 2. DQ-ALGEBROIDS

The functor for above is fully faithful and Mod(gr,(&/x)) is equivalent to the full
subcategory of Mod(«/x) consisting of objects M such that A: M — M vanishes.
The functor for: Mod(gr,(#/x)) — Mod(#x) admits a left adjoint functor M —
M/hM ~ C ®n M. The functor for is exact and it induces a functor

(2.3.7) for: D(gry(2x)) — D(#x).

Remark 2.3.3. — The functor in (2.3.7) is not full in general. Indeed, choose X = pt,
ax = C" and L = C*/hC" viewed as a grj,(A)-module. Then

Hom o cny (for (L), for(L[1])) =~ C"/nCh,
Hom pu ¢ (L, L[1]) = 0.

It could be also shown that this functor is not faithful in general.

One extends Definition 1.4.1 to the algebroid «/x. As an (#x ® &xa)-module,
gr(&/x) is isomorphic to C ®yn Zx ~ x /ho/x. We get the functor
L L
(2.3.8) grr: D(#x) — D(gr(#x)), A — gryp(Fx)®,, M ~ CQnM.

Note that Lemma 1.4.2, Propositions 1.4.3 and 1.4.5 as well as Corollary 1.4.6 still
hold. Moreover

Corollary 2.3.4. — Let # € D®,, (x). Then its support, Supp(.#), is a closed com-
plex analytic subset of X .

Proof. — By Corollary 1.4.6, Supp(#) = Supp(gry(#)). Since gry(#) €
Db, (gry(#x)) and gry(&x) is locally isomorphic to O, the result follows. |

Let dx denote the complex dimension of X. Applying Theorem 1.4.8, we get

Corollary 2.3.5. — Let o/x be a DQ-algebra and let A4 € Modcon(2x). Then, locally,
M admits a resolution by free modules of finite rank of length < dx + 1.

Proposition 2.3.6. — The functors gry, in (2.3.8) and for in (2.3.7) deﬁne pairs of
adjoint functors (gry, for) and (for, gry[—1]).

Proof. — Consider a pair (B,C) in which either B = &/x and C = gr,(&x) or
B = gr;(#/x) and C = &x, and let K be a (B, C)-bimodule. We have the adjunction
formula, for M € D(B) and N € D(C):

L
(2.3.9) Hom p, ) (K®,N, M) ~ Hom p ) (N, R#tam 5 (K, M)).

(i) Let us apply Formula (2.3.9) with B = gr,;(#x), C = &x and K = gr,(«x)
considered as a (grj(#x), #x )-bimodule. We get

L
Hom 1y, () (88 (X)) M, N )
~ Hom D(g{x)(//(a Imgrh(dx)(grh(dx), JV)),
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and when remarking that R}’@mgrﬁ( ) (8h(Fx), N) = for(AN), we get the first
adjunction pairing.
(ii) Let us apply Formula (2.3.9) with C = gry(&x), B = A and K = gr,(2x)
considered as an (&x, gry(2/x))-bimodule. We get
L
Hom b7y ) (811(#) Bgy, ()Y > )
~ Hom D(grh(dx))(/, Rdtom ;. (gry(2x), A)).

L
We have grh(dx)(@grh( MX)JV ~ for(.#") and to get the second adjunction pairing,
notice that

RAam.y, (grn(x), M) = Rlam oy (grn(tx), )8 M,
and R#om ,, (gry(#x ), Zx) ~ grp(@x) [-1]. O
Duality. — Let &/x be a DQ-algebroid on X.
Definition 2.3.7. — Let .# € D(&/x). Its dual D, .# € D(&/xa) is given by
(2.3.10) M =RHom o, (M, x).

When there is no risk of confusion, we write D!, instead of D, .
By Corollary 2.3.5, D’ sends D® | (#/x) to D2, (&xa):

coh 0.

Diz{: Dgoh(ﬂx) - D};’oh(‘Q{X“)'

Assume that .# € DP, (@/x). Then there is a canonical isomorphism:

coh

(2.3.11) M 5D DA
For a gr,(o/x)-module .#, denote by D'y # its dual,
(2.3.12) oM =RI:om g (o (M 8T (Fx))-
Proposition 2.3.8. — Let .# € DY, (x). Then
gr,(DiyA) ~ Dip(gry(A)).
Proof. — This follows from Proposition 1.4.3. O
Corollary 2.3.9. — Let £ € D}, (¢/x) and j € Z. Let us assume that
é"wt;rh(ﬂx)(grh(f),grﬁ(yfx)) ~ 0. Then é"xtiyx (&, 9x) ~0.
Proof. — Applying the above proposition, we get
Satl (L) mrn( ) = HI(Dlp(gn(2)))
~  H(gry(Dy(£))).

Then the result follows from Proposition 1.4.5. O
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Simple modules

Definition 2.3.10. — Let A be a smooth submanifold of X and let % be a coherent
/x-module supported by A. One says that .Z is simple along A if gr,(¥) is con-
centrated in degree 0 and H°(gr, (%)) is an invertible ) ®,_  gry(#/x)-module. (In
particular, .Z has no h-torsion.)

Proposition 2.3.11. — Let A be a closed submanifold of X of codimension | and let &
be a coherent o/x -module simple along A. Then H’(D',(Z)) = &L‘t{dx (&, x) van-

ishes for j # | and H'(D',(£)) is a coherent &/xa-module simple along A.

Proof. — The question being local, we may assume that &/x is a DQ-algebra so that
gr(2x) ~ Ox and gr,(%) ~ Oa. Then, we have éawtjﬁx (grp (L), 0x) ~ 0 for j # L.

Therefore, gztiy,x (&, x) =0 for j # 1l by Corollary 2.3.9 and
grn(Saty (£, %)) =~ Dplerp?) ]
at'y, (gr1(2), Ox)

1R

by Proposition 2.3.8.
If gr,,(.Z) is locally isomorphic to €, then so is é”a:tlﬁx (erp(2), Ox). O

Homological dimension of &/x-modules. — The codimension of the support of a co-
herent &x-module .# is related to the vanishing of the &zt’ Ox (&#, Ox). Similar results

hold for &/x-modules.

Proposition 2.3.12. — Let A be a coherent o/x-module. Then
(a) éawt{dx (A, Ax) ~0 for j < codim Supp 4,
(b) codim Supp éaxt{dx (M, x) > ].

Proof. — (a) First, note that Supp(.#) = Supp(gry.# ). Therefore,

(5”.7:t’2'g > )(grh.///,grﬁ(dx)) ~ 0 for j < codim Supp A4
ry (A%
and the result follows from Corollary 2.3.9.
(b) By Proposition 1.4.5, we know that
J J
Supp &zt (A, 2x) C Supp é”xtgrh(dx)(grh//l,grﬁ(dx)),
J

.y dx)(grh//{ , 804 (&x)) > j by classical results for &x-modules.

O

and codim Supp &'zt

Extension of the base ring. — Recall that C™!°¢ := C((h)) is the fraction field of C".
To a DQ-algebroid &/x we associate the C™!°c-algebroid

(2.3.13) AR = CMo° @ep x

and we call &/¥° the h-localization of @x. It follows from Lemma 1.4.10 that the
algebroid #/3°° is Noetherian.
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There naturally exists a faithful functor of C"-algebroid
(2.3.14) dx — A
This functor gives rise to a pair of adjoint functors (loc, for):

for

(2.3.15) Mod (&/32°) Mod(x).

loc

Both functors are exact and we keep the same notations for their derived functors

for
(2.3.16) DP(e/fe¢) —— DP(&x).

loc
For .# € DP(&/x), we have
(2.3.17) A =loc(A) = CPlec @, A
We say that an &/x-module .#; is a submodule of an d)lg’c—module A if there is a
monomorphism .#, — for(.#) in Mod(#x).
If A is an M};’C—module, Ay an Zx-submodule and .#y Qcx Chloc 2, 4 then

we shall say that .#, generates .Z.
The following result is of constant use and follows from [38, Appendix A].

Lemma 2.3.13. — Any locally finitely generated «/x-submodule of a coherent
ayp°-module is coherent, i.e., any coherent &/3°°-module is pseudo-coherent as
an Ax-module.

Definition 2.3.14. — A coherent @/x-submodule .#, of a coherent ‘sz{}("c-module M is
called an o7x-lattice of .# if .4y generates /.

We extend Definition 2.3.7 to &/;°°-modules and, for .# € DP(#/3°), we set
(2.3.18) D ioctl :=RHom. sgroc (M , AX°).

Proposition 2.3.15. — Let .4 be a coherent &/ \2°-module. Then

(a) é”a:t;)lgc(///, A°) ~ 0 for j < codim Supp .#,

(b) codim Supp é"xt’;d?c (M, 30°) > j.

Proof. — The result is local and we may choose an o/x-lattice .# of .#. Then the
result follows from Proposition 2.3.12. O

Good modules. —

Definition 2.3.16. — (i) A coherent &/}°°-module # is good if, for any relatively
compact open subset U of X, there exists an (#/x|y)-lattice of A |y.
(ii) One denotes by Modgq (/%) the full subcategory of Mode.n(#/°) consisting
of good modules.
(iii) One denotes by DE(275°) the full subcategory of D, (2/¢°) consisting of ob-
jects .# such that H7(.#) is good for all j € Z.

SOCIETE MATHEMATIQUE DE FRANCE 2012



54 CHAPTER 2. DQ-ALGEBROIDS

Roughly speaking, a coherent sz,’(“—module A is good if it is endowed with a good
filtration (see [38]) on each open relatively compact subset of X.

Proposition 2.3.17. — (a) The category Modga (/) is a thick subcategory of
Modcon (7%°), (i-e., stable by kernels, cokernels and extension ).
(b) The full subcategory D2,(a/i2°) of DY, (/5°) is triangulated.

(c) An object .# € D2, (/3°) is good if and only if, for any open relatively compact

subset U of X, there exists an &x|y-module M, € Dz’oh(xzfxly) such that 43¢
is isomorphic to A |y .

Since the proof is similar to that of [38, Prop. 4.23], we shall not repeat it.
Proposition 2.3.18. — Let # € D®, (/). Then Supp(.#) is a closed complex an-

coh
alytic subset of X, involutive (i.e., co-isotropic) for the Poisson bracket on X.

Proof. — Since the problem is local, we may assume that o/x is a DQ-algebra. Then
the proposition follows from Gabber’s theorem [28]. O

Remark 2.3.19. — One shall be aware that the support of a coherent «/x-module is
not involutive in general. Indeed, for a DQ-algebra o/x, any coherent &'x-module may
be regarded as an &/x-module. Hence any closed analytic subset can be the support
of a coherent &/x-module.

2.4. DQ-modules supported by the diagonal

Let X be a complex manifold endowed with a DQ-algebroid &/x. We denote
by &/xxx. the external product of &x and &x. on X x X% We still denote
by dx: X — X x X* the diagonal embedding and we denote by Moda , (#/x K 2xa)
the category of (&/x K &xa)-modules supported by the diagonal Ax. Then

Ox st MOd(ﬂX ®ﬁxa) — MOdAX (.SZ{X X %Xa)

gives an equivalence of categories, with quasi-inverse 5}1. We shall often identify these
two categories by this equivalence.

Recall that we have a canonical object &x in Mod(&/x ® @x.) (see § 2.1). We
identify &7x with an («/x X &/x.)-module supported by the diagonal Ax of X x X°.
In fact, it has a structure of &x « x«-module. More generally, we have:

Lemma 2.4.1. — Let A be an (Px @ &xa)-module.

(a) The following conditions are equivalent:
(i) A is a bi-invertible (x ® xa)-module (see Definition 2.1.10),
(ii) A is invertible as an /x -module (see Definition 2.1.4), that is, A is locally
isomorphic to x as an «x-module,
(iif) A is invertible as an xa-module.
(b) Under the equivalent conditions in (a), dx ..M — xxxe sy Reta Ox oM is an
isomorphism and 0x ,.# has a structure of an x x xa-module. Moreover, dx , M
is a simple ofx x x«-module along the diagonal of X x X°.

ASTERISQUE 345



2.4. DQ-MODULES SUPPORTED BY THE DIAGONAL 55

(¢) Conversely, if A is a simple &/x x x=-module along the diagonal of X x X°, then
65 N satisfies the equivalent conditions (a) (i)—(iii).

Proof. — The statement is local and we may assume that &/x = (Ox|[[h]], *).

(a) Assume (ii) and take a generator u € .# as an @/x-module. Then for any a € @x,
there exists a unique 6(a) € &x such that ua = 6(a)u. Then 0: ofx — x gives a
Ch-algebra endomorphism of 27x. Hence 6 is an isomorphism by Proposition 2.2.3.
Thus we obtain (i). Similarly (iii) implies (i).

(b) Let us choose u € .# as in (a) and identify .# with Ox][[h]] that we re-
gard as a sheaf supported by the diagonal. The action of @x ® &4 on .# can
be expressed by differential operators. Namely, there exist differential operators
{Si(x, 0z, ,0r,,0x,) bien such that

f * ax e(g) = Z(S,(:L‘, awl ) awz s azs)f(xl)g(x2)a($3)) Izl=w2=wg=zhi

for f, g € @x and a € Ox[[h]].

Then this action extends to an action of &/x x x« by setting

f(xv y) * a(w) = Z(Si(a"’ 6101 ’ aﬂ?z ) 613)]"(1‘1, i52)‘1(373)) |$1=$2=$3=$hi

for f € Axxxa and a € Ox|[H]).

We denote by M the &x x xa-module thus obtained. Then, as an (x ® &xa)-mod-
ule, it is isomorphic to .#. Hence M is a locally finitely generated &/x x x=-module.
Since h".//?? LA s isomorphic to Ox, M is a coherent 2x « xa-module by Theo-
rem 1.2.5 (ii).

Let .# be the annihilator of u € .# ~ .#. Then . is a coherent left ideal of A x xa.
In the exact sequence

Torl" (M,C) — I NI — s xxa [hdlxxe = M|hM — 0,
ﬂorich (/7{7 C) vanishes. Therefore we obtain an exact sequence
O-’j/hj—)ﬁxxxa —)ﬁx—-)o,

and ¥ / ht is isomorphic to the defining ideal In C Oxxxa of the diagonal set
A C X x X*, This shows that .# is simple along the diagonal.

Denote by .#’ the left ideal of &/x ® &/y" generated by the sections {a®1—1®86(a)}
where a ranges over the family of sections of &x and by .# the left ideal of &x x xs
generated by S, Set A" 1= xxxas By ... - We have:

M~ (dx @ Hxa)] I,
%I >~ ,,(Z{Xxxa/].
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There exists a surjective & x xo-linear morphism .#' ’—»/;Z and hence .# C .#. Since
F|hI — F|hF ~ I, is surjective, we conclude that .# = .#. Hence we obtain
M~ M

(c) By the assumption, py,gr,(A) =~ gr (654 is an invertible €x-module, where
p1: X x X* — X is the projection. Hence Theorem 1.2.5 (iv) implies that 5}1/
is a coherent @x-module. It is locally isomorphic to &/x by Lemma 1.2.17 because
gry, (0% A is locally isomorphic to Ox. a

Thus we obtain:

Proposition 2.4.2. — The category of bi-invertible (o/x ® o/xa)-modules is equivalent
to the category of coherent &/x x xa-modules simple along the diagonal.

Definition 2.4.3. — We regard dx,9x as an &xx xa-module supported by the di-
agonal and denote it by ¥x. We call it the canonical module associated with the
diagonal.

The next corollary immediately follows from Lemma 2.4.1.

Corollary 2.4.4. — The ofx x xa-module €x is coherent and simple along the diagonal.
Moreover, &xxxa ® Rt Ex — €x is an isomorphism in Mod(&xx xa), and
o — 6;(1 (¥x) is an isomorphism in Mod(</x ® 2xa).

The next result is obvious.

Lemma 2.4.5. — Let Y be another complexr manifold endowed with a DQ-algebroid

L
&y . Then, there is a natural isomorphism €x W €y ~ €Exxy. Here, we identify
(X xX)x (Y xY?*) with(X xY) x (X xY)e.

Definition 2.4.6. — We say that &2 € DP(&/x ® @/xa) is bi-invertible if &2 is concen-
trated to some degree n and H"(Z?) is bi-invertible (see Definition 2.1.10).

We sometimes consider a bi-invertible (&/x ® x.)-module as an object
of D2, (/xxxa) supported by the diagonal.

coh

For a pair of bi-invertible (&/x ®%/x . )-modules &?; and &, @16% Ay P, is also a bi-
invertible (&x ® &/x.)-module. Hence the category of bi-invertible (&/x ® &/x)-mod-
ules has a structure of a tensor category (see e.g. [43, §4.2]). It is easy to see that €x
is a unit object. Namely, for any bi-invertible (&/x ® @/xa)-module &, we have:

L L
Cx®y P~ PR, Cx =P
We have
L
P® 4 RHom o (P, Hx) =5 Cx,

L
Rjﬁ)mdxa (g,.ﬂx)@)dx.@ =~ Ex.
Hence we have RHom , (P, ox) ~ R¥tom o (P, Dx).
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Definition 2.4.7. — For a bi-invertible (&/x ® &/x.)-module &, we set
PE~1 = R¥om (P, dx) ~RHam , (P, x).
Hence we have
@‘X"léﬂx@ ~ gzédx PO~ Py
Note that, for two bi-invertible (&/x ® &x«)-modules &?; and &5, we have

L
Rtom , (P1,Pa) ~ PP, P,

L p—
Rdtom o ,(P1, P2) = 9”2®Q,X3”§’ 1
For a bi-invertible (&x ® @x.)-module & and #, 4 € D(&xxyxz), we have the
isomorphism
L L
(2.4.1) Rdtom oy (M, N)~RHom 4 (PR, M, PR, N)
in D(C’}(Xy X .!Zfz)
Remark 2.4.8. — Although it is sometimes convenient to identify (X x Y*)® with

Y x X?, we do not take this point view in this Note. We identify (X x Y%)® with
X% x Y. Hence, for example, we have functors

DP(@xxys) — DP(&xaxy),
Db(ﬂxxxa) g Db(ﬂ{xaxx).

’
Hx xya
Ax x xa

The next result may be useful.

Lemma 2.4.9. — (i) Let X and Y be manifolds endowed with DQ-algebroids
Ax and oy, let M be an Hxxya-module and let 2 be a bi-invertible
(2 ® 2ya)-module. Then

xrya (M O, 2) = 2°71 @, Dy (A).
(it) Let & and 2 be bi-invertible (x ® xa)-modules. Then
xrxa (P Oy D) 2271 @, Dy P =Dy 28, PO,
xnxa OX Oy P2 P By Doy Cx 2Dy (P,
(Dl €)' @ P = P By (Dl 6x)® 7
Proof. — (i) We have the isomorphism
(A 2 2) = jfomdxwa(/fl ®uy 2, DX xya)
%”omdxwa(//{,ﬂf;(xya B, 2%-1)
Hom oy (M, 227 R, dxxye)
~ 9%-1 B, D ya (A).

’
Dx xya
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(ii) The first isomorphism follows from (i) and the the second is proved similarly. The
two last isomorphisms follow. O

The next result follows immediately from Corollary 2.4.4.

Lemma 2.4.10. — Let # € D(ox), £ € D2 (ox) and N € DP(alxa). Identifying

coh
Ax and X, there are natural isomorphisms

L
M= Ax®, M~ RHom, (dx,H) inD(x),
L
Nyl = (NBM)S, _ x inDCY),

Rtom o, (£, M)

1

L
wZ®, M inD(CY),

L
Rtom oy (M, %) =~ RHom, . (#RD,Z Cx) inD(Ck).

2.5. Dualizing complex for DQ-algebroids

The algebroid 2. — We have seen that the C"-algebra ¢ C éndcn(x) is well-
defined for a DQ-algebra &/x on X.

Now let @/x be a DQ-algebroid. Then we can regard &/x as an (&x /4" )-module.
In § 2.1, we have defined the Cl-algebroid &dcn(2/x) and introduced a functor
of Ch-algebroids @x ® &y* — Gnden(x).

Definition 2.5.1. — The C"-algebroid 2¢ is the C"-substack of &ndcn (o/x ) associated
to the prestack & defined as follows. The objects of G are those of @x ® Zy".
For 01,0 € @x @ &y", with 01 = 11 @ A\{¥, 02 = 72 ® A\3¥, we choose isomorphisms
witTi~ X (1=1,2) and p3: 71 = T2. Set B = bndy, (M1). It is a DQ-algebra. The
isomorphisms ¢; (¢ = 1,2, 3) induce an isomorphism
Y Hompen(B,B) > Hompn(Hom (A, 1), Hom (A2, T2))
= fomcﬁ(.ﬂx(al),ﬂx(m)).

We define Jfom g(01,02) C Homen(Px(01), Zx(02)) as the image of 2% by .
(This does not depend on the choice of the isomorphism ¢; (i = 1,2,3) in virtue of
Proposition 2.2.3.)

Then there are functors of C"-algebroids
Hx ® xa — 05 Hxxxe — D — bnden(Dx)
and o/x may be regarded as an object of Mod(2¢).

Proposition 2.5.2. — (i) The CP-algebroid Endcen(x) is equivalent to the C*-al-
gebroid Endcn(Ox|[h)]) (regarding the Ch-algebra Enden(Ox[[R]]) as a Ch-alge-
broid).

ii) The equivalence in (i) induces an equivalence of C'-algebroids 2F ~ Dx[[h]].
X
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(iii) The equivalence in (ii) induces an equivalence of C*-linear stacks
Mod (2 ) ~ Mod(2x|[h])).

Moreover, the P -module o/x is sent to the Dx|[[R]]-module Ox[[h]] by this
equivalence.
(iv) The equivalence in (ii) also induces an equivalence of C-algebroids

grh(@g) ~ PDx,
and an equivalence of C-linear stacks IMod(gry,(2%)) ~ Mod(Px). Moreover
the gry (2 )-module gry,(Hx) is sent to the Dx-module Ox by this equivalence.

Proof. — Recall first that for two CP-algebroids % and %', to give an equivalence
of Cl-algebroids & ~ %' is equivalent to giving a bi-invertible %°P ® %’'-module
(Lemma 2.1.11).

(i) follows from Lemma 2.1.12. More precisely, we define an (&ndcn(@x) ®
(bndcn(Ox[[1]]))°P)-module &£’ as follows. For o = (01 ® 03¥) € Hx ® Ay,
set

Z'(0) := Homcn(Ox[[H]], #Hom ,, (02,01)).

Clearly, .¢' is bi-invertible.
(ii) For 0 = (01 ® 057) € Fx ® &y, let us choose an isomorphism : 01 =5 o5 and
a standard isomorphism @: Ox|[[h]] > &y, (01). Then they give an isomorphism

f: Ox|[[H]] = Hom , (02,01).

We define a (2¢ ® Zx|[[R]]°P)-submodule . of .’ as follows: let .#(o) be the
2x [[h]]°P-submodule of #’(o) generated by f. Then .Z (o) coincides with the sub-
module generated by f over the Ch-algebra bnd g (0) C Enden(Hom 4, (02,01)).
Moreover, .# (o) does not depend on the choice of ¢ and . It is easy to see that .Z
is a bi-invertible (2 ® Zx[[h]]°P)-module.

(iii) The (2¢ ® Zx|[[h]]°P)-module .# gives an equivalence of categories

(2.5.1) L ®g ny * : Mod(Zx[[h]]) © Mod(2¥),

which is isomorphic to the functor induced by the algebroid equivalence 95‘2{ e
Px|[R)]. Consider the (Zx[[A]] ® (2 )°P)-module

L= Hom gu (£, 2).
A quasi-inverse of the equivalence (2.5.1) is given by
L @y * = Hom ge (£, +): Mod(Z5) = Mod(Zx [[H])).

The results follow. O
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Dualizing complex. — Let @/x be a DQ-algebroid on X. We shall construct a defor-
mation of the sheaf of differential forms of maximal degree and then the dualizing
complex for ofx.

Lemma 2.5.3. — (i) @/x has locally a resolution of length dx by free 2 -modules
of finite rank.
(i1) grh(éaxt‘g‘d(dx,@)‘?)) ~ Qx. (Note that grh(g’wtd@xd(dx,@)‘?)) is a module
X X
over gty (Px) ®p, 8r(Hxa) ~ Ox by (2.1.12)).
(iii) é"xt’% (Hx,PZ) =0 fori#dx.

Proof. — We have 2¢ =~ 9x|h]] and &x ~ Ox|[[h]] as 2F-modules. Then the
results follow from

RHom g ) (Ox [[P]], Zx []]) = (x[[A]]) [-dx].
(ii) follows from
grh(Rjﬁm@?(dx, @}Q{)) = Wgrh(gg)(gfn(WX), grh(@)”(?))
~ RHom 5 (Ox,Dx) ~ Qx[~dx]. O
We set
(2.5.2) Qf .= é”wt‘g‘g (x, DE) € Mod(ex ® Hxa).

Lemma 2.5.4. — The (x ® 2/¥)-module O is bi-invertible.

Proof. — Under the equivalence ¢ ~ Zx[[h]], we have QF =~ Qx[[h]]. Hence we
have an isomorphism Qg -~ @Q)}”/h’lﬂj‘? Since gry () ~ Qx is a coher-

ent gr,(#/x)-module, 2 is a coherent &/x-module by Theorem 1.2.5 (iv). Since
gry () is an invertible &x-module and Q¢ has no fi-torsion, Q¢ is locally isomor-
phic to @x as an &/x-module. Hence Q¢ is a bi-invertible (273" ® &/x)-module by

Lemma 2.4.1 (a). d
Lemma 2.5.5. — One has the isomorphisms

(2.5.3) OF & . fx [~dx] = Rl g (., af) = C.

Proof. — The first isomorphism is obvious by Lemma 2.5.3. Hence, it is enough to

prove that the natural morphism C% — R&%m@f{ (#x,x) is an isomorphism. By

the equivalence 2¢ ~ Px[[h]], we may assume that &/x = Ox|[h]] and 2¢ =
Px|[]]. Then R[r’é)m@? (2#x, 2x) is represented by an infinite product of the de

Rham complexes: [],, i"2 5. Then the assertion follows from a classical result: Q5 (U)
is quasi-isomorphic to C when U is a contractible Stein open subset. O

Note that Q¢ and Q. are isomorphic as &/x ® &/xa-modules.
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Definition 2.5.6. — We set
w :=6x,0F [dx] ~ Sx RH:om g0 (., 2%)[2dx] € DP(Ax x x)

and call w the @/x-dualizing sheaf.

Note that w3 is bi-invertible (see Definition 2.4.6). Using (2.5.3) and the morphism

L L
5X,,Qj‘}"®dx>(xa Ex — Qj‘?@Q;‘.{ x, we get the natural morphism

L
(2.5.4) wa®, . Ex — 0x.Cx [2dx].

Applying the functor gr, to the above morphisms, we get the morphism

L
(2.5.5) éx*(grhw%)(ggrhﬂx)(xa(5X*grﬁ<ﬁx) — x.(Cx [2dx]),

which coincides with the morphism derived from

L
(2.5.6) 5)_(1 (éx*(grhwj‘g,)@) (6X*grh‘fx)) b QX [dx] - (CX [2dx].

grIx x xa

Here we used the functor of algebroids 6}1(grhdx>( xe) — Ox.
Let Y be another manifold endowed with a DQ-algebroid @ . We introduce the
notation:

L
w)?{xY/Y = wj}‘/ Rey € Db('dXxXaxYxYﬂ)-
Then w. also belongs to DP((2¢)°P K oy xya), and we have an isomorphism
XxY/Y X

L
A h 7 : :
way/Y®@§,;z¢X ~ C% X & . Hence we have a canonical morphism

L
(2.5.7) Waxy Y@y 0 Cx — (Ck RGy)[2dx]

in Db((C'}( X ﬂyxya).

The proof of the following fundamental result will be given later at the end of § 3.3.
Theorem 2.5.7. — We have the isomorphism
(2.5.8) wg ~ (D! Exa)® ' in DP(Axxxa).

Hxaxx

Note that in Formula (2.5.8), D, , . is the dual over @xaxx and ( )®~1 is the
dual over & .

Corollary 2.5.8. — For # € DP(xxxaxy), we have

L L
%X“®Jz{“xa/// ~ Rf@mdx”a(%x,wf{@dx///)

R

L
Riom (€x, M, wi).

HDx x xa
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Proof. — We have

L
%xa®dxxxa//l ~ R*%’”dxxxa( ;fxaxx%{a,///)
L L
~ of o
2 RIOM gy, o (WX gy Dty o Cxas WX @y M)
L
o
~ Rmdx)(xa(ch, Wy ®Mx'ﬁ)
The other isomorphism is similarly proved. 0

One shall be aware that, although Q¢ is locally isomorphic to &/x as an /x-mod-
ule, it is not always locally isomorphic to &x as an &x ® &/x.-module.

Example 2.5.9. — Let X = C? with coordinates (z;,2) and let o7x be the DQ-alge-
bra given by the relation

[1131,.7)2] = hl’l.
Let (y1,y2) denotes the coordinates on X*. Hence

[y1,92] = —hys.

Then €x is the x x xo-module @x « xa -u where the generator u satisfies (z; —y;)-u =
0 (¢ = 1,2). Therefore €x is quasi-isomorphic to the complex

(2.5.9) 0 — xxxe 5 A0 D dlxnxs =0,

where &/x x x« on the right is in degree 0, a(a) = (—a(x2 — y2 + k), a(x; — y1)) and
B(b,c) = b(z1 — y1) + c(@2 — y2).

It follows that D’,(%x)[2] is isomorphic to &/xxx- - w where the generator w
satisfies (z1 —y1) - w = 0, (y2 — x2 + A) - w = 0. The modules D’,(%x) [2] and
®x are isomorphic on z; # 0 by u < z,w. However, D’ (¥x) [2] and €x are not
isomorphic on a neighborhood of z; = 0. Indeed if they were isomorphic by u < aw
for a € o/x, then z1a = az; and z3a = a(xz — h). Then {z3,00(a)} = —op(a). Since
{z2, *} = —210;,, we have £10,,00(a) = o¢(a), which contradicts the fact that og(a)
is invertible.

Remark 2.5.10. — The fact that D’ %x is concentrated in a single degree and plays
the role of a dualizing complex in the sense of [6] was already proved (in a more
restrictive situation) in [23, 24].

2.6. Almost free resolutions

We recall here and adapt to the framework of algebroids some results of [42].
In this section, K denotes a commutative unital ring, X a paracompact and locally
compact space and & a K-algebroid on X.
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Let us take a family % of open subsets of X. We assume the following two condi-
tions on .#:
(i) for any z € X, {U € & ;z € U} is a neighborhood
system of z,
(ii) for U,V € &, U NV is a finite union of open subsets
belonging to .%#.

(2.6.1)

Recall that invertible modules are defined in Definition 2.1.4.

Definition 2.6.1. — (i) We define the additive category Mod® (&) of .#-almost free
2/-modules as follows.

(a) An object of Mod® (<) is the data of {I,{U;, U/, L;}ic1} where I is an index
set, U; and U/ are open subsets of X, U; € ./, U; C U/, the family {U/}cr
is locally finite and L; is an invertible &/|y/-module.

(b) Let N = {J,{V;,V],K;}jes} and M = {I,{U;,U],Li}ic1} be two
objects of Mod®(#/). A morphism u: N — M is the data of u;; €
[(V;; s#om (K, L;)) for all (i,5) € I x J such that V; C U;.

(¢) The composition of morphisms is the natural one.

(d) We denote by ®: Mod*(«/) — Mod(%/) the functor which sends
{I,{U;,U},L;}ic1} to @;cr(Li)u, and which sends an element u;;
of I'(V;; #om (K, L;)) to its image in Hom , ((K;)v,, (Li)u,) if V; C U;
and 0 otherwise.

(ii) Similarly, we define the additive category Mod,¢(#7) as follows.

(a) The set of objects of Mod,¢() is the same as the one of Mod® ().

(b) Let N = {J, {Vj,‘/j/,Kj}jEJ} and M = {I, {Ui,UiI,Li}iel} be two
objects of Mod* (). A morphism u: N — M is the data of u;; €
[(U;; #om (K, L;)) for all (i,j) € I x J such that U; C V.

(c) The composition of morphisms is the natural one.

(d) We denote by ¥: Mod,s(#/) — Mod(«) the functor which sends
{I,{U;,U},L;}ic1} to @;c;Tv,(L;) and which sends an element wu;;
of T(U;; #om ,(Kj,Li)) to its image in Hom , (T'v,(Kj;),Ty,(Ls)) if
U; C V; and 0 otherwise.

Note that Mod.¢(27) is equivalent to Mod?f(&/°P)°P by the functor which sends
{I’ {Uiv Uq,la Li}iEI} to {I7 {Uia Uzl’ jfom@{(Liv M)}ZGI}

Recall that for an additive category ¢, we denote by C~ (%) (resp. CT(%)) the
category of complexes of ¥ bounded from above (resp. from below).

The following theorem is proved similarly as in [42, Appendix].

Theorem 2.6.2. — Let o/ be a left coherent algebroid and let A4 € D_, (/). Then
there exist L* € C~(Mod* (&) and an isomorphism ®(L*) ~ .4 in D~ (o).

There is a dual version of Theorem 2.6.2.

Theorem 2.6.3. — Assume
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(a) & being regarded as an object of Mod(«Z ® &/°P), RI'y (&) is concentrated in
degree 0 for allU € &,

(b) & is a right and left coherent algebroid,

(c) there exists an integer d such that, for any open subset U, any coherent o |y -mod-
ule admits locally a finite free resolution of length d.

Let # € DI, (/). Then there exist L* € Ct(Mod.¢(/)) and an isomorphism

coh

M~ V(L") in D¥ ().

Proof. — Denote by D the duality functor R#m» ,(*, 27) and keep the same notation
with &/°P instead of «. This functor sends D}, (&) to D_, (2/°P) by (c). It also sends

coh
D_,,.(#°P) to D} | (&), and the composition
D v~ /[ sopy D
Dion() = Doy, () — D ()

is isomorphic to the identity functor.
On the other hand, if L is an invertible 2/°P-module, then D(L) is an invertible
&/-module, and by the hypothesis (a), we have

D(Ly) ~Ty(D(L))

for any U € .¥7.
Then we get the result by applying Theorem 2.6.2 to D(.#) € D_, («#/°P) and
using .4 =~ D(D(.#)). O

2.7. DQ-algebroids in the algebraic case

In this section, X denotes a quasi-compact separated smooth algebraic variety over
C.

Clearly, the notions of a DQ-algebra and of a DQ-algebroid make sense in this
settings and a detailed study of DQ-algebroids on algebraic variety is performed in
[63].

Assume that X is endowed with a DQ-algebroid &7x for the Zariski topology. Then,
in view of Remark 2.1.17, gr,(«/x) ~ Ox. However, this equivalence is not unique in
general.

Let us denote by X,, the complex analytic manifold associated with X and
by p: Xan — X the natural morphism. Then we can naturally associate a DQ-alge-
broid &x,,, to &/x and there is a natural functor p~talx — ofx, ., whose construction
is left to the reader. It induces functors

(2.7.1) Mod(#x ) — Mod(#x, )
and
(2.7.2) Modcoh(%){) — MOdcoh(dX‘,n)-

When X is projective, the classical GAGA theorem of Serre extends to DQ-algebroids
and it is proved in [19] that (2.7.2) is an equivalence.
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Lemma 2.7.1. — Let A/ € Modcoh(%}fc). The two conditions below are equivalent.

(a) A is the inductive limit of its coherent sub-2/x-modules,
(b) there exists an o/x -lattice of M (see Definition 2.3.14).

Proof. — (a)=>(b) Let .# = lim .#" where .#" ranges over the filtrant family of co-

herent o/x-submodules of .#. Since &/}°° is Noetherian, the family {C™!°° @, .4}
is locally stationary. Since X is quasi-compact, this family is stationary.

(b)=(a) is obvious. O

Definition 2.7.2. — Let # € Modcon(#/52°). We say that .# is algebraically good if
it satisfies the equivalent conditions in Lemma 2.7.1.

We still denote by Modgq(/1°°) the full subcategory of Modgon(#5°°) consisting
of algebraically good modules.

The proof of [38, Prop. 4.23] extends to this case and Modgq(#x°) is a thick
abelian subcategory of Modon(#/5°¢). Hence, we still denote by ng (23°°) the full
triangulated subcategory of D , (#/3°°) consisting of objects .# such that H7(.#) is
algebraically good for all j € Z.

Remark 2.7.3. — We do not know if every coherent &/3°°-module is algebraically good.

Almost free resolutions. — Recall that X is endowed with a DQ-algebroid &/x for
the Zariski topology.
We denote by B the family of affine open subsets U of X on which the algebroid
& is a sheaf of algebras. Note that this family is stable by intersection. Moreover,
hypotheses (1.2.2) and (1.2.3) are satisfied.

Lemma 2.7.4. — Assume that X is affine and &x is a DQ-algebra. Then, for any
M € Modeon(2x ), there exist a free &x -module £ of finite rank and an epimorphism
u: Lo>M.

Proof. — Set My = M /h#. Then M, is a coherent &x-module and there exist
finitely many sections (v1,...,vn) of 4y on X which generate .#; over Ox.

By Theorem 1.2.5, T'(X; #) — I'(X; #p) is surjective. Let (uy,...,un) be sections
of .# whose image by this morphism are (vi,...,vn). Let £ = @& and denote
by (e1,...,en) its canonical basis. It remains to define u by setting u(e;) = uw;. O

Theorem 2.7.5. — Let # € Modcon(2x). Then there exists an isomorphism M =~
ZL°* in DP(x) such that £° is a bounded complex of &/x-modules and each £* is a
finite direct sum of modules of the form iy .y, where iy: U — X is the embedding
of an affine open set U such that & is equivalent to a DQ-algebra and £y is a locally
free o7y -module of finite rank.

Before proving Theorem 2.7.5, we need some preliminary results.
Let % = {U}icr be a finite covering of X by affine open sets such that @x |y, is
a DQ-algebra for all 3.
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We denote by 3 the category of non empty subsets of I (the morphisms are the
inclusions maps). For o € X, we denote by |o| its cardinal. For o € X, we set

U, = ﬂ Ui, ts: U, — X the natural embedding.
i€o
We introduce a category Mod (7, %) as follows. An object M of Mod(%/, %) is the
data of a family ({M,}oex, {g2 }rcoex), where M, € Mod(#,) and ¢, : M,|y, —
M, are morphisms for @ # 7 C o € ¥ satisfying qf,"{, = id and for any o; C 02 C 03,
the diagram below commutes

M
95 ,o
(2.7.3) Mo, |v,, —— My, u,,
M

M,,.

A morphism M — M’ in Mod(&/, %) is a family of morphisms M, — M/ satisfying
the natural compatibility conditions.

Clearly, Mod(&/,% ) is an abelian category.

To an object M € Mod(«&/,% ) we shall associate a Koszul complex C* (M) using
the construction of [43, § 12.4]. To M we associate a functor F': ¥ — Mod(%/x) as
follows: F(0) = t;.My, and F(r C o): F(r) — F(0) is given by the composition

M
"T*M‘r - LU*(MTIU,) 21’ LU*MU'
According to loc. cit., we get a Koszul complex C * (M)

(2.7.4) C (M) i=-- — 0 — CY(M) -2 (M) £ ..

where

C' (M) = P o.M,
lo|=i

is in degree i. This construction being functorial, we get a functor
(2.7.5) C"*: Mod(&, %) — C°(Mod(#x)).
It is convenient to introduce some notations. We set

Modcon (&, %) = {M € Mod(«, %) ; My, € Modcon(#y,) for all 0 € X},

Modg(/, %) = {M € Mod(«/, % ); M, is a locally free o4, -module

of finite rank for all o € X}.

Clearly, Modcon (27, % ) is a full abelian subcategory of Mod(</, % ) and Modg(%/, % )
is a full additive subcategory of Modcon (2, % ).

Lemma 2.7.6. — The functor C°: Modeon(#/, %) — CP(Mod(#x)) induced by
(2.7.5) is ezact.
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Proof. — By Proposition 1.6.8 the functor ¢,: Modcon (24, ) — Mod(#x) is exact
for each o € X. The result then easily follows. |

Let us denote by
(2.7.6) A: Modeon(#x) — Modcon (&, %)
the functor which, to .# € Modcon(#x ), associates the object M where M, = .|y,
and ¢ : M.|y, — M, is the restriction morphism.

Lemma 2.7.7. — The natural morphism .# — C* (A\(#)) [1] is a quasi-isomorphism.

Proof. — Apply [43, Th. 18.7.4 (ii)] with A = “| |” U;, u: A — X. By this result,
i€l
the complex

F! =0 M — C\ M) L PN )) S .

is exact. O

Lemma 2.7.8. — Let M € Modeon (&, % ). Then there exists an epimorphism L—M
in Mod(#, %) with L € Modg (o, %).

Proof. — Applying Lemma 2.7.4, we choose for each o € ¥ an epimorphism L, —-M,
with a locally free o, -module L/, of finite rank. Set

Lo := @ L v,

B#TCo
and define the morphism L, — M, by the commutative diagrams in which 7 C o:

L, — M,

.

Lrlv, — M:|u,

For 7 C o, the morphism qu’T: L;|y, — L, is defined by the morphisms (A C 7):

qL
L.y, —— L,.

Lilu,
Clearly, the family of morphisms qf;‘,., satisfies the compatibility conditions similar to

those in diagram (2.7.3). We have thus constructed an object L € Mod(«/, % ), and the
family of morphisms L, — M, defines the epimorphism L—M in Mod(#/,%). O
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Proof of Theorem 2.7.5. — By Lemma 2.7.8, there exists an exact sequence
in Modeon (&, %)

(2.7.7) 0— Liy41 — =L > Lo ANA)—0
with the L;’s in Modg (2, %) (see Corollary 2.3.5). Consider the complex
(2.7.8) L*:=--.— L, — Ly — 0.

Hence, we have a quasi-isomorphism L*° s, A(A). Using Lemma 2.7.6, we find a
quasi-isomorphism

(2.7.9) C* (L") L 0 (M)).
Then, the result follows from Lemma 2.7.7. O
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KERNELS

3.1. Convolution of kernels: definition

Integral transforms, also called “correspondences”, are of constant use in algebraic
and analytic geometry and we refer to the book [35] for an exposition. Here, we
shall develop a similar formalism in the framework of DQ-modules (i.e., modules over
DQ-algebroids).

Consider complex manifolds X; (i = 1,2,...) endowed with DQ-algebroids ;.

Notation 3.1.1. — (i) Consider a product of manifolds X x Y x Z. We denote by p;
the i-th projection and by p;; the (¢, j)-th projection (e.g., p13 is the projection
from X; X X¢ x X3 to X7 x X3). We use similar notations for a product of four
manifolds.

(ii) We write &% and ;. instead of &/x, and &x,x Xs and similarly with other
products. We use the same notations for €.

(iii) When there is no risk of confusion, we do note write the symbols p;' and
similarly with i replaced with ¢j, etc.

Let % € Db(ﬂX,-fo_H) (2 = 1,2). We set

(3.1.1) s = pl—;{lé”;? P S
> (R H)®,, g, G € DP(h KCY, K o).
Similarly, for J%; € Db(dxixxiﬂ) (i=1,2), we set

(3.12) RAom oy, (K1, Hz) = RHam. -1 o, (73 K1, D23 Ha)-

Here we identify X; x X, x X§ with the diagonal set of X; x X§ x X, x X§.

This tensor product is not well suited to treat DQ-modules. For example, #x xy #
&x W . This leads us to introduce a kind of completion of the tensor product as
follows.
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Definition 3.1.2. — Let J; € D(o/x,xxg,,) (i = 1,2). We set

I

L L L
(3.1.3) KBy Mo = & (M KH),,,, E)
4., L L 1
= D12 <1/1®p1—21d1a2«!27123®p2~31d2301723 H.

It is an object of Db(pl_glmga) where py13: X1 X X5 X X3 — X x X3 is the projection.

We have a morphism in DP(p; ' @/x, ®p3_1$zfxg):

L L

(3.1.4) Ky, Ho — KR, Ko
Note that (3.1.4) is an isomorphism if X; = pt or X3 = pt.

Definition 3.1.3. — Let %; € Db(dXiXXf_H) (i =1,2). We set
L
(3.1.5) o Hy = Rpis|(H8,,H0) € D°(ox,xxg),
2

L
(3.1.6) xSy = Rpis (M8, H0) € D (e, xxs)-
2
We call 2 the convolution of J#; and J#% (over X3). If there is no risk of confusion,

2
we write J#] o 5 for }? J4 and similarly with x*.
2

Note that in case where X3 = pt we get:
L
%O% =~ Rpl!(%.®d2p2_1%)7

and in the general case, we have:

L
(3.1.7) Mg = (HBA), o O
L L
~ Rpigy (A1 B A)B,, %),

where p14 is the projection X; x X3 x X§ x X§ — X; x X§. There are canonical
isomorphisms

(3.1.8) Jfl)? €x, ~# and ¥x, 2 H ~ .
2 1

One shall be aware that o and x are not associative in general. (See Proposi-

tion 3.2.4 (ii).)
However, if . is a bi-invertible @/x, ® @/xg-module and the J;’s (i=1,2) are as
above, there are natural isomorphisms

L L
Ko L= M8, L Lo M= LBy, S
(M o L) o Ho = ng)?z(z}?zx@).
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For a closed subset A; of X; X X;11 (i =1,2), we set

(3.1.9) AjoAy = pis(piy A1 NpyyAg)
= p14((A1 X Az) n (X] X A2 X X3)) C Xl X X3'

Note that if A; is a closed complex analytic subvariety of X; x X%, , (i = 1,2) and
P13 is proper on p1_21A1 n p2_31A2, then A; o A, is a closed complex analytic subvariety
of X 1 X X g .

Let us still denote by o the convolution of grj(2)-modules. More precisely for .%; €
DP(grp(@x,xxz,,)) (i = 1,2), we set

L L
Lot = Rpuy((& '_Zﬂfz)(@g,ﬁ(dzza)gfn((gz))-

Proposition 3.1.4. — For J¢; € D*(e/x,xxz,,) (i =1,2), we have
(3.1.10) grp (A1 o Hp) =~ gry () o gry(A2).

Proof. — Applying Proposition 1.4.3, it remains to remark that the functor gr;, com-
mutes with the functors of inverse images and proper direct images as well as with
the functor X. O

3.2. Convolution of kernels: finiteness

In this section, we use Notation 3.1.1

Consider complex manifolds X; endowed with DQ-algebroids &, (i = 1,2,...).
We denote by dx the complex dimension of X and we write for short d; instead of dx;.

We shall prove the following coherency theorem for DQ-modules by reducing it
to the corresponding result for &-modules due to Grauert ([31]). In the sequel, for
a closed subset A of X, we denote by Dg’ohy A(&x) the full triangulated subcategory
of DY, (#/x) consisting of objects supported by A. We define similarly Dpy 5 (2/5°).

Theorem 3.2.1. — For i = 1,2, let A; be a closed subset of X; x X;+1 and J; €
Dth,Ai('dXixX;‘H)' Assume that A1 X x, Mg is proper over X; X X3, and set A =
Ay o Ag. Then the object 1 o Ao belongs to D2,y 4 (#x,xxs)-

Proof. — Since the question is local in X; and X3, we may assume from the beginning
that @/x, and &/x, are DQ-algebras.
We shall first show that

L
(3.2.1) H1®,,, A2 is cohomologically complete.

Since this statement is a local statement on X; x X3 x X3, we may assume that </x,
is a DQ-algebra. Since J#] and .#; may be locally represented by finite complexes of
free modules of finite rank, in order to see (3.2.1), we may assume J; ~ &, x X,
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L
(¢ = 1,2). Then JQ® %Jifg ™~ X, x Xy x xg 1s cohomologically complete by Theo-

L
rem 1.6.1. Hence ¢ 0 %5 = Rp13,(A® %Ji’g) is also cohomologically complete by
Proposition 1.5.12.

L
On the other hand, gr,(/#10.2) =~ Rp13*(pI2grht)£/1®ﬁxlXXZXxsp;Sgrh%)

belongs to D® , (Ox,xx,) by Grauert’s direct image theorem ([31]). Hence Theo-

rem 1.6.4 implies that J¢; o %, belongs to D2, (@, xxz)- ]

Remark 3.2.2. — In [3], its authors use a variant of Theorem 3.2.1 in the symplectic
case. They assert that the proof follows from Houzel’s finiteness theorem on modules
over sheaves of multiplicatively convex nuclear Fréchet algebras (see [34]). However,
they do not give any proof, details being qualified of “routine”.

Corollary 3.2.3. — Let .# and A be two objects of D2, (&/x) and assume that

coh

Supp(.#) N Supp(.#) is compact. Then the object RHom , (.#,.#") belongs
to D? (Ch).

Proposition 3.2.4. — Let J; € D¢,y (x,xxz,,) (i =1,2,3) and let & € DY, (ex,).

coh coh
Set A; = supp(#;) and assume that A; X x,, Aiy1 is proper over X; x X o (i =1,2).

L L
(i) There is a canonical isomorphism (H 2 H) KL =5 2 (HRL).
2 2
(ii) There is a canonical isomorphism (¢} 2 Ho) 2 H ~ 2 (Ao 2 H3).

L L
Proof. — The morphism (] 2 H)RZL — 4 2 (2 B L) is deduced from the
2 2
morphism (we do not write the functors p; v pi_j1 for short):
L L L
MSG4®Q’13G P (((.2{12,123(; ®cty20Rctp30 (V1 ‘%/2))®ﬂzzu %2) w jf)
L L L
= ((*‘243“4 B ot 30 Rty 212023) ® oty 20 Rty50 Bty b W oty B $)®ﬂ22a %
L L L
- (pdlgazgall ®.Qf12a Rafyza Koty ('1/1 X ‘%/2 X g))®ﬂ22a ng.
Applying the functor gr,, to this morphism in DP , (#x, x XoxXx4), we get an iso-
morphism. This proves the result in view of Corollary 1.4.6.

(ii) By (i), we have

L
g g 2 = (6 g WA o

X3 X%

L
=~ (Jg/l )?2(%@%)) X3>c<>X§ %Xa

L L
~ (‘fxzngxg(%@%E%)) o G,

X3><X‘3‘
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L L L
Then this object is isomorphic to (] X #2X.#3) (€¢x,R€x,). Similarly,

[e]
X2XX2a XX3XX§'

L L L
J1 o (K o J£3) is isomorphic to (£ B ¢ B H3) o (Ex,XEx,)- O
X2 X3 X X X X Xg x X&

3.3. Convolution of kernels: duality

The duality morphism for kernels. — Denote as usual by pi3: X1 x Xg x X§ —
X1 x X§ the projection.

Lemma 3.3.1. — For J¢; € Db(dxixxlqﬂ) (i = 1,2), we have a natural morphism
in DP(xaxx,):

3.3.1 (D’ L) o wi o (D) M) — D (S o ).
JZ{Xlxx Xo Xo
2 2

2 xg Axyx X8 Hxyxxg
Proof. — We have
/ L e / ~ / L / L 4
Dy H1® y,wa @, Dy = (Dig 1 RDyH#2)®,, , wse
/ L / L o
o~ (Dﬂc%/l EDW%)®dl2a23aw12a3a/1gn
L L
~ / o
~ Dy (A RA)Q, . Wisese 130
R L o
= 120230 (‘)6/1 K ‘%/27 w12°3“/13“)'
Hence we have morphisms

/ L o L ’ L o
D‘Q{'%/l@‘gz(T;wT‘ @.Qfga Dd‘% ~ W (c%/l g%,wlzaga/u;a)

A12a23a
L L of L
- R‘%ompfsl of13a ((‘)5/1 ® ‘1f2)®£f22a %2, Wi12e3a/13e ®42¢22'1 (62)
L
- Rmpl_;ﬂma (‘%/1@.9{2%’1)1—31%3(1 [2d2])

The last arrow is induced by (2.5.7). Taking Rp;3,, we obtain

L L
(D #1) o wie o (Diyta) =  Rpus (Dl H1)8,, w5t 8, (Dl 2))
2

2
L
— Rp13*Rj(0ﬂ’l/p1—31d13a (%@dz,ﬂf/g,pl_;.%ga [2d2])
~, Rj’@mdlsa(l’l; Ha, Hy3a).
2

Here the last isomorphism is given by the Poincaré duality. O
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Serre duality. — Let us recall the Serre duality for &-modules. Let X and Y be
complex manifolds. Denote by f: X x Y — X the projection, by wy = Qgi}’ [dy] the

L
dualizing complex on Y and by wxxy/x := Ox M wy the relative dualizing complex.
For & € Db, (Ox), we set

L
¢ = f_1g®f—lﬁxwXXY/X'

Theorem 3.3.2. — For # € D2, (Oxxy) and 4 € D? (Ox), we have a morphism

coh coh
(3.3.2) Rf.RHom , _(ZF,f'9) - RHam , (RIF,9).
If the support of & is proper over X, then this morphism is an isomorphism.

This result is classical and we shall only recall a construction of the morphism
(3.3.2) adapted to our study. Since Qy has a 2y"-module structure, we may regard
Wxxy/x as an object of DP(0x X 2y7). By the de Rham theorem, we have an iso-
morphism:

L
Wxxy/Xx®g, Oy = ftox[2dy].

L
By composing with the morphism wxxy;x — wxxyy x®g, Oy, we get a morphism
in DP(f~10%):
wxxy/x — f1Ox[2dy].

Now we have a chain of morphisms in D?(f~16)

| _ L
Rtom ng,f'éf) = I{5Q&”$¢?XX,,(4grvf' 15¢Q§f—1¢7X‘UXTXY7)()

Oxxy
L
— RHtom; 1 (F,f790, 1, [ Ox[2dy])
~ ijf_lﬁx (y,f_lg[2dy])
On the other hand, the Poincaré duality gives an isomorphism
Rf.RHom ;5 (F, [~ 9 [2dy]) ~ RHom 5, (RHF,9).
Duality for kernels. — Let X; be complex manifolds of dimension d; and let &/x, be
DQ-algebroids on X; (i =1,2,3).
As in Notation 3.1.1, we often write for short X;; instead of X; x X, X instead

of X; x X¢, etc. We also write «; instead of @,;, etc. and ij/1 instead of X;;/X;
etc.

Theorem 3.3.3. — Let %; € D2,y (9/x,xxg,,) (i = 1,2). We assume that Supp(H#1) X x,

coh

Supp(#2) is proper over X1 x X§. Then the natural morphism (see (3.3.1))
(3.3.3) (Dly 1) o wie o (Dyyts) — Diy(H o H3)
Xg 2 Xg X3

a
2

is an isomorphism in Dg’oh(dxfxxs).
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Proof. — Since the question is local on X; x X§, we may assume that gr;(#/x,) and
gr,(Zx,) are isomorphic to Ox, and Ox,, respectively. Applying the functor grj, we
get

g1n(Dly (H2) 0w, 0 Diy (1))
L
~ Rp13,(RAom bra3 (Pngrh(%)®ﬁ123pzsgrﬁ(%)a WX158/X13))
L
= Ré%mﬁxla (Rp13y (P’fzgrn(%/l)®0123P;38T5(e75/2))’ 013)
= gry,(Diy (1 0 H2)).

Here the second isomorphism follows from Theorem 3.3.2. Hence (3.3.3) is an isomor-
phism by Corollary 1.4.6. O

Recall that D’y denotes the duality functor for C%-modules, (see (1.1.1)) and (+)*
the duality functor on D%(C") (see (1.1.2)).

Corollary 3.3.4. — Let .4 and N be two objects of DP, (x).

coh

(i) There is a natural morphism in D?(C?)

L
(3.3.4) RHom (W,wf@dx M) — (RHom , (A, N))".
(ii) If Supp() N Supp(.4') is compact, then (3.3.4) is an isomorphism in D‘; (Ch.

Proof. — (i) In Lemma 3.3.1, take X; = X3 = pt, Xo = X, ] = A and 3 =
"y .
(ii) follows from Theorem 3.3.3. d

In particular, if X is compact, then .#Z — w ®z, ~# is a Serre functor on the
triangulated category D2, (#/x).

Remark 3.3.5. — For J¥; € Db(%)}ofxx,,ﬂ) (i = 1,2), one can define their product

L
HQ %.OCJ{Q similarly as in Definition 3.1.2 and their convolution similarly as in Def-
inition 3.1.3. (Details are left to the reader.) One introduces

loc
(3.3.5) w;{ = CMeC @, wi

and for .# € DP(4/3°°), one defines its dual by setting
(3.3.6) Dy M = RHom oy (M, A°) € DP (i),
Then Theorems 3.2.1 and 3.3.3 extend to good 27'°°-modules.

Theorem 3.3.6. — Let A; be a closed subset of X; x X;11 (¢ = 1,2) and assume
that Ay X x, Ao is proper over X1 x X3. Set A = Ay oA,y. Let J; € ng’Ai(%}("fxxgﬂ)
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(i=1,2). Then the object /1 o K3 belongs to Dyy 5(3 xs) and we have a natural
isomorphism

dloc

DL () g, w5y g, Diw(H) = Diy(Hh o ).

a
2

Proof of Theorem 2.5.7. — We are now ready to give a proof of Theorem 2.5.7. In
Theorem 3.3.3, set X1 = X5 = X3 = X® and #] = H#5 = €x.. Then we obtain

D', €xa ;w;{ 9 Dy xe 2 Diyy(€xe 0 Cxa) = Diyy(€xe).

By applying o(D’,€x.)®~!, we obtain D, €xa ;w;‘}’ ~ Ex.

3.4. Action of kernels on Grothendieck groups

Grothendieck group. — For an abelian or a triangulated category ¥, we denote as
usual by K(%) its Grothendieck group. For an object M of €, we denote by [M] its
image in K(%). Recall that if € is abelian, then K(%) ~ K(D®(%)).

If A is a ring, we write K(A) instead of K(Mod(A)) and write K.on(A) instead
of K(Modcon(A)).

In this subsection, we will adapt to DQ-modules well-known arguments concerning
the Grothendieck group of filtered objects. References are made to [38, Ch. 2.2].

For a closed subset A of X, we shall write for short:

Keon,a(#x) 1= K(Dgop A (@x)),  Keon,a(grp@x) 1= K(DE, A (815 @x)),
Kgaa(#5°) = K(Dgg A (#5°)).

Recall that for an open subset U of X and . € Modcoh(d}("c), an &;-submodule
Mo of A |y is called a lattice of # on U if .4, is coherent over &, and generates
My.

Lemma3.4.1. — Let0 — £ — M — N — 0 be an ezact sequence in Modcon (2/5°).
Then there locally exist lattices £y, Mo and Ny of £, M and N respectively, such
that this sequence induces an exact sequence of &x-modules: 0 — £y — My — Ny —
0.

Proof. — (i) Let ., be a lattice of .# and let .4y be its image in 4. We set
Lo = My N ZL. These &/x-modules give rise to the exact sequence of the statement
and it remains to check that % and .4 are lattices of .Z and ./, respectively.

(ii) Clearly, .45 generates .4, and being finitely generated, it is coherent over &x.

(iii) Let us show that % is a lattice of .. Being the kernel of the morphism .#y — A4,
% is coherent. Since the functor (+)'°° is exact, the sequence 0 — £L°¢ — .#Z°° —
Ag°¢ — 0 is exact. Therefore, £)°° ~ &. ]
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Lemma 3.4.2. — Let M € Modcon (), let U be a relatively compact open subset
of X and assume that there ezists a lattice My of M in a neighborhood of the closure
U of U. Then the image of #y in Keon(gr, @) depends only on A .

Proof. — (i) Recall that [gr;,.#p] denotes the image of gry.#, in Kcon(gry o). First,
remark that for N € N, the two grj /x-modules gry.#, and gr,h"Y .4, are isomorphic,
which implies

gry0] = [grth//lo].
(ii) Now consider another lattice .# of .# on U. Since .# is an &/;°°-module of finite

type and .#(, generates .#, there exists n > 1 such that .#, C h™".#. Similarly,
there exists m > 1 with .#j C h~™.#), so that we have the inclusions

ﬁm+n./ﬂo C hm.ﬂé C M.

Using (i) we may replace .# with k™ .#;. Hence, changing our notations, we may
assume

(34.1) R™ My C MG C M.

(iii) Assume m =1 in (3.4.1). Using h™.#; C h™.#,, we get the exact sequences
0 — M/ bty — Mo|hiMo — Mo] My — 0,
0 — htty| At — M| M5 — My /Bty — 0,

and the result follows in this case.
(iv) Now we argue by induction on m in (3.4.1) and we assume the result is true
for m — 1 with m > 2. Set

MY = F My + M,
Then Ay C My C MY and ™~ sty C M} C #,. Then the result follows from

(iii) and the induction hypothesis. a
We set
(3.4.2) Keoh,A (81 ) = lim Keoh A (814:97).
U

where U ranges over the family of relatively compact open subsets of X. Using
Lemma 3.4.2, we get:

Proposition 3.4.3. — There is a natural morphism of groups
gy Kgd,A('Q{)l(oc) - Kcoh,A(grh'Q{X)-

Remark that when X = pt, the morphism in Proposition 3.4.3 reduces to the
isomorphism

(3.4.3) K7 (C™'°) 2% K4(C),
and both are isomorphic to Z by [M] +— dim M.
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Kernels. — Consider the situation of Theorem 3.2.1. Let A; be a closed subset
of X; x X;+1 (¢ = 1,2) and assume that A; xx, A is proper over X; x X3. Set
A = A; o A,. Since the convolution of kernels commutes with distinguished triangles,
it factors through the Grothendieck groups. Moreover, one can define the convolu-
tion of gr,o/x-kernels and a variant of Theorem 3.2.1 with &/x replaced with gr,o/x
is well-known. Since the functor gr; commutes with the convolution of kernels, the
diagram below commutes:

e}

(344) Ob(Dgoh,Al (’52%12“)) X Ob(ch)oh,Ag (‘%3“)) - Ob(Dth,A('%E‘“))

| _—

Kcoh,A1 (42{12“) X Kcoh,Az (%3‘1) Kcoh,A(v‘%B“)
|/gl‘h Xgrh Lgrh
Keoh,A, (815 #122) X Keon, A, (879234 ) Keon, (8T #13a).
Similarly to (3.4.4), the diagram below commutes:
(345)  Ob(Dyy p, (755)) x Ob(DY o, (455)) — Ob(DY,  (7455))

| o

Kga,n, (#455) x Kga,n, (5€) Kga,a(A55)

Lgrn Xgry lgrn
o
~

Koo, A, (8Tp2120) X Keon, A, (875230 ) —— Keon, A (87, H34).
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HOCHSCHILD CLASSES

4.1. Hochschild homology and Hochschild classes

Let X be a complex manifold and let &/x be a DQ-algebroid. Recall that 6x: X —
X x X® is the diagonal embedding. We define the Hochschild homology F¢(</x)
of &/x by:

L
(4.1.1) HH () = O (€x+® gy, . Fx), an object of D(C).
Note that by Theorem 2.5.7, we get the isomorphisms:

FH (Ax) (5)_(1ijamdx)(xa(Dl Exa,Cx)

Hxaxx

- dR—1
~ §'Rm . (wF® ), %x).

1R

We have also the isomorphisms

A®-1
Rdtom o . (wx &1 &x)

R

o d®-1 o
Rdtom o . (WX Qwy JWx ;‘Kx)
o
~ RAm, . (Cx,wx ).

One shall be aware that the composition of these isomorphisms does not coincide in
general with the composition of

R‘mﬁ{xxxa (w;?’@—l,ch) = Rj@mdxxxa (w)}.!i(X)—-l ;U‘)degx ;UJ}?)
~ R, . (Cx,w5).

We shall see that they differ up to hhx(wx)o (see Theorem 4.3.4 below). For that
reason, we shall not identify % (</x) and R¥om ., ., (Ex,wd).

Lemma 4.1.1. — Let # € DY, (2/x). There are natural morphisms in D2, (x x xa):

coh coh
L
(4.1.2) wg® ! — ARD,M,

L
(4.1.3) MRD M — Cx.
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Proof. — (i) We have

B¢

L
R oy, (M, M) (D )&, M

L L
~ Cxe®y, . (MED,H)

L
~ RHom (WZ® Y M RD ).

.Q{xxxa

The identity of Hom ,, (.#,.#) defines the desired morphism.
(ii) Applying the duality functor D7, . to (4.1.2), we get (4.1.3). a

Let .# € D®_, («/x). We have the chain of morphisms

coh
Rlam.,, (M, M) < Dy M, M
(4.1.4) > Gxa, _ (MED,.M)
— Gxe®,,  Cx = IO(x).
We get a map
Hom , (A, M) — ngpp(/{)(X;&‘ﬂ((szx)).
For u € End(.#), the image of u gives an element
(4.1.5) hbux ((#, 1)) € Hgypp () (X HH (x))-
Notation 4.1.2. — For a closed subset A of X, we set
(4.1.6) HH (o/x) := RUA(X; #H (o)), HH} (o/x ) := HO(HHA (x)).

Definition 4.1.3. — Let .# € DP, ,(&x). We set hhx(#) = hhx((#,id.«)) €

coh,

HHY («/x) and call it the Hochschild class of .Z.

Lemma 4.1.4. — Let # € DP, (x). The composition of the two morphisms (4.1.2)
and (4.1.3):

L
wg®t — A RD, M — €x

coincides with the Hochschild class hhx(.#) when identifying JH(x) with
Ritom ., . (wZ® " €x).

Proof. — The Hochschild class hhx (.#) is the image of id_4 by the composition

L
RAM o7 o (W O M RD Ly M)
— Rim (07, Cx) = HH (x).

Rdtom o, (M, M)

1
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Theorem 4.1.5. — The Hochschild class is additive with respect to distinguished trian-
gles. In other words, for a distinguished triangle #' — M — A" *L in Db, (#x),
we have

(4.1.7) hhx (.#) = hhx (.#') + hhx (2").

L
Proof. — Although the bifunctor +® ot is not internal to our category, the theorem
of May [51] is easily adapted to this situation. O

By this result, the Hochschild class factorizes through the Grothendieck group.
Therefore, if A is a closed subset of X, we have the morphisms

(4.1.8) D2 A (@x) — Keoh,a (#x) — HH} (k).

Duality. — Denote by s: X x X* — X%x X the map (z,y) — (y,z) and recall that §x
is the diagonal embedding. Then sodx = 6x, s ' €x ~ €xa, s ' Fxxxe =~ Dxaxx
and we obtain the isomorphisms

L
M(Wx) = 5}1(%Xa®dxxxa(gx)

1

~1.-1 L
63 (ExeB,y, Ex)

L
6% (871 Exa®

1R

S_l(gx)

S‘ldxxxa
L
= 5 (6xByy, Gxe) = HOL(Slx).
After identifying S (2/x) and HH («/xa) by the isomorphism above, we have:
(4.1.9) hhxa(D’y.#) = hhy ().

Remark 4.1.6. — Let o/ be a DQ-algebroid and let & be an invertible C"-algebroid
on X. Then

(4.1.10) A7 = ®cn P
is a DQ-algebroid on X. We have the natural equivalences
(@) = (o 7),
8 (7 B (& 7)P) = 63 (o R (7).
We deduce the isomorphism

(4.1.11) HH (elx) ~ HH (ATL).

4.2. Composition of Hochschild classes

Let X; be complex manifolds endowed with DQ-algebroids &x, (i = 1,2,3) and
denote as usual by p;; the projection from X; x X5 x X3 to X; x X; (1 <i<j<3).
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Proposition 4.2.1. — There is a natural morphism
L
o : Rpya) (pig HH (e, x x3)®Pag FH (x;x x3)) — FH (9x, xx5)-
Proof. — (i) Set Z; = X; x X?. We shall denote by the same letter p;; the projection

from Z1 X Z2 X Z3 to Zi X Zj.
We have

HO(x, xx2)
L L L

=~ (€x; E%Xj)@)xzfzixz; (¢x, B ¥xq)
L L

~ H Q-1 A Q@—1

~ Rf(omdzixz; (Wi, Bwy® ™, x, W Ex;e)

~ RHtom ”“’@_1%] o@-1)g 4 (g |§|cg L o

- 'Q{Zixz;_’ ((sz —'wX; )@‘Q{X‘?wx.;?7 ( X, e Xja)@w‘x;wX;)
L L

~ A R®—1 o

= Rﬁ””gfzixzz (wy,” 7 WExa, Cx, Bwi)a)-

L L
Set Sij = w;i@—l @%x; € Dth('Q{ZiXZ;-’) and Kij = %Xi @w}é € ch)oh(MZiXZ;)'
Then we get

IO (6t xxg) = R . (S i)
Thus we obtain a morphism in Db(C’%l X Zax Z3)
Pra JH (x, x x3 )‘%’p;g,lM(WXz xXg)
o~ szle"Umdzl xz8 (S12, K12)<§I§P2—31Rj@mﬂ22 «z8 (S23, K23)
- Pfisj@mﬂzl xz8 (Slzédzz Sa3, KlZédzz Ko3).
We get a morphism
Rpua, (015 P (%, x g )épz_alfgf (Ax,xx2))

(4.2.1) ) )
- RP13!R~7(0/”£¢ZI «z8 (512@@/22 S23, K12® 5, Kj3).

(ii) We have a morphism
L
h ~ A®—1
(CX2 ﬁmﬂzg(%xg,%xg) _ngza@dzzwxz y
which induces the morphism:

L L L L
_ - — I R—
p131(w5z® ' RExg) — ("-’kdl@) ' X Exg )@ﬁh (WX2® ! W Exg),
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that is, the morphism in D" (#z, x zz):

L
(4.2.2) S13 — Rp13*(512@d22 S23).
(iii) We have a morphism (see (2.5.7)):

L L L L
(x, Buf)B,, (6x, Buwil) — pr(6x, Bw)[2da),
which induces the morphism in D (277, « z3):
L
(423) RplSI(KIZ@‘Q{Z2 K23) — Kis.
(iv) Using (4.2.2) and (4.2.3) we obtain

Rplang@mdz 23 (512®£¢ 523,K12®g¢ K23)

L
(4.2.4) — Rdtom ;. «z (Rpw*(512®MZ2 S23), Rp13) (K128 7, K»3))
_’Rj@mdz Xza(Sl37K13) M(ﬂxlxxg).

Combining (4.2.1) and (4.2.4), we get the result. O

Let us denote by Xg the real underlying manifold to X and by wmp the topological
dualizing complex of the space Xg with coefficients in C". Note that X being smooth
and oriented, wﬁ?ﬂf is isomorphic to Cg( [2dx].

Corollary 4.2.2. — There is a canonical morphism I (x.) @ I (Ax) — wﬁ?p

Proof. — Let us apply Proposition 4.2.1 with X; = X, X; = X3 = pt. Denoting
by ax the map X — pt, we get the morphism Rax (# (exa) ® #H (ex)) — C},
By adjunction we get the desired morphism. O

4.3. Main theorem
Consider five manifolds X; endowed with DQ-algebroids &7x, (i =1,...,5).

Notation 4.3.1. — In the sequel and until the end of this section, when there is no

risk of confusion, we use the following conventions.

(i) For 4,5 € {1,2,3,4,5}, we set X;; := X; x Xj, Xjjo := X; x X{ and similarly
with Xijk, etc.

(ii) We sometimes omit the symbols p;;, ps;,, pi"jl, etc.

(iii) We write o7; instead of @x,, ;. instead of &x, . and similarly with %,w“/
etc., and we write ° instead of )? * instead of ;{k ﬂom instead of J#om o and
®; instead of ®,, and similarly wn:h ij®, ijk, etc

(iv) We write D’ instead of D/, and wx instead of wg Z.
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(v) We often identify an invertible object of DP(&/x ® @/xa) with an object
of DP(ax x xa) supported by the diagonal.
(vi) We identify (X; x X2)* with X& x X;.

Let A;; C X;; (i =1,2, j =i+ 1) be a closed subset and assume that Ajs X x, Aa3
is proper over X; X X3. Using Proposition 4.2.1, we get a map

L
(4'3'1) C2) : HHa,, (dXITJ' )®HHA23 (dxzaa ) B HHA12°A23 (‘Q{Xwa )

For C; € HH(,)\12 (#/x,,4 ), We obtain a morphism

(4~3'2) Cr2 <2): HHj,, (%Xzsa) - HHA120A23 (Xmsa )

L L L L
The morphism (%1:®,,.%1) W (622 899a62) — (1020891092 F12) induces the ex-
terior product
(4.3.3) X HHA1 (ﬂxl) X HHA2 (ﬂxz) d HHAleg (dxlxxz)
for A; C X; (1 =1,2).
Lemma 4.3.2. — Let Aij C X5 (i =1,2,3, j = i+1)and assume that A;; X x, Aji is
proper over Xy, (1=1,2,j=i+1, k=j+1). Let C;; € HH(,)\U (#x,..) 1=1,2,3,
j=i+1).
(a) One has (012(2)023) gC34 = Cq2 3(023 9 C34).
(b) For Ca4s € HH®(x,,..) we have
(C12 X C34) 230245 = Ci2 3(03420245)-

ije

(c) Set Ca, =hhx,,, (%Xi)' Then 012(2)CA2 = Ca, C1>012 = Chs.
(d) (012 X CA3)2(3)u 023 = C128023. Here C1o X CA3 € HH?\lzan(ﬂxma%a) 18 Te-

garded as an element of HH?\nxAg(dX(xaa)(na)a)'

Proof. — The proof of (a) and (b) is left to the reader and (c) follows from Theo-
rem 4.3.4 below. Indeed, @ in (4.3.8) is equal to the identity when J& = &x since
the functor & +— X x &z Qwa ¥ D’¥ is isomorphic to the identity functor.

(d) follows from (b) and (c). O
In order to prove Theorem 4.3.5 below, we need some lemmas.

Lemma4.3.3. — Let # € DY, (%x,,.). Then, there are natural morphisms
in DP(x,,a) :

(4.3.4) a: W@l X;Dfd.%/,
(4.3.5) B: %gwggD;{Ji’ - 6.
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Proof. — (i) By (4.1.2), we have a morphism in D(x, 50010
w8 & RDL,A.

L
Applying the functor «®,,, %2, we obtain

pl_llawi@_l - wi@—l X (D %2®22acg2) - wlzd ®22acg2 - (Ji/ IXD Ji/) ®22a (52

By adjunction, we get (4.3.4).
(ii) By (4.1.3), we have a morphism in DP(#x,,a,,a)

K BD' A — Groa.
L
Applying the functor *®,,,w2, we obtain

(.%/ g D %) ®22a Wy — %12" ®22aw2 - %1®CX [2d2]
Here the last arrow is given by (2.5.7). By adjunction, we get (4.3.5). O

For the sake of brevity, we shall write ['sHom instead of R['yRHwn .
Let A2 be a closed subset of X; x X§ and Az a closed subset of Xo. Let 2~ €
DP , (@x,,.) with support A;2. We assume

(4.3.6) A12 X x, Ao is proper over Xj.
We set for short
L
S = Jg@ (ngD"ﬁ,%) € Db(mlazza),
A1 = A12 [*) A2.

(4.3.7)

Note that
S;w2 NJK/*D X Szga‘&:%gwggD;{f.
We define the map
(4.3.8) Dy HHp, (2x,) — HHA 00, (2x,)
as the composition
HHp,(2%) =~ Tp,Hom gy, (w§ 1, Ta, %)

—  T'ppon,Hom a (S *awz 1,S %, A, %2)

~

— FAwoAzHomua(S * w2 S O FA;gz)

- FA120A2H0m110 (wl %1) HHA12°A2 (”dl)

The last arrow is associated with the morphisms in Lemma 4.3.3.
We have morphisms

L
(4.3.9) w5 (W R %) 2 w1,
L
(4.3.10) (cgl ng) 2<2Ja Cfg - (51-
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L
In fact, we have a natural morphism Chya — €2®,,.wS ~!. This morphism defines

1 @1 @1 L @1 .. .
the morphism pyj.w — (wp ™ K%2)®y0.wy ~ which defines the morphism (4.3.9)
by adjunction.
By (2.5.7), we have a natural morphism
L L L h,loc !
(61 B w2)®qy00 62 — 61 W Chy°" [2da2]  prya 6l
which defines the morphism (4.3.10) by adjunction.

Theorem 4.3.4. — Assume (4.3.6). Then the morphism @ : HHj,(ox,) —
HH, o0, (2x,) in (4.3.8) is the morphism hhx . (%) o given in (4.3.2).

Proof. — We set

Fi= @ B%)r,, G=RT4,, (% Buw).
We shall denote by a and ,5 the morphisms
a: F— S, E:S—»G.
constructed similarly as in Lemma 4.3.3 by using (4.1.2) and (4.1.3). Then the diagram

below commutes:
(4.3.11)

(F *,(Boa(F)) %)
[, Hom ,,, (wée’_17 %) I'y,Hom ;, (F 2;1 w?"l’ G 2; ['A, %)

m\%

I'x,Hom (S X %@ﬂ’ Szga ['p,%2).

The morphisms in (4.3.9) and (4.3.10) define the morphisms
®—1 ®—1
(4.3.12) wy " > F dowr G 2 G — .

Since G x5 Ta, % «— G 2. 'z, %2, we get the morphism
w: I‘AlHomna (F 2; w?_l,GZ;a FAZ%Q) — FAlHomlla (w‘?—l’%l).

By its construction, the morphism hhy,,, (%) o is obtained as the composition

with the map w of the top row of the diagram (4.3.11). Since the composition with
w of the two other arrows is the morphism @, , the proof is complete. O

Theorem 4.3.5. — Let A; be a closed subset of X; x X;11 (i =1,2) and assume that
Ay xx, Ay is proper over X; x X3. Set A = Ay o Ay. Let J#; € Dth,Ai(dXixX;‘H)
(i =1,2). Then

(4.3.13) hhx,,. (M1 o #2) = hhx,,. (1) o hhx,,. (#2)

as elements of HH%(WXIX;(;). In particular, ® 00, ~ Py © Py
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Proof. — For the sake of simplicity, we assume that X3 = pt. Consider the diagram in
which we set Ay = hhy(#3) € HH?(#x,) =~ Hom (w$ ™!, %2) and we write D’ instead
of D’ :

1 Az

®— _
wq _ée)iflgw‘g lgu)2c2>D’J£’1 Jﬁg‘gggwggD’%ﬁch

/

L
M o(Hp RD' Ap) owp o D' 4

l

L
(H105) BD' Ay 0wz 0 D'

I

L
N (U 9 ) B D (0 1)

J

Here, the left horizontal arrow on the top is the composition of the morphisms w5
H gD;,Ji/l — gw? -1 ows 9 D', #1. The composition of the arrows on the bottom

is hhy (£ o J#) by Lemma 4.1.4 and the composition of the arrows on the top is

D, (hhy(%3)). Hence, the assertion follows from the commutativity of the diagram

by Theorem 4.3.4. O
Recall Diagram 3.4.4. Using (4.1.8), we get the commutative diagram

(4.3.14) Keon,A; (#120) X Keon,a, (#232) —— Keon,a(#134)

lhhlga Xhhgza lhhl;;a
o

HH}  (#20) x HH}  (230) HHY (30 ).

Remark 4.3.6. — (i) The fact that Hochschild homology of &-modules is functorial
seems to be well-known, although we do not know any paper in which it is explicitly
stated (for closely related results, see e.g., [35, 59]).

(ii) In [18], its authors interpret Hochschild homology as a morphism of functors and
the action of kernels as a 2-morphism in a suitable 2-category. Its authors claim that
the the relation ® ; o ® ¢, = @, oz, follows by general arguments on 2-categories.

Their result applies in a general framework including in particular #-modules in the
algebraic case and presumably DQ-modules but the precise axioms are not specified
in loc. cit. See also [59] for related results. Note that, as far as we understand, these
authors do not introduce the convolution of Hochschild homologies and they did not
consider Theorem 4.3.4 nor Theorem 4.3.5.
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Index. — Let K be a field, let M € D?(K) and let v € End(M). One sets
tr(u, M) = Y (=1)'tr(H'(u): H'(M) - H'(M)),

i€z
X(M) = (—1)* dimg (H* (M)).
i€z
If X = pt, then J¢(a/x) is isomorphic to C*, and D}, (#/x) = D%(C").

Recall that we have set M'°¢ = CMl°c g, M. For M € D‘;((Ch) and u € End(M),
we have

(4.3.15) hhpy (M, u)) = tr(u'°c, M'°°).
In particular,
hhp (M) = x(M"°).
Moreover, we have
X(M°) = x(grs(M))
= (1) (dime(C ®cn H'(M)) — dime Tor (C, H(M))).
i€Z
In the sequel, we set
X(M) i= (M),
As a particular case of Theorem 4.3.5, consider two objects .# and .# in D® , (&/x)

coh

and assume that Supp(.#) N Supp(#) is compact. Then RHom ,, (.#,.#") belongs
to D}(C") and

x(RHom ,, (A,V)) = hhpt(D;{‘///;% N)
bhixa (Dly.d?) 9 hhx (F)
bl () ¢ bhix (A).

Note that we have
X(RHomﬂX (///,,/V)) = x(RHomd;c(/flloc,/bc))
X(Rﬂomgrh(dx)(grh(%), grh(,/V))).

4.4. Graded and localized Hochschild classes

Graded Hochschild classes. — Similarly to the case of &/x, one defines
L
HH (gra( ) = 8T(BX)®y (o, xa)BR(EX):

Note that HH (grp (< 5 )) =~ (CQ%CFLM (#/x) and there is a natural morphism
gry: HH (x) — FH (grp( x))-
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4.4. GRADED AND LOCALIZED HOCHSCHILD CLASSES 89

Notation 4.4.1. — For a closed subset A of X, we set

(4.4.1) HH (grpex) := RLA(X; HH (gry( x)))-
We also need to introduce
—0
(4.4.2) HH, (gr,o/x) := liLnHH?\(gthz{U),
U

where U ranges over the family of relatively compact open subsets of X.
For .# € Db, (gry(#/x)), one defines its Hochschild class hhx (.#) by the same

coh

construction as for &/x-modules. For .# € D2, (#/x), we have:

gry(hhx (.#)) = hhx (gry,(#)).
Theorem 4.3.5 obviously also holds when replacing o/x with grj(2/x).

Corollary 4.4.2. — Let A; be a closed subset of X; x X; 11 (1 =1,2) and assume that
Ay x x, Ay is proper over X1 x X3. Set A = A10A,. Let %; € ch)oh,Ai (grr(Px.xxz,,))
(i=1,2). Then

(4.4.3) hhi,. (4 0 #5) = Bhx,y. (1) 0 hhxy. ()

as elements of HH3 (gr, o/x, xXg)-

It follows that the diagram below commutes

o

(4.4.4) Keon,A, (8T r#20) X Keon,A, (87 #230) —— Kcon, A (8T p F134)
th{ hht
HH?\I (8T 9A2a) X HHRZ (gr,H23a) —— HH?\(grhﬂ%a).

We shall study the Hochschild class of &-modules with some details in Chapter 5.
Hochschild classes for &/3°°. — One defines

L
M(ﬂ;{oc) = (gloo“:®dloc )lgc.
XxXxa
We have JH (/3°) ~ CM°¢ @, ¢ (/x) and there is a natural morphism
(o)loo: JH (alx ) — HH (A°).
For & € Db, (#/5°), one defines its Hochschild class hhx (%) by the same construc-

coh

tion as for o/x-modules. For .# € D®  (o/x), setting .#'°¢ = CMloc ®cn M , we have

coh
(hhx (.#))'°° = hhx (.#'°°).
Recall that the notion of good modules and the category ng(d)lé’c) have been given
in Definition 2.3.16. One immediately deduces from Theorem 4.3.5 the following:
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Corollary 4.4.3. — Let A; be a closed subset of X; x X; 11 (i=1,2) and assume that
Ay X x, Ao is proper over X1 x X3. Set A = Ay o Ay. Let J%; € ng’Ai(sz)chxgH)
(i=1,2). Then

(4'4‘5) hhxma (‘z/l ° ‘)6/2) = hhxua (‘%/1) o thzsa (‘%/2)

as elements of HHY (o, e Xg )-

Using Proposition 3.4.3 and the additivity of the Hochschild class in Theorem 4.1.5,
we find that there is a natural map

~ —0
(4.4.6) Keon,A(gr5@x ) — HH (8159 ).

For A € ng’ A(&2°), we denote by }/ﬂ\lir(/% ) the image of .# by the sequence of
maps

DY 2 () = Koon, (g2 etx) — HE, (gry ).
Let A; be a closed subset of X; x X;41 (¢ = 1,2) and assume that Ay xx, Ag is
proper over X; X X3. Set A = A; o As.
Using the commutativity of Diagram 3.4.5, we get that the diagram below com-
mutes

o

(4.4.7) Ob(Dgy a, (#55)) x Ob(Dgy 4, (#55)) — Ob(Dpy 5 (#455))

o

/Kcoh,Al (grﬁ'gil?‘) X /Kcoh,Ag (grh'%&‘) /Kcoh,A (grhv(jl&l )
—0 —0 ° —0
I‘IHA1 (gI‘hMQa) X I‘II‘IA2 (grh%ga) HHA(grh%ga).

In other words,
(4.4.8) hhiga (1 0 JHz) = by (1) 0 hhyga (H3).

Corollary 4.4.4. — Let #, N € ng(.saf)l(oc) and assume that Supp(.#)NSupp(A) is
compact. Then RHom ,, (4, /") belongs to D?((Ch) and

x(RHom jy1oc (A, ) = ﬁlfga (D;{%)O}/ﬂ\lir(f/y)

hh'y () o hhy (A).
Proof. — One has by (3.4.3)
x(RHomd)ch(///,JV)) = hhp(Dly s o N)
= Bhg(Dlyst 0.A') = by (Dly#) o Bhiy ()
and the last equality follows from (4.1.9). |
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Remark 4.4.5. — 1In the algebraic case, that is, in the situation of § 2.7, one should

—~ —0
replace Kcon,a With Kcon a and HH (gr,2/x) with HH?X(grhdx)‘

We shall explain how to calculate l/ll\lir in Chapter 5.
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CHAPTER 5

THE COMMUTATIVE CASE

We shall make the link between the Hochschild class and the Chern and Euler
classes of coherent &'x-modules, following [39], an unpublished letter from the first
named author (M.K) to the second (P.S), dated 18/11/1991.

5.1. Hochschild class of &-modules

In this section, we shall study the Hochschild class in the particular case of a
trivial deformation. In this case, the formal parameter i doesn’t play any role, and
we may work with &-modules. We shall use the same notations for &x-modules as
for (Ox|[[h]], *)-modules where % is the usual commutative product.

Note that the results of this section are well known from the specialists. Let us
quote in particular [17, 18, 35, 50, 55, 59, 62].

Let (X, Ox) be a complex manifold of complex dimension dx. As usual, we de-
note by §x: X — X x X the diagonal embedding. We denote by Q% the sheaf of
holomorphic i-forms and one sets Qx := Qg(x . We set

wx = QX [dx].
We denote by D; and Dy the duality functors
o(F) =RHm 5 (F,0x), De(F)=RHm s (F,wx).
When there is no risk of confusion, we write D’ and D instead of D/; and D, respec-
tively.
Let f: X — Y be a morphism of complex manifolds. For & € D®(&y ), we set
* L -1
19 :=0x@;1,, 9.

We use the notation HO(f*): Mod(&y) — Mod(€x) for the (non derived) inverse
image functor.
The Hochschild homology of €x is given by:

(5.1.1) J(Ox) := 6%5x,O0x, an object of DP(Ox).
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Note that dx; ~ dx, ~ Rdx., and moreover

L L
(5.1.2) (SX*M(ﬁx) ~ 5X*(ﬁx®5;((6x*ﬁx)) ~ 5X*ﬁx®ﬁx>(x5x*ﬁx.

By reformulating the construction of the Hochschild class for modules over DQ-alge-
broids, we get

Definition 5.1.1. — For % € D, (Ox), we define its Hochschild class hhx (%) €

coh
Hg,,» #(X;0%0x,Ox) as the composition
(5.1.3) Ox — RHtum 5, (F,F) 2 55%(F RD'F) — §5%6x.Ox.

Here the morphism % X D'¥# — 6x,0x is deduced from the morphism
L
x(FRD'F) = F®, D'F — Ox by adjunction.

Applying Theorem 4.3.5, we get that for two complex manifolds X and Y and
for # € D2, (Ox) and 4 € DP, (Oy), we have

coh coh

hhxxy(# B¥) = hhx(#) K hhy(¥).

Let f: X — Y be a morphism of complex manifolds and denote by I'y C X x Y its
graph. We denote by hhx xy (6T,) the Hochschild class of the coherent € xy-module
Or,. Hence

thxY(ﬁFf) € HO(X X Y;M(ﬁx)(y)).
Applying Theorem 4.3.5, we get

Corollary 5.1.2. — (i) Let 9 € D®, (Oy). Then
hhx (f*9) = hhxxy(Or,) o hhy (¥).
(i) Let &# € DY, (Ox) and assume that f is proper on Supp(F). Then
hhy (Rfi#) = hhx (¥) o hhxxy (Or,).

In Proposition 5.1.3 and 5.2.3 below, we give a more direct description of the maps
thxy(ﬁ[*f) o and Ohhxxy(ﬁpf).

Proposition 5.1.3. — Let f: X — 'Y be a morphism of complex manifolds.
(i) There is a canonical morphism
(5.1.4) f*63.0y Oy — 6%0x.,.0x.
(ii) This morphism together with the isomorphism Ox «— f*Oy induces a morphism
(5.1.5) f*: HORI(Y; 838y . Oy )) — HO(RT(X; 3% 6x.Ox))
and for 4 € D° , (Oy), we have

coh

(5.1.6) hhy (f*9) = f*hhy(9).
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Proof. — (i) Consider the diagram

ox XxX

)[ ]

¥ L yxv.

(5.1.7)

Then we have morphisms
FH 00y, Oy ~ 8% [*0y, Oy — 8%8x.f* Oy ~ §%0x.,0x.
Here the arrow f*&y* — 0x . f* is deduced by adjunction from
Sy, — Ov.RfS"~RASx.f".
(ii) The diagram
(@ RDY) — fby.0y
f*¢9R f*D'y Ox.f*Oy

f*9RD f*q Sx.Ox

commutes. It follows that the diagram below commutes.
Oy —— f*63, (Y RD'Y) —— f*630y.Oy
8% f* (9 RD'Y) — 8% f*Oy ., Oy
(9 R f*D'Y) 0% 0x . f* Oy

~ ~

Ox — 0% (f*9RD f*Y) —— 0%x6x.0x.
Therefore, the image of hhy (¢) € Hom ,,_ (0, 650y ,Oy) by the maps

Hom ,_ (Oy,dy0y,0y) — Homg, (f*Oy,f"0ydy.0v)
- Homﬁx(ﬁX75;{6X*ﬁX)

is hhx (f*9). ]

Remark 5.1.4. — Although we omit the proof, the map in (5.1.5) coincides with
hhxxy (Or,) o .
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Ring structure. — For an exposition on tensor categories, we refer to [43].

Proposition 5.1.5. — (i) The object 6%0x,Ox is a ring in the tensor category
L
(Db, (Ox), ®y, ). More precisely,
(a) the map u obtained as the composition
L L
0x0x.O0x®p Ox0x.0x > Ox(0x.0x®p, 0x.0x)
—  0x0x.0x

is associative. Here the last arrow is induced by 6x,Ox ®6x,.Ox — 6x,.Ox.
(b) hhx(Ox) is a unit of this ring. More precisely, the natural morphism &
defined as the composition

€:Ox =5 6xOxxx — 5}5}(*6’)(

has the property that the composition

L e . L .
5;(6X*0X25;{5X*6)X®0xﬁX — 6X5X*6>X®0’X5X5X*ﬁX
£ 8%0x.Ox

is the identity.
(ii) The ring (0%0x+«Ox,p) is commutative. More precisely, we have poo = p,

L

where o € Aut Db(ﬁx)(é}}dx*ﬁx ®p, 0%0x+Ox) is the morphism associated with

2z — 1’ Qzx.
(ili) The object 6% x\wx has a structure of a §%6x ,Ox-module. More precisely, the

composition

. L , , L
0x0x.O0x®p, Oxx1wx — Ox(0x+0x®p,  Oxwx)
— (5!X6X!w)(.

is associative and preserves the unit. Here, the last arrow is induced by

L
OxsO0x®p,  Oxwx 20x.(0x0x.0x ®p wx) = 6x.(0x Qp, wx) = 0x,wx
by adjunction.
Proof. — The verification of these assertions is left to the reader. We only remark that

the commutativity and associativity are consequences of the corresponding properties
of 6x,.0x. For example, the commutativity is the consequence of the commutativity

L
of 6X*ﬁx®0x)<x5x*ﬁx —0x.0x. O
Notation 5.1.6. — For \; € Hxi(X;J}éx*ﬁ’X) (i = 1,2), we define their product

A1 * Ao as the composition

L @A Lo P
Ox =5 ﬁx®0xﬁx S 5X5X*0X®0X6X6X*6>X — 5X5X*6)X«
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Proposition 5.1.7. — Let &, € D2, (Ox) (i =1,2). Then

coh

L
(5.1.8) hhx(91®dx92) = hhx(fl)'hhx(yg).
Proof. — Consider the commutative diagram below (in which ® stands for ®,):
Ox Ox ® Ox

5;((91 X D’yl) ®6;{(y2 X D,gz) —_— 5;{6X*ﬁX ®5;(5X*6)X

. l

5% (%1 RD'.F1) ® (F, R D' Fy)) — 5% (3x,Ox ®6x.0x)

|

0% (0x.Ox).

N 54 (P2 © F) RD () © Fy))

The composition of the arrows on the top and the right gives hhx (%)  hhx (%3) and
L

the composition of the arrows on the left and the bottom gives hhx (#® Ox Fa). O

Note that

L
hhx (#1®,, F2) = 6x (hhx (F1) Khhx (F2)).

5.2. co-Hochschild class
Definition 5.2.1. — For # € D®  (Ox), we define its co-Hochschild class thhx (£) €

coh
HQ,pp 5 (X; 0% 6xwx) as the composition

(5.2.1) Ox — Rtam , (F,F) ~ 6x(F RDp.F) - 6xdxwx.
Here, the morphism (% X Dg#) — dxywx is induced from 6% (% X DpF) ~
L
F®,, DoF — wx by adjunction.
Consider the sequence of isomorphisms
L L
§5%0x.0x 5 Ox®, 6x0x.0x =5 6x(0x Rwx)®,, 0x0x.0x
L L
2 8y ((Ox Bwx)®4, 0x.0x) <2 8x8x.(0% (Ox Bwx)®,, Ox)
= 6!)(6X!WX-
We denote by td the isomorphism
(5.2.2) td: 5;(5X*6)X = 6!)(5X!WX
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constructed above. For a closed subset S C X, we keep the same notation td to denote
the isomorphism

(5.2.3) td: H3(X;6%0x.,0x) = HY(X; 8% xwx).
Proposition 5.2.2. — For & € D® , (Ox), we have
(5.2.4) thhx (%) = td o hhx ().
Proof. — The proof follows from the commutativity of the diagram below in which
we use the natural morphism Ox — J!X(é’ x Kwx)
Ox 0% (F XD F) 0%0x+Ox
l

8 (Ox Ruwx) ® 6% (F RD'.F)

8% (Ox Rwx) ® 6%0x,Ox
¢
8 ((Ox Ruwx) ®0x,0x)
l

5!X($X*(5!X(0)X RNwx)® ﬁx)

8% ((0x Bwx) ® (F BD'.F))

l

L (FRDF)

5!){5X!WX-

O

For a morphism f: X — Y of complex manifolds, we denote by ['s_p.(X; ¢) the
functor of global sections with f-proper supports.

Proposition 5.2.3. — Let f: X — Y be a morphism of complex manifolds.

(i) There is a canonical morphism
(5.2.5) Rfidydxwx — 030y 1wy
(ii) This morphism together with the morphism Oy — Rf.Ox induces a morphism
(5.2.6) fii HORT¢_pe(X; 8 0xwx)) — HO(RI(Y; 8y 0y 1wy))
and for # € D2, (Ox) such that f is proper on Supp(F), we have
(5.2.7) thhy (Rfi.#) = fithhx (F).
Proof. — (i) Consider the diagram (5.1.7). Then we have morphisms
Rfi6y6xwx — 6y RASxwx =~ 646y Rfiwx — 6y 0y wy.
Here, the first morphism is deduced by adjunction from

8 — 8% FRA ~ f'6LRA:.
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(ii) The proof is similar to that of Proposition 5.1.3 and follows from the commuta-
tivity of the diagram below in which we write for short f; and f, instead of Rf} and
Rf. and similarly with f.

[ Ox — f*5lx(f XDF) — f!5!x5X!wX

~

8y fi.F RD'F) — 8}, fixwx

~ ~

8 (7 B fID.F) 8 0y frwx

~

Oy —— 6y (IF RDfiF ) —= &y dywy.
Therefore, the image of thhx () € Hom , (Ox,6%6x\wx) by the maps
Tt_pe(X; Hom 5 (Ox,0x0xwx)) — Hom, (Rf.Ox,RfSxIxwx)
— Hom, (0, 830y \wy)
is thhy (fi.%). O

Remark 5.2.4. — Although we omit the proof, the map in (5.2.6) coincides with
o hhxxy(Or;).

5.3. Chern and Euler classes of &-modules

The Hodge cohomology of Ox is given by:

dx
(5.3.1) HD(Ox) = P U [i], an object of D*(Ox).
i=0
Lemma 5.3.1. — Let f: X — Y be a morphism of complex manifolds. There are
canonical morphisms
(5.3.2) X : HD(Ox)RID(Oy) — HD(Oxxy),
(5.33) o HD6y) - HD(Ox),
(5.3.4) f! : Rflj@(ﬁx) - f@(ﬁy)

Proof. — The morphisms (5.3.2), (5.3.3) and (5.3.4) are respectively associated with
the morphisms

@ [ RO, [j] — Qy [i+4],
£y il — i lil,
RAQE Y [i + dx] — QP [i + dy). O
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Theorem 5.3.2. — (a) There is an isomorphism
ax: (5;((5){*6’)( =5 M(ﬁx)

which commutes with the functors X and f*.
(b) There is an isomorphism

Bx: HD(Ox) =5 Sy dx\wx

which commutes with the functors X and fi.

Setting 7 := ﬁ;(l otdo a}l, we get a commutative diagram in D?(&Ox):

~

(5.3.5) (5;((5)(*6)( wd 6!)(5X!WX
ax LN Nl\ﬂx
HD(Ox) ~ HD(Ox).

The construction of ax and Bx and the proof are given in the next section.

Definition 5.3.3. — For F € DE , (Ox), we set
dx
(5.3.6) ch(F) = ax o hhx(F) € @ Hpp(5) (X5 ),
=0
dx .
(5.3.7) eu(.F) = 5" o thhx (F) € @D Hi,pp(5)(X; V).
=0
We call ch(&#) the Chern class of .%# and eu(.%#) the Euler class of %.

Of course, ch(%#) coincides with the classical Chern character and the morphism
ax is the so-called Hochschild-Kostant-Rosenberg map.
The following conjecture was stated in [39].

Conjecture 5.3.4. — One has eu(0x) = tdx (T X), where tdx (TX) is the Todd class
of the tangent bundle T'X.

This implies that eu(#) = ch(F)Utdx (T X). Indeed, for a,b € H*(X;6%0x.Ox),
we have td(a o b) = a o td(b) by Proposition 5.1.5 (iii) and Lemma 5.4.7 below.

This conjecture has recently been proved by A. Ramadoss [55] in the algebraic
case and by J. Grivaux [32] in the analytic case.

An index theorem. — Consider the particular case of two coherent &x-modules .%;
(¢ = 1, 2) such that Supp(-#) N Supp(#2) is compact. In this case we obtain (see also
35, 55]):

L
hhpt(iﬁo,ﬁfg) = X(RP(X,$1®0X$2))

(5.3.8) /X (ch(#1) U ch(%) U tdx (T X)).
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We consider the situation of Corollary 4.4.4. Hence, &7x is a DQ-algebroid on X.

Corollary 5.3.5. — Let M,/ € Db, (x°) and assume that K := Supp(.#) N

Supp(A) is compact. Let U be a relatively compact open subset of X containing K.
Then RHom o (A, N) belongs to D'} (CP'°°) and its Euler-Poincaré indez is given
by the formula

X(RHom e (1) = [ ch((g¥Dlytt)) U o (g5 (4)) Uty (TU).
U
Proof. — Applying Corollary 4.4.4, we have

x(RHornm,)l{oc (A, V) = hhpt(D;,J/{o,/V)
hhpt(gth;fﬂo ogrp o),

where .#, (resp. .4;) is an object of D2, (&%) which generates .# (resp. #) on U.

coh

Then, the result follows from (5.3.8). d

5.4. Proof of Theorem 5.3.2
As usual, we denote by p;: X x X — X the i-th projection (¢ = 1,2). The following

lemma is well-known.

Lemma 5.4.1. — Let & be an (Ox B Ox)-module supported by the diagonal. Then
the following conditions are equivalent:

(i) p1,ZF is a coherent Ox-module,
(ii) po2,F is a coherent Ox-module.

If these conditions are satisfied, then the map F — Oxxx Bp oy Z 18 an isomor-
phism. In particular, the (Ox X Ox)-module structure on F extends uniquely to an
Ox x x -module structure.

We define the p; ' @x-module
Pp:=0x,0% @ 6x, 05 for k>0, P, =0fork<O0.
We endow the Py’s with a structure of p; 1 6x-module by setting
py(a)(wk ® Oky1) = awi ® (abky1 — da A wg)
fora € Ox, wy € Q’j(, Ok+1 € Q')C(‘H. This defines an action of p;lé’x since

p5(a1)ps(az)(we ® k1) = p3(a1)(aewi ® (a26k+1 — daz A wy))
ajaowi ® (a1a20k+1 — a1dag A wi, — day A ag wg)
= ajawi D (a1020k+1 — d(aras) A wy)
= ps(a102)(wk @ Ok+1)-
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By Lemma 5.4.1, we get that P; has a structure of &x x-module and we have an
exact sequence:

(5.4.1) 0— 0x, Q8 22, p Pe 50,08 —o.

Hence 6x,Q%[k] < (6X*Q§(+l — Py) — 6X*Q§+1[k + 1] defines the morphism
€kt 0x, QF[K] — 6x, Q5 [k +1].

It induces a morphism

(5.4.2) ¢: @D ox. Q%K) — P ox. %K.
k k

Let d§**”: Py — Py_; be the composition

Q-1

5.4.3 aten. p P 5 0k
k X

Pi_1.

We define the complex P. whose differential d;k : Py — Py_1 is given by kd;**". Then
Im d§t*® ~ Im By ~ 5x,0% and Ker d!*® ~ Ker B, ~ dx,Q%" . Therefore we have a
quasi-isomorphism Pe — §x,0x.

Lemma 5.4.2. — The morphism
(5.4.4) ax: §dx.Ox — HO(6%)(P.) ~ EP 0k [K]
k

is an isomorphism in DP(Ox).

Proof of Lemma 5.4.2. — Since the question is local, we may assume that X is a
vector space V. Then we have a Koszul complex

. 2
Oxxx® \V* ~ (—’ Oxxx® \V* = Oxxx ®V* — ﬁXxX)
and an isomorphism ﬁXxX(X)/\. V* — 6x,0x in D?(Ox « x). Then applying H°(6%),
we obtain an isomorphism in D?(Ox):
§x0x.Ox = H'(0%)(Oxxx ® \V*).

The C-linear maps /\'c V* — Q% (V) - Py(X x X) induce a morphism of complexes
Oxxx ® /\' V* — P. such that the diagram below commutes:

Oxxx @ N\ V*
| =
p.—

Since HO(6%)(Oxxx ® \" V*)[dx] — H°(8%)(Ps) is an isomorphism, we obtain the
desired result. O

Ox+Ox.
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Remark 5.4.3. — (i) Let I C Oxxx be the defining ideal of the diagonal set dx (X).
Then the morphism &: 6x,Ox — 0x,Q%[1] is given by the exact sequence
0 — 6x,0% — Oxxx/I* - 6x,.0x — 0. Indeed, we have a commutative
diagram

Oﬁ.[/]‘2 —_— ﬁXxx/Iz ———>5X*ﬁx —0

T

0 Gx QY —2 = Py s 5y, Ox —0.

Here, the left vertical isomorphism is given by
I/I? 5 pi(a) — pi(a) «— da € 6x,0% (a € Ox).

(ii) Moreover the morphism &: dx,Q%[k] — 6x,Q% [k + 1] coincides with the
composition

L L
Sx (k] ~ 6x, 0% K]®,, Oxxx — Ix.Q%[K®,, 0x.0x
éo kL 1 ke Ol
— x5 K8, Ox. (1] = 6x. (% [Kl®,, 2k (1])

— 0x, Q5 [k + 1]

(iii) Note that the morphism ax: 0%dx.O0x == @k QF [k] coincides with the mor-

. . exp(§)
phism obtained from §x,O0x — @k Sx V5 (K] LT @k 5x % [k] by ad-
junction.

Lemma 5.4.4. — The morphism ax in (5.4.4) interchanges the composition of the
ring 6%0x,Ox given in Proposition 5.1.5 (a) with the composition

i L i . i L Pt o A ibire .
i li]®,, W] = (U ®,, )i + 5] — QK[ +j].
Note that the unit Ox — (5;(6)(*6))( is given by Ox ~ 5;(5)()()( — 5;(5X*ﬁX,
where the last arrow is induced by Oxxx — 6x,0x.
Proof. — We define
tij: Pi®py o Pi = Piyj
by

i (Wi @ 0i1) © (w; @ 0541)))
= (wi A w]‘) (&) (0¢+1 ANwj + (—l)iwi A 0j+1).

(5.4.5)
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This map is p; ' (Ox)-bilinear since:

s ((P3(0) (i @ 0111)) ® (w5 @ 0541) )
= ij ((awi ® (abi+1 — da Aw;)) ® (w; ® 0j+1))
= (aw; Aw;) ® ((abi11 — da Aw;) Awj + (—1)'aw; A 8j41)
= p5(a) (Wi Aw;) ® (41 Awj + (=1)'wi A Gj41))
= py(a)ij ((wi @ 0i41) ® (w; ® 6541)),

and

pij (Wi @ 0i11) ® p3(a)(w; ® 8511))
= Wi ((wi ®0i41) ® (aw; ® (abj 41 — da A wj))
= (aw; Aw;) ® (Bi41 A aw; + (—1)'w; A (6841 — da A w;))
= (aw; Aw;) @ (aBiy1 Aw; + (—1)"aw; A G 41 — da A w; A w;)
= p3(a) (w,- Aw; ® (0ip1 Awj + (—=1)fw; A 0j+1))
= p3(a)uij (Wi @ Oiv1) ® (wj  0j41))-
The morphism g commutes with the differentials since:
pd((w; ® Oiy1) ® (w; ® 0;41))

= pi—1,;((0 @ iw;) ® (wj D 0;11)) + (—1)*pi j—1 ((wi B 0ig1) ® (0D jw;))

=00 (iw; Awj + (1) (—1)%jw; Aw;) =08 (i + j)w; Aw,

= dp((wi @ 0iy1) ® (w; ® 0;11)).

Hence we have a commutative diagram in Db(ﬁ X xX)

L
0x+O0x®p,  Ox.0x —> 0x.0x

P..

P.®,, P

L
Therefore, applying 8%, the morphism 0%dx,O0x®0%0x.Ox — 0%dx.Ox is repre-
sented by

H°(6%)P+ ®,, H°(8%)P+ — H°(6%)P..

Thus we obtain the desired result. O
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Lemma 5.4.5. — Consider a morphism f: X — Y. Then the diagram below com-
mutes:
838y, Oy 55 0x+Ox
-
(D, k) — D, 2%k

Proof. — Let f: X x X > Y x Y be the morphism associated with f. Let us denote
by PX the complex on X constructed above. Then we easily construct a commutative
diagram

HO(f*)PY — HO(f*)éy. Oy

| |

p¥ Sx+Ox
such that
H(8% f*)PY HO(f*83)PY —= (D, Qb [K))
53&[ l«/}
HO(5%)PX D, A
commutes where 9 is given in (5.3.3). (]

Now we set
Py_4 for 1 < k <dy,
(5.4.6) Qr=1<{0x«Ox fork=0,
0 otherwise.
and define the differential d¢ with de = (k — 1 —dx) di*}, where di**} is given
by (5.4.3) and d§*": Ox ® Q% — Ox is the canonical morphism. Then Q. is

a complex of Oxxx-modules and the canonical homomorphism Q‘}l(x — Qg{x“l &)
Qg(x induces a morphism of complexes dx,wx — Qe+, which is an isomorphism

in Db(ﬁxxx).
Let us denote by H°(6Y) the functor 6% ' H#om 4 (6.0x, *).
Lemma 5.4.6. — The morphism
Bx: Pk =~ HO(6%)Q+ — ydx.wx
k

is an isomorphism in D®(€x).
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Since the proof is similar to that of Lemma 5.4.2, we omit it.
Note that the morphism Bx coincides with the morphism obtained by adjunction
from

P ox % 2 P oy, — 6x, Q% [n] ~ Sx wx.-
k k

L
Lemma 5.4.7. — The morphism 5}5X*ﬁx®ﬁx J!XJX!wX — 5’X6ngx in Proposi-
tion 5.1.5 (d) coincides with Qi [i] ®,, Yy lj] —"— QF7[i + 4.
Proof. — We define the morphism p;;: P;®4, . Q; — Qi+; by the same formula as

in (5.4.5). Then it commutes with the differential. Indeed the proof is similar to that
of Lemma 5.4.4 except when ¢ + j = dx + 1. In this case,

pd((wi ®0i11) ® (wj—1 8 6;)) =00 (i +j —dx — 1)w; Awj_1 =0.

With this morphism p: Pe @4, Q. — Q., the following diagram in the category
of complexes is commutative:

Pe B6x x x Q- Q-
P. ®ﬁx><x Oxiwx — Ox1wx -

Thus we have a commutative diagram in DP(&0x):
HO(6%)P+ ®5, HO(8%)Q+ —= HO(6X)(P+ ®,  Q+) — H(8%)(Q-)
i |
* L 1 1 L 1
0x0x+O0x®p, Ox0x1wx —= 0x(0x+O0x®p,  Ox1wx) —=0xbxwx. O

Recall that in Corollary 4.2.2, we have constructed a morphism H#(%/x) ®
HH (dx) — w;?:. Let us describe its image via the isomorphisms ax and Bx.
Consider the diagram

JH (Ox) @ HH (Ox)

(5.4.7) /\[ \
HD(Ox) @ HD(Ox) —— w?ﬂf .

Here, u is the map given by Corollary 4.2.2, A is the isomorphism ax ® ﬂ}l and v is
the composition

D okl o P L[] — P k] — WP,
{ Jj k
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where the first morphism is given by the wedge product and the last one by the map
Q¥ [dx] — wf,?]f. Then diagram (5.4.7) commutes.
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CHAPTER 6

SYMPLECTIC CASE AND #-MODULES

6.1. Deformation quantization on cotangent bundles

Consider the case where X is an open subset of the cotangent bundle T*M of
a complex manifold M. We denote by w: T*M — M the projection. As usual, we
denote by 2, the C-algebra of differential operators on M. This is a right and left
Noetherian sheaf of rings.

The space T*M is endowed with the filtered sheaf of C-algebras c?T. m of formal
microdifferential operators of [56], and its subsheaf Epe m(0) of operators of order
<0.

On T* M, there is also a DQ-algebra, denoted by #7-- m(0) and constructed in [53]
as follows. Consider the complex line C endowed with the coordinate ¢t and denote
by (t;7) the associated symplectic coordinates on T*C. Let T;,,(M x C) be the open
subset of T*(M x C) defined by 7 # 0 and consider the map

(T (M xC) = T*M,  (z,t€,7) (z;772€).
Denote by & “(MXC) 3

depending on t, that is, commuting with 8;. Setting & = 9, ! the DQ-algebra WX (0)
is defined as

~(0) the subalgebra of é"T.( Mmxc)(0) consisting of operators not

Px(0) = pubn (a1 ) 140)-

One denotes by % »m the localization of 7//;* Mm(0), that is, 7//; M = Chloc Qcn
Wr-m(0).

Remark 6.1.1. — One shall be aware that éz’T* M and chu M (0) are denoted by é”M and
@‘“M( ), respectively, in [56]. Similarly, Wrers and #aep (0) are denoted by W and
WM( ), respectively, in [53].

There are natural morphisms of algebras

(6.1.1) Tt Drs = Epers = Wens

Lemma 6.1.2. — (a) The algebra %WM(O) is faithfully flat over §T~M(O).
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(b) The algebra 77/;~ M 18 faithfully flat over gp M-
(c) &r«ur is flat over my) Do
Proof. — In the sequel, we set X = T*M. For an &x (0)-module .#, we set

AV = Wx(0) ®3, ) >

gre( M) = (gx(o)/gX("l))é’gx(o)///'

Note that the analogue of Corollary 1.4.6 holds for é?x(O)-modules, that is, the functor

gre above is conservative on Dth(‘;@\X (0)). We have

(6.1.2) grn(M™) = Ox @4, () 816 (M),

where 0x(0) denotes the subsheaf of &x of sections homogeneous of degree 0 in the
fiber variable of the vector bundle T*M, and Ox is faithfully flat over €'x(0).

(a) (i) Let us first prove the result outside of the zero-section, that is, on T* M\ Ty, M.
Let us show that

L~ L
(6.1.3) H(#x (O)®Z’X(O)J//) =0 foranyj<O0
holds for any coherent &x (0)-module .. First assume that .# is torsion-free, i.e.,
g"\x(—l) ®z, ©) M — A is a monomorphism. Since Ox is flat over Ox(0),
—~ L L
sra(Px (0)®§x(0)%) ~ Ox Bp (0) 86 (A)

has zero cohomologies in degree < 0. Hence Proposition 1.4.5 implies (6.1.3).
Now assume that gx(_l)/// = 0. Then we have

L L ~ L L
Px(0)&z o = Px(0)8z ,8x(0)8z o 0x(0)®4, o)#

&x (0) &x (0) &Ex (0)
— L L
~ Wx(0)®§x(0)ﬁx(0)®ﬁx(o).ﬂ
L
~ ﬁX@ﬁx (0)%,

which implies (6.1.3).

Since any coherent gx(())—module is a successive extension of torsion-free
&x (0)-modules and (&x(0)/Ex(—1))-modules, we obtain (6.1.3) for any coherent
g”\X(O)-module.

Consider a coherent fx(O)-module M and assume that .#W =~ 0. Then
gry(«#"V) ~ 0 and this implies that grg(.#) ~ 0 in view of (6.1.2) since Ox is
faithfully flat over €x(0). Since gre is conservative, the result follows.

(a) (ii) To prove the result in a neighborhood of the zero section, we use the classical
trick of the dummy variable. Let (¢;7) denote a homogeneous symplectic coordinate
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system on T*C. Consider the functors
a: Modeon(Oy) = Modeon(Ex xr+c(0)lr0),
M~ MR (E(0)/6c(0) 1),
B: Modeon (#x[,,(0) = Modeon(#xx1+c(0)lr0),
M M- Wpec(0)/Hrc(0) - ).
These two functors a and 3 are exact and faithful. Then the result follows from (a) (i).

(b) (i) Here again, we prove the result first on 7*M \ Ty, M. In this case, it follows
from the isomorphism

Wx ~ Wx(0) 8% ..(0) Erec.

(b) (i) The case of the zero-section is deduced from (b) (i) similarly as for (a).

(c) is proved for example in [38, Th. 7.25]. a

Recall that for a coherent Z);-module .#, the support of <§T* M ®ﬂ;41 Das W;/Il.//{
is called its characteristic variety and denoted by char(.#). It is a closed C*-conic
complex analytic involutive subset of T*M.

Now assume that M is open in some finite-dimensional C-vector space. Denote
by (z) a linear coordinate system on M and by (z;u) the associated symplectic
coordinate system on T*M. Let f,g € Ox|[[A]]. In this case, the DQ-algebra 7//}(0) is
isomorphic to the star algebra (Ox[[Fi]], x) where:

Rlal
(6.1.4) frg = 3 —@:N@29).
aeN?
This product is similar to the product of the total symbols of differential operators
on M and indeed, the morphism of C-algebras 7r;,11 Dy — %{ is given by

f(z) — f(z), Oy, B lu,.

Note that there also exists an analytic version of c?qu M and "//V; M, obtained by us-
ing the C-subalgebra of (€x [[1]], *) consisting of sections f = ;5 ;77 of Ox[[H]](U)
(U open in T*M) satisfying:

for any compact subset K of U there exists a positive
(6.1.5)

constant Ck such that sup |f;| < C’f{j! for all j > 0.
K

They are the total symbols of the analytic (no more formal) microdifferential operators
of [56].

Remark 6.1.3. — (i) Let X be a complex symplectic manifold. Then X is locally
isomorphic to an open subset of a cotangent bundle T*M, for a complex manifold
M (Darboux’s theorem), and it is a well-known fact that if @/x is a DQ-algebra and
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the associated Poisson structure is the symplectic structure of X, then &x is locally
isomorphic to #7- M(0).

(ii) On X, there is a canonical DQ-algebroid, still denoted by 77/}(0) It has been
constructed in [53], after [37] had first treated the contact case. Clearly, any DQ-al-
gebroid & is equivalent to %(0) ®c§ 2P, where 2 is an invertible C%-algebroid. It
follows that the DQ-algebroids on X are classified by H%(X;(C%)*). See [52] for a
detailed study.

(iii) Using (4.1.11), we get the isomorphism

(6.1.6) O (Ax) ~ FH (Wx(0)).

6.2. Hochschild homology of <&

Throughout this section, X denotes a complex manifold endowed with a DQ-al-
gebroid &/x such that the associated Poisson structure is symplectic. Hence, X is
symplectic and we denote by ax the symplectic 2-form on X.

We set 2n = dx, Z = X x X® and we denote by dv the volume form on X given
by dv = a% /nl.

Lemma 6.2.1. — Let A be a smooth Lagrangian submanifold of X and let %; (i = 0,1)
be simple ofx -modules along A. Then:

(i) %% and &4 are locally isomorphic,
(ii) the natural morphism C* — s#om wx (Z0,20) is an isomorphism.

Note that the lemma above does not hold if one removes the hypothesis that X is
symplectic (see Example 2.5.9).

Proof. — (i) We may assume that X = T*M for a complex manifold M, @/x =
vz m(0). Choose a local coordinate system (z1,...,z,) on M, and denote by (z;u)
the associated coordinates on X. We shall identify the section u; of &/x with the
differential operator %0;.

We may assume that A is the zero-section Ty, M and % = Om[[h]] ~ Zx /S,
where % is the left ideal generated by (71, ..., h0,). Since .4 is simple, it locally
admits a generator, say u. Denote by .#; the annihilator ideal of u in «/x. Since
41 /h S is reduced, there exist sections (P, -+, P,) of @/x such that

{h61 + hPy,...,h0, + th} C .

By identifying % M (0) with the sheaf of microdifferential operators of order < 0 in
the variable (z1,...,Zn,,t) not depending on t and 4 with 9;', a classical result of
[56] (see also [57, Th 6.2.1] for an exposition) shows that there exists an invertible
section P € &/x such that %y = # P. Hence, .4 ~ .%.
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(ii) We may assume %y = Op|[[h]]. Then H#om , (Oum|([1]], Onm([]]) is isomorphic to
the kernel of the map

u: Op[[H)] — (Oum[[RD)", w= (Rd1,...,HOn).

Recall that the objects 27 and w§ are defined in § 2.5.

Lemma 6.2.2. — There exists a local system L of rank one over C% such that QF ~
L ®C§( Cx in MOd(.!Z{XxXa).

Proof. — Both Q¢ and ¥x are simple @/x x xa-modules along the diagonal A. By
Lemma 6.2.1, L := Jtom ,, (¢x, §) is a local system of rank one over C"* and we

have Q)"?':L@C; Ex. O
Note that this implies the isomorphisms
(6.2.1) Dy a®x =~ L¥'@%x[—dx]

Hence we obtain the chain of morphisms

L
L — L®R¢@Indz(ch,(gx)’l’L®D, %X®dz(gx

Hx xxa
L L
~ x®,, Cx [-dx] = H(Ix)[-dx] ~ L® T @QZ ®,, €x [-dx]
L

— L[®71 ®Q§®9§¢%X [—-dx] ~ [®"1,
Therefore, we get the morphism:
(6.2.2) L =5 H X (H (ex)) — LO 1.
Lemma6.2.3. — (i) gry(L) — jfomgrh(dz)(grh(‘g){),grh(ﬂj‘{)) ~ Qx gives an iso-

morphism gr,(L) = Cx - dv.
(ii) The morphism L®% — C"% induced by (6.2.2) decomposes as L®? £ p?"Clh —
X b'e

C% and ¢ is an isomorphism.
(ili) The diagram below commutes:

~

grh(L®2) — grh(hzn(cf}() p2n grh((c})

I z

~ 2 ~
(gra(L))®? C% Cx.
Proof. — The question being local, we may assume to be given a local coordinate
system ¢ = (z1,...,Z2,) on X and a scalar-valued non-degenerate skew-symmetric

matrix B = (b;j)1<i,j<2n such that the symplectic form ax is given by

axy = Zb,’j d.’l,‘i A d.’l)j.
2%
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We set
A= (aih<ij<an = BT
We may assume that @/x = (Ox[[R]],*) is a star-algebra with a star product

Fra=(ow(x "2 ) farge)

ij

z'=z

Set
2n
61' = Zaijazj (7, = 1, .o ,271,)
j=1

Then, the C"-linear morphisms from Ox [[h]] to Zx[[}]]

(6.2.3) O fisfx, B :frexf
are given by

h

O (z;) = z; + =6, " (z;) =x; — E&.

2 2
These morphisms define the morphism
(6.2.4) ®: Ax ® Hxa — Dx|[H]

i it 50, i i = 50i.
T — x; + 5 Y — T 26

where we denote by y = (y1,...,¥Y2n) & copy of the local coordinate system on X*°.

We identify Q3 with the (Zx[[R]])°P-module Qx[[A]]. Then, regarding Qx[[A]] as
an @/z-module through @z |x — #;°|x — (2x[[]])°P, we have

zi(adv) = (adv)® (z;) = (adv)(z; — gé,)

= ((z:+ géi)a)dv

and similarly

yi(adv) = ((@: — g&)a)dv.

Hence, a — adv gives an &/z-linear isomorphism
Gx = Ox|[h]] = Qx([h] ~ QF .

Hence it gives an isomorphism L := Jom , (6x,Q¥) ~ s#om , (¢x,%x) ~ Ck,
and the induced morphism gr, (L) — Hom . (., \(gr4(%x), gry(Rg)) ~ Qx gives an
isomorphism gr; (L) = Cx dv. Hence we obtain (i).

For a sheaf of C"-modules .#, we set

p
F® = (/\(Ci)zn) ®C;'( Z.
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Let (e1,...,es,) be the basis of (C*)2". Consider the Koszul complex K °(</z;b)
where b = (b1,...,ba,), by = (x; — y;) is the right multiplication by (z; — y;) on &/z:

K*(z;b) = 0o . b g 0
b= D+ Abiess K¥(alzib) > K ().

%

On the other hand, consider the Koszul complex K *(Zx][[h]];d) where § =
((51,...,(52,1)2

K (2x[A);8) = 0— (2x[[AN@ S - S (@x[[H)])™ — o,
5 = (61,...,62n).

There is a quasi-isomorphism K ° (&z;b) — 2

in Mod(z).

Then the morphism @ in (6.2.4) sends (z; — y;) to hd;. There is a quasi-
isomorphism K *(2x[[h]];6) L5 Ox[[h]][-2n]. Therefore we get a commutative
diagram in Mod(%/z):

— @x [—2n] in the category of complexes

b

0 WZ(O) (sz(zn—l) b Q{ézn) .0
R2m o h® ro®

e (Dx[[)©@ 2 (Dx[[R]) 2D 2= (D[] — o

L
The object QF® dzch is obtained by applying the functor Q¢ ®, * to the

L

row on the top and the object j? ®,« Cx is obtained by applying the functor
X

Qg ®ga * to the row on the bottom. By identifying Q¢ with Qx[[A]], the morphism

L L
QZ® 2, Ex [—dx] — Q & Bgur %x [—dx] is described by the morphism of complexes:

0 —— Q% [(Al] ==+ —= QX [[A]] —— QW] —0
(6.2.5) h2n [/h Lho
0 — Q% [[A) = --- — Q¥ {[H)] —— Q% [I] — o.

Here d denotes the usual exterior derivative.
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Therefore, we find the commutative diagram with exact rows:

82
l
hd
0 Ck O ([R)] —— QX [[r]]
Lh2n Lth Lﬁ?n—l
d
0 Ck O (7)) —— QX [[r]]
in which the morphism L®2 — C% corresponds to the morphism L[dx] — L® ! ®
Qk‘d O, Cx.
This completes the proof. O

Theorem 6.2.4. — Assume that X is symplectic.

(i) Let L be the local system given by Lemma 6.2.2. Then there is a canonical C"-lin-
ear isomorphism L = Rdx/ 2Ch%, hence, a canonical o/z-linear isomorphism

(6.2.6) Qg o pix/2ch ®cn, Cx.-
(ii) The isomorphism (6.2.6) together with (6.2.2) induce canonical morphisms
(6.2.7) hx2CY [dx] 25 J (o) 25 hm9x/2C [dx]

and the composition Tx o tx is the canonical morphism hix/2Cl [dx] —
h—dx/2Ch [dx].

(iii) HI (S (Ax)) ~ 0 unless —dx < j < 0 and the morphism vx induces an iso-
morphism

(6.2.8) ux: WxX/2Ch oo Hdx (960 (k).
In particular, there is a canonical non-zero section in H 94X (X; HH (x)).

Proof. — (i) By Lemma 6.2.3, we have an isomorphism (h"‘i)f/2L)®2 ~ Ch% together
with a compatible isomorphism gry,(h~¢x/2L) ~ Cx. This implies i~9%/2L ~ C%
since the only invertible element a € C” satisfying a®? = 1, gp(a) = 1 is a = 1.

(i))—(iii) Denote by (2 [[%]], hd) and (2 x[[#]],d) the complexes given by the top row
and the bottom row of (6.2.5), respectively. The morphism ¢x is represented by

Lldx] — L®7! ® (Qx[[1]], hd)[dx]
and the morphism 7x is the composition
L' © (Qx[[7]], hd) [dx] — L®~! ® (Qx[[A]], d)[dx] == L®![dx]. .
Applying Theorem 6.2.4 together with Corollary 3.3.4, we obtain:

Corollary 6.2.5. — Let X be a compact complex symplectic manifold. Then Dzd (23°)
is a Calabi- Yau triangulated category of dimension dx over Ch1oc,
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Remark 6.2.6. — The statement in Theorem 9.2 (ii) of [44] is not correct. If Y is
a compact complex contact manifold of dimension dy, then the dimension of the
Calabi-Yau category associated to it in loc. cit. is dy, not dy — 1.

6.3. Euler classes of «/'°¢-modules

Theorem 6.3.1. — The complex HH (/5°°) is concentrated in degree —dx and the mor-
phisms vx and Tx in Theorem 6.2.4 induce isomorphisms

(6.3.1) Cho° ldx] = HH(A°) = Chlo%ldx].

Proof. — This follows from the fact that (Qx[[]], hd) — (2 x[[7]], d) becomes a quasi-
isomorphism after applying the functor ()¢ = C™l°c @, (). O

Definition 6.3.2. — Let .# € Db, (o/5°°). We set

coh
(6.3.2) eux () = 7x (hhx (#)) € Hg,p (X3 CR™)

and call eux (.#) the Euler class of .#.

Remark 6.3.3. — (i) The existence of a canonical section in H =X (X; J (/%)) is
well known when X = T*M is a cotangent bundle, see in particular [15, 27, 61]. It
is intensively used in [14] where these authors call it the “trace density map”.

(ii) The Hochschild and cyclic homology of an algebroid stack have been defined in
[13] where the Chern character of a perfect complex is constructed in the negative
cyclic homology. It gives in particular an alternative construction of the Hochschild
class of a coherent DQ-module, but it is not clear whether the two constructions give
the same class.

Consider the diagram
(6.3.3) P13!(p1_21M(d)lacx Xg) ®p;31f‘7((d;&cx Xg ) — M(W)lacx Xg)
LTma ®T23a L-rlsa
—1hloc —1hloc f2(~u-) h,loc
P131(P12 X12 [d12] ® P23 Xo3 [d23]) —‘——”me [d13].

Here, the horizontal arrow in the bottom denoted by fz( U ¢) is obtained by taking
the cup product and integrating on X, (Poincaré duality), using the fact that the
manifold X5 has real dimension 2d; and is oriented. The arrow in the top denoted
by * is obtained by Proposition 4.2.1.

Proposition 6.3.4. — Diagram 6.3.3 commutes.
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Proof. — Since X; and X3 play the role of parameter spaces, we may assume that
X1 = X3 = {pt}. We set X5 = X and denote by ax the projection X — {pt}. We
are reduce to prove the commutativity of the diagram below:

(6.3.4) ax(FH (/5°) ® I (/°))

| \

ax,(Ch° [dx] ® Ch'°° [dx]) ————= Chilec,

JNEED)
This will follow by applying the functor ax, to Diagram 6.3.5 below. O
Lemma 6.3.5. — The diagram below commutes.
(6.3.5) FO(AL°) ® HH (A2°)

g

CR* [dx] @ C5*° [dx] — C5"* 2dx]
Proof. — The morphism L®L[2dx]| ~ C%'°° [dx]®CY"°° [dx] — C%'°° [2dx] is given
by

L®L2dx] — Lldx]®RHum,,, (€x,0%)[dx]
~ L®D,%x|dx]®,, w ~ Exa By, wg — Ch[2dx].
On the other hand, L ® L[2dx] — J¢(dx) ® 6 (o/x) — C&[2dx] is given by
L®L[2dx] — R#am,,,, (D,%x, Cxa) @ RHam , (€x,w¥)
~ Rom ,,,(DyEx, Cxa) ® (Diy(€x) @, wi )

- Cxa Qy, wg — Chl2dx].

These two morphisms give the same morphism from L ® L[2dx] to C% [2dx]. O
Corollary 6.3.6. — Let %; € Dg’oh(%}("icxxgﬂ) (¢ = 1,2). Assume that the projection
p13 defined on X; x Xy x X3 is proper on pl, Supp(J#1) N pys Supp(#z). Then
(6:3.6) Uxipe (H ) = [ e, () Uty ().

X2

Remark 6.3.7. — Consider an object .# € DP, (&/5°°). Then, according to Defini-

coh
tion 6.3.2, its Euler class is well-defined in the de Rham cohomology of X with values
in C™!o¢, Now assume that .# is generated by .#, € D, (#/x) and consider gry(.#j).
Assume for simplicity that gr,(&/x) = Ox (the general case can be treated with suit-
able modifications). Then gr,(.#,) € DX, (0x) and we may consider its Chern class
in de Rham cohomology. A natural question is to compare these two classes. A pre-
cise conjecture had been made in the case of P-modules by one of the authors (PS)

and J-P. Schneiders in [58]| and proved by P. Bressler, R. Nest and B. Tsygan in
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[14]. These authors, together with A. Gorokhovsky, recently treated the general case
of DQ-algebroids in the symplectic setting in [11]. The formula they obtain makes
use of a cohomology class naturally associated to the deformation 2/x.

6.4. Hochschild classes of Z-modules

We shall apply the preceding result to the study of the Euler class of Z-modules.
Recall after [38] that a coherent Zpr-module .# is good if, for any open relatively
compact set U C M, there exists a coherent sub-&y-module # of .#|y which gen-
erates it on U as a Zj-module. One denotes by ng(@M) the full sub-triangulated

category of D2, (Za) consisting of objects with good cohomology.

From now on, we set
X=T"M.
We introduce the functor
(6.4.1) ()W: Mod(Zy) — Mod(#x)
M~ Wx ®r—igy T .

The next result shows that one can, in some sense, reduce the study of Z-modules
to that of #x-modules.

Proposition 6.4.1. — The functor M — AW

Ty, M 1S exact and faithful.

Proof. — The morphism
% e d (ng«M ®7r;[1 @M ﬂ-;ll%)

T, M
is an isomorphism, and hence the result is a particular case of Lemma 6.1.2. O

It follows that (+)W sends DP

coh

(Za1) to DB,y (#x) and Dby (Zar) to DEy(#x).

coh

Definition 6.4.2. — Let A € D2y(Pn). We set
(6.4.2) hh§ (#) = hh§ (AV) € HHyar () (6%)-

For A a closed subset of T*M, we denote by Kgq A(Zn) the Grothendieck group
of the full abelian subcategory of Modgq(Z) consisting of Z-modules whose char-
acteristic is contained in A.

Let V be an open relatively compact subset of M. By slightly modifying the proof
of Proposition 3.4.3, we get morphisms of groups

(6.4.3) Kga,A(ZM) — Keon, A(Or-1v).

Let M; (i =1,2,3) be three complex manifolds and set X; = T*M;. Denote by g;;
the ij-th projection defined on My x My x M3 and by p;; the ¢j-th projection defined
on X; X Xo x X3 (1 <4< j<3). We set, as for DQ-algebras, Dra := (Z1r)°P and
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we write for short M;; or M;;. instead of M; x M; or M; x M j“ and similarly with
Xij. We also write %;; instead of Z)y,; and similarly with i, etc. For example,

Dr2e = ﬁMm ®(0M1®0M2) (@M1 b (@Mz)op)‘

Then %; may be regarded as a Z;;.-module supported on the diagonal of X; X Xja.
Let % € Db(@ija) (Z =1,2,j=1+ 1) Set

L
Hi o Hy:=Rarze) (2 B, Direrse®g,, ;g (i BH3)).
M, 12 23

Theorem 6.4.3. — Let A; be a closed subset of X; x X;41 (i = 1,2) and assume
that the projection pi3 defined on X; x Xo x X3 is proper on pl—zlAl ﬂp2_31A2. Set
A= AyoAy. Let #; € D2y(Pije) (i =1,2, j =i+ 1) with char(J6) C A; (i = 1,2).
Then NOIZJK’Q € ng(glga), char (] 2 H3) C A and

(6.4.4) (A o )W = W o V.
Mo, X

2

The proof is straightforward and is left to the reader. By using Diagram 4.4.7, we
get:

Theorem 6.4.4. — In the situation of Theorem 6.4.3, let V;; be a relatively compact
open subset of M; x M; (i =1,2, j =i+ 1) and assume that 7~ 1WViga X s, 7~ 1Voge
contains (A1 X x, A2) N q1_31a7r_1V13a. Then the diagram below commutes

o

Dyg,a, (Z120) X Dgg n,(Z3e) DYy A (Z13)

8Ty 8Ty
o

I(coh,Al (@r—lvm) X Kcoh,Az(ﬁw—lea) — Kcoh,A(ﬁw—lvwa)

hhxhh hhi
o

HH(I)\l (ﬁw"qua ) X HH(I)\2 (ﬁ‘n'_l‘/zga ) HH?\(ﬁﬂ'_lvl;;a )

In particular

(6.4.5) hhe"

7l'_1V13a

(1) o hh®"

1l""1V23a

(A2)

m~1Viza

(g #2) = bb:
in HHY (Or-1v,,0)-

As a particular case, and using Corollary 5.3.5, we recover a theorem of Laumon
[49] in the analytic framework.
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6.5. Euler classes of Z-modules

We keep the notations of § 6.4 and we set X = T*M. One defines the Hochschild
homology J# (gx) of & and the Hochschild class hhx (.#) of a coherent &x-module
M similarly as for FH (2fx).

In the sequel, we identify a coherent Zp-module .# with gx R -19,, 7 4. In
particular, we define by this way the Hochschild class hhx (.#) of a coherent Z-module
# . Hence

(6.5.1) hhx (/) € HES, (4 (X; 76 (Ex))-
Lemma 6.5.1. — There is a natural isomorphism
(6.5.2) I (8x) = Cx [dx]
which makes the diagram below commutative:
JH (Ex) —— Cx[dx]

| |

HH (Wx) ——= Cig>° [dx].

Sketch of proof. — We take coordinates (xi,...,Zn,u1,...u,), and set % =
im [Te<m h=*0x (k), where Ox (k) is the sheaf of holomorphic functions on X homo-
m

geneous of degree k with respect to the variables (u1,...,u,). Then O is isomorphic
to g"\x as a sheaf. Moreover, J ((?X) is represented by the Koszul complex of 9/0z;,
ho/0u; € é’rzd(g;) (( =1,...,n). On the other hand, as we have seen, W(%{) is
represented by the Koszul complex of hd/0z;, hd/0u; € &nd(Ox((R))) (i =1,...,n).

Hence we have a commutative diagram

0 Ox - Ox2n Ox 0

|- _

00— Ox((h)) — -+ — Ox((h))*" — Ox((h)) — 0,
in which the top row represents ## (&x) and the bottom row represents #& (%() O

Definition 6.5.2. — Let .# € D®_, (&x). We denote by eu x () the image of hhx (.#)

coh

in Hg}f;r(ﬁ)(X; Cx) by the morphism in (6.5.2) and call it the Euler class of /.

The next result immediately follows from Lemma 6.5.1.

Proposition 6.5.3. — For .4 € D® , (P), eux (AW is the image of eux (.#) by the

coh

natural map Hf;f;,(,,{)(X;Cx) — Hfﬁ;,(/,)(X;C?gl“).

Applying Theorem 4.3.5, we get:
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Theorem 6.5.4. — In the situation of Theorem 6.4.3, one has:
(653) €eujga (,%/1 g%) = €eUjea (,1/1) O €Ug3a (,)6/2)
in Hy' 12 (X15; Cx,q)-

This formula is equivalent to the results of [58] on the functoriality of the Euler
class of Z-modules. Note that the results of loc. cit. also deal with constructible
sheaves.
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CHAPTER 7

HOLONOMIC DQ-MODULES

The aim of this chapter is to study holonomic DQ-modules on symplectic manifolds.
More precisely, we will prove that, if .# and .# are two holonomic &/}°°-modules on
a symplectic manifold X, then the complex R#om o (A, L) is perverse (hence, in
particular, C-constructible) over the field C™!°°. It follows from the preceding results
in Chapter 6 that if the intersection of the supports of .# and .Z is compact, then the
Euler-Poincaré index of this complex is given by the integral [, eux(.#) - eux(2).
We show here that the Euler class of a holonomic module is a Lagrangian cycle, which
makes its calculation easy.

If moreover .# and .# are simple holonomic modules supported on smooth
Lagrangian submanifolds Ay and A;, then the microsupport of the complex
RHtom d}gc(//l ,Z) is contained in the normal cone C(Ag,A;). This last result
was first obtained in [44] in the analytic framework, that is, using #x-modules, not
V/V;g-modules, which made the proofs much more intricate.

Finally we prove that, in some sense, the complex R¥m d}l{oc(% ,Z) is invariant
by Hamiltonian symplectomorphism.

7.1. o~-modules along a Lagrangian submanifold
Let X be a complex symplectic manifold endowed with a DQ-algebroid 7.

The algebra /p;x. — Let A be a smooth Lagrangian submanifold of X and let .#
be a coherent &/x-module simple along A.

Locally, X is isomorphic as a symplectic manifold to T*A, the cotangent bundle
to A. We set for short

O) = OA[[A]], O} == OA(()).
There are local isomorphisms

dx ~ Wx(0), L~ 06N
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Then &nden (L) ~ bndcn(OF) (see Lemma 2.1.12) and the subalgebroid of &ndcn ()
corresponding to the subring Z4[[A]] of &ndcn(OF) is well-defined. We denote it
by 92 L.

Lemma7.1.1. — (i) 2 is equivalent to D,[[h]] as a C"-algebroid.
(ii) The Ch-algebra P satisfies (1.2.2) and (1.3.1). In particular, it is right and
left Noetherian.

Proof. — (i) follows by similar arguments as in Proposition 2.5.2 (ii).
(ii) follows from Example 1.3.1. d

The functor @x|x — &nden (L) factorizes as
(7.1.1) Dx|A — D,
and setting 2'S° := (2.£)'°°, this functor induces a functor
(7.1.2) A\ n — D

We denote by Ip C Ox the defining ideal of A. Let .# be the kernel of the compo-
sition

Wty L oty 2 Ox — On.

Then we have & /ofx ~ I,.
Definition 7.1.2. — We denote by /5, x the C'-subalgebroid of /3¢ generated by .

Note that the algebra &7, x is the analogue in the framework of DQ-algebras of
the algebra & constructed in [40].

The ideal A.# is contained in &/, hence acts on .Z and one sees easily that i.¥
sends .Z to h.Z. Hence, .# acts on . and defines a functor @y,x — Z<. We thus
have the functors of algebroids

x| — D x|n — DI

~N

D @g}c .
In particular, . is naturally an &/, x-module.
Lemma7.13. — (i) J* =)y ,x N~ *dx for any k >0,

(ii) Sk I*1 =TIk for k >0,

(ili) @/,x is a right and left Noetherian algebroid,
(iv) grn(@h/x)Ia = grpPe ~ Da,

(v) (@ayx)'°° ~ A% and A ¢° is flat over oy x .
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Proof. — Since the question is local, we may assume that X = T*C" with coordinates
(z,u), A = {u =0} and &x is the star-algebra as in (6.1.4). Set

o = {Z fre(z, u)hk € R fi(z,u) € Ix* for k < 0}.
k

Then we can check that &/’ is a subalgebra of &/}°° and it contains .#. Hence it
contains &, x. It is easy to see that the image of #* — h=*a/x /h~*1/x contains
h=kI¥. On the other hand, the image of @' Nh~*a/x — h=*&/x /A" 1a/x coincides
with A=FI%. Hence, @y ,x N i *&/x and &' N h™*o/x have the same image A=*I}
in h~Fa/x /A~**1a/x. We conclude that @y,x = &’ and @,x N A *alx C I* +
h~%+1g7/x. Hence, an induction on k shows (i).

(ii) is now obvious.

(iii) Considering the filtration {@,x N A~*&x }k>0 of &), x, the result follows by
[38, Theorem A.32].

(iv) is obvious.

(v) follows from #/x C &y x C A3°. O

By this lemma, for a coherent @/;,x-module .#', we may regard gr,(.#") as an
object of DY, (Z4). Recall that D2 (2,) denotes the full triangulated category

coh
of DP, (2) consisting of objects with holonomic cohomology.

Lemma 7.1.4. — The algebroid D is flat over @y, x and 2'g° is flat over F/)°°.

Proof. — It is enough to prove the first statement.

. L
Let us show that H?(Z2¢® An)x M) ~ 0 for any coherent /) x-module .# and

any j < 0.
(i) Assume that .# has no Ah-torsion. Using Lemma 7.1.3 (iv), we have for j < 0,

. L , , L .
Hfgrh(93®ﬂ/\/x///) ~ Higr, # ~ 0, and hence H](@i”@ng,\/x//l) ~ 0 by Proposi-
tion 1.4.5.

(ii) Assume that hi# = 0. Then

L
Mgy De®

L L L
Q"S’p@ﬂz\/x'//l = @“g@ﬂ/\/x grh%A/X@ grra)x

——_ M~ M.
(iii) In the general case, set , 4" :=Ker(h": A4 — #) and M,or :=|J n-/# . Note that
this union is locally stationary. Defining .#;s by the exact sequence?

0 = Myor — M — Mg — 0,

this module has no A-torsion. It is thus enough to prove the result for the ,,.4#"’s and
this follows from (ii) by induction on n, using the exact sequence

0_)n¢/y_’n+l</V_>n+1</V/n=/V_’0' O

coh

in T*A, that is, if gr,(.#") belongs to D2 (Z4).

Definition 7.1.5. — An object .4 of D2, (4, x) is holonomic if gr,(.#") is Lagrangian
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126 CHAPTER 7. HOLONOMIC DQ-MODULES

Note that this condition is equivalent to saying that H'(.4)/AH®(.#) and
Ker(h: HY(#) - H*(.#')) are holonomic Z,-modules for any i (see Lemma 1.4.2).

Microsupport and constructible sheaves. — Let us recall some notions and results of
[41].

Let M be a real analytic manifold and K a Noetherian commutative ring of finite
global dimension. For F' € D°(Kj,), we denote by SS(F) its microsupport, a closed
R*-conic (i.e., invariant by the R*-action on T*M) subset of T*M. Recall that this
set is involutive (one also says co-isotropic), see [41, Def. 6.5.1].

An object F of DP(KKy,) is weakly R-constructible if there exists a subanalytic strat-
ification M = | |, 4 Ma such that H7(F)|u, is locally constant for all j € Z and all
a € A. The object F is R-constructible if moreover H?(F), is finitely generated for all
z € M and all j € Z. One denotes by D2 (K) the full subcategory of DP(K /) con-
sisting of R-constructible objects. Recall that the duality functor D’y (*) (see (1.1.1))
is an anti-auto-equivalence of the category DB _(Kpr).

If M is complex analytic, one defines similarly the notions of (weakly) C-con-
structible sheaf, replacing “subanalytic” with “complex analytic”. We denote
by DE . (Kas) the full subcategory of DP(Kjys) consisting of weakly-C-constructible
objects and by D}éc (Kpas) the full subcategory consisting of C-constructible objects.
Also recall ([41]) that F € DP(K,,) is weakly-C-constructible if and only if its
microsupport is a closed C*-conic (i.e., invariant by the C*-action on T* M) complex
analytic Lagrangian subset of T*M or, equivalently, if it is contained in a closed
C*-conic complex analytic isotropic subset of T*M.

Proposition 7.1.6. — Let F € D®(Zy[h]) and assume that F' is cohomologically com-
plete. Then

(7.1.3) SS(F) = SS(gr(F)).
Proof. — The inclusion
SS(gea(F)) C SS(F)

follows from the distinguished triangle F' LA (BN gry,(F) X1, Let us prove the
converse inclusion.

Using the definition of the microsupport, it is enough to prove that given two
open subsets U C V of M, RI'(V;F) — RI'(U;F) is an isomorphism as soon
as RI(V;gr,(F)) — RI'(U;gry(F)) is an isomorphism. Consider a distinguished
triangle R['(V;F) — RIU; F) — G 21, Then we get a distinguished triangle
RI(V;gr,(F)) — RI(U;grp(F)) — grp(G) L., Therefore, gr,(G) ~ 0. On the
other hand, G is cohomologically complete, thanks to Proposition 1.5.12 and G ~ 0
by Corollary 1.5.9. O

Proposition 7.1.7. — Let F € D5 _(C%). Then F is cohomologically complete.
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Proof. — One has
ll%n Extjz[h] (z[h, h7Y), HY(U; F)) Extjzlh] (z[h, kY, lljx_;x; H'(U; F))

~ Extjz[h] (Zh, B Y], Fy) =0

R

where the last isomorphism follows from the fact that F, is cohomologically complete
when taking X = pt.

Hence, the hypothesis (i) (c) of Proposition 1.5.6 is satisfied. O
Propagation for solutions of @) x -modules
Proposition 7.1.8. — Let A be a coherent &/p;x-module. Then

(7.1.4) SS(Rtom (AN, L)) C char(gr,A).

Dn/x
Proof. — By Lemma 7.1.4, we have
Rtom (N, ZL) ~RItom 5 (D% ®Ouy, x N, Z).

DN x
Since gry(Z¢ By x A) = grp(A), Proposition 7.1.8 will follow from Proposi-
tion 7.1.9 below, already obtained in [20]. O

Proposition 7.1.9. — Let 4 be a coherent D -module. Then
(7.1.5) SS(RHom g, (N, £L)) = char(gr,.AN).

Proof. — Set F = RHtam 4, (4, Z). Then F' is cohomologically complete by Corol-
lary 1.6.2 and SS(F') = SS(gr,,(F')) by Proposition 7.1.6. On the other hand, gr (F) ~-
RHom o, (gr ', On) by Proposition 1.4.3 and the microsupport of this complex is
equal to char(gr,.4") by [41, Th 11.3.3]. O

Constructibility of solutions. — Theorem 7.1.10 below has already been obtained in
[20] in the framework of Zas[[A]]-modules.
Recall that .Z is a coherent &/x-module, simple along A.
Theorem 7.1.10. — Let .4 be a holonomic ), x -module.
(a) The objects RHam , (N, L) and RHom (£, N) belong to D2 (Ch) and
their microsupports are contained in char(gry4").
(b) There is a natural isomorphism in D2_(Ch)

(7.1.6) Rtom (AN, L) =5 DYy (Rf@mdl\/x (Z,AN)) [dx].

Apx

The morphism in (b) is similar to the morphism in Lemma 3.3.1 and is associated
with

Rjﬁzm%/x(/,,?)@Rj@ndA/x(,%,/V)
- th’omdA/x(f, Z) = RHom g, (£, L) ~ Ch — Ck [dx].
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128 CHAPTER 7. HOLONOMIC DQ-MODULES

Proof. — (a) It is enough to treat F := Riom Anx (A, ). In view of Proposi-
tion 7.1.8, F' is weakly C-constructible and it remains to show that for each z € A,
F, belongs to D‘}((Ch).

If U is a sufficiently small open ball centered at x, then RI'(U; F) — F is an
isomorphism ([41]). The finiteness of the complex gr,(F) follows from the classical
finiteness theorem for holonomic Z-modules of [36]. Since F is cohomologically com-
plete, Proposition 1.5.12 implies that RI'(U; F) is cohomologically complete. Hence
the result follows from Theorem 1.6.4.

(b) follows from Corollary 1.4.6, since we know by [36] that (7.1.6) is an isomorphism
after applying the functor gry,. O

Ay x modules and /3¢°-modules. —

Definition 7.1.11. — A coherent /), x-submodule .4 of a coherent 2/P°-module .4
is called an &7, x-lattice of .# if .#" generates .# as an 23°-module.

Lemma 7.1.12. — Let ./ be a coherent o/;¢°-module and let N C M be an o, x -lat-
tice of M . Then char(grh(,/V)) C T*A does not depend on the choice of A .

The proof is similar to the one of Lemma 3.4.2, and we shall not repeat it.

Definition 7.1.13. — Let .# be a coherent &/}°°-module and let .#° C .# be an
) x-lattice of 4. We set

charp () := char(gry/4).

Example 7.1.14. — Let X = C? endowed with the symplectic coordinates (x;u) and
let A be the Lagrangian manifold given by the equation {u = 0}. In this case, @y, x =
Ax [uh_l].

Now let @ € C and consider the modules # = &°/o/¥°(zu — ah) and
N = dA/X/,Q{A/X(xuh_l — a). Then .4 is an &, x-lattice of .# and gry 4" =~
Dr] DA (20 — ).

Lemma 7.1.15. — Let # be a coherent &/32°-module.

(i) charp() is a closed conic complex analytic subset of T*A and this set is invo-
lutive.

(ii) Let 0 » A" — M — M" — 0 be an ezact sequence of &3 -modules. Then
chary () = charp (#") U charp (A").

Proof. — (i) is a well-known result of 2-module theory, see [38].

(ii) Let .4 be an o7, x-lattice of .#. Set A" = .#' N A and A" C A" be the
image of .#". Then .#” and 4" are o/, , x-lattices of .#' and .#", respectively. Since
we have an exact sequence

0— AN'BAN" — N BN — N [hN" — 0,

we have charp(.#) = char(A/hAtV) = char(A'/hA") U char(A"/BAN")
chary (#") U chary (#"). a
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7.1. @-MODULES ALONG A LAGRANGIAN SUBMANIFOLD 129

Proposition 7.1.16. — For a coherent o/32°-module .#, we have

codim chara (.#) > codim Supp(#).

Proof. — In the course of the proof, we shall have to consider the analogue of the
algebra o/, x but with #/x. instead of &/x. We shall denote by @/j. this algebra.
We shall show that codim Supp(.#) > r implies codim chary(.#) > r by descend-
ing induction on r. Applying Proposition 2.3.15 (a), we have R¥#om M)n?c(/// , APC) =~
TZ"RHom aloe (M, o3°), where 72" is the truncation functor. Hence we have a dis-

tinguished triangle in DP | (@73°):

coh

(7.1.7) Eat’ 1oc (A, 38| =] = RHom pioc (M, AK) — K L

where ¥ = T>TR&¢M%IFC (A, 2°). Note that codim(Supp(¢)) > r by Proposi-
tion 2.3.15 (b). Setting 4’ = &zt . (M, %), the distinguished triangle (7.1.7)
X

induces a distinguished triangle in DY, (2/3°°):

RAM. 106 (H , SK5) — M — RIom spoc (M, A =

Setting 41 = é’xtfﬂ},ﬁ (M', ARE), we obtain a morphism ¢: .# — .#; and Ker(yp)
has codimension greater than r. Hence, codim chara(Ker(¢)) > r by the induction
hypothesis. Since charp (#) C charp (1) Uchara (Ker(y)), it is enough to show that
codim charp (.#7) > r.

Hence we may assume from the beginning that .# = &rt’ .. (A', As) for
xa
a coherent #7X°c-module .#’. Let us take an @p.-lattice A4’ of #'. Set AN =
éawt:z,m (AN, pe). Then we have A°° ~ #, and it induces a morphism Ay — .
Let .4 be the image of the morphism Ay — .#. Then A4 is an &, x-lattice of .#Z.
Hence we have charp (#) = char(.4"/h/), which implies

(7.1.8) charp (A) C char(Ag/hN).
On the other hand, we have an exact sequence

'
Sxt A

Since we have &zt’, (A", gr,(Ppe)) =~ é"xt;rh(m\a)(grh/',grh(man)), we have a

(N, pa) = Eut”, (N, dha) = Ext’, (N, grp(Haa)).
A A

monomorphism

%/ﬁ%»ﬁébztgrh(ﬂm)(grhﬂ//, grﬁ(dAu)).

Hence we obtain char(Ag/hAp) C char(é"a:t;rh(d/\a)(grh/’7grh(&{Aa))). Since

rem 2.19], we conclude that codim char(.4g/hA9) > r. By (7.1.8), we obtain
codim charp (AZ) > 7. O

char(cg’ztgrh( dAa)(gthV ’,grh(Jz{Aa)))has codimension > r by e.g., [38, Theo-
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7.2. Holonomic DQ-modules

In a complex symplectic manifold X, an isotropic subvariety A is a locally closed
complex analytic subvariety such that A is isotropic, i.e., the 2-form defining the
symplectic structure vanishes on A,c,. Here, A;e; denotes the smooth part of A.

A Lagrangian subvariety A is an isotropic subvariety of pure dimension dy /2.
Equivalently, A is a subvariety of pure dimension dx /2 such that A is involutive.

Definition 7.2.1. — (a) An &/3°°-module .# is holonomic if it is coherent and its sup-
port is a Lagrangian subvariety of X.

(b) An @x-module .4 is holonomic if it is coherent, without A-torsion and .#'°¢ is
a holonomic #/;¢°-module.

(c) Let A be a smooth Lagrangian submanifold of X. We say that an &/1°°-module
A is simple holonomic along A if there exists locally an &/x-module .#, simple
along A such that . ~ .#}°°.

Lemma 7.2.2. — Let .4 be a holonomic «/3¢°-module. Then D' ... 4 [dx /2] is con-
centrated in degree 0 and is holonomic.

Proof. — This follows from Proposition 2.3.15 and the involutivity theorem (Propo-
sition 2.3.18). O

Let X be a complex symplectic manifold and let .# and .Z be two holonomic
232°-modules. Using Lemma 2.4.10 (more precisely, an &/;°-variant of this lemma)
and Theorem 6.2.4, we have

1R

R%mg{)l(oc (%, g)
RIam o (L, M)

L

R?@m%lgixa (A RD' L, €5°),
L

Rj@m&,)l?cxa (L RD, M, E¥)

R

(7.2.1)

1R

L
RIGn oo (D (€5%), M BD,,.2)
L
o~ R‘j@m&{)l(";xa( ;?C,%@D{Q{g)[dx]

Theorem 7.2.3. — Let X be a complex symplectic manifold and let A and £ be two

holonomic /5°°-modules. Then

(i) the object Rj@md)l{oc(///,j) belongs to DP( ;1(,10(:),
(ii) there is a canonical isomorphism:

(7.2.2) RHtom arioe (A, &) = (D'xyRtom aioe (&, 4)) [dx],
(iii) the object th’amﬂ)lgc (A, L)[dx /2] is perverse.
Proof. — Using (7.2.1), we may assume from the beginning that .# is a simple holo-

nomic d}("c-module supported on a smooth Lagrangian submanifold A of X. Let %
be an @/x-module simple along A such that .% ~ Z°°.
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7.3. LAGRANGIAN CYCLES 131

(i)-(ii) Let 4" be an 7, x-lattice of .#. By Lemma 7.1.3 (v), we have
Rftam o (M, L) = RHom ., (N, L)

Then the results follow from Proposition 7.1.16 and Theorem 7.1.10.
(iii) Since the problem is local, we may assume that X = T*M, &/%° = #x and

L= 0%
By (ii), it is enough to check the statement:
(7.2.3) HI (RI‘N (RJ@ndA/x (/,fo))) vanishes for j < [ and for

any closed smooth submanifold N of M of codimension !.

Since F := RI'y(RJam atpx N ,%)) is C-constructible, it is enough to show
that H7(gr,(F)) = 0 for j < [. This follows from the well-known fact that
Hj(RFN(ﬁM))ZOfOI‘j <. O

Assume for simplicity that X is open in some cotangent bundle 7*M. We shall
compare the sheaf of solutions of holonomic &x-modules and #x-modules. Recall
that #x is faithfully flat over £x by Lemma 6.1.2.

Corollary 7.2.4. — Let A and £ be two holonomic &x-modules. Then the object
WEX (A, L) belongs to DR (Cx).

Proof. — Let t denote the coordinate on the complex line C, let E denote the ring
Er+Cly—o,.—, and let L be the E-module E/E - t. Then we have the embedding

Ch,loc s E, B — at—l
Set for short F' := Rjt’ﬂm;;x (A, Z). Then

2. % L
F ~ RJME(L,W(Z;X (%,(éaxxT*C/@@XxT*C 't)|t=0,r=l®gxg))
~ Ram (L, RHm oz (Wx @5 M, Wx @5 Z)).

Set G := Rfam ; (Wx ®_.M,Wx ®5_ ). Applying Theorem 7.2.3, we find that
G € DR (C%'°°) and it follows that F € D2 (Cx).

wCc
Moreover, for each z € X, G, is of finite type over C™!°¢ and is an E-module. One

easily deduces that F, ~ RHom (L, G;) is a C-vector space of finite dimension. [

7.3. Lagrangian cycles

Given two holonomic &/°° modules .# and .# such that Supp(.#) N Supp(-Z) is
compact, the Euler-Poincaré index is given by
X(Xa‘/ﬂ»g) = X(RHomd}?C(%vz))

(7.3.1) N ‘
¥ (7) dim Ext’ o (A, 2).
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Applying (6.3.6), we get
(7.3.2) (X, L) = / (eux () - eux ().
X

Recall that eux (.#) = (—1)%x/%euy (D! ioc#), and also recall that dx being even,
eux(A)-eux (L) =eux (%) - eux(A).

We shall explain how to calculate the Euler classes by using the theory of La-
grangian cycles. We refer to [41, Ch. 9 § 3] for a detailed study of these cycles.

Recall that K denotes a commutative Noetherian unital ring of finite global dimen-
sion.

Consider a closed Lagrangian subvariety A of X. We define the sheaf:

(7.3.3) LY .= HIX (Kx),

and we simply write Ly instead of L%. The next results are obvious and well-known
(see loc. cit.).

Lemma7.3.1. — (i) U — HX’,.‘]U(U;KX) (U open in X) is a sheaf and this sheaf
coincides with LK,
(i) Hj\a,., (LX) ~0 fori=0,1,
(iii) if s is a section of LK, then its support is open and closed in A,

(iv) there is a canonical section in I'(A; L) which gives an isomorphism La|a,,, ==
Zp

reg *
We denote by [A] the section given in (iv) above.

Definition 7.3.2. — We call a section of LX on an open set U of A a Lagrangian cycle
on U.

Recall that Kcona(€x) denotes the Grothendieck group of the category
D}:’Oh’ A(Ox). We denote by Hcona(€x) the sheaf associated with the presheaf
U — Kcon,anu(Ovu). Then, there is a well defined Z-linear map

(7.3.4) K . %oh,A(ﬁX) — LA.
This map is characterized by the property that
(7.3.5) I‘L(ﬁA) = [A] € F(A; LA).

Let .# € DP,(/x°) and let A be a closed Lagrangian subvariety of X which contains
Supp(#).

Let .#, be an /x-lattice of .# on an open set U of X. Then gr,(.#) defines
an element [gr,(.#)] € Keon,a(Ox|u), hence an element of I'(U; Hcon,a(Ox)). This
element depends only on .#, and we thus have a morphism

Kcoh,A(%)l{Oc) - F(A, Jifcoh,A(é>X))-
Composing with the map k, we obtain a map

(7.3.6) Keoh,a (%) = T(A; L)
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Definition 7.3.3. — We denote by lcx (.#) the image of .# € DY s (/°) by the
morphism in (7.3.6) and call it the Lagrangian cycle of .#.

On the other-hand, recall (see Definition 6.3.2) that the Euler class eux (%) of .4
belongs to HXX (X; (C;’(’loc). Hence, the Euler class of .# is a Lagrangian cycle sup-
ported by A:

(7.3.7) eux (#) € T(A; LS.
The map Z — C™'°° induces the morphism
(7.3.8) ux: Ly — L§"™.

The next lemma is easily checked.

Lemma 7.3.4. — Let A be a smooth Lagrangian submanifold of X and let £ be a
coherent 2/5¢°-module, simple along A. Then eux (%) = vx([A]).

Theorem 7.3.5. — One has eux (M) = 1x olex(A).

Proof. — By Lemma 7.3.1, it is enough to prove the result at the generic point of A.
Hence, we may assume that A is smooth. Let z € A and let us choose a smooth
Lagrangian submanifold S, of X which intersects A transversally at the single point
z. Let us also choose a simple &/1°°-module .# simple along S,.. Using (7.3.2), we find

MRS e (2,1)2) = [ (eux(2) - eux ().

Let % and .#, be ofx-lattices of . and .#, respectively. We also have
X(RIAom ioc (L, M)s) = XRHAm g, (o (801 (L0), 814 (A0))z)

_ /X (e(legra(Z0)) - r(lera(Ao))))-

Clearly, we have

(7.3.9) r([gra(-%)]) = [Sa]-
By Lemma 7.3.4, eu(%) = [S;]. Therefore,
(7:3.10) [ (821 euxa) = [ (1821 tex(a)
X X
for any smooth Lagrangian submanifold S, which intersects A transversally at x. This
completes the proof. a

Remark 7.3.6. — The Euler class of a holonomic &/1°°-module supported by a La-
grangian variety A is easy to calculate, since it is enough to calculate it at generic
points of A. Moreover, the integral in (7.3.2) is invariant by smooth (real) homotopy
of the Lagrangian cycles lcx (.#) and lcx (.%) and one may deform them in order that
they intersect transversally at the smooth part of their support. See [41, Ch. 9,§ 3]
for a detailed study.
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7.4. Simple holonomic modules

When % and %) are simple along smooth Lagrangian manifolds, one can give
an estimate on the microsupport of R aloc (&, %) Tt follows from Lemma 6.2.1
that two simple holonomic modules along A are locally isomorphic.

Example 7.4.1. — Assume X = T*M for a complex manifold M and &/x = 77/;((0)
Then &7°° is a simple holonomic .27}°°-module along M.

Recall that on a complex symplectic manifold X, the symplectic form gives the
Hamiltonian isomorphism from the cotangent bundle to the tangent bundle:

(7.4.1) H:T*X > TX, (#,v)=w H®)), veTX,0ecT*X.

For a smooth Lagrangian submanifold A of X the isomorphism (7.4.1) induces an
isomorphism between the normal bundle to A in X and its cotangent bundle T*A.

For the notion of normal cone, see e.g., [41, Def. 4.1.1]. The next result is proved
in [44, Prop. 7.1].

Proposition 7.4.2. — Let X be a complex symplectic manifold and let Ay and Ay be two
closed complex analytic isotropic subvarieties of X. Then, after identifying TX and
T*X by (7.4.1), the normal cone C(Ag, A1) is a complex analytic C* -conic isotropic
subvariety of T*X.

Theorem 7.4.3. — Let %, be a simple holonomic ﬂ}?c-module along a smooth La-
grangian manifold A; (i =0,1). Then
(742) SS (Rf@md)lgc (jl, =%0)) C C(Ao, Al)

Idea of the proof of Theorem 7.4.3. — (i) By identifying Rjt’nmd)lgc (&, %) with a
sheaf supported by Ag, the estimate (7.4.2) is equivalent to the estimate

(743) SS(R%”L‘Q{;?C (,5,”1,.,2”0)) C CAO (Al)

(ii) The problem being local, we may assume X = T*M, @/x = V//}(O), A =M,
%= 6’;’,}1“. If Ay = Ag, Theorem 7.4.3 is immediate. Hence, we assume Ag # A;.
Then there exists a non constant holomorphic function ¢: M — C such that

A ={(z;u) € X ;u=grad p(z)}
Consider the ideal

(7.4.4) Iw = Wx - (hds, — ¢}).
=1

We may assume that .4 = 7//} /Pw. Let u € £ be the image of 1 € VZ{ and denote
by A the @, ,x-submodule of .#; generated by u.
To conclude, it remains to prove the inclusion

(7.4.5) char(gr,(4)) C C(Ay, TyM).
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We shall not give the proof of (7.4.5) here and refer to [44]. Let us simply mention
that the proof uses [38, Th. 6.8]. O

Remark 7.4.4. — Consider a smooth Lagrangian submanifold A of X and denote
by ch(2a) € HY(A; 6F) the class corresponding to the line bundle Q4. To the exact
sequence

1—-C} — X%dﬁA%O

one associates the maps 3 and :
H (A 07) 2 HY(A;d6y) 2 H2(A;CY).
We shall denote by (C}\/ % the invertible Cx-algebroid associated with the cohomology

class 7(%,8(ch(QA)) € H?(A;C3) (see (2.1.13)).

Consider an invertible C-algebroid 2 on A and denote by Inv(2) the category of in-
vertible 2-modules (see Definition 2.1.4). On the other hand, denote by Simple(A) the
category of simple @/x-modules along A. It can be easily deduced from Lemma 6.2.1
that, given a DQ-algebroid «x, there exist an invertible C%-algebroid 2 and an equiv-
alence of categories

(7.4.6) Simple(A) ~ Inv(2).

When &x is the canonical algebroid 7]}(0) (see Remark 6.1.3), it is proved in [22]

that one has an equivalence 2 ~ C} &, (C}\/ 2,

7.5. Invariance by deformation

We shall show that in the situation of Theorem 7.2.3, R#wn aloe (A, L) is, in some
sense, invariant by Hamiltonian symplectomorphism.
First, we need a lemma.

Lemma 7.5.1. — Let M be a complex manifold, X = T*M and let # be a holo-
nomic #x-module. Assume that the projection mar: X — M is proper (hence, finite)
on Supp(.#). Then mar, M is a locally free €1;°°-module of finite rank.

Proof. — (i) In the sequel, we write &/x and #/3°° instead of 7//}(0) and #x, respec-
tively. Since )y is finite on Supp(#), Rmpr,# is concentrated in degree 0. Let us
prove that this sheaf is ﬁ;}’loc—coherent. Denote by I'; the graph of the projection 7y,
and consider the diagram

MXX(——S———)F,,-

NS
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Using the morphism of C'-algebras 7, 6%, — o/x, we may regard £ := s,p~ ' &xa
as a coherent 27« xo-module simple along I';. Then

Rrgy M ~ L'°° ;///.

We may apply Theorem 3.3.6 and we get that Rmps, . is ﬁz}loc—coherent.

(ii) Let n = dy = 3dx. By Lemma 7.2.2, D’ ,,.(.#) [n] is concentrated in degree 0
and it follows from a similar argument as in (i) that D’ (%) 0 £’ [n] is ﬁ;‘,}l“—coherent
and concentrated in degree 0 for any coherent &/}°¢, -module .#”’ simple along T',.

Denote by D', .. the duality functor over 6721°°. Applying again Theorem 3.3.6, we
on M
get
loc
o (M0 L) = Do (L) owy oD o (M)

L
= Rryr. (Rpa (Dl (£) 00§)@,, Digioc (40) ).

Since wif oD’ (&) ~ Z'[n] for an Hprxx-module .’ simple along I', and
D’ 1. (#) is concentrated in degree n, D'y ioc(mar,.#) is concentrated in degree
zero. Therefore, mp,.# is a locally projective ﬁ@loc—module of finite rank. To

conclude, note that, for x € M, any finitely generated projective ﬁfl’{ic—module is
free, by a result of [54] (see [60]). O

Recall the situation of (3.1.9): we have three symplectic manifolds X; (i = 1,2, 3)
and closed subsets A; of X; x X; 41 (i = 1,2). Assume that the A; (i = 1,2) are closed
subvarieties and the projection p;3 is proper on pl‘zlAl N p2"31A2. Then Ao Ay is a
closed subvariety of X; x X3. Now assume that A; (i = 1,2) is isotropic in X; x X
Then A; o A, is isotropic in X; x X§ by classical results (see e.g., [41, Prop. 8.3.11]).

In the sequel, we denote by D the open unit disc in the complex line C, endowed
with the coordinate t. We set for short

Y .:=T*D,
and we consider the projections

Xxy 2.

X Y
y pt \ LW
X X xD—=D.
Assume to be given a Lagrangian subvariety A C X x Y satisfying
(7.5.1) the restriction p|p: A — X x D is finite.
For a € D, writing for short T, instead of T{*G}ID, we set
Ay :=AoT!D =p (AN g '(a)),

and this set is a Lagrangian subvariety of X.
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We introduce the “skyscraper” @4°°-module
(7.5.2) Co 1= DA°° ) A° - (t — a).

Theorem 7.5.2. — Let X be a complex symplectic manifold, let A be a Lagrangian sub-
variety of X xY satisfying (7.5.1), and let V be a Lagrangian subvariety of X. Let £
be a holonomic /35y -module such that Supp(£) C A and let A be a holonomic
23°-module such that Supp(.#) C V. Assume that the map q: AN (pI‘IV) — D is
proper. For a € D, we set £, := i”)g‘fa and M = sz*Rf@m,pl-ld)l?c (p7t N, ZL).
Then

(i) %, is concentrated in degree 0 and is a holonomic o/3°°-module supported by A,,
(ii) A is a coherent &4°°-module supported by V 9 A,

L

(iii) F, = RHomd)lgc(/,fa) ~ RI(Y;(Op/Op(t — a))®, M) is an object
of D}(C™°°), and F, and F, are isomorphic for any a,b € D.

Proof. — (i) First note that t — a: £ — £ is a monomorphism. Indeed for any

s € Ker(t —a: £ — &), ¥ys C £ is a coherent #/;°¢y-module whose sup-

port is involutive and of codimension > dxxy/2, hence empty. Therefore £, =
& }g(;zf,‘,"c/,xzf,',“ -(t—a)) ~ Rp1,((Ob/ Op(t —a)) ®,, £), and (i) follows immediately
from the Hypothesis (7.5.1).
(ii) We have

sz*Rf@mpfld;c(pl_l/,ﬁ) ~D\ (AN)o L.
By the hypothesis, the projection AN (V x Y) — Y is proper. It follows from The-

orem 3.2.1 that .# belongs to DP, (#4°°) and is supported by the isotropic variety
Ay =V ;)( A.

(iii) By the hypothesis, the projection m: Ay — D is proper, hence finite. It follows
easily that H'(.#) is a holonomic @4°°-module and H*(Rm,.#) ~ m H'(#) is a
locally free ﬁg’loc—module of finite rank by Lemma 7.5.1. Hence

Hi (RD(Y; (O On(t — 0))@p,.#)) = D(V; H(A)/(t ~ a) H (A))

is a finite-dimensional C™!°°-vector space whose dimension does not depend on a €

D. g

We shall make a link between the hypotheses in Theorem 7.5.2 and the Hamiltonian
deformations of a Lagrangian variety Ag.
Assume to be given a holomorphic map

O(z,t): X xD—- X

such that ®(-,a): X — X is a symplectomorphism for each a € D and is the identity
for a = 0. Set

I:={(z,t,®(z,t))}, the graph of ® in X x X x D.
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Consider the differential

%?:XXD—»TX:T*X.
We make the hypothesis:
. o
(7.5.3) there exists f: X x D — C such that — = Hy,

ot
where H; denotes as usual the Hamiltonian vector field. In this case, we can define
(identifying T*D with D x C)

= {((z,®(z,t)); (¢, f(z,1)))} C X x X x T*D
and T is Lagrangian. Let Ay be a Lagrangian subvariety of X. We set:
A:=Apo L.
Then A will satisfy hypotheses (7.5.1) and A, = ®(z, a)(Ao).

Example 7.5.3. — Let X =T*M,V =Ty, M and let ¢: M xDD — C be a holomorphic
function. Set Y = T*D and let
A= {(z,t;u,7) € X xY;(u,7) = grad, , p(z,t)},
Aq = {(z;u) € X;u = grad, ¢(z,a)}.
Consider the family of symplectomorphisms
®(z,u,t) = (z,u+ (plx(a"’t) - (p;(x, 0)).
Then
0P
ot
Set Z = {(z,t) € M x D;grad, ¢(z,t) = 0} and assume that

= —Hp,, and Ay = ®(x,u,a)A,.

the projection Z — D is proper.

Consider the ideals

I =Y sy - (W0, — @) + xSy - (hdh — ©}),
=1

'ﬂa = Z"Z{)I(OC : (h’aitz - (pfrl(7a))
i=1

Set N = /P° ®g,, Om and £ = Axxy /S . Hence we have &, = o/°/.#, and
H® (RHom alee (%, ,/V)) does not depend on a € D.
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2, 5

dy/x, 124
Hpa, 129
chary (), 128
Ch = C[[A]], 42
ch(F), 100
Chiloc = C((h)), 42
char, 111
C—(¥), 63
C(%¥), 1
ct(¥), 1

C (%), 1
CP(%), 1

o, 70

X

C*(¥), 63

€x, 56

Dar, 109

dx (dimension), 42
D(A), 1

Db(4), 1

Db (#), 1
2¢, 46
D;{J/{, 51, 75
bnden (x), 58
D, #, 53
Dg (Kur), 126
DB (Kn), 126

Db (Kar), 126
D(¥), 1
D*(¥), 1

D (%), 1
DEOh’A(WX), 71
Db(%), 1
D(QIDC)J—T, 24
ngyA(d;?c), 71
Px (7)), 46
D’ﬁh,loc.///, 136
DQ-module, 69

Eps g, 109

NOTATION INDEX

eu(&), 100

eux (), 117
IH (Ox), 93

hhx (%), 94
HHA (grr9/x ), 89
HH (grp#x), 89
hhx (.#), 80
hh§ (7)), 119
IH (gryp (< x)), 88
F (x), T9

I (A2°), 89
hh% (#), 90
HD(Ox), 99

K, 1

K(%), 76

[M], 76

[A], 132
igcoh,A(ﬁXL 132
Kcoh,A(grn'Q{X)7 7
Ly, 132

A1oAa, T1
[Areg], 130

LK, 132

lex (#), 133
,/Vloc, 53
Mod(A4), 1
Mod?f («), 63
Mod,¢ (), 63
AV, 119

6’%1, 123

Oy %, 123

QgZ, 60

wi, 61

arloc
Wy 575

of
Wxxyyyr 61
h
ngp 123
op
Wie 83
{pt}, 1
SS, 126
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2n, 1 P®-1 57

X, 48 thhx (&), 97
L tdx, 100

X, 49 W+, 109
@dx , 70 WTtM(O), 109
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2x-lattice, 53
algebraically good, 65
algebroid, 33

DQ-, 48
Ox-, 40
%#-, 40

invertible O'x-, 40

invertible %-, 40
almost free

&/-module, 63
bi-differential operator, 42
bi-invertible, 37, 38, 56
canonical module associated with the diago-

nal, 56

C*-conic, 126
C-constructible, 126
characteristic variety, 111
Chern class, 100
co-Hochschild class, 97
coherent, 2
cohomologically complete, 24
conic

C*-, 126

R*-, 126
constructible

C-, 126

R-, 126

weakly R-, 126
convolution, 70
DQ-algebra, 44
DQ-algebroid, 48
dual

of @/x-module, 51

of &/ °°-module, 53
dualizing sheaf, 61
Euler class

of #/}°°-modules, 117

of P-modules, 121

of &-modules, 100
external product

of DQ-algebras, 45

of DQ-algebroids, 48
good
&x-module, 54
2-modules, 119
algebraically, 65
module, 16
Grothendieck group, 76
h-complete, 5
h-separated, 5
h-torsion, 5
h-completion, 5
Hochschild class
of an &x-module, 80
of an Z-module, 119
of an @-module, 94
Hochschild homology
of 0, 93
Hochschild-Kostant-Rosenberg map, 100
Hodge cohomology, 99
holonomic, 130
&p ) x-module, 126
simple, 130
invertible, 35
O'x-algebroid, 40
Z-algebroid, 40
isomorphism
standard, 44
isotropic subvariety, 130
Lagrangian cycle, 132
Lagrangian subvariety, 130
lattice, 53
A ) x-lattice, 128
locally finitely generated, 2
locally of finite presentation, 2
locally projective, 20
microsupport, 126
Mittag-Leffler condition, 3
module
bi-invertible, 37, 38
coherent, 2
invertible, 35
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locally finitely generated, 2
locally of finite presentation, 2
Noetherian, 2
pseudo-coherent, 2
simple, 52
modules
over an algebroid, 34
Noetherian, 2
no A-torsion, 5
O x-algebroid, 40
invertible, 40
pseudo-coherent, 2
Z%-algebroid, 40
invertible, 40
R+-conic, 126
R-constructible, 126
right orthogonal, 24
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ring

Noetherian, 2
section

standard, 44
simple

holonomic, 130

module, 52
standard

isomorphism, 44
standard section, 44
star product, 42
submodule

of M};’C-module, 53
thick subcategory, 54
Todd class, 100
weakly R-constructible, 126
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