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DEFORMATION QUANTIZATION MODULES 

Masaki KASHIWARA and Pierre SCHAPIRA 

Abstract. — On a complex manifold (X, @x)>> a DQ-algebroid six is an algebroid stack 
locally equivalent to the sheaf O X [[h]] endowed with a star-product and a DQ-module 
is an object of the derived category Dh(g/x)-

The main results are: 
— the notion of cohomologically complete DQ-modules which allows one to deduce 

various properties of such a module M from the corresponding properties of the 
L 

^-module Zx®Zx[h] M, 
— a finiteness theorem, which asserts that the convolution of two coherent DQ-ker-

nels defined on manifolds Xi x Xj (i = 1,2, j = i + 1), satisfying a suitable 
properness assumption, is coherent (a non commutative Grauert's theorem), 

— the construction of the dualizing complex for coherent DQ-modules and a du
ality theorem which asserts that duality commutes with convolution (a non 
commutative Serre's theorem), 

— the construction of the Hochschild class of coherent DQ-modules and the theo
rem which asserts that Hochschild class commutes with convolution, 

— in the commutative case, the link between Hochschild classes and Chern and 
Euler classes, 

— in the symplectic case, the constructibility (and perversity) of the complex of 
solutions of an holonomic DQ-module into another one after localizing with 
respect to h. 

Hence, these Notes could be considered both as an introduction to non commutative 
complex analytic geometry and to the study of microdifferential systems on complex 
Poisson manifolds. 

Résumé (Modules de déformation quantification). — Sur une variété complexe (X, ûx), 
un DQ-algebroide s^x est un champ d'algébroides localement équivalent au faisceau 
O X [[h]] muni d'un star-produit et un DQ-module est un objet de la catégorie dérivée 
Db(^) . 

Les résultats principaux sont : 
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— la notion de DQ-module cohomologiquement complet qui permet de déduire di
verses propriétés d'un tel module M des propriétés correspondantes du ûx-mo-

L 
dule Zx®Zx[h]^, 

— un théorème de finitude qui assure que la convolution de deux DQ-noyaux co
hérents définis sur des variétés Xi x Xj (i = 1,2, j = i -f 1), vérifiant certaines 
hypothèses de propreté, est cohérent (un théorème de Grauert non commutatif), 

— la construction du complexe dualisant pour les DQ-modules cohérents et un 
théorème de dualité qui assure que la dualité commute avec la convolution (un 
théorème de Serre non commutatif), 

— la construction de la classe de Hochschild des DQ-modules cohérents et le théo
rème qui assure que la classe de Hochschild commute avec la convolution, 

— dans le cas commutatif, le lien entre classes de Hochschild et classes de Chern 
et de Euler, 

— dans le cas symplectique, la constructibilité (et la perversité) du complexe des 
solutions d'un DQ-module holonome dans un autre, après localisation en h. 

Ces Notes peuvent donc être considérées à la fois comme une introduction à la géomé
trie analytique complexe non commutative et à l'étude des systèmes microdifférentiels 
sur les variétés de Poisson complexes. 
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INTRODUCTION 

In a few words these Notes could be considered both as an introduction to non com
mutative complex analytic geometry and to the study of microdifferential systems. 
Indeed, on a complex manifold X, we replace the structure sheaf &x with a formal 
deformation of it, that is, a DQ-algebra, or better, a DQ-algebroid, and study mod
ules over this ring, extending to this framework classical results of Cartan-Serre and 
Grauert, and also classical results on Hochschild classes and the index theorem. Here, 
DQ stands for "deformation quantization". But the theory of modules over DQ-alge-
broids is also a natural generalization of that of ^-modules. Indeed, when the Poisson 
structure underlying the deformation is symplectic, the study of DQ-modules natu
rally generalizes that of microdifferential modules, and sometimes makes it easier (see 
Theorem 7.2.3). 

The notion of a star product is now a classical subject studied by many authors 
and naturally appearing in various contexts. Two cornerstones of its history are the 
paper [2] (see also [4, 5]) who defines ^-products and the fundamental result of [48] 
which, roughly speaking, asserts that any real Poisson manifold may be "quantized", 
that is, endowed with a star algebra to which the Poisson structure is associated. It 
is now a well-known fact (see [37, 47]) that, in order to quantize complex Poisson 
manifolds, sheaves of algebras are not well-suited and have to be replaced by algebroid 
stacks. We refer to [16, 64] for further developments. 

In this paper, we consider complex manifolds endowed with DQ-algebroids, that 
is, algebroid stacks locally associated to sheaves of star-algebras, and study modules 
over such algebroids. The main results of this paper are: 

— a finiteness theorem, which asserts that the convolution of two coherent kernels, 
satisfying a suitable properness assumption, is coherent (a kind of Grauert's 
theorem), 

— the construction of the dualizing complex and a duality theorem, which asserts 
that duality commutes with convolution, 

— the construction of the Hochschild class of coherent DQ-modules and the theo
rem which asserts that Hochschild class commutes with convolution, 

— the link between Hochschild classes and Chern classes and also with Euler 
classes, in the commutative case, 

— the constructibility of the complex of solutions of an holonomic module into 
another one in the symplectic case. 
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viii INTRODUCTION 

Let us describe this paper with some details. 
In Chapter 1, we systematically study rings (i.e., sheaves of rings) which are formal 

deformations of rings, and modules over such deformed rings. More precisely, consider 
a topological space X, a commutative unital ring K and a sheaf si of IK [[ft]]-algebras 
on X which is ft-complete and without ft-torsion. We also assume that there exists a 
base of open subsets of X, acyclic for coherent modules over &/0 := si/hsi. 

We first show how to deduce various properties of the ring si from the corre
sponding properties on si^. For example, si is a Noetherian ring as soon as sio is 
a Noetherian ring, and an ^-module M is coherent as soon as it is locally finitely 
generated and hn^/hnJt1^M is S0-coherent for all n > 0. Then, we introduce the 
property of being cohomologically complete for an object of the derived category 
D(si). We prove that this notion is local, stable by direct images and an object M 
with bounded coherent cohomology is cohomologically complete. Conversely, if jtft is 
cohomologically complete, it has coherent cohomology objects as soon as its graded 
module si0 O A M has coherent cohomology over sio (see Theorem 1.6.4). We also give 
a similar criterion which ensures that an ^/-module is flat. 

In Chapter 2 we consider the case where X is a complex manifold, K = C, sio = @x 
and si is locally isomorphic to an algebra (0 x [[h]]*) where * is a star-product. It is 
an algebra over C :̂=C[[ft]]. We call such an algebra si a DQ-algebra. We also consider 
DQ-algebroids, that is, C -̂algebroids (in the sense of stacks) locally equivalent to the 
algebroid associated with a DQ-algebra. Remark that a DQ-algebroid on a manifold 
X defines a Poisson structure on it. Conversely, a famous theorem of Kontsevich 
[48] asserts that on a real Poisson manifold there exists a DQ-algebra to which this 
Poisson structure is associated. In the complex case, there is a similar result using 
DQ-algebroids. This is a theorem of [47] after a related result of [37] in the contact 
case. 

If (X, six) is a complex manifold X endowed with a DQ-algebroid six, we denote 
by Xa the manifold X endowed with the DQ-algebroid si£p opposite to six-

We define the external product sixlXx2 °f two DQ-algebroids six1 and six2 on 
manifolds X\ and X2. There exists a canonical sixxxa-module ffx on X x Xa sup
ported by the diagonal, which corresponds to the ^x-bimodule six-

On a complex manifold X endowed with a DQ-algebroid, we construct the C -̂al-
gebroid $x-> a deformation quantization of the ring &x of differential operators. It 
is a C -̂subalgebroid of 6ndcn(six)- It turns out that @x is equivalent to ^x[[^]]-
This new algebroid allows us to construct the dualizing complex u^f associated to 
a DQ-algebroid six- This complex is the dual over Dx of six, similarly to the case 
of ^-modules. Note that the dualizing complex for DQ-algebras has already been 
considered in a more particular situation by [23, 24]. 

We also adapt to algebroids a results of [42] which allows us to replace a coherent 
six-module by a complex of "almost free" modules, such an object being a locally 
finite sum ®iei(Li)ui> the L '̂s being free six-modules of finite rank defined on a 
neighborhood of Ui. We give a similar result for algebraic manifolds. 
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INTRODUCTION ix 

Chapter 3. Consider three complex manifolds Xi endowed with DQ-algebroids s^Xi 
(i = 1,2,3). Let Jti G L)̂ oh(̂ xiXxza+1) (i = 1,2) be two coherent kernels and define 
their convolution by setting 

J i o / 2 : = Rp14l (pTi 1 Jfr2) 
L 
<8> AX2 x XA2 Ex 2) 

Here P14 denotes the projection of the product X\ x X% x l 2 x X3 to X\ x Xf. 
We prove in Theorem 3.2.1 that, under a natural properness hypothesis, the convo

lution J£l o J(f2 belongs to D^oh(̂ Xixxj) and in Theorem 3.3.3 that the convolution 
of kernels commutes with duality. 

For further applications, it is also interesting to consider the localized algebroid 
k̂>c = Cfi,ioc ^ AX where cn,ioc = c((fi)). An ja4oc-module M is good if for 

any relatively compact open subset U of X, there exists a coherent ^/-module which 
generates M|U Then we prove that there is a natural map of the Grothendieck groups 
Kgd(«G?xc) —> Kcoh(gr^ t̂/) and that this map is compatible to the composition of 
kernels. 

Note that these theorems extend classical results of Cart an, Serre and Grauert on 
finiteness and duality for coherent ^-modules on complex manifolds to DQ-algebroids. 

For papers related to DQ-algebras and DQ-algebroids on complex Poisson mani
folds, and particularly to their classification, we refer to [7, 8, 12, 16, 9, 52, 53, 63]. 

Chapter 4. We introduce the Hochschild homology 3${{g/x) of the algebroid g/x-

№{s/x) -=Vx«®^Xxxatfx, an object of Db(C^), 
and, using the dualizing complex, we construct a natural convolution morphism 

о : х2 RP13! (p12-1 HH (Ax1 x X2 
L 
<g>; p23-1 HH (Ax x Xa3)) HH (Ax1 x Xa3). 

To an object M of D|?oh(«£̂ ), we naturally associate its Hochschild class hhx(^), an 
element of H^n^^{X;^ff{{s^x))' The main result of this chapter is Theorem 4.3.5 
which asserts that taking the Hochschild class commutes with the convolution: 

(0.0.1) hhXlXx-p£i oJf2) = hhXlxX2*p£l) ° hh^xx^P^)-

In Chapter 5, we consider the case where the deformation is trivial. In this case, 
there is no need of the parameter h and we are in the well-known field of complex 
analytic geometry. Although the results of this chapter are considered as well-known 
(see in particular [35]), at least from the specialists, we have decided to include this 
chapter. Indeed, to our opinion, there is no satisfactory proof in the literature of the 
fact that the Hochschild class of coherent ^-modules is functorial with respect to 
convolution. We recall in particular the formula, in which the Todd class appears, 
which makes the link between Hochschild class and Chern classes. This formula was 
conjecturally stated by the first named author around 1991 and has only been proved 
very recently by Ramadoss [55] in the algebraic setting and by Grivaux [32] in the 
general case. For other papers closely related to this chapter, see [17, 18, 35, 50, 59]. 
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X INTRODUCTION 

In Chapter 6 we study Hochschild homology and Hochschild classes in the case 
where the Poisson structure associated to the deformation is symplectic. We prove 
then that the dualizing complex u^f is isomorphic to ffx shifted by dx, the complex 
dimension of X, and we construct canonical morphisms 

(0.0.2) hdx'2chx [dx] - №(*/x) - trdx'2chx [dx] 

whose composition is the canonical inclusion. The morphisms in (0.0.2) induce an 
isomorphism 

(0.0.3) C l̂oc [dx] = HH (AXloc 

The first morphism in (0.0.2) gives an intrinsic construction of the canonical class 
in H~dx(X\M{(^x)) studied and used by several authors (see [14, 15, 27]). The 
isomorphism (0.0.3) allows us to associate an Euler class eux(^) G i^x(X;C^loc) 
to any coherent s/x-module M supported by a closed set A. 

Then we show how our results apply to ^-modules. We recover in particular the 
Riemann-Roch theorem for ^-modules of [49] as well as the functoriality of the Euler 
class of ^-modules of [58]. 

Finally, in Chapter 7, we study holonomic j^c-modules on complex symplectic 
manifolds. We prove that if j£f and M are two holonomic Aloc-modules, then the 
complex R5%W£̂ ioc (*/#, Jzf) is perverse (hence, in particular, C-constructible) over 
the field C '̂loc. 

If the intersection of the supports of the holonomic modules ££ and j% is compact, 
Formula (0.0.1) gives in particular 

x(RHom t̂o=(̂ r,JSf)) = / (еахШ -eux(J2f)). 

The Euler class of a holonomic module may be interpreted as a Lagrangian cycle, 
which makes its calculation quite easy. 

If the modules j£f and jtft are simple along smooth Lagrangian submanifolds, then 
one can estimate the microsupport of this complex. This particular case had been 
already treated in [44] in the analytic framework, that is, using analytic deformations 
(in the sense of [56]), not formal deformations, and the proof given here is much 
simpler. 

We also prove (Theorem 7.5.2) that if j£fa is family of holonomic modules indexed by 
a holomorphic parameter a, then, under suitable geometrical hypotheses, the complex 
of global sections RHom^ioc(^, J5fa), which belongs to D (̂C '̂loc), does not depend 
on a. This is a kind of invariance by Hamiltonian symplectomorphism of this complex. 

We have developed the theory in the framework of complex analytic manifolds. How
ever, all along the manuscript, we explain how the results extend (and sometimes 
simplify) in the algebraic setting, that is on quasi-compact and separated smooth 
varieties over C. 
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The main results of this paper, with the exception of Chapter 7, have been announced 
in [45, 46]. 
Acknowledgments. — We would like to thank Andrea D'Agnolo, Pietro Polesello, 
Stéphane Guillermou, Jean-Pierre Schneiders and Boris Tsygan for useful comments 
and remarks. 
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CHAPTER 1 

MODULES OVER FORMAL DEFORMATIONS 

1.1. Preliminary 
Some notations. — Throughout this paper, K denotes a commutative unital ring. 

We shall mainly follow the notations of [43]. In particular, if ̂  is a category, we de
note by ^op the opposite category. If ̂  is an additive category, we denote by C(^) the 
category of complexes of ̂  and by C*(^) (* = +,—, b) the full subcategory consisting 
of complexes bounded from below (resp. bounded from above, resp. bounded). If ^ 
is an abelian category, we denote by D(^) the derived category of ^ and by D*(^) 
(* = +,—,b) the full triangulated subcategory consisting of objects with bounded 
from below (resp. bounded from above, resp. bounded) cohomology. We denote as 
usual by r-n, r-n etc. the truncation functors in D(^). 

If A is a ring (or a sheaf of rings on a topological space X), an A-module means 
a left 4̂-module. We denote by Aop the opposite ring of A. Hence an 4̂op-module is 
nothing but a right ^-module. We denote by Mod (A) the category of A-modules. We 
set for short D(A):=D(Mod(A)) and we write similarly D*(A) instead of D*(Mod(̂ 4)). 
We denote by D^oh(A) the full triangulated subcategory of Dh(A) consisting of objects 
with coherent cohomology. If K is Noetherian, one denotes simply by Db(K) the full 
subcategory of Db(K) consisting of objects with finitely generated cohomology. 

We denote by Dx the duality functor for Kx-modules: 

(1.1.1) D'x (.) :=RMmKx (>, Kx) 

and we simply denote by (• )* the duality functor on Db(K): 

(1.1.2) (.)* = RHomK(.,K). 

If K is Noetherian and with finite global dimension, (• )* sends (D (̂K))op to D^(K). 
We denote by {pt} the set with a single element. 

Finiteness conditions. — Let X be a topological space and let s/ be a Kx-algebra 
(i.e., a sheaf of K-algebras) on X. Let us recall a few classical definitions. 
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2 CHAPTER 1. MODULES OVER FORMAL DEFORMATIONS 

— An ^/-module M is locally finitely generated if there locally exists an exact 
sequence 

(1.1.3) L0 — M — 0 
such that Ĵ fo is locally free of finite rank over si. 

— An si-module M is locally of finite presentation if there locally exists an exact 
sequence 

(1.1.4) .Sfi -» J% —M — 0 
such that Jzfi and «#o are locally free of finite rank over si. This is equivalent 
to saying that there locally exists an exact sequence 

(1.1.5) 0 — K— N — M — 0 

where JV is locally free of finite rank and K is locally finitely generated. This 
is also equivalent to saying that there locally exists an exact sequence 

(1.1.6) K — N — M — 0 

where Jv is locally of finite presentation and X is locally finitely generated. 
— An ^-module J% is pseudo-coherent if for any locally defined morphism 

u: JV —» jtft with JV of finite presentation, Ker-u is locally finitely generated. 
This is also equivalent to saying that any locally defined si-submodule of M is 
locally of finite presentation as soon as it is locally finitely generated. 

— An j^-module M is coherent if it is locally finitely generated and pseudo-
coherent. A ring is a coherent ring if it is so as a module over itself. One denotes 
by Modcoh(̂ /) the full additive subcategory of Mod(^) consisting of coherent 
modules. Note that Modcoh(̂ /) is a full abelian subcategory of Mod(«ê ), stable 
by extension, and the natural functor Modcoh(̂ ) -* Mod(^) is exact (see [43, 
Exe. 8.23]). 

— An ^-module ^ is Noetherian (see [38, Def. A.7]) if it is coherent, Mx is 
a Noetherian ^4-module for any x G X, and for any open subset U C X, 
any filtrant family of coherent submodules of M\u is locally stationary. (This 
means that given a family {^}ie/ °f coherent submodules of M\u indexed by 
a filtrant ordered set /, with ^ C Jtj for i < j , there locally exists io G I such 
that Mio ^3 f°r anv 3 > ¿0-) A rmg is a Noetherian ring if it is so as a left 
module over itself. 

Mittag-Leffler condition and pro-objects. — We refer to [1] for the notions of ind-
object and pro-object as well as to [43] for an exposition. To an abelian category 
^, one associates the abelian category Pro(^) of its pro-objects. Then ^ is a full 
abelian subcategory of Pro(^) stable by kernel, cokernel and extension, the natural 
functor C Pro(C) is exact, and the functor "lim" : Fct(/op,^) Pro(^) is exact 
for any small filtrant category /. In the sequel, we identify ^ with a full subcategory 
of Pro(^). If ^ admits small projective limits, we denote by TT the left exact functor 

тг: Pro(^) C, "lim' 
i 

Xi i—> lim Xi. 
i 
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1.1. PRELIMINARY 3 

If fé7 has enough injectives, then 7r admits a right derived functor (loc. cit.): 

RTT: D+(Pro(<*f)) ^D+(<*f). 

Definition 1.1.1. — We say that an object M G Pro(^) satisfies the Mittag-Leffler 
condition if, for any N G ^ and any morphism M —> N in Pro(^), Im(M —• iV) is 
representable by an object of ^ . 

By the definition, any quotient of an object which satisfies the Mittag-Leffler con
dition also satisfies the Mittag-Leffler condition. 

Lemma 1.1.2. — Let {Mn}nez>1 be a projective system in an abelian category <é?, and 
set M = "lim"Mn G Pro(^). Then the following conditions are equivalent: 

(i) M satisfies the Mittag-Leffler condition, 
(ii) {Mn}nez>1 satisfies the Mittag-Leffler condition (that is, for any p > 1, the 

sequence {Im(Mn —> Mp)}n>p is stationary), 
(hi) there exists a projective system {M'n}nez>1 in *ê such that the morphism 

M'n+l —• M'n is an epimorphism for any n > 1 and we have an isomorphism 
M ~ "lim"M; in Pro(^). 

n 

Proof. — (i) => (ii). For any p > 1, Im(M —> Mp) ~ "lim" Im(Mn —• Mp) is repre-
n>p 

sentable by an object of ^. Hence, the sequence {Im(Mn —> Mp)}n>p is stationary, 
(ii) => (hi). Set M'n = lm(Mk —» Mn) for k > n. Then the morphisms M'n —» Mn 
induce a morphism / : "lim" Mn —> "lim" Mn. On the other hand, for each n, M —» 

n n Mn decomposes as M —» Mn>->Mn, since taking k ^> n such that M/, = Im(M^ —> 
Mn), we have a morphism M —> Mk —» M .̂ These morphisms induce a morphism 
#: "lim" Mn = M —> "lim" M'n. It is easy to see that / and g are inverse to each 

n n other. 
(iii) =>> (i). For any N G ^ and any morphism /': M —> TV in Pro(^), there exists p 
such that / decomposes into M -> M£ -> JV'. Then Im(M —• iV) ~ "lim" Im(M^ -> 

n > p TV) ~ Im(M£ -> iV). 

Note that the following lemma is well known. 

Lemma 1.1.3. — Let {Mn}n>i be a projective system of la-modules. Then 
RV("lim" Mn) ~ 0 for i 7̂  0,1. // {Mn}n>i satisfies the Mittag-Leffler condi-

n 
tion, then ^(RTT "lim" MN) ~ 0. 

n 
Here and in the sequel, we make the following convention. 
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4 CHAPTER 1. MODULES OVER FORMAL DEFORMATIONS 

Convention 1.1.4. — When we have a left exact functor ^ F cê' of abelian cate
gories and X G D(^), the notation R*F(X) stands for iT(RF(X)). For example, 
Ri7rRr(f/;^) means W (RTTRT(U; ^)). 

Lemma 1.1.5. — Let Si be an algebra over a topological space X, and let {<J?n}n>o 
be a projective system of &-modules. Set <Jt = "lim" Mn G Pro (Mod (&)). Let U be 

n 
an open subset of X and let i G Z. Then we have an exact sequence 

0 —• R17r("lim" W-^U'^n)) —* H\U\R^JK) —• lmiT(E/;^n) -> 0. 
n n 

Proof. — We have RT(U]RirJK) ~ R7rRT(U^) and we also have H^U'.JK) ~ 
"lim" Hl(U\^(n). Consider the distinguished triangle 

n 
RITT^RTÌU;^) —• RnRT(U;^) —• RTTT^RIW; лГ) » . +i 

It gives rise to the exact sequence 
0 -> Ri7rr<iRr(C/;^r) RVRr(C/;^) -> RVr-iRr(C/; Jt) 

Ri+17rr<iRr(C/;^). 
Since R*7r "lim" M„ = 0 for k ^ 0,1 and any projective system {M„}„, we obtain 

n 
Ri+1irT<iBT(U:^) = 0. 

Consider the distinguished triangle 
T<I-1RT(tf;.¿r) -> т<1Ш{\];Л) Я*-1(17;лГ)[1 - i] +i 

Using the isomorphism H% 1(U;<J?) ~ "lim" H% 1(U]J£n) and applying the functoi 
n 

R7T, we get the distinguished triangle 
R7rr<i-1Rr(C/;^) -> R7rr<iRr(C/;^) 

-+ R7r("lim" H^iU; JKn)[l - %]) 
n 

+1 

We obtain RVr<iRr(C/; ̂ ) - R1^ "lim" W'^U; Jtn). Finally, we have 
n 

RVr^RIXf/; ^T) ^ lim Hi; MN). 
n 

As a corollary of this lemma, we obtain the following lemma, a slight modified 
version of [33, Préliminaires, Prop. (13.3.1)]. 

Lemma 1.1.6. — Let X be a topological space, {̂ n}nEZ>0 a projective system of 
abelian sheaves on X and & := limJ^. Assume the following conditions: 

n 
(a) for any x G X and any integer i, we have 

lim RV "lim" H\U] &n) ~ 0, 
xeu n 
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where U ranges over an open neighborhood system of x, 
(b) for any x G X and i > 0, lim (limfP(l7; ^n)) = 0, where U ranges over an open 

xeu n 
neighborhood system of x. 

Then for any i, the morphism 
hi: H\X;&) ^\\mH\X-&n) 

n 
is surjective. If moreover {Hl 1(X] ^n)}n satisfies the Mittag-Leffler condition, then 
hi is an isomorphism. 

Proof — Set ^ = "lim" &n. By the preceding lemma, we have an exact sequence 
n 

0 —• ̂ ( " l im" ff*"1^; •£"„)) — H\U;H,-KJt) —» XimH^U;^) -• 0. 
n n 

For any x, taking the inductive limit with respect to U in an open neighborhood 
system of x, we obtain {K1TTJK)X = 0 for i ^ 0. Hence we conclude R-KM ~ &. Then 
the exact sequence above reads as 

0 —• R 1 ^ " H^iX^n)) —-> H\X\&) lìrnH^X;^) 0. 
n n 

Hence we have the desired result. 

1.2. Formal deformations of a sheaf of rings 

Now we consider the following situation: X is a topological space, si is a K-algebra 
on X and h is a section of si contained in the center of si. We set 

si0 := si/hsf 

Let be an ^/-module. We set 

(1.2.1) J¿ :=Xvca.Jt¡hnJ¿, 
П 

and call it the -̂completion of Jt. We say that 
— ^ has no ft-torsion if h: <M —• M is injective, 
— M is ^-separated if M —• M is a monomorphism, i.e., f] TiP'Jt — 0, 

~ n>0 — M is fi-complete if .M —> M is an isomorphism. 

Lemma 1.2.1. — Let jfé G Mod(j^) and assume that M has no h-torsion. Then 
(i) M has no h-torsion, 
(h) JtJhnJi ^ ^/hnj T M , 

(iii) M — M --, i.e., M is h-complete. 
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Proof. — (i) Consider the exact sequence 

Applying the left exact functor lim we get the exact sequence 
n 

0 —> M 

which gives the result. 
(ii) Consider the commutative diagram with exact rows: 

0 ^Jt 

(hi) Apply the functor lim to the isomorphism in (ii). • 

In this paper, with the exception of § 1.3, we assume the following conditions: 

o —• JtlhnJt ha .///hn+a./s —• J<IÌ?J{ —• о. 

ha £ —л JtlhaJt, 

hn M ^ JtlhnJt ^ o 

о — ^ j t hn Л »- J¿ITinJt. 

(1.2.2) 
(i) si has no fr-torsion, 
(ii) si is ft-complete, 
(iii) sio is a left Noetherian ring, 

and 

(1.2.3) 
(iv) there exists a base *8 of open subsets of X such that 

for any U € *B and any coherent (ĵ o|t/)-module F. 
we have Hn(U; F) = 0 for any n > 0. 

It follows from (1.2.2) that, for an open set U and an G si(U) (n > 0), Xm>o ^n(JLn is 
a well-defined element of si(U). 

By (1.2.2) (ii), hs/x is contained in the Jacobson radical of six for any x € X. 
Indeed, for any a G h&/x, 1 — a is invertible in six since a is defined on an open 
neighborhood U of x, and 1 — a is invertible on U. 

Hence Nakayama's lemma implies the following lemma that we frequently use. 

Lemma 1.2.2. — Let M be a locally finitely generated si-module. 
(i) // M satisfies ^ = hJt, then ,M — 0. 

(ii) Let f': JV —• M be a morphism of si-modules. If the composition jV —• M —> 
'IKdt is an epimorphism, then f is an epimorphism. 

For n G Z>0, set sin = si/hn+lsi. Note that there is an equivalence of categories 
between the category Mod(«g4) and the full subcategory of Mod(^) consisting of 
modules jit satisfying hnJrlJ% ~ 0. 

Lemma 1.2.3. — Let n G Z>0. 
(i) An s^n-module JV is locally finitely generated as an sin-module if and only if it 

is so as an si-module. 
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(ii) An srfn-module JV is locally of finite presentation as an s/n-module if and only 
if it is so as an si-module. 

(iii) An g/n-module J¥ is coherent as an srfn-module if and only if it is so as an 
si-module. 

(iv) sin is a left Noetherian ring. 

Proof. — Note that since we have sin ~ s//sihn+1, sin is an ^-module locally of 
finite presentation. 
(i) is obvious. 
(ii)-(a) Let M be an ^-module locally of finite presentation and consider an exact 
sequence of ^-modules as in (1.1.5). Then K is locally finitely generated as an 
^/-module, JV is locally of finite presentation as an j^-module and u is ^-linear. 
Hence, j% is locally of finite presentation as an ^-module. 
(ii)-(b) Conversely assume that M is an ^-module which is locally of finite pre
sentation as an ^-module. Consider an exact sequence of ^-modules as in (1.1.4). 
Applying the functor sin <g>^ •, we find and exact sequence of ^-modules as in 
(1.1.4), which proves that ^ is locally of finite presentation as an ^-module. 
(iii) follows from (i) and (ii) since a module is coherent if it is locally finitely generated 
and any submodule locally finitely generated is locally of finite presentation. 
(iv) Let us prove that srfn is a coherent ring. Since 4) is a coherent ring by the 
assumption, s/q is a coherent ^-module. Using the exact sequences of ^-modules 

0 -> An-1 —h — An — Ao — 0, 
we get by induction on n that sin is a coherent ^/-module. Hence (iii) implies that 
gin is a coherent ring. 

One proves similarly by induction on n that (sin)x is a Noetherian ring for all x G X 
and that any filtrant family of coherent j^-submodules of a coherent ^-module is 
locally stationary. • 

Lemma 1.2.4. — Let U G B and n > 0. 
(i) For any coherent sin-module JV, we have Hk(U; JV) = 0 for k ^ 0. 
(ii) For any epimorphism JV —» Ji' of coherent sin-modules, JV(U) —* Ji'{U) is 

surjective. 
(iii) s/(U) —> &/n(U) is surjective. 

Proof — (i) is proved by induction on n, using the exact sequence 

(1.2.4) 0 hoY JV -+ oY/tLY -> 0. 

(ii) follows immediately from (i) and the fact that $in is a coherent ring. 

(iii) By (ii), £/n+i(U) —> s/n(U) is surjective for any n > 0. Hence, the morphism 
lim /̂m(/7) —• s/n(U) is surjective. Since the functor lim commutes with the functor 
m 

T(U; •), sHJJ) lim^m(17) and the result follows. • 
m 
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Properties of si. — Recall that si satisfies (1.2.2) and (1.2.3). 

Theorem 1.2.5. — (i) ¿2/ is a left Noetherian ring. 
(ii) Let ^ be a locally finitely generated ¿2/-module. Then M is coherent if and only 

if hn^/hn+1 M is a coherent g/Q-module for any n > 0. 
(hi) Any coherent si-module M is h-complete, i.e., M — M. 
(iv) Conversely, an ¿2/-module M is coherent if and only if it is h-complete and 

hn^K/hn+l M is a coherent S2i0-module for any n > 0. 
(v) For any coherent ¿2/-module ^ and any U G 03, we have H^(U;^) = 0 for 

any j > 0. 

The proof of Theorem 1.2.5 decomposes into several lemmas. 

Lemma 1.2.6. — Let J*f be a locally free srf-module of finite rank and let JV be an 
¿2/-submodule of J£. Assume that 
(a) (jV + hJ?)/hJt? is a coherent S2i0-module, 
(b) JV H hN5? Ch<yV + h1+n^f for any n > 1. 
Then we have 

(i) JV is a locally finitely generated ¿2/-module, 
(ii) J/ n hn^ = KnjV for any n > 0, 
(hi) p| (oY + hn^) = J/. 

n>0 
Proof. — First, let us show that 

(1.2.5) / n ^ C ^ T ^ i f foranyn>0. 

Indeed, (1.2.5) is trivial for n < 1. Let us argue by induction, and let n > 2, assuming 
the assertion for n - 1. We have JV fl /LSf C JV fl {fuT + n̂_1JSf) = KJf + (JY fl 
h71'1^) C hoY + (KJV + hn£?) by the assumption (b). This proves (1.2.5). 

Set 

N = (N + hn L) 
п>0 

Then / с / and 
(1.2.6) JY П /iJzf С /L/Г. 
Indeed we have jYnhSf C {oY+Kn+1& )n/L£f C N nh^+hn+1 & C /^+ftn+1if = 
fi(c^ + 7inJ2?) for any n. 

Set 

^ = (j/ + n^)/h^ = (N + hL nsf)/njf. 

By the hypothesis (a), N is A0-coherent. Hence we may assume that there exist 
finitely many sections Si of JV such that JY = J2i A0si where Si is the image of Si 
in Sf/hSf. 
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By hypothesis (a) and Lemma 1.2.4 (ii), we have for any U G 05, jY{U) — 
Y^i<^o(U)si- Since s/(U) —> #/o(U) is surjective by Lemma 1.2.4 (hi), we have 
<"(U) С X). &(U)si + ftJS?(l7). Since / П ^ = hN , we have 

jV(U) С A^{U)si + h^{U). 
г 

For v G JV(U)) we shall define a sequence {vn}n>o in JY(JJ) and sequences {â ,n}n>o 
in srf(U), inductively on n: set VQ = v, and write 

VN = 
i 

ai, nSi + hvn + 1. 

Hence we have hnvn = ̂  ftna¿,nSi + hn+1vn+i and we obtain 

V = v0 = 
г n>0 

hn ai, n) Si. 

Thus we have JV = J2i ^si- Hence JV — JV which proves (i) and (hi). 
Since JV fl ftj£f = hJV by (1.2.6), we obtain (ii) for n = 1. For n > 1 we have by 

induction jf n hn3? ch^Kn hn£? = %/f n ft71"1^) C ft • W1-1^. • 

Lemma 1.2.7. — Let J£ be a locally free s/-module of finite rank, and let jV be an 
s/-submodule of JzfAssume that (^V + ftn+1j£f)/ftn+1«i? a coherent si-module for 
any n > 0. 77&en we /iflwe 

(i) ^ ¿5 a locally finitely generated si-module, 
(ii) nn>o(^ + »n-S?) = ^ 
(hi) locally, hn3? H N C ft(ftn"1if H ^ ) /or n > 0, 
(iv) JVIhiP'jV is a coherent si-module for any n > 0. 

Proo/. — We embed L into the si [h~ ̂ -module K[h9 h'1]^^ = \Jnez hn£?. Note 
that hn induces an isomorphism 

hn: (jsf n / r n ^ + h^)/hJ¥ ( ^ n ftnj*f + hn+1^)/hn+1^. 

Since 

H ftnj£f + fin+1JSf)/ftn+1JSf - ((̂ K + ftn+1JSf)/ftn+1i?) p|(/inJ^/ftn+1^f) 

is ^-coherent, {(.if fl ft_n^K + /L£f)//LS?}n>0 is an increasing sequence of coherent 
ĵ o-submodules of Jzf/fiJS?. Hence it is locally stationary: locally there exists no > 0 
such that Jjf fl ft"n^ + fiJSf = JSf n hrn«jV + /LS? for any n > n0. Set 

(1.2.7) ^6:=Jjf n/Tno^. 

Then (No + fti?) /fij£f is a coherent ^-module and 

^ n hn& c ftn(ft-n-no^ n jgf) c hn(^K0 + RJSf) c h^r0 + frn+1J£? 

for any n > 0. Hence by Lemma 1.2.6: 
— <AQ is locally finitely generated over si, 
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10 CHAPTER 1. MODULES OVER FORMAL DEFORMATIONS 

— n Мб + ftn-*0 = Л6> 
n>0 

— jKo n ftn„Sf = ftn^ for any n > 0. 
(i) Since ̂ nfrnojf = hn0^0 by (1.2.7), the module jV/hn°J^ ~ ^ / ( ^ n ^ 0 ^ ) ~ 
{oY + hno^)/hn°^f is ^-coherent. Since hn°^K0 is locally finitely generated over si, 
jV is also locally finitely generated over si. 
(ii) We have 

П>По 
(N + hn L) с иг + hnoáf) П̂>По (Л + hnáf) 

с JV + hnoáf • m>no (Л + hnáf) 
с JY + nn>no (hnoáf с\Л + hnáf) 
С Jv + nn>no (hno N0 + h,n L) 
с N + hno N0 = N. 

(iii) For n > no, we have 
ft"Jzf П JV С hno (££ П fCNOJY) n hn£e 

с hno ft"»(4nrn»y) 
с hnohn-noJ/Q = hnyK0 
С h(N kГ\Пп~х££). 

(iv) Since JY has no ,̂-torsion, we have the exact sequence 

0 JYIhnJY ±* JK/hn+lJY -» JYIhJY -> 0. 

Hence, it is enough to show that JV/h^V is cohérent. By (i), the images of JV and 
hjV in J£/hNJ£ are cohérent. Since JVfl hNJ£ C fLY for some n, by (ii), we have the 
exact séquence 

tLY 
fLY n hN5? 

N 
N N hn L 

L 
h.N 

0, 

which implies that JV'IhjV is coherent. • 

Corollary 1.2.8. — Assume that M is a locally finitely generated si-module. If 
M/hn M is a coherent si-module for all n > 0, then M is an si-module locally of 
finite presentation and f] hn<Jt = 0. 

n>0 
Proof. — We may assume that M = L/M for a locally free ^-module Jzf of finite 
rank and JV C J2?. From the exact sequence 

о (JY + hn&)/hn& -> ££¡hnse -> Jt¡hnj( -> о, 

we deduce that (jV + hnJ*?)/hnJ£ is coherent for any n. Hence JV is locally finitely 
generated by Lemma 1.2.7, which implies that M is locally of finite presentation. 
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Since fi (JK + ftnJz?) - Ji by Lemma 1.2.7, 
n>0 

f| hnJZ —(f) (JV + Kn££))lJY 
n>0 n>0 

vanishes. 

Proposition 1.2.9. — si is coherent. 

Proof. — Let F be a locally finitely generated j^-submodule of si. Since 

(j^ + ftn+V)/ftn+V ~ JI {J n ftn+V) c A si/h^si, 

the ^-module jK1^ is coherent by Lemma 1.2.7 (iv). Hence Corollary 1.2.8 implies 
that F is locally of finite presentation. 

Lemma 1.2.10. — Any filtrant family of coherent si-submodules of si is locally sta
tionary. 

Proof. — Let {yi}iei De a family of coherent ^-submodules of si indexed by a fil
trant ordered set 7, with f Fi J$ for any i < j . Then {(h~k J^^si+hsi) / hsi}ieI ̂  k>0 
is increasing with respect to k and i G 7. Hence locally there exist io and ko such that 
h~k Ji nsi + hsi = h~k°yio Dsi + hsi for any i > i0 and k > k0. Then, for i > i0, 
the ideal Fi := si f) h~k°J?i satisfies 

Ji n ff^si c frm(/rm-fco ̂  rW) c hm(trkQSi nsi + hsi) ch Fji + fim+V 

for any m > 0. Hence Lemma 1.2.6 implies that Fi H hA = h^fi- Since we have 
^ C ^ 0 + hA we have ^ C JiQ +(Fi n ft*/) C ^ 0 + ft/i- Then Nakayama's 
lemma implies Ji = Fi0 or equivalently, ft~fc°^ D ^ = h~k°J?io D ^ for z > i0. 
Thus { D hk°si}i is locally stationary. Since {Fi / (Fi i n hk0 A)}i is a filtrant family 
of coherent submodules of jz40-i> it is also locally stationary and it follows that {Fi}i 
is locally stationary. • 

Lemma 1.2.11. — For any x G X, six is a coherent ring. 

Proof. — Any morphism / : si®71 —> six extends to a morphism / : si®n\u —• si\u 
for some open neighborhood U of x. Since «yK := Ker/ is coherent, ^ ~ Ker/ is a 
finitely generated ^4-module. • 

Lemma 1.2.12. — For any x G X and a finitely generated left ideal I of six, I fl 
ft**1^ = h(i n ftnj4) /or n > o. 

Proof — Let us take a coherent ideal F oi si defined on a neighborhood of x such 
that 7 = Jx. Then Lemma 1.2.7 implies that J^nhn+1si = h(J?C\hnsi) for n > 0. • 

Lemma 1.2.13. — For any x £ X, six is a Noetherian ring. 
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Proof. — Set A = s/x. Let us show that an increasing sequence {In}n of finitely 
generated left ideals of A is stationary. Since {(h~kIn fl A + hA)/HA}n,k is increasing 
with respect n, k, there exist no and ko such that h~kIn C\ A + hA = h~k°Ino fl 
A + /L4 for n > no and k > k^. For any n > no there exists k > ko such that 
ft~fcIn D ftA = h(fThIn n A) by Lemma 1.2.12. Hence we have h~kIn (lAc h~kIn fl 
(h-k°Inor\A + hA) C h-koInonA+(h-kInnhA) c rfco/noni-r-/i(rfc/nni). Since 
h~kIn n .A is finitely generated by Lemma 1.2.11, Nakayama's lemma implies that 
rtnfli n A = h~koIno fl A Hence h-ko In n A = fTk°Ino C\A for any n > n0. Therefore 
In n hk°A = hk°(h~k°In n A) is stationary. Since {In/(In fl fifc°A)}n is stationary, 
{/n}n is stationary. • 

Thus, we have proved that A is a Noetherian ring. 

Lemma 1.2.14. — Let {^n}n>o be a projective system of coherent -modules. As
sume that hn+1^n = 0 and the induced morphism Jfn+i I'hn+l\s^n+\ —•Mn is 
an isomorphism for any n > 0. Then M := limjfn is a coherent g/-module and 

n 
^#/ftn+1.y# —» JCn is an isomorphism for any n > 0. 

Proof. — Since the question is local, we may assume that X G 03 and there exist 
a free K-module V of finite rank and a morphism V —• ^o(X) which induces an 
epimorphism L := s/ <S)K V-^^Q. Since ^n-\-i{X) —• J(N{X) is surjective and V is 
projective, we have a projective system of morphisms {V —> «y^n(X)}n: 

V 

In(X) Mn — 1 (X). M1 (X) M0 (X), 

which induces a projective system of morphisms [L —> ^n}n- Hence we may assume 
that there exists a morphism Jèf —> ^ such that the composition J5f —> ^ —> Mo is 
an epimorphism. Since j£f —• Jtn/hJtn ./̂ o is an epimorphism, J5f —> ^ n is an 
epimorphism by Lemma 1.2.2. 

Set J£?n = j£f/ftn+1JSf, and let ^ be the kernel of Jzfn -> Mn Set N = l im^. 
Then we have a commutative diagram with exact rows: 71 

0 oY L M 

0 Nn 5£N Jin 0. 
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In the commutative diagram 
о о 

hn + 1 Ln + 1 hn + 1 Mn + 1 о 

о Nn + 1 Ln + 1 Mn + 1 о 

о Nn Ln Mn о 

о о 
the rows and the columns are exact. Hence the left vertical arrow jVn+\ —> JYn is 
an epimorphism. Therefore, jVn+i(U) —» ^Ki(U) is surjective for any U G 93, and 
Ji{U) lim JKn(U) —» JKi{U) is surjective. Hence —• eyfJl is an epimorphism 

m 
for any n > 0, and {e>̂ n(J7)}n satisfies the Mittag-Leffler condition. 

Thus in the following commutative diagram 
0 .jY(U) J?{U) M (U) 0 

0 limyVn(U) ïim^n(U) " lim JZn(U) " 0. 
n n n 

the bottom row is exact. Hence 0 —> c/K —* j£f —> —> 0 is exact. Since JV —» jVn 
is an epimorphism, we have ^#/ftn+1^ ~ Coker(^V —> Jz?n) ~ Coker(^ —> J*fn) ~ 
^#n. Since M is locally finitely generated and M'/ftn+1^ is coherent for any n > 0, 
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M is coherent by Corollary 1.2.8 and Proposition 1.2.9. 

Proposition 1.2.15. — Let ̂  be a coherent si-module. Then we have the following 
properties. 

(i) Jt is h-complete, i.e., M M, 
(ii) for any U e 03, Hk(U; Jt) = 0 for any k>0. 

Proof. — (i) Since the kernel of Jt —• Ji is f] hnM, the morphism M —> Jt is a 
n>0 

monomorphism by Corollary 1.2.8. 
Let us show that M —> Jf is an epimorphism. By the preceding lemma, M is a 

coherent ^-module, and Jt jhJt ~ JijhJt. Hence Nakayama's lemma implies that 
M —» M is an epimorphism. 
(ii) For any £7 e 03, the map r(l7; JZ/hn+1J() -> T(U\JZ/hnJK) is surjective, and 
Hk(U',J£/hnJ£) — 0 for any fc > 0. Hence Lemma 1.1.6 implies (ii). • 
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Corollary 1.2.16. — Let Jt be an g/-module. If Jt satisfies the following conditions 
(i) and (ii), then Jt is a coherent stf'-module. 

(i) Jt is h-complete, 
(ii) hnJt/hn+1Jt is a coherent g/o-module for all n > 0. 

Proof. — Set Mn = M'//in+1'. Then it is a coherent ^-module by (ii), and \m\Mn 
n 

is a coherent ^-module by Lemma 1.2.14. • 

This completes the proof of Theorem 1.2.5. 

Lemma 1.2.17. — Let JK be a coherent g#'-module without h-torsion. If\MjhJt is a 
locally free g/o-module of rank r G %>o, then M is a locally free srf-module of rank r. 

Proof. — We may assume that there exists a morphism of ^-modules f:J*?:= 
g/®r —> M such that L /hS£ —• M'/hJt is an isomorphism. Then, Nakayama's 
lemma implies that / is an epimorphism. Let JV be the kernel of / . Since M has no 
ft-torsion, we have an exact sequence 0 —> JV'/fLY —> Jtf/hJz? —> jfa'/fLtft —> 0. Hence 
JV'/fLY = 0 and Nakayama's lemma implies JV = 0. • 

The following proposition gives a criterion for the coherence of the projective limit 
of coherent modules, generalizing Lemma 1.2.14. 

Proposition 1.2.18. — Let {^Ki}n>i be a projective system of coherent g/-modules. 
Assume 
(a) the pro-object "lim" JVn/hjVn is representable by a coherent g/o-module, 

n 
(b) the pro-object "lim" Ker(^f^ h jVn) is representable by a coherent g/o-module. 

n 
Then 

(i) N := lim^, is a coherent gf-module, 
(ii) oY/K^oY n "lim" A / ^ 1 ^ for any k>0, 

n 
(iii) Ker(«/K ^>JY)-^ "lim" Ker(yVn JVn). 

n 
(iv) Assume moreover that for each n > 1 there exists k > 0 such that hhjVn = 0. 

Then the projective system {^Ki}n satisfies the Mittag-Leffler condition. 
Proof. — For any k > 0, set 

Ук := "lim" УГп/ак+1Ль-
П 

Then y0 is representable by a coherent ^-module by hypothesis (a). We shall show 
that i9*k is representable by a coherent ^/-module for all k > 0 by induction on k. 
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Consider the exact sequences 

(1.2.8) 0 hJVn/hk+1jVn -> JVn/hk+1jVn -+ JVn/hJVn -+ 0, 

(1.2.9) KerOA ^JVn)^ JVn/hkjVn ±* hJVn/hk+1JVn 0. 

Assume that J^k-i is representable by a coherent ^-module. Applying the functor 
"lim" to the exact sequence (1.2.9), we deduce that the object "lim" hjVn/hk+lJVn is 

n n 
representable by a coherent £f-module. Then applying the functor hm to the exact 

n sequence (1.2.8), we deduce that yk is representable by a coherent ^/-module. 
Since jVn ~ lim jVn/hk+1jVn by Theorem 1.2.5 (hi), we have 

k 

.JV ~ lim An/h^1 An ^ Um^b. 
k,n k 

Since e5̂ c+i/ftfc+1c5̂ +i ~ ^fc, Lemma 1.2.14 implies (i), (ii). The property (hi) is 
obvious. 

Let us prove (iv). By the assumption, jVn — "lim" jVn/hkjVn. Hence 
k 

"lim" jVn ^ "hm" JVn/hkJVn ^ "lim" S?k. 
n k,n k 

Since {J^k}k satisfies the Mittag-Leffler condition, {jVn}n satisfies the Mittag-Leffler 
condition by Lemma 1.1.2. • 

Remark 1.2.19. — In Proposition 1.2.18 (iv), the condition KkoYn = 0 (k > 0) is 
necessary as seen by considering the projective system jVn = hns/, (n G N). 

1.3. A variant of the preceding results 
Here, we consider rings which satisfy hypotheses (1.2.2), but in which (1.2.3) is 

replaced with another hypothesis. Indeed, as we shall see, the ring ^x[[^]] of differ
ential operators on a complex manifold X has nice properties, although @>x does not 
satisfy (1.2.3). The study of modules over ^x[[^]] is performed in [20]. 

We assume that X is a Hausdorff locally compact space. By a basis 05 of compact 
subsets of X, we mean a family of compact subsets such that for any x G X and any 
open neighborhood U of x, there exists K G 05 such that x G lnt(K) C U. 
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We consider a K-algebra A on x and a section h of sf contained in the center 
of srf. Set S/Q = A/hs/. We assume the conditions (1.2.2) and 

(1.3.1) 

(iv') there exist a base 05 of compact subsets of X and a 
prestack U i-> Modgd(M)\u) (U open in X) such that 
(a) for any K G 05 and an open subset U such that K c 

U, there exists K' G 05 such that K C Int(iT) C 
K' C *7, 

(b) U i—• Modgd(^b|t/) is a full subprestack of U *-> 
Modcoh(^o|t/), 

(c) for an open subset U and JV G Modcoh(^|c/), 
if JV\y belongs to Modgd(M)|v) for any relatively 
compact open subset V of 17, then JV belongs 
to Modgd^olc/), 

(d) for any open subset U of X, Modgd(M)\u) is 
stable by subobjects, quotients and extension 
in ModcohO^olt/), 

(e) for any if E 05, any open set U containing K, 
any JV G Modgd(̂ o|c/) and any j > 0, one has 
W{K\JV) = 0, 

(f) for any JV G Modcoh(M)|f/)) there exists an 
open covering U = (Ĵ  ¿7» such that ^#1^ G 
ModgdKolt/J, 

(g) J2/o G Modgd(ĵ o). 

Note that Lemmas 1.2.2 and 1.2.3 still hold. 
The prestack U t-> Modgd(M)|t/) being given, a coherent module which belongs 

to Modgd(£̂ o|c/) will be called a good module. Note that in view of hypothesis (iv') (f), 
hypothesis (iv') (g) could be deleted since all the results of this subsection will be of 
local nature. However, we keep it for simplicity. 

Example 1.3.1. — Let X be a complex manifold, &x the structure sheaf and let $>x 
denote the C-algebra of differential operators. One checks easily that, taking for 05 
the set of Stein compact subsets and for s/0 the C-algebra $x-> the prestack of good 
Q)x-modules in the sense of [38] satisfies the hypotheses (1.3.1). 

Definition 1.3.2. — A coherent ^-module JV is good if both the kernel and the cok-
ernel of h: Jf —> JV are good ^-modules. One denotes by Modgd( /̂) the category 
of good ^-modules. 

Note that an ^-module is good if and only if it is good as an ^-module. This 
allows us to state: 

Definition 1.3.3. — An ^-module M is good if it is good as an ^/-module. 
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Lemma 1.3.4. — The category Modgd(sV) is a subcategory of Modcoh (A) stable by 
subobjects, quotients and extension. 
Proof. — First note that hnJt/hn+1Jt is a good ̂ -module for any JV G Modgd(̂ /) 
and any integer n > 0. Indeed, it is a quotient of Jt' jhJt'. 

For an ^-module JV, set JV% := Ker(ft: JV —> JV). 
We shall show that any coherent ^/-submodule JV of a good ^-module ^ is a 

good ^/-module. It is obvious that JVh is a good ^-module, because it is a coherent 
submodule of JVn. We shall show that JV j(hJV + JV' fl hk+1J() is a good ^-module 
for any k > 0. We argue by induction on k. For k = 0, it is a good ĵ o-module since 
it is a coherent submodule of JV jhJV. For k > 0, we have an exact sequence 

(1.3.2) 
0 

hJV + N n hkJV 
hJV + JVnhk+lJV 

N 
hJV + JVnhk+1J( 

hJV + ̂ fn hkJt o. 

Since {JV fl h^JV)l{JV fl hk+1J() is a coherent submodule of hk JV / Kk+1 JV, it is 
a good ^-module. Since (hJV + JV d hkJV)/(hjV + <JV P\ hk+1JV) is a quotient 
of ( ^ fl hkJV)/(JV fl ft/c+1^), the left term in (1.3.2) is a good ^-module. Hence 
the induction proceeds and we conclude that JV' j(hJV + JV fl hk+1JV) is a good 
^-module. 
On any compact set, we have JV fl hk+1JV C hjV for » 0. Hence, (JV/hJ^)\y 
is a good (ĵ o|v)-module for any relatively compact subset V. Hence JV belongs 
to Modgd(ĵ ) by (iv') (c). 

Consider an exact sequence 0 —* JV1 —> JV —> JV" —• 0 of coherent ^-modules. It 
gives rise to an exact sequence of coherent ^-modules 

§^ JV'h-+ JVn-> JV'^-* JV' jhJV' -> JV/hJV M" JK"/hJK" 0. 
If JV is a good ^-module, then so is JV1. Hence the exact sequence above implies 
that JV\H and JV"IhJV" are good ^-modules. This shows that Modgd(^) is stable 
by quotients. 

Finally, let us show that Modgd(^) is stable by extension. If JV'h, JV'^, JV' jhJV' 
and JV" IhJV" are good ^-modules, then so are JVn and JV jhJV by the exact 
sequence above. • 

Lemma 1.3.5. — Let K G 05, and n > 0. 
(i) For any good s/n-module JV, we have Hj(K; JV) = 0 for j ^ 0. 
(ii) For any epimorphism JV —• JV1 of good gVn~modules, JV(K) —• JV'(K) is 

surjective. 
(hi) #/(K) —> sVn(K) is surjective. 

Proof. — (i) is proved by induction on n, using the exact sequence (1.2.4). 
(ii) follows immediately from (i) and the fact that the kernel of a morphism of good 
modules is good. 
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18 CHAPTER 1. MODULES OVER FORMAL DEFORMATIONS 

(iii) By (ii), g/n+i(K) —» g/n(K) is surjective for any n > 0. Hence lim(<£/m(if )) —> 
m 

«2^ (if) is surjective. 
For s G &fn(K), there exist if' G 05 and $' € .«4(If7) such that if c Int(if') and 

S'\K = S- Then sf is in the image of lim{g/yn(if')) —> g/n(K'). Hence 5 is in the image 
m 

}f g/(K) —• œn\K), because lim{g/̂ yK)) —• s/n(K ) —• «^(if) decomposes into 
m 

lim(^m(K')) -• lim(^m(Int(K'))) ^ ^(Int(ii:')) -• ^(JQ -• An (K). 
m m 

The proof of the following theorem is almost the same as the proof of Theorem 1.2.5, 
and we do not repeat it. 

Theorem 13.6. — Assume (1.2.2) and (1.3.1). 
(i) g/ is a left Noetherian ring. 
(ii) Let JV be a locally finitely generated g/-module. Then JV is coherent if and only 

if' hn'JV'i'hnJrl JV is a coherent g/o-module for any n > 0. 
(iii) For any coherent g/-module JV, JV is h-complete, i.e., JV JV. 
(iv) Conversely, an g/-module JV is coherent if and only if JV is h-complete and 

hnJV/hn+lJV is a coherent g/o-module for any n > 0. 
(v) For any good g/-module JV and any if G 05, we have W(K\JV) = 0 for any 

j>0. 

1.4. ^-graduation and h-localization 

In this section, g/ is a sheaf of algebras satisfying hypotheses (1.2.2) and either 
(1.2.3) or (1.3.1). 

Graded modules. — Let & be a Z[ft]-algebra on a topological space X. We assume 
that R has no /i-torsion. We set 

Mo := R/Rh. 

Definition 1.4.1. — We denote by gvh: D(R) —> D(^0) the left derived functor of the 
right exact functor Mod(^) -> Mod(^0) given by JV i-> JVjhJV. For JV G D(&) we 
call grh(jV) the graded module associated to JV. 

We have 
L L 

%rh(JV) ~ £%o®<%Jt - Zx®Zxlh]J?-
Lemma 1.4.2. — Let JV G D(âê) and let a G Z. Then we have an exact sequence 
of 2&o-modules 

О -> Mo ®m Ea(J¿) Ha {gih{J()) -> &orf{&0, Ha+1{JÏ)) 0. 
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1.4. -̂GRADUATION AND -̂LOCALIZATION 19 

Although this kind of results is well-known, we give a proof for the reader's conve
nience. 

Proof. — The exact sequence 0 —• 3% ——> 3£ —> 3#o —• 0 gives rise to the distin
guished triangle 

JV h JV &h\Jt) +1 

It induces a long exact sequence 

Ha{JV) h Ha(JV) —• Ha{gvh{JV)) —> Ha+x(JV) Ha+1(JV). 

The result then follows from 

STorf (а?0,Яа+1ИО) =¿ Кег(Яа+1(^) h На+1{Л()). 

á?o ®я Ha{J() ~ Сокег(ЯаИО h Яа (.#)), 

Proposition 1.4.3. — (i) Let X\ € D(«̂ op) and Jf2 € D(^). Then 

(1.4.1) g r ^ ® ^ ) - grfi(Jri)®^ogrft(jr2). 

(ii) Let X. € T>(M) (г = 1,2). Then 
(1.4.2) grh (K1 O R m ^ X u , Х2)) ~ Ю Й т ^ ^ р й ) , grft(JT2)). 

Proof. — (i) We have 
L 

grÄ(e l̂® ĵr2) = L L K1 O R R2 OZx [h] ZX L K1 O R grh (K2) 
L L 

= ^i®^0®^0grfi(^2)) 
L L = (K1 O R R0) O R0 grh (K2) 

= gr h (K1) O R0 grh (K2) 
(ii) The proof is similar. 

Proposition 1.4.4. — Let f: X —• Y be a morphism of topological spaces. Let M G 
B(Zx[h\) and N G D(Zy[ft]). Then 

grhRf*Jt ~ Rf*gvhJt, 
gvhf~1^ ~ f-1 r'grn^. 

Proof. — This follows immediately from the fact that for a complex of Zx [ft]-mod
ules M grh(^f) is represented by the mapping cone of M h M and similarly 
for ZY [ft]-modules. • 
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Recall that si is a sheaf of algebras satisfying hypotheses (1.2.2) and either (1.2.3) 
or (1.3.1). The functor gr̂  induces a functor (we keep the same notation): 

(1-4-3) g r , : D ^ ) - ^ o h K o ) . 
The following proposition is an immediate consequence of Lemma 1.4.2 and 

Nakayama's lemma. 

Proposition 1.4.5. — Let M G Dcoh(^) an^ ^ a e Z. The conditions below are 
equivalent: 

(i) Ha(gvh(^)) ~ 0, 
(ii) Ha(M) ~ 0 and Ha+1(JK) has no h-torsion. 

Corollary 1.4.6. — The functor grh in (1.4.3) is conservative (i.e., a morphism 
in D^oh(s/) is an isomorphism as soon as its image by grh is an isomorphism 
in Dcb0h(O). 

Proof. — Consider a morphism (p: M —> JV in D^oh(s/) and assume that it induces 
an isomorphism grh(<p): grh(M) —• grh(<yV) in D^oh(s/o). Let M —> Jf —• j£f +1 > 
be a distinguished triangle. Then gr^^f ~ 0, and hence all the cohomologies of J2? 
vanishes by the proposition above, which means that L ~ 0. • 

Homological dimension. — In the sequel, for a left Noetherian K-algebra 31, we shall 
say that a coherent ^-module 3? is locally projective if, for any open subset U C X, 
the functor 

Jfom^(^, •): ModCoh(̂ |c/) Mod(Kc) 

is exact. This is equivalent to one of the following conditions: (i) for each x G X, the 
stalk 3?x is projective as an ^-module, (ii) for each x G X, the stalk 3?x is flat as 
an ^.-module, (iii) 3? is locally a direct summand of a free ^-module of finite rank. 

Lemma 1.4.7. — A coherent si-module 3? is locally projective if and only if 3? has 
no h-torsion and grh3^ is a locally projective s/o-module. 

Proof. — We set for short A := s/x and Ao := (s/Q)X. Note that AQ — gr̂ A. 
Let P be a finitely generated ^-module. 

(i) Assume that P is projective. Then P is a direct summand of a free 4̂-module. It 
follows that P has no fr-torsion and gr^P is also a direct summand of a free A0-module. 
(ii) Assume that P has no ft-torsion and gr^P is projective. Consider an exact sequence 
0-+Af^L—>P—>0in which L is free of finite rank. Applying the functor gr̂  we 
find the exact sequence 0 —• gvhN gThU> gvhL —* grhP —> 0 and gr^P being projective, 
there exists a map v: grhL —> gvhN such that vogvhu = idgThN- Let us choose a map 
v: L —> N such that gTh(v) = v. Since grh(v o u) = idgThN, we may write 

v o u = idjv —hip 
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where (p: N —> N is an A-linear map. The map id a/ — hip is invert ible and we denote 
by ij) its inverse. Then ip ov ou = idat, which proves that P is a direct summand of a 
free A-module. • 

Theorem 1.4.8. — Let d £ N. Assume that any coherent s/o-module locally admits a 
resolution of length < d by free si^-modules of finite rank. Then 
(a) for any coherent locally projective si-module 2?, there locally exists a free si-mod

ule of finite rank & such that &0 & is free of finite rank, 
(b) any coherent si-module locally admits a resolution of length < d + 1 by free 

si-modules of finite rank. 

Proof. — (a) It is well-known (see e.g., [57, Lem. B.2.2]) that the result in (a) is 
true when replacing si with s/0- Now, let & be as in the statement. Then gr^^ is 
projective and coherent. Therefore, there exists a locally free ^-module ^ such that 
gra^ 0 gr^J^ is free of finite rank over s/o. This implies that P 0 & is free of finite 
rank over si by Lemma 1.2.17. 

(b)-(i) Let jg G ModCoh(̂ /) and let us first assume that M has no ft-torsion. Since 
si is coherent, there exists locally an exact sequence 

0 JT J%_i -* • J% Ji o, 
the ^/-modules JŜ  (0 < i < d— 1) being free of finite rank. Applying the functor grn, 
we find an exact sequence of ^-modules and it follows that gvh(J^) is projective and 
finitely generated. Therefore Jff is projective and finitely generated. Let & be as in 
the statement (a). Replacing J£T and JSfd-i with K 0 F and Ld–1 O F respectively, 
the result follows in this case. 
(b)-(ii) In general, any coherent ^-module M locally admits a resolution 0 —» Ji —> 
S£ —> ^ —• 0, where «5? is a free ^/-module of finite rank. Since Ji has no ft-torsion, 
Ji admits a free resolution with length d, and the result follows. • 

Corollary 1.4.9. — We make the hypotheses of Theorem 1.4-8. Let M* be a complex 
of si-modules concentrated in degrees [a, b] and assume that HI (M) is coherent for 
all i. Then, in a neighborhood of each x G X, there exists a quasi-isomorphism JS? * —> 
jg* where J*f * is a complex of free si-modules of finite rank concentrated in degrees 
[a-d- 1,6]. 

Proof. — The proof uses [43, Lem. 13.2.1] (or rather the dual statement). Since we 
do not use this result here, details are left to the reader. • 

Localization. — For a Zx[ft]-algebra R with no ft-torsion, we set 

(1.4.4) ^ ^ Z x l M - 1 ] ^ ] ^ , 

and we call &loc the h-localization of S%. For an ^"-module jjt, we also set 
^ioc := ̂ ioc ^jtzi M zx[h, rr1] ®Zx[h] Jt. 

Lemma 1.4.10. — The algebra siloc is Noetherian. 
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Proof. — Let T be an indeterminate. One knows by [38, Th. A.30] that s/[T] is 
Noetherian. Since s/loc ~ s/[T]/si[T}(Th - 1), the result follows. • 

1.5. Cohomologically complete modules 

In order to give a criterion for the coherency of the cohomologies of a complex of 
modules over an algebra s/ satisfying (1.2.2) and either (1.2.3) or (1.3.1), we introduce 
the notion of cohomologically complete complexes. 

In this section, ^ is a Z[h]-algebra satisfying 

(1.5.1) S has no ft-torsion. 

Recall that ^loc := Z[/î, ft-1] OZ[h] M for an R-module ¿fé. 

Lemma 1.5.1. — For Jt.JÍ1 G ВъШ1ос), we have 
RHom Rloc (M, M') RHom R (M, M'). 

Proof. — We have Sloc L 
0 ж ~ Ж. Hence, 

BJúm^o* {Ж, Ж') ~ BJébm ̂ oc(Sìoc L 
<8> 

^Ж,Ж') 

= RHom R (M, M'). 

The next result is obvious. 

Lemma 1.5.2. — The triangulated category D(^loc) is equivalent to the full subcate
gory of D(k) consisting of objects <Jt satisfying one of the following equivalent con
ditions: 

(i) grfi(^) = 0, 
(ii) h: Hl(^) —> Hl{^) is an isomorphism for any integer i, 

L 
(iii) J£ —> &ioc®^J£ is an isomorphism, 
(iv) RJtim ̂ (&loc, —• M is an isomorphism, 
(v) RMmJ&loc/ &, je) ~ 0. 

Lemma 1.5.3. — Let K be a Z[h]-module with projective dimension < 1. Then for any 
./# S D(^), any open subset U and any integer i, we have an exact sequence 

0 —• Ext^Jff.iT-1 (U; M))—• Wlp\KJfamm (K,jr)) 

^HomZ[h] {K,Wi{J}' (U, M)) —> 0. 

Proof. — We have a distinguished triangle 

RHomz[a] (K, r<iRr(C/; JK)) -> RHomm (K, RT(U; JK)) 

-+ RHomz[a] (K, T^RT(17; JK)) +1 
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Since HkRHomz^(K,N) = 0 for any k ^ 0,1 and any Z[/i]-module N, we have 
Hs+1RHomzjfi] (K, T<8Rr(C/; ^#)) ~ 0. Hence we have an exact sequence 

0 -v ifiRHomz[ft](K,T<iRr(U';^)) HirWIomm(K,W(U;J?)) 
-f JffiRHomz[R](i ,̂T^iRr(C/;^)) 0. 

Then the result follows from 
irRHomz[fi] (K, r<iRr(C/; ^T)) ~ Ext1^ (K, H'^QU; JT}) 

and iTRHom^i^T^RIXf/;.^)) ~ Homz[ft] (K, H^U; JK)). • 

Recall that we set 
(1.5.2) ^~~:=\imJt/hnJ?. 

n 
Lemma 1.5.4. — Let jtft G Mod(^) and assume that M has no h-torsion. 

(i) Jtfom^(Mloc/S,JZloc/J£) ~ <gxtlg>(Sloc/S,JZ) ~ JT. 
(ii) Ker(^# —> ^jf) ~ ^bm^(^loc, ̂ #). in particular, ^IC is h-separated if and only 

if^bm^(Sloc, M) = 0. 
(iii) Coker(^ —• ^ ) ~ ^xt^(^loc, M) In particular, jj£ is h-complete if and only 

if £xtj^{Sloc, M) ~ 0 for j = 0,1. 

Proof. — We have 

Жотт(ае{ос/ае,Жос/^) ~ l i m J f o m ^ t r ^ / ^ J " 0 0 / ^ ) 
n 

~ lim Жот ¿g{h-néë, H-"Jir/JÏ) 
П 

~ \\т.Ж/ПпЖ ~ Jé. 
n 

Since R5tew^(^lo7^,^loc) - 0 by Lemma 1.5.2, applying the functor 
R%mg>(&loc/&, •) to 0 -» ^ -h. ^floc -> MlocIJt -> 0, we obtain an iso
morphism j rom^(^ lo7^ ,^ lo7^) ^> £xt10{@locl@,JK). Hence we obtain 
(i). 

By the long exact sequence associated with 0 -> & -> <#oc -+ &Xoc/& -> 0, we 
obtain 

^ o m ^ ( ^ l o 7 ^ , ^ ) -+ JTom^(^loc,^) -+ JTom^(^,^r) 

^xt^(^ l07^ ,^) -> gxt^ise1™^) -> o, 

which reduces to 

0 -> J^om^(^loc, Jt)^Jt^ — M – M £xtx^Xoz, JK) -> 0. 

Hence we obtain (ii) and (iii). • 
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Consider the right orthogonal category D(&loc)±r to the full subcategory D(^loc) 
of D(^). By definition, this is the full triangulated subcategory consisting of ob
jects JK G D(^) satisfying RomDm(<yV,^) ~ 0 for any JV G D(^loc) (see [43, 
Exe. 10.15]). 

Definition 1.5.5. — One says that an object JK of D(&) is cohomologically complete 
if it belongs to D(Sloc)±r. 

Proposition 1.5.6. — (i) For JK G T)(&), the following conditions are equivalent: 
(a) JK is cohomologically complete, 
(b) R%om^(&loc,JK) ~ Rjfez[^(Z[M_1],^0 ~ 0, 
(c) hmExtJz (Z^,^-1],^^^;^)) ~ 0 for any x G X, j = 0,1 and any 

U3x 
i G Z. Here, U ranges over an open neighborhood system of x. 

(ii) K#bm^(&locJK, M) is cohomologically complete for any JK G D(&). 
(hi) For any JK G D(R) there exists a distinguished triangle 

JK' -> JK -> JK" - t l ^ 

with JK' G D(^loc) and JK" G D(^loc)±r. 
(iv) Conversely, if 

JK' JK JK" — 
¿5 a distinguished triangle with JK' G D(^loc) and M" G D(&loc)±r, then 
JK' ~ RJ%^0#oc,^) and M" - R ^ ^ ( ^ l o c / ^ [ - l ] , ^ ) . 

Proo/. — (i) (a)^(b) For any JV G D(^loc), one has 

Hom^(t/K, ̂ T) ~ Hom^(^loc<|)^, JK) 
~ Hom^(^, R5%^^(^loc, .#)) 

and it vanishes for all Jf G D(^loc) if and only if R5%m^(^loc, ̂ ) ~ 0. 
(i) (b)44>(c) follows from Lemma 1.5.3. 

(ii) Since &loc®^{Sloc/&) ~ 0, we have 

R№m<%(SXoc, R3tim^(Sloc/S, JK)) 

~ RHom R(Sloc® R{Rloc/R), M) ~ 0, 
and hence Rflbm^(&loc/&, JK) is cohomologically complete. 
(hi) We have obviously BJ6m^(Sloc, JK) G D(^loc). Hence the distinguished triangle 

"RHom R(Rloc,.JK) -> RHom R(R, JK) RHom^(^lo7^[-l],^#) - t ^ 
gives the result. 
(iv) Since BJ6m^(Sloc, JK") ~ 0, we have 

JK' ~ R^m^^100 ,^ ) R5%^^(^loc,^), 
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and hence Jl" ~ BMm^(Sloc/S[-l], JK). • 
Note that M • RJfim^(&loc, JZ) is a right adjoint functor of the inclusion 

functor D(<#oc) -* D(^), and the quotient category D(^)/D(^loc) is equivalent 
to D(^loc)±r. 

Remark that J( G D(^) is cohomologically complete if and only if its image 
in D(Zx[fi]) is cohomologically complete. 

Corollary 1.5.7. — Let JZ be an M-module. Assume the following conditions: 
(a) Jt has no h-torsion and is h-complete, 
(b) for any x G X, denoting by Wx the family of open neighborhoods of x, we have 

"lim" Hl(U\ Jt)~b for i ± 0. 
UeWx 

Then M is cohomologically complete. 

Proof. — For U open, we have the maps 

T(U\ JK) A lim T(U\ JK)/hnT{U; JK) ±> lim T{U\ JtlKnJt) ~ T(U] JK) 
n n 

whose composition is the identity. Since b is a monomorphism, a is an isomorphism 
and therefore T(U; JZ) is ft-complete. Consider the assertion 

"Urn" Ext'z (Z[fi, ft-1], H\U; JK)) ~ 0 for j = 0,1. 

This assertion is true for i = 0 since T(U\JK) is ft-complete and is true for i ^ 0 by 
hypothesis (b). The same vanishing assertion remains true after replacing "lim" with 

lim. Applying Proposition 1.5.6 (i), we find that J% is cohomologically complete. • 

Proposition 1.5.8. — Let Jt G T>{&) be a cohomologically complete object and a G Z. 
// Hl(grh(^)) = 0 for any i < a, then Hl(JZ) = 0 for any i < a. 

Proof. — The exact sequence Hi-1 (grh- JK) -> H^JK) h Hl(JZ) -+ H\gYhJZ) 
implies that Hl(JZ) h > Hl(JZ) is an isomorphism for i < a. Hence r<aJZ G 
D(^loc) and we have R№m<%(Sloc, r<aJZ) ~ r<aJt. By the distinguished triangle, 

R Ä f ( r c , T < a J ) RHom R(Rloc, M) RHom R(Rlос, т >a, M) +i 

we have r<aJé ~ RMm^(Sloc,r^aJé)[-l] and they belong to D<a(S) D 
D^a+1(^)~0. 

Corollary 1.5.9. — Let Je G D(âë) be a cohomologically complete object. If gih(Jf) ~ 
0, then J( ~ 0. 

Proposition 1.5.10. — Assume that M G D(&) is cohomologically complete. Then 
BJûm6%{JV', M} G D(Zx[fi]) is cohomologically complete for any JV G D(^). 
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Proof. — It follows from 

R J ^ ^ ^ Z ^ f t - ^ R J ^ ^ ^ , ^ ) ) ~ Rj^^(^,Rjfe™(Z[ft,ft-1],^)). • 

We can give an alternative definition of a cohomologically complete module. 

Lemma 1.5.11. — Let Jf e ~D(&): Then we have 
L 

(i) R7r(("lim"^,/i")<8)^^) ~RMmm{&oc,J(), 
П 

L 
(ii) R7r(("lim"^,/^'/in)(8)^) ^RMmm(@loc/@[-\},Jt). 

71 

Proof. — It is enough to show (i). Set L = "lim"(^ftn). Note that L is flat, i.e., the 
n 

= 

functor L OR from Mod(^) to Pro (Mod (< )̂) is exact. 
One has the isomorphisms 

*m^(floc, JK) ~ J^omg>{\imm-n, JK) 
n 

lim Жот (@?Гп, Jit) 
n 

= lim Жот Л&ПГ71, S) ®д> Jt 
n 

= lim (Ж" ®ЯЛ(). 
П 

L 
It remains to show that R7r(L(g)̂  •) is the right derived functor of Ji i—> 
\im(&hn <g>^ JK). Hence, it is enough to check that if Jt is an injective ^-module, 
n L 

then R7r(L(g)^^) is in degree zero. Applying Lemma 1.1.5 with Jtn = &hn ®^ Jf, we find Hi (U, RTT(L0^^#)) ~ 0 for i > 0. Therefore, RV(L(g)^^) ~ 0 for i > 1. On 
the other hand, since {T(U;JKn)}n satisfies the Mittag-Leffler condition, we get that 
R1TT(L(|)^^) ~ 0. 

Hence, M is cohomologically complete if and only if the morphism M —; 
R7T ("lim" /&hn) ®^je) is an isomorphism. 

n 
Proposition 1.5.12. — Let f: X —• Y be a continuous map, and M G D(Zx[ft])- If 
Je is cohomologically complete, then so is Rf*Jé. 

Proof. — It immediately follows from 

RMmlv [h] (Zy [ft, ft"1], R / * ^ ) ~ Rf,RMm%x [h] {Zx [ft, ft"1], Jl). 
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1.6. Cohomologically complete ^-modules 
In this section, srf is a K-algebra satisfying hypotheses (1.2.2) and either (1.2.3) or 

(1.3.1). 
Theorem 1.6.1. — Let M G Dboh (<£/). Then M is cohomologically complete. 
Proof. — Since any coherent module is an extension of a module without ft-torsion 
by an ft-torsion module, it is enough to treat each case. 

Assume first that Jt is an ft-torsion coherent ^-module. Since the question is 
local, we may assume that there exists n such that KnJK = 0. Then the action of h on 
the cohomology groups of R^om^(s^loc, J?) is nilpotent and invertible, and hence 
the cohomology groups vanish. 

Now assume that. M is a coherent ^/-module without ft-torsion. Then Corol
lary 1.5.7 shows that Ji is cohomologically complete. • 
Corollary 1.6.2. — If Jt G Dboh(j^) and JV G D(^) , then R%bm^(<yV,j£) is coho
mologically complete. 
Proof. — It is an immediate consequence of Proposition 1.5.10 and the theorem 
above. • 

In the course of the proof of Theorem 1.6.4 below, we shall use the following 
elementary lemma that we state here without proof. 
Lemma 1.6.3 (Cross Lemma). — Let C be an abelian category and consider an exact 
diagram in 

X2 

X1 Y Z1 

z2. 
Then the conditions below are equivalent: 
(a) Im(X2 -> Zx) ^ Im(y -> Zx), 
(b) ImpCi Z2) ^ Im(y -> Z2), 
(c) X\ © X2 —> Y is an epimorphism. 
Theorem 1.6.4. — Let Jt G D+(^) and assume: 
(a) M is cohomologically complete, 
(b) grftM0 € D+h(*b). 
Then, J( G D+h(,c/), and we have the isomorphism 

E\Jt) lim 
П 

Hi (An L 
O S. M) 

for all i G Z. 
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Proof. — We shall assume (1.2.3). The case of Hypothesis (1.3.1) could be treated 
with slight modifications. 

Recall that ¿4 := s/fh71*1^ and set Jtn = stJktfJt, Njn := Hj(^n). 

(1) For each n G N, the distinguished triangle g//kn£? h s//hn+1s/ —> 
A / hA +i induces the distinguished triangle 

(1.6.1) Mn-l h Mn M0 +i 

This triangle gives rise to the long exact sequence 

(1.6.2) NJ - 1 yyn-l h y n N0j Nj+1 
n-1 

from which we deduce by induction on n that JV£ is a coherent si-module for any j 
and n > 0 by using the hypothesis (b). 
(2) Let us show that 

(1.6.3) 
"lim" Coker(./# 

n 
h JVJ) and "lim" 

n 
Ker(^ h AQ) are 

locally represent able for all j G Z. 

Consider the distinguished triangle: 

(1.6.4) #̂0 hn + 1 ̂ 71+1 Mn + 1 

It gives rise to the long exact sequence 

(1.6.5) N0j hn+1 Nj n+1 Nnj yjn N0j + 1 

Now consider the exact diagram, deduced from (1.6.2) and (1.6.5): 

(1.6.6) NJ n + 1 

Nj n - 1 h Njn N0j 

yin - 1 
yin 

NA>j+1-

Here the commutativity of the triangle follows from the commutative diagram 

M0 hn Mn Mn - 1 +1 

id h h 

M0 hn + 1 Jtn+l Mn + 1 

Hence Im(^_x) C Im(^) C TATF*1'. Therefore, the sequence {Im^}n of coherent 
^-submodules of q̂"7"1"1 is increasing and thus locally stationary. It follows from 
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(1.6.6) and Lemma 1.6.3 that 

(1.6.7) the decreasing sequence {Im(ĉ J —* ^6*)}n is locally station
ary for any j G Z. 

Since Coker(^_1 h JQ) ~ Im(Njn — Nj0)} by (1.6.2), we deduce that 

"lim" Coker(^' ^* *YJ) * "lim" Coker(I^_1 h Njn) 
n n 

is locally representable. 
Since Ker^Lj h jrj) ~ J^"1/Im(NnJ - 1 -» ./tf'-1) by (1.6.2), we get that 

"lim" Ker(Jtf h -5» ./#) ~ "lim" Ker(^_1 h Njn') is locally representable. 
Tl n Therefore, we have proved (1.6.3). Then by Proposition 1.2.18, lim <ÀQ is a coherent 

n 
A-module and {^K?}N satisfies the Mittag-Leffler condition. 
(3) Hence it remains to prove that HJ (Jf) \imJVj for any j . Set M' = 

n 
( « M V „ ) ® ^ G D+(Pro(Mod(^))) and Jfi = H'j(W) n "lim" JQ G 

n n 
Pro(Mod(^)). Lemma 1.5.11 implies that 

M Rn M'. 
Since the ^ J ' s are coherent ^/-modules, for any any U € 93, Hl(U; J\Q) = 0 (i > 0) 
and {^7(^r)}n satisfies the Mittag-Leffler condition. Hence in the exact sequence 

0 R^^Hm" H^iU; Njn)) -* ^ ( C ^ R T T ^ ) -* limir([7; JVJ) -* 0, 
n n 

the first and the last term vanish, and we obtain W"KJV3 = 0 for any i > 0. Let 
us show that H3\J() lim^Vj by induction on j . Assuming H3(J() \\mjVj 

n n 
for j < c, let us show that HC(J() s^ limjV^. By the assumption, Hl(Jt) 

n RTT(JK1) for any i < c. Hence r<cJt RTT{T<CJ^'). Since Jl RTIV#', we obtain 
r~Cc/# R7r(r-C^#/). Hence taking the c-th cohomology, we obtain HC(J%) 
BPirH^JX') ~ lim Nnc. 

n 
The next result will be useful. 

Proposition 1.6.5. — Assume that s/op/hs/op is a Noetherian ring and the flabby di
mension of X is finite. If M G Dh(s/) is cohomologically complete, then for any 
JV G D^oh(s/op), the object JV^^Jé of D~(Z[h]x) is cohomologically complete. 

Proof. — By the assumption on the flabby dimension, there exists a G Z such that 
iTR^z[n](Z[ft, ft"1],= 0 for any & G D-°(Zx[ft]) and any % > a. 
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For any n G Z we can locally find a finite complex L of free siop-mod-
. L ules of finite rank such that there exists a distinguished triangle L^^Jt 

L L Jf^^Jt M —• G where G G D (Zx[h]). Since L<g>^JK is cohomologically complete, 
L WRMm^^^JV O S Jt) ~ WRMomS(Aloc, G) = 0 for % > n + a. Hence 

L JVQ^JK is cohomologically complete. 

Flatness. — 

Theorem 1.6.6. — Assume that siop/hsiop is a Noetherian ring and the flabby di
mension of X is finite. Let Ji be an si-module. Assume the following conditions: 
(a) JH has no h-torsion, 
(b) JH is cohomologically complete, 
(c) jit' jhjit is a flat si^-module. 
Then jit is a flat si-module. 

Proof. — Let / be a coherent siop-module. It is enough to show that we have 
L L H%\JV^O s.Jt) = 0 for any i < 0. We know by Proposition 1.6.5 that JV^^M 

L L 
is cohomologically complete. Since gYh(Ji ® ̂ jii) ~ (g£hjV)Ç§^(gYhjit) belongs 
to D-°(ZX), we have jV%^jit G D-°(Z[ft]x) by Proposition 1.5.8. 

Corollary 1.6.7. — In the situation of Theorem 1.6.6, assume moreover that j/t' jhjit 
is a faithfully flat sio-module. Then jit is a faithfully flat si-module. 

Proof. — Let Ji be a coherent £/op-module such that Ji^^jit ~ 0. We have to show 
L 

that <sV ~ 0. By Theorem 1.6.6, we know that jit is flat, so that Jt^^jii ~ Ji^^jit. 
Therefore 

L 
(gr^)®M)(gr^) ~ gxh(jV 0^ jit) ~ 0 

and the hypothesis that M'jhM is faithfully flat implies that gchjV ~ 0. Since JV is 
coherent, Corollary 1.4.6 implies that JV ~ 0. • 

Proposition 1.6.8. — Assume (1.2.2) and (1.2.3). Let U be an open subset of X sat
isfying: 

(1.6.8) U fl V G 05 for any V G 05. 

Then for any coherent -module Jt, we have 

(i) RnTu(JZ) = 0 for any n^O, 
(ii) Tu(s/) 0^ Jt —• Tu(JK) is an isomorphism, 
(iii) Tu(g/) is a flat g/op-module. 
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Proof — (i) Since RnYu{Jt) is the sheaf associated with the presheaf V i-» Hn(U fl 
V\JK), (i) follows from Theorem 1.2.5 (v). 
(ii) The question being local, we may assume that we have an exact sequence 0 —> 
Ji —• j£f —• M —» 0, where jSf is a free ^-module of finite rank. Then, we have a 
commutative diagram with exact rows by (i): 

TuW) O S N ̂  ^ TuW) ®^ % >- Tv(si) ®^ ^ 0 

I 

0 ^ TU(JV) Tu(Sf) ^ TV{JK) 0. 

Since the middle vertical arrow is an isomorphism, Y\j(si) 0^ M —• YU{JH) is an 
epimorphism. Applying this to Ji, Tu(^i) 0^ JY —• Y\j(jV) is an epimorphism. 
Hence, Tu {si) 0^ Jt —• Tu{Ji) is an isomorphism. 
(hi) By (i) and (ii), Ji \-> Tu{$i) 0^ *sit is an exact functor on the category of 
coherent ^-modules. It follows that for all x G X, the functor jii i—> (Tu{&i))x ®^ 
Jtx is exact on the category Modcoh(̂ /). Therefore, {Tu{#i))x is a flat ^op-module. 

• 

Remark 1.6.9. — The results of this chapter can be generalized in the following situ
ation. Let si be a sheaf of rings on a topological space X and let F be a both-sided 
sheaf of ideals of si. We assume that: 
there exists locally a section s of F such that si 9 a i—• as and ^ 9 o H sa give 
isomorphisms «ê  J .̂ 

We set A0 = A/ F, A si{-n) = / n C ^ and si{n) = RMm^{si{-n), si) for n > 
0. 

Then we have si(n) C si(n + 1), and ¿2̂ (n) 0^ ^(m) ~ si{n + m). 
We set siloc = lim si(n) and for an ^-module M , we set JZ{n) = si(n) 0^ ji(. 

n We say that JH is J^-torsion free if Ji{—1) —• ^ is a monomorphism. Of course, 
&̂  is ^-torsion free. 

Finally, for an « -̂module JH we set sit := lim Coker(̂ #(—n) —> jit). 
n 

Instead of (1.2.2), we assume 

(1.6.9) (i) si ^si, 
(ii) sio is a left Noetherian ring. 

Under the assumptions (1.6.9) and (1.2.3), all the results of this chapter hold with 
suitable modifications. 

In particular, our theory can be applied when X = T*M is the cotangent bundle to 
a complex manifold M and si = <§x (0) is the ring of formal microdifferential operators 
of order 0 (see Section 6.1 for more details on the ring of formal microdifferential 
operators). 
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CHAPTER 2 

DQ-ALGEBROIDS 

2.1. Algebroids 
In this section, X denotes a topological space and recall that IK is a commuta

tive unital ring. A K-linear category means a category such that Hom^(X, Y) is 
endowed with a K-module structure for any X, Y G ^, and the composition map 
Hom^(X, Y) x Hornby, Z) -> Hom^(X, Z) is K-bilinear for any X, Y, Z G One 
defines similarly the notion of a K-linear stack. 

The notion of an algebroid has been introduced in [47]. We refer to [21] for a more 
systematic study and to [43] for an introduction to stacks. Recall that a K-algebroid 
^ on X is a K-linear stack locally non empty and such that for any open subset U 
of X, any two objects of s/(U) are locally isomorphic. 

If A is a K-algebra (an algebra, not a sheaf of algebras), we denote by A+ the 
K-linear category with one object and having A as the endomorphism ring of this 
object. 

Let si be a sheaf of K-algebras on X and consider the prestack U i—• s/(U)+ (U 
open in X). We denote by g?+ the associated stack. Then si+ is a K-algebroid and is 
called the K-algebroid associated with si'. The category s/+(X) is equivalent to the 
full subcategory of Mod(s/op) consisting of objects locally isomorphic to siop. 

Conversely, if si is an algebroid on X and a G si(X), then si is equivalent to the 
algebroid 6W^(<r)+. 

For an algebroid si and cr, r G si{U), the K-algebras Snd^(a) and &id^{r) are 
locally isomorphic. Hence, any definition of local nature concerning sheaves of K-al-
gebras, such as being coherent or Noetherian, extends to K-algebroids. 

Recall that for an algebroid si, the algebroid siop is defined by siop(U) = 
{si(U))op (U open in X). Then, if si is a sheaf of K-algebras, {siop)+ ~ (si+)op. 

Convention 2.1.1. — If si is a sheaf of algebras and if there is no risk of confusion, 
we shall keep the same notation si to denote the associated algebroid. 

Note that two algebras may not be isomorphic even if the associated algebroids are 
equivalent. 
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Example 2.1.2. — Let X be a complex manifold, J£f a line bundle on X and denote as 
usual by 3>x the ring of differential operators on X. The ring of j£f-twisted differential 
operators is given bv 

DlX := L O0X DX O0X L O - 1. 

In general the two algebras Q>x and î jf are not isomorphic although the associ
ated algebroids are equivalent. The equivalence is obtained by using the bi-invertible 
module @x ®̂>x J*?®-1 (see Definition 2.1.10 and Lemma 2.1.11 below). 

Let % = {Ui}iei be an open covering of X. In the sequel we set Uij := Ui fl Uj, 
Uijk :=UiC\UjC\Uk, etc. 

Consider the data of 

(2.1.1) a K-algebroid si on X, 
(ii e si(Ui) and isomorphisms ip^: (Jj\ui:i ^ Ai\uir 

To these data, we associate: 
— sii = Snd^(o-i), 
— fij : sijlz/ij &ii\uij, the K-algebra isomorphism o n ^ o a o ^j-.1, 
— dijk, the invertible element of sii(Uijk) given by tfij o ifjk o (p~^. 

Then: 

(2.1.2) fij 0 fjk = Ad(aijk) o fik on Uijk-. 
dijkdiki = fij{ajki)aiji on Uijki-

(Recall that Ad(a)(6) = aba'1.) 
Conversely, let sii be K-algebras on Ui (i € /), let Fij : sij\uij ^It/ij (*> J ^ -0 

be K-algebra isomorphisms, and let ai,j,k (i,j, A; £ /) be invertible sections of sii(Uijk) 
satisfying (2.1.2). One calls 

(2-1-3) ({«̂ i}te/> {ftjhjei, {aijk}i,j,kei) 
a gluing datum for K-algebroids on U. The following result, which easily follows from 
[30, Lem 3.8.1], is stated (in a different form) in [37] and goes back to [29]. 

Proposition 2.1.3. — Assume that X is paracompact. Consider a gluing datum (2.1.3) 
on tyt. Then there exist an algebroid si on X and {cri,(pij}ijei as in (2.1.1) to which 
this gluing datum is associated. Moreover, the data (si,ai,ipij) are unique up to an 
equivalence of stacks, this equivalence being unique up to a unique isomorphism. 

We will give another construction in Proposition 2.1.13, which may be applied to 
non paracompact spaces such as algebraic varieties. 

For an algebroid si, one defines the K-linear abelian category Mod(^), whose 
objects are called ^-modules, by setting 

(2.1.4) Mod(^) := FctK(^, fBtod(Kx)). 

Here 9Jlod(Kx) is the K-linear stack of sheaves of K-modules on X and, for two 
K-linear stacks si\ and si2, FctjK^i, £i2) is the category of K-linear functors of stacks 
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from si\ to ¿#2. If si is the algebroid associated with a K-algebra A on X, then 
Mod(j2/) is equivalent to Mod(A). The category Mod(g/) is a Grothendieck category 
and we denote by D(s/) its derived category and by Dh(si) its bounded derived 
category. 

For a K-algebroid si, the K-linear prestack U h-> Mod(s/\u) is a stack and we 
denote it by dJloD(s/). 

In the sequel, we shall write for short "a G si" instead of "cr G (£7) for some 
open set IP\ 

Definition 2.1.4. — An ^/-module Jzf is invertible if it is locally isomorphic to si, 
namely for any a e si, the &nd^ (cr)-module JSf(tr) is locally isomorphic to &nd^{a). 

This terminology is motivated by the fact that for an invertible module Jz?, if we set 
SS~{&nd^(Jg?))op, then Mbm^(if, ^ ) <8>̂ if ~ ^ and if (g>̂  Jfom^(&,si)~si. 

We denote by Inv(^) the full subcategory of Mod(¿2/) consisting of invertible 
si'-modules and by 3nK)(si) the corresponding full substack of Wlod(si). Then we 
have equivalences of K-linear stacks si 3nt>(siop) 3nt)(^)op-

Recall that for two K-linear categories if and if', one defines their tensor product 
if (8̂  if7 by setting Ob(if gfc if') = Ob(if) x Ob(V) and 

Hom„ v,((M,M'),(N,N')) = Hom^(M,iV) ^ H o m ^ M ' , JV') 
K 

for M,N etf and iV, N' eft'. Then if (8̂  if' is a K-linear category. 
For a pair of K-algebroids si and ¿2/', the K-algebroid si (8̂  ¿2/' is the K-linear 

stack associated with the prestack U 1—> si(U) (8̂  si'(U) (U open in X). We have 
Mod(^ (8̂  ̂ /') ^ FctK(^, aJlod^7))-

For a K-algebroid si, Mod(si (8̂  s/op) has a canonical object given by 

si (ĝ  ^op 9 (cr,a/op) ^ ^ o m ^ ( j » G OToD(Kx). 

We denote this object by the same letter A. If si is associated with a K-algebra A, 
this object corresponds to A, regarded as an (A (8̂  74op)-module. 

For K-algebroids si{ (i — 1,2,3), we have the tensor product functor 

(2.1.5) • (8>̂2 • : Mod(M <8fc si^p) x Mod(^2 <8fc ^3°p) 

-^Mod(M<8k<P), 
and the Ĵ frm functor 

(2.1.6) ^bmM (•,•): Mod(M «fc si^)op x Mod(M <8>k 3̂°P) 

^Mod(^2^K^3°P). 
In particular, we have 

• ®^ • : Mod(^op) x Mod(^) —• Mod(Kx), 

Jfom^( •, •) : Mod(^)op x Mod(^) —• Mod(Kx), 

^ ( • ^ ) : Mod(^)op —* Mod(^op). 
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Since Mod(si) is a Grothendieck category, any left exact functor from Mod(si) to an 
abelian category admits a right derived functor. 

Now consider the tensor product in (2.1.5). It admits a left derived functor as 
soon as sis is K-flat. Indeed, any Jt G Mod(£/2 ® (^)op) is a quotient of an £/2-flat 
module since there is an exact sequence 

0 JSf -> Jt -+ 0, 
SGHORA (^f, |̂C/) 

where £7 ranges over the family of open subsets of X and j£? G (¿2/2 ® (̂ 3)op)op(C )̂. 
(Recall that for a K-algebroid si, siop(U) is equivalent to 3xvx>(si)(U).) Note that j£f 
is ^2-flat since (̂ 3)op is K-flat. 

The following lemma is obvious. 

Lemma 2.1.5. — Let si and si' be K-algebroids. To give a functor of algebroids 
ip: si' —» si is equivalent to giving an (si' ® siop)-module JSf which is locally isomor
phic to si (i.e. for a G si and a' G si', J£(a' (g)crop) is locally isomorphic to &td^(a) 
as an 6nd^(a)op-module). 

The si' <g) «ĝ op-module j£? corresponding to ip is the module induced from the 
si <g> ^op-module si by tp <g> ̂ op : A' (8) Aop A <g> Aop. 

The forgetful functor 
Mod(^) -> Mod(^) 

is isomorphic to ^ H-> j£f 0^ M. 
Let / : 1 -> 7 be a continuous map and let si be a K-algebroid on y. We denote 

by f~xsi the K-linear stack associated with the prestack 6 given by: 

6(£/) = {(a, V); V is an open subset of y such that f(U) C V 
and c G si(V)} for any open subset £/ of X, 

Home([/) ((a, V), (</, V'))) = r(tf; / - ^ o m ^ ^ a7)). 

Then f~xsi is a K-algebroid. We have functors 

/ . , / , :Mod(/-V)—>Mod(^), 
/ - 1 : Mod(^) —• Mod(/" V ) . 

For two topological spaces Xi and X2, let pi'. X\ x X2 —• X* be the projection. 
Let £^ be a K-algebroid on X* (i = 1,2). We define a K-algebroid on Xi x X2, called 
the external tensor product of si\ and si2, by setting: 

M №si2 \=p^lsii ®p2~1si2. 
We have a canonical bi-functor 

• E3 • : Mod(M) x Mod(^2) —• Mod(M El j^2). 
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Bi-invertible modules. — The following notion of bi-invertible modules will appear 
all along these Notes since it describes equivalences of algebroids. 

Definition 2.1.6. — Let A and A' be two sheaves of K-algebras. An A 0 ^'-module 
L is called bi-invertible if there exists locally a section w of L such that A 3 a i—• 
(a <g> l)w G L and A! 3 a! > (1 0 a')w G L give isomorphisms of A-modules and 
A'-modules, respectively. 

Lemma 2.1.7. — Let L be a bi-invertible A® A!-module and let u be a section of L. If 
A 3 a h-> (a 0 \)u G L is an isomorphism of A-modules, then A' 3 a' t-» (1 0 a')-*/ G L 
¿5 a/50 an isomorphism of A'-modules. 

Proof. — Let w be as above. There exist a G A and b G -A such that u = (a<8>l)w and 
w = (b®l)u. Then we have u = (ab<g)l)u and hence ab = 1. Similarly w = (ba 0 l)w 
implies 6a = 1. Hence we have a commutative diagram 

A7 
W 

L 

U a (8)1 
L 

and we obtain the desired result. • 

Remark 2.1.8. — Let A and B be two K-algebras and let L be an (yl0.E?op)-module. 
Even if L is isomorphic to A as an A-module and isomorphic to Bop as a £?op-module, 
L is not necessarily bi-invertible, as shown by the following example. 

Let I be an infinite set and take o G /. Set J* = I \ {o}. Then there exists a 
bijection v: I* -* I. Set 

X = {ae HomSet(J,J);o(o) = o}, 
7 - { 6 E Horn Set( J,/);&((>) = o and &(/*) C /*}. 

Set Z = X. Then X and Y" are semi-groups and X acts on Z from the left and 
Y acts on Z from the right. Let v' G Z be the unique element extending v. Then 
id/ G Z gives an isomorphism X Z (X 3 a h-> a G Z) and vf £ Z induces 
an isomorphism Y Z(Y 3 b\ -^ v' o b E Z). Let A = K[X] and B = K[Y] 
be the semigroup algebras corresponding to X and Y. Set L = K[Z]. Then L is an 
(A 0 Bop)-module and L is isomorphic to A as an A-module and isomorphic to Bop 
as a £op-module. Let -a be the element of L corresponding to id/. Then u gives an 
isomorphism A 3 a (a 0 1)u E L. Since the image of Bop 3 b i—• (1 0 b)^ G L is 
K[Y] ̂  L, L is not bi-invertible in view of Lemma 2.1.7. 

However the following partial result holds. 

Lemma 2.1.9. — Let A and A' be K-algebras and let L be an A® A1 -module. Assume 
that L is isomorphic to A as an A-module and isomorphic to A' as an A'-module. 
If we assume moreover that Ax is a left noetherian ring for any x G X, then L is 
bi-invertible. 
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Proof. — Assume that A 3 a t-> (a 0 l)u G L and A' 3 a' h (1 0 a')v G L are 
isomorphisms for some u,v G L. Set v = (a 0 l)u and u = (1 ® a')v. There exists 
a" G A such that (l®a')u = (a" ®l)u. Then we have u = (l0a')i> = (l®a/)(a<8>l)u = 
(a (8) 1)(1 ̂  a')M = (aa" 0l)w. Hence we obtain aa" = 1. Therefore the 4̂-linear 
endomorphism / : A 3 z za" is an epimorphism (f(za) = z). Since Ax is a left 
noetherian ring, / is an isomorphism. Hence, a"as well as a, is an invertible element. 
Then the following commutative diagram implies the desired result: 

A' V L 

и а®1 
L. 

Definition 2.1.10. — For two K-algebroids si and si', we say that an (si<g>g/f)-module 
Jjf is bi-invertible if for any a e si and a' G si1, j£f (a®a') is a bi-invertible £nd^(cr)<g) 
&nd^> (cr̂ -module. 

Lemma 2.1.11. — To give an equivalence si' -^-> si is equivalent to giving a bi-
invertible (si' 0 siop)-module. More precisely, the forgetful functor VJlo'O(si) —• 
dJlod(si') is given by Mi—» JSf 0^ ^ for a bi-invertible (si' 0 siop)-module jSf. 

Let ^ G Mod(si). We shall denote by &nd^(<Ji) the stack associated with the 
prestack 6 whose objects are those of si and Jifome(a,a') = J4?omK(yJ?(a),^(a')) 
for a, a' G si(U). Then &nd^(Ji) is a K-algebroid and there exists a natural functor 
of K-algebroids si —• 6nd^(y/t). Note that M may be regarded as an (?/^K(^)-niod-
ule. 

In particular, &id^(si) is a K-algebroid, there is a functor of K-algebroids si 0 
siop —• &nd^(si), and A may be regarded as an <5^K( /̂)-module. 

Lemma 2.1.12. — Let si and si' be 'K-algebroids and let y$ G Mod(«g )̂, JH1 G 
Mod(sif). Assume that JH and yii' are locally isomorphic as K-modules, that is, for 
any a £ si and a' G si', <Jt(a) and JH'(O') are locally isomorphic as Kx-modules. 
Then &td^(j/t) and &td^(jit') are equivalent as K-algebroids. 

Proof. — For a G si and a' G si', set Jgf (a' 0 aop) = J4?omK(J?(a), Jt'(o')). Then 
j£f is an (&nd^(J£') 0 (§^K(^)op)-module. By the assumption, J*f is a bi-invertible 
(&nd^(Ji') 0 (S/z^K(̂ )op)-niodule. Hence we obtain the desired result. • 

Since Proposition 2.1.3 does not apply to algebraic varieties, we need an alternative 
local description of algebroids. 

Let °it = {Ui}iei be an open covering of X. Consider the data of 

(2.1.7) 
a K-algebroid si on X, 
.Ui G siiUi). 

To these data, we associate 
— sii := &nd^(ai), 
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— LIJ: = JFFBM ̂ . | ((Tj | Uij, ^ | ̂ 5.), (hence jSf̂ - is a bi-invertible ^ <8> ̂ op-module 
on U^), 

— the natural isomorphisms 

(2.1.8) aijk : ^ ®^ J?jk ^ J?ik in Mod(^ ® < p | 0 -

Then the diagram below in Mod(^ <8><̂ i°P\uijkl) commutes: 

(2.1.9) Lij O Ljk O Lkl aijk Lik O Lkl 

ajki aikl 

Lij O Ljl a>ijl Lil. 

Conversely, let srfi be sheaves of K-algebras on Ui (i G /), let j£f̂  be a bi-invertible 
g/i ® ^op-module on Uij, and let â fc be isomorphisms as in (2.1.8) such that the 
diagram (2.1.9) commutes. One calls 

(2.1.10) ({^i}ieij {<^ij}i,jeii {aijk}i,j,kei) 

an algebraic gluing datum for K-algebroids on ^ . 

Proposition 2 A A3. — Consider an algebraic gluing datum (2.1.10) on %. Then there 
exist an algebroid onX and {ai, ipij}ijei as in (2.1.1) to which this gluing datum is 
associated. Moreover, the data (&/\ai,(fij) are unique up to an equivalence of stacks, 
this equivalence being unique up to a unique isomorphism. 

Sketch of proof. — We define a category Mod(ĵ x) as follows. An object M G 
Mod(^x) is defined as a family {Mi, Qij}i,jei with Mi G Mod(^) and the q^s are 
isomorphisms 

qij : 5£ij <g>̂. Jéj Jti 

making the diagram below commutative: 

Lij O Ljk O Mk Qjk ££ij <g> Jtj 

&ijk Qij 
Lik O Mk Qik Mi. 

A morphism {^iyqji}ijei ~* {^iiQji}i,jei m Mod(six) is a family of morphisms 
Ui: Jii —> JH[ satisfying the natural compatibility conditions. Replacing X with U 
open in X, we define a prestack U h-> Mod(siu) and one easily checks that this 
prestack is a stack and moreover that Mod(siui) is equivalent to Mod(^). We denote 
it by WloD(s2i). Then we define the algebroid six as the substack of (Wlod(si))oip 
consisting of objects locally isomorphic to sii on Ui. • 
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Invertible algebroids. — In this subsection, (X,SS) denotes a topological space en
dowed with a sheaf of commutative K-algebras. Recall (see [43, Chap. 19 § 5]) that 
an ^-linear stack 6 is a K-linear stack 6 together with a morphism of K-algebras 
Si —• &id(id<s). Here, Snd(id<s) is the sheaf of endomorphisms of the identity functor 
ide from & to itself. 

Definition 2.1.14. — (i) An ̂ -algebroid SP is a K-algebroid P on X endowed with 
a morphism of K-algebras Si —• &nd(id&>). 

(ii) An ^-algebroid S? on X is called an invertible ^-algebroid if S£\j —> &td&>(a) 
is an isomorphism for any open subset U of X and any a G S?(U). 

We shall state some properties of invertible ^-algebroids. Since the proofs are more 
or less obvious, we omit them. 

For two ^-algebroids SP\ and ^2, the ^-algebroid S?\ ®^ <̂ 2 is defined as the 
^-linear stack associated with the prestack & given by 

&(U) = &i(U) x P2 (U), 

J^ome ((ax, a2), (<r[, ^2))) = Hom p1(01, 0'i) ®R Hom p2 (°2, cr2)• 

If &\ and ^2 are invertible, then so is S?\ <8>̂  S?2. 
We have a functor of K-linear stacks &\ (8>Kx ̂ 2 —• P¨1 OR S?2. 
Note that 

(2.1.11) If P1 and <9̂2 are two invertible ̂ -algebroids and F: S?\ —> 
^2 is a functor of ̂ -linear stacks, then F is an equivalence. 

(2.1.12) 
For any invertible ^-algebroid SP, S? OR S?°v is equivalent 
to Si as an ^-algebroid. 

(2.1.13) 

The set of equivalence classes of invertible ̂ -algebroids has 
a structure of an additive group by the operation • <8>̂  • 
defined above, and this group is isomorphic to H2(X;S£X) 
(see [10, 43]). Here Six denotes the abelian sheaf of invert
ible sections of Si. 

(2.1.14) 

For two invertible ^-algebroids S?\ and S?2, there is a nat
ural functor 

•<&3-: Mod(^i) x Mod(^2) -> Mod(^i (g>̂  ^2), 

and its derived version. 
Invertible &x-algebroids. — In this subsection, (X, &x) denotes a complex manifold. 
As a particular case of Definition 2.1.14, taking K = C and Si = @x, we get the 
notions of an 6x-algebroid as well as that of an invertible &x-algebroid. 

Lemma 2.1.15. — Any C-algebra endomorphism of &x is equal to the identity. 

Although this result is elementary and well-known, we give a proof. 
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Proof. — Let y be a C-algebra endomorphism of ûx- For x G X, denote by <£x the 
C-algebra endomorphism of &x,x induced by </? and by mx the unique maximal ideal 
of the ring &x,x- Then <px sends mx to m ,̂ <px induces an C-algebra homomorphism 
ux : ûx,x/mx —• 0x,xMx- Since the composition C ûx,x/m^x ux ûx,x/mx ^ 
C is the identity, we obtain that ^ is the identity. Hence, for any / G ûx, ^p(f){x) — 
/(x). Therefore <p(f) = /. • 

Lemma 2.1.16. — Le£ & be a C-algebroid on a complex manifold X. Assume that, 
for any a G &, <Snd&>(cr) is locally isomorphic to ûx cls a C-algebra. Then P is 
uniquely endowed with a structure of ûx-algebroid, and & is invertible. 

Proof. — By Lemma 2.1.15, for an open subset U and a G &*(U), there exists a 
unique C-algebra isomorphism ûx\u 6nd&>(a). It gives a structure of ^x-alge-
broid on &. The remaining statements are obvious. • 

Let & be an invertible <^x-algebroid. For cr, a' G &*(U), the two ^x-module 
structures on Jffbm£>(&,&') induced by Snd^>(a) ~ ûx and by 6nd&>(af) ~ ûx 
coincide, and J^bm^>(a,a') is an invertible ^x-module. 

Let / : X —• Y be a morphism of complex manifolds. For an invertible ^y-algebroid 
8?y, we set 

/*^y ~ûx®f-1ÛY f-^y, 

where the tensor product (S>/-î y is defined similarly as for K-algebroids. Then /*^y 
is an invertible ^x-algebroid. We have functors 

(2.1.15) /* : Mod(^V) Mod(/*^y), L/* : Db(^y) Db(/*^V), 
and 

/,, /* : Mod(/*^y) - Mod(^y), 
(2.1.16) 

R/i, R/+ : Db(/*^y) - Db(^y). 
Let / : X —• F be a morphism of complex manifolds, and let &x (resp. SPy ) be 
an invertible ^x-algebroid (resp. an invertible ^y-algebroid ). If f~x£?y —• &x is a 
functor of C-linear stacks, then it defines a functor of C-linear stacks /*^y — Px 
and this last functor is an equivalence by the preceding results. 
Remark 2.1.17. — Invertible ^x-algebroids are trivial in the algebraic case. Indeed, 
for a smooth algebraic variety X, the group H2(X; û£) is zero. Here the cohomology 
is calculated with respect to the Zariski topology. (With the étale topology, it does 
not vanish in general.) This result and its proof below have been communicated to us 
by Prof. Joseph Oesterlé, and we thank him here. 

Let K be the field of rational functions on X, Kx the constant sheaf with the 
abelian group Kx as stalks, and denote by X\ the set of closed irreducible hypersur-
faces of X. One has an exact sequence 

0 - ûl - Kl - 0 Zs - 0. 
sex1 
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Since Kx is constant, it is a flabby sheaf for the Zariski topology. On the other hand 
the sheaf ©sGXi Zs is also flabby. It follows that H^(X\ 0^) is zero for j > 1. 

2.2. DQ-algebras 

From now on, X will be a complex manifold. We denote by fe: I ^ I x I 
the diagonal embedding and we set Ax = Sx(X). We denote by &x the structure 
sheaf on X, by dx the complex dimension, by Qx the sheaf of holomorphic forms of 
maximal degree and by ©x the sheaf of holomorphic vector fields. As usual, we denote 
by @x the sheaf of rings of (finite order) differential operators on X and by Fn(@x) 
the sheaf of differential operators of order < n. Recall that a bi-differential operator P 
on X is a C-bilinear morphism &x x @x —> @x which is obtained as the composition 
S^1 o P where P is a differential operator on X x X defined on a neighborhood of the 
diagonal and 5~l is the restriction to the diagonal: 

(2.2.1) P(f,g)(x) = (P{x1,x2;dXl,dX2)(f(x1)g(x2))\Xl=X2=x. 

Hence the sheaf of bi-differential operators is isomorphic to S^x O0x ̂ x, where both 
&X are regarded as &x-modules by the left multiplications. 

Star-products. — 

Notation 2.2.1. — We denote by Ch the ring C[[h}] of formal power series in an inde
terminate h and by Ca'loc the field C((H)) of Laurent series in h. Then Ĉ 'loc is the 
fraction field of Ch. 

We set 

Ûx[\h]\ :=lim 
П 

Gx ® {ch/hnch) ~ n ^xhn. 
n>0 

Let us recall a classical definition (see [2, 48]). 
Definition 2.2.2. — An associative multiplication law • on Ox [[ft]] is a star-product if 
it is C -̂bilinear and satisfies 
(2.2.2) / • g = pi(f> 9W for f,ge0x, 

i>0 
where the P^s are bi-differential operators such that P0(f,g) = fg and Pi(f,\) = 
^ (1 , /) = 0 for all / G &x and i > 0. We call (^x[[ft]],*) a star-algebra. 

Note that 1 G &x C @x [[ft]] is a unit with respect to Note also that we have 
( £ / ^ ) * ( E < ^ ) = E ( £ Pk(fi,9i))hn. 
i>0 i>0 n>0 i+j+fc=n 

Recall that a star-product defines a Poisson structure on (X, Ox) by setting for /, g G 
OX : 
(2.2.3) {/,g} = P1 (/,g)-Pi(g,f) = h-1(f*g-g* /) mod M?x[[h]], 
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and that locally, (globally in the real case), any Poisson manifold (X,&x) may be 
endowed with a star-product to which the Poisson structure is associated. This is a 
famous theorem of Kontsevich [48]. 
Proposition 2.23. — Let *, and *, be star-products and let ip: (̂ x[[ft]]»*) ~* 
(^x[[ft]]j*;) be a morphism of Ch-algebras. Then there exists a unique sequence 
of differential operators {Ri}i>o on X such that RQ = 1 and ip(f) = Yli>o Ri(f)hl 
for any f G &x • In particular, cp is an isomorphism. 

First, we need a lemma. In this lemma, we set Foo(^x) = @x-

Lemma 2.2.4. — Let I G Z>_i U {oo}, and (p G EndCx(<^x). // [<p,g] e ¥i(&x) for 
all g G 0X, then <p G ¥i+1(2x). 
Proof. — We may assume that X is an open subset of Cn and we denote 
by (#i,. •. ,xn) the coordinates. Set Pi = [<p,Xi\. Then 

[pi,xj] = [[<P,xi]>xj] = [[<P>xj],xi] = [pj,xi]> 
This implies the existence of P G F/+i(^x) such that [P,Xi] = Pi for all i. Setting 
ib := (p — P, we have 

[Ф, Xi] = 0 for alH = 1,..., п. 
Let us show that tp G Gx. Replacing tp with 0 := ip — -0(1), we get by induction on 
the order of the polynomials that 0(Q) = 0 and [0, Q] = 0 for all Q G C[xi,..., xn]. 
Let / G <̂ x- We shall prove that 0(f)(x) = 0 for all x G X. It is enough to prove it 
for x = 0. Then, writing / = /(0) + ^ rr</i, we get 

o(f) = 0 ( / ( o ) ) +E вм) = 0(f(0)) + E М л ) + в xMi) 
i i 

= Е ^ Л ) . 
i 

which vanishes at x = 0. 
Proof of Proposition 2.2.3. — Let us write 
(2.2.4) ? ( / ) = I > V i ( / ) , f e Ox-

i>0 
By Lemma 2.1.15, (fo = 1. We shall prove by induction that the tp^s in (2.2.4) are 
differential operators and we assume that this is so for all i < n for n G Z>o. 

Let {Pi} and {P[} be the sequence of bi-differential operators associated with the 
star-products • and *, respectively. We have 

Vif* 9) = y vC£hiPj(f,g))=Y,ti+j'Pi(Pj(f,9)), 
j>0 i,j>0 

*>(/)*'VGO = E f t v I ( / ) * ' E ^ ^ ( » ) = E *i+j+kPk{<Pi{f),<Pi(9))-
i>0 jGN ij,k>0 
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Since (p(f*g) = <p(f) •' <p(g), we get: 

(2-2.5) <Pi(P,{f,9))= E PL(<Pi(f),<Pi(9))> 
n=i+j n=i+j+k 

By the induction hypothesis, the left hand side of (2.2.5) may be written as ipn(fg) + 
Qn(/, g) where Qn is a bi-differential operator. Similarly, the right hand side of (2.2.5) 
may be written as <pn(f)g + f<Pn{9) + Rn(f,9) where Rn is a bi-differential operator. 
For any g G Ox, considering g as an endomorphism of Ox, we get 

VPM9\U) := Vnifg) - 9<pn(f) = fv>n(g) + sn(f), 

where Sn is a differential operator. Then, the result follows from Lemma 2.2.4. • 

DQ- algebras. — 

Definition 2.2.5. — A DQ-algebra si on X is a Cn-algebra locally isomorphic to a 
star-algebra (Ox [[h]], x) as a C -̂algebra. 

Clearly a DQ-algebra s/ satisfies the conditions: 

(2.2.6) 
(i) h: A —• A is injective, 
(ii) srf —» \im£//hn&/ is an isomorphism, 

n 
(iii) séIhsé is isomorphic to ûx as a C-algebra. 

For a C -̂algebra sé satisfying (2.2.6), the C-algebra isomorphism sé/hsé -̂ -> ûx in 
(2.2.6) (iii) is unique by Lemma 2.1.15. We denote by 
(2.2.7) <J0 : sé ûx 

the Ca-algebra morphism sé —> sé//Lg^ Ox. If </? is a C-linear section of <TO : ̂  —• 
^x, then ip extends to an isomorphism of C -̂modules (p: ^x[[ft]] &\ given 
^ ^ ( E i M < ) = EiV(/<)ft<-
Definition 2.2.6. — We say that a C-linear section ip : @x srf oi srf @x is stan
dard if there exists a sequence of bi-differential operators Pi such that 

(2.2.8) <p(f)<p(9) = Y<v(PiU,9W for any f,ge &x-
i>0 

Consider a standard section ip: &x —• ^ of srf —> &x- Define a star-product • 
on &x [[ft]] by setting 

f*g = J2Pi(f,g)ti for any f,ge @x-
i>0 

Then we get an isomorphism of C -̂algebras 

(2.2.9) tp: (0x[[h\],*)-^st. 

We call (p in (2.2.9) a standard isomorphism. 
Hence, a DQ-algebra is nothing but a C -̂algebra satisfying (2.2.6) and admitting 

locally a standard section. 
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Remark 2.2.7. — We conjecture that a C -̂algebra satisfying (2.2.6) locally admits a 
standard section. 

Let A be a DQ-algebra. For /, # E @x, taking a, b E srf such that a0(a) = f and 
0"o(b) = g, we set 
(2.2.10) {f,g} = (io(h-1(ab-ba)) E ffx. 
Then this definition does not depend on the choice of a, b and it defines a Poisson 
structure on X. In particular, two DQ-algebras induce the same Poisson structure 
on X as soon as they are locally isomorphic. 

By Proposition 2.2.3, if (f,<p': &x —• ̂  are two standard sections, then there 
exists a unique sequence of differential operators {Ri}i>o such that <p'(f) = 
£*>oftV(W))for a n y / E ^ x -

Clearly, a DQ-algebra satisfies the hypotheses (1.2.2) and (1.2.3). Hence, a DQ-al
gebra is a right and left Noetherian ring (in particular, coherent). 
Lemma 2.2.8. — Let srf be a DQ-algebra. Then the opposite algebra g/op is also a 
DQ-algebra. 
Proof. — This follows from (2.2.2). • 

Let X and Y be complex manifolds endowed with two star-products *x and *y. 
Denote by {Pi}i and {Qj}j the bi-differential operators associated to these star-
products as in (2.2.2). Let Pi № Qj be a bi-differential operator on X x Y defined as 
follows. Let us take differential operators Pi(xi,X2,dXl,dX2) and Qj(yi,y2,dyi,dy2) 
corresponding to Pi and Qj as in (2.2.1). Then we set 

(Pi®Qj)(f,g)(x,y) 
= {Pi(xi,X2,dXl,dX2)Qj{yuy2,dy1,dy2){f(xuy1)g(x2jy2)))\ X\=X2—X . VX—Vl—V 

Hence, Pi IE Qj is the unique bi-differential operator on X x Y such that (Pi IE 
Qj)(fi(x)gi(y)j2(x)g2(y)) = Pi(h(x)J2(x)) • Qj(gi(y),g2(y)) for any /„(*) E ®X 
and gv(y) e 0Y (v = 1,2). 

One defines the external product of the star-products *x and *y on ^ x y p ] ] by 
setting 

/*5 = £>" £ (Pi®Qj)(f,g). 
n>0 i+j=n 

Hence: 

Lemma 2.2.9. — Let X and Y be complex manifolds, and let s^x be a DQ-algebra 
on X and s^y a DQ-algebra on Y. Then there exists a DQ-algebra stf on X x Y 
which contains srfx ^ch ^Y as a Ch-subalgebra. Moreover such an srf is unique up to 
a unique isomorphism. 

We call srf the external product of the DQ-algebra srfx on X and the DQ-algebra 
S^Y on y, and denote it by s$x !H £?Y-
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Remark 2.2.10. — (i) Any commutative DQ-algebra is locally isomorphic to 
(̂ x[[ft]]>*) where * is the trivial star-product f *g = fg. 

(ii) For the trivial DQ-algebra @x [[h]] > we have 

^tcK&x&{0x[[h]\) - *&x[[h}) := I ] h"Qx, 
n>l 

(recall that Gx is the sheaf of vector fields on X) and we associate to v := 
Zm>i tinvn the automorphism / i—> exp(v)f. 

The ring @x and another construction for DQ-algebras. — We define the Cn-algebra 

®x[[h]\ := lim^x <S> (Ch/hnCh) ~ JJ ^x^n. 
n n>0 

Then ^ P ] ] has a QJX\[h]]-module structure, and ®x[[h]] C 6ndcn{ffx[[fi]])' 
Let s^x be a DQ-algebra. Choose (locally) a standard section (p giving rise to 

a standard isomorphism of Cn-modules Ip: &x[[h]] ^x- This last isomorphism 
induces an isomorphism 

(2.2.11) $: &idc*(0x[W) 6ndcn(s/x). 

Definition 2.2.11. — Let srfx be a DQ-algebra and let (p be a standard section. The 
sheaf of rings $>x ls the C -̂subalgebra of &nd£h(srfx), the image of @x[[ft]] C 
<WcR(^xp]]) by the isomorphism $ in (2.2.11). 

It is easy to see that Si^ ^ Sndc^(^x) does not depend on the choice of the 
standard section <p in virtue of Proposition 2.2.3. Hence Sl^ is well-defined on X 
although standard sections only locally exist. 

By its construction, we have 3>x lim î jf/hn<$x - Moreover, the image of the 
n 

algebra morphism séx ® <£̂£P —> <5ndcn(&/x), as well as the one of Sx séxxxa —> 
ôndcn(séx) is contained in f̂ jf. Hence we have algebra morphisms 

sex ® séx« -+ Sx^xxx- -> @x • 

We shall show how to construct a star-algebra from the data of sections of ^x[[ft]] 
satisfying suitable commutation properties. 

Let sex >= (̂ x[[ft]]»*) be a star-algebra. There are two CMinear morphisms from 
ûx[[h]] to@x[[h]] given by 

(2.2.12) $z: / ^ / * , $r: : / . - • / . 

Hence, for / G Gx, we have: 

Фг(/) = 
г>0 

Pi(f,-)h\ Фг(/) = 
г>0 

Pi(-J)ti. 

Then $z : Ax — Dx [[h]] and $r: ^ p -> ^ P ] ] are two Ca-algebra morphisms, 
and induce a C -̂algebra morphism sex <8>«2̂ £P —• ^x[[ft]]-
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Assume to be given a local coordinate system x = (a?i,..., xn) on X and for i = 
l,...,n, set $l(xi) = Ai and $r{xi) = Bi. Then {Aj,jBj} ĵ=i,...,n are sections 
of f?x [[ft]] which satisfy 

M<(1) = 5,(1) = ^ , 
(2.2.13) < A* = a:* mod fi%[[fi]], = x» mod ft^x[[ft]], 

[[AuBj]=0 (i, j = l,...,n). 
Conversely, we have the following result. 

Proposition2.2.12. — Let {Ai,-Bj}i,j=i,...,n ê sections of @x[[h]] which satisfy 
(2.2.13). Define the subalgebra six C fc[[fi]] ^ 

(2.2.14) j^x = {a € ^x [̂ ]] ; [a, B<] = 0, t = 1,..., n} 

and define the Ch-linear map v : six —> &x[[h]] by setting ip(a) = a(l). Then 
(a) ^ is a Cn-linear isomorphism, 
(b) the product on <̂ x[[ft]] given by ty(a) *tp(b) := ip(a - b) is a star-product, six is a 

DQ-algebra and v-1 is a standard isomorphism, 
(c) the algebra s/£p is obtained by replacing Ai with Bi (i = 1,..., n) in the above 

construction. 

Proof. — (a)-(i) six H ft^x[[ft]] = hsix, since [ha,Bi] = 0 implies [a,Bi] = 0. Hence 
we have six/hjsix C ®x[[h)]/h3@x[[ft]] for any j . 
(a)-(ii) six lim six/&six> Indeed, let a = J2i^=o anô  assume that 

3 
k 

[^2 Km, Bi] = 0 mod ftfc+1 (/ = 1,..., n) 
i=0 

for all k G N. Then [a, Bt] = 0 for / = 1,..., n. 
(a)-(iii) Let ipj : hjsix/hj+1 six -» ftJ^x/ftJ+1^x be the morphisms induced by ip. By 
(a)-(ii) it is enough to check that all ^ ' s are isomorphisms. Since all h3 six / h3+1 six 
are isomorphic and all ft3 Oxjh3^1@x are isomorphic, we are reduced to prove that 
V>o: six/hsix —> @x is an isomorphism. 
(a)-(iv) ipo is injective. Let ao G six/hsix C ^x- Since [ao,#*] G ft^x[[ft]] implies 
[ao,̂ i] = 0, we get ao G ^x- Therefore, ao(l) = 0 implies ao = 0. 
(a)-(v) -00 is surjective. Let y = (yi,... ,yn) be a local coordinate system on a copy 
of X. Notice first that the sections yi — Ai of ®xxyp]] are invertible on the open 
sets {yi ̂  Xi}. Let f(xi,... ,xn) G &x- Define the section G(f) of ^x[[ft]] by 

(2.2.15) G(f) = 1/ (2ni)n j f(y)(yi - A,)'1 • • • (yn - A^-1 dVl • • • dyn . 

Then [G(/), Bi] == 0 for all i. It is obvious that G(f)-f G ft^xp]] and Vo(G(/)) = /. 

(b) Clearly, the algebra (^xp]]>*) satisfies (2.2.6). Moreover, / i—• G(f) is a standard 
section since there exist Pi(f) G @x[[h]] (i G N) such that G(f) = T,iPi(fW and 
Pi(f) is obtained as the action of a bidifferential operator Pi on /. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 



48 CHAPTER 2. DQ-ALGEBROIDS 

(c) follows from s/°*> = {be &idcn(s/x);[b,six] = 0}. 
Example 2.2.13. — Let M := {aij}ij=i^.^n be an n x n skew-symmetric matrix with 
entries in C. Let X = Cn and consider the sections of ^x[[ft]]-

Ai — Xi H- ^ ^ ^ flij 5 Вг — Xi ^ ^ o>ij Oj. 
3 3 

Then {Ai, Bj}i,j=i,...,n satisfy (2.2.13), thus define a DQ-algebra six. Note that the 
Poisson structure associated with the DQ-algebra six is symplectic if and only if the 
matrix M is non-degenerate. 

2.3. DQ-algebroids 
Let us introduce the notion of a deformation quantization algebroid, a DQ-algebroid 

for short. 

Definition 2.3.1. — A DQ-algebroid ^on X is a C -̂algebroid such that for each open 
set U C X and each a e si(U), the Cn-algebra &nd^(a) is a DQ-algebra on U. 

Note that a DQ-algebroid is called a twisted associative deformation of Ox in [63]. 
By (2.2.10), a DQ-algebroid si on the complex manifold X defines a Poisson struc

ture on X. It is proved in [47] that, conversely, any complex Poisson manifold X may 
be endowed with a DQ-algebroid to which this Poisson structure is associated. 

According to Convention 2.1.1, if si is a DQ-algebra, we shall often use the same 
notation si for the associated DQ-algebroid. 

Note that any DQ-algebroid si on X may be obtained as the stack associated with 
a gluing datum as in (2.1.3), where the sheaves sii are DQ-algebras. 

Let si be a DQ-algebroid on X. For an ^-module jit, the local notions of being 
coherent or locally free, etc. make sense. 

The category Mod(si) is a Grothendieck category. We denote by D(si) its derived 
category and by Dh(si) its bounded derived category. We still call an object of this de
rived category an ^-module. We denote by D^oh(si) the full triangulated subcategory 
of Dh(si) consisting of objects with coherent cohomologies. 
Opposite structure. — If X is endowed with a DQ-algebroid six, then we denote 
by Xa the manifold X endowed with the algebroid s/^P, that is: 
(2.3.1) giXa = SX OP. 
This is a DQ-algebroid by Lemma 2.2.8. 
External product. — Assume that complex manifolds X and Y are endowed with 
DQ-algebroids six and siy respectively. By Lemma 2.2.9, there is a canonical DQ-al
gebroid six^siy on X x Y locally equivalent to the stack associated with the external 
product six HI siy of the DQ-algebras and there is a faithful functor of C -̂algebroids 
(2.3.2) i x ^ ^ y ^ ^ x i ^y, 
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which induces a functor 
(2.3.3) for: Mod(^x M^y) Mod(^x E sty). 
When there is no risk of confusion, we set 

AX x Y := AX X AY. 
Then ^xxy belongs to Mod(s^XxY <8>(<&xa El̂ /ya)) and the functor for admits a 
left adjoint functor Jff ^ S^XXY ®stx№&tY ^' 

for 
(2.3.4) Mod(^xxY) < > Mod(^ El sty). 
We denote by • E • the bi-functor S^XXY ® (• IE • ) : 

(2.3.5) • E • : Mod(^x) x Mod(^y) —• Mod(^xxy). 
Lemma 2.3.2. — If M is an srfx -module without h-torsion, then the functor 

Jt JH • : Mod(^y) Mod(^xxy) 

is an exact functor. 
Proof. — We may assume that s/x and srfy are DQ-algebras. Hence it is enough 
to show that for any (x,y) G X x Y, setting JV := srfxxY ®^ ^-> <^{x,y) 18 a flat 
module over £^yy- We may assume further that ^ is a coherent j^x-module without 
fc-torsion. For any Stein open subset U, let pu: U x Y —» Y be the projection. Set 
A^j := (pu)*{№xxY ®srfx ^)\UXY)- Then it is easy to check the conditions (a)-(c) 
in Theorem 1.6.6 are satisfied ((c) follows from the ^-module version of this lemma), 
and we conclude that JV\J is a flat £/yP-module. Hence, ^{x,y) — \vm.(<Au)y is a flat 

xeu 
№y )j,-niodule. 

Hence the left derived functor 
L 

• IE • : D(fi/X) x D(j^y) -> D(^XXY) 
L 

satisfies ^ * E ̂  * ^ * E «yK * as soon as ^JC * or JV is a complex bounded 
from above of modules without ft-torsion. 
Graded modules. — For a C -̂algebroid B on X, one denotes by gr̂ (38) the C-alge-
broid associated with the prestack & given by 

Ob(&(U)) = Ob(38(U)) for an open subset U of X, 
Horn&^(cr, a') = Hom (̂cr, cr/)/ftHom^(a, a') for cr, cr' G 38(U). 

Let now AX be a DQ-algebroid on X. Then it is easy to see that gr^(j^) is an invert
ible ^x-algebroid and that we have a natural functor srfx —> Ern(s^x) of C-algebroids. 
This functor induces a functor 
(2.3.6) for: Mod(g£h(&/x)) -+ Mod(^). 
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The functor for above is fully faithful and Mod(grh(six)) is equivalent to the full 
subcategory of Mod(six) consisting of objects M such that h: M —> M vanishes. 
The functor for: Mod(grh(s/x)) —• Mod(six) admits a left adjoint functor M i—• 
M/hM ~ C 0cft M. The functor for is exact and it induces a functor 
(2.3.7) for: B(gTh(six)) - I>(s/X). 
Remark 2.3.3. — The functor in (2.3.7) is not full in general. Indeed, choose X = pt, 
six = Ch and L = Ch/hCh viewed as a gr^(,4)-module. Then 

RomDh{ch)(for(L)Jor(L[l})) ~ Ch/hC\ 
HomDb(c)(L,L[l]) ~ 0. 

It could be also shown that this functor is not faithful in general. 

One extends Definition 1.4.1 to the algebroid six- As an (six 0 &ixa )-module, 
grh(six) is isomorphic to C 0C& six — six/hsix- We get the functor 

(2.3.8) grn: D(sfx) D(grn(j^x)), ^ ^ g r ^ x ) 0 ^ ^ ^ C0c„^f. 
Note that Lemma 1.4.2, Propositions 1.4.3 and 1.4.5 as well as Corollary 1.4.6 still 
hold. Moreover 

Corollary 2.3.4. — Let jit G D^oh(s/x)- Then its support, Supp(^)7 is a closed com
plex analytic subset of X. 
Proof. — By Corollary 1.4.6, Supp(^f) = Supp(grn(^)). Since grh(^f) G 
D^oh(grh(s/x)) and grh(s/x) is locally isomorphic to ^x? the result follows. • 

Let dx denote the complex dimension of X. Applying Theorem 1.4.8, we get 

Corollary 2.3.5. — Let six be a DQ-algebra and let M G ModCOh(«̂ x)- Then, locally, 
jit admits a resolution by free modules of finite rank of length < dx + 1. 

Proposition 2.3.6. — The functors grh in (2.3.8) and for in (2.3.7) define pairs of 
adjoint functors (grh,for) and (/or, gr̂ [—1]). 

Proof. — Consider a pair (B,C) in which either B = six and C = grh(six) or 
B = grh(s/x) and C = six, and let K be a (B, C)-bimodule. We have the adjunction 
formula, for M G Dh(B) and N G D(C): 

(2.3.9) HomD(B)(iT0ciV,M) ~ Horn B(c)(N,RMmB(K,M)). 
(i) Let us apply Formula (2.3.9) with B = gvh(six), C = six and K — grh(six) 
considered as a (grh(six), ^x)-bimodule. We get 

Horn D(grn(̂ x)) (gih(six)®^x^, N) 
-HomD(^x)(^ BJúm gr h (AX) (g r f t (^x ) , ^ ) ) , 
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and when remarking that YU{(m^T^^x^(gvh(s^x)^^) — for(<y^), we get the first 
adjunction pairing. 
(ii) Let us apply Formula (2.3.9) with C = gr^(^x), B = A and K = gih(g/x) 
considered as an (^x,gr^(j^x))-bimodule. We get 

HomD(̂ x) (gr h (AX) L 
<8> gr h (AX) N , M) 

- Hom D(grn(̂ x)) M' ' 1^0ms*x (&h(**x), J?)) 

L 
We have gvh(g/x)® gr h (AX) jV ~ for(jV) and to get the second adjunction pairing, 
notice that 

R^»^(grft(^x),^) = RHom Ax (gr h (AX), AX L 
(g) AX M, 

and BJ&m^x(gTh(£/x),^x) &K(J*X) [-!]• 

Duality. — Let six be a DQ-algebroid on X. 

Definition 2.3.7. — Let Jt € D(^/x)- Its dual D ' ^ ^ € D(^x«) is given by 

(2.3.10) D'Ax M :=RMm^x(J?,£/x)-

When there is no risk of confusion, we write D'A instead of D^x .• 
By Corollary 2.3.5, D'^ sends Dboh(^) to DjohKx«): 

D^:DcbohKx)^Dcboh(^x«)-
Assume that ^ G D|?oh(«G )̂. Then there is a canonical isomorphism: 

(2.3.11) Jt D ' ^ D ^ . 

For a grft(j2̂ x)-niodule M, denote by D'e^ its dual, 

(2.3.12) T>'eJt := BJ6mgrK^x)(^,gvh(s/x)). 

Proposition 2.3.8. — Let JC e Dj?oh(.efx). 2^en 

grft(D^) ~ D'^(grft(^)). 

Proof. — This follows from Proposition 1.4.3. 

Corollary 2.3.9. — Let Sf G D*oh(s/x) and j G Z. Let us assume that 
^Ext gr h (AX) (grh (L), grh (Ax)) - 0. Then Extj AX (L, Ax) = 0. 

Proof. — Applying the above proposition, we get 

^ h ^ x ) M ^ U ^ x ) ) , grh (AX) = iF(D^(grft(^))) 

c Hj (grh (D'A(L))). 

Then the result follows from Proposition 1.4.5. 
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Simple modules 
Definition 2.3.10. — Let A be a smooth submanifold of X and let Jzf be a coherent 
six-module supported by A. One says that JSf is simple along A if grh(J£) is con
centrated in degree 0 and H0(grh(J?)) is an invertible 0\ ®̂>x gr^(j^x)-module. (In 
particular, j£? has no ^-torsion.) 

Proposition 2.3.11. — Let A be a closed submanifold of X of codimension I and let j£? 
be a coherent six-module simple along A. Then fP(D^,(j£f)) = &xt?^ (J£,six) van
ishes for j 7̂  I and Hl(D'^(J£)) is a coherent six* -module simple along A. 

Proof. — The question being local, we may assume that six is a DQ-algebra so that 
grn(^x) - @x and gr̂ (jSf) ~ ffK. Then, we have £x1?ffx(&h(Sf), ffx) ̂  0 for j ± I. 
Therefore, Sxi? (&,s/x) = 0 for j ^ I by Corollary 2.3.9 and 

g r , ( ^ x ( j S f , ^ ) ) * D^(gr^)[/] 

~ ^ x ( g r , ( ^ ) , ^ x ) 

by Proposition 2.3.8. 
If gr^(jjf) is locally isomorphic to ^A? then so is £>xtlGx(grh(J£?), &x)- D 

Homological dimension of six-modules. — The codimension of the support of a co
herent Ox-module & is related to the vanishing of the Ext 0x G (F, Ox)> Similar results 
hold for six-modules. 

Proposition 2.3.12. — Let ^ be a coherent six -module. Then 
(a) &xi?^ (cy#, six) — 0 for j < codim Supp ^ ' , 
(b) codim Supp Sxt3^^ (^#, six) > j -

Proof. — (a) First, note that Supp(^) = Supp(gr^^). Therefore, 

Sxi? 
gr h (AX) 

(grhJZ, gvh(six)) — 0 for j < codim Supp JK 

and the result follows from Corollary 2.3.9. 
(b) By Proposition 1.4.5, we know that 

S u p p ^ ^ ( ^ , ^ ) C S u p p ^ ^ ^ ^ g r ^ g r ^ ^ ) ) , 

and codim Supp Extj grh (AX) (gih^,grh (Ax)) > j by classical results for ^-modules. 

Extension of the base ring. — Recall that C l̂oc := C((h)) is the fraction field of Ch. 
To a DQ-algebroid six we associate the Ca'loc-algebroid 

(2.3.13) si£c = Cn'loc (8)c, six 

and we call AXloc the h-localization of six- It follows from Lemma 1.4.10 that the 
algebroid AXloc is Noetherian. 
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There naturally exists a faithful functor of C -algebroid 

(2.3.14) six -» s*xc. 
This functor gives rise to a pair of adjoint functors (loc, for): 

(2.3.15) Mod(^oc) for 

loc 
Mod(^x). 

Both functors are exact and we keep the same notations for their derived functors 

(2.3.16) Db(^oc) 
for 

loc 
DbKx). 

For Jt G Bh(six), we have 
(2.3.17) JKloc := loc(^) = Ca'loc ®cft Jt. 

We say that an six-module Jt§ is a submodule of an £^?c-module Jt if there is a 
monomorphism Jt§ for(Jt) in Mod(j^x)-

If Jt is an ê xDC-module, ^0 an ^-submodule and Jt§ OCh Ĉ ,loc M, then 
we shall say that Jt§ generates Jt'. 

The following result is of constant use and follows from [38, Appendix A]. 

Lemma 2.3.13. — Any locally finitely generated six-submodule of a coherent 
sifxc-module is coherent, i.e., any coherent siXQ-module is pseudo-coherent as 
an six-module. 

Definition 2.3.14. — A coherent ^x-submodule Jt§ of a coherent ĵ xDC-module Jt is 
called an Ax-lattice of Jt if Jt§ generates Jt. 

We extend Definition 2.3.7 to ^oc-modules and, for Jt G Db(^oc), we set 

(2.3.18) D îoĉ T := R f̂o» |̂oc(̂ T, s/£c). 

Proposition2.3.15. — Let Jt be a coherent sixc-module. Then 
(a) £xt3^loc(JZ,si£c) ~ 0 for j < codim Supp Jt, 

(b) codim Supp ̂ . l o c ( ^ ^ x c ) > 3-

Proof. — The result is local and we may choose an j^x-lattice Jt$ of Jt. Then the 
result follows from Proposition 2.3.12. • 

Good modules. — 

Definition 2.3.16. — (i) A coherent £^?c-module Jt is good if, for any relatively 
compact open subset U of X, there exists an (j^x|[/)-lattice of Jt\\j. 

(ii) One denotes by Modgd(̂ x°c) tne ^ subcategory of Modcoh(̂ /xc) consisting 
of good modules. 

(iii) One denotes by DBD(E2̂ )C) the full subcategory of Dboh(̂ xDC) consisting of ob
jects Jt such that H3 {Jt) is good for all j G Z. 
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Roughly speaking, a coherent ê x3C-module M is good if it is endowed with a good 
filtration (see [38]) on each open relatively compact subset of X. 
Proposition 2.3.17. — (a) The category Modgd(^xc) ^s a thick subcategory of 

Modcoh(^x°c)j (i"e-> stable by kernels, cokernels and extension). 
(b) The full subcategory Dbd(^oc) ofD^oh(s/^c) is triangulated. 
(c) An object M G DcohĈ x̂30) is 9°°d if and onh if for anV open relatively compact 

subset U of X, there exists an s/x\u-module M0 G T>\oh(s/x\u) such that J£QOC 
is isomorphic to M|U . 

Since the proof is similar to that of [38, Prop. 4.23], we shall not repeat it. 
Proposition 2.3.18. — Let Jt G Dc0h(^x°c)- Then Supp(^) is a closed complex an
alytic subset of X, involutive (i.e., co-isotropic) for the Poisson bracket on X. 

Proof. — Since the problem is local, we may assume that s/x is a DQ-algebra. Then 
the proposition follows from Gabber's theorem [28]. • 
Remark 2.3.19. — One shall be aware that the support of a coherent j^x-module is 
not involutive in general. Indeed, for a DQ-algebra s/x, any coherent < x̂-module may 
be regarded as an s/x-module. Hence any closed analytic subset can be the support 
of a coherent s/x-module. 

2.4. DQ-modules supported by the diagonal 
Let X be a complex manifold endowed with a DQ-algebroid s/x- We denote 

by s/xxXa the external product of s/x and s/x* on X x XA. We still denote 
by Sx - X X x XA the diagonal embedding and we denote by ModAx (&/x ^&/xa) 
the category of (s/x ^ £^xa)-rnodules supported by the diagonal Ax- Then 

(Sx*: Mod(^x (8>̂ x:») -* ModAx(^x № s/x*) 
gives an equivalence of categories, with quasi-inverse S^1. We shall often identify these 
two categories by this equivalence. 

Recall that we have a canonical object s/x m Mod(^x ®&/xa) (see § 2.1). We 
identify six with an (s/x ^ ^xa)-niodule supported by the diagonal Ax of X x XA. 
In fact, it has a structure of s/xxXa-module. More generally, we have: 
Lemma 2.4.1. — Let JK be an (s/x ® &/xa)-module. 
(a) The following conditions are equivalent: 

(i) ^ is a bi-invertible (s/x ® s/x«)-module (see Definition 2.1.10), 
(ii) jtft is invertible as an s/x -module (see Definition 2.1.4); that is, jj£ is locally 

isomorphic to s/x as an s/x-module, 
(hi) M is invertible as an s/xa -module. 

(b) Under the equivalent conditions in (a), Sx*^ —• &/xxXa 0 ^ x ^ d̂x*M is an 
isomorphism and Sx*^ has a structure of an s/xxxa -module. Moreover, 5x*<^ 
is a simple s/xxxa -module along the diagonal of X x XA. 
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(c) Conversely, if JV is a simple sixxxa -module along the diagonal of X x Xa, then 
S^1^ satisfies the equivalent conditions (a) (i)-(iii). 

Proof — The statement is local and we may assume that six = (^xp]]>*)-
(a) Assume (ii) and take a generator u G jit as an ̂ x-module. Then for any a G ^ 4 , 
there exists a unique 0(a) G six such that ua = 0(a)u. Then 0: six ~> six gives a 
C -̂algebra endomorphism of six- Hence 0 is an isomorphism by Proposition 2.2.3. 
Thus we obtain (i). Similarly (hi) implies (i). 
(b) Let us choose u G jit as in (a) and identify jit with ^xp]] that we re
gard as a sheaf supported by the diagonal. The action of six ® <̂ xP on jit can 
be expressed by differential operators. Namely, there exist differential operators 
{Si(x,dXl,dX2,dX3)}ieN such that 

f* a* 0(g) = ^(Si(x,dXl,dX2,dX3)f(x1)g(x2)a(x3))\x1=x2=x3=xti% 
i 

for f, g e Ax and a G ^xp]]-

Then this action extends to an action of sixxxa by setting 
f(x, y) * a(x) = ̂ 2{si(x> &x!, dX2, dX3)f(xi, x2)a(x3))\Xl=X2=X3=xhl 

i 
for / G sixxx* and a G ^xp]]-

We denote by jit the sixxxa-module thus obtained. Then, as an (six ® six*)-mod-
ule, it is isomorphic to jit. Hence jit is a locally finitely generated sixxxa-module. 
Since hnj/t/hn+x Jt is isomorphic to &x, ^ is a coherent sixxxa-module by Theo
rem 1.2.5 (ii). 

Let F be the annihilator of u G jtt ~ jit. Then F is a coherent left ideal of sixxxa-
In the exact sequence 

^ V f ^ ^ C ) -> J/hJ F -> sixxx-/^hAx x xn- -» jflhjf-* 0, 

^or^ (^ , C) vanishes. Therefore we obtain an exact sequence 

0 -> .//ft,/ -> ^ x i « ^ 0x ^ 0, 

and F /hF is isomorphic to the defining ideal /A C &xxxa of the diagonal set 
A C X x Xa. This shows that M is simple along the diagonal. 

Denote by F' the left ideal of six <S>£̂ P generated by the sections {a ® 1 — 1 ®0(a)} 
where a ranges over the family of sections of six and by J the left ideal of siXxxa 
generated by J'. Set jit1 := sixxxa ®^x^xa M. We have: 

jg ~ (six Qsix*)!*?', 
Jt' -= Sixxx*/^. 
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There exists a surjective j^xxxa-lmear morphism M'-» M, and hence / c / . Since 
J jhJ —• J'/hJ ~ I A is surjective, we conclude that J = J'. Hence we obtain 
Jl' — M. 
(c) By the assumption, p\^h(jV) ~ gr^((5x1 /̂) is an invertible ^x-module, where 
Pi: X x Xa —> X is the projection. Hence Theorem 1.2.5 (iv) implies that S^-1^ 
is a coherent j^x-module. It is locally isomorphic to six by Lemma 1.2.17 because 
gr̂ (5x1t/K) is locally isomorphic to @x- D 

Thus we obtain: 
Proposition 2.4.2. — The category of bi-invertible (six ® six*)-modules is equivalent 
to the category of coherent six xxa -modules simple along the diagonal. 
Definition 2.4.3. — We regard Sx*six as an sixxxa-module supported by the di
agonal and denote it by ^x- We call it the canonical module associated with the 
diagonal. 

The next corollary immediately follows from Lemma 2.4.1. 
Corollary 2.4.4. — The six xxa -module ^x is coherent and simple along the diagonal. 
Moreover, sixxxa ®^x№a?x* ^x ~~̂  ^x ™ an isomorphism in Mod(sixxXa), and 
six —> b'x&x) is an isomorphism in Mod(s/x ® AXn). 

The next result is obvious. 
Lemma 2.4.5. — Let Y be another complex manifold endowed with a DQ-algebroid 

L 
siy. Then, there is a natural isomorphism ^x H! Cy — *&xy- Here, we identify 
(X x Xa) x (Y x Ya) with (X x Y) x (X x Y)a. 
Definition 2.4.6. — We say that P e Dh(six 0 six*) is bi-invertible if P is concen
trated to some degree n and Hn(3?) is bi-invertible (see Definition 2.1.10). 

We sometimes consider a bi-invertible (six ® ^xa)-module as an object 
°f ^coh(^xXa) supported by the diagonal. 

L 
For a pair of bi-invertible (six <8>six *)-modu\es &\ and P2, P1^x &2 is also a bi-

invertible (six <S)s/xa)-module. Hence the category of bi-invertible (six <8)six*)-mod-
ules has a structure of a tensor category (see e.g. [43, § 4.2]). It is easy to see that &x 
is a unit object. Namely, for any bi-invertible (six ® six *)-modu\e &\ we have: 

^x L 
O six P = P L 

<8> AX tfx ^ 3*. 
We have 

P L 
O £^x R%om^x(^,*ix) — Vx, 

RHom AXn (P, AX) L 
<8> six P — CX. 

Hence we have R%om^x (P, sJx) ^ RMm^xa (P, я/х)-
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Definition 2.4.7. — For a bi-invertible (s/x 0 s/xa)-module we set 
P <g)-l = Rflbm AX (P, AX) = RHom AX a (P, AX). 

Hence we have 
P O – 1 L 

<8> s4X P = P L 
<8> AX P O – 1 = CX. 

Note that, for two bi-invertible (g/x ® ^xa)-modules P1 and P2 we have 

RHom Ax (P1 , P2) = P1 O - 1 L 
0 AX P2, 

RHom Ax a (^1,^2) = ^2 L 
>0 £<X P1 O - 1 

For a bi-invertible (six 0 ^xa)-module ^ and Jt,jV G D(^xxyxz), we have the 
isomorphism 

(2.4.1) RHom ̂xxy ( M , N ) RHom 
AX x Y 

(0 L 
0 AX M , P L 

0 six N) 

inD(CXxy №stfz). 

Remark 2.4.8. — Although it is sometimes convenient to identify (X x Ya)a with 
Y x Xa, we do not take this point view in this Note. We identify (X x Ya)a with 
Xa x Y. Hence, for example, we have functors 

D^xra : Db(*ífcxya)—>Бь(л&«хУ), 
DAX x Xa : Db(AX x Xa)xya)—>Db (AXu x X), 

The next result may be useful. 
Lemma 2.4.9. — (i) Let X and Y be manifolds endowed with DQ-algebroids 

six and siy, let J( be an sixxYa-module and let ¿2 be a bi-invertible 
(siy ®siy a)-module. Then 

D'AX x Ya (M OAY 2) = 2O - 1 OAY D'AX x Ya (M). 

(ii) Let S? and 2 be bi-invertible (s/x <S>s/xa)-modules. Then 

D', AX x X a (P O AX 2) = 2 8>-i O «6c D' AX x X a P = D' &XxXa =2 0 AX P <8>-l 
5 

D' %xXa <^0 P = P O 
Ax 

D' 
£?xxxa CX = D' £?XxXa (9 O – 1 ), 

(D' 
AX x X a CX) 0-1 1 AX & ~ <^0 AX 

(D' 
AX x X a CX) O – 1 

Proo/. — (i) We have the isomorphism 

D' 
x̂xyfl 

( ^ ® ^ i 2 ) = Жот AX x Ya (M O AY 2, AX x Ya) 

= Жот ¿&XxYa 
(M , AX x Ya OAY 2 O – 1) 

= Жот ¿&XxYa (M , 2 <g>-i <8 s/y s/xxYa) 

= 2 O — 1 0 's/y D' 
AX x Ya МО. 
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(ii) The first isomorphism follows from (i) and the the second is proved similarly. The 
two last isomorphisms follow. • 

The next result follows immediately from Corollary 2.4.4. 

Lemma 2.4.10. — Let JK e Bh(s/X), & e D*oh(sz/x) andJY e Dh(s2?Xa). Identifying 
Ax and X, there are natural isomorphisms 

L 
Jt ~ ^ x ^ , / ~ R%m^x(£/x,Jt) in D(s/X), 

L L L N OAX M + (N X M ) ® A x x Xa in D(Chx), 
L 

RHom Ax (L, M) ~ D'A LOAx M in D(Cx), 
L RHom Ax (M, L,) = RHom Ax x xa (M X D'A L, Cx) in D(Chx). 

2.5. Dualizing complex for DQ-algebroids 
The algebroid î jf. — We have seen that the C -̂algebra 9^ c 6ndcn(s/x) is well-
defined for a DQ-algebra s/x on X. 

Now let srfx be a DQ-algebroid. Then we can regard s^x as an (s/x 0 /̂xp)-module. 
In § 2.1, we have defined the C -̂algebroid 8ndcn(s/x) and introduced a functor 
of C -̂algebroids stx 0 ^x ~^ &ndCh(^x)-
Definition 2.5.1. — The C -̂algebroid î jf is the C -̂substack of £ndcn(g/x) associated 
to the prestack 6 defined as follows. The objects of 6 are those of srfx 0 ^y? -
For crl5 cr2 € s^x 0 ^xP5 with a\ = ri 0 A°p, a2 = r2 0 A^, we choose isomorphisms 
(fii n ~ Xi (i = 1,2) and y?3i n c± r2. Set ^ = &nd^x{X\). It is a DQ-algebra. The 
isomorphisms <pi (i = 1,2,3) induce an isomorphism 

0: Mmtch(BS,SS) -̂ -> ^om^(JTora (Ai,n), Jfom (A2,r2)) 
JTomc4^x(c7i),^x((72)). 

We define J#bm&(ai,cr2) C J^omch(s/x(^i),^x{^2)) as the image of f̂ jf by ip. 
(This does not depend on the choice of the isomorphism ipi (i = 1,2,3) in virtue of 
Proposition 2.2.3.) 

Then there are functors of C -̂algebroids 

&tx <S>£^xa -» Sx1s/xxxa —> @x ~* &га<скШх) 
and s/x may be regarded as an object of Mod(f ĵf). 
Proposition2.5.2. — (i) The Ch-algebroid Sndch(£/X) is equivalent to the Ch-al

gebroid &idch(0x[[fr]]) {regarding the Ch-algebra 6ndch(&x[[fi]]) as a Ch-alge
broid) . 

(ii) The equivalence in (i) induces an equivalence of Ch-algebroids @x — ®x[[h]]. 
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(iii) The equivalence in (ii) induces an equivalence of' CH-linear stacks 

fflob(@x) - WloX>(@x[[h]]). 
Moreover, the 9^-module s^x is sent to the @х[[Щ]-module &х[[Щ] by this 
equivalence. 

(iv) The equivalence in (ii) also induces an equivalence of C-algebroids 

gr h (DAX = DX. 

and an equivalence of C-linear stacks Tlod(grh(9^)) ~ 9D?oD(f̂ x)- Moreover 
the gvh(3>x)-module gih(s^x) is sent to the ̂ x-module &x by this equivalence. 

Proof. — Recall first that for two C -algebroids SB and SS , to give an equivalence 
of C -̂algebroids B ~ SB' is equivalent to giving a bi-invertible Bop 0 ^'-module 
(Lemma 2.1.11). 
(i) follows from Lemma 2.1.12. More precisely, we define an {Snd^h^x) 0 
(5^(^x[[^]]))op)-module JSf; as follows. For a = (ax 0 a?) € £?x 0 Aop X 
set 

i?'(<7) := Jfomc^x[[fi]],iftm^ (*2, <7i)). 

Clearly, jSf' is bi-invertible. 
(ii) For a = (01 0 (J2P) € Ax 0 ^xP' ^ us ch°ose an isomorphism V : G\ a2 and 
a standard isomorphism (p: <̂ x[[̂ ]] &nd^x(ai). Then they give an isomorphism 

/ : ^P] ]^J fom^( (72! (7 l ) . 

We define a (DaX 0 ^xp]]°P)-submodule J2f of JSf' as follows: let jSf(cr) be the 
^x[[̂ ]]op-submodule of S^f(a) generated by / . Then J£?(cr) coincides with the sub-
module generated by / over the C -̂algebra 6ndgg(<r) C 6ndCh(J4fbm^x (<r2, <TI)). 
Moreover, JSf (cr) does not depend on the choice of -0 and £>. It is easy to see that j£? 
is a bi-invertible (^jf 0 @x[[h]]op)-module. 
(iii) The (DAX ® ^x[[̂ ]]op)-module j£f gives an equivalence of categories 

(2.5.1) *®9Х[[Щ *: Mod(̂ f[[ft]]) ^ Mod(^), 

which is isomorphic to the functor induced by the algebroid equivalence î jf 
@x№]- Consider the (@x№] ® (^)op)-module 

if* := Hom DAX (L, DaX). 

A quasi-inverse of the equivalence (2.5.1) is given by 

if* ® ^ • ~ Jfom^{^, •): Mod(f^) ^ Mod(̂ x[[ft]]). 

The results follow. • 
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Dualizing complex. — Let six be a DQ-algebroid on X. We shall construct a defor
mation of the sheaf of differential forms of maximal degree and then the dualizing 
complex for six-

Lemma 2.53. — (i) six has locally a resolution of length dx by free S1^ -modules 
of finite rank. 

(ii) gvh^xtd^ (sJx, DAX)) ^ Six- (Note that grh(Extdx Dax(Ax, DAX)is a module 
over grh(sJx) O0X grh(s/x^) ^ &x by (2.1.12)). 

(hi) SxtiDAX (Ax, DAX) = 0fori^ dx. 

Proof. — We have 0jf ~ @x[[ti]] and six ^ <^xp]] as ^-modules. Then the 
results follow from 

RHom DX [[h]] (0x [[h]], DX [[h]] = (Ox [[h]) [–dX]. 

(ii) follows from 
grh (RHom DAX (AX, DAX)) = RHom grh (DAX) (grÄ(^),grÄ(^)) 

= RHom DX (0x, DX) = OX [–dX]. 
We set 

(2.5.2) OAX :=Sxtdx 
DAX {s^x,S>x) € Mod(^x ®s/x*)-

Lemma 2.5.4. — The {six ^ sixv)-module Qx is bi-invertible. 
Proof. — Under the equivalence Sfx — x̂[[ft]]> we have Q,x — ^x[[h]]. Hence we 
have an isomorphism QAx — lim OxA /y'/hnQx . Since gr^Sljf) ~ Qx is a coher-

n 
ent gr^(j^)-module, Q,x is a coherent j^x-module by Theorem 1.2.5 (iv). Since 
grh{Qx) is an invertible ^x-module and Qx nas no ^-torsion, OAx is locally isomor
phic to six as an j^x-module. Hence Q,x is a bi-invertible {^ixP ® ^x)-module by 
Lemma 2.4.1 (a). • 
Lemma 2.5.5. — One has the isomorphisms 

(2.5.3) nx®9«**x[-dx] ^ RHomDAX (Ax, Ax) = Chx. 

Proof. — The first isomorphism is obvious by Lemma 2.5.3. Hence, it is enough to 
prove that the natural morphism Chx —> RJfimDAX {six, six) is an isomorphism. By 
the equivalence S)x — Dx [[h]]we may assume that six = OX [[h]] and $x = 
@x[[h]]> Then RtffimDAX (Ax, Ax) is represented by an infinite product of the de 
Rham complexes: f|n hnVLx. Then the assertion follows from a classical result: QX(U) 
is quasi-isomorphic to C when U is a contractible Stein open subset. • 

Note that fit? and Qya are isomorphic as six ®sixa-modules. 
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Definition 2.5.6. — We set 
ujf :=6x*(lg[dx] - 6x*R*6m0*(fi'x,9j?)[2dx] G Bh(s/XxXa) 

and call LJX the g/x-dualizing sheaf. 

Note that ux is bi-invertible (see Definition 2.4.6). Using (2.5.3) and the morphism 
L L 

<Sx*̂ x ® AX x Xa ~~ OAX ODAX Ax, we get the natural morphism 

(2.5.4) u&®*XxxaVx - <̂ .<C* [2dx]. 
Applying the functor gr̂  to the above morphisms, we get the morphism 

(2.5.5) Sx.(grAu,x<a)®g[itJ,xxxa(6x.&hVx) - 5X.(CX [2dx]), 

which coincides with the morphism derived from 

(2.5.6) ^1(^.(srfiwx»)®gr^XxXO (Sx.grh^x)) - iix [dx] - CX [2dx]. 

Here we used the functor of algebroids Sx1(grhs/Xxxa) —• &x. 
Let Y be another manifold endowed with a DQ-algebroid s/y We introduce the 

notation: 

^XxY/Y — UX S^V £ Db(^XxXaxyx7°)' 
Then ^XXY/Y also belongs to Db((î jf )op IEI «ê yxya)> and we have an isomorphism 

L 
WAX x y/y ODAX = Chx x Ay. Hence we have a canonical morphism 

(2.5.7) 4 x y / y ^ x x x a % - (CHX SVY)[2dx] 

in Db(C^ MS/YXY*). 
The proof of the following fundamental result will be given later at the end of § 3.3. 

Theorem 2.5.7. — We have the isomorphism 

(2.5.8) Ux — PrfXaa^«)8"' inDb(*frxjr.). 

Note that in Formula (2.5.8), '̂̂ xaxX is the dual over s/XaxX and (•)(g>_1 is the 
dual over sz/x. 

Corollary 2.5.8. — For Ji e ^>h(s/XxXaxY), we have 

т, 

L 
CXa O AX x Xa M = RHom AX x Xa (CX, WAx OAX M) 

= RHom AX x Xa (CX , M OAX WAX 
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Proof. — We have 

2.6. Almost free resolutions 
We recall here and adapt to the framework of algebroids some results of [42]. 
In this section, K denotes a commutative unital ring, X a paracompact and locally 

compact space and si a K-algebroid on X. 
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L CXa O ̂xxxa M = RHom ̂Xxxa (D' 
AXa x X 

CXA , M) 

= RHom ̂Xxxa (WAX L 
0 AX 

D 
^xxxa ̂Xa5 ^X 

L 
O AX 

M) 

= RHom 
&*XxXa (CX, WAX L 

<8 «2*X M) 

The other isomorphism is similarly proved. • 

One shall be aware that, although ftx is locally isomorphic to six as an j^x-mod-
ule, it is not always locally isomorphic to six as an six ® i4a-module. 

Example 2.5.9. — Let X = C2 with coordinates (xi,x2) and let six be the DQ-alge-
bra given by the relation 

[xi,x2] = hxi. 

Let (2/1,2/2) denotes the coordinates on Xa. Hence 

[2/1,2/2] = -ft 2/1. 

Then ̂ x is the s/xxxa-module £^xxxa -u where the generator u satisfies (xi—yi)-u = 
0 (i = 1,2). Therefore ^x is quasi-isomorphic to the complex 

(2.5.9) 0 - siXxXa ^ si®lxa £ ^xxx* - 0, 

where ^xxxa on the right is in degree 0, a(a) = {—a(x2 — 2/2 + ft),a(:ri — 2/1)) and 
/3(6, c) = b(xi - 2/1) + c(x2 - 2/2). 

It follows that D^(^x) [2] is isomorphic to sixxxa • w where the generator w 
satisfies (#i — 2/1) • w = 0, (2/2 — #2 + ft) • w — 0. The modules D^(^x) [2] and 
Cx are isomorphic on xi 7̂  0 by u <-> #110. However, D^(^x) [2] and ^x are not 
isomorphic on a neighborhood of x\ = 0. Indeed if they were isomorphic by u <-> aw 
for a G J#X, then xia = ax\ and x2a = a(a;2 — ft). Then {#2,cr0(a)} = — 00(a). Since 
{#2, •} = —%idXl, we have ̂ lC^c^a) = (Jo(a), which contradicts the fact that o~o(a) 
is invert ible. 

Remark 2.5.10. — The fact that D^^x is concentrated in a single degree and plays 
the role of a dualizing complex in the sense of [6] was already proved (in a more 
restrictive situation) in [23, 24]. 
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Let us take a family 5? of open subsets of X. We assume the following two condi
tions on P : 

(2.6.1) 

(i) for any x G X, {U G y ; x G [/} is a neighborhood 
system of x, 

(ii) for U, V G 5?, U n V is a finite union of open subsets 
belonging to y. 

Recall that invertible modules are defined in Definition 2.1.4. 

Definition 2.6.1. — (i) We define the additive category Modaf (A) of s-almost free 
^/-modules as follows. 
(a) An object of Modaf (g/) is the data of {/, {Ui, U[, £i}ie/} where I is an index 

set, Ui and U[ are open subsets of X, Ui e y, Ui C U[, the family {U[}iei 
is locally finite and Li is an invertible s/\uf-module. 

(b) Let N = {J,{VhV;,Kj}jeJ} and M *= {I, {Uu U[, Li}ieI} be two 
objects of M o d a f A morphism u: N —> M is the data of Uij G 
T(yj]Jfom^(Kj,Li)) for all (i, j) £ I x J such that Vj C U{. 

(c) The composition of morphisms is the natural one. 
(d) We denote by 0 : Modaf(<s/) —> Mod(^) the functor which sends 

{I,{Ui,U[,Li}iei} to ®iei(Li)ui and which sends an element Uij 
of Y{Vj\^om^{Kj,Li)) to its image in Rom^((Kj)Vj, (I/^t/J if Vj C E/i 
and 0 otherwise. 

(ii) Similarly, we define the additive category Modaf(^) as follows. 
(a) The set of objects of Modaf (A) is the same as the one of Modaf (A) 
(b) Let N = {J, {Vj,.V'j, Kj}jej} and M = {/, {Uu U[,Li}ieI} be two 

objects of Modaf(^/). A morphism u: N —> M is the data of uij G 
T(JTi\Mm ̂ (KhLi)) for all (ij) el x J such that U{ c V,. 

(c) The composition of morphisms is the natural one. 
(d) We denote by V : Modaf(^) —• Mod(^/) the functor which sends 

{/, {Ui, U[, Li}iej} to ^iei^Ui(Li) and which sends an element Uij 
of Y{Ui\J^om A(Kj,Li)) to its image in H o m ^ ^ . ^ ) , ^ ^ ) ) if 
Ui cVj and 0 otherwise. 

Note that Modaf(«s/) is equivalent to Modaf(s/op)op by the functor which sends 
{I, {Ui,Ui,Li}i€l} to {I, {Ui, U'i, Hom^(Li,s/)}ieI}. 

Recall that for an additive category ^, we denote by C~(f£) (resp. C+(^)) the 
category of complexes of C bounded from above (resp. from below). 

The following theorem is proved similarly as in [42, Appendix]. 

Theorem 2.6.2. — Let si be a left coherent algebroid and let M G D^oh(̂ )- Then 
there exist L* G C~(Modafand an isomorphism $(!/*) — M in T>~(s/). 

There is a dual version of Theorem 2.6.2. 

Theorem 2.6.3. — Assume 
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(a) si being regarded as an object of Mod(si ®siop), RTu(si) is concentrated in 
degree 0 for all U G 5?, 

(b) si is a right and left coherent algebroid, 
(c) there exists an integer d such that, for any open subset U, any coherent si\u-mod

ule admits locally a finite free resolution of length d. 
Let jtft G D^hC^O- Then there exist L* G C+(Modaf(si)) and an isomorphism 
Jt ~V(L*) in D+(si). 

Proof — Denote by D the duality functor K!^bm^( •, si) and keep the same notation 
with siop instead of si. This functor sends D+h(^) to D~oh(̂ op) by (c). It also sends 
D^h(^/op) to D+h(<s/), and the composition 

Dc+oh(̂ ) D D;oh(^°P) — Dc+ohK) 
is isomorphic to the identity functor. 

On the other hand, if L is an invertible ^op-module, then D(L) is an invertible 
j^-module, and by the hypothesis (a), we have 

D(Lc/)^rC7(D(L)) 
for any U G y. 

Then we get the result by applying Theorem 2.6.2 to D(^) G D^oh(^°P) and 
using Jt D(D (.#)). • 

2.7. DQ-algebroids in the algebraic case 
In this section, X denotes a quasi-compact separated smooth algebraic variety over 

C. 
Clearly, the notions of a DQ-algebra and of a DQ-algebroid make sense in this 

settings and a detailed study of DQ-algebroids on algebraic variety is performed in 
[63]. 

Assume that X is endowed with a DQ-algebroid six for the Zariski topology. Then, 
in view of Remark 2.1.17, gr^(^x) — ^x- However, this equivalence is not unique in 
general. 

Let us denote by Xan the complex analytic manifold associated with X and 
by p: Xan —» X the natural morphism. Then we can naturally associate a DQ-alge
broid sixan to six and there is a natural functor p~lsix —• ^xan, whose construction 
is left to the reader. It induces functors 

(2.7.1) Mod(^x) -> Mod(^xan) 
and 
(2.7.2) ModCoh(̂ x) Modcoh(̂ Xan). 
When X is projective, the classical GAGA theorem of Serre extends to DQ-algebroids 
and it is proved in [19] that (2.7.2) is an equivalence. 
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Lemma 2.7.1. — Let M G Modcoh(<2^c)- The two conditions below are equivalent. 
(a) ^ is the inductive limit of its coherent sub-s/x-modules, 
(b) there exists an s/x-lattice of ̂  (see Definition 2.3.14)-

Proof. — (a) = (b) Let M — lim N where N ranges over the filtrant family of co
herent ^x-submodules of Jt'. Since s/^0 is Noetherian, the family {Ca'loc <8>ch J^} 

is locally stationary. Since X is quasi-compact, this family is stationary. 

(b)=>(a) is obvious. • 

Definition 2.7.2. — Let Jt G Modcoh(̂ xoc)- We say that Jt is algebraically good if 
it satisfies the equivalent conditions in Lemma 2.7.1. 

We still denote by Modgd(^oc) the full subcategory of ModCoh(̂ oc) consisting 
of algebraically good modules. 

The proof of [38, Prop. 4.23] extends to this case and Modgd(̂ $)C) is a thick 
abelian subcategory of Modcoh(̂ j:oc)- Hence, we still denote by Dgd(̂ xDC) the full 
triangulated subcategory of D£oh(j#jJpc) consisting of objects M such that Hj(^) is 
algebraically good for all j € Z. 

Remark 2.7.3. — We do not know if every coherent /̂J^-module is algebraically good. 

Almost free resolutions. — Recall that X is endowed with a DQ-algebroid six for 
the Zariski topology. 

We denote by 05 the family of affine open subsets U of X on which the algebroid 
si\j is a sheaf of algebras. Note that this family is stable by intersection. Moreover, 
hypotheses (1.2.2) and (1.2.3) are satisfied. 

Lemma 2.7.4. — Assume that X is affine and six is a DQ-algebra. Then, for any 
JO£ G ModCoh(^x); there exist a free six-module Jt? of finite rank and an epimorphism 
u: %^>JZ. 

Proof. — Set *y#o = ^'jhM'. Then Mo is a coherent Ox-module and there exist 
finitely many sections (vi,..., vjy) of Mo on X which generate Mo over @x-

By Theorem 1.2.5, T(X; jit) —> T(X; ^o) is surjective. Let (u\,..., UN) be sections 
of M whose image by this morphism are (vi,..., VN)- Let L = si^ and denote 
by (ei,..., ejv) its canonical basis. It remains to define u by setting u(ei) = U{. • 

Theorem 2.7.5. — Let M G Modcoh(^x)- Then there exists an isomorphism M ~ 
j£f * in Dh(six) such that J5f'* is a bounded complex of six-modules and each J£l is a 
finite direct sum of modules of the form i\j*J£\j, where iu: U <—> X is the embedding 
of an affine open set U such that sijj is equivalent to a DQ-algebra and J£\j is a locally 
free sijj-module of finite rank. 

Before proving Theorem 2.7.5, we need some preliminary results. 
Let U = {Ui}iei be a finite covering of X by affine open sets such that six\UI LS 

a DQ-algebra for all i. 
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We denote by E the category of non empty subsets of / (the morphisms are the 
inclusions maps). For a G E, we denote by \a\ its cardinal. For a G E, we set 

Ua = P | Ui, La: Ua ^ X the natural embedding. 
iE0 

We introduce a category Mod(^/, fy) as follows. An object M of Mod (A, U,) is the 
data of a family ({Ma}ael:, {g£fr}rC(7(ES), where Ma G Mod(^J and qfr : MT\Ua 
Ma are morphisms for 0 ^ r C cr G E satisfying q^fa = id and for any G\ C 02 C 0-3, 
the diagram below commutes 

(2.7.3) MO1|U03 9 A/f °"2'crl MO2|U03 

q M o3, o1 
q M CT3 >°"2 

MCT3. 
A morphism M —• M' in Mod(j^, ^ ) is a family of morphisms Ma —• M'a satisfying 
the natural compatibility conditions. 

Clearly, Mod (s/, U) is an abelian category. 
To an object M G Mod(g/, 9/) we shall associate a Koszul complex C * (M) using 

the construction of [43, § 12.4]. To M we associate a functor F: E —• Mod(£^r) as 
follows: -F(o") = ia*Ma, and F(r C <J) : i^r) —• ^(cr) is given by the composition 

VT * Мт La*(MT\ua) 9 M la*Ma. 
According to loc. cit., we get a Koszul complex C* (M) 

(2.7.4) C9{M):= 0 C\M) d1 C2(M) d2 

where 
CUM) = 

\a\=i 
La*Ma 

is in degree i. This construction being functorial, we get a functor 
(2.7.5) C* : Mod(s/,W) Cb(Mod(^x)). 
It is convenient to introduce some notations. We set 

Modcoh(^, ̂ ) = {M G Mod(^, fy);Ma e Modcoh(̂ c/J for all a G E} , 
Modff (A, U) = {M G Mod(^, ^ ) ; MCT is a locally free /̂CT-module 

of finite rank for all a G E}. 
Clearly, Modcoh(̂ , ̂ ) is a full abelian subcategory of Mod (A, U) and Modff (A, U), 
is a full additive subcategory of Modcoh (A, U). 

Lemma 2.7.6. — The functor C : Modcoh(^, -> Cb(Mod(^x)) induced by 
(2.7.5) is exact. 
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Proof. — By Proposition 1.6.8 the functor iG: Modcoh(̂ c/CT) —• Mod(j#x) is exact 
for each a G E. The result then easily follows. • 

Let us denote by 

(2.7.6) A: ModcohO x̂) -> Modcoh(^,^) 

the functor which, to M G Modcoh(^x), associates the object M where Ma = ̂ \ua 
and o^r: MT\ua —• Ma is the restriction morphism. 

Lemma 2.7.7. — T/ie natural morphism Jt —• C* (Y(M)) [1] zs a quasi-isomorphism. 

Proof. — Apply [43, Th. 18.7.4 (ii)] with A = " [J " ̂ , u: A -> X. By this result, 
¿6/ the complex 

Fj :=0^Jt^C\\{JÍ))± -> C2{\{Ji())^---

is exact. 

Lemma 2J.8. — Let M G Modcoh (A,U) Then there exists an epimorphism L^»M 
in Mod(^, <%) with L G ModfF (A, U). 

Proof. — Applying Lemma 2.7.4, we choose for each a G E an epimorphism La-»Ma 
with a locally free Au -module L' of finite rank. Set 

La := 
ø # t C0 

L'T |U0 

and define the morphism La —> Mo by the commutative diagrams in which T C a: 

Lo Mo 

L'Au, MT |U0 

For r C cr, the morphism qLo,t : -Zr|c/CT La is defined by the morphisms (A C r): 

Lt Uo 
L а ,т Lo. 

L'y Uo 
Clearly, the family of morphisms q%T satisfies the compatibility conditions similar to 
those in diagram (2.7.3). We have thus constructed an object L G Mod(^/, ̂ ) , and the 
family of morphisms La —• Ma defines the epimorphism L-»M in Mod(j ,̂ ty). • 
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Proof of Theorem 2.7.5. — By Lemma 2.7.8, there exists an exact sequence 
in ModcohC^,^) 
(2.7.7) 0 Ldx+i Ll Lo Y(M) 0 
with the Li's in Modff (s/,^) (see Corollary 2.3.5). Consider the complex 
(2.7.8) L :=... Ll Lo 0. 
Hence, we have a quasi-isomorphism L* qis X(^). Using Lemma 2.7.6, we find a 
quasi-isomorphism 
(2.7.9) C'(L-) qis C'{\{J()). 
Then, the result follows from Lemma 2.7.7. 
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CHAPTER 3 

KERNELS 

3.1. Convolution of kernels: definition 
Integral transforms, also called "correspondences", are of constant use in algebraic 

and analytic geometry and we refer to the book [35] for an exposition. Here, we 
shall develop a similar formalism in the framework of DQ-modules (i.e., modules over 
DQ-algebroids). 

Consider complex manifolds XI (¿ = 1,2,...) endowed with DQ-algebroids SIXI-

Notation 3.1.1. — (i) Consider a product of manifolds X x Y x Z. We denote by pi 
the г-th projection and by pij the (г, j)-th projection (e.g., Р13 is the projection 
from Xi x Xi x l 2 to X\ xl2)- We use similar notations for a product of four 
manifolds. 

(ii) We write sii and siija instead of sixt and sixixx* and similarly with other 
products. We use the same notations for %\. 

(hi) When there is no risk of confusion, we do note write the symbols p~l and 
similarly with г replaced with ij, etc. 

Let Jti G Bh(sZXixx?+1) (i = 1,2). We set 
L _-, L _-. 

(3 11) -Kto^Jfa := Pl2^1^p-W2^23^2 
~ pfi I Ж2)®^МаЪ2 e Db(M к chX2 И */3a). 

Similarly, for J(fi G *Dh(sixixxi+1) (fc = 1,2), we set 

(3.1.2) КЯЬТ^(ЖъЖ2) : = Н ^ р - ^ > Г 2 ^ ь Р 2 3 ^ ) . 

Here we identify X\ x X2 x X% with the diagonal set of X\ x X% x X2 x . 
This tensor product is not well suited to treat DQ-modules. For example, sixxY Ф 

six И ^y- This leads us to introduce a kind of completion of the tensor product as 
follows. 
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Definition 3.1.2. — Let X. € Db(̂ XixXf+1) (г = 1,2). We set 

(3.1.3) K1 L 
0 й̂2 X2 = s -1 

2 ((K1 L 
O ̂ 2) L 

(8) £&22а C2) 

= p -1 
12 K1 L 

O P -l 12 S^\a2 ^123 L 
0 v -1 23 Л̂23а P -1 23 K2. 

It is an object of Db(p131ĵ i3a) where pi3: X\ x X2 x X3 —• Xi x X3 is the projection. 

We have a morphism in Y>h{p^[1s/x1 ^Ps1^x^)'-

(3.1.4) K1 L 1 A2 JT2 K1 L El A2 K2. 
Note that (3.1.4) is an isomorphism if X\ = pt or X3 = pt. 

Definition 3.1.3. — Let X{ e DB(«2*x.xx?+1) (i = 1,2). We set 

(3.1.5) K1 О 
x2 

e>̂2 — RPl3l(^l L 
0 •S*2 ̂ 2 )eDb(4xx ; ) , 

[3.1.6) J£i * 
x2 

Ж2 = RP13*(̂ 1 L 
0 A2 ̂ 2)GDb(^XlXXa). 

We call о 
x2 

the convolution of X\ and K2 (over X2). If there is no risk of confusion, 
we write Ж\ о Ж2 for J î о 

x2 
Ж2 and similarly with *. 

Note that in case where X3 = pt we get: 

XxoX2 ~ R>Pi\(Xi®^2p2 X2), 

and in the general case, we have: 

Xx o X2 ~ (Xxh-X-i) ° ^x2 (3.1.7) *2 A-2XX-
~ Rpi4!((^là^)®^Ma«2), 

where pu is the projection X\ x X2 x X2 x Xf -> Xi x Xf. There are canonical 
isomorphisms 
(3.1.8) Xx o ^X2 ~ Xx and <gXl ° Xx~ Xx. 

X-2 X\ 
One shall be aware that o and * are not associative in general. (See Proposi
tion 3.2.4 (ii).) 

However, if if is a bi-invertible stfx2 ® ^x*-module and the X^s (i = 1,2) are as 
above, there are natural isomorphisms 

K1 о 
x2 

L = K1 L 
(8) AX2 

if, Jgf о 
x2 

JT2-if 
L 
'<g> ̂x2 -#2? 

0*1 О 
X2 

L) о 
*2 

ж2~жх о 
x2 

(if о 
X2 

Ж2). 
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For a closed subset A$ of Xi x Xi+\ {i = 1,2), we set 
(3.1.9) AioA2 := pi3(pr21Ainp̂ 31A2) 

= Pi4((Ai x A2) ft (Xi x A2 x X3)) c l i x X3. 
Note that if A* is a closed complex analytic subvariety of Xi x Xf+1 (i = 1,2) and 
Pis is proper on p^Ai np2~31A2, then Ai o A2 is a closed complex analytic subvariety 
of Xx x X$. 

Let us still denote by o the convolution of grn (^-modules. More precisely for Li £ 
Dh(gvh(^XiXXa+i)) (i = 1,2), we set 

i f i o j ^ = Rp14l((JS?i L 
X if2) L 

0, gr̂ («2/22a) grh (C2)). 

Proposition 3J.4. — For Жг G Db(«gtfx.xx?+1) (г = 1,2), we /мие 

(3.1.10) grft(JTi о JT2) - gr^Jft) о grapr2). 

Ргоо/. — Applying Proposition 1.4.3, it remains to remark that the functor grn com
mutes with the functors of inverse images and proper direct images as well as with 
the functor H. • 

3.2. Convolution of kernels: finiteness 
In this section, we use Notation 3.1.1 
Consider complex manifolds Xi endowed with DQ-algebroids s&Xi (i = 1,2,...). 

We denote by dx the complex dimension of X and we write for short d{ instead of dxt • 
We shall prove the following coherency theorem for DQ-modules by reducing it 

to the corresponding result for ^-modules due to Grauert ([31]). In the sequel, for 
a closed subset A of X, we denote by Dbcoh,A (Ax) the full triangulated subcategory 
of Dboh(<£/x) consisting of objects supported by A. We define similarly Dgd,A(̂ x °)-

Theorem 3.2.1. — For i = 1,2, let A* be a closed subset of Xi x Xi+i and Jti G 
ĉoh Aj^ixx^^- Assume that Ai Xx2 A2 is proper over X\ x X3, and set A = 

Ai o A2. Then the object <%{ o J(f2 belongs to Dcoh,A(^ îxxj)-

Proof. — Since the question is local in X\ and X3, we may assume from the beginning 
that sixx and &/x3 are DQ-algebras. 

We shall first show that 
L 

(3.2.1) ^ i ^ ^ 2 ^ 2 is cohomologically complete. 
Since this statement is a local statement on X\ x X2 x X3, we may assume that six2 
is a DQ-algebra. Since Jti and J^2 may be locally represented by finite complexes of 
free modules of finite rank, in order to see (3.2.1), we may assume Ki ~ ^xXf+1 
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L 
L 

rem 1.6.1. Hence J ^ o J ^ = Rpi3*(^i0^2^2) is also cohomologically complete by Proposition 1.5.12. 
On the other hand, grn(J*ioJ^) ~ Rp133(c(P12&K^®0Xixx2xx3#23gr )̂ 

belongs to D^oh(̂ XixX3) by Grauert's direct image theorem ([31]). Hence Theo
rem 1.6.4 implies that Jt[ o J(f2 belongs to D ôh(̂ xlXx3a). • 

Remark 3.2.2. — In [3], its authors use a variant of Theorem 3.2.1 in the symplectic 
case. They assert that the proof follows from Houzel's finiteness theorem on modules 
over sheaves of multiplicatively convex nuclear Prechet algebras (see [34]). However, 
they do not give any proof, details being qualified of "routine". 

Corollary 3.2.3. — Let M and jV be two objects of D£oh(«e*x) and assume that 
Supp(i/#) fl Supp(̂ K) is compact. Then the object RHom^x(^#, JV) belongs 
to Dhf(Ch). 

Proposition3.2.4. — Letjeie Dcboh(^xx«+1) (t = 1,2,3) and let if G D^oh(^4). 
Set Ai = supp(J^) and assume that A{ Xxi+1 A*+i is proper over Xi x Xi+2 (i — 1» 2). 

L L 
(i) There is a canonical isomorphism (Jt{ o J(f2) |3 if k1 x2 <%[ o (J^ Mi?)-

x2 x2 

(i = 1,2). Then X i ^ J ^ 2 — ^Xixx2xx3o is cohomologically complete by Theo-

(ii) There is a canonical isomorphism (J^i o Jf2) o J#3 ~ J î o ( J ^ 0 ^3)-
X2 X3 X2 X3 

L L 
Proof. — The morphism (Jg{ o Jf2) № -+ Jt[ o (J(f2 [§ if) is deduced from the 

2̂ A2 morphism (we do not write the functors p{ ,p{j for short): 

A13a 4 O A13a X A4 ((( ̂ 12A23A O A12a X A23a (K1 
L 
X K2)) L 

0 A22a C2) 
L 
El J2f 

= ((• &*13A4 El A13a X A4 ^12A23) O A12a X A23a X A4 K1 
L 
El K2 

L 
El L) L 

0 S&22a <$2 

( ̂ 12A23A4 0 A12a X A23a X A4 (K1 L 
El Ĵ 2 

L 
E] * ) ) 

L 
0 A22a ^2-

Applying the functor gr̂  to this morphism in D̂ oh(̂ Xi xx^xx4)? we get an iso
morphism. This proves the result in view of Corollary 1.4.6. 
(ii) By (i), we have 

(K1 o 
x2 

«#2) o 
x3 

K3 = (0*i o 
X2 

^ 2 ) 
L 
EJ ̂ 3 ) o X3xl3a 

^x3 

= (K1 o 
x2 

(J6 
L 
X K3)) о X̂3 

= Cx2 о 
Х2хХ% 

(^1 L 
El 

Ĵ 2 
L 
IS x3) o 

X3xXJ 
^X3-
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Then this object is isomorphic to (Ĵ i 
L 
IS K2 

L 
El K3) O X2xX^xX3xX^ 

(CX2 
L 
Eg' ̂x3)- Similarly, 

X\ o 
X2 

(^2 O 
X3 

Jts) is isomorphic to (K1 
L 
X K2 

L 
13 ̂ 3 ) o 

X2 x XJ x X3 x X£ 
(Cx2 

L 
IE1 ̂x3). 

3.3. Convolution of kernels: duality 

The duality morphism for kernels. — Denote as usual by pis: I i x I2 x X$ —> 
X\ x X3 the projection. 

Lemma3.3.1. — For Ki € Db(̂ xixxia+1) (i = 1,2), we /iave a natural morphism 
in Db(̂ XaxX3): 

(3.3.1) ( D ^ J Í i ) oa w* x2 оа(В'^Х2ххазЖ2) -> D^ixJf. (J gl K2) 

Proof. — We have 

D' si X\ L 
0 A2a 0/ si 2a 

L 
0 si2a D' A Jf2 = (D' ai ft 

L 
IE D' si x2) L 

0 ̂ 2a2 a; 
A 2A 

= (D' A K1 
L 
IS D' si x2) 

L 
0 £̂ 12a23a a; 

A 12A3A/13A 

= D' si {<ft 
L 
X K2) 

L 
0 ̂ 12a23a W A 

L2A3A/13A 

= R5%m <2̂12a23a (K1 
L 
X K2, W si 12A3A/13A ). 

Hence we have morphisms 

D', si X\ 
L 
0 si^a W Si 

2a 
L 
0 SÌ2" 

D' si JÉ2 = RHom £^12a23a (K1 
L 
X K2, W L2A3A/13A ) 

R5%m 
p -i 13 A13A (0*i 

L 
x2) 

L 
0 SÌ22a C2, W si 12A3A/13A 

L 
0 QÌ22a 

C2) 

RHom 
p -i 13 A13 a (K1 

L 
0 si2 x2,p -1 

13 **Ì3-[2d2]). 

The last arrow is induced by (2.5.7). Taking Rpi3t, we obtain 

(D' A K1) O 
X 

a 2 a; x a 2 O X 
a 2 
(D' A K2) = Rp13!((D,̂ jr1) 

L 
0 ai2a u2 Gi 

a 
L 
0 SÌ2a ( D ^ ) ) 

Rp13* RHom -i 13 Si13a (K1 
L 
0 (¿2 X2,P -1 

13 M3-[2d2l) 

RHom Si13a (K1 O 
x2 

^2,M3a). 

Here the last isomorphism is given by the Poincaré duality. 
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Serve duality. — Let us recall the Serre duality for ^-modules. Let X and Y be 
complex manifolds. Denote by / : X x Y —• X the projection, by uy = Qp^ [dy] the 

L 
dualizing complex on y and by WxxY/x := @x W^y the relative dualizing complex. 
For Sf G Dboh(^x), we set 

fl& = f-1&®f-10x«>XxY/X. 

Theorem 3.3.2. — Fov & G Djoh(^xxy) «wd G D£oh(^x), we Aave a movphism 

(3.3.2) R/*R^^xxy(^ , / !^ ) - > R ^ ^ x ( R / , ^ , ^ ) . 

// the suppovt of & is pvopev over X, then this movphism is an isomorphism. 

This result is classical and we shall only recall a construction of the morphism 
(3.3.2) adapted to our study. Since fty has a ^yP-module structure, we may regard 
LOXXY/X as an object of Dh(&x ^ ^yP). By the de Rham theorem, we have an iso
morphism: 

w x x y / x ^ ^ y - /~Vx[2dy]. 
L 

By composing with the morphism UJXXY/X ~~* WXXY/X®@Y&Y, we get a morphism 
in Db(/_1<^x): 

UXxY/X /-Vx[2dy]. 
Now we have a chain of morphisms in Db(/ l&x) 

RHom @X X Y 
(F, f! G) = RHom &XxY ((F, f-1 G) L 

<8> f-1 0x WXxY/X) 

RHom f xOx ((F, f-1 G) L 
<8> f *̂ A /-Vx[2dy]) 

= RHom f-1 0x (F, f-1 G [2dy]). 

On the other hand, the Poincaré duality gives an isomorphism 

R/*R5%m f-^x (F, f-1 G [2dy]) = RHom 
0x 

(Rf! F, G). 

Duality for kernels. — Let Xi be complex manifolds of dimension d{ and let six* be 
DQ-algebroids on Xi (i = 1,2,3). 

As in Notation 3.1.1, we often write for short X^ instead of Xi x X,, X^a instead 
of Xi x Xj, etc. We also write s^j instead of srfXii, etc. and ij/i instead of X^/Xi 
etc. 

Theorem 3.3.3. — LetJtie Dj?0J^xiXxt? ) (i = 1,2). We assume *Aa*Supp(Jft)xx2 
Supp(J^) is proper over X\ x X$. Then the natural morphism (see (3.3.1)) 

(3.3.3) (D^Jgi) o w * o (D^JT2) - D^pfi o JT2) 
A 2 A 2 A 2 

¿5 an isomorphism in T)^oh(£/x?xx3)' 
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Proof. — Since the question is local on Xi x Xa3 , we may assume that gr^^Z^i) and 
gTh(^x3) are isomorphic to &xx and &x3, respectively. Applying the functor gr̂ , we 
get 

g r ^ ^ o ^ o D ^ ^ ) ) 
L 

~ Rpi3!(R^m^123(K2gr (̂̂ l)̂ 123P23gra(̂ 2)̂ X123/X13)) 

- R#0mtfxi3 (Rpi3!(K2g^(^l)^123P23grn(^2))^13) 
^grn(D^(jrl0jr2)). 

Here the second isomorphism follows from Theorem 3.3.2. Hence (3.3.3) is an isomor
phism by Corollary 1.4.6. • 

Recall that D'X denotes the duality functor for C^-modules, (see (1.1.1)) and (• )* 
the duality functor on Dhf(Ch) (see (1.1.2)). 

Corollary 3.3.4. — Let ^ and JV be two objects of D\oh(s&x) -
(i) There is a natural morphism in Db(Cn) 

(3.3.4) RHom^x(^,a; /0^x^) - ( R H o m ^ x J Y ) ) * . 

(ii) //Supp(^) flSupp(^) is compact, then (3.3.4) is an isomorphism in D^(C^). 

Proof — (i) In Lemma 3.3.1, take X\ = X3 = pt, X2 = X, X\ = JV and X2 — 
D'AM. 
(ii) follows from Theorem 3.3.3. 

In particular, if X is compact, then M i-* UJX ®^ ^ is a Serre functor on the 
triangulated category Dj?oh(j#x). 

Remark 3.3.5. — For G ^h(^xCxxa ) ~ 1,2), one can define their product 
* ¿+1 L 

Jfi00si0CX2 similarly as in Definition 3.1.2 and their convolution similarly as in Def-
inition 3.1.3. (Details are left to the reader.) One introduces 

(3.3.5) uf°C :=Ch'loc®chug 

and for M G Db(ĵ pc), one defines its dual by setting 

(3.3.6) V'^JZ :=R№m^c(JZ,^]?c) G Db(^°ac). 

Then Theorems 3.2.1 and 3.3.3 extend to good ^loc-modules. 

Theorem 3.3.6. — Let Ai be a closed subset of Xi x Xi+\ (i = 1,2) and assume 
that Ai Xx2 A2 is proper over X\ x l 3 . Set A = Ai o A2. Let Xi G Dgd,A,(̂ xTxxa+1) 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 



76 CHAPTER 3. KERNELS 

(i = 1,2). Then the object J#l o X2 belongs to Dgd,A(^xTxxa) and we have a natural 
isomorphism 

V'A (K1)oX2 ouf:C o D^(JT2) ^ D ^ i o JT2). 

Proof of Theorem 2.5.7. — We are now ready to give a proof of Theorem 2.5.7. In 
Theorem 3.3.3, set X1 = X2 = X3 = Xa and Xx = X2 = <tfx«> Then we obtain 

D'ACXa о X Co X 
о X ̂ '^xa = D'A (CXa о xa 

^xa) = D^C^x*). 

By applying o(Df^tfx«)®~\ we obtain D ' / ^ o ^ ~ <gx. 

3.4. Action of kernels on Grothendieck groups 
Grothendieck group. — For an abelian or a triangulated category C, we denote as 
usual by K(^) its Grothendieck group. For an object M of <*f, we denote by [M] its 
image in K(<#). Recall that if # is abelian, then K(^) ~ K(Db(^)). 

If A is a ring, we write K(A) instead of K(Mod(A)) and write Kcoh(A) instead 
of K(Modcoh(,4)). 

In this subsection, we will adapt to DQ-modules well-known arguments concerning 
the Grothendieck group of filtered objects. References are made to [38, Ch. 2.2]. 

For a closed subset A of X, we shall write for short: 
Kcoh,A(̂ x) := K(Dboh?A(̂ x)), Kcoh|A(grn*k) := K(Dboh)A(gr^x)), 
Kgd,A(^oc):=K(Dbd5A(<c)). 

Recall that for an open subset U of X and M G Modcoh(^xc)? an ^tz-submodule 
ey#o of J4£\U is called a lattice of ^ on U if ^b is coherent over s^u and generates 

M|U. 

Lemma 3.4.1. — Let 0—> — M — N — > 0 be an exact sequence in Modcoh(^x c)-
Then there locally exist lattices Lo, Mo and N0 of l, M and JV respectively, such 
that this sequence induces an exact sequence of srfx -modules: 0 —> Lo —> M0 —> N0 ~0 
0. 

Proof. — (i) Let M0 be a lattice of M and let <Ab be its image in JV'. We set 
if0 := M0 H if. These ^x-modules give rise to the exact sequence of the statement 
and it remains to check that if0 and JVQ are lattices of if and JV , respectively. 

(ii) Clearly, JY§ generates X, and being finitely generated, it is coherent over srfx. 

(iii) Let us show that ifo is a lattice of if. Being the kernel of the morphism Mo N0, 
if0 is coherent. Since the functor (• )loc is exact, the sequence 0 —> if0loc —> ^QOC —• 
^ioc ^ o is exact. Therefore, if0loc - if. 
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Lemma 3.4.2. — Let M e Modcoh(^pc), let U be a relatively compact open subset 
of X and assume that there exists a lattice M0 of M in a neighborhood of the closure 
U ofU. Then the image of J£Q in Kcoh(gr̂ M/) depends only on '. 

Proof. — (i) Recall that [grh^0] denotes the image of grhJ?o in Kcoh(gr^^t/). First, 
remark that for N G N, the two gr̂ ^^x-modules grh^o and grhhN M0 are isomorphic, 
which implies 

[gr^o] = [grhhN^0]' 

(ii) Now consider another lattice JKQ of J& on U. Since M is an ĵpc-module of finite 
type and M'0 generates M, there exists n > 1 such that M0 C h~n^Q. Similarly, 
there exists m > 1 with M'0 C h~~m^o, so that we have the inclusions 
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K m-\-n #̂0 C K •m y#0 C #̂0-
Using (i) we may replace J^'Q with hmJ%Q. Hence, changing our notations, we may 
assume 

(3.4.1) /îm^o C X C #̂o-

(iii) Assume m = 1 in (3.4.1). Using ÏÏ^JKQ C ftm^o> we get the exact sequences 

0 M'0 / hM0 M0 / hM0 M0 / M'0 0, 
0 h M0 / hM'0 M'0 / hM'0 M'0 / hM0 o, 

and the result follows in this case. 
(iv) Now we argue by induction on m in (3.4.1) and we assume the result is true 
for m — 1 with m > 2. Set 

M"0 := hm-1 M0 + M'0. 
Then hJtH C M'0 c Mo" and ^m_1^b C ̂ #o' C ̂ #0- Then the result follows from 
(iii) and the induction hypothesis. • 

We set 

(3.4.2) Kcoh,A(gr^x) := limKcoh,A(grn^). 
u 

where U ranges over the family of relatively compact open subsets of X. Using 
Lemma 3.4.2, we get: 

Proposition 3.4.3. — There is a natural morphism of groups 

gvh: Kgd,A(^xc) -> Kcoh,A(gr^x). 

Remark that when X = pt, the morphism in Proposition 3.4.3 reduces to the 
isomorphism 

(3.4.3) K/(Cn'loc) -^K/(C), 

and both are isomorphic to Z by [Ml i-> dim M. 
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Kernels. — Consider the situation of Theorem 3.2.1. Let A* be a closed subset 
of Xi x X1+1 (i = 1,2) and assume that Ai Xx2 2̂ is proper over X\ x I3 . Set 
A = Ai o A2. Since the convolution of kernels commutes with distinguished triangles, 
it factors through the Grothendieck groups. Moreover, one can define the convolu
tion of gr^j^x-kernels and a variant of Theorem 3.2.1 with six replaced with gc^s^x 
is well-known. Since the functor gr̂  commutes with the convolution of kernels, the 
diagram below commutes: 

(3.4.4) Ob(Dboh5Ai(M20) x Ob(Dcboh5A2(̂ 23a)) Ob(Dboh)AK3«)) 

Kcoh^iO^) X Kcoh>A2(̂ 23-) Kcoh,A(M3a) 

gr̂ xgr,, grft 
Kcoh,Ai (gr^12<0 X Kcoh,A2(gr̂ 23") KCoh,A(grâ l3«). 

Similarly to (3.4.4), the diagram below commutes: 

(3.4.5) Ob(DbdjAi « J ) ) x Ob(Dbd>A2«-)) Ob(D* AK3-)) 

Kgd.A^^) x Kgd,A2(^J) Kgd,A(̂ 113°«c) 

SIhxSTh grft 

Kcoh.A! (grft.fi/l2") X Kcoh;A2(grR̂ 23«) Kcoh,A(grfî i3<»)-
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CHAPTER 4 

HOCHSCHILD CLASSES 

4.1. Hochschild homology and Hochschild classes 

Let X be a complex manifold and let s^x be a DQ-algebroid. Recall that Sx : X —> 
X x Xa is the diagonal embedding. We define the Hochschild homology $&£(srfx) 
of £$x by: 

(4.1.1) M£(Ax) := S^-1X^x'to AX x x Cx), an object of Db(C|). 

Note that by Theorem 2.5.7, we get the isomorphisms: 

HH (AX) = S -î 
x 

RHom 
&ixxxa (D' dxaxx 

Cé>Xa,Cé'x) 

= 0 -1 
X RMm &ixxxa (W si®-l 

X , CX). 

We have also the isomorphisms 

RMm six xxa (u, A O - 1 
X , CX) = RMm £&xxxa (W si 

X 
o 
X W ai®-l X , W si X o 

X 
Vx) 

= RMm oixxxa (CX, W si 
X ). 

One shall be aware that the composition of these isomorphisms does not coincide in 
general with the composition of 

RMm 2¿X XXa (W si®-l X , CX) = RMm &ixxxa (W si®-l 
X 

o 
X üü si X ^X o 

X si X ) 

= RMm eixxxa (CX, W si X )• 

We shall see that they differ up to hhx(^x) ° (see Theorem 4.3.4 below). For that 

reason, we shall not identify M£(s^x) and R^bm^x a{^x^x)' 

Lemma 4.1.1. — Let M G Dboh(j^x)- There are natural morphisms in T)^oh(^xxxa)' 

(4.1.2) UJ A O - 1 
X M L 

X 
D' A, M, 

(4.1.3) M 
L 
X D'AM — CX. 
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Proof. — (i) We have 

RHom Ax (M , M) = (D' A M° L 
0 AX M 

= CX a 
L 
<8> &*xxxa (M L 

X D' A M 

= RHom ̂Xxxa (u fi/(g)-l X , M 
L 
El D' A M 

The identity of Hom^x (^#, ̂ ) defines the desired morphism. 
(ii) Applying the duality functor D^Xxxa to (4.1.2), we get (4.1.3). 

Let jtft G Dboh(ĵ x). We have the chain of morphisms 

(4.1.4) 
RMm^x(J£,JZ) D' A M 

L 
O Ax M 

CX a L 
&XxXa Ut L 

IS D' ^f) 

CX a L 
£&xxxa CX = HH (AX). 

We get a map 
H o m ^ M ^ ) - H0Sup (M){X;M({^x)). 

For ^ G End(^), the image of ^ gives an element 

(4.1.5) hhx((M, u)) e HOSupp ( M ) ( X - m ^ x ) ) . 

Notation 4.1.2. — For a closed subset A of X, we set 
(4.1.6) HHA(^x) :=RrA(X;^(^x)), HH°(^X) := tf°(HHA(^x)). 

Definition 4.1.3. — Let Jt G DbohA(^x). We set hhxM0 = hhx((^,id^)) G 
HH^(^x) and call it the Hochschild class of jj£. 

Lemma 4.1.4. — Let M G Dboh(ĵ x)- The composition of the two morphisms (4.1.2) 
and (4.1.3): 

W A 0 - 1 
X M 

L 
X D' A M – CX 

coincides with the Hochschild class hhx(M) when identifying ${K(srfx) with 
RMm AX x Xa (w A 0 - 1 X 

, CX). 

RMm^x(Jt,Jt) = RMm •e?xxxa (W A O - 1 
X ,M L 

El D' A M 

RHom ̂ XxXa (W ̂<g)-l X , CX) = HH (AX). 

ASTfiRISQUE 345 

Proof — The Hochschild class hhx(^) is the image of id^ by the composition 



4.2. COMPOSITION OF HOCHSCHILD CLASSES 81 

Theorem 4.1.5. — The Hochschild class is additive with respect to distinguished trian
gles. In other words, for a distinguished triangle M' —> M —> jtft1' —> in D^oh(^x), 
we have 
(4.1.7) hhxMO = h h x ( ^ ) + hhxW). 

L 
Proof. — Although the bifunctor • ® ^ • is not internal to our category, the theorem 
of May [51] is easily adapted to this situation. • 

By this result, the Hochschild class factorizes through the Grothendieck group. 
Therefore, if A is a closed subset of X, we have the morphisms 

(4.1.8) D^ohiA(̂ x) - Kcoh)A(̂ x) - H H ° K ) . 
Duality. — Denote by s: XxXa —• Xa xX the map (x, y) i—> (y, x) and recall that Sx 
is the diagonal embedding. Then s o 5x = Sx, s~Xc&x — ^x«, s~ls&xxx°- — -&xaxx 
and we obtain the isomorphisms 

№{*tx) = OX-1 (Sxn ® Ax x x a (Cx) 

c 0x-1 s-1 5xls-\^®^xa^x) 

~ Ox-1 6x\s-l(£x«®s-^Xxxas-lVx) 

- SXHVXH AX A XX CVXA) = m(*/x«). 

After identifying $(H(SRFX) and ^&{(S/XA) by the isomorphism above, we have: 

(4.1.9) hhxa (D^) = hhx(^). 

Remark 4.1.6. — Let ^ be a DQ-algebroid and let & be an invertible C -̂algebroid 
on X. Then 

(4.1.10) ^ :=*/®CX&> 

is a DQ-algebroid on X. We have the natural equivalences 

(^°P)^°P ~ ( ^ ) ° P , 

S^W* 1 (^ )op) ^ Sx-1 Aifi/Eis/*)). 

We deduce the isomorphism 

(4.1.11) M£^X) ^ JW(fi/f). 

4.2. Composition of Hochschild classes 

Let Xi be complex manifolds endowed with DQ-algebroids S/XI (i = 152,3) and 
denote as usual by pij the projection from X\ x X2 x X3 to X« xXj (1 < z < j < 3). 
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Proposition 4.2.1. — There is a natural morphism 
L о : Rpi3! (p -1 12 m (AX1 x Xa2) OP -1 23 HH (AX2 x Xa3)) HH (AX1 x Xa3). 

Proof. — (i) Set Zi = XiX Xf. We shall denote by the same letter py the projection 
from Zi x Z2 x Z3 to Zi x Zj. 

We have 

HH (AXi x Xaj). 

= Ĉ xa L 
El CXj) L 

0 &zt X za (CXi L 
El 

^x a 
j 
) 

= RMm »Z,- X Z •a 3 (W A 0 - 1 Xi 
L 
El UJ A 0 - 1 

X a 3 ^Xi L 
El ̂ Xja) 

= RMm °^zixz a 3 
((W A 0 - 1 L 

El UJ A 0 - 1 X a 3 ) L 
0 ̂ x a 3 UJ sj X 'a 3 , (CXi 

L 
CXj a L 

(8) AX a J a; a ) 

= RHom Azi x z a 
j 

(a, £/(g)-l Xi 
L 
El CX a 

j 
»*x< L 

El a; 
A x - ). 

Set Si? := a; A O - 1 
x* 

L 
El ̂ x a J G Db coh №ZiXZf) and Kij := Cxi L 

El UJ w* Xaj G Db coh (̂ ZiXZ«). 
Then we get 

HH (AXi x Xaj) = RHom s^ZixZa % 3 (S{j, Kij). 

Thus we obtain a morphism in Db(CZixZ2XZ3) 

P -l 12 HH(AX1 x Xa2) L 
0. P -l 23 №Wx2xXS) 

= V -1 12 RMm Az1 x Za2 (Si2,Ki2) L 
0 P -l 

23 RHom 2̂z2 x z.° (̂ 23, if 23) 

P -1 13 RHom •̂ Zi xz£ (S12. L 
0 Az2 #23> if 12 L 

(8) *z2 if 23). 

We get a morphism 

(4.2.1) 
Rpi3i(p -1 12 HH (AX1 x Xa2) L 

0 
P -1 

!3 HH(AX2 x Xa3)) 

RPI3!R Hom AZ1 x Za3 
(S12 3 

ẑ2 #23) if 12 L 
0 ẑ2 if23). 

(ii) We have a morphism 

C X2 RHom 2̂ za 2 O^XJĵ Xj) = ^2a L 
0 2̂Z2 a; 

G/®-1 
x2 5 

which induces the morphism: 

P -1 
13 (W S2/&-1 

X: 
L 
El 

^xj) (a, fi/<g)-l 
Xi 

L 
El 

^xj) L 
0 AZ2 (a; ̂ ®-l 

X2 
L 
El 

CXa3), 
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that is, the morphism in Db(^lX^a): 

(4.2.2) Si3->Rpi3.(A2è- S23). 

(hi) We have a morphism (see (2.5.7)): 

(Sx, L 
X U s/ 

X 2 ) 
L 
<8> &z2 (CX2 L 

X W si 
Xaj ) P -1 

13 
(CX, L 

IE1 W s/ 
Xaj 

)[2d2], 

which induces the morphism in Db(«ß*ZixZj): 

(4.2.3) Rí>i3.(#i2®^z K23) -> K13. 

(iv) Using (4.2.2) and (4.2.3) we obtain 

(4.2.4) 

Rp13!BJûm Az1 x za3 {S12®^Z2S23, K12®^2 - M 

- RMm^z xZO(RPi3.№2®^Z2523),Rpi3!(̂ i2â^Z2^23)) 
- RHom ax z xZO(S13, K13) = HH(AX1 X XA3). 

Combining (4.2.1) and (4.2.4), we get the result. 

Let us denote by XR the real underlying manifold to X and by Ш££ the topological 
dualizing complex of the space X^ with coefficients in CH. Note that X being smooth 
and oriented, Wtop is isomorphic to ChX [2dx]. 

Corollary 4.2.2. — THERE IS A CANONICAL MORPHISM $Ш{Я/ХА) ®$$£{<^X) —> иХш' 

PROOF. — Let us apply Proposition 4.2.1 with X2 = X, X\ = X% = pt. Denoting 
by AX the map X —• pt, we get the morphism Roj!(jW(^a) <g> №£{SRFX)) —> Cpt. 
By adjunction we get the desired morphism. • 

4.3. Main theorem 
Consider five manifolds XI endowed with DQ-algebroids S^XT {I — 1,..., 5). 

Notation 4.3.1. — In the sequel and until the end of this section, when there is no 
risk of confusion, we use the following conventions. 

(i) For ij e {1,2,3,4,5}, we set XIJ := XI x XJ, XIJA := XI x X" and similarly 
with XIJK, etc. 

(ii) We sometimes omit the symbols PIJ,PIJ*,P~3L', etc. 
(hi) We write «й̂  instead of «й̂ -., £&ЦА. instead of S^XIA and similarly with %,uf*, 

etc., and we write о instead of о , * instead of * , JFFOM- instead of XOM * and 
* Xi I Xi 1 *** 

(£к instead of (g)̂  and similarly with IJA, IJK, etc. 
(iv) We write D' instead of D^ and UOX instead of U>X • 
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(v) We often identify an invertible object of Dh(s^x ® £?xa) with an object 
of Dh(s^xxXa) supported by the diagonal. 

(vi) We identify (X* x X«)a with X? x X,. 

Let Aij C Xij (i = 1,2, j = i + 1) be a closed subset and assume that Ai2 Xx2 A23 
is proper over X\ x l 3 . Using Proposition 4.2.1, we get a map 

(4.3.1) o : HHA12(̂ XL2A)®HHA23(̂ X23a) —- HHAiaoAM(^13A). 

For C12 G HH^i2(^x12a), we obtain a morphism 

(4.3.2) C12 o: HHA23 (̂ x23a) —> HHAl2oA23 (̂ x13a )• 

L L L L 
The morphism (^a®^^) Kl (̂ 2a®22â 2) —• ((̂ ia2a®121a2a<̂ i2) induces the ex

terior product 

(4.3.3) H : H H A ^ X J X HHA2(^X2) -> HHAlxA2(̂ xlXx2) 

for Ai C X< (i = 1,2). 

Lemma 4.3.2. — Le£ Â - C X -̂ (i = 1,2,3, j = i + 1 )and assume that Aij X x5 Ajk is 
proper over Xifc (* = 1,2, j = i + 1, fc = j + 1). Le* Ĉ - G HH^.(^Xya) (t = 1,2,3, 
j = i + l). 
(a) One has (Ci2 o C23) ° C34 = C12 °(C23 ° C34). 
(b) For C245 G HH°(̂ x245a) we Aave 

(C12 H C34) O C245 = C12 o(C34 O C245). 
24 2 4 

(c) Set CAi = hhXiia(VXi)- Then C12oCA2 = CAloC12 = C12. 

(d) (C12 H CA3)2§AC23 = C12oC23. #ere C12 H CA3 G HH0Ai2xA3K2a33a) is re

garded as an element o/HHAi2xA3((i4(13a)(23a)a). 
Proof. — The proof of (a) and (b) is left to the reader and (c) follows from Theo
rem 4.3.4 below. Indeed, $ jr hi (4.3.8) is equal to the identity when X = ffx since 
the functor Jifi—>J^*j2fou;2* T>'X is isomorphic to the identity functor. 
(d) follows from (b) and (c). • 

In order to prove Theorem 4.3.5 below, we need some lemmas. 

Lemma 4.3.3. — Let X E DBcoh (Ax12a)3. Then, there are natural morphisms 
in Dh(£/Xlia) : 

(4.3.4) a: LJ?'1 ^> XtD'^X, 

(4.3.5) (3: K 02 w2 o D'AX — C1. 
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Proof. — (i) By (4.1.2), we have a morphism in Dh{g/Xl2a21a) 
w12n O-1 — K X D' AM. 

L 
Applying the functor • (g)22a ̂ 2 > we obtain 

p -1 11a W g>-l 1 W (8)-l 
1 ш (D' SÍ Ч>2 L 

<8> 22a C2) ал O - 1 12a 
L 
(8). 22a C2 (K L 

X 
D' AK) O22a C2. 

By adjunction, we get (4.3.4). 
(ii) By (4.1.3), we have a morphism in Db(eg/x12a21a) 

K X D' K — C12a. 
L 

Applying the functor #(8)22au;2, we obtain 
(XBD'^Jtr) <g)22a LJ2 -+ &i2«®22auj2 -+ #i®C£2[2d2]. 

Here the last arrow is given by (2.5.7). By adjunction, we get (4.3.5). • 
For the sake of brevity, we shall write V A Horn instead of RTARĉ &ŷ . 
Let A12 be a closed subset of X\ x X2 and A2 a closed subset of X2. Let X e 

Dboh(ĵ x12a) with support A12. We assume 
(4.3.6) A12 Xx2 A2 is proper over X\. 
We set for short 

(4.3.7) 
L 

S:= j r ^ ( ^ o D ^ j r ) G Db(Mla22a), 
Ai := Л12 о A2. 

Note that 
s * 

22a 
W .(»-1 

2 = K * 
2 

D'A K. S о 
22a 

C2 = K 0 W2 
2 

O 2 D' A K. 

We define the map 
(4.3.8) 0 K : HHA2(^X2) —• HHA12OA2(^XI) 

as the composition 
HHA2(̂ 2) ~ TA2 H n o m ^ i w f - ^ T ^ ) 

-+ rAl2oA2Hom110 (5 2*a uf-\S 2*o rAa*f2) 

^ rAl2oA2Homlla (S ̂  uf-\S oa TA2<̂ 2) 

-• rAiaoA2Homno(ci;?-1,«'i) HHAiaoAa(M)-
The last arrow is associated with the morphisms in Lemma 4.3.3. 

We have morphisms 

(4.3.9) uf-1 -» (wf-1^^) *Bwf-1, 

(4.3.10) («iew2) o <â?2 — c1. 
22a 
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In fact, we have a natural morphism C22a —> <&2®22aUJf~ • This morphism defines 
L L 

the morphism p^a^f-1 -> (a;f "1M%)^22aU)f~1 which defines the morphism (4.3.9) 
by adjunction. 
By (2.5.7), we have a natural morphism 

(«i ku2)®22aV2 -+ Vi ic^2loc [2d22] - p22â i 
which defines the morphism (4.3.10) by adjunction. 
Theorem 4.3.4. — Assume (4.3.6). Then the morphism oK1 : H H A 2 ( ^ 2 ) —> 
HHA12OA2(«^XI) in (4.3.8) is the morphism hhXl2a(X) o given in (4.3.2). 

Proof. — We set 

F:=((jf-1k^2)A1^ G:=RrAl2(^la;2). 
We shall denote by a and (3 the morphisms 

a: F->S, J3: S -> G. 
constructed similarly as in Lemma 4.3.3 by using (4.1.2) and (4.1.3). Then the diagram 
below commutes: 
(4.3.11) 

rA2Hom22>f-\%) 
(F*,(/?oa(F))*) 

TAlEomlla(F*u,r\G*T^2) 

(S * S *) (a, 0). 
rAlHomna(52*aa;f-1,52*arA2%). 

The morphisms in (4.3.9) and (4.3.10) define the morphisms 
(4.3.12) uf-1 -+ F * wf-1, G o ^ —*• Vi. 
V / 22a * 22a 
Since G22a * TA0^2 22a G o I Y ^ , we get the morphism 

w;:rAlHomlla(F * uf~\G * rA2̂ 2) - r^Homn^wf"1,^). 

By its construction, the morphism hhx12a (^) ° is obtained as the composition 
with the map w of the top row of the diagram (4.3.11). Since the composition with 
w of the two other arrows is the morphism 0K1 the proof is complete. • 
Theorem 4.3.5. — Let Ai be a closed subset of Xi x Xi+\ (i = 1,2) and assume that 
Ai xx2 A2 is proper over Xi x X3. Set A = Ai o A2. Let Xi G D ôh|A.(̂ x.xx«+1) 
(i = 1,2). Tften 
(4.3.13) hhXl3a {X1 o X2) = hhXl2a (Xi) o hhX23a pT2) 
as elements ofBB°A(^Xlxx^)' In particular, $j*rl0j*r2 - OK1 0 $J*r2-
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Proof. — For the sake of simplicity, we assume that X3 = pt. Consider the diagram in 
which we set A2 = hh2(J^2) G HH°(^2) - Horn(u -̂1,<g2) and we write D' instead 
of D' : 

W1O-1 •jeíouf-' ouo2o D'J^i 
2 2 

л2 X i o ^ o ^ o D ' / i 2 2 2 C1 

Xi o(X2 I D'X2) ou2o T>'XX 
2 2 2 

L 
(X\ oX2) Ш D'X2 ou2o D'Xi 

2 2 2 

^ ^ (^i o JT2) H D'pft o JT2) ' 
2 2 

Here, the left horizontal arrow on the top is the composition of the morphisms uf_1 —• 
J î o D'^Jti —> J î o a;®-1 o CJ2 o Df^J?i. The composition of the arrows on the bottom 
is hhi(J£i o J>ff2) by Lemma 4.1.4 and the composition of the arrows on the top is 
$(hh2(J^)) . Hence, the assertion follows from the commutativity of the diagram 
by Theorem 4.3.4. • 

Recall Diagram 3.4.4. Using (4.1.8), we get the commutative diagram 

(4.3.14) Kcoh,Ai(̂ 12a) X Kcoh)A2(̂ 23-) ^Ксоь5л(̂ 13а) 
hhi2a xhh23a hhi3a 

НН^(^12а) x НН^(^23а) ^НН£(Мз«). 

Remark 4.3.6. — (i) The fact that Hochschild homology of ^-modules is functorial 
seems to be well-known, although we do not know any paper in which it is explicitly 
stated (for closely related results, see e.g., [35, 59]). 
(ii) In [18], its authors interpret Hochschild homology as a morphism of functors and 
the action of kernels as a 2-morphism in a suitable 2-category. Its authors claim that 
the the relation 0K1 o 0K1 = 0k1 0 K2 follows by general arguments on 2-categories. 
Their result applies in a general framework including in particular ^-modules in the 
algebraic case and presumably DQ-modules but the precise axioms are not specified 
in loc. cit. See also [59] for related results. Note that, as far as we understand, these 
authors do not introduce the convolution of Hochschild homologies and they did not 
consider Theorem 4.3.4 nor Theorem 4.3.5. 
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Index. — Let K be a field, let M G Dhf(K) and let u G End(M). One sets 

tr(i6,M) = ^(- l)Ur(iT(u): H\M) JF(Af)), 
iEZ 

X(M) = 5j(-l)idimK(ifi(M)). 
iEZ 

If X = pt, then $№{stx) is isomorphic to C1, and D£oh(^x) = D^C*). 
Recall that we have set Mloc = C '̂loc ®cn M. For M G D (̂Ca) and u G End(M), 

we have 
(4.3.15) hhpt((M,w)) = tr(uloc,Mloc). 
In particular, 

hhpt(M) = x(Mloc). 
Moreover, we have 

X(Mloc) = x(grft(M)) 
= (-1)i (dimc(C<8fc,> H\M)) - dimcTbrf^Cff^M))). 

iez 
In the sequel, we set 

X(M) := x(Mloc). 
As a particular case of Theorem 4.3.5, consider two objects ^ and JV in D^oh(£/x) 

and assume that Supp(^) D Supp(t/K) is compact. Then RHom .̂ (^#, JV) belongs 
to D)(CR) and 

x(RHom^x(^,^)) = h h p t ( D ^ o ^ ) 
= hhx"(D'^^)ohhx(^K) 
= hhx(^) ohhx(^) . 

Note that we have 
x(RHom^x(^,yK)) = x(RHom<0c(^loc,^Kloc)) 

= X(RHomgrfc(î )(grft(̂ r),grft(̂ ))). 

4.4. Graded and localized Hochschild classes 
Graded Hochschild classes. — Similarly to the case of g/x, one defines 

№{gih{¿/x)) := grft(^")®gril(^xxa)grft(«x). 

L 
Note that M£{gxh{^x)) — C<g>ch$#{(g/x) and there is a natural morphism 

grft: M{*x) - m(gih(£/x)). 
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Notation 4.4.1. — For a closed subset A of X, we set 
(4.4.1) HHA(gr^x) := RrA(X;^(gra(^))) . 

We also need to introduce 

(4.4.2) HHA(gr^x) := UmHH^gr^) , 
u 

where U ranges over the family of relatively compact open subsets of X. 
For & G Dcoh(gr̂ (ĵ x)), one defines its Hochschild class hhx(^) by the same 

construction as for j^x-modules. For M G D^oh(&/x)i we have: 
grfi(hM^)) = hMgrfiMO). 

Theorem 4.3.5 obviously also holds when replacing s4x with grh(£/x)-

Corollary 4.4.2. — Let A* be a closed subset of Xi x Xi+i (i = 1,2) and assume that 
Ai xX2 A2 is proper over I i x l 3 . Set A = Ax o A2. Let X{ G D̂ oh?A. (gra(^Xixx-+1)) 
(z = 1,2). Then 
(4.4.3) hhXl3a (K1 o X2) = hhXl2a (Jti) o hhX23a pT2) 

as elements of BB°A (grh£/Xl x x») • 

It follows that the diagram below commutes 
o 

(4.4.4) Kcoh,Al (gr^2a) x Kcoh,A2 (grn 2̂3a) ^ Kcoh,A (gr^3a) 
hh hh 

v o y 
BB°Ai(gvR^l2a) x HH°2(grfî 23a) -HH°(grfi^23*). 

We shall study the Hochschild class of ^-modules with some details in Chapter 5. 
Hochschild classes for £fx°. — One defines 

HH{AlXoc) := C loc Xa 
L 
<8> m loc XxXa 

C loc X • 
We have HH(A.loc) = Ch,loc ®ch №£(srfx) and there is a natural morphism 

(• )loc: W{s/x) ^ MCi^xl-

For & G Dcoh(̂ x°c)' one defines its Hochschild class hhx(^*) by the same construc
tion as for ^-modules. For Jt G Dbcoh (Ax) setting JtXoQ = Ĉ 'loc 0cn Jl, we have 

(hhx(^))loc = hhx(^loc). 

Recall that the notion of good modules and the category D^d(g/xc) have been given 
in Definition 2.3.16. One immediately deduces from Theorem 4.3.5 the following: 
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Corollary 4.4.3. — Let A* be a closed subset of Xi x JJQ+i (i = 1,2) and assume that 
Ai Xx2 A2 is proper over Xx x X3. Set A = Ai o A2. Let X{ G DĴ Ai (̂ °.cxXa ) 
(i = 1,2). T/ien 
(4.4.5) hhXl3a (K1 O JT2) = hhXl2a (jTl) O hhx23a (^2) 
as elements of YW^K{s^^XXA). 

Using Proposition 3.4.3 and the additivity of the Hochschild class in Theorem 4.1.5, 
we find that there is a natural map 

(4.4.6) Kcoh,A(gr^x) - HHA(gr^). 
For J£ G Dgd,A(<̂ xc)> we denote by hh^(^) the image of Jt by the sequence of 
maps 

Dgd,A«°C) - Kcoh,A(gr^) - BBA(gvh£/x). 
Let Ai be a closed subset of X{ x Xi+i (i = 1,2) and assume that Ai x^2 A2 is 

proper over X\ x l 3 . Set A = Ai o A2. 
Using the commutativity of Diagram 3.4.5, we get that the diagram below com

mutes 
o 

(4.4.7) Ob(D îAi (A12loc)) x Ob(D^>Aa«°J)) 0b(Dk,AO&c)) 

grh grh 
KCoh,Ai(gr̂ l2«) X Kcoh5A2(gr̂ 2̂3-) ^ Kcoh5A (gr^3a ) 

0 —0 -0 
HHA! (gr/Xl2<0 X HHAa(gr^23-) ^HHA(gr^23«). 

In other words, 
(4.4.8) hh^apft o JFT2) = hhf2a(^i) o №^(^2). 
Corollary 4.4.4. — Let ,JV G Dgd(£ĝ )C) and assume that Supp(^) PiSupp(t/K) zs 
compact. Then RHom^x (^#, ̂ ) belongs to D^(CH) and 

x(RHom<oc(^,^r)) = h h ^ ( D ^ ) o h h ^ ( ^ ) 

= nh^r(^)ohh^(^). 

Proo/. — One has by (3.4.3) 

x(RHom îoc (JZ, oY)) = hhpt(D^^ o oY) 

= n h ^ ( D ^ o ^ ) = n h ^ a ( D ^ ) o h h ^ ( ^ ) 

and the last equality follows from (4.1.9). • 
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Remark 4.4.5. — In the algebraic case, that is, in the situation of § 2.7, one should 
replace Kcoh,A with Kcoh,A and HHA(gr^x) with HHA(gra^x). 

-—~gr 
We shall explain how to calculate hhx in Chapter 5. 
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CHAPTER 5 

THE COMMUTATIVE CASE 

We shall make the link between the Hochschild class and the Chern and Euler 
classes of coherent ^-modules, following [39], an unpublished letter from the first 
named author (M.K) to the second (P.S), dated 18/11/1991. 

5.1. Hochschild class of ^-modules 
In this section, we shall study the Hochschild class in the particular case of a 

trivial deformation. In this case, the formal parameter h doesn't play any role, and 
we may work with ^-modules. We shall use the same notations for ^x-modules as 
for (< x̂[[̂ ]]>*)-modules where • is the usual commutative product. 

Note that the results of this section are well known from the specialists. Let us 
quote in particular [17, 18, 35, 50, 55, 59, 62]. 

Let (X, &x) be a complex manifold of complex dimension dx- As usual, we de
note by Sx' X «-> X x X the diagonal embedding. We denote by Qx the sheaf of 
holomorphic i-forms and one sets ttx := Sldx - We set 

ux >=ftx [dx]-
We denote by D'0 and D0 the duality functors 

D^(^) - RMmffx(&, ffx), Dff(&) = RMmfyx{^,uox). 
When there is no risk of confusion, we write D' and D instead of D̂> and D^, respec
tively. 

Let f: X —> Y be a morphism of complex manifolds. For G Db(^y), we set 

f* G := OX L 
<8> f-1 0y f-1 G. 

We use the notation H°(f*): Mod(^y) —• Mod(^x) for the (non derived) inverse 
image functor. 

The Hochschild homology of Ox is given by: 

(5.1.1) №£{0X) := S*x$x*Ox, an object of D b (^ x ) . 
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Note that SX\ — 0x* — R<̂ x*5 and moreover 

(5.1.2) 5x*m(0x) ^ 8X*(0X®5*X(8X*0X)) ~ 6x*0x®0xxx6x*0x. 
By reformulating the construction of the Hochschild class for modules over DQ-alge-
broids, we get 

Definition 5.1.1. — For & G Dboh(^x), we define its Hochschild class hhx(J**) G 
i?supp jf (X; £x 5x * &x) as the composition 

(5.1.3) &x - R ^ m ^ ( J ^ ) ^ ( ^ I D ^ ) - 6*X5X*0X. 
Here the morphism ^ K D'Ĵ " —• 5X*@'X is deduced from the morphism 
^ ( ^ I D ' ^ ) &®eT>'& -> ^x by adjunction. 

Applying Theorem 4.3.5, we get that for two complex manifolds X and Y and 
for & G Dboh(^x) and G Dboh(^y), we have 

hhXxY(^m&) = hhx(^) B hhy(Sf). 
Let / : X —• y be a morphism of complex manifolds and denote by Tf C X x Y its 

graph. We denote by hhxxY (̂ T/) the Hochschild class of the coherent <̂ xxY-module 
@Yr Hence 

hhXxy(^r/) G #°(X x Y-№{0XxY)). 
Applying Theorem 4.3.5, we get 

Corollary 5.1.2. — (i) Let & G Dboh(̂ V). T/ien 
hhX(/*^) =hhXxy(^r/)ohhy(^). 

(ii) Let & G Dboh(<̂ x) and assume that f is proper on Supp(^). Then 
hhy(R/,^) = hhx(^) ohhXxy(^r/). 

In Proposition 5.1.3 and 5.2.3 below, we give a more direct description of the maps 
hhXxY{0rf)0 and ohhXxy(^r/). 

Proposition 5.1.3. — Let f: X —>Y be a morphism of complex manifolds. 
(i) There is a canonical morphism 

(5.1.4) f*6l5Y*0Y->6*x5x*0x. 
(ii) This morphism together with the isomorphism &x f*' &Y induces a morphism 

(5.1.5) /*: H°(Rr(Y;6*Y5Y*0Y)) -> H°(RR(X;5x6Xm0x)) 
and for & G D^h(^y), we have 

(5.1.6) hhx(/*^) = /*hhy(^). 
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Proof. — (i) Consider the diagram 

(5.1.7) X Sx XxX 

f f 

Y SY Y xY. 
Then we have morphisms 

rSYSY^Y * 6xf*6Y*0Y - 8x6x.r0Y - S*XSX^X. 

Here the arrow f*Sy* —• 8x*f* is deduced by adjunction from 

6Y* - 8YMf* ^RfJxJ*. 

(ii) The diagram 

f' (G X D' G) f* dy * Oy 

f* G X f* D'G 5XJ*0Y 

f* G X D' f* G dX * OX 

commutes. It follows that the diagram below commutes. 

f* Oy /•ftf^BD'Sf) f* d*y dy * OY 

5xf*(&®D'&) 6xf*ôY*t?Y 

5X(F*&®RD'&) 8x5xJ*Ûy 

6x 6x(f*&№D'f*&) Sx6x.0x-
Therefore, the image of hhy(Sf) € Horn ̂ ( ^ y ^ y ^ y ^ y ) by the maps 

H o r n b y , <5y<5y.̂ y) - Hom^x (r^y,r<5y5y^y) 
-+ Komffx(t?x,8x8x.(yx) 

is hhx(/*^). • 
Remark 5.1.4. — Although we omit the proof, the map in (5.1.5) coincides with 
hhxxy(^>r/)° • 
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Ring structure. — For an exposition on tensor categories, we refer to [43]. 

Proposition 5.1.5. — (i) The object 5x5x*Ox is a ring in the tensor category 

(Dcoh(^*),®tfx). More precisely, 
(a) the map \x obtained as the composition 

S*x6x*0x®exS*xSx*0x ^ S*x(5x*0x®0Xxx6xM 

—> &x&x*&x 

is associative. Here the last arrow is induced by Sx^Ox ®5X*&X —» Sx*Ox. 
(b) hhx (0x) is a unit of this ring. More precisely, the natural morphism e 

defined as the composition 

e: ex ^ 6*x0XxX - 6x6x.0x 

has the property that the composition 

8x&x.0x^&x&x„0x®ffx0x e 8x&x.0x®ffxSx&x.0x 

SxSx.fx 

is the identity. 
(ii) The ring (Sx5x*&x5/-0 is commutative. More precisely, we have ¡1 o a — ¡1, 

where a G AutDb^ \(àxSx*@x®0 ôxôx*ûx) is the morphism associated with 
X ®x' h-» x' ®x. 

(iii) Xfte object ôlxôx\wx has a structure of a è>xôx*&x-module. More precisely, the 
composition 

L i i L 6xsx*&x®ûx8'XSXiu)X -+ ÔX(ÔX*Ûx®ûxxx6XIUJX) 

—> àxàx\Vx-

is associative and preserves the unit. Here, the last arrow is induced by 
L 

6x*0x®eXxXSx\wx - Sx*(S*xsx*0x ®Gx ux) -» Sx*(#x ®Gx wx) - Sx*ux 
by adjunction. 

Proof. — The verification of these assertions is left to the reader. We only remark that 
the commutativity and associativity are consequences of the corresponding properties 
of &x*@x- For example, the commutativity is the consequence of the commutativity 

of 6x*0x®0x x X 0x*8x*0x Sx*@x- • 

Notation 5.1.6. — For A* e H^i(X;SxSx„Ô>x) (i = 1,2), we define their product 
Ai • À2 as the composition 

âx ^ 0x®0x0x Y1 O Y2 S*x6x*0x®ûxS*xSx*0x ^ S*X6X*ÛX. 
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Proposition 5.1.7. — Let Fi G Dboh(^x) (i = 1,2). T/ien 

(5.1.8) hhx(&i®ûx&2) = hhx(^1)-hhx(J?2). 

Proof. — Consider the commutative diagram below (in which 0 stands for 0^): 

Ox ex ® üx 

6X(&! E D'^i) <g> 6X{&2 B D'^2) 6X* DX X6X.ÛX ® 6X6X.0X 

I 

<S£ ((^i El D;^i) 0 (̂ 2 H D'^2)) 6*x(6x*ûx ® ^x*^x) 

S*x ((^i <g> &2) Kl D'(J^ ® ̂ 2)) •6*x(SxM-

The composition of the arrows on the top and the right gives hhx(^i) • hhxG^b) and 
L 

the composition of the arrows on the left and the bottom gives hhx(̂ i<8)̂ > ^2)- D 

Note that 

hhxG^iSu ^2) = *i(hhx(^i) Elhhx(^2)). 

5.2. co-Hochschild class 
Definition 5.2.1. — For ^ G Dj?oh(0x), we define its co-Hochschild class thhx(^) G 
^Supp *̂(̂ 5 ^x^xi^x) as the composition 

(5.2.1) ífx -> RMm 0X {&,&)~5х(&ШЪа&)-*5хох\их. 
Here, the morphism ( ^ I D ^ ) ^xi^x is induced from ^ ( ^ | D ^ ) 

L 
^(O 0x D0F —> a;x by adjunction. 

Consider the sequence of isomorphisms 

öx°x*0x L L 
vx®0x6x6x.0x d-x{ûxMux)®ûxàxàx*&x 

L L 6х((0хШых)<8>0х6х,<?х) Sxöx*(ö*x(0x Шых)®0хGx) 
6x5x\(¿x-

We denote by td the isomorphism 

(5.2.2) td: ôxôx,ûx öxSx,u)X 
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constructed above. For a closed subset S C X, we keep the same notation td to denote 
the isomorphism 

(5.2.3) td: H%(X;S*x6x*0x) ^ H°S(X-ÔXÔXILJX). 

Proposition 5.2.2. — For & G Dj?oh(̂ x), we have 

(5.2.4) thhx(^) = td o hhx(^). 

Proof. — The proof follows from the commutativity of the diagram below in which 
we use the natural morphism ûx —• 5X(ÛX Mux) 

For a morphism / : X —» Y of complex manifolds, we denote by Tf-pT(X; •) the 
functor of global sections with /-proper supports. 

Proposition 5.2.3. — Let f: X —» Y be a morphism of complex manifolds. 

(i) There is a canonical morphism 

(5.2.5) Rf\$xdx\Wx —> Sy5y\Uy. 

(ii) This morphism together with the morphism &y —• R/* &x induces a morphism 

(5.2.6) /,: °(Rrf_pr(X; 5lx5xiux)) - # 0(Rr(F; 5}YSY]uY)) 

and for & G Dboh(<̂ x) such that f is proper on Supp(^*), we have 

(5.2.7) thhy (R/ i^ ) = f! thhx(^). 

Proof. — (i) Consider the diagram (5.1.7). Then we have morphisms 

Rf\Sx5X\<jjx —> SyHf\8X\UJX 8ySyJR/IC^X ~* Sy5Y\LOY. 

Here, the first morphism is deduced by adjunction from 

0X SXFM = F!SYRFI. 
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(ii) The proof is similar to that of Proposition 5.1.3 and follows from the commuta-
tivity of the diagram below in which we write for short f\ and /* instead of Kf\ and 
R/* and similarly with /. 

U0x > / 4 ( ^ ^ D ^ ) f\ôx5x,vx 

(Sv/i^BD'J-) ôYf'.ôx\u>x 

0Y (f! F X Fi D F) 8ySY\J\UJX 

ÛY *• S'Y(f\^ El Dfi&) • ÔyôY [U>Y. 

Therefore, the image of thhx(^") € Y{.omex{&x,5x5XiU)X) by the maps 

r{-pi(X;JPomex(0x,6x5xlujx)) -> Hom^ (Rf*0x, R/,J! 01x0x!wx 

—> Hornby {&y > o\8y\ojy) 
is thhy(/!eF). 

Remark 5.2.4. — Although we omit the proof, the map in (5.2.6) coincides with 
o hhXxy(^r/). 

5.3. Chern and Euler classes of ^-modules 
The Hodge cohomology of &x is given by: 

(5.3.1) №)(@x) := 
dx 

i=0 
Q^x [i], an object of Db(^x). 

Lemma 5.3.1. — Let f:X —> Y be a morphism of complex manifolds. There are 
canonical morphisms 
(5.3.2) H : HD(0x)®M>(0Y)^M>(0xxY), 
(5.3.3) /* : f* H D ( r № ^ Y ) - * № { e x \ 
(5.3.4) /! : Rf\№)(0x) M{GY\ 
Proof. — The morphisms (5.3.2), (5.3.3) and (5.3.4) are respectively associated with 
the morphisms 

ü x [ { \ m n Í , \ j } ^ ^ O i | j X x Y[i + j}, 
ГЩг И — пх И, 

Rf\Sl%dx [i + dx] —> n$dY [г + dY\. 
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Theorem 5.3.2. — (a) There is an isomorphism 

ax- S*X6X*ÛX ^№{Ûx) 
which commutes with the functors IEI and /*. 

(b) There is an isomorphism 

Px-M>{0x) — 6x&x\wx 

which commutes with the functors and f\. 

Setting r := f3xl o td o a"1, we get a commutative diagram in Y)h(&x)'> 

(5.3.5) S*x6x*0x td 
5Y5X\Vx 

OCX Ox 

№){0X) 
r HD(0X). 

The construction of ax and fix and the proof are given in the next section. 

Definition 5.3.3. — For & G Dboh(̂ x), we set 
dx 

(5.3.6) ch(^) = ax ohhx(^) G ©fl|uppW(X;ni), 
2 = 0 

dx 
(5.3.7) eu(^) = (3'x1 othhx(^) G ©ffSupP(*)(*;nx). 

¿=0 
We call ch(^) the Chern class of *̂ and eu(^) the Euler class of 

Of course, ch(̂ *) coincides with the classical Chern character and the morphism 
ax is the so-called Hochschild-Kostant-Rosenberg map. 

The following conjecture was stated in [39]. 

Conjecture 5.3.4. — One has eu(^x) = tdx(TX), where tdx(TX) is the Todd class 
of the tangent bundle TX. 

This implies that eu(^) = ch(^)Utdx(TX). Indeed, for a, b G H*(X>, 8*x8x*0x), 
we have td(a o b) = a o td(6) by Proposition 5.1.5 (iii) and Lemma 5.4.7 below. 

This conjecture has recently been proved by A. Ramadoss [55] in the algebraic 
case and by J. Grivaux [32] in the analytic case. 

An index theorem. — Consider the particular case of two coherent ^-modules Jzf̂  
(¿ = 1,2) such that Supp(j2?i) nSupp(jSf2) is compact. In this case we obtain (see also 
[35, 55]): 

hhpt(ĵ oJz?2) = X(Rr(X;J^xJ£f2)) 

(5.3.8) = / (ch(if1)Uch(jSf2)Utdx(TX)). 
Jx 
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We consider the situation of Corollary 4.4.4. Hence, srfx is a DQ-algebroid on X. 

Corollary 5.3.5. — Let M, N G DBgd (^oc) and assume that K := Supp(^#) D 
Supp(t/K) is compact Let U be a relatively compact open subset of X containing K. 
Then RHom^ioc(^#, JY) belongs to D^(CH,LOC) and its Euler-Poincaré index is given 
by the formula 

X(RHom^loc(^,^))= / ch[/((gr^D^))Ucht7(gr^(^))Utdc/(Tt/). 
x Ju 

Proof. — Applying Corollary 4.4.4, we have 

x(RHom îoC {JK, JV)) = hhpt (D^^T o JT) 

= hhpt(graD^^o o gra«y%), 

where ^0 (resp. <AQ) is an object of D^oh(^u) which generates M (resp. JV) on U. 
Then, the result follows from (5.3.8). • 

5.4. Proof of Theorem 5.3.2 

As usual, we denote by pi : X x X —• X the i-th. projection (¿ = 1,2). The following 
lemma is well-known. 

Lemma 5.4.1. — Let Ĵ * be an (&X № @x)-module supported by the diagonal. Then 
the following conditions are equivalent: 

(i) V\*^ i>s a coherent &x-module, 
(ii) Vi*^ is a coherent 6x -module. 

If these conditions are satisfied, then the map & —> &xxx ®@x№&x ^ ^s an ^somor~ 
phism. In particular, the (&x ^ @x)-module structure on & extends uniquely to an 
&xxx -module structure. 

We define the p\xGx-module 

Pk := Sx*nkx © dX* Ok + 1 for k > °> pk = 0 for k < 0. 
We endow the Pĵ 's with a structure of p̂ "1 ̂ x-module by setting 

p*2(a)((jjk 0 Ok+i) = aujk 0 (aOk+i - da A ujk) 
for a G fix, uk € Q,x, 0k+\ G ^x"1. This defines an action of p2x&x since 

p2(ai)p2(a2)(uk 0 0fc+i) = p*2{ai)(a2uk 0 (a26k+i - da2 A uk)) 
= a\a2uk 0 {a\a26k+\ — a\da2 A uk — dai A a2 wk) 
= aia2ujk 0 (aia26k+i - d(aia2) A ujk) 
= P2(ala2)(̂ fc © 0fc+l)-
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By Lemma 5.4.1, we get that Pk has a structure of <£7xxx-module and we hâve an 
exact séquence: 

(5.4.1) 0 - 6x*nkx+1 ak Pk Bk Sx^kx - 0. 

Hence 6х*Пк[к] ^- {Sx*^1 -> Pk) -> бх^/^к + 1] defines the morphism 

tk:ôx*nk[k]^6 x M+1 [k+l}. 

It induces a morphism 

(5.4.2) £: ®8x.tlx[k] — ®6x,ilkx[k]. 
k k 

Let <¿|tan: Pk —• Рк-i be the composition 

(5.4.3) jstan . r> 4 • -Пк Lk dX * OkX ak - 1 Pk-i. 
We define the complex P. whose differential dpk : Pk —> Pfc-i is given by A;d|tan. Then 
Imdstan _ Im f̂c _ (J^ft*. and Kerdf"1 - Ker/?fc ~ dy * OXk + 1. Therefore we have a 
quasi-isomorphism P. —» 6x*&x-

Lemma 5.4.2. — 7%e morphism 

(5.4.4) ax: <5x<5x*̂ x - H°(6*X)(P.) ~ © fi£[k] 
fc 

is an isomorphism in Db(Ô>x)-

Proof of Lemma 5.4-2. — Since the question is local, we may assume that X is a 
vector space V. Then we have a Koszul complex 

@XxX ® V ~ ( • @XxX® V* 
2 

OX x X O V* @XxX 

and an isomorphism <^xxx®A * ^* ~^ &x*@x in Db(^xxx). Then applying if0 
we obtain an isomorphism in Db(<^x): 

Sx6x.¿?x ^ H°(ôx)(0XxX ® Л V*). 

The C-linear maps /\k V* —• Q,X(V) —> Pk(X x X) induce a morphism of complexes 
&xxx ® /\* V* —> P* such that the diagram below commutes: 

&xxx ® A* V* 

P. 
Sx*0x-

Since HQ(5x){ûxxx®> f\ V*)[dx] —> -ff°(<$x)(P» ) is an isomorphism, we obtain the 
desired result. • 

ASTÉRISQUE 345 



5.4. PROOF OF THEOREM 5.3.2 103 

Remark 5.4.3. — (i) Let / c &xxx be the defining ideal of the diagonal set 6X(X). 
Then the morphism £0- &x*@x —> SXitiilx[l] is giyen by the exact sequence 
0 —• Sx*Qx ~~* @x*x/I2 —> &x*@x —> 0. Indeed, we have a commutative 
diagram 

О III2 Ûxxx/I2 í x / x О 

id 
О 0X * O1x ßo Po oso Sx*#x 0. 

Here, the left vertical isomorphism is given by 

I/I2 3 pî(o) - p*2(a) ^ da e Sx D1x (« G ûx). 

(ii) Moreover the morphism Ek : ̂ x^j[fc] —• S x ^ ^ l + 1 k + 1] coincides with the 
composition 

ôx^x[k]^ôx^x[k]hÛXxX^x><x^Sx^x[k}^û 0x x x Sx* Ox 

«x.î&[*]®,XxX*x*fi*M - Sx*(nx[k]®ûxSlx[l}) 
-*ôx*nkx+1[k + l}. 

(iii) Note that the morphism ax : 5x8Xstûx 0fc ilx[k] coincides with the mor
phism obtained from 8X*ÛX -> 0fe«x„n&[*] exp(e) 0fe<5x.^[fc] by ad
junction. 

Lemma 5.4.4. — The morphism ax in (5.4.4) interchanges the composition of the 
ring 5x5Xtfûx given in Proposition 5.1.5 (a) with the composition 

nx№ûxtix[j] ~ (nx®ûxnx)[i + j] nj+̂ [t + j]. 

Note that the unit ^x S*X8X + 0X is given by ^x ^ (5^xxx -> SX6X*ÛX, 
where the last arrow is induced by &xxx —> bx*@x-

Proof. — We define 

ßij '• Pi 0x X X xX Pj ~^ Pi+j 

by 

(5.4.5) 
im (((<* e oi+1) о fa e 6j+1))) 

= (LJÌ Л ujj) ei + Л ил,- + (-l)*Wi Л öj+i). 
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This map is p2 1(̂ >x)-bilinear since: 

Pij ((Й МО* Ф i + 1)) ® (ч? e 0J+i)) 

= pij (^(auji 0 (a0»+i — da А ил)) 0 (a;¿ 0 0¿+i)) 

= (auji A Uj) 0 ((a0¿+i — da A Ui) A Uj + (—l)*aa;¿ Л 0¿+i) 
= pî(a) ((a;. Л Wj) 0 (0m Л ̂  + (-1)г^ Л 0i+i)) 
= ^(а)/^((с^ 0 0¿+i) 0 (a;-- 0 0j+i)), 

and 

M¿7 ((ил e 0 i + 1 ) ®р*2{а)(иэ e 0 j + i ) ) 

= / /¿j ((и>г 0 0»+i) 0 ( а ^ 0 (a0j+i — da A (¿>j)^j 

= (auji Aujj) 0 (0¿+i Л acjj 4- (—l)luJi Л (a0j+i — da A ojj)) 

= (auji A ojj) 0 (a0¿+i Л cjj 4- (—l)lau>i A Oj+i — da AUJI A ojj) 

= Р 2 ( а ) Ц Л ̂  0 ( 0 i + i Л u^ + (-íyoüi A 0 j + i ) ) 

= p2*(a) µij ((wi e 0t+i) 0 (wje 0j+i)) . 

The morphism \x commutes with the differentials since: 

fjLd((vi 0 0i+i) 0 (wj 0 0j+i)) 
= µI-1,J ((0 0 iUi) 0 (a;j 0 0i+i)) + ( - I ) X J - I ((CJ» © 0i+i) 0 (0 0 j^)) 
= 0 0 (¿0;» A Uj + (-1) i jwi A Uj) = 0 0 (i + j)ui A Uj 
= dfi((ui 0 0i+i) 0 (UJ 0 0j+i)). 

Hence we have a commutative diagram in Db(^xxx) 

àx*0x®ox Jx*&x ^óx*0x 

p. O0X x X p. µ p.. 

Therefore, applying 5*x, the morphism 8*x5x*0x®6*x&x*0x -* S^Sx*^x is repre
sented by 

H°(6*X)P. ®exH\5*x)P. ^H°(SX)P.. 

Thus we obtain the desired result. • 
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Lemma 5.4.5. — Consider a morphism f:X —• Y. Then the diagram below com
mutes: 

f*6l5Y*0Y- SxSx^x 

ay otx 
f* ( к Пу[к}) 

к 
Пкх[к]. 

Proof. — Let f : X x X — Yx Ybe the morphism associated with /. Let us denote 
by P? the complex on X constructed above. Then we easily construct a commutative 
diagram 

H°(f*)Pr ^H0(f*)8Y^Y 

V 
P? dX * OX 

such that 
H°(5xr)PY H°(f*6l)P? f* ( 

к 
пку[к}) 

S*X<P 1> 

H°(5*X)P? •kakx[k] 

commutes where tp is given in (5.3.3). 

Now we set 

(5.4.6) Qk = 
P*_i for 1 < k < dx, 
Sx*@x forfc = 0, 
0 otherwise. 

and define the differential dQ with d® = (k - 1 - dx) df*\, where dft* is given 
by (5.4.3) and df*-n: &x © &x ~~* ®x is tne canonical morphism. Then Q. is 
a complex of &xxx-modules and the canonical homomorphism Odx —> fi^-1 0 
fi^ induces a morphism of complexes dX *WX —• Q»> which is an isomorphism 
in Db(^M) . 

Let us denote by H°(SX) the functor &x1jtfbm0x(8*ffx, •)• 

Lemma 5.4.6. — The morphism 
Px: (&nkx~H°(5x)Q. ^SlxSXmux 

к 
is an isomorphism in Db(^x)-
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Since the proof is similar to that of Lemma 5.4.2, we omit it. 
Note that the morphism fix coincides with the morphism obtained by adjunction 

from 

к 
Sx\fi>x exp(-£) ®6XlSlkx - 6X№[n] ~ SXXU)X. 

к 

Lemma5.4.7. — The morphism ôXSx^â'X<S)ÛXSx6X\(jx —• SXôX\ujx in Proposi

tion 5.1.5 (d) coincides with îîx[z] <S>Gx x̂L?1 A > x̂~J[̂  + 

Proof. — We define the morphism /i^ : Pi <g)̂ xxXQj ~~> Qi+j by the same formula as 
in (5.4.5). Then it commutes with the differential. Indeed the proof is similar to that 
of Lemma 5.4.4 except when i -f j = dx + 1. In this case, 

ljid((u;i 0 0i+i) ® (O;j_I 0 Oj)) = 0 0 (i + j - dx - l)u>i A ujj-i = 0. 

With this morphism \i : P. <S>Gx x Q • —• Q •, the following diagram in the category 
of complexes is commutative: 

p. (g 0XXX Q. µ Q. 

Р* Ч х х SX\UX ^ ÖxiüJX -

Thus we have a commutative diagram in Db(€?x): 

H°(S*X)P. ®ex H°(8X)Q. -^H°(6X)(P. ®exxx Q.)-~H°{6X)(Q.) 

L , , L , 
Sx&x*&x®0x&'xsx\wx s'x(sx*0x®0xxx6x\vx) —^ 8'x&X\UX • • 

Recall that in Corollary 4.2.2, we have constructed a morphism $&{(srfx) ® 
$8({srfx) ^Xu' Let us describe its image via the isomorphisms ax and /3x-
Consider the diagram 

(5.4.7) 

Ж { а х ) ® Ш H {ех) 

л и 

m{üx)®M)H{üx) V 0J top R̂ 

Here, u is the map given by Corollary 4.2.2, À is the isomorphism ax ® PXX and v is 
the composition 

i 
flx[i] <8> 

3 
OiY [j] 

k 
fty[fe] w top yp 

ASTÉRISQUE 345 



5.4. PROOF OF THEOREM 5.3.2 107 

where the first morphism is given by the wedge product and the last one by the map 
fi^[dx] —> MX*' Then diagram (5.4.7) commutes. 
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CHAPTER 6 

SYMPLECTIC CASE AND D-MODULES 

6.1. Deformation quantization on cotangent bundles 
Consider the case where X is an open subset of the cotangent bundle T*M of 

a complex manifold M. We denote by 7r: T*M —• M the projection. As usual, we 
denote by DM the C-algebra of differential operators on M. This is a right and left 
Noetherian sheaf of rings. 

The space T*M is endowed with the filtered sheaf of C-algebras $r*M of formal 
microdifferential operators of [56], and its subsheaf <£T*M(0) of operators of order 
< 0. _ 

On T*M, there is also a DQ-algebra, denoted by >^T*M(0) and constructed in [53] 
as follows. Consider the complex line C endowed with the coordinate t and denote 
by (£; r) the associated symplectic coordinates on T*C. Let T*^0(M x C) be the open 
subset of T* (M x C) defined by r ^ 0 and consider the map 

p: TT%0(M x C) -> T*M, (M;£,r) H-> for"^). 

Denote by T̂*(MxC) ¿(0) the subalgebra of ^r*(MxC)(0) consisting of operators not 
depending on t, that is, commuting with dt. Setting h = <9T-1, the DQ-algebra Wx(0) 
is defined as 

Wx(0) = pJT,(MxC)j(0). 

One denotes by WT*M the localization of #T*M(0), that is, 'WT^M = Ch,loc <g><rh 
#T*M(0). 

Remark 6.1.1. — One shall be aware that ST*M and #T*M(0) are denoted by $M and 
^M(O), respectively, in [56]. Similarly, ^T*M and #T*M(0) are denoted by #M and 
>^M(0), respectively, in [53]. 

There are natural morphisms of algebras 

(6.1.1) *M®M <-> <?T*M ^ ^ * M -

Lemma 6.1.2. — (a) The algebra WT*M(0) is faithfully flat over JT*M(0). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 
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(b) The algebra WT*M is faithfully fiat over &T*M-
(c) $T*M is fiat over 7r~j^@M' 

Proof — In the sequel, we set X = T*M. For an Sx(0)-module JK, we set 

MW := WX (0) O Ex(0) M, 

gr g (M) = (£X {O)/£X( - I))Ok~x(0)^. 

Note that the analogue of Corollary 1.4.6 holds for <?x(0)-modules, that is, the functor 
gr^ above is conservative on Dboh(<fx(0)). We have 

(6.1.2) grfi(^W) * Ox ®ex{0) gr g (M), 
where ^x(O) denotes the subsheaf of &x of sections homogeneous of degree 0 in the 
fiber variable of the vector bundle T*M, and &x is faithfully flat over ^x(O). 
(a) (i) Let us first prove the result outside of the zero-section, that is, on T*M\T^M. 
Let us show that 

(6.1.3) Hj№(0)®~x(0)^) = 0 for any j < 0 

holds for any coherent $x(O)-module ^ . First assume that ^ is torsion-free, i.e., 
£x{—1) ®|̂ (o) ̂  ~~̂  ^ *s a monomorPhism- Since @x is flat over ^x(O), 

gr^(#x(O)0&(o)^) - ^x^x(0) gr G (M) 

has zero cohomologies in degree < 0. Hence Proposition 1.4.5 implies (6.1.3). 
Now assume that Sx{~ 1 ) ^ = 0. Then we have 

^(°)®?x(o)^ ^ ^(0)®?x(o)^(0)®&(o)^(°)®^(o)^ 

- ^(0)®?x(o)^(°)®^(o)^ 

- ^®tfx(0)^ 
which implies (6.1.3). 

Since any coherent §x (O)-module is a successive extension of torsion-free 
§x(O)-modules and (S'x{0)/S'x(—l))-modules, we obtain (6.1.3) for any coherent 
<?x(0)-module. 

Consider a coherent <?x (O)-module jtft and assume that MW ~ 0. Then 
grh(^w) ~ 0 and this implies that gr^(^) ~ 0 in view of (6.1.2) since &x is 
faithfully flat over ^x(0). Since gr^ is conservative, the result follows. 

(a) (ii) To prove the result in a neighborhood of the zero section, we use the classical 
trick of the dummy variable. Let (£; r) denote a homogeneous symplectic coordinate 
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system on T*C. Consider the functors 

a: Modcoh(̂ M) Modcoh(̂ xXT*c(0)|T ô), 
Jl i > ^^(Jfc(0)/Jfc(0)-£), 

/3:Modcoh№,M(0)) - Modcoh(^xT*c(0)|T#o), 
Jl ^ ^ i № c ( 0 ) / # r * c ( 0 ) ' t ) . 

These two functors a and /3 are exact and faithful. Then the result follows from (a) (i). 
(b) (i) Here again, we prove the result first on T*M \ T^M. In this case, it follows 
from the isomorphism 

WX ̂ X WX (0) «frT.c(o)^-c-

(b) (ii) The case of the zero-section is deduced from (b) (i) similarly as for (a). 
(c) is proved for example in [38, Th. 7.25]. 

Recall that for a coherent ^M-module «y#, the support of <§T*M ®<K~1QIM M 
is called its characteristic variety and denoted by char(^#). It is a closed Cx-conic 
complex analytic involutive subset of T*M. 

Now assume that M is open in some finite-dimensional C-vector space. Denote 
by (x) a linear coordinate system on M and by (x^u) the associated symplectic 
coordinate system on T*M. Let /,g £ E Ox [[h]]. In this case, the DQ-algebra #x(0) is 
isomorphic to the star algebra (OX [[h]],*) where: 

(6-1.4) f*g = £ ^{dZf){d«g). 
aENn 

This product is similar to the product of the total symbols of differential operators 
on M and indeed, the morphism of C-algebras -K^^M —• ̂ x is given by 

f(x) H-» f(x), dXi t-> h^Ui. 

Note that there also exists an analytic version of $r*M and ^T*M, obtained by us
ing the C-subalgebra of (̂ x[[ft]]?*) consisting of sections / = J2j>o fj^j °f ^x[[^]](^) 
(U open in T*M) satisfying: 

(6.1.5) 
for any compact subset K of U there exists a positive 
constant CK such that sup \fj\ < C3Kj\ for all j > 0. 

K 
They are the total symbols of the analytic (no more formal) microdifferential operators 
of [56]. 

Remark 6.1.3. — (i) Let X be a complex symplectic manifold. Then X is locally 
isomorphic to an open subset of a cotangent bundle T*M, for a complex manifold 
M (Darboux's theorem), and it is a well-known fact that if s^x is a DQ-algebra and 
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the associated Poisson structure is the symplectic structure of X, then srfx is locally 
isomorphic to ^T*M(0). 
(ii) On X, there is a canonical DQ-algebroid, still denoted by >^x(0). It has been 
constructed in [53], after [37] had first treated the contact case. Clearly, any DQ-al
gebroid si is equivalent to ^x(O) <G>CN P, where P is an invertible C^-algebroid. It 
follows that the DQ-algebroids on X are classified by H2(X; (C^)x). See [52] for a 
detailed study. 
(hi) Using (4.1.11), we get the isomorphism 

(6.1.6) mH (Ax) ^ M£(Wx(fS)). 

6.2. Hochschild homology of g/ 

Throughout this section, X denotes a complex manifold endowed with a DQ-al
gebroid s^x such that the associated Poisson structure is symplectic. Hence, X is 
symplectic and we denote by ax the symplectic 2-form on X. 

We set 2n = dx, Z = X x Xa and we denote by dv the volume form on X given 
by dv = Ox/n\. 

Lemma 6.2.1. — Let A be a smooth Lagrangian submanifold of X and let JŜ  (i = 0,1) 
be simple srfx-modules along A. Then: 

(i) j£f0 and L1 are locally isomorphic, 
(ii) the natural morphism CH —> Jffbm^ (jjfo? ̂ b) is an isomorphism. 

Note that the lemma above does not hold if one removes the hypothesis that X is 
symplectic (see Example 2.5.9). 

Proof. — (i) We may assume that X = T*M for a complex manifold M, s$x — 
WT*M(0)- Choose a local coordinate system (xi,... ,xn) on M, and denote by (x;u) 
the associated coordinates on X. We shall identify the section U{ of s^x with the 
differential operator hd{. 

We may assume that A is the zero-section T^M and Jjfo = ^M[[^]] — £^x/^o, 
where F0 is the left ideal generated by (hdi,..., hdn). Since J£\ is simple, it locally 
admits a generator, say u. Denote by Ĵ i the annihilator ideal of u in six- Since 
J^\jhJ\ is reduced, there exist sections (Pi, • • • , Pn) of six such that 

{hdt + ftPi,..., hdn + hPn} C Jx. 

By identifying #T*M(0) with the sheaf of microdifferential operators of order < 0 in 
the variable (a?i,... ,#n,£) not depending on t and h with <9t-1, a classical result of 
[56] (see also [57, Th 6.2.1] for an exposition) shows that there exists an invertible 
section P G six such that Ĵ 0 = <#\P> Hence, ~ J2?0-
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(ii) We may assume f̂0 = ^M[[̂ ]]- Then Mbm^x (^M[[^]]» @M[[h]]) is isomorphic to 
the kernel of the map 

u: 0M[[h\] - (4p]])n, u = (hdu ..., hdn). 
• 

Recall that the objects ilx and UJX are defined in § 2.5. 

Lemma 6.2.2. — There exists a local system L of rank one over Cx such that tig ~ 
L (g>cn *€x in Mod(£fXxx«)' 

Proof. — Both Qx and Cx are simple £?xxxa-modules along the diagonal A. By 
Lemma 6.2.1, L := JffbmSZ (Cx, OAx) is a local system of rank one over Ch and we 
have Q,x ~ L OCh <gx> • 

Note that this implies the isomorphisms 
(6.2.1) D k x x « ^ - L»~l ®<€x[-dx). 
Hence we obtain the chain of morphisms 

L 

^ Vxk OSZ Vx [-dx] = №{stx) [~dx] * L®'1 <8>fijf S^tf* [-dx] 

- L®-1 ®^lx^®^c^x [~dx] — L®~1. 

L -> L ® R%bmZz(tfx,'r?x)^L®D^xxxatfx®^x 

Therefore, we get the morphism: 
(6.2.2) L ^ H-dx(m(^x)) L®-1. 
Lemma 6.2.3. — (i) gr̂ (L) -> ̂ omgr^(^z)(gr^(^x), gr^(^)) ~ flx gives an iso

morphism grh(L) Cx • dv. 
(ii) The morphism L02 — Chx induced by (6.2.2) decomposes as Lm y h2nChx 

Cx and if is an isomorphism. 
(iii) The diagram below commutes: 

grft(L®2) grh(h2nCx) h2n grft(C*.) 

(grft(L))®2 — C f Cx-

Proof. — The question being local, we may assume to be given a local coordinate 
system x = (#i,... ,x2n) on X and a scalar-valued non-degenerate skew-symmetric 
matrix B — (bij)i<ij<2n such that the symplectic form ax is given by 

ax — ^ ^ dxi A . 
i,3 
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We set 
A = (ciij)i<ij<2n — В г. 

We may assume that srfx — (^x[[fi]b*) is a star-algebra with a star product 

f * g = exp 
¿7 

fia^-
2 

ö2 
dxidx'j )№9(*'ì) 

x'=x 
Set 

di = 
2n 

k = 1 
а̂ о*,- (г = l,...,2n). 

Then, the CMinear morphisms from OX [[h]] to Dx[[p]] 
(6.2.3) & : f ~ f*, $r : f » * f 

are given by 

Фг(ж») = Ж* + fi 
2 di, Or (Xi) = xi -ft 

2 ¿i. 

These morphisms define the morphism 

(6.2.4) Ф : AX 0 AXa — DX [[fi]] 

Xi ' ^ Xi ~\~ 
h 
2 Si: Vi 1 • %i 

h 
2 di, 

where we denote by y = (2/1,..., 2/2n) a copy of the local coordinate system on Xa. 
We identify ftjf with the (̂ x[[fi]])op-module ft* [[ft]]. Then, regarding ftx[[fi]] as 

an Az-module through Az —• < ẑPU ~~̂  (̂ x[[fi]])op5 we have 

Xi(adv) = (adv)$r(xi) = (adv)(xi — ft 2 d1) 

= ((xi + ft 
2 

Si)a)dv 

and similarly 

Vi(adv) = ((xi - ^5i)a)dv. 

Hence, а н adv gives an ^-linear isomorphism 

Vx*0x[[h]] Пх[[Щ*Пх-
Hence it gives an isomorphism L := Jffbm (̂tfx,Oa x) - HbmAz(Cx Cx) ^ C%, 
and the induced morphism grh(L) -> ^omgr^(^z)(grn(^x), gr^(^x )) - Ox Sives an 
isomorphism gr^(L) Cx dv. Hence we obtain (i). 

For a sheaf of C -̂modules J**, we set 

F(p) = 
p (ChX)2n) OChX F. 
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Let (ei,... ,e2n) be the basis of (Ch)2n. Consider the Koszul complex K* (g/z',b) 
where b = (61,..., &2n)> = (xi — yi) is the right multiplication by (xi — yi) on srfz'-

K'(^z;b) := 0 - ^0) ± • • • ^ ^2n) - 0, 

b = 
i 

• Abiei: Kp(¿/Z;b) -> Kp+Í{¿¿2;b). 

On the other hand, consider the Koszul complex K* (@x[[fr]}', 8) where 5 = 
(Si,... ,<$2n): 

K*(9x[№\S) := 0 - ( ^ [ [^ ] ] ) (0 ) - . . . - ( ^xP ] ] ) (2n) -0 , 
(5 = ((Ji, . . . ,u*2n)-

There is a quasi-isomorphism K* (srfz\ b) » ^x [—2n] in the category of complexes 
in Mod(^z)-

Then the morphism $ in (6.2.4) sends (xi — yi) to hSi. There is a quasi-
isomorphism K* (@x[[h]]'<> S) -̂—> &x[[fo]] [—2n]. Therefore we get a commutative 
diagram in Mod(^): 

о 4 0 ) — ^ >- ^2п~1] ь—^ <п) о 

П2пФ ПФ П°Ф 
V I V 

О — (3>х1[Щ}){0) (S>x[[h]}Y2n-^ (ЗДй]])<2п> — О. 

The object Slx^o* ^x is obtained by applying the functor Vtx <g>^ • to the 
L row on the top and the object Vtx ODax &x is obtained by applying the functor 

fix ODax• to the row on the bottom. By identifying Clx with fix [[ft]] > the morphism 
L L fix ®#/z®x [—dx\ —• fix ®@^&x [—dx\ is described by the morphism of complexes: 

(6.2.5) 
о nx[[h}} hd OX2 - 1 [[h]] hd Sl%[[h]] о 

h2n h hn 
0 Qx[[h}} d O2XN-1 [[h]] d &хп[[Щ o. 

Here d denotes the usual exterior derivative. 
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Therefore, we find the commutative diagram with exact rows: 
L®2 

0 ^x n°x№] hd Qx[[h]] 

h2n h2n ft2"-1 
0 cx fi^fi]] d nxW] 

in which the morphism L®2 —+ Cx corresponds to the morphism L[dx] —> L® 1 0 
tox OAZ *x. 

This completes the proof. • 
Theorem 6.2.4. — Assume that X is symplectic. 

(i) Let L be the local system given by Lemma 6.2.2. Then there is a canonical Ch -lin
ear isomorphism L hdx^2Cx, hence, a canonical srfz-linear isomorphism 

(6.2.6) fijf hdx/2Cx (g)ca Vx. 
(ii) The isomorphism (6.2.6) together with (6.2.2) induce canonical morphisms 

(6.2.7) hdx^Cx [dx] ^ MC(*/x) ̂  Krdx,2Cx [dx] 
and the composition TX ° tx is the canonical morphism hdx^2Cx [dx] —> 
h-d*/2Cx [dx]. 

(iii) Hi($&{(gtfx)) — 0 unless —dx < j < 0 o>nd the morphism tx induces an iso
morphism 

(6.2.8) Lx: hdx/2Chx ^ H~dx{M{{stfx)). 
In particular, there is a canonical non-zero section in H~dx (X;$&£(&/x))-

Proof. — (i) By Lemma 6.2.3, we have an isomorphism (h~dx^2L)®2 ~ Cx together 
with a compatible isomorphism grh(h~dx^2L) ~ Cx- This implies k~dx^2L ~ Cx 
since the only invertible element a G Ch satisfying a2 = 1, ao(a) = 1 is a = 1. 

(ii)-(iii) Denote by (fix[[ft]], ^0 anô  (̂ x[[̂ 13> ^)tne complexes given by the top row 
and the bottom row of (6.2.5), respectively. The morphism ¿x is represented by 

L[dx] ^ L®-1 ®(Slx[[h}}M)[dx] 

and the morphism TX is the composition 

L®~x 0 (fix[[ft]], fid)[dx] - L®-1 0(fix[[ft]],d)[dx] ^ L®~x[dx]> • 

Applying Theorem 6.2.4 together with Corollary 3.3.4, we obtain: 

Corollary 6.2.5. — Let X be a compact complex symplectic manifold. Then Dgd(̂ J^c) 
is a Calabi-Yau triangulated category of dimension dx over C '̂loc. 
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Remark 6.2.6. — The statement in Theorem 9.2 (ii) of [44] is not correct. If Y is 
a compact complex contact manifold of dimension dy, then the dimension of the 
Calabi-Yau category associated to it in loc. cit. is dy, not dy — 1. 

6.3. Euler classes of j2/loc-modules 
Theorem 6.3.1. — The complex${H(^x°) ^s concentrated in degree —dx and the mor-
phisms tx and TX in Theorem 6.2.4 induce isomorphisms 

(6.3.1) Ĉ loc [dx] tx W(s/$c) tx ^hx°C[dxl 

Proof. — This follows from the fact that (fiĵ [[ft]], ftd) —> (fix[[ft]], d) becomes a quasi-
isomorphism after applying the functor (• )loc = Ĉ ,loc ®cn (•). • 

Definition 6.3.2. — Let Jl e D|?oh(.̂ j?c). We set 

(6.3.2) euxMO = rx(hhx(^)) e <xpp(^)(^;C^loc) 

and call eux(^) the Euler class of jtft. 

Remark6.3.3. — (i) The existence of a canonical section in H~dx(X\^0£(^xc)) is 
well known when X = T*M is a cotangent bundle, see in particular [15, 27, 61]. It 
is intensively used in [14] where these authors call it the "trace density map", 
(ii) The Hochschild and cyclic homology of an algebroid stack have been defined in 
[13] where the Chern character of a perfect complex is constructed in the negative 
cyclic homology. It gives in particular an alternative construction of the Hochschild 
class of a coherent DQ-module, but it is not clear whether the two constructions give 
the same class. 

Consider the diagram 

(6.3.3) Pia ibr^KxTxx») S f t ' s ^ ^ x x j ) ) HH (AXloc 1 x Xa3) 

T12A <G>T23°- Т13А 

PIS ! (Pl21Cxl°2C ld^} ® Р23СХ12°3С ld2s] ) 
J>u-> 

•c Нх[°М 

Here, the horizontal arrow in the bottom denoted by /2( • U • ) is obtained by taking 
the cup product and integrating on X2 (Poincaré duality), using the fact that the 
manifold X2 has real dimension 2̂ 2 and is oriented. The arrow in the top denoted 
by • is obtained by Proposition 4.2.1. 

Proposition 6.3.4. — Diagram 6.3.3 commutes. 
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Proof. — Since X\ and X% play the role of parameter spaces, we may assume that 
X\ = X3 = {pt}. We set X2 = X and denote by ax the projection X {pt}. We 
are reduce to prove the commutativity of the diagram below: 

(6.3.4) Q>x\{ HH(AXloc) O HH (AXloc)) 

TOI 

ax,(Cxioc [dx}®C%loc{dx}) 
J>u-) 

Ch, loc. 

This will follow by applying the functor ax\ to Diagram 6.3.5 below. 

Lemma 6.3.5. — The diagram below commutes. 

(6.3.5) HH(AXloc) O HH (AXloc)) 

r<S>r 

Cxloc[dx}®Cxl°c{dx} c£Ioc [2dx]. 

Proof. — The morphism L®L[2dx] ~ C%loc [dx]<2>Cxloc [dx] -> C l̂oc [2dx] is given 
by 

L®L[2dx) - L [dx]®BJ6m^z(^x,n^)[dx] 
~ L ® D ^ t f * w j f ^ ?x« <8̂ z wjf - Chx[2dx]. 

On the other hand, L ® L[2dx] ->• Mí{s¿x) ®M£(s¿x) -> Cx[2dx] is given by 

L®L[2dx] - R M m ^ J D ^ x , ^ ) ® ^ ^ ^ , ^ ) 
~ Rhom AZa ÇD'^Vx, VXa) ® (jy^Vx) ®az u,%) 

— «ir. OAZ wjf ^Cx[2dx}. 

These two morphisms give the same morphism from L ®Z,[2dx] to C%-[2dx]- D 

Corollary 6.3.6. — Let Jf?i G ^cohi^x^xx? ) (i = 1, 2). Assume that the projection 
Pis defined on X\ x X2 x X3 ¿5 proper on p\2x Supp(J£i) Dp^1 Supp(^2). TAen 

(6.3.6) eux13a (Ĵ i o J^) = / eux12a p^i) U eux23a («̂ 2). 
2 

Remark 6.3.7. — Consider an object M e Dcoh(ê x°c)- Then, according to Defini
tion 6.3.2, its Euler class is well-defined in the de Rham cohomology of X with values 
in C '̂loc. Now assume that M is generated by Jt§ £ ^toh№x) and consider gr^(^0)-
Assume for simplicity that gvh{s^x) — @x (the general case can be treated with suit
able modifications). Then gr^(^o) £ D^oh(^x) ano- we may consider its Chern class 
in de Rham cohomology. A natural question is to compare these two classes. A pre
cise conjecture had been made in the case of ^-modules by one of the authors (PS) 
and J-P. Schneiders in [58] and proved by P. Bressler, R. Nest and B. Tsygan in 
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[14]. These authors, together with A. Gorokhovsky, recently treated the general case 
of DQ-algebroids in the symplectic setting in [11]. The formula they obtain makes 
use of a cohomology class naturally associated to the deformation s^x-

6.4. Hochschild classes of ^-modules 

We shall apply the preceding result to the study of the Euler class of ^-modules. 
Recall after [38] that a coherent ^M-module ^ is good if, for any open relatively 

compact set U C M, there exists a coherent sub-^[/-module & of M\u which gen
erates it on U as a ^M-module. One denotes by Dgd(f̂ M) the full sub-triangulated 
category of D£oh(î M) consisting of objects with good cohomology. 

Prom now on, we set 

X = T*M. 

We introduce the functor 

(6.4.1) («)W: Mod(^M) -> Mod(#i) 

M Wx <8>. 
7T -1 ' M M 7T -1 

M M. 

The next result shows that one can, in some sense, reduce the study of ^-modules 
to that of Wx-modules. 

Proposition 6.4.1. — The functor ^ H-> ^W\T^M is exact and faithful 

Proof — The morphism 

M {ST* M ®N -i M DM 7T -1 
M ^)\T*MM 

is an isomorphism, and hence the result is a particular case of Lemma 6.1.2. • 

It follows that (-)w sends Dboh($>M) to D*oh(Wx) and Dbd(9M) to Dbgd(Wx). 

Definition 6.4.2. — Let J( € D£d(0M)- We set 

(6.4.2) hhfMO = hhf(^fw) € HH°har(^(^x). 

For A a closed subset of T*M, we denote by Kgd,A(̂ M) the Grothendieck group 
of the full abelian subcategory of Modgd(̂ M) consisting of ^-modules whose char
acteristic is contained in A. 

Let V be an open relatively compact subset of M. By slightly modifying the proof 
of Proposition 3.4.3, we get morphisms of groups 

(6.4.3) Kgd,A(̂ M) —> Kcoh.A^-iv)-

Let Mi (i = 1,2,3) be three complex manifolds and set X* = T*Mi. Denote by qij 
the ij-th projection defined on M\ x M<i x M3 and by pij the ij-th projection defined 
on Xi x X2 x X3 (1 < i < j < 3). We set, as for DQ-algebras, DMa := (@M)°P and 
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we write for short Mij or M â instead of Mi x Mj or Mj x M" and similarly with 
Xij. We also write 3>ij instead of 3>Mn and similarly with ija, etc. For example, 

1̂2" = OM12 O (<?Ml̂ M2) (^ML K(^M2)OP). 

Then $>\ may be regarded as a 3>na -module supported on the diagonal of X\ x X\a. 
Let Xi G Db(%a) (i = 1,2, j = i + 1). Set 

K1 o 
M2 

J¿2 := Rq13a! ̂2 0̂ 2a2 1̂2*23* 
L 
O ̂l2aKl̂ 23a (K1 X K2) 

Theorem 6.4.3. — Let Ai be a closed subset of Xi x X^+i (i = 1,2) and assume 
that the projection pis defined on X\ x X2 x X3 ¿5 proper on p±2Ai np23A2. Set 
A = Ai o A2. Let K1 G Dbd(%a) (i = 1,2, j = i + 1) with char(J^) c A» (« = 1,2). 
TAera K1 o J&e Dbd(̂ i3a), char(JTi o J^) C A and 

M2 8 M2 

(6.4.4) (X О 
M2 

X2) w K1 w о 
X2 

Ж2 w 

The proof is straightforward and is left to the reader. By using Diagram 4.4.7, we 
get: 

Theorem 6.4.4. — In the situation of Theorem 6.4-3, let Vij be a relatively compact 
open subset of Mi x Mj {i = 1, 2, j = i + 1) and assume that ir~lV\2a XM2 7r-1V23a 
contains (Ai Xj2 A2) H qï^aTT~lV\^a. Then the diagram below commutes 

D b 
g d, A1 (012«) X D b 

gd,A2 (023") D b g<M (013«) 

grh grn 

^COh,A1(^-1V12a) X Kcoh^C^TT-1^) ^ Kcoh,A(̂ >7r-1yi3a) 

hhxhh hh 

HH°Al(^-.v12.) x HH°2(^-ly230 ) -HH°(^-1VW). 

In particular 

(6.4.5) hh8;., Vi3a (x o jr2) = hhf_, Vi2a (jro o hhf_1V23a (X2) 

mHH°(^-1Vl3J. 

As a particular case, and using Corollary 5.3.5, we recover a theorem of Laumon 
[49] in the analytic framework. 
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6.5. Euler classes of ^-modules 
We keep the notations of § 6.4 and we set X = T*M. One defines the Hochschild 

homology $&{(§x) of $x and the Hochschild class hhx(^) of a coherent ^x-module 
M similarly as for M£(s^x)-

In the sequel, we identify a coherent f̂ M-module <dt with §x ®7r-î M TT-1^- In 
particular, we define by this way the Hochschild class hhx (JK) of a coherent ^-module 
M'. Hence 
(6.5.1) hhx (M) E Hdx char (M) (X; HH (Ex)). 

Lemma 6.5.1. — There is a natural isomorphism 
(6.5.2) W(£x) Cx [dx] 
which makes the diagram below commutative: 

HH(EX) Cx{dx] 

№{Wx) r 
c h, loc 

X [dx]. 

Sketch of proof. — We take coordinates (x±,..., xn, u\,... un), and set Ox •= 
!i5jIlA;<m h~k&x{k), where Ox(k) is the sheaf of holomorphic functions on X homo-
m 

geneous of degree k with respect to the variables (ui,..., un). Then Ox is isomorphic 
to $x as a sheaf. Moreover, $&{(&x) is represented by the Koszul complex of d/dxi, 
hd/dui G Snd(Ox) = 1,... , n). On the other hand, as we have seen, ${tt(Wx) is 
represented by the Koszul complex of hd/dxi, hd/dui G 6nd(Ox((K))) (i = 1,... ,n). 
Hence we have a commutative diagram 

0 ^ OX ^ >- &x2n ^ OX ^ 0 

vh- y 
0 0xW) ^ ^ 0x((h))2n GxWj 0, 

in which the top row represents M((Sx) and the bottom row represents $&{{Wx)> • 

Definition 6.5.2. — Let M G Dboh(<fx)- We denote by eux(^) the image of hhx(^) 
in Hch&T(^(X;Cx) by the morphism in (6.5.2) and call it the Euler class of M'. 

The next result immediately follows from Lemma 6.5.1. 

Proposition 6.5.3. — For Jt G Dboh(0M)? eux(^w) is the image ofeux(^) by the 
natural map Hd,xchar(Mx)(X; Cx) - ^ a r ( ^ № C l̂oc). 

Applying Theorem 4.3.5, we get: 
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Theorem 6.5.4. — In the situation of Theorem 6.4-3, one has: 
(6.5.3) eui3a (J î̂ o X2) = eui2a (JÉi) o eu23a (JÉ2) 

in H d1 + d3 A10A2 (Xi3;Cx13)-
This formula is equivalent to the results of [58] on the functoriality of the Euler 

class of 0-modules. Note that the results of loc. cit. also deal with constructible 
sheaves. 
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CHAPTER 7 

HOLONOMIC DQ-MODULES 

The aim of this chapter is to study holonomic DQ-modules on symplectic manifolds. 
More precisely, we will prove that, if J2? and M are two holonomic £^?c-modules on 
a symplectic manifold X, then the complex RHom^ALOCX (M, L) is perverse (hence, in 
particular, C-constructible) over the field Cn,loc. It follows from the preceding results 
in Chapter 6 that if the intersection of the supports of ,M and j£f is compact, then the 
Euler-Poincare index of this complex is given by the integral fx eux (M)* eux (L). 
We show here that the Euler class of a holonomic module is a Lagrangian cycle, which 
makes its calculation easy. 

If moreover Jzf and M are simple holonomic modules supported on smooth 
Lagrangian submanifolds Ao and Ai, then the microsupport of the complex 
K^dm ÎOC(M, L) is contained in the normal cone C(A0,Ai). This last result 
was first obtained in [44] in the analytic framework, that is, using y^x-modules, not 
#x-modules, which made the proofs much more intricate. 

Finally we prove that, in some sense, the complex RHOMALOCX (M, L) is invariant 
by Hamiltonian symplectomorphism. 

7.1. #f-modules along a Lagrangian submanifold 
Let X be a complex symplectic manifold endowed with a DQ-algebroid g/x-

The algebra s/^/x- — Let A be a smooth Lagrangian submanifold of X and let j£f 
be a coherent s/x-module simple along A. 

Locally, X is isomorphic as a symplectic manifold to T*A, the cotangent bundle 
to A. We set for short 

K := OA [[h]], K'loc - ^A((fc)). 

There are local isomorphisms 

AX = WX (O), L = OhA. 
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Then &idc^(^) — &ndçn(0%) (see Lemma 2.1.12) and the subalgebroid of &ndch(J£) 
corresponding to the subring 0A[[ft]] of ëndch(û%) is well-defined. We denote it 
by 0^ . 

Lemma 7.1.1. — (i) 0$? is equivalent to 0A [[h]\ as a Ch-algebroid. 
(ii) The Cn-algebra 0^? satisfies (1.2.2) and (1.3.1). In particular, it is right and 

left Noetherian. 

Proof. — (i) follows by similar arguments as in Proposition 2.5.2 (ii). 
(ii) follows from Example 1.3.1. • 

The functor &/X\A —> ôndcn(^) factorizes as 

(7.1.1) * f r | A - ^ , 

and setting 0^c := (0£?)loc, this functor induces a functor 

(7.1.2) ^C\A 0^c. 

We denote by I A C @x the defining ideal of A. Let F be the kernel of the compo
sition 

>T VX h S^X — &X - OA-

Then we have J'/'fi/x — 1A-

Definition 7.1.2. — We denote by £?A/X the Cn-subalgebroid of s^xc generated by J>. 

Note that the algebra S^A/X is the analogue in the framework of DQ-algebras of 
the algebra S'A constructed in [40]. 

The ideal hJ^ is contained in ^x , hence acts on j£f and one sees easily that hJ^ 
sends j£f to hJ£. Hence, F acts on j£f and defines a functor £?A/X —> 0Sf • We thus 
have the functors of algebroids 

S*X\A ^WAIX\A fit-loc X A 

0 ^ 0 rloc L 
In particular, .if is naturally an <£/A/x-module. 

Lemma 7.1.3. — (i) Jk = s^a/x H h~ks^x for any k>0, 
(ii) yk/yk-x-1 ~ II for k > 0, 
(iii) s^aix is a right and left Noetherian algebroid, 
(iv) gr^A/X)|A ^ glH®J? ~ @K, 
(v) (^a/x)1oc ^ ^xoc ^ ^oc is flat over ¿ 4 / * -
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Proof. — Since the question is local, we may assume that X = T*Cn with coordinates 
(x,u), A = {u = 0} and Ax is the star-algebra as in (6.1.4). Set 

**' := {^2fk(x,u)hk e ¿4°°; fk(x,u) e IA-k for k < 0}. 
k 

Then we can check that si1 is a subalgebra of fi/^c and it contains J. Hence it 
contains £*A/X- It is easy to see that the image of J?k —• h~ksrfxI'h~k+ls^x contains 
h~hIA. On the other hand, the image of srf' D hrksrfx —> h~k&#x/h~k+1£/x coincides 
with h~kIA. Hence, #/A/x H h~ksrfx and srf' fl h~ks^x have the same image h~kIA 
in h-k£fx/fr~k+1^x. We conclude that s*/A/x = ^' and srfA/x n ft-*.^ C + 
h~k+1g/x- Hence, an induction on k shows (i). 
(ii) is now obvious. 
(iii) Considering the filtration {g/\/x H h~k£tx}k>o of AA/X, the result follows by 
[38, Theorem A.32]. 
(iv) is obvious. 
(v) follows from srfx C fi/A/x C £/£c. • 

By this lemma, for a coherent g/A/X-modu\e JV, we may regard gih(jY) as an 
object of DJ?o1i(0A). Recall that D£o1(0A) denotes the full triangulated category 
of D ôH(0A) consisting of objects with holonomic cohomology. 

Lemma 7.1.4. — The algebroid DL is flat over &/A/x and &j?c is flat over fi/^c. 

Proof. — It is enough to prove the first statement. 
L 

Let us show that HJ(^^><S>^A/X^) — 0 f°r any coherent ^/x-module JK and 
any j < 0. 
(i) Assume that M has no ft-torsion. Using Lemma 7.1.3 (iv), we have for j < 0, 

L L 
HjgvN(^<S>^A/X^M) ^ Hjgrh^ ~ 0, and hence HJ(^f®^A/x«^0 — 0 by Proposi
tion 1.4.5. 
(ii) Assume that hM = 0. Then 

DL 
L 
0 AA/X 

M = DL L 
O AA / X grh AA / X 

L 
(8) grh AA/X M = grh DL 

L 
0. grh AA / X 

M = M 

(iii) In the general case, set níyK := Кег(/гп : M —• M and Mtor := |J neyK. Note that 
n this union is locally stationary. Defining Mtj by the exact sequence, 

0 —> ^tor —> ^ —> ^tf 0, 
this module has no ft-torsion. It is thus enough to prove the result for the n<yV's and 
this follows from (ii) by induction on n, using the exact sequence 

0 nJf -> n+i^ -> n + l ^ / n ^ "+ 0. • 

Definition 7.1.5. — An object JÍ of D]!oh(g/A/x) is holonomic if gr^pK) is Lagrangian 
in T*A, that is, if grh{J^) belongs to D£ol(0A). 
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Note that this condition is equivalent to saying that Hl (jV) / hHl (JY) and 
Ker(h: Hl(jV) —• Hl(jY)) are holonomic ^A-modules for any i (see Lemma 1.4.2). 

Micro support and constructible sheaves. — Let us recall some notions and results of 
[41]. 

Let M be a real analytic manifold and IK a Noetherian commutative ring of finite 
global dimension. For F G DB(KM), we denote by SS(F) its microsupport, a closed 
R+-conic (i.e., invariant by the R+-action on T*M) subset of T*M. Recall that this 
set is involutive (one also says co-isotropic), see [41, Def. 6.5.1]. 

An object F of DB(KM) is weakly R-constructible if there exists a subanalytic strat
ification M = LLeA Ma such that Hj(F)\Ma is locally constant for all j € Z and all 
a £ A. The object F is R-constructible if moreover H^(F)X is finitely generated for all 
x G M and all j G Z. One denotes by D^C(KM) the full subcategory of DB(KM) con
sisting of R-constructible objects. Recall that the duality functor D^( •) (see (1.1.1)) 
is an anti-auto-equivalence of the category D^C(KM). 

If M is complex analytic, one defines similarly the notions of (weakly) C-con-
structible sheaf, replacing "subanalytic" with "complex analytic". We denote 
by D^CC(KM) the full subcategory of DB(KM) consisting of weakly-C-constructible 
objects and by D^C(KM) the full subcategory consisting of C-constructible objects. 
Also recall ([41]) that F G DB(KM) is weakly-C-constructible if and only if its 
microsupport is a closed Cx-conic (i.e., invariant by the Cx-action on T*M) complex 
analytic Lagrangian subset of T*M or, equivalently, if it is contained in a closed 
Cx-conic complex analytic isotropic subset of T*M. 

Proposition 7.1.6. — Let F G Dh(ZM[h]) and assume that F is cohomologically com
plete. Then 

(7.1.3) SS(F) = SS(grR(F)). 

Proof. — The inclusion 

SS(grft(F)) c SS(F) 

follows from the distinguished triangle F h F —• gr^(F) +1. Let us prove the 
converse inclusion. 

Using the definition of the microsupport, it is enough to prove that given two 
open subsets U C V of M, RT(V;F) —• RT(U,F) is an isomorphism as soon 
as Rr(V;gr^(F)) —• RT(U;grh(F)) is an isomorphism. Consider a distinguished 
triangle RT(V; F) -> RT(U]F) G -1. Then we get a distinguished triangle 
RY(V]grh(F)) -> RT(U',grh(F)) - gr^(G) +1. Therefore, gr^(G) ~ 0. On the 
other hand, G is cohomologically complete, thanks to Proposition 1.5.12 and G ~ 0 
by Corollary 1.5.9. • 

Proposition 7.1.7. — Let F G D̂ C(C%-). Then F is cohomologically complete. 
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Proof. — One has 

"lim" Extf 
U3x 

z[h] (Z[ft, ft"1], Hi (U . F)) = Ext; zh] (Zlft.fi-1], «Hm' 
U3x 

W(U;F)) 

= Extj 
z[h] 

(z[h,h-l],Fx) ~o 

where the last isomorphism follows from the fact that Fx is cohomologically complete 
when taking X = pt. 

Hence, the hypothesis (i) (c) of Proposition 1.5.6 is satisfied. • 

Propagation for solutions of s^^/x-modules 
Proposition 7.1.8. — Let JY be a coherent S^A/X-module. Then 

(7.1.4) SS(R^m^A/x {Jf, Sa)) C char(gr^). 

Proof. — By Lemma 7.1.4, we have 

RMm ̂ A/X 
(N, L) = RMm DA (DL O ̂AIX N, L). 

Since gr^(0^f ®^ ^) = EFhi^)' Proposition 7.1.8 will follow from Proposi
tion 7.1.9 below, already obtained in [20]. • 

Proposition 7.1.9. — Let JV be a coherent 0^?-module. Then 

(7.1.5) SS(RMm^(^K^)) = char(gr^). 

Proof. — Set F = RMm ^^{^V ,J£). Then F is cohomologically complete by Corol
lary 1.6.2 and SS(F) = SS(gr^(F)) by Proposition 7.1.6. On the other hand, gr^(F) ~ 
RMmgA(grH^V, &\) by Proposition 1.4.3 and the microsupport of this complex is 
equal toAchar(gr^) by [41, Th 11.3.3]. • 

Constructibility of solutions. — Theorem 7.1.10 below has already been obtained in 
[20] in the framework of 0M [[ft]]-modules. 

Recall that «if is a coherent J^C-module, simple along A. 

Theorem 7.1.10. — Let JV be a holonomic &/A/X-module. 
(a) The objects RMm^A/x {Jf, JSf) and RMm^A/x («if, J/) belong to D£C(Ĉ ) and 

their microsupports are contained in char(gr ,̂/K). 
(b) There is a natural isomorphism in DJ~C(Ĉ ) 

(7.1.6) RMm^A/x(^V,J?) ^ D'x(RStem^A/x(if,^)) [dx\. 

The morphism in (b) is similar to the morphism in Lemma 3.3.1 and is associated 
with 

R ^ V A / X PK, se) ® R ^ v A / x (L,Jn) 

RMma Aa / x(L, L) -> BJ6m9JJ?,S?) ^CHA^CHX [dx]. 
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Proof. — (a) It is enough to treat F := BJ6m^A/x(^V,^f). In view of Proposi
tion 7.1.8, F is weakly C-constructible and it remains to show that for each x G A, 
Fx belongs to D)(Ch). 

If U is a sufficiently small open ball centered at x, then RT([/;F) —• Fx is an 
isomorphism ([41]). The finiteness of the complex grh(Fx) follows from the classical 
finiteness theorem for holonomic 0-modules of [36]. Since F is cohomologically com
plete, Proposition 1.5.12 implies that RT(i7;F) is cohomologically complete. Hence 
the result follows from Theorem 1.6.4. 

(b) follows from Corollary 1.4.6, since we know by [36] that (7.1.6) is an isomorphism 
after applying the functor gr .̂ • 

s^xjx modules and s^j^0-modules. — 

Definition 7.1.11. — A coherent ^/x-submodule JV of a coherent j^^-module ^ 
is called an s^^/x-lattice of jtft if JV generates M as an £̂ Jpc-module. 

Lemma 7.1.12. — Let ̂  be a coherent ^/jf0-module and let JV C M be an &/^ix-lat
tice of\dt'. Then char(gr^(^K)) C T*A does not depend on the choice of JV'. 

The proof is similar to the one of Lemma 3.4.2, and we shall not repeat it. 

Definition 7.1.13. — Let M be a coherent £^?c-module and let JV C M be an 
j^A/x-lattice of M. We set 

charA(^) := char(gra^K). 

Example 7.1.14. — Let X — C2 endowed with the symplectic coordinates (x; u) and 
let A be the Lagrangian manifold given by the equation tu = 0}. In this case, &/\/x = 
AX [uh - 1]. 

Now let a G C and consider the modules M = AXloc / AXloc (xu ~ ah) and 
JY = j^A/x/^A/x(^ft_1 — a. Then JV is an j^A/x-lattice of M and grntyf ~ 
@A/@A(xdx-a). 

Lemma 7.1.15. — Let M be a coherent g/^0-module. 
(i) char A (M) is a closed conic complex analytic subset ofT*A and this set is invo

lutive. 
(ii) Let 0 —> ^t' —> M —> M11 —* 0 be an exact sequence of séxc-modules. Then 

char A (<^0 = charA(^') U charA(^")-

Proof. — (i) is a well-known result of 0-module theory, see [38]. 
(ii) Let JY be an ^A/x-lattice of Jt. Set Jf' = Jl1 fi Jf and Jf" C M" be the 
image of JV. Then JV' and JV" are £/A/X-lattices of M and M" respectively. Since 
we have an exact sequence 

о -f j/чкл" -> ¿v/tur -• jf'ihjY" -» о, 
we have charA(^) = сЬаг(Л7йЛ0 = c h a r ( ^ 7 ^ ' ) U char\Jf"/ГкЖ") = 
charA(-#') U char л(Jï"). • 
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Proposition 7.1.16. — For a coherent s^xc-module jjt, we have 
codim char A (^#) > codim Supp(^). 

Proof. — In the course of the proof, we shall have to consider the analogue of the 
algebra ^/A/x but with s^xa instead of srfx- We shall denote by srfAA this algebra. 
We shall show that codim Supp(^) > r implies codim char A (^) > r by descend
ing induction on r. Applying Proposition 2.3.15 (a), we have RJtim^^(JZ,^xc) — 
T-rR#bm^IOC{<Jif,£fxc), where r-r is the truncation functor. Hence we have a dis
tinguished triangle in Dboh(ĵ °ac): 

(7.1.7) <gxtr^oc{Jt, AXloc)[-r] RMm^oc(Jt,stf}?c) -> X +1 

where X = r>rRMm^IOC(^, ^C). Note that codim(Supp(JT)) > r by Proposi
tion 2.3.15 (b). Setting Jt' = £xtr^loc(J(,^c), tne distinguished triangle (7.1.7) 
induces a distinguished triangle in Dboh(£^oc): 

R№m^XOC(X, ALOCX) Jt R^^ioc(^^^x0aC)[r] -±L» . 

Setting M1 = £xtr£jXoc(J£', ^ j , we obtain a morphism ip: JK —> and Ker(<£>) 
has codimension greater than r. Hence, codim char A (Ker(y?)) > r by the induction 
hypothesis. Since charA(̂ f) C charA(« î) U charA(Ker (<£?)), it is enough to show that 
codim char A (^#L ) > r. 

Hence we may assume from the beginning that M = £xtr^Xoc(JK',^xa) for 
a coherent ĵpac-module JM' . Let us take an i4a-lattice JY1 of ^#/. Set N0 = 
<gxtr̂ Aa {JY1, srfAa). Then we have JŶOQ ~ M, and it induces a morphism JY§ —> jj£. 
Let JY be the image of the morphism JY§ —• M. Then N is an &/A/X-lattice of <Jt. 
Hence we have charA(^) = Qhax(<yV/hJY), which implies 

(7.1.8) charAM0 C char (<Ab/tuAb). 
On the other hand, we have an exact sequence 

^ A a ( ^ V A a ) h <?Xt^AA(^'^AA) - *Xt^Aa(jr',&h(s/Aa)). 

Since we have Sxf^(JY',gih(stfAA)) ~ £xtrgTh{^Aa)(gihJY' ,gvh{srfAA)), we have a 
monomorphism 

^ / ^ ^ ^ ^ ^ ^ ( g r ^ ^ r ^ ^ ) ) -

Hence we obtain cha,r(</Yo/hjYo) C char^x^r^^Aa^(grfl^l//,gr^(j^Aa))^. Since 

char^tgГ^(^Aa)(gra^^grn(^A-)))has codimension > r by e.g., [38, Theo
rem 2.19], we conclude that codim char (JY^/tuAo) > r. By (7.1.8), we obtain 
codim char A (^K) > r. • 
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7.2. Holonomic DQ-modules 
In a complex symplectic manifold X, an isotropic subvariety A is a locally closed 

complex analytic subvariety such that Areg is isotropic, i.e., the 2-form defining the 
symplectic structure vanishes on Areg. Here, Areg denotes the smooth part of A. 

A Lagrangian subvariety A is an isotropic subvariety of pure dimension dx/2. 
Equivalently, A is a subvariety of pure dimension dx/2 such that Areg is involutive. 

Definition 7.2.1. — (a) An <£^c-module M is holonomic if it is coherent and its sup
port is a Lagrangian subvariety of X. 

(b) An g/x-modu\e JV is holonomic if it is coherent, without ft-torsion and jVXoc is 
a holonomic j^?c-module. 

(c) Let A be a smooth Lagrangian submanifold of X. We say that an ^J^-module 
M is simple holonomic along A if there exists locally an Ax -module Mo simple 
along A such that M ~ ^#o°c. 

Lemma 7.2.2. — Let M be a holonomic g/xc-module. Then D'^locJ% [dx/2] is con
centrated in degree 0 and is holonomic. 

Proof. — This follows from Proposition 2.3.15 and the involutivity theorem (Propo
sition 2.3.18). • 

Let X be a complex symplectic manifold and let jfâ and J5f be two holonomic 
£^c-modules. Using Lemma 2.4.10 (more precisely, an £^c-variant of this lemma) 
and Theorem 6.2.4, we have 

(7.2.1) 

RMm ^С\Ж,^) ~ RMm A 'loc XxXa 
(M L 

X D'A L, CXloc 

RMm ̂ \1£^Ж) ~ RMm A loc XxXa 
(L L 

X D'A M, CXloc 

~ RMm A loc XxXa 
(D' (<rjT)>^ L 

X 
D'A L) 

~ RMm A loc XxXa 
(CXloc; M L 

X D'A L) [dx]. 

Theorem 7.2.3. — Let X be a complex symplectic manifold and let jtft and j£f be two 
holonomic gt^0-modules. Then 

(i) the object R№m^oc(JZ, JSf) belongs to D£c(C l̂oc), 

(ii) there is a canonical isomorphism: 

[7.2.2) RMm^Aloc{M,Sf) (D'xBJSm^ciSf,^)) [dx], 

(iii) the object RHom Axloc (Jt,J£)[dx/2] is perverse. 

Proof. — Using (7.2.1), we may assume from the beginning that J*f is a simple holo-
aomic j^c-module supported on a smooth Lagrangian submanifold A of X. Let JSfo 
be an ^x-module simple along A such that JSf ~ J2f0loc. 
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(i)-(ii) Let JY be an ^д/x-lattice of ^ ¿ . By Lemma 7.1.3 (v), we have 

RMm 
AXloc {Л, У) = RMm AX / X (N, L0= loe 

Then the results follow from Proposition 7.1.16 and Theorem 7.1.10. 
(hi) Since the problem is local, we may assume that X = T*M, g/j^0 = # x and 
L0 = 0h M. 

By (ii), it is enough to check the statement: 
(7 2 3) HJ (RTN [RMm^a/x(^^o))^ vanishes for j < I and for 

any closed smooth submanifold N of M of codimension /. 
Since F := RTN(RMm^A/x (c/K,j2f0)) is C-constructible, it is enough to show 
that W(grh(F)) = 0 for j < I. This follows from the well-known fact that 
H3(KrN(0M)) = 0 for j < L • 

Assume for simplicity that X is open in some cotangent bundle T*M. We shall 
compare the sheaf of solutions of holonomic Sx-modules and Wx-modules. Recall 
that Wx is faithfully flat over $x by Lemma 6.1.2. 

Corollary 7.2.4. — Let M and <if be two holonomic S'x -modules. Then the object 
Rfflmg (M, L) belongs to D£C(CX). 

Proof. — Let t denote the coordinate on the complex line C, let E denote the ring 
£r*c\t=o T=i and let L be the E-module E/E -t. Then we have the embedding 

Ch, loc E, h d -1 •t 
Set for short F := RMmgSX (J?, L). Then 

L F ~ BJûmB(L,BMmf W,(£XxT*c/êxxT'c-t)\t^,T=i®£x&)) 

~ RMmE(L,Rfcfi{Wx ®^ JC, Wx ®?x if)). 

Set G := RMm^ (Wx <8>̂  Jt, #x ® EX L). Applying Theorem 7.2.3, we find that 
G e D£c(C l̂oc) and it follows that F e D^Cc(Cx). 

Moreover, for each x e X, Gx is of finite type over Ch,loc and is an E'-module. One 
easily deduces that Fx ~ RHom£;(L, Gx) is a C-vector space of finite dimension. • 

7.3. Lagrangian cycles 
Given two holonomic g/xc modules M and j£? such that Supp(^#) D Supp(«if) is 

compact, the Euler-Poincare index is given by 

(7.3.1) 
x(X;jr,&) = x(RHom<0c(^,J5f)) 

= Ei(-)idimExt^oc(^,if). 
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Applying (6.3.6), we get 

(7.3.2) Х(Х;Л,Л?) = J 
X 

(еих (M) еих (L)). 

Recall that eux(^) — (—l)dx//2eux(D îoc^O> and also recall that dx being even, 
eux(^) • eux(JSf) = eux(Jzf) • eux(^). 

We shall explain how to calculate the Euler classes by using the theory of La
grangian cycles. We refer to [41, Ch. 9 § 3] for a detailed study of these cycles. 

Recall that K denotes a commutative Noetherian unital ring of finite global dimen
sion. 

Consider a closed Lagrangian subvariety A of X. We define the sheaf: 
(7.3.3) Ll-.= Hix(Kx), 
and we simply write LA instead of LA. The next results are obvious and well-known 
(see loc. cit.). 

Lemma 7.3.1. — (i) U ^ # ^ ( £ 7 ; Kx) {U open in X) is a sheaf and this sheaf 
coincides with L^; 

(") #A\Areg(LA)^0/ori = 0,l, 
(iii) if s is a section ofL^, then its support is open and closed in A, 
(iv) there is a canonical section in T(A;LA) which gives an isomorphism LA|Areg 

ZA . 
-<»-reg 

We denote by [A] the section given in (iv) above. 
Definition 7.3.2. — We call a section of LA on an open set U of A a Lagrangian cycle 
on U. 

Recall that Kcoh,A(̂ x) denotes the Grothendieck group of the category 
Dj?ohA(̂ ?x)- We denote by Ĵ 0h,A(<̂ x) the sheaf associated with the presheaf 
U i—> Kcoh,Anc/(̂ £/)- Then, there is a well defined Z-linear map 

(7.3.4) K : ^coh,A(^x) LA. 

This map is characterized by the property that 

(7.3.5) «(̂ A) = [A]Gr(A;LA). 

Let M G Dhoi(^x c) and tet A be a closed Lagrangian subvariety of X which contains 
Supp(^). 

Let JKQ be an Ax-lattice of M on an open set U of X. Then gr^(^o) defines 
an element [grh(^o)] G Kcoh,A(̂ x|c/)5 hence an element of T(U; <%coh,h{&x))• This 
element depends only on M, and we thus have a morphism 

Kcoh,A«oc) -> T(A; jrcoh;A(^x)). 
Composing with the map K, we obtain a map 

(7.3.6) Kcoh)A«oc) -H. r(A; LA). 
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Definition 7.3.3. — We denote by lcx(^) the image of Jl G D̂ oh A(^oc) by the 
morphism in (7.3.6) and call it the Lagrangian cycle of M. 

On the other-hand, recall (see Definition 6.3.2) that the Euler class eux(^) of ^ 
belongs to i^x(X;C^loc). Hence, the Euler class of Ji is a Lagrangian cycle sup
ported by A: 

(7.3.7) eux(^)Gr(A;Lfloc). 

The map Z —• Ĉ 'loc induces the morphism 

(7.3.8) ix: LA -> L^Ch,loc . 

The next lemma is easily checked. 

Lemma 7.3.4. — Let A be a smooth Lagrangian submanifold of X and let ̂  be a 
coherent g/£c-module, simple along A. Then eux(«5f) = Oc([A]). 

Theorem 7.3.5. — One has eux (JK) = tx ° lex (*̂ 0 • 

Proof. — By Lemma 7.3.1, it is enough to prove the result at the generic point of A. 
Hence, we may assume that A is smooth. Let x G A and let us choose a smooth 
Lagrangian submanifold Sx of X which intersects A transversally at the single point 
x. Let us also choose a simple j^oc-module I£ simple along Sx. Using (7.3.2), we find 

x{R%bm^OC(^,^)X)= I (eux(^f)-eux(^)). 
x Jx 

Let J% and M§ be six-lattices of J£ and M, respectively. We also have 

X(K^dmKOC(^^)X) = x(R^gr,(^x)(g^(^o),g^(^o))x) 

= / («([grn(J%)])-«([gr»(^b)])). 
Jx 

Clearly, we have 

(7.3.9) «(fern(̂ fo)]) = [Sx]. 
By Lemma 7.3.4, eu(JSf0) = [Sx]. Therefore, 

(7.3.10) / ([Sx]-eux(^))= f ([Sx].\cx(^)) 
Jx Jx 

for any smooth Lagrangian submanifold Sx which intersects A transversally at x. This 
completes the proof. • 

Remark 7.3.6. — The Euler class of a holonomic £^pc-module supported by a La
grangian variety A is easy to calculate, since it is enough to calculate it at generic 
points of A. Moreover, the integral in (7.3.2) is invariant by smooth (real) homotopy 
of the Lagrangian cycles lex (^ ) and lex (L) and one may deform them in order that 
they intersect transversally at the smooth part of their support. See [41, Ch. 9,§ 3] 
for a detailed study. 
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7.4. Simple holonomic modules 
When J2?0 and J*fi are simple along smooth Lagrangian manifolds, one can give 

an estimate on the microsupport of BJ6m^ioc(^i,Lo) It follows from Lemma 6.2.1 
that two simple holonomic modules along Л are locally isomorphic. 

Example 7.4.1. — Assume X = T*M for a complex manifold M and &fx = ^x(O). 
Then ^loc is a simple holonomic j^)C-module along M. 

Recall that on a complex symplectic manifold X, the symplectic form gives the 
Hamiltonian isomorphism from the cotangent bundle to the tangent bundle: 
(7.4.1) H: T*X TX, (0, v) = u{v, Я(<9)), veTX, 6 e T*X. 
For a smooth Lagrangian submanifold Л of X the isomorphism (7.4.1) induces an 
isomorphism between the normal bundle to Л in X and its cotangent bundle T*A. 

For the notion of normal cone, see e.g., [41, Def. 4.1.1]. The next result is proved 
in [44, Prop. 7.1]. 

Proposition 7.4.2. — Let X be a complex symplectic manifold and let AQ and Ai be two 
closed complex analytic isotropic subvarieties of X. Then, after identifying TX and 
T*X by (7.4.1), the normal cone C(Ao,Ai) is a complex analytic Cx -conic isotropic 
subvariety ofT*X. 

Theorem 7.4.3. — Let Л% be a simple holonomic s^xc-module along a smooth La
grangian manifold Л» (г = 0,1). Then 
(7.4.2) SS(R^m<0c(^i,J%)) С C(Ao,Ai). 

Idea of the proof of Theorem 7.^.3. — (i) By identifying RJibm ̂ \ос(<5£\, J%) with a 
sheaf supported by Ao, the estimate (7.4.2) is equivalent to the estimate 
(7.4.3) SS(R^<oc(J^ ,^o)) С CA0(AI). 

(ii) The problem being local, we may assume X = T*M, srfx = ^x(O), A0 = M, 
j£f0 = ^^loc. If Ai = Ao, Theorem 7.4.3 is immediate. Hence, we assume Л0 ф A\. 

Then there exists a non constant holomorphic function ip: M —» С such that 
Ai = {(x;u) G X ; и = grad</?(x)} 

Consider the ideal 

(7.4.4) FW = 
П 

1=1 
*5r • (hdXi - M. 

We may assume that S£\ = Wx/^w- Let u G J£\ be the image of 1 G #x and denote 
by JV the ^Ao/x-SUDm°dule of J*fi generated by u. 

To conclude, it remains to prove the inclusion 
(7.4.5) char(grfi0/K)) C C(ALS T^M). 

ASTÉRISQUE 345 



7.5. INVARIANCE BY DEFORMATION 135 

We shall not give the proof of (7.4.5) here and refer to [44]. Let us simply mention 
that the proof uses [38, Th. 6.8]. • 

Remark 7.4.4. — Consider a smooth Lagrangian submanifold A of X and denote 
by CII(QA) G #X(A;OX ) the class corresponding to the line bundle QA- TO the exact 
sequence 

1 CAX el dlog d0A 0 

one associates the maps /3 and 7: 

H1 (A; 61) ^ H1 (A; dt?A) i H2(A; C*). 

We shall denote by CJ/2 the invertible CA-algebroid associated with the cohomology 

class 7(i/?(ch(O0) € H2(A;Cl) (see (2.1.13)). 
Consider an invertible C -̂algebroid 21 on A and denote by Inv(2l) the category of in

vertible 2l-modules (see Definition 2.1.4). On the other hand, denote by Simple(A) the 
category of simple «*#x-modules along A. It can be easily deduced from Lemma 6.2.1 
that, given a DQ-algebroid gtfx>> there exist an invertible C -̂algebroid 21 and an equiv
alence of categories 

(7.4.6) Simple(A) ~ Inv(2l). 

When g/x is the canonical algebroid #x(0) (see Remark 6.1.3), it is proved in [22] 
that one has an equivalence 21 ~ CA <8>CA CA . 

7.5. Invariance by deformation 

We shall show that in the situation of Theorem 7.2.3, RMm^ioc (~ ,̂ J£) is, in some 
sense, invariant by Hamiltonian symplectomorphism. 

First, we need a lemma. 

Lemma 7.5.1. — Let M be a complex manifold, X = T*M and let M be a holo
nomic Wx-module. Assume that the projection WM • X —± M is proper (hence, finite) 
on Supp(^). Then TTM*^ is a locally free &^oc-module of finite rank. 

Proof. — (i) In the sequel, we write g/x and g/^0 instead of #x(0) and Wx, respec
tively. Since 7TM is finite on Supp(«y#), RTTM*^ is concentrated in degree 0. Let us 
prove that this sheaf is <^̂ loc-coherent. Denote by Tn the graph of the projection 7TM 
and consider the diagram 

MxX s Tn 

p 
M X. 
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Using the morphism of C -̂algebras T^M&M ^x, we may regard j£? := s*p x&/xa 
as a coherent £?MxXa-module simple along IV Then 

RNM* M L loc i M. 

We may apply Theorem 3.3.6 and we get that RTTM*^ is ^^loc-coherent. 
(ii) Let n — O\M = \dx> By Lemma 7.2.2, Y>'^XOC(J?) [n] is concentrated in degree 0 
and it follows from a similar argument as in (i) that D'A («y#) o jSf' [n] is ^ l̂oc-coherent 
and concentrated in degree 0 for any coherent AXloc M-module j£f' simple along Tn. 
Denote by D̂ ,ft)loc the duality functor over &^oc. Applying again Theorem 3.3.6, we 
get 

D'№(^oj^loc) ~ D^loc(yoc)o^°CoD^oc(M) 

~ R7TM*(RP*(D^(^)OU;/)^XD^1OC(M)). 

Since uox oD'^(if) ~ j£f' [n] for an ^Mxx-module j£f' simple along Tr and 
D^ioc(^) is concentrated in degree n, D^j1oc(7TM*^) is concentrated in degree 
zero. Therefore, 7TM*^ is a locally projective ^ l̂oc-module of finite rank. To 
conclude, note that, for x G M, any finitely generated projective ^j^^-module is 
free, by a result of [54] (see [60]). • 

Recall the situation of (3.1.9): we have three symplectic manifolds Xi (i = 1,2,3) 
and closed subsets A* of Xi x Xi+\ (i = 1,2). Assume that the A* (i = 1, 2) are closed 
subvarieties and the projection pi% is proper on P12A1 Dp^^. Then Ai o A2 is a 
closed subvariety of X\ x l 3 . Now assume that A; (i = 1, 2) is isotropic in Xi x Xf+1. 
Then Ai oA2 is isotropic in Xi x Xf by classical results (see e.g., [41, Prop. 8.3.11]). 

In the sequel, we denote by D the open unit disc in the complex line C, endowed 
with the coordinate t. We set for short 

Y :=T*D, 

and we consider the projections 

X x Y P2 Y 

pi p q 7T 

X X x D S D. 
Assume to be given a Lagrangian subvariety A c I x F satisfying 

(7.5.1) the restriction p\\ : A —» X x D is finite. 

For a G D, writing for short T*B instead of T{*a}D, we set 

Aa :=AoTa*D = pi(A fl g_1(a)), 

and this set is a Lagrangian subvariety of X. 
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We introduce the "skyscraper" ^^y -̂module 

(7.5.2) % := ̂ 4ocA<oc • (t - a). 

Theorem 7.5.2. — Let X be a complex symplectic manifold, let A be a Lagrangian sub-
variety of X x Y satisfying (7.5.1), and let V be a Lagrangian subvariety of X. Let J£ 
be a holonomic s^xxY"mo(^u^e suc^ that Supp(jSf) C A and let jV be a holonomic 
£/xc-module such that Supp(t/T) C V. Assume that the map q: An (Pi1V) —» D is 
proper. For a e B, we set JSfa := j£f o ^a and Jt := Rp2JiMmp-i^\oc(Pi1iJY,J£>). 
Then 

(i) j£fa is concentrated in degree 0 and is a holonomic Aloc-module supported by Aa, 
(ii) J£ is a coherent ^y^-mot t supported by V oA, 

L 
(hi) Fa := RHom^ioc^, -Sfa) - RT(Y; (0B/0B(t - d))®0^Jt) is an object 

o/D (̂C '̂loc)7 and Fa and F^ are isomorphic for any a, b G D. 
Proof. — (i) First note that £-a: j£f-»j£fisa monomorphism. Indeed for any 
5 G Ker(£ — a: j£f —• .if), ^xxYs C J£? is a coherent .g^pjy-module whose sup
port is involutive and of codimension > dX x Y/2, hence empty. Therefore j£ftt = 
Jgf o (s^c/s^locc • (t - a)) ~ Rpu ((̂ D/̂ ID>(* - «)) <8>̂D -Sf), and (i) follows immediately 
from the Hypothesis (7.5.1). 
(ii) We have 

Rp2*R%öm -i i at loe X 
(Pi -1 N, L) = D'A (N) O L. 

By the hypothesis, the projection A fl (V x Y) —• Y is proper. It follows from The
orem 3.2.1 that jj£ belongs to D̂ >oh(ĵ y)C) and is supported by the isotropic variety 
Ay := V o A. 
(iii) By the hypothesis, the projection TT: Ay —• ID) is proper, hence finite. It follows 
easily that Hl(^) is a holonomic j#yoc-module and W^Rir+^K) ~ 7r*Hl(^) is a 
locally free < '̂loc-module of finite rank by Lemma 7.5.1. Hence 

iT(Rr(y; (0j>/0D(t - a))®^)) ~ Y{Y',E\Jt)l(t - a)H\JK)) 

is a finite-dimensional C ,̂loc-vector space whose dimension does not depend on a G 
D. • 

We shall make a link between the hypotheses in Theorem 7.5.2 and the Hamiltonian 
deformations of a Lagrangian variety Ao-

Assume to be given a holomorphic map 

$(x, t ) :XxB->X 

such that <$(•, a): X —> X is a symplectomorphism for each a G D and is the identity 
for a = 0. Set 

T := {(x, t, $(x, £))}, the graph of $ in X x Xa x ID). 
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Consider the differential 
дФ 
dt 

: X x D TX ~ T*X. 

We make the hypothesis: 

(7.5.3) there exists / : I x D - » C such that <9$ 
at 

= Hf, 
where Hf denotes as usual the Hamiltonian vector field. In this case, we can define 
(identifying T*B with B x C) 

f := {((*, *(x, *)); (t, /(x, t)))} C X x Xa x T*B 
and r is Lagrangian. Let AQ be a Lagrangian subvariety of X. We set: 

A:= A0of. 
Then A will satisfy hypotheses (7.5.1) and Aa = $(x, a)(Ao). 
Example 7.5.3. — Let X = T*M, V = T^M and let <p: MxD -» C be a holomorphic 
function. Set y = T*B and let 

A = {(x, u, r) G X x y; (u, r) = gradx>t <̂ (x, t)}, 
Aa = {(x; iz) G X; w = grad^ </?(x, a)}. 

Consider the family of symplectomorphisms 
$(x,u,t) = (x,u + <p'x(x,t) -<p'x(x,0)). 

Then 
ao 
dt = -Hdtip and Aa = $(x,w,a)A0. 

Set Z = {(x, £) G M x B; grad^ <£>(x, i) = 0} and assume that 
the projection Z —> B is proper. 

Consider the ideals 

F = 
n 

¿=1 
Aloc X x Y. (hAxi – Y'xi) + AlocX x Y (Hat - Y't). 

•Sa = 
n 

2=1 
< C ' ( ^ - ^ ( . , a ) ) . 

Set JY = ^4oc <8> OM and if = ^XXY/^ F- Hence we have j£fa = st$c / Sa and 
fP (RHom îoc(JSf0> )̂) does not depend on a G B. 
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A, 5 
A0, 5 
Л д , 124 
£/Аа , 129 
сЬагл(̂ ), 128 
Ch =СЩ], 42 
ch(^), 100 
ca,ioc = C((Ä)), 42 
char, 111 
С"(if), 63 
C(if), 1 
C+(if), 1 
С" (if), 1 
Cb(if), 1 o, 70 x 
C+(if), 63 
ifx, 56 
^Mi 109 
dy (dimension), 42 D(A), 1 
Db(A), 1 
Dbcoh (A), 1 0jf, 46 
D^^, 51, 75 
&idcb(&?x), 58 
D^ioc^, 53 
Dbc(KM), 126 
Dbc(KM), 126 
DWCC(KM), 126 
D ( n 1 
D+(<*f), 1 
D-(if), 1 Db coh.A Ых\ 71 
DD(̂ ), 1 
D(c#oc)-Lr, 24 
Db gd,A(^c)' 71 
0xP]],46 
D,̂ n,ioĉ . 136 
DQ-module, 69 
£T*M, 109 

eu(^), 100 
euxM0, 117 
tttt(ÜX), 93 
hhx(J0, 94 
HHA(grâ x), 89 
HHA(gr^x), 89 
hhxMO, 80 
hh|r(^), 119 
jW(gra(^x)), 88 
^W(^x), 79 
Mf(^c), 89 
hhxMO, 90 
№>(ÜX), 99 
K, 1 
K(#), 76 
[Af], 76 
[A], 132 
5coh,A(̂ x), 132 
Kcoh,A(gr^x), 77 
LA, 132 
Ai o A2, 71 
[Areg], 130 
Lj,132 
lcx(^), 133 
K̂loc, 53 

Mod(A), 1 
Modaf(̂ ), 63 
Modaf(̂ ), 63 
Jtw, 119 
0* , 123 
^loc, 123 
fìjf, 60 
wjf, 61 
XaLOC 
CJx , 75 
WX x X/Y 61 
«&> 123 
u/°p, 83 
{pt}, 1 
SS, 126 
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T > n, 1 
И, 48 
L К, 49 
L 
O AX , 70 

PO - 1, 57 
thhx (F) 97 
táx, 100 
^*м, 109 
^г*м(0), 109 
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S^x-lattice, 53 
algebraically good, 65 
algebroid, 33 

DQ-, 48 
Ox-, 40 

40 
invertible ûx-, 40 
invertible 40 

almost free 
^-module, 63 

bi-differential operator, 42 
bi-invertible, 37, 38, 56 
canonical module associated with the diago

nal, 56 
Cx-conic, 126 
C-constructible, 126 
characteristic variety, 111 
Chern class, 100 
co-Hochschild class, 97 
coherent, 2 
cohomologically complete, 24 
conic 

Cx-, 126 
R+-, 126 

constructible 
C-, 126 
R-, 126 
weakly R-, 126 

convolution, 70 
DQ-algebra, 44 
DQ-algebroid, 48 
dual 

of Ax-module, 51 
of <0̂ oc-module, 53 

dualizing sheaf, 61 
Euler class 

of ̂ J^-modules, 117 
of -̂modules, 121 
of -̂modules, 100 

external product 
of DQ-algebras, 45 

of DQ-algebroids, 48 
good 

ĵ x-module, 54 
-̂modules, 119 

algebraically, 65 
module, 16 

Grothendieck group, 76 
/ï-complete, 5 
/î-separated, 5 
h-torsion, 5 
/i-completion, 5 
Hochschild class 

of an S#x-module, 80 
of an -̂module, 119 
of an -̂module, 94 

Hochschild homology 
of 0, 93 

Hochschild-Kostant-Rosenberg map, 100 
Hodge cohomology, 99 
holonomic, 130 

«ŝ Y/x-module, 126 
simple, 130 

invertible, 35 
&x-algebroid, 40 
•̂-algebroid, 40 

isomorphism 
standard, 44 

isotropic subvariety, 130 
Lagrangian cycle, 132 
Lagrangian subvariety, 130 
lattice, 53 
^A/x-lattice, 128 
locally finitely generated, 2 
locally of finite presentation, 2 
locally projective, 20 
microsupport, 126 
Mittag-Leffler condition, 3 
module 

bi-invertible, 37, 38 
coherent, 2 
invertible, 35 
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locally finitely generated, 2 
locally of finite presentation, 2 
Noetherian, 2 
pseudo-coherent, 2 
simple, 52 

modules 
over an algebroid, 34 

Noetherian, 2 
no /i-torsion, 5 
Ox-algebroid, 40 

invertible, 40 
pseudo-coherent, 2 
-̂algebroid, 40 
invertible, 40 

R+-conic, 126 
R-constructible, 126 
right orthogonal, 24 

ring 
Noetherian, 2 

section 
standard, 44 

simple 
holonomic, 130 
module, 52 

standard 
isomorphism, 44 

standard section, 44 
star product, 42 
submodule 

of j^oc-module, 53 
thick subcategory, 54 
Todd class, 100 
weakly R-constructible, 126 
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