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BOUNDARY VALUE PROBLEMS FOR THE STOKES SYSTEM IN
ARBITRARY LIPSCHITZ DOMAINS

Marius MITREA & Matthew WRIGHT

Abstract. — The goal of this work is to treat the main boundary value problems for
the Stokes system, i.e.,

(i) the Dirichlet problem with LP-data and nontangential maximal function esti-
mates,
(ii) the Neumann problem with LP-data and nontangential maximal function esti-
mates,
(iii) the Regularity problem with L?-data and nontangential maximal function esti-
mates,
(iv) the transmission problem with LP-data and nontangential maximal function
estimates,
(v) the Poisson problem with Dirichlet condition in Besov-Triebel-Lizorkin spaces,
(vi) the Poisson problem with Neumann condition in Besov-Triebel-Lizorkin spaces,

in Lipschitz domains of arbitrary topology in R, for each n > 2. Our approach relies
on boundary integral methods and yields constructive solutions to the aforementioned
problems.

Résumé (Problémes au bord pour le systéme de Stokes dans les domaines de Lipschitz quel-
conques.) — Le but de ce travail est d’étudier des problémes au bord pour le systéme
de Stokes, i.e.,

(i) le probléme de Dirichlet avec des données L? et des estimations de la fonction
maximale non tangentielle,

(ii) le probléme de Neumann avec des données LP et des estimations de la fonction
maximale non tangentielle,

(iii) le probléme de régularité avec des données LY et des estimations de la fonction
maximale non tangentielle,

(iv) le probléme de transmission avec des données L? et des estimations de la fonction
maximale non tangentielle,

(v) le probléme de Poisson avec des conditions de Dirichlet au bord dans des espaces
de Besov-Triebel-Lizorkin,

(© Astérisque 344, SMF 2012



(vi) le probléme de Poisson avec des conditions de Neumann au bord dans des espaces
de Besov-Triebel-Lizorkin,
dans des domaines lipschitziens de R™ pour tout n > 2 de topologie arbitraire. Notre
approche repose sur des méthodes d’intégrales au bord et fournit des solutions con-
structives aux problémes ci-dessus.
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CHAPTER 1

INTRODUCTION

1.1. Description of main well-posedness results

Informally speaking, the goal of the present work is to prove optimal well-posedness
results for (homogeneous and inhomogeneous) boundary-value problems for the Stokes
system in Lipschitz domains with arbitrary topology, in all space dimensions and
for all major types of boundary conditions (Dirichlet, Neumann, transmission). The
boundary data is selected from Lebesgue, Sobolev, Hardy, Besov and Triebel-Lizorkin
spaces and the smoothness of the solutions is measured accordingly.

At the core of our analysis is the transmission problem for the Stokes system, on
which we wish to elaborate first. Let Q be a Lipschitz domain in R™, n > 2, and define
Qy :=Qand Q_ = R"\ . The transmission boundary value problem for the Stokes
system studied here is of the type

A’L—L':t =V7T:t in Q:t,
diviig =0 in Q,
(1.1) (Tu) q Tiloa —-|on = g € L7 (09),
O (i, my) — pdY(i-,m_) = f € LP(89),
M(ViL), M(r) € LP(99).

Here, A is the Laplacian, p € [0,1) is a fixed parameter, and v := v, is the outward
unit normal to Q. For 1 < p < oo, LY(99) is the classical LP-based Sobolev spaces
of order one on 92, M denotes the non-tangential maximal operator (cf. (2.5)), and

(1.2) Ny, ms) i= (Viig | + AViy)T — ma i

is a family of co-normal derivatives, indexed by a parameter A € R (more detailed
definitions are given in subsequent chapters). In this way, we can simultaneously
treat various types of Neumann boundary conditions. For example, when A = 0, (1.2)
corresponds to the co-normal derivative treated in [32], whereas when A = 1, (1.2)
corresponds to the “slip condition” considered in [21].
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2 CHAPTER 1. INTRODUCTION

Two closely related boundary value problems are the Neumann problem and the
Dirichlet problem with (maximally) regular data:

A =Vr in Q, Ai=Vr in Q,

divii=0 in €, divii =01in Q,
13 () Ny 2 (R) § . o

o) (d,m) = f € LP(09), Ulon = g € L7 (09),

M(Vi), M(r) € LP(89) M(Va@), M(r) € LP(89).

From this point forth, we will refer to (R) as the Regularity problem. Fabes, Kenig,
and Verchota proved in [32] that (N) and (R) are well-posed if 2—e < p < 2+¢, where
e = €(092) > 0. Building on the work in [19], [69], Z. Shen has established in [77] a
weak maximum principle for the Dirichlet problem for the Stokes system in Lipschitz
domains in R3. Interpolating this L™ bound with the LP-estimates from [32] with p
near 2 shows that the Dirichlet problem for the Stokes system in three-dimensional
Lipschitz domains with data in L? is solvable whenever 2 — ¢ < p < oo. However, as
pointed out by P. Deuring on p. 16 of [28], “this leaves open the question of whether
these solutions may be constructed by means of the boundary layer method, and how
to deal with exterior problems and slip boundary conditions.”

With these aims in mind, let us briefly discuss the relevance of the transmission
problem itself. From a physical point of view, the transmission problem

prAtdy =Vry in Qg
diviy =0 in Qg,

(1.4) T 5 . . .
Uy lon — tUi-loa = g,
oMy — ot = f,
where
(1.5) o iy = py (Vi + A\Viiy)d — mi,

describes the flow of a viscous incompressible fluid within and around a stationary
particle occupying the domain Q; which is further embedded into a second porous
medium _. In this context, @, and 7, are the volume-averaged fluid velocity and
pressure fields of the inner flow, whereas @_ and m_ have analogous roles for the
outer flow. In the specific case when A\ = 1, this is a standard problem that arises
when studying the low Reynolds number deformation of a viscous drop immersed in
another fluid (see [73]; [71], Sec. 7.2). Here, p4 denotes the viscosity of the drop, while
u_ denotes the viscosity of the surrounding fluid. The case when § = 0 is often of
particular interest, since this introduces the physically relevant restriction that the
velocities 44 and ¥_ must match on the boundary. The reader is referred to M. Kohr
and I. Pop’s monograph [51] for a more detailed discussion in this regard and for
ample references to the engineering literature dealing with transmission problems for
the Stokes system.

If we re-denote the term pi @y in (1.4) as simply @y and let p:= p_/py denote
the ratio of the viscosities of the two fluids, we can rewrite the transmission problem
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1.1. DESCRIPTION OF MAIN WELL-POSEDNESS RESULTS 3

in the form

Aty =Vry in Qg,

diviig =0 in Qi

pitlon — U-|oq = g,
83‘(1.74,,71’4.) - 33‘(11'__,7'{'_) = f

(1.6) (T,)

Above, we have also re-denoted the term p_g as simply g, but since we will be
interested in considering these problems for general values of f and g, this is of little
consequence. Going one step further, if we replace 74 with py7y and f with p4 f in
(1.4), we can write a third form of the transmission problem,

A’l—l:i = Vﬂi in Q:t,

diviie =0 in Q4,

(.7 (Ti) :vui 5 in i_‘
it|oq — U-laa = §,

O iy, my) — pd)(@_,m_) = f.

Since the viscosities p4+ and p— are positive numbers, these changes have no effect
on the solvability of these problems, and so, throughout our work, we will consider the
form of the transmission problem that is most convenient for the particular goals we
have in mind. One advantage of these last two descriptions comes from analyzing the
limiting cases. For example, if we consider the case when u_ << p., studying (T‘})
for u = 0 yields information about the Regularity problem (R) in Q_, and studying
(Tﬁ ) for u = 0 yields information about the Neumann problem (NN) in Q. Similarly,
if py << p_, analyzing (T}) and (T) will lead to results for the Regularity problem
(R) in 4 and for the Neumann problem (N) in ©2_. Our main results are as follows
(the reader is referred to the subsequent chapters for the relevant notation employed
below):

Theorem 1.1.1. — Assume that 2 C R™, n > 2, is a bounded Lipschitz domain and
set Q4 = Q, Q_ = R"\ Q. Also, fix o € (0,1) and A € (—1,1]. Then there exists
€ = €(09) > 0 such that for each

(1.8) 2(:—;11)—5<p<2+s,

the transmission boundary value problem, concerned with finding two pairs of func-

tions (Z4,m4) in Q4 satisfying

Ay =Vry, divie =0 in Qg,
M(Viy), M(ry) € LP(0Q),
ﬁ+lan_ﬁ_|aa= g € hi(99),

0 (iiy,my) — pO (i, m_) = f € hP(0Q),

(1.9)

SOCIETE MATHEMATIQUE DE FRANCE 2012



4 CHAPTER 1. INTRODUCTION

and the decay conditions
(1.10)
i (2) O(z]>™™) as |z|]—> o0, if n>3,
i_(x) = .
—%E(w)(fan fdcr) +O(|z]™Y)  as |o| — oo, if n=2,
(1.11)
0,i-(0) = ~2@E)@)( | Fado)+0(sl™) as lal o0, 15 <,
o9
(1.12)
(@) O(|z|*™™) as |z| > o0, if n>3,
n_(z) = i
L((VEA)(@), Joq fdo) +0(a|™?) as |z| > oo, ifn=2
has a unique solution. In addition, there exists C' > 0 such that

(1.13) 1M (Vi) L a0) + 1M (71)l|zr60) < Cllgllnraq) + Cllfllke o0)-

In the previous theorem as well as in the following results, the Hardy space h?(99),
and its regular version h%(99), are as defined in (2.97).

Theorem 1.1.2. — Assume that 2 C R™, n > 2, is a bounded Lipschitz domain. Then
there exists € = ¢(692) > 0 such that for each
(1.14) 2—-e<p<oo if n=2,3,
(1.15) 2-e<p< D yc if n>4,
the interior Dirichlet boundary value problem
Ad=Vnr, divi=0 in
(1.16) M(@) € LP(09),
@ = feLr (89),
i, =7ie1z, (o9)

has a solution, which is unique modulo adding functions which are locally constant
in Q to the pressure term. In addition, there exists a finite constant C' > 0 such that

(1.17) 1M (@)]| Lo 09 < CllfllLr(a9)-

Similar results are valid for the exterior Dirichlet problem, formulated much as
(1.16) with the additional decay conditions

. O(|z|> ™) as |z| = 00, if n>3,
w1s) oy = | Ol s I |
E(zx)A+0(Q1) as |z| — o0, if n=2,
1-n — if >
9;E(z)A + O(|z|~2) as |z| — oo, if n=2,
1-n : >
(120) wwy = { Olel ™ aslel oo, it >3
(VEa(z), A) + O(|z|72) as |z| — o0, if n =2,
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1.1. DESCRIPTION OF MAIN WELL-POSEDNESS RESULTS 5

for some a priori given constant A e R2. Also, the standard nontangential maximal
operator in (1.17) should be replaced by its truncated version.

Here we wish to mention that, while this work was in its final stages of preparation,
we have learned that the case of the interior Dirichlet problem in which the Lipschitz
domain 2 C R"™ has a connected boundary and n > 4 has also been treated by J.
Kilty in [50], using a different approach. The limiting case p = oo has been dealt
with by Z. Shen in [77] for Lipschitz domains in R3. In [77], Shen also establishes the
well-posedness of the Dirichlet problem in three-dimensional Lipschitz domains with
connected boundary for data in the Holder space C*(99), with 0 < a < a,. Here we
give another proof of this result, via integral operators. In addition, we also treat the
case of the Dirichlet problem for the Stokes system in the case in which the data is
from BMO and the solution satisfies Carleson measure estimates. See Theorem 9.2.3
and Theorem 9.2.4 for details.

Our next result concerns the so-called Regularity problem, and is a version of
the Dirichlet problem (1.16) corresponding to the case when the boundary data is
maximally regular (i.e., belonging to boundary Hardy and Sobolev spaces of order
one).

Theorem 1.1.3. — Let Q C R™, n > 2, be a bounded Lipschitz domain. Then there
exists € = £(0Q) > 0 such that for each p as in (1.8), the interior Regularity boundary
value problem

Ai=Vr, divi=0 in Q,
(1.21) M(Vi), M(m) € LP(09),

uBQ fe 1,V+(aQ)7

has a solution which is unique modulo adding functions which are locally constant in
2 to the pressure.
In addition, there exists a finite constant C' > 0 such that

(1.22) IM (V)| e o0 + 1M () Lo 60y < Cll fllnz a0)-
Similar results are valid for the exterior Regularity problem, formulated much as
(1.21) with the additional decay conditions (1.18)-(1.20).

Theorem 1.1.4. — Let Q@ C R™, n > 2, be a bounded Lipschitz domain and fix A €
(—1,1]. Then there exists € = £(9) > 0 such that for each p as in (1.8) the interior
Neumann boundary value problem

Ai=Vr, divi=0 in Q,
(1.23) M(Vi), M(m) € LP(09),

i, m) = f € hP(89),

has a solution if and only if

(1.24) fem(-31+K3: B (990) — By (09)).

SOCIETE MATHEMATIQUE DE FRANCE 2012



6 CHAPTER 1. INTRODUCTION

Moreover, this solution is unique modulo adding to the velocity field functions from
UA (). In addition, there exists a finite constant C' > 0 such that

(1.25) 1M (V)| Lra0) + | M (7))l Lra0) < C”ﬂ|hv(an)-

Finally, a similar result holds for the exterior domain R™ \ Q after including the
decay conditions

O(|z>™") as |g| 2 oo, if n>3,

(1.26) d(z) = { E(m)(fan fdo') +O0(|z|7Y) as |z| = o0, f n=2,

(1.27) 5ii(z) = (8, E) (=) ( / fdo) +0(zl™) as |o| 00, 1<j<n,
oN
O(|z|*™™) as |z| =00, if n>3,
((-VEA) @), fpq fdo) +O(z?) as |o] >0, if n=2.

More precisely, a solution to the exterior problem satisfying the above decay con-
ditions exists if and only if

(1.29) fe Im(§I+K; B, (092) — hgi(an)),

(1.28) m(z) = {

and solutions are unique modulo adding to the velocity field functions from ¥*(R™\Q).

Our approach is based on boundary integral methods, and for each of the prob-
lems listed in Theorems 1.1.1-1.1.4, we are able to represent the solution in terms
of hydrostatic layer potentials. In this strategy, one is led to study the invertibility
properties of certain principal-value singular integral operators on Lipschitz surfaces.
These operators are of Calderéon-Zygmund type, so their boundedness on Lebesgue
and Hardy type spaces follows from known results. The key ingredient in proving the
invertibility of these operators is obtaining bounds from below. We accomplish this
by devising some new Rellich type identities for the Stokes system.

The most physically relevant Neumann-type boundary condition is the so-called
“slip condition,” corresponding to (1.2) with A = 1. Interestingly, it is precisely this
boundary condition which is most challenging from the point of view of our analyti-
cal treatment. This is because the usefulness of the Rellich type identities alluded to
above is substantially diminished when A = 1, due to the fact that the quadratic en-
ergy form associated with (1.2) when A = 1 is only semi-positive definite (as opposed
to being strictly positive definite when || < 1). This difficulty was first encountered
by Dahlberg, Fabes, Kenig and Verchota in their work on the L? Dirichlet and Neu-
mann problems for the Stokes and Lamé systems in [21], [32]. As a remedy, these
authors have developed some auxiliary estimates, which they termed boundary Korn
inequalities, which were specifically designed to compensate for the lack of coercive-
ness of the Rellich estimates.

In the case of the transmission boundary value problem for the Stokes system
considered here, these Korn inequalities fail to be as useful as they have been in
the aforementioned works. This has to do with the very nature of the transmission
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1.1. DESCRIPTION OF MAIN WELL-POSEDNESS RESULTS 7

problem in which two (pairs) of solutions (@, ;) and (d_,7_), which interact across
the Lipschitz interface, are considered simultaneously. In this scenario, deriving Korn
inequalities for each of them separately is of little value since, in turn, these inequalities
cannot be further combined algebraically in order to relate them to the transmission
boundary data, i.e.,

(1.30) Uylon — @-loo and 8)(d4,my) — pd)(d-, 7).

The technical innovation we develop in order to address this significant issue is to
produce some more elaborate Rellich type identities which, by design, have Korn-like
identities built directly into them. The upshot of this is that working with identities
in place of estimates is amenable to algebraic manipulations which can then fully take
advantage of the transmission-like interaction between (@, 74 ) and (d—,7_).

All the above considerations are relevant in the treatment of boundary value prob-
lems with L? data. As already suggested above, the central role in our treatment
is played by the transmission problem. Subsequently, we explain how the Dirich-
let/Regularity and Neumann problems can be viewed as limiting cases of this. To
obtain well-posedness results for LP-data with p # 2, following the seminal work of
Dahlberg-Kenig [18], [19], we rely on atomic estimates in dimensions n = 2,3, and
on a recent remarkable advance of Z. Shen [78] in dimensions n > 4. Shen’s original
scheme is to start with the L? theory, then prove LP results for p > 2 (the critical
p corresponding to the Sobolev exponent in the embedding L?(82) — LP(99)) us-
ing certain reverse Holder estimates, and finally interpolate. This cannot be directly
applied in our setting since the natural range of p’s for which the LP-transmission
problem is solvable is a subset of (1,2]. We overcome this difficulty by introducing
and solving a suitable dual transmission problem.

As is well-known, in the case of the Dirichlet boundary value problem for the Stokes
system, i.e. for

(1.31) Ai=Vm, divi=0 in Q, @ = £
the boundary datum f satisfies the necessary compatibility condition

(1.32) /m(u,f) do =0

whenever 2 C R" is a bounded Lipschitz domain. This creates the following technical
difficulty when addressing the issue of well-posedness of (1.31) for a bounded Lipschitz
domain  C R™ when the boundary datum f belongs to the (regular) Hardy space
hLP(89), 2=1 < p < 1. The latter is the ¢P-span of certain building blocks (satisfying
suitable support, size, and smoothness conditions), called regular atoms. Hence, it
is natural to seek a solution for (1.31) when f = Y.; Ajaj with (A;); € ¢P and the
a;’s regular atoms, as @ = ), A;i;, where u; solves (1.31) for the boundary datum
a;. However, even though the original datum f satisfies the necessary compatibility
condition (1.32), there is no guarantee that each individual atom a; does. We overcome
this issue by first addressing the solvability of (1.31) in the case when Q C R" is
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8 CHAPTER 1. INTRODUCTION

the unbounded domain lying above the graph of a (real-valued) Lipschitz function.
In this setting, condition (1.32) no longer plays a role. We then develop appropriate
localization techniques (carried out at the level of singular integral operators) in order
to eventually handle the case of bounded Lipschitz domains. This idea influences our
overall strategy in dealing with all types of boundary conditions for the Stokes system
treated in our work.

Having developed a satisfactory theory for the Stokes system with L? (and atomic)
data and nontangential maximal function estimates, we next consider the inhomoge-
neous Stokes problem on Besov-Triebel-Lizorkin spaces in Lipschitz domains. The
key idea is to view the former results as limiting/critical cases of the latter, and use
interpolation. There are, nonetheless, significant difficulties in carrying out this pro-
gram, a fact frequently noted in the literature. For example, discussing the status of
the Poisson problem for the Stokes system in Lipschitz domains, P. Deuring writes
on p. 3 of [27]: “We see that for solutions of the Poisson problem [for the Dirichlet
Laplacian] on Lipschitz domains, a rather complete LP-theory is available, whereas for
the Stokes system, only a L?-theory could be developed. This, admittedly, was difficult
enough, but this still raises the question what to expect if p # 2.”

A related open problem, posed on p. 195 of [26], asks whether for an arbitrary
bounded Lipschitz domain 2 there holds

Ai— V= f e L3(Q)
(1.33) divi=0 in Q = i € W322(Q).
e Wy(Q), ™ e L3(Q)
A similar issue is raised in the case of Neumann boundary conditions. In the same
setting, Deuring also asks if
Aiu=Vr in Q
(1.34) divi=0 in Q p=deWY2%Q).
M (@) € L%(892)
Here we provide answers to the above questions and extend previous work in the
literature by proving Theorem 1.1.5 and Theorem 1.1.6 below. In order to facilitate
stating them, we introduce some notation. Let B?9(R") and F29(R™) denote the

standard Besov and Triebel-Lizorkin scales of spaces in R™ (cf. § 11.1 for more details).
Given a Lipschitz domain 2 C R™ and 0 < p,q < o0, a € R, we set

B24(Q) := {u € 9'(Q) : Iv € BRI(R") with v|q = u},
BY4(Q) := {u € B2Y(R™) : suppu C 0},

with similar definitions for F2¢(2) and F'¢(Q2). Also, BY4(0R) stands for the Besov
class on the Lipschitz manifold 92, obtained by transporting (via a partition of unity
and pull-back) the standard scale B»9(R™~!). (In general, we make no notational
distinction between these smoothness spaces of scalar-valued functions and their nat-
ural counterparts for vector-valued functions.) Finally, for £ > 0 and n > 2 let us

(1.35)

ASTERISQUE 344



1.1. DESCRIPTION OF MAIN WELL-POSEDNESS RESULTS 9
introduce a two dimensional region &, . in the (s,1/p)-plane, which depends on the
dimension as follows:

1
4
\ £ (1$%+€)

>

T

&

1
slope 11 slope 3 O"”M (11+4¢)  slope ;=5
: , (l»ﬂ':f—_lﬁ +s)

1+e :

1 s

) (1, 3-¢) Jasi-o

_________ Nslope 1L
[¢ %4_5 1 s s

slope ﬁ
FIGURE 1. Rpcforn=2/ Rpecforn=3/ Rn, for n > 4.

The theorem below deals with the case of Dirichlet boundary conditions.

Theorem 1.1.5. — Let Q be a bounded Lipschitz domain in R”, n > 2, and assume
that %—71 <p<o0,0<gqg<oo(n— 1)(;—, - 1)+ < 8 < 1. Consider the following
boundary value problem

Ai-Vr=fe Bff%_z(ﬂ), divi=ge Bff%_l(ﬂ),

1.36 -
(1.36) U E Bffl (Q), me Bf_’fl_l(ﬂ), Tri = h € B»9(09Q),

subject to the (necessary) compatibility condition

(1.37) /69(1/, h)ydo = /Qg(x) dz,

for every component & of Q.

Then there exists € = £() € (0, 1] such that (1.36) is well-posed (with uniqueness
modulo locally constant functions in  for the pressure), if the pair (s,p) belongs to
the region %, ¢, depicted above.

Furthermore, the solution has an integral representation formula in terms of hy-
drostatic layer potential operators and satisfies natural estimates. Concretely, there
exists a finite, positive constant C' = C(, p, g, s,n) such that
(1.38)

”ﬁ”B:_’:%(Q) +lllsre,  (@/ra, < C”f”B:’f%_z(ﬂ) +Cligliprs

i3

@t ClIk|| gz a0-

pY
14

Moreover, analogous well-posedness results hold on the Triebel-Lizorkin scale, i.e.,
for the problem

AG-Vr=fe Y, (), divi=geF, (@),

(1.39) . L.
S Fff% Q), we F:’f%_l(ﬂ), Tr @ = g € BPP(09),

SOCIETE MATHEMATIQUE DE FRANCE 2012



10 CHAPTER 1. INTRODUCTION

where the data is, once again, made subject to (1.37). This time, in addition to the
previous conditions imposed on the indices p, g, it is also assumed that p, q < oco.

In the class of Lipschitz domains, we conjecture that this result is sharp. When
90 € C*, one may take ¢ = 1. This follows by combining the results in [30] with
those of the current work. Theorem 1.1.5 refines a long list of results in the literature.
When 909 is sufficiently smooth, various cases (typically corresponding to Sobolev
spaces with an integer amount of smoothness) have been dealt with by L. Cattabriga
[12], R. Temam [84], Y. Giga [37], W. Varnhorn [88], R. Dautray and J.-L. Lions
[23], among others, when 9N is (at least of) class C2. This has been subsequently
extended by C. Amrouche and V. Girault [4] to the case when Q2 € C*! and, further,
by G.P. Galdi, C.G. Simader, and H. Sohr [35] when 89 is Lipschitz with a small
Lipschitz constant.

There is also a wealth of results related to Theorem 1.1.5 in the case when Q is
a polygonal domain in R?, or a polyhedral domain in R3. A extended account of
this field of research can be found in V.A. Kozlov, V.G. Maz’ya, and J. Rossmann’s
monograph [54], which also contains pertinent references to earlier work. Here we also
wish to mention the recent work by V. Maz’ya and J. Rossmann [61]. Comparison
between the regularity results obtained in [54], [61] and our Theorem 1.1.5 shows that
the latter is optimal, at least if n = 2, 3.

In the case of the inhomogeneous Neumann problem we shall prove the following.

Theorem 1.1.6. — Let Q) be a bounded Lipschitz domain in R", n > 2, with connected
complement, and fix "T—l <p<o00,0<qg< o0, and (n— 1)(% - 1)+ < s < 1. Then
there exists € = €(2) € (0, 1] such that the Poisson problem for the Stokes system
with Neumann boundary condition

Ad— Vr = ﬂg fe Bry o), divi=0ing,

(1.40) -
@e BV, (Q), meBY, [(Q), 8)(@m)y=nhe By (89),

has a unique solution (modulo adding to the velocity functions from ¥*(Q)) if the
pair s, p belongs to the region &, . described before, and the data (f,h) satisfy the
necessary compatibility condition

(1.41) /ﬂ(f,qm dx=/ (h,¥)do, Vi e TNQ).

an
In addition, the solution (normalized so that [, (i@(z),%(z))dz = 0 for every ¢ €
U2 (Q)) satisfies the estimate

1
P

(1.42) "ﬁ“B:’fl @ + ||7f||B:’f @S C'llfl|1.rszl_2 @ +ClklBrs a0)-
P p 7

Moreover, an analogous well-posedness result holds for the problem
Ad-Vr=f| , FeFrs (@, divi=0ing,

1.43 -
(1.43) @e FP9(Q), meFPY (), 8)id,n)y=he BP?(8Q),
stz st+5-1 f s
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1.2. CONSEQUENCES OF THE SOLVABILITY OF THE INHOMOGENEOUS PROBLEM 11

assuming that p,q < oo.

Finally, if the condition that the complement of 2 is connected is dropped (i.e., 2 C
R™ is an arbitrary Lipschitz domains), then problems (1.40), (1.43) have solutions for
data (f, h) belonging to a finite co-dimensional subspace of B> /p—2,0() & B (09)

and FP /p_2’0(9) @ BY'P, (09), respectively, and uniqueness holds up to a finite di-

mensional space.

Above, 9) (i, ) 7 should be thought of as a re-normalization of the conormal derivative

(1.2) relative to f. See Theorem 10.6.3 and the discussion preceding it for a more
precise formulation. Here we only wish to point out that when 92 € C* and A = 1,
corresponding to the so-called slip boundary condition, one can take € = 1.

Theorems 1.1.5-1.1.6 are proved by interpolating the end-point cases addressed
in Theorems 1.1.2-1.1.4. This is done at the level of boundary layer potentials and
solutions for the problems described in Theorems 1.1.5-1.1.6 are produced in a con-
structive manner, via integral representation formulas.

1.2. Consequences of the solvability of the inhomogeneous problem

Here we record several relevant consequences of the well-posedness results from
Theorems 1.1.5-1.1.6.

Denote by Gp the Green operator for the inhomogeneous problem for the incom-
pressible Stokes system with Dirichlet boundary conditions. That is, formally, if (i, 7)
solve

(1.44) AG—-Vr=fin Q divi=0 in Q, TrZ=0 on 89,
then
(1.45) Gpf:=1.

Corollary 1.2.1. — 1If ) is a bounded, Lipschitz domain in R™, n > 2, then there exists
some small number € = ¢(2) > 0 such the operators

(1.46) Gp : B24(Q) — BZ’J‘:Z(Q),

(1.47) Gp : FP(Q) — FE3,(Q),

are well-defined and bounded whenever 0 < ¢ < oo and the point with coordinates
(e —1/p+2,1/p) belongs to the region R, . in Fig. 1.

The two-dimensional region of points with coordinates (e, 1/p) for which (a—1/p+
2,1/p) € R is depicted below:
Thus, in the setting of a bounded Lipschitz domains Q C R3, the operators

(1.48) V2Gp : BRY(Q2) — BRY(Q),
(1.49) V2Gp : F2U(Q) — F29(Q),

are bounded whenever 0 < ¢ < oo and the point with coordinates (a, 1/p) belongs to
the pentagonal region from Fig. 2.
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12 CHAPTER 1. INTRODUCTION

(01+5) 4

FIGURE 2.

It is interesting to specialize this result to the Triebel-Lizorkin scale with ¢ = 2
and o = 0, in which case one obtains that

V2Gp : k() — hP() boundedly,
(1.50) if @ c R3 is a bounded Lipschitz domain
and 1 — e < p < 1 for some € = ¢(2) > 0.

Corresponding to the two-dimensional case we have

V2Gp : h?(Q) — hP(2) boundedly,
(1.51) if @ C R? is a bounded Lipschitz domain
and 2 — e < p < 1 for some ¢ = ¢(£2) > 0.

For the Laplace operator, similar results (valid in all space dimensions) have been
established in [59], [60]. This answered in the affirmative a conjecture made by D.-
C. Chang, S. Krantz, and E. Stein (cf. [14], [13]) regarding the regularity of the
harmonic Green potentials on Hardy spaces in Lipschitz domains. Here we prove the
analogue of the Chang-Krantz-Stein conjecture for the Stokes system for arbitrary
Lipschitz domains in the three dimensional setting. Analogous results are valid for
Gy, the Green operator associated with the inhomogeneous Stokes problem with
Neumann boundary conditions.

When specialized to the case a = —1 and g = 2, the operator (1.47) becomes

Gp : W=1P(Q) — W1P(Q) boundedly,

if 2% —e<p< ;2 +¢ for some e =€() >0,

(1.52)

where W*P(Q) stands for the usual LP-based Sobolev space of smoothness s in €.
This follows from a brief inspection of the region in Fig. 1. As a corollary, for every
bounded Lipschitz domain © C R? there exists p = p(2) > 3 such that the operator
in (1.52) is well-defined and bounded. A similar result is valid for G . In the case of
Gp, a result of this type has first been obtained by R. Brown and Z. Shen in [9] (at
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1.2. CONSEQUENCES OF THE SOLVABILITY OF THE INHOMOGENEOUS PROBLEM 13

least if OQ is connected and for Dirichlet boundary conditions). When Q C R? is a
bounded Lipschitz domain, the same type of conclusion holds for some p = p(Q2) > 4.
Let us also single out the following low-dimensional result:

Corollary 1.2.2. — Assume that § is either a convex polygon in R? or a convex poly-
hedron in R3. Then
(1.53) Gp : LP(Q) — W?P(Q) boundedly, whenever 1 < p < 2.

Indeed, this follows by interpolating between the case % — & < p < 1, contained in

(1.51), and the case p = 2, which has been dealt with by R.B. Kellogg and J.E. Os-
born in [49], when @ C R? is a convex polygon, and by M. Dauge in [22] and by
V.A. Kozlov, V.G. Maz’ya, and C. Schwab in [55] when Q2 C R3 is a convex poly-
hedron. Theorem 1.2.2 should be compared with the result implied by the work of
V. Kozlov and V. Maz’ya in [56], to the effect that

VGp : L) — L*°(Q) boundedly, Vq > 2,

(1.54) . . .
provided Q C R? is a bounded convex domain.

This portion of our work can be regarded as the natural analogue of the treatment
of D. Jerison and C. Kenig of the inhomogeneous Dirichlet problem for the Laplacian
in Sobolev-Besov spaces in Lipschitz domains from [43]. Here, we are able to extend
this to the case of the Stokes system in a Lipschitz domain €2, remove the assumption
that 99 is connected, handle boundary conditions of Neumann type, and work of
more general scales of spaces (including non locally convex Besov and Triebel-Lizorkin
spaces).

We continue by recording the following significant consequence of Theorem 1.1.5.
Related versions for smooth domains have been proved by C. Amrouche and V. Girault
in [4], [5], and by V. Girault and P.-A. Raviart in [38]. To state it, introduce F£'2(2) :=
{ulq : u € F29(R™) suppu C Q}, plus a similar definition for B%2(2).

Corollary 1.2.3. — For every bounded, Lipschitz domain Q in R™, n > 2, there exists
some small number £ = ¢(2) > 0 such that

FPY(QR™) = {7 € FPYUQ;R™) : divi = 0}

(1.55) ®{d € FDUQR™) : Al € VFPI,(Q)},
BRY(Q;R™) = {7 € B2Y(QR™) : divg =0}
(1.56) ®{i € B24(QR™) : Ad e VBLY,(Q)},

where the direct sums are topological, whenever the point with coordinates (a —
1/p + 2,1/p) belongs to the region X, . in Fig. 1 and 0 < ¢ < oo. In particular,
corresponding to the case when o =1 in (1.55),

W, P(R™) = {7 € WS P(R") : divd = 0}
(1.57) &{d € W, P(R") : A € VLP(Q)},

provided ;L—ZJ—':T—E<p< e
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Indeed, if @ € F2:4(%;R™) is arbitrary and the pair (17,', ™) € FRI(QR™) x FY ’ql ()
solves (1.39) for f := Aw € FP'9(Q;R™), §:= 0, and k := 0, then @ = @ + (& — @)
is the desired decomposition. That sum in the right-hand side of (1.55) is direct
is immediate from the uniqueness statement for (1.39). This proves (1.55), and the
argument for (1.56) is similar. Finally, (1.57) is a direct consequence of (1.55).

We next discuss the analogue of the off-diagonal estimates for the Green oper-

ator associated with the Dirichlet Laplacian in Lipschitz domains, established by
B.E.J. Dahlberg in [17].

Corollary 1.2.4. — Let Q C R3 be a bounded Lipschitz domain. Then there exists
€ = ¢(2) > 0 with the property that if

(1.58) l<p<j+e and [=1-3

el

then the operator
(1.59) VGp : LP(Q) — W{(Q)

is well-defined and bounded.
A similar result holds in the case when Q is a bounded Lipschitz domain in R2,
granted that (1.58) is replaced by 1 <p < 5 +cand ; = L

1_1
p 2

To justify this, consider an arbitrary vector field f € LP(Q) and, by taking the
convolution of f (extended by zero to R3) with the fundamental solution for the
Stokes system in the free space, construct two functions @ € W2 (Q2) and p € WF(Q2)
such that Aw — Vp = f, dived = 0 in 2, and ”’lI)‘"W;(Q) + ||p|[W1p(Q) < C”f”Lp(Q).
Then pr = W — 4, where the pair (@, 7) solves Ad — V7 = 0, divé = 0 in Q,
and Tr @ = Tr @ on AN. Note that the compatibility condition (1.37) is automatically
satisfied in this case. Also, @ € W} (Q2) — W(Q) if 1/g = 1/p—1/3 and, accordingly,
Trw € BY? 1/q(0€2). Then Theorem 1.1.5 implies that @ € Wi (Q), = € LI(Q), granted
that the point with coordinates (1 — 1/q,q) belongs to the pentagonal region ®s3 .
described in Fig 1 (central part). A simple analysis shows that this is always the case

whenever m < ¢ < 1=, for some ¢ = ¢(2) > 0. The bottom line is that
(1.60) feL"(Q)=>GDfeW1"(Q) if 2-<d4<t =i 3%
Next, (1.47) with & = 0, ¢ = 2, and classical embeddings give
(1.61) VGp: FP2(Q) — FP Q) if 3. <p<l, E=1-1
Interpolating by the complex method between (1.60) and (1.61) then yields (1.59)
in full, as long as % = % - § and 1 < ¢ < =, a condition implied by (1.58). Finally,

the reasoning for the two-dimensional case 1s 51m11ar

We conclude with a discussion pertaining to the regularity properties of solutions
of elliptic systems in domains with conical singularities. Consider the inhomogeneous
Dirichlet problem

(1.62) L(Dyu=f in Q, with zero boundary conditions,
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1.2. CONSEQUENCES OF THE SOLVABILITY OF THE INHOMOGENEOUS PROBLEM 15

where L(D) is a homogeneous, strongly elliptic, constant coefficient, formally self-
adjoint system of order 2m, m € N, and 2 C R" is a domain with a conical point at
the origin O € R™. Assume that f vanishes near O and u is the variational solution
of (1.62). As is well-known, u admits a power-logarithmic asymptotic expansion near
0. Somewhat more precisely, near the origin u behaves like a linear combination of
terms of the form

log |z|)%—*
(163) ol 3 CE e e (),
0<e<l; J

where the exponents A\; € C are the eigenvalues of a certain polynomial operator
pencil (on a domain that is cut out of the unit sphere by the cone with vertex at
O which is tangent to the boundary of ), and the functions wy ; are generalized
eigenvectors corresponding to A;. The operator pencil arises when taking the Mellin
transform of L(D) and of the operators intervening in the boundary conditions along
this tangent cone.

Specific information about the nature of the eigenvalues A; yields, in turn, regu-
larity properties for the solution u. For example,

. n

In [52], V. Kozlov and V. Maz’ya have shown that, in the above setting,
(1.65) Red; >m —(n—1)/2.

As a consequence of (1.64)-(1.65), we then have
2 +e
k—-m+(n-1)/2

(1.66) u € W} near O, whenever p <

where € = ¢(Q2) > 0. Moreover, in [53], V. Kozlov and V. Maz’ya have also shown
that (1.65) and, hence, (1.66), is sharp in the case when 2m > n.

When m =1, i.e., when L(D) is a second order operator, the above analysis gives

that
2n
(1.67) u € W} near O, whenever p < ] +e.

While, strictly speaking, the Stokes system does not fit into this general narrative
since it is not elliptic in the sense of I.G. Petrovskii, the same circle of ideas can
be adapted to this somewhat nonstandard case. See, e.g., the work of V.A. Kozlov,
V.G. Maz’ya, and C. Schwab in [55] as well as the monograph [54] for the lower
dimensional case (n = 2,3).

The relevance of the above observation is that % is also the critical integrability
exponent we have identified in (1.52). Thus, our results are consistent with the pre-
dictions of the regularity theory for domains with conical singularities, and are sharp
when n = 2,3. While it is not entirely clear whether that is also true when n > 4, we
conjecture that this is indeed the case.
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CHAPTER 2

SMOOTHNESS SPACES AND LIPSCHITZ DOMAINS

For a brief review of the Besov and Triebel-Lizorkin scales in the entire Euclidean
space R"™, the reader is referred to § 11.1.

2.1. Graph Lipschitz domains

We start with a few basic definitions. A graph Lipschitz domain 2 C R™ is simply
the domain lying above the graph of a real-valued Lipschitz function. That is,

Q:={z=(2/,z,) ER"I xR: z,, > p(z')}, where 2’ = (z1,...,Zn-1),

2.1
(2.1) ¢ : R*~1 — R is Lipschitz, i.e., Vi exists and belongs to L= (R"~1).

We denote by do the surface measure on 0f2, and by v the outward unit normal
defined a.e. (with respect to do) on 9. Hereafter, we will define Q4 by

(2.2) Q=0 and Q_:=R"\Q.
Next, we define the cones

(2:3) Iy o= {y=(,9:) €RY} : [y'| < LRy},

and for any x € R", define

(2.4) If(z):=z+T.

In order to introduce the classical non-tangential maximal operator M, fix some
k = k() with k71 > ||Vp||L=~. Then it can be shown that I't(z) C Q4 for all
z € 09). When the value of « is understood, we will often drop it from the notation
and write I'f (z) = T'*(z). Now, for an arbitrary u : Q1 — R, we set

(2.5) M(u)(z) :=sup {|u(y)| : y € T*(2)}, € Q.

These conical regions also play a fundamental role in defining non-tangential re-
strictions to the boundary. Again for u defined in Q., set

(2.6) x) = 11}2 u(y), for a.e. z € ON.

ul |
o yer*(z)
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18 CHAPTER 2. SMOOTHNESS SPACES AND LIPSCHITZ DOMAINS

Similarly, if {-,-) denotes the canonical inner product in R™ (although, later, the
same symbol is going to be occasionally used for the pairing between a space and its
dual), we set

(2.7) dyu(z) := <V(.’L‘), lim (Vu)(y)>, for a.e. z € O9.
yer*(z)
By L?(99) we denote the Lebesgue space of measurable, p-th power integrable

functions on 9%, with respect to the surface measure do. Next, consider the first-
order tangential derivative operators 9., , acting on a compactly supported function

K
1 of class C! in a neighborhood of 99 }?)y
(2.8) Ortp = v;(On8)| -1 (@9)| . Gk=1,..,n.

For every f € Li,_(09), define the functional 8,,, f by setting

loc

(2.9 0, sCHEY 20 [ £ (0, 0)don

Thus, if f € L, (0Q) has 8.,,f € Lj,.(8Q), the following integration by parts
formula holds:

(2.10) [ $@uwrdo= [ @, nvds, vieCimn.
on N
For each p € (1,00), we can then define the Sobolev type space
(211)  I2(09) = {f € IP(09) : B,,f € IP(0D), jk=1,... ,n}.

For each 1 < p < o0, this becomes a Banach space when equipped with the natural
norm

(2.12) I £l o) = IIfllLr(o0) + > 18, fllLr(on)-
7,k=1
If we set
— p
(2.13) VianS = (Vka,kj f)lstn’ V f € LE(69),

then for each function f € L} (99)
(2.14) a.,—jkf = Vj(vtanf)k - uk(Vtanf),-, j, k = 1, R (D)

o-a.e. on 0€2. In particular,

n n—1
(2.15) | Veanfllzoon) & Y 10, flleon) & Y 10r, fllzeany,  VF € LE(OD).

j,k=1 j=1
Furthermore, if 1 < p,p’ < oo are such that 1/p+ 1/p’ =1 then
(2.16) [@unrgdo= [ £@n,0)d0
o0 oN
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2.1. GRAPH LIPSCHITZ DOMAINS 19

for every f € LY(09), g € L’l’/ (092). In general, we shall call a first-order differential
operator tangential if it can be written as a (variable coefficient) linear combination
of the operators 0, .

If Q c R™ is the domain lying above the graph of a Lipschitz function ¢ : R*~1 — R
then, for each p € (1, 00),

(2.17) FeLi(89) < f(,v()) € LIR"),

with equivalence of norms. As a corollary, we obtain from this that for any bounded
Lipschitz domain 2 in R™,

2.18 Lip(0f2) — LY (8Q) and C*=(R" — L?(89Q) densely
1 50 1

whenever 1 < p < oo.
For each 1 < p < oo, L7(89) is a Banach space, densely embedded into L?(992).
Furthermore, since the mapping

(n—1)n
2

(219) 7 IRO®) — [L7(09)] o Jf = (£ O diinsn)

is bounded both from above and below, its image is closed. Now, L} (8) is isomorphic
to the latter space and, hence, is reflexive. Thus, if for each 1 < p < oo, we set

(2.20) 17,09) = (L (02))", 1/p+1/ =1,

it follows that

(2.21) (£2,02)) =18 (09), 1p+1/p' =1.
We can now prove the following result.

Corollary 2.1.1. — Let ©Q be a Lipschitz domain in R?, 1 < p < oo and fix j,k €
{1,...,n}. Then the operator

(2.22) 8, : LE(89) — LP(9Q)

J

extends in a (unique) compatible fashion to a bounded, linear mapping

(2.23) Oy, + LP(0Q) — L 1(09).

Proof. — For every f € LP(9RQ), set

(224) @Onufig) = [ fon0dn, VoI 00),

where 1/p + 1/p’ = 1. Then the desired conclusion follows from the boundary inte-

gration by parts formula (2.16). O
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Corollary 2.1.2. — Assume that Q is a Lipschitz domain in R™ and that 1 < p < co.
Then for every f € L” ;(09) there exist go, g;x € LP(89), 1 < j, k < n (not necessarily
unique) with the property that

n
(2.25) f=g0+ Y Orpgix in LP,(89).
Jrk=1
Furthermore,
n
(2.26) I fllze (aq) ~ inf [”.‘JOHLP(BQ) + > ||gjk|lLv(aQ)],
J,k=1

where the infimum is taken over all representations of f as in (2.25).

Proof. — Let p’ € (1,00) be such that 1/p+1/p’ = 1. If f € L?,(09) is regarded
as a functional f : L’l” (092) — R, then foJ ! :ImJ — R is well-defined, linear and
bounded (where J is as in (2.19) with p’ in place of p). At this stage, the Hahn-Banach

Theorem in conjunction with Riesz’s Representation Theorem ensure the existence of
90, 95k € LP(09) such that (2.25)-(2.26) hold. a

Let us also note that, as a simple application of the one of the standard conse-
quences of the Hahn-Banach theorem,

(2.27) LP(80) — L? ,(8) densely, for every p € (1,00).

For an unbounded Lipschitz domain Q C R", the homogeneous LP-Sobolev space
of order one is defined as

(2.28) L2(0Q) == {f € LY, (89) : Oy, f € LP(8Q), 1 < j,k < n}.

loc

Clearly, for each p € (1,00), Lf (09) becomes a Banach space modulo constants
when equipped with the homogeneous norm ”f”L’l’(BQ) = ||VianfllLr(00)-

2.2. Hardy spaces on graph Lipschitz surfaces

Throughout this section, we shall assume that € is as in (2.1), i.e., the unbounded
domain in R™ lying above the graph of the Lipschitz function ¢ : R"~1 — R. A surface
ball S,.(z) is any set of the form B,.(z) N 0%, with z € 0Q and 0 < r < co. When the
center is already specified or of no particular importance, we simplify the notation by
writing S,

For ";1 < p < 1, the homogeneous Hardy space is then defined by

(2.29) HE(©09) = {f =3 \ja; : a; (p,po)-atom, (\); € £},
J

where the series converges in Lip,(9€2)', the dual of Lip.(092), and equipped with
the usual infimum norm. Here, 1 < p, < oo is a fixed parameter and a measurable
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function a : 80 — R is called a (p,p,)-atom if there exists a surface ball S, C 9Q
such that

(230)  suppaCSn lalzreom < D(E3)  and / ado =0.
N

Given the atomic characterization of Hardy spaces in the Euclidean setting, we
have

(2.31) f € HE,(09) <= f(0()V1+|Ve()]? € HE(R"™).

In particular, this shows that different choices of the parameter p, in (2.30) yield
the same vector space and topology on HY, (99). Let us also recall here the the well-
known fact that

2.32 HP(R™ 1) = FPAR™Y)  if 2=l < p< 1,
at 0 n

where FP4(R"!) stands for the homogeneous Triebel-Lizorkin space in R*!. See
the discussion on p. 42 in [34]. For a precise definition, as well as basic properties of
the latter scale see, e.g., [33], [86]. Here we only wish to point out that, as remarked
on p. 44 in [34],

n—1

(2.33) lgll o gy = D 1959l gra gn-sy

Jj=1

whenever 0 < p < 00,0 < ¢g< o0, s € R.
Recall that, for "T'l <p<1lande>0,a (pe)molecule adapted to a surface ball
S, C 90 is a function m € L'(8Q) N L?(09N) satisfying

(i)  Joqm(z)do(z) =0,
@31 @ (fs,, Im@)?do(2)) V2 < 0 (3-3),
@) (fo,0,, 15,0, |m(x)|2da(m))1/2 < gk (2’%)(""1)(%*%), Vk >4,
It is well-known that there exists a finite constant x = x(9%Q, p,€) > 0 such that
(2.35) m is a (p,€)-molecule => m € HZ (0Q) and ||m|gr (aq) < k-
For uniformity of notation, we find it convenient to define

HE.(09) for 21 <p<1,

(2.36) H? (09) := { LP(8Q) for p> 1.

Corresponding to one unit more on the smoothness scale we have the ‘regular’
n—1

Hardy space H;t’p (092), defined for 2== < p < 1 as the £P-span of ‘regular’ atoms.
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More specifically, if [f] denotes the class of f modulo constants, define

(237) HY(00) :={[f]: f € LL.(09)

and there exist (\;); € ¢F and qa; regular (p,p,)-atoms

oo
with 9, f = Z Ai0r;,a; whenever 1 < j <n— 1},
i=1

where the series converges in Lip (092)". Also, set || f|| 1.2 5q) := inf [35 |\:|?]/?, where
the infimum is taken over all possible representations. Here, if (n — 1)/n <p <1<

Po < 00, a function a € LY°(09) is called a regular (p, p,)-atom if there exists a surface
ball S, so that

(2.38) suppa € Sy, || Vianal|zro(a0) < r("_l)(%‘%)_
In analogy with (2.31), it can be shown that
(2.39) [f] € HaP (09) <> [f(, ()] € EP*(R™).

Much as before, this shows that different choices of the parameter p, in (2.38) yield
the same vector space and topology on HLP(852). We also set

HyP(0Q) for 2t <p<1,

(2.40) H7 (60) ‘z{ i29) for p>1
: .

An alternative characterization of the quasi-norm in the space HY (992) is as follows.

Lemma 2.2.1. — Let Q be as in (2.1) and assume that 2>! < p < co. Then for each
jhke{l,...,n}

(2.41) Or;, + HY(0Q) — HP(09)
is a bounded operator. Furthermore,
(242)  HYP©9) = {If]: f € LL,.(09) and 8,,,f € HL(OR) 1<j <n—1},

and, in fact,

n—1

(2.43) 1AMz o0) = D 10n,., fll s o0)-
=1

Proof. — The claim about (2.41) follows straight from definitions when 1 < p < o0,
and by analyzing the action of this operator on atoms when "T‘l < p < 1. This also
yields the right-pointing inequality in (2.43). Now, the opposite inequality is trivial
for 1 < p < 00, so there remains to justify it when "T‘l < p < 1. In this scenario, we
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note that for every j € {1,...,n — 1} we have
(2.44)
Or, f € HE(89) & /14 |Vp(a)|2(8r,, /), p(a')) € HE (R )
& 9i[f (&', p(a))] € HL(R™') & 8;[f(«', p(a"))] € EP*(R™Y),
by (2.32). In concert with (2.33), this ensures that
(2.45)
S € Ho(0Q) for every j e {1,...,n—-1} = f(z',p(z")) € FP2(R™Y),
If we now recall that, as proved in Proposition 3.4 in [62],
(2.46) HP(R™Y) = FPAR™Y) for 22l <p <,
it follows that
(2.47) Oy, f € HE(0Q) for every j € {1,...,n— 1} => f € H;?(6Q).

This membership statement is accompanied by natural estimates and this finishes
the proof of (2.43). Now, (2.42) follows from this equivalence. O

The space H.?(8Q) in (2.37) is defined modulo constants. A “realization” of this
as a space of genuine functions is as follows. If "—;l < p <1 and p* € (1,00) is such
that

(2.48) - =
we set
(249) HYP09) = {f e L7 (09): f =) Aja; in L7 (89),
j=1

(Aj); € €%, a; regular (p, po)-atom },
and equip it with the natural infimum quasi-norm. We then have:
Proposition 2.2.2. — 1f =1 < p < 1, then the application
(2.50) HLP(09) 3 f— [f] := f+ R € HYP(69)
is an isomorphism.

Proof. — The mapping (2.50) is clearly one-to-one. The fact that this is also onto
follows from the lemma below. O

Lemma 2.2.3. — Let u be a tempered distribution in R with the property that 9;u €
HP(R"), j = 1,...,n, for some p € (-2+,n). Then there exists ¢ € R such that

n+1?
u —c € LP (R™), where p* := n"—_’;).
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Proof. — For each 1 < j < n, consider T; to be the convolution integral operator in
R™ with the kernel (0; Ea)(z), where E5 denotes the fundamental solution for the
Laplacian in R™. Classical Calderén-Zygmund theory implies that

(2.51) 0T = T;0k : HP(R") — HP(R™), 1<j,k<n, nLH <p< oo,

are bounded operators. Furthermore, if < p < 00, we have

ey
(2.52) 0;T; =1, the identity operator on HP(R"),

where repeated indices indicate summation, and if

1 1 1
2.53 L T
(2.53) w1l SPS<™ =g I<pi<oo
then

(2.54) T, : H(R") — LP"(R™)

boundedly, by the Fractional Integration Theorem.
Next, let u be a tempered distribution in R™ with the property that there exists
p € (%5, n) such that 9;u € HP(R™) for each j =1,...,n. Set

1’
(2.55) fi==0;ue H’(R"™), j=1,...,n,
and note that, in the sense of distributions,
(2.56) Of;j=0ifx, 4 k=1,...,n.
We claim that, in the sense of distributions,
(2.57) O(u—T;f;)=0, k=1,...,n

Once (2.57) has been established, it follows that the tempered distribution v —Tj f;
must be a constant ¢ which, in turn, implies that

(2.58) u—c=T;f; € LP" (R").

which is what we wanted to prove. Therefore, it remains to justify (2.57). Using
notational conventions introduced earlier, we can re-write this in the equivalent form

(2.59) fk =8k(ijj), k= 1,...,n.
To prove (2.59), based on (2.52) and (2.56), for each k we write
(2.60) Ok(T; £5) = Tj(0kf;) = T;(0; fi) = 0;(T; fx) = fr,
as desired. a

As a corollary of Proposition 2.2.2, we obtain that the definition of ﬁ;t’p (09) is
independent of the particular choice of p, € (1,00]. Let us also point out here that,
when used in concert with (2.43), the fact that (2.50) is an isomorphism further entails
(2.61)

n—1
”f”ﬁiép(aﬂ) ~ “[f]“H;t’p(aﬂ) ~ Z Ha’l'jnangt(aﬂ)v uniformly for f € H;ép(aﬂ)
j=1
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A distinctive feature of ﬁit’p (09) is that this space is local. This can be justified
by analyzing the action of multiplication by v € Lip, () on regular atoms. To this
end, it is trivial to check that, if nT”l <p<1<p, < oo, then for each n > 0 there
exists C = C(09Q,¥,n,p,p,) > 0 such that

A regular (p,p,)-atom supported in a surface ball of radius < 5

(2.62) Bol
= C ' A is a regular (p,p,)-atom on 9.

A more refined version of this result, allowing for atoms supported in surface balls
of arbitrary radii, is as follows.

Lemma 2.2.4. — Let  be Lipschitz domain in R™ and assume that "T‘l <p<1land
p* < po < ¢ < 00, where p* is as in (2.48). If ¢ € Lip, (0R) then ¥ A is, up to a
fixed multiplicative constant, a regular (p,p,)-atom on 92 whenever A is a regular
(p, g)-atom on 9.

Proof. — To fix ideas, let us assume that suppy C Si, a surface ball of radius
1, and that [|¢||ze(a0) + [[Vian®llzea0) < 1. Fix a regular (p,q)-atom A on
99, ie. a function A € LJ(09) satisfying suppA C S, for some r > 0, and

IVianAllLa(an) < r("_l)(%_%). In particular, Poincaré’s inequality gives ||Al|zqe(a0) <

Cr||VianAllLaan) < Cr1+("—1)(%"%). Next, introduce 7 := min {r,1} > 0 and note
that supp (¥ A) C Sr. Going further, write Vian (¥ A) = ¥ Vian A + (Vian®)A =:
I + 11, and use Holder’s inequality in order to estimate

~(n— A1
Ilzroa0) < N¥llze(o0)| VianAllro(ss) < CF® D (% ")”VtanANLq(an)

(2.63) < i 0(E-1),0-0(-3) < optn-(E-2)
and

HIllzroa0)y < Vian®llLoe o0l All Lro (s5) < C”(""l)(i—%)”A”Lq(aQ)
(2.64) < i D(E-1) 1+ (3-3) < optn-D(FE-3).

It is only in the last step above that p, > p* is needed (when r is large). Altogether,

the estimates (2.63)-(2.64) give ||Vian (¥ A)||Lro (90) < Cf("_l)(%"%)7 so C~ 1) Ais
a regular (p, p,)-atom. O

We can now formally state the following.

Lemma 2.2.5. — Let Q be as before, and assume that 1) is a Lipschitz function, com-
pactly supported on 92. Then for every p € (1‘;—1, 1]
(2:65) f € Hy?(99) = o f € Hy?(99),

plus a naturally accompanying estimate.

Proof. — This is a direct consequence of Lemma 2.2.4. O
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The spaces HZ,(89) and H_;(89) have inhomogeneous counterparts, denoted by
K2, (89) and hlP(8Q), respectively. To be precise, fix a graph Lipschitz domain Q C
R™ as in (2.1) and assume that 1‘—;7—1— <p<1<p,<oo. Also, fix a threshold n > 0.
Call a function a € L] _(89) an inhomogeneous (p,p,)-atom if for some surface ball
S, C 90

( suppa C S, |lallzro(a0) < r("—l)(%“%), and

2.66

) either r =7, 0rr<77and/ ado = 0.
aQ

We then define h, (09) as the ¢P-span of inhomogeneous (p, p,)-atoms and equip
it with the natural infimum-type quasi-norm. One can check that this is a “local”
quasi-Banach space, in the sense that

(2.67) hE,(09) is a module over C*(9Q) for any o > (n — 1)(% - 1).
Different choices of the parameters p,, n lead to equivalent quasi-norms and
(2.68) (hgt(aﬂ))* = (1) (a0).
It is also useful to note that
(2.69) L1,(89Q) C hE,(0€), whenever —”—;—1 <p<1l gqg>1.

Furthermore, for each p € ("—;1-, 1],

(2.70)  f € hE(89) <= f(,o(NY1+ V()2 € WG R™!) = FPA(R),

in analogy with the case of homogeneous Hardy spaces. This characterizations shows
that as far as the space h%,(09) is concerned, the particular values of the parameters
po and 7 (used in the normalization and support size of atoms) are immaterial.

Lemma 2.2.6. — If Q is as in (2.1), then
(2.71) HE(09) — hE,(89), Vpe (21,1].

Proof. — Of course, in the definitions of the various types of atoms discussed above,
we could have replaced “surface balls” with “surface cubes” (i.e., subsets of Q2 which,
in graph coordinates, project onto genuine (n — 1)-dimensional cubes whose sides are
parallel to the coordinate axes in R"~1).

It suffices to show that there exists a finite constant C > 0 with the property that
each (p,00)-atom a : 9Q — R supported in a surface cube Q of side-length r > 7 has
lallnz (90) < C. To see this, pick N € N such that n2NV-1 < r < 72N and cover Q
with 2V("~1) gurface cubes @; of side-length comparable with n. Then

oN(n-1) n—1 n—1

(2.72) a= E Ajbj,  where ;= (%)_T and b;:= (%)Taij.

=1
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_n—1
Then suppb; C Qj, ||bjllL=@a) <n 7 , and
2N(n—1)
Z I)‘jlp < 2N(n—l)(,r/n)—(n-—1) < 2n—1'
j=1

The desired conclusion follows. O

With Q, p, p, as before and n > 0 arbitrary, we next define
(273) hP(09) = {f € Lip,(09) : f =, Ajay, (A)); € Pand a
regular (p, p,)-atom supported in a surface ball of radius < 7 for every j},

where the series converges in Lip,(9Q)’, and equip it with the natural infimum quasi-
norm. Next, if p* is as in (2.48) then, by Poincaré’s inequality,

(2.74)  a regular (p, p,)-atom = |la||L»* (90) < C(0R, p,po),

(2.75) a regular (p, p,)-atom supported

= |la < C(0Q,n,p,p0)-
in a surface ball of radius <17 } lellz» ) < G(6%,,p,po)

Thus, if f = 3772, Aja; is an atomic decomposition of f € hLP(8Q), it follows that
the series 3°52, Aja; converges both in LP"(02) and LP(99). As a consequence,

(2.76) hLP(8Q) — LP(60) N LP" (69)
and, hence,
(2.77) hLP(8Q) — HLP(89) — LP°(89)

boundedly, for each p € (ﬂ;—l, 1]. In particular,

(2.78) £l Lo~ o) < C”fnﬁig”(@ﬂ)’ uniformly for f € ﬁit’p(aﬂ).
Let us also record here the fact that, if "T“l < p <1, we have

(2.79) f € hyP(0Q) <= f(-,0()) € FP2(R™Y).

In particular, various choices of the parameters p,, n in (2.73) yield the same vector
space and topology on hLP(8€). The equivalence (2.79) also shows that the space
haP(89), p € (2=1,1], is local, in the sense that for every function % € Lip, (99), we
have

(2:80) f € hf(09) = f € h (692),
plus a natural estimate. _
The fact that FP?(R*™!) = {f € LP(R* 1) nJ' R Y) : [f] € FP*(R"1)} for
2=1 < p < 1 yields another alternative characterization of L (89), namely
(2.81)

h?(09) = {f € LL(09) : f € I?(39) and B,

feHLO9), 1< <n—1},

SOCIETE MATHEMATIQUE DE FRANCE 2012



28 CHAPTER 2. SMOOTHNESS SPACES AND LIPSCHITZ DOMAINS

and moreover,
n—1

(2.82) I lhze o) = I1fllr(o0) + > 110, fllaz. 00-
i=1

Let us also note here that if € is as in (2.1) and 21 < p < 1, then for each
jed{l,...,n—-1},
(2.83) Oy, + huP(09) — HE(8Q) boundedly.

Indeed, this is implicit in (2.81)-(2.82).
We conclude this section by recording an elementary yet useful result.

Lemma 2.2.7. — Let ¥ be the graph of a Lipschitz function ¢ : R*~! — R with
©(0) = 0 and fix two functions § € C§°(B(0,1)), ¢ € C§°(B(0,4)), with { = 1 on
B(0,2). Also, assume that k : ¥ x X \ diag — R is such that

(2.84) |k(z,y)| < Klz—y|~ "V, |Vik(z,y)| < klz—y|™, V(z,y) € ExT\diag,

and set

(2.85) 71@) = [ (- @Dk eI W do), @€z
Then for every j,k € {1,...,n}, p € (®.:1,1] and ¢ € (1,00), the operator
(2.86) 8., : L(9Q) — HE,(S)

is well-defined, linear and bounded.

Proof. — Let ¢ € C§°(B(0,3/2)) be such that 0 < ¢ < 1 and ¥ = 1 on B(0,1).
Set o(x) := ¥(x), ¥1(x) := ¥(z/2) — ¥(x) and ¢¥;(x) := 1 (27" 1z) for i = 2,3....
Then ; is supported in the annulus A; := {z € R® : 27! < |g| < 2¢+1} and
SN oi(x) = p(2 Nz) for N = 0,1,.... In particular, 3332, ¢;(z) = 1. Next,
note that if ||f||zamy < 1 then |Tf(z)] < €27~ and 8,,|7 f(z)| < C27™"
on A; NE. For 4 = 0,1,..., we now set a; = 20+DIn=(n=1/Plg__ [, Tf], A; =
2~ (@+DIr=(m=1)/P] Then suppa; C B(0,2*)NE, |la;|| sy < C-27(HDM=1/P and
f): a; do = 0. Consequently, each a; is a fixed multiple of a (p, 00)-atom on . Fur-
thermore, Y 723 A < oo by our assumptions on p. Since 9, [T f] = Y i2 Aiai, it
follows that 8,,,[7 f] € HY,(Z) and ||8,,,[7 f]l|gr,(x) < C. This finishes the proof of
the lemma. d

2.3. Bounded Lipschitz domains

Call an open set Q C R™ a bounded Lipschitz domain if there exist M > 0 and a
family of hyper-planes II;, ¢ = 1,...,m, a choice of the unit normal N; to II;, and a
function @; : II; — R with |¢;(z)—p;(y)] < M|z—y| for all z,y € II,;, which also satisfy
the following additional properties. First, for each i, in the system of coordinates
induced by (II;, N;) in R™, there exists an open, upright, doubly truncated, circular
cylinder Z; such that {Z;}~, covers 0. Second, if ; is the domain lying above the
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graph of @;, once again considered in the system of coordinates induced by (II;, N;)
in R™, and if ¢Z; denotes the concentric dilation of Z; by factor ¢ > 0 then for each ¢,

QN2M +1)Z; = 2 N2AM +1)Z;,

(2.87)
00N 2M +1)Z; = 00 N 2(M + 1)Z.

In the sequel, we shall call (Z;, ;) a coordinate chart for  and refer to 99; as
the graph of ¢; in the system of coordinates induced by Z;. Also, a constant is said
to depend on the Lipschitz character of Q if its size is controlled in terms of m, the
number of cylinders {Z,},, the size of these cylinders and the constant M.

Given a bounded Lipschitz domain Q@ C R", set Q; := Q and Q_ := R"\ Q.
The nontangential approach regions I't (), z € 09, are defined as I'f(z) := {y €
Q1 : |z —y| < 1+ k)dist (y,00)}, where k > 0 is a fixed parameter, while at
every boundary point the nontangential maximal function is given by M(u)(z) :=
sup {|u(y)| : y € TX(x)} (with the choice of sign depending on whether u is defined
in Q4 or Q).

For a bounded Lipschitz domain, the spaces LP(8f2) and L} (8f) when 1 < p <
oo, as well as HE,(3Q), HuP (892), h2,(Q) and hiP(89) when p € (%51, 1], can be
defined as before. As a consequence, when 2 C R" is a bounded Lipschitz domain
and "T‘l < p <1, we have:

hP,(3Q) = HP,(69) + R = HP,(9Q) + LI(3Q) for each ¢ > 1,
P, (892 — LP,(89), where p* is as in (2.48),

LI(8Q) — hLP(8Q) = HLP(8Q) — LP"(8Q), for each ¢ > 1,
R2.(8Q), hLP(O) are modules over Lip (892).

(2.88)

Next, we record a couple of technical results which will not enter the discussion
until later on.

Lemma 2.3.1. — Assume that =1 < p < 1 and that @ C R is a bounded Lipschitz
domain. Also, fix a coordinate cylinder (Z,¢) and denote by T the graph of ¢ in the
coordinate system induced by Z. Finally, let £ € C§°(Z). Then there exists C > 0
such that

(2.89) ||€f"h;f(an) < C”f”ﬁ;f(z)’
(2.90) 1€/ Inzp o) < CllFlnze (s
(2.91) 1€ 15105y < CUeFNnLrczy < ClF Nz conys

where tilde denotes the extension by zero outside the support (naturally interpreted
in each case).

Proof. — Indeed, (2.89) is implied by Lemma 2.2.4, whereas (2.90) is a direct conse-
quence of (2.62), and (2.91) follows from (2.77) and (2.62). a
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In turn, the estimates (2.89)-(2.91) permit one to prove that many of the properties
established for the scale h;;p (09) when 9 is a graph Lipschitz domain have natural
counterparts in the setting of bounded Lipschitz domains. We continue by recording
the analogue of (2.81) in the case when @ C R" is a bounded Lipschitz domain.

Proposition 2.3.2. — Let 2 C R™ be a bounded Lipschitz domain, and assume that
"T'l < p <1 and p* is as in (2.48). Also, assume that 1 < ¢ < p*. Then

hLP(89) = {f € LP (09) : 0., f € H(39), 1 < j,k < n}

(2.92)

{ferio9): o, f e 09), 1<)k <n},

and in addition,
(2.93)

n n
I l2e o) = N5l ov a0y + > 0n Fllmz, o0y ~ Ifllzaoey + Y, 107, Fllnz, o0)-

k=1 k=1

Proof. — To get started, we claim that for each j,k € {1,...,n}, the tangential
derivative operator

(2.94) Oryy + hyi? (0Q) — HE,(09)

is well-defined, linear, and bounded. To prove this, fix 1 < p, < co and observe that
Or,.a is a (p, po)-atom whenever a is a regular (p,p,)-atom. It is therefore natural to
try to define the operator (2.94) as

(2.95) Orj f 1= Z AiOr;.a; whenever f = Z Aia; in h;;”(@ﬂ).
i i

Nonetheless, due to the redundancy in the atomic representations of functions in
hLP(8Q) the above observation alone does not guarantee that this operator is well-
defined. See, e.g., the discussion in [7]. In order to overcome this difficulty, it suffices
to show that if {);}; € £* and a;, j € N are (p, p,)-regular atoms, then

(296) ) Xai=0 in RO = > Nda;=0 in hE(5D).

This, however, is a consequence of (2.76), the second line in (2.88), and (2.23).
Hence, the operator (2.94) is well-defined and bounded.

Turning to (2.92), let us note that, thanks to (2.88) and (2.94), the three spaces
are listed in increasing order. Hence, it suffices to show that if f € L%(9Q) has
7, f € hE,(89) for 1 < j,k < n, then f € hyP(Q). Note that all spaces involved
are modules over Lip (912). Hence, using a smooth partition of unity, matters can
be reduced to the case when 9 is replaced by ¥ C R", the graph of a real-valued
Lipschitz function defined in R"~!, and f is compactly supported on . By further
flattening ¥ to R™~! using a bi-Lipschitz change of variables, we arrive at the following
question. Prove that if f € LI, (R"!) — AP (R""1) has 8;f € hE (R""!) for every
j=1,...,n—1, then f € FP*(R""1). However, since h% (R*"!) = F*(R""!) for
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"T_l < p < 1, this latter claim follows from well-known lifting results for Triebel-
Lizorkin spaces (cf., e.g., Proposition 2 on p. 19 in [74]). Finally, the equivalences in
(2.93) are implicit in the above reasoning. O

In keeping with notation introduced in (2.36) and (2.40), if Q C R™ is a bounded
Lipschitz domain, we set
(2.97)
hP(0Q)) = {

p n-1 <
hag (0) for 555 <p<L o b0y e
Lr(0Q) for p>1,

Let us also point out that all these spaces have natural vector-valued versions,
although we shall make no notational distinction between the scalar and the vector-
valued case; each time, this should be clear from the context.

haP(0Q) for 21 <p<1,
L¥(89Q) for p> 1.

2.4. Besov and Triebel-Lizorkin spaces in Lipschitz domains

Given an arbitrary open subset  of R™, we denote by f|q the restriction of a
distribution f in R™ to Q. For 0 < p,q < oo and s € R we then set
Br9(Q) := {f distribution in 2 : 3g € B»(R™) such that g|q = f},
I fllBra(o) = inf {llgllpre(rn) : g € BYI(R™), gla = f}, f€ BYI(Q).
A similar definition is given for FP9(f2) in the case when p < oo. From the cor-

responding density result in R", it follows that for any bounded Lipschitz domain
and any 0 < p,q < 00, s € R,

(2.99) C®(Q) — BPYQ) N FP9(Q) densely.

(2.98)

The existence of a universal extension operator for Besov and Triebel-Lizorkin
spaces in an arbitrary Lipschitz domain @ C R™ has been established by V. Rychkov
in [75]. To state this result, let R denote the operator of restriction to 2, which
maps distributions from R"™ into distributions in {2,

(2.100) Ra(u) :=u g U distribution in R™.

Theorem 2.4.1 ([75]). — Let Q C R™ be either a bounded Lipschitz domain, the exte-
rior of a bounded Lipschitz domain, or an unbounded Lipschitz domain. Then there
exists a linear, continuous operator Eqn, mapping distributions in Q into tempered
distributions in R™, such that whenever 0 < p,q < 400, s € R",
(2.101)

Eq : A29(Q) — APY(R"™) boundedly, satisfying Ra(Eqof) =f, Vfe€ APY(Q),

for A= B or A= F, in the latter case assuming p < oo.

This and standard properties of retractions allow one to establish interpolation
results for Besov and Triebel-Lizorkin spaces in Lipschitz domains. More specifically,
we have the following analogue of Theorems 11.1.1-11.1.2.
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Theorem 2.4.2. — Suppose (2 is a bounded Lipschitz domain in R™. Let ag,a; € R,
oo # a1,0<¢0,q1,§ <0,0< 80 <1, aa=(1-0)ag+6a;. Then

(2.102) (F22(9), FE2 (@)sg = BRUQ), 0<p<oo,
(2.103) (BE®(Q), B (), = BEUQ), 0<p< oo

Furthermore, if ag, 01 € R, 0 < po,p1 < o0 and 0 < ¢o,q1 < oo satisfy
min {qo, g1} < 0o, then

(2.104) (F&o 2 (), FEr @ ()] = FEU(),
_ 1_1-60, 6 1_1-6, 6
where 0 <0< 1,a=(1-60)ag + ba, 5= 20 T o1 and 1= o T
If ag, a1 € R, 0 < po,p1,40,q1 < 00 and min {qgo, g1} < 0o, then also
(2.105) [BR% (), BEy ™ ()] = B (),

where0<0<1,oz=(1—(9)a0-+—67011,%=117;09—1—11—1amd%:lq_—‘qwti

0 q1°
Finally, the same interpolation results remain valid if the spaces B2'9(Q2), FP9(Q)
are replaced by BY'¢(2) and F} (), respectively.

Recall now the standard LP-based Sobolev spaces in a Lipschitz domain :
(2.106)

wi@):={feL7(Q); @fel’(@),¥v: W<k}, 1<p<oo, keN,
equipped with the norm
(2.107) I fllwz @) = >0 fllre)-

lvI<k
In view of Theorem 2.4.1, for any Lipschitz domain 2, we have
(2.108) WP(Q) = FP?(Q), 1<p<oo, keN.
For 0 < p,q < 00, s € R, we set
ADG(Q) == {f € ADY(R") : supp f C O},
Ifllaza@) = I fllazo@n), f€ ARG (%),

where, as usual, either A = F and p < oo or A = B. Thus, BY§(2), FY () are
closed subspaces of BY'j(R™) and F;(R"), respectively. In the same vein, we also
define

(2.110) L% o(Q) := {f € LE(R™) : supp f C O}, 1<p<oo, seR,

(2.109)

with the norms inherited from L% ,(R™).
For 0 < p,q < o0 and s € R, we also introduce

AP4(Q) := {f distribution in Q : 3g € AVF(Q) with glo = f},

(2.111)
I fll azs(q) := inf {llglazamny : 9 € AVG(Q), gla = f}, f€ARUD),
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(where, as before, A = F and p < co or A = B) and, in keeping with earlier conven-
tions,

(2.112) L () := FP?(Q) = {f distribution in Q : 3g € L} ;(Q) with glo = f},

if 1 < p < oo, s € R. For further use, let us also make the simple yet important
observation that the operator of restriction to Q induced linear, bounded mappings
in the following settings

(2.113) Rq : ALIR™) — ADI(Q) and Rq: AVG(R") — ADI(Q)

s

for 0 < p,qg < 00, s € R.
It follows that if Q is a bounded Lipschitz domain in R™ and 0 < p,q < 00, s € R,
then

—

(2.114) C3° () — APG(Q2) densely,
(2.115) C>®(Q) — AP9(Q) densely,
(2.116) C5°(R) — ADI(2) densely,

where, as before, tilde denotes the extension by zero outside 2 and A stands for either
B or F'. Indeed, the same proof as in the Remark 2.7 on p. 170 of [43] gives (2.114)
and a minor variation of it justifies (2.114) as well. Finally, (2.116) is a consequence
of (2.114) and the fact that Rq maps A%§(Q2) continuously onto A2'4(Q2).

Proposition 2.4.3 ([87]). — Assume that 2 is a bounded Lipschitz domain in R", and
suppose that 0 < p,q < oo and s > max(l/p— 1,n(l/p— 1)) Then extension by zero
defined as

z . ) fl@) ifze
(2.117) flz):= { : iz e R\ Q,

induces a linear and bounded operator from B?¢(2) to BY§(R?) and, if p < oo,
from FPJ(Q) to F2¢(Q). Furthermore, if max(l/p - 1,n(1/p - 1)) <s<1/pand
0 < p,q < oo, this operator also maps B2'4(Q2) to BY¢(?) and, if min {p,1} < g,
FP(Q) to FY5(Q).

Ifl<pg<ooandl/p+1/p'=1/g+1/¢ =1, then

(2.118) (42s@) =475 @) it s> -1+,
(2.119) (429(@)" =47 5@) i s<?.

Furthermore, for each s € R and 1 < p,q < oo, the spaces A24(2) and AL()
are reflexive. As a consequence of (2.118)-(2.119) let us also note the following useful
result:
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Proposition 2.4.4. — Let Q2 be a bounded Lipschitz domain in R", and assume that
1<p,g<oo,1/p+1/p'=1/¢+1/q¢ =1. Then

(2.120) (Bre@) =B77 (@, (Fre@) =Fri7 (@),
provided —1+1/p < s < 1/p.

There is yet another type of smoothness space which will play a significant role for
us. Specifically, for & C R™ Lipschitz domain, we set

(2.121) AP9(Q) := the closure of C3°(Q2) in A29(Q), 0<p,g< o0, sER,
where, as usual, A = F or A = B. For every 0 < p,q < co and s € R, we then have
(2.122) ADI(Q) — ADY(Q) — AD(R), continuously.

The second inclusion is trivial from (2.121), whereas the first can be justified as
follows. If f € A22(Q), then there exists u € AY§(Q) such that Rq(u) = f. By
(2.114), there exists a sequence u; € C§°(f2) such that 4; — u in AP9(R"), which

o
then implies u; = Ra(d;) — Ra(u) = f in A29(Q). This proves that f € A29(Q)
and the desired conclusion follows easily from this.

Going further, Proposition 3.1 in [87] ensures that

(2.123) APU(Q) = API(Q) = API(Q), A€ {F, B},

whenever 0 < p,q < 00, max(l/p— l,n(l/p—l)) < s<1/p,and min {p,1} < ¢ < o0
in the case A = F. Other cases of interest have been considered in [60], from which
we quote the following result.

Proposition 2.4.5. — Let Q be a bounded Lipschitz domain in R™. Then
(2.124) FPUQ) = FD1(Q)
provided

0<p<oo, min{l,p}<g<oo, and

(2.125) 3k € Ny so that max(%—l,n(;l;—l)) <s-k< 117'
Furthermore,

(2.126) BP9() = BL(%)

whenever

(2.127) 0 < p,g< oo and Fk € Ny so that max(%—l,n(%—-l))<s—k<%.
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2.5. Smoothness spaces on Lipschitz boundaries

For a € R set (a)+ := max{a,0}. Consider three parameters p, g, s subject to
(2.128) 0<p,q< oo, (n—l)(%—1)+<s<1,

and assume that Q C R” is the upper-graph of a Lipschitz function ¢ : R*~! — R. We
then define B??(9) as the space of locally integrable functions f on 0 for which
the assignment R"~! > z — f(z,¢(z)) belongs to BP4(R"~1) (cf. § 11.1). We then
define

(2.129) £l B2 (aqy := IIF (5 ()l 29 @n-1)-

As far as Besov spaces with a negative amount of smoothness are concerned, in the
same context as above we set

(2.130) f € BP9 (89) <= f(-, p(-NV/1+ |Ve(-)|2 € BP4(R™1),
(2.131) £l B2a (a0) = IIF (-, (D) V1 + [Ve() Pl B2g (mr-1)-

As is well-known, the case when p = ¢ = oo corresponds to the usual (non-
homogeneous) Holder spaces C°(012), defined by the requirement that

x —
(2.132) | fllcsae) = Il fllL=(a0) + sup (@) = 1)l fﬁy)l < 400.
T#Y |:E - yl
T,y€ON

All the above definitions then readily extend to the case of (bounded) Lipschitz
domains in R™ via a standard partition of unity argument.

We now recall several properties of the Besov scales just introduced above which
are going to be of importance for us later on.

Proposition 2.5.1. — For (n—1)/n<p<ooand (n—1)(1/p—1)y <s<1,

— 1/p
2133 Wflazoon ~ Iflwom + ([ [ ELBE do@yaow)

See [60] for a proof of the equivalence (2.133).

Theorem 2.5.2 ([60]). — Let Q be a Lipschitz domain in R™ and assume that the
indices p and s satisfy 2= < p < oo and (n — )(% —1)4 < s < 1. Then the following
hold:

(i) The restriction to the boundary extends to a linear, bounded operator

(2.134) Tr: B2, (@) — B(0Q) for 0<q<oo.

Moreover, for this range of indices, Tr is onto and has a bounded right inverse
(2.135) Ex: BP(9Q) — BYf, (Q).
P

(ii) If p # oo, then similar considerations hold for
(2.136) Tr: F;"*’_"l (Q) — BPP(09Q).

SOCIETE MATHEMATIQUE DE FRANCE 2012



36 CHAPTER 2. SMOOTHNESS SPACES AND LIPSCHITZ DOMAINS

In particular, the operator (2.136) has a linear, bounded right inverse
(2.137) Ex : B2?P(9Q) — F:’_’Fq ().

Theorem 2.5.3. — Let Q) be a bounded Lipschitz domain in R™ and assume that E;—I <
p<oo, (n—1)(1/p—1)4+ < s <1 and min{1,p} < g < co. Then

(2.138) FPS, (@) ={feFP%, (): Tt f=0}
and
(2.139) C () — F2 /p,2(§2) densely.

Furthermore, a similar result is valid for the scale of Besov spaces. More specifically,
if 21 <p<oo,(n—1)(1/p—1)4 <s<1and0< g< oo, then

(2.140) Br (@) ={f B, (@): Trf=0}
and
(2.141) CX(Q) — B:—fl/p,z(ﬂ) densely.

Proposition 2.5.4. — Suppose that Q) is a bounded Lipschitz domain in R™. Further-
more, assume that 0 < p,q,qo,q1 < oo and that

either (n — 1)(% - 1) <sp#s <1,
(2.142) +
or —1+(n—1)(%—1) <sp#8 <0.
+
Then, with 0 < 8 <1, s = (1 — 8)sg + sy,
(2.143) (B2 (6Q), BE (992))o,, = BE(09).

Furthermore, if 0 < p;,¢; < 0o are such that min {gg,q1} < oo and either one of

the following two conditions

cither (n — 1)(1% - 1) <s;i<1, i=0,1,

(2.144) A
or —1+(n—1)(%—1) <8 <0, i=0,1,
¢ +

is satisfied then

(2.145) [BEo% (992), BEH % (902)]g = BP(39),
where
(2.146) 0<6<1, s:=(1-0)so+0s, %:z%@+—p%and%:=1;—o‘9+%.

Proposition 2.5.5. — Let Q@ C R™ be a bounded Lipschitz domain and fix (n —1)/n <
p < 00, 0< ¢q<o00,and (n—-l)(% —1)4 < s < 1. Then, for each j,k € {1,...,n}, the
tangential derivative operator

(2.147) 0, : B21(09) — BY,(09)

is well-defined, linear, and bounded.
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Next, we discuss an atomic decomposition result for the space BY”(0Q) when
(n—-1)/n < p < o0 and (n — 1)(% —1)4 < s < 1. For a given, fixed parameter
n =n(0R) > 0, call ag € L®(8N) an atom for BY'P, (8Q) if

(2.148) (1) 38 = S,, surface ball, such that supp (as) C S,
_1_n=1
(2.149) 2) llasllzeaey <r° 7177,
(2.150) 3) / as(z)do(z) =0 when r <.
0
We have:

Proposition 2.5.6. — For any bounded Lipschitz domain 2 C R" there exists n =
n(09Q) > 0 such that the following is true. If (n —1)/n <p < 1 and (n — 1)(% -1)<
s < 1 then

£z 00) = inf{(z |/\S|p)
s

(2.151) f= Z)\Sag, ag are BPP (99Q) atoms, {As}s € €”},
s

1/p

uniformly for f € BP?, (69Q).

s—1

Lemma 2.5.7. — Let 2 C R™ be a bounded Lipschitz domain and assume that & :
o0 x 60\ diag — R is such that
(2.152)

k(z,y)| < Klz —y|~ ", |Vyk(z,y)| < klz —y|™", V(z,y) € 02 x 0Q\ diag.

For a fixed function ¢ € C$°(R™) set k(z,y) := [£(z) — £(v)]k(z,y) and introduce

(2.153) 6/@) = [ Ha)f@)dot), = eon
Then for every s € (0,1) and g € (1, 00), the operator
(2.154) 6 : BY1(02) — L1(090)

is well-defined, linear, and bounded.

Proof. — Consider first the case of (2.154) when ¢ = 1. Our goal is to show that
there exists C' > 0 such that

(2.155) | €allLra0) < C

for every B ’: (09)-atom a. Recall the parameter n from Proposition 2.5.6 and note
that if a is an atom supported in a surface ball of radius > # then |[la|L1(s0) <
C(n,09) < co. Thus, (2.155) holds in this case since & maps L!(0Q2) boundedly into
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itself. When a is a B"!(09)-atom supported in a surface ball S,(z,) with z, € 9
and 0 < r <7, it is elementary to establish that
(2.156)

|Ga(z)|do(z) < Cr'™® < C and |€a(z)|do(z) < Cr*~*lnr < C

521'(20) 30\52,-(330)

for some finite C = C (09,7, k) > 0. From this, (2.155) follows. Hence, (2.154) holds
when ¢ = 1. Since, by Schur’s lemma, & maps L?(992) boundedly into itself whenever
1 < p < o0, the claim about (2.154) follows in its full generality from what we have
just proved and interpolation. O

We shall now briefly discuss the Triebel-Lizorkin spaces on the boundary of a
bounded Lipschitz domain Q C R", denoted in the sequel by FP?7(9). Compared
with the Besov scale, the most important novel aspect here is the possibility of allowing
the endpoint case s = 1 as part of the general discussion if ¢ = 2. To discuss this in
more detail, assume that

: 1
(2.157) either 0 <p < oo, 0<q< oo, (n—l)(m—l)+<s<1,

or %‘l—l<p<oo, g=2 and s=1.

The starting point in introducing Triebel-Lizorkin spaces on 912 is the case when
2 is the domain lying above the graph of a Lipschitz function ¢ : R®~1 — R. In this
case, if (p,q,s) are as in (2.157), we define FP9(9N) as the collection of all locally
integrable functions on 9 such that

(2.158) "f”F;’"’(BQ) = ”f('a‘P(')))"Ff’"(R"—l) < 400,
and FP9 (89Q) is defined as the collection of all functionals f € (Lip, (8€2))’ such that
(2.159) I fllF2e 00y = IF( (DY 1+ VOl pog mr-1) < +00.

When (p,q,s) are as in (2.157), the Triebel-Lizorkin scale in R"~! is invariant
under pointwise multiplication by Lipschitz maps as well as composition by Lipschitz
diffeomorphisms. In turn, this can be used to define FP?(8Q) and F?% (8S2) when
is a bounded Lipschitz domain, via a standard partition of unity argument.

Some basic properties of the spaces just introduced are as follows. First,

(2.160) FP?(0Q) = hP(0Q), FP?(0Q) = h1(0Q), ==L <p< oo,

where hP(0Q), b} (09) have been introduced in (2.97). Second,

Proposition 2.5.8. — Let Q be an arbitrary bounded Lipschitz domain in R™. Assume
that the indices s, so, s1,D, Po, 90,d,P1,41,0 are as in (2.146) and each of the two
triplets (po, o, S0) and (p1,4q1,s1) satisfies (2.157). If also min {qgo, g1} < oo then
(2.161)

[FPo®(5Q), FP1 4 (0Q))g = FPU(0Q), [FroT(9Q), FE2%4 (09Q)]e = F14 (09).

so—1 s
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Finally, assume that each of the two triplets (p, go, so) and (p, ¢1, s1) satisfies (2.157)
then
(2.162)

(F2, (902), F® (00)aq = BE1(09),  (FL™,(09), F5%,(09)q = B (59)

80—-1

ifsp#51,0<0<1,s=(1-0)sp+0s; and 0 < g < o0.
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CHAPTER 3

RELLICH IDENTITIES FOR DIVERGENCE FORM,
SECOND-ORDER SYSTEMS

3.1. Green formulas

Let Q be a domain in R” and denote by C* () the class of smooth, complex-valued
functions defined in a neighborhood gf Q. Also, for two fixed nonnegative integers
N, M, set &= [C®(@)]N, F := [C®(Q)]M. In the sequel, we let (u,v) := Y 5_; ugvg
denote the pointwise inner product in &, &, etc. Note that this pairing does not involve
any complex conjugation (i.e., is bilinear). Next let D : § — & be the linear mapping
given by
(3.1) Du(z) = (Y 0P (@) ug(x)) , ue b ze,

[vIsm “
i.e. a differential operator of order m in €, with smooth, complex-valued coefficients
in Q, acting on vector-valued functions. Its formal transpose is then given by
(3.2)
DT:g — &, Do)=Y (-1)"87as? (z)va(x)])

[v|<m

, veF, zeq.
B

If the superscript ¢ denotes complex conjugation then D*, the adjoint of D is
(3.3) D*: 5 — 6, D'u:= [DT(uc)]c.

In fact, if we set Du := (Du®)° (i.e. conjugate the coefficients of D), then
(3.4) D*= (D) = (D97, DT =(D")°= (D),

and adjunction, transposition and conjugation are all involutions.
Going further, recall that the principal symbol of (3.1) is the mapping

(3.5) o(D;&)u = (z’m Z aﬁﬁé"ug) , £€€eR", wued,

[yl=m
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where, throughout this section, 7 := +/—1. It follows that, for each £ € R™ and each
differential operator D of order m,

o(D%€) = (-1)™o(D;€)°, o(DT;8) = (-1)™a(D;¢)T,

(36) and o(D;€)* = o(D*;€).

Also, for any two differential operators D, D3,
3.7 0(D1D2;§) = 0(D1;€)0(D2;§), £ €RT,

whenever the composition is meaningful.
Recall next that for a first-order differential operator D : & — &, the following
integration by parts formulas are valid:

(3.8) /Q(Du, v9)dz = /Q(u, (D*v)¢) dz — /69 (to(D; v)u,v°) do,
(3.9) /Q(Du,v) dr = /Q(u, Do) dx — /‘m (io(D;v)u,v) do,

where do is the surface measure on 9 (assumed to be reasonably smooth), v is the
outward unit normal to 2, and the functions u € &, v € &, are sufficiently well-
behaved near 0€2.

We continue to assume that D : § — & is a first-order differential operator and
consider A :  — CM*M 3 smooth, matrix-valued function (also occasionally iden-
tified with a zero-order differential operator mapping & into &). With D and A as
above, introduce the second-order differential operator

(3.10) L:=-D*AD, L:6— &,
and the associated conormal derivative
(3.11) 82 .= io(D*;v)AD, 84:8 — Flsa.

For further reference, let us note here that
(3.12) o(8);€) = io(D*;v)Ao(D;¢),
so that in particular,
(3.13) o(02;v) = —ia(L;v).

Also,
(3.14) A=A"= L=L"= o(L;§)* = o(L;§), VE € R".

It follows from (3.8) that

/ (Lu,v)de = - / (D*ADu,v°) dx
Q Q

(3.15) = - /Q(ADu, (Dv)°) dz + /an (84w, v°) do.
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Taking the complex conjugates of both sides and interchanging u and v also yields
(3.16) / (u, (Lv)°) dz = — / (A*Du, (Dv)°) dz + / (u, (82v)°) do.
0 Q a0
In particular,
317) A=A"— / (Lu, o) — (u, (Lv)°) dz = / (0%, 0% — (u, (8240)°) do,
Q a0

i.e. the complex Green formula. Going further, note that replacing v by v° in (3.17)
yields the real Green formula

(3.18) /Q(Lu,v) dw=/ﬂ(u,Lv) d:v+/69(afu,v) do—/ (u, 8v) do

a0
if A=A, D°= D (i.e., A and D have real coefficients) and A = AT.

3.2. A general Rellich identity for second order systems

We continue to employ notation introduced in the previous section. Throughout
this section, we shall assume that

(3.19) Du(z) = (Z a;ﬂ(m)ajuﬂ(x))Ka(M, ue[C®@N, z e,
i=1 ==

is a first-order differential operator with C! coefficients and that the matrix A is
self-adjoint, i.e.

(3.20) A = A
Then L, defined as in (3.10), becomes a self-adjoint, second-order partial differential

operator. In order to continue, we need one more piece of notation. Specifically, if
h = (hj); : @ = R™ is a smooth vector field, we set

(3.21) Viu = (Vhus)g = (Z hjajug)ﬂ, u €6,
j=1

with an analogous definition for V,g . In this context, V}, := R-V is the usual directional
derivative, in the direction of the vector k. It is useful to note that J(V,f; €) =i(h, &)1,
where I¢ stands for the identity operator on &. Of course, a similar calculation applies

to V;‘f .
The following Leibnitz formula is readily checked:
(3.22) Vilu,w) = (Viu,w) + (u, Viw), Vu,w € é.

Of course, a similar Leibnitz formula holds for functions in &.
If we now set [D, V3] := DV — V7 D, the symbol calculation

(3.23)  o(ID,Vh};€) = o(D; €)ilh, )15 — i(h,€)Ig o(D;€) =0, VEeER™,
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shows that [D,V},] is a first-order differential operator. Integrating by parts then
yields

/ (O, (VEu)) do / (i0(D*; v) ADu, (VEu)©) do
N N

/ (Lu, (V§u)°) dz + / (ADwu, (DV{u)°) dz
Q Q

/ (Lu, (Viu)°) dz + / (ADwu, (V{ Du)°) dzx
Q Q
(3.24) +/ (ADu, ([D, Vi]u)°) dz.
Q
Next, observe that thanks to (3.22) and the fact that h has real-valued components,
we have the sequence of identities
(ADu,(V{Du)?) = (ADu,V} (Du)*

= Vu(ADu,(Du)°) — (V{ ADu, (Du)®)

= Vu(ADu,(Du)®) — ([V{, A]Du, (Du)°)
(3.25) —(AVY Du, (Du)®),
pointwise in . In this connection, we note that
(3.26) o([V7, AL ) = i(h,€)Ig A~ A(i(h, )I7) =0, VEERT,

so we may conclude that [V, A] is a zero-order operator. Moreover, (3.20) allows
us to re-write the last term in (3.25) as (Vy Du, (ADu)®) = ((ADu, (V{ Du)®))°.
Altogether, (3.25) becomes

(3.27) 2Re (ADu, (V{ Du)°) = V,(ADu, (Du)°) + O(|Dul?|[V{, A])).

Returning with this back in (3.24) then yields
Re / (024, (VIu))do = % / Vi{ADu, (Du)°) dz + Re / (Lu, (V{u)®) dz
on Q Q
+ [ 0UDuPIvY, Al de
Q
(3.28) + / O(|A||Dul|[D, V4)u|) dz.
Q

This completes the first round of integration by parts. Our approach involves a sec-
ond round, based on the scalar Divergence Theorem, [, Vi fdz = — [ (divh)fdz +
Jsq(h,v) f do. Utilizing this in the context of (3.28), i.e. with f := (ADu,(Du)°),
gives a first version of a Rellich-type identity. To state this formally, we let C(Q)
denote the space of bounded, complex-valued functions of class C* in a neighborhood
of 2, with bounded first-order derivatives.
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Theorem 3.2.1. — Assume that Q C R" is a Lipschitz domain and let D be a first-
order differential operator as in (3.19) with coefficients in C2({2). Also, let the matrix-
valued function A satisfy (3.20) and define L as in (3.10).

Suppose next that u € C%(f) is a RV -valued function for which M (Vu) € L?(09),

the nontangential boundary trace VuL99 exists pointwise almost everywhere, and

Vu and Lu are sufficiently well-behaved in Q (e.g. being square integrable will do).
Finally, fix an arbitrary vector field A € C}(f2) with real-valued components. Then
there holds

2Re/ (02w, (Vi u)°) do
on
= / (h,v)(ADu, (Du)®) do — / (div h)(ADu, (Du)®) dz
N Q
+2Re [ (L, (Vu))da+ [ O(DuPIIVE, Al da
Q Q

(3.29) + / O(|A||Dul||[D, Vp]u|) dz.
Q
In the second part of this section, we would like to further refine the above identity
under the additional assumption that
(3.30) L is strongly elliptic.

This entails that o(L; €) is an invertible matrix for any £ # 0. Loosely speaking, this
refinement is carried out by decomposing D into its tangential and normal component
on 91, analogously to the standard decomposition

(331) V = Vtan + 1/(91,

of the full gradient operator in R™ into its tangential and normal components on 2.

Let us describe a procedure which, given an arbitrary first-order differential oper-
ator P, allows one to decompose P as the sum of a tangential differential operator on
09 and a suitable multiple of 8/2. The key observation is that the operator

(3.32) 7:= P —io(P;v)o(L;v)" 192

is tangential on 02, in the sense that o(7;v) = 0, which follows readily from (3.13).
In the case when this procedure is applied to D, the resulting tangential operator

(3.33) 70 := D —io(D;v)o(L;v)~104
has the extra property that, on 99,

(3.34) o(D*;v)Ary = —i@,‘f —io(D*;v)Aa(D;v)o(L; u)"la;4 =0.
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Now, writing D = io(D;v)o(L;v) 102 + 79 and expanding (ADu, (Du)°) yields

(ADu,(Dw)®) = (iAo(D;v)o(L;v) " 04u, (Du)°)
+(A7ou, (io(D; v)o(L; v) "104u)°)
(Ao, (ro)%)
(3.35) = I+II+III

Observe that
(3.36) I = (0(L;v) 184w, (—io(D*; v) ADu)°) = (o(L; v) "' 04u, (—8w)®)
and that, by (3.34),
(3.37) IT = (0(D*;v) Ao, (i0(L; v) ~102u)°) = 0.
Thus, all in all,
(3.38) (ADwu, (Du)®) = (o(—L;v) 10 u, (824)°) + (ATou, (Tou)°).

Similarly, we decompose

(3.39) VY = (h,v)o(-Liv) 7100 + 1,
where
(3.40) 7 = Vy — (h,v)o(~L;v) 7182

is tangential, by our previous discussion. Thus,

)
).

Returning with (3.35)-(3.41) in (3.29) finally proves the following general Rellich-
type identity.

Re (8]'u, (Viu)) = Re (9w, (nw)) + (8w, (o(~L;v) "1 8fu)°)(
)

h,v
(3.41) = Re(9u, (ru)*) + (o(=L;v) ' 8fu, (8)'w)°) (R, v

Theorem 3.2.2. — Let Q@ C R™ be a Lipschitz domain, and let D be a first-order
differential operator as in (3.19), with coefficients in C}({2). Let the matrix-valued
function A satisfy (3.20) and assume that the second-order operator L introduced in
(3.10) is strongly elliptic. Next, assume that u € C%(Q) is a RV-valued function such

that M(Vu) € L%(09), the nontangential boundary trace Vu|an exists pointwise

almost everywhere, and for which Vu and Lu are sufficiently well-behaved in 2 (e.g.
being square integrable will do). Finally, fix an arbitrary vector field A € C}(Q) with
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real-valued components. Then there holds
— [ (o) 0, ) ) R do
an
= —-/ (Arou, (Tou)°)(h, v) d0+2Re/ (02w, (11u)°) do
o oN
—2Re / (Lu, (V{w)®) dz + / O(|Du)?|[VY, A])) dz
Q Q
(3.42) + [ OAIDuID, Valul) da,
Q

where all O’s involve only dimensional constants.

47

SOCIETE MATHEMATIQUE DE FRANCE 2012






CHAPTER 4

THE STOKES SYSTEM AND HYDROSTATIC POTENTIALS

4.1. Bilinear forms and conormal derivatives
For A € R fixed, let
(41) a?kB(A) = 6jk6aﬁ + A(Sjﬂékav 1 S jy ka avﬂ S n,

and, adopting the summation convention over repeated indices, consider the differen-
tial operator Ly given by

(4.2) (Lath)a = 05(aSf (\)Okup) = Aug + Aa(divi)), 1<a<n.

The connection with the material in § 3.1 is as follows. Let N := n, M := n?
and consider the first-order differential operator Du := (Oxug)i<k g<n along with
Av = (azi()\)vkg)lgj,as,]. Then D*v = —(0kvks)1<s<n and, consequently,

— _D* —(8.(a*P
(4.3) Lyu := —D*ADu (aJ (a2 (A)akuﬂ))ISaSn.

Thus, all the results from § 3 apply to the operator (4.2). There is, however, one
important nuance on which we would like to elaborate. Concretely, as a whole, the
Stokes system does not fit into the general framework considered in § 3 because of the
divergence-free condition imposed on % and because it involves a pressure function m
which plays a different role than (the components of) #. One of the aspects which is
directly affected by this issue is the way we shall define the conormal derivative for
the Stokes system. More specifically, various considerations dictate that the definition
(3.11) should, in the case of the Stokes system, be altered to

Al — q%B -
o,m) = (viaf(owus —var)

(4.4) = [(vo)"+ A(Vﬁ)]u —av on 90,
where Vi = (0ur)1<j,k<n denotes the Jacobian matrix of the vector-valued function
i, and T stands for transposition of matrices.

To illustrate the fact that this definition is natural, consider the issue of Green’s
formulas, as discussed in § 3.1. Then, introducing the bilinear form

(4.5) AN, Q) = a?f(x\)ﬁf‘(f, V&, ¢ n X n matrices,
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we have the following useful integration by parts formulas:

(4.6) /Qi(L,\a‘—Vw,ﬂi)=:i:/an(6,’,‘(ﬁ,7r),zﬁ)-—/ni Ax(Vi, Vi) — w(div @),

and

4.7

/ (Lnii = Vi, @) — (Lyd - Vp,d) = & / (O, ), D) — (02(@, p), @) + / r(diva) - p(div),
Q4 on Q4

which should be compared with (3.15) and (3.18) respectively. Above, it is implicitly
assumed that the functions involved are reasonably behaved near the boundary and
at infinity (if the domain of integration is unbounded). Such considerations are going
to be paid appropriate attention to in each specific application of these integration
by parts formulas.

We next consider the issue of the (semi-) positiveness of the the bilinear form (4.5).
As a preamble, we shall prove the following lemma.

Lemma 4.1.1. — For £ an n X n matrix, n > 2, and a,b,c € R, let

(4.8) Q) = Qapc() =aléP +b|3(E+ET)* +c|Tx(§)I?,

where Tr stands for the usual matrix-trace operator, T denotes transposition, and
€] := [Tr (€T)]"/2. Then

a>0,
(1) Q(&) > 0 for every n X n matrix { <= a+b>0,
a+b+cn >0,

a>0,
a+b>0,
a+b+cn >0,

(ii) 3k >0 with Q&) >k|¢)>? V¢ <

a>0,
a+b>0,
a+b+cn >0,

(4.9) (i) Ik >0with Q) > k|3(E+EN? VE <

a>0,
a+b>0,
a+b+cn >0,

(iv) 3k > 0 with Q(¢) > k|Tr (§)|> V¢ <

a>0,
a+b>0,
a+b+cen>0.

(v)  3k>0with Q€)= ki - €T VE =

Y e N N e e N
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Proof. — Assume Q(¢) > 0 for every n x n matrix ¢ and define ¢!,£2,¢3 by
gji) 5 (6510k2—0520k1), &5 = 75 (§10k2+8520k1), and & = J= 0.
Then
(4.11) Q) =a>0, QE¢*)=a+b>0, and QE¥) =a+b+cn>0.
Conversely, assume a > 0, a+b > 0 and a + b+ cn > 0. Since
(412) SITrE <13 +€N” < [gP,
for every matrix £ we may write
QE) > alg? +bl3(€+€N)IP — (a+b)3|Trel”
= a(jef - LTrel) +b(13 ¢+ €N - Limrel?)
> (@+0)(15E+ENP - Lmeel)
(4.13) > 0.

Then (ii) follows from (i) once we notice that

a2 K,
(414) Qa,b,c(&) 2 K'ﬁlz V{ — Qa—n,b,c(&) 2 0 Vf = a+ b Z K,
a+b+cn> k.

Then (iii) and (iv) follow by similar arguments, and (v) also follows easily after
noticing that

(4.15) €? = 13+ €N+ 15— €N
This finishes the proof of the lemma. O
Recall now the bilinear form (4.5).

Proposition 4.1.2. — For every A € (—1,1] there exists k) > 0 such that for every
n X n-matrix &

(4.16) AN(E,€) > kal€l? for [N <1 and Ai(6,€) >k |E+ET
Also, for |A\] < 1, the Cauchy-Schwarz type inequality
(417) AA(€7 C)2 < Az\(€1 E)A/\(Ca C)

holds for every n x n-matrices £, ¢. Finally, for every A > —1 there exists k5 > 0 such
that

(4.18) Ax(¢,¢) > Kal¢|>  for every matrix ¢ with entries of the form (jx = &;7x.

Proof. — Since A)(£,£) = Q1-x,2x,0(§), Lemma 4.1.1 readily gives (4.16). The same
lemma also shows that, for |A| < 1, the bilinear form (4.5) is nonnegative, hence the
usual proof of the Cauchy-Schwarz inequality gives (4.17). As for (4.18), it suffices to

notice that, if ¢ = (&7k)1<j,k<n, then Ax((,¢) = [€12n]* + A€, n)]?. O
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4.2. Hydrostatic layer potential operators

We continue to review background material by recalling the definitions and some
basic properties of the layer potentials for the Stokes system in a Lipschitz domain
Q C R, n > 2. Let w,_; denote the surface measure of S"~!, the unit sphere in R",
and let E(z) = (E;kr(z))i<jk<n be the Kelvin matrix of fundamental solutions for
the Stokes system, where

(4.19)  Ej(z) =

1 ( 1 (Sj ZjTk

_zwn_l n — 2 len_g len ) I z e Rn \ {0}? n Z 3’

and corresponding to n = 2,

1 LTk
(4.20) Eji(x) := i (éjk log |z| + I;P ) , = =¢cR?\{0}.
Let us also introduce a pressure vector ¢(z) given by
1 z
(4.21) g(z) = (Qj(z))lﬁjgn =1 TE R™\ {0}.
Wnp—1 |$'

Then we have

(4.22) OkEji(z) =0 for 1<j<n and 0;E;x(z) =0 for 1 <k <mn,
(4.23) AEji(z) = AEgj(z) = Org;(z) = Ojqr(x) for 1< 5,k < n.

Now, fix —1 < A <1, and define the single and double layer potential operators
and 9Py by

(4.24) 4f@) = [Be-viwdow), s¢om,
onN

@) @) = [101B - ) dot), = ¢on,
N

where 8j(y){E, @} is defined to be the matrix obtained by applying af/\(y) to each pair
consisting of the j-th column in F and the j-th component of §. More concretely,

(4.269) ) {E, @} (y—2))jk = Va(9)aBij (y—2) + Mo (y)Ok Eos (y—2) =i (y—2) v (y)-

Let us also define corresponding potentials for the pressure by

W  0fw) = [e-u.fw)dow) ¢on,

on
@) 2f@) = 0+ [1EO0 -2, fw)dow), o ¢on.
N
Then
(4.29) ASF—VQf=0 and divdf=0 in R"\OQ,
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and for each A € R,
(4.30) ADNf—VPf=0 and divDrf=0 in R"\Q.

Let us also consider the fundamental solution for the Laplacian,

__1—n_z if n>3,
(4.31) EA(IL') p— { l(n—2)wn_'1|w| i n2
s-loglz| if n=2,
and the corresponding single and double harmonic layer potentials
4.32) daf@) = [ Bl -0)i@dow), o ¢ 0,
(433) Da1(@) = [ O Eale - 0)f4)doty), o ¢ 00
a
Then
(4.34) §=-VEs in R"\ {0},
and so
(4.35) Qf ==Y 0k(dafr) = —divd,sf,
k=1
(4.36) Prf =1+ Ndiv Daf.

Let us now record a basic result from the theory of singular integral operators of
Calder6n-Zygmund type on Lipschitz domains. To state it, recall that & denotes the
Fourier transform in R™.

Proposition 4.2.1. — There exists a positive integer N = N(n) with the following
significance. Let Q be as in (2.1), fix some function
(4.37)

ke CN(R™\ {0}) with k(—z)=—k(z) and k(Az)=X"""VYi@) V>0,

and define the singular integral operator
(4.38) Ti(@) = [ ka-)f@)doty), zeR"\o0
a9

Then for each p € ("—;1-, 00) there exists a finite constant C' = C(p, n,00Q) > 0 such
that

(4.39) IM(T F)lzeon) < Cllklsn-1llen £l o on)-
Furthermore, for each p € (1,00), f € LP(99), the limit

(4.40)  Tf(z) = p.v. /a @y ) doly) = lim, / k(z —y)f(y)do(y)

YyeEIQ
lz—y[>e
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exists for a.e. x € 912, and the jump-formula

(4.41) Ti|, @)= lim Ti() = 2imTB)@@)f @)+ Ti@)

zelE (z)

is valid at a.e. z € 9Q.
Let us now specialize (4.41) to the case of hydrostatic layer potentials.

Proposition 4.2.2. — Let Q C R™, n > 2, be a graph Lipschitz domain and assume
that 1 < p < co. Then for each A € R, f € L?(99), and a.e. x € 99,

@) 0f|, @ = 2@ @) +v. | @G- fw)dow)

(4.43)  Dnf |‘aﬂi (x) (:E%I + KA) fla),

where I denotes the identity operator and

(444)  K\f(@) = pv. / [0 (B, B}y — o)) fly) do(y), € Q.
N

I

Furthermore, if K3 is the formal adjoint of K, then

(4.45) 0P|, @ = (31 +K)fle).
Finally,

(4.46) VandS |, = Vend|, i 1(00),

hence

(4.47) Sf= dﬂam: oF|, i L3069

In fact, analogous formulas hold in the case when 2 C R” is a bounded Lipschitz
domain.

Proof. — Recall that if m is an integer and P; is a harmonic, homogeneous polynomial
of degree 7 > 0 in R™ then, as is well-known (cf., e.g., p. 73 in [82]),
P;(z)

(4.48) T(Qj)(z) = Ei=
where, with I denoting the standard Gamma function,

. Pi(a) 2 2m TE+2)
4.49 () i= (=1) ) m—= and ;g o= (1) 2pz—m—22 27
(449)  Q;(=) :=( )%’WW“ Viym = (=1) Tl+z-m)

provided either 0 < m < m, or m € {0,n} and j > 1. Based on this and (4.41), a
straightforward calculation gives the following trace formulas

50)  0;(dap9)|,,. @) = F315(@)(dup — va(e)s(@))9(0) + 8iSas 6()
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valid at a.e. z € 99, for every g € LP(92), 1 < p < oo, where for each o, 3,5 €

{1,...,n}, we have used the abbreviations

(451) Faps@) = | Fuple—1)o)doty), =cR"\00,

(4.52) 9;Sap 9(x) := p.v. /8 n(aanﬂ)(w -y)9(y)do(y), =z €.
In particular, for j € {1,...,n}, we have

@) 0df| @)= Fn@fen@ +ov. [ OF)@ -0 dote)

at almost every € 02, where f;an = f - (v, ﬂ is the tangential component of f
In a similar fashion,

(454 Odadl, @) = Fhu@s@)+py. [@Ea)e - 1)) dotw),
a0
for a.e. x € 9. Now, all the trace formulas in the statement of the proposition are
direct corollaries of (4.53) and (4.54). d
With the help of Proposition 4.2.1, we can now establish the following.

Proposition 4.2.3. — Let Q C R™, n > 2, be a graph Lipschitz domain. Then for
n-l < p < oo, there exists C = C(09,p) such that for any f = (f1,...,fs) in

n

H?(09),
IM(VSF) e o0y + 1M (QF) Lo o0

(4.55) + Y IM(Vda fi)llzeony < Cllfll s (on)-
k=1

Moreover, for A € R and 1 < p < 00, there exists C = C(012, p) such that for any
f e L7(09),
(4.56) IM(Drf)lzr o0y < Cll s o0)-

Similar results are also valid when €2 C R™ is a bounded Lipschitz domain, with
H?(909) replaced by hP(012), its local version.

This result leads to the following corollary.
Corollary 4.2.4. — Let 2 C R™, n > 2, be a bounded Lipschitz domain, and fix A € R.
Then the operators
(4.57) K, K3 : LP(0Q)) — LP(092),
(4.58) S : LP(8Y) — LY (09),
are well-defined, linear, and bounded whenever 1 < p < oo. A similar result holds

when ) is a graph Lipschitz domain, except in this case the Sobolev space LY (89) is
replaced by its homogeneous version L} (912).
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We now turn to the action of layer potential operators on Sobolev spaces of neg-
ative smoothness. If 2 C R™ is a bounded Lipschitz domain, p € (1,00), and f =

(fi,---, fn) is a vector whose components are functionals in L” ; (892) = (Lp (OQ))
1/p+1/p =1, we set

@) W@ = (N (B, 5) L o

k=1

where in this context, (-, -) is the duality bracket between L” ; (9€2) and (Lf’ (89)) It

is then clear that this operator is compatible with (4.24), when the latter is considered
acting on LP(8Q) — LP ,(8N). This justifies our retaining the same piece of notation
for the single layer in (4.59). Similar considerations apply to the pressure potential

n

(4.60) 0f@) =3 {4z lﬂ,fj>, z € R\ 89

Jj=1

Proposition 4.2.5. — Let Q be a bounded Lipschitz domain in R™. Then the following
hold for each p € (1, 00):

(i) For each felL? 1(09), the pair (J f,0 f) is a solution of the Stokes system in
R™\ 99 (i.e. the formulas in (4.29) continue to hold).
(ii) There exists C = C(f,p) > 0 such that

(4.61) 1M (S| e omy < Cl e o0)-

(iii) The boundary single layer operator

(4.62) Sf:= dﬂm = dﬂ

aa_’
is well-defined as a function in LP(8%) for each f € L? (89). Moreover,
(4.63) S : LP,(892) — LP(09)

is a bounded operator, which is compatible with (4.58).
(iv) If 1/p+ 1/p’ = 1, then the adjoint of (4.63) is

(4.64) S : L¥ (0Q) — LE (89).
Proof. — The claim in (i) is clear from (4.29) and (2.27). Next, if f € L?(89),

Corollary 2.1.2 gives that, for every k = 1,2,...,n, there exist functions gg, 95,
1 <r,s < mn, such that

n n
(4.65)  fe=gt+ Y. 0r.0i%s lgllzecony + DO 195 Nzecony < 2Mlfellze, o0);

r,s=1 r,s=1
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Based on this, the j-th component of f can be expressed as

(vfw) = ‘i / Ejx(z — y)gl(v) do(y)

(4.66) 33 [ e Bl - visk W) o)

k=1r,s=1

for each z € R™ \ 99Q. This and Calder6n-Zygmund theory then give

(@6 (D eon) < cz(ngkumam 5 gt lzsom) < CNFlze, om,

r,s=1

justifying (4.61).
Formula (4.66) and Calder6n-Zygmund theory also give that the pointwise nontan-
gential traces in (4.62) exist. In fact, since

(4.68) — 1,(2) (0. Ejx) (v(2)) + vs(2) (0, Bz1) (v(x)) = 0,

it follows from (4.66) that there are no jump-terms when taking the boundary traces
of Jf on 6. In particular, Jf|sq . = dfloa_ and, in addition, the j-th component
of § f is

SFaps = 3 [ Bwte k) aoty

(4.69) S o [ on Bt - 0 0) o),

k=1r,s=1

for a.e. z € 9N. This also shows that the operator (4.63) is well-defined, bounded,
and compatible with (4.58). Finally, the claim in (iv) is easily justified based on the
fact that S is self-adjoint as an operator on L?(8f2) plus a density argument. O

In the study of the action of the hydrostatic layer potentials on Hardy-type spaces,
the following standard result is going to be useful.

Lemma 4.2.6. — Let Q be a graph Lipschitz domain in R™, n > 2, and consider a
bounded, linear operator

(4.70) T : L*(69Q) — L*(09)

such that there exists a locally bounded function & : {(z,y) : z,y € 9Q, z #y} - R
with the following properties.

(i) For each f € L2(09Q),

(4.71) Tf(z) = /6 k(z,)f(4)do(y), =€ 02\ supp 1.
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(ii) There exist Cp, C; > 0 such that

(4.72) |k(z,9)| < Cole —y|~*™V  ifz,y €09, z#y,
@) k@) - ko) < Cof L it ly— ol < Cale ~ ol

Then there exists € > 0 small and « > 0 large such that if a is as in (2.30) then
(4.74) m := Ta => k™ 'm satisfies the last two conditions in (2.34).

If, in addition to (i) and (ii) above, the operator T also satisfies T*(1) = 0, in the
sense that

(4.75) f € L*(69) with compact support, / fdo=0= Tfdo =0,
aQ aQ

then m is a fixed multiple of a (p,e)-molecule. Hence, in this latter case, T' extends
as a bounded operator

(4.76) T : HP,(0Q) — HP,(89)

for every 1‘—5—1— <p<l

We can now establish the boundedness of the operator K3 on atomic Hardy spaces.

Proposition 4.2.7. — Let Q@ C R™, n > 2, be a graph Lipschitz domain and "T‘l <

p < 1. Then
(4.77) K3 : H? (692) — HPE,(69)

is a bounded operator for each A € R. Moreover, a similar result holds when 2 C R"
is a bounded Lipschitz domain, provided HZ (9€) is replaced by its local version,
hP.(09).

Proof. — This is a consequence of Lemma 4.2.6 once we check (4.75). To this end,
assume that f € L?(0Q) has compact support and satisfies [, oq f do = 0. Next, set
@:=f and 7 := Qf in Q, so that from (4.45),
(4.78) K3 f = 8)(sf, af)| +3F.

Thus, we need to establish that

(4.79) d) (i@, ) do = 0.
N

Note that the vanishing moment condition for f ensures that the above integral is
absolutely convergent and that

(4.80) |Vi(z)| + |7(z)] = O(|z|™™) at infinity.
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To prove (4.79), fix a function ¢ € C§°(B(0,2)) with ¢y =1 on B(0, 1), and for each
R > 0 set ¥Yr(z) := ¥(z/R). Then for each constant ¢ € R", using the integration by
parts formula (4.6) with & := ¢gC gives

<~/aa d) (@, ) do, E> lim /m(a;\(ﬁ, ), Yre) do

R— o0

Jim [ {4598, 9w - mdiv (a0} do

= Jm (V@) + Ir(@)]) I V¥(@)| da
0 JzeQ: R<|z|<2R
(4.81) < C lim R =0,

by (4.80) and the fact that |Vig(z)| < C/R. Since ¢ was arbitrary, this gives (4.79),
thus finishing the proof of the proposition. O

Next, we wish to discuss the action of these various operators on Sobolev-Hardy
spaces. To set the stage, we first note that, from (4.25)-(4.26), for each A € R, j €
{1,...,n},and f € L?(09), 1 < p < o0,

(227) @ = [ (@B - 2) + Ava)®Bar)(y - 2
J 1519]

(4.82) —v;(y)ar(y — w))fk(y) do(y), =€R™\N.

Then for each f € H?(0%), 17‘71 <p<oo,rje€{l,...,n}, and z € R*\ 99, we
may write

(4.83)
0(D21);(@) = = [ [1a)(O:aBp)(y — 2) + Ao 6)(0.0; Ear) v~ 2)
N
— 1;(®)(0ra8)(y — 2)| fu(v) dor ()

= = [ [Prar ) OaBi) = )+ N 05t~ ) = B a6ty - )] fe0) o)
N

- / [ () AEjk(y — 2) + Avr(y)(0a0; Ear) (v — ) — v (¥)(9;g6) (v — )] fi(y) do(y).
a9

From (4.22)-(4.23), it follows that the integrand in the last line of (4.83) vanishes.
By further integrating by parts (cf. (2.9)) the tangential derivatives in (4.83) we arrive
at the identity

0.(237) (@) = [ [0aBi)u ~ 9)0r. 1)) + NBs ety ~ )60 )W)

o
~ak(y - 2)(0r,, Si)(w)| do(),
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or equivalently,

(4.84) 8- (Drf)j = —0ad ik (Ora, F&) — A0j B ok Bre, f5) — Okida (s, f&) in R™\ BN

The same type of reasoning applies to (4.28). Specifically, we have for each z €
R™\ 09,

Pafl@) = (1+N) / vr (1) (0rk)(y — ) fi(y) do(y)
on
= 1+ / vr (4) BBk En)(y — 2) fi(y) do(y)
= 1+ / (91, 0rEn)(y — 2) fi(y) do(y)

= 1+ / (0:Ea)(y — 2)(Br, fi)(v) do ()

aQ
(4‘85) = (1 + )‘)a"'dA(aTrk fr)(z),
whenever f € H?(8%), 221 < p < co. With these identities in mind, we can prove

the following results.

Proposition 4.2.8. — Fix A € R. Then for each graph Lipschitz domain 2 C R”,
n > 2, and "T_l < p < 00, there exists a finite constant C = C(9€2,p) > 0 such that

(4.86)  [IM(VDAf)llLoon) + IM(Prf)llrcon) < Cllfllapony,  Vf € HI(9).

Furthermore, an analogous estimate holds in the case when Q C R™ is a bounded
Lipschitz domain, whenever f € h}(0%Q).

Proof. — This is a direct consequence of Proposition 4.2.1, (4.84), (4.85) and
Lemma 2.2.1. O

Proposition 4.2.9. — Let Q C R™, n > 2, be a graph Lipschitz domain. Then for every
A€Rand f e LY(09), 1< p < oo, there holds

(4.87) NDrf, Prf) o0, NDrf, Prf) b 0 LP(09).

A similar identity is also valid when @ C R™ is a bounded Lipschitz domain,
whenever f € L7 (09).

Proof. — This follows from (4.84), (4.85), (4.50), and (4.54). d

Proposition 4.2.10. — Let @ C R™, n > 2, be a graph Lipschitz domain. Then for
each A € R,

(4.88) Ky : HP(99Q) — HP(59)
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is a well-defined, bounded operator for every p € (%= 1 '00). Moreover, a similar result
holds in the case when Q C R" is a bounded Llpschltz domain, provided HY(99) is
replaced by h%(99).

Proof. — Assume first that 2=+ < p < 1. In this case, fix p, € (1,00), € > 0 suffi-

ciently small, as wellasr, s € {1, ...,n} arbitrary. Also, let f be a regular (p, p,)-atom.
By (2.47) and Lemma 4.2.6, it suffices to show that 0, K f'is a (p, €)-molecule. Since
this issue is dilation invariant, there is no loss of generality in assuming that 0 € 91,

(4.89) supp f C S1(0) and ||Vtanﬂleo(aQ) <1.
Going further, we note that for each j € {1,...,n},
Or,, (K)\f)] (z) = 'rn(%f'*‘ K/\f)j(x) - %aTrsfj(m)
(4.90) = 1,0, Daf)s, (@)~ v:(8: D2 P3| (@) = §0r,. 85 (=),

at almost every = € 0Q. Now, if 8;Sa stands for the principal-value integral operator
on 00 with kernel (0;Ea)(x — y), then at almost every point on 052, we have from
(4.84) and (4.50)

3s(Drf); o 3Va(8jk — Vjvk)0r,, fr — 0aSjk(Or., fi)
+A lI/j(li]k - l/al/k)a-,—asfk - )\ajSak( -,-Mfk)
(4.91) —2VkOr,, fr + OkSa(Or,, i),

with a similar formula for 8, (D f); oo Note that

Va(Ojk = Vivk)Or, o = Va(djk — Vjvk)(Va(Vianfk)s — Vs(Vianfi)a)

(492) = (Vtanfj)s - Vij(vtanfk)sy

and similarly,

(493) Vj(éak - VaVk) Ta_,fk = _VjVs(vtanfk)ka

(494) Tsjfk = Vsz(Vtanfk)j - Vij(Vtanfk)s-

Thus, the jump-terms in uras(@,\fﬁj ’BQ—Vsar(Q),\f)j Ian amount to %J1+%J2—%J3
where

J1 = (Vtanfj)s - l/s(vtanfj)r - I/T-le/k(vtanfk,)s + VstVk(vtanfk)r
(4.95) = O, fj —vjw0r,, fk,
(4.96) Jo = =VsViVp(Vianfi)k + vrtivs(Vian fi)x = 0,
and
J3g = l/rl/kl/s(vtanfk)j - VTl/kI/j(Vta,nfk)s - VstVr(Vtanfk)j + VstVj(vtanfk)T
(4.97) = VY l/k Trs fk
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Thus, 1J1+3J2—1J5 = 10,,, f;, which cancels the last term in (4.90). In summary,
all the jump-terms cancel out, and we arrive at the identity

8, (Kxf)i = Vs0aSik(Ora, fi) + As0jSak(Or,, fi) — vsOkSa(Or,, fi)
(4.98) ~v7r008jk(0r,, fi) — Avr0jSak(0r,, fr) + VrOkSa(0r,, fi),

valid at almost every boundary point. Since 0,,fx is a (p,p,)-atom supported in
51(0), Lemma 4.2.6 ensures that, up to a fixed multiple, each term in the right hand-
side of (4.98) satisfies the last two conditions in (2.34). There remains to show that
m:= 0, K) f integrates to zero on 9.

To justify this, fix a function ¢ € C§°(B(0,2)) such that ¢y = 1 on B(0,1), and
for each k € N set 9, (x) := ¥(27%z). Note that d,, 1y is supported in the annulus
Ay = Sor+1 \ Sor and satisfies ||, Pk [z < C27F. Also, |Kxf(z)| < C27*(=1) for
x € Ag. We can then use (2.16) in order to estimate

@9 || w@on. Kf@)do@)| =|[ onun(@)Esfle) dota)| < o2
N on
Thus,
(4.100) / ., Kxf(z)do(z) = lim / Vi(2)8,,, K f(x) do(z) = 0,
o0 k—oo Jaq

as wanted. This finishes the proof of the proposition in the case when "T‘l <p<l
Finally, when 1 < p < oo, the desired conclusion follows from (4.90) and Proposi-
tion 4.2.8. O

4.3. Traces of hydrostatic layer potentials in Hardy spaces

Consider the following general trace result.

Theorem 4.3.1. — Let Q C R™, n > 2, be the domain lying above the graph of a
Lipschitz function and assume that 1‘;—1 < p < 0o, A € R. Then there exists a finite
constant C = C(09Q,p, \) > 0 with the following property. Whenever @, 7 satisfy

Ad=Vm, divi=0 in

(4.101) .
M(Vi), M(r) € LP(9Q),
then
(4.102) i € HP(0R), o) (i@, ) € HP(0Q),

where the traces are taken in the sense described in § 11.6. Furthermore,

(4.103) ||@aallzron) + 182 (@, ™)l Hr(90) < CIM (V)| s (a0) + ClIM (7)] Lo 00)-
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Finally, similar results are valid in the case when (2 is a bounded Lipschitz domain
in R™. In this case, (4.101) imply

@ en0Q), 9\(@r) eh?(49), and
(4.104) “loa v }
l@loallne a0y + 185 (@, )lrea0) < CIM(VE)||Lr(a0) + CllM (7)| Lo (80)-

Proof. — The well-posedness of the Dirichlet problem for the Stokes system in Lip-
schitz domains with data in L?(02), established in [32], and arguments which are
well-understood by now (cf.the proof of Proposition 3.1 in [66] for details in similar
circumstances) imply the following Fatou-type result:

(4.105) (@, w) as in (4.101) and M (%) < oo a.e. on 9N = ﬂ'an exists a.e. on 9.

Moreover, since (4.101) imply that An = div V7 = div A@ = A(div @) = 0, we can
utilize the following result established by B. Dahlberg in [16],

(4.106) Amr =0 in Q and M(7) < co a.e. on O = WIBQ exists a.e. on Of.

Then the theorem follows from (4.105) and (4.106) whenever 1 < p < oo. There

remains to consider the case when ﬁi—l— < p < 1. In this scenario, we introduce the
vector fields
(4.107) o= (Okur)e; — (Bjur)er  in Q, 4,k,r€{1,...,n},
where {eg}1<¢<n is the standard orthonormal basis in R™. Note that, for each j, &, r,
M (ﬁfk) € LP(99), F;Tk has biharmonic components,
(4.108) div F, = 8;0ku, — 0x0jur =0 in Q,
(F']Tk, v) = v;Okty — VgOjur = Or, u,  on ON.
Then (2.43) and Corollary 11.6.3 give that
(4.109) l@loallmroe) = Y, 18n,illasa0) < CIM(VE)| Le(o0)-
J,k=1

This proves the first membership in (4.102) and part of the estimate (4.103).
To bring in the conormal derivative, define

(4.110) Fj:=Vu; + \8;i —me;, je{l,...,n}.
Then
M(F;) € LP(89), F; has biharmonic components,
(4.111) div F; = (Ly@); — 97 =0 in Q,
(Fj,v) = (8)(a, m); on O
Then Corollary 11.6.3 gives 9, (i, ) € HP(9R) and
(4.112) 102 (@, )| erv a2) < CIM (V)| o (00) + CIIM (7)l| Lo (00)-
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The argument for the case when {2 is a bounded Lipschitz domain is similar, and
this finishes the proof of the theorem. O

We can now state the following result regarding the traces of hydrostatic layer
potentials.

Corollary 4.3.2. — Let Q be a graph Lipschitz domain in R™, and assume that 1‘—;—1- <
p <00, A € R. Then

(4.113) 6;,\(df,Qf)‘m =(:F%I+K§)f in HP(OQ), Vfe HP69),
(4.114) @Aflm =(:I:%I+K,\)f' in HP(8Q), VfeHP(6Q),
(4.115) aTjngf”laQ =3,J.kdf|8Q in HP(89), YfeHPOQ),

for every j,k € {1,...,n}. In particular,

(4.116) df]am:gjf]m in  HP(89).
Moreover,
(4117) D, )| =RDFS| i H(@9), VfeH(09).
a0, -

Finally, analogous results hold in the case when 2 C R" is a bounded Lipschitz
domain, provided the Hardy spaces H?(0Q) and HY(0) are replaced by their local
versions.

Proof. — Consider formula (4.113). This is going to be a consequence of the fact that
K is bounded on H?(99) the observation that, by Theorem 4.3.1, the assignments

(4.118) H?(09) > ' aMJf, Q) o, € H(09)

are bounded, plus the fact that (4.113) holds when f is an atom for H?(9R), thanks
to Proposition 4.2.2. All the other identities can be proved in a similar manner. [

4.4. Integral representation formulas

We begin this section with the following useful representation formulas for solutions
of the Stokes system.

Proposition 4.4.1 (Green’s Representation Formulas). — Let Q& C R”, n > 2, be either
a bounded Lipschitz domain, or a graph Lipschitz domain. For 1 < p < oo fixed,
assume that the functions (@, ) satisfy

(4.119) AZ—~Vr=0 in Q, divi=0 in Q, and M(Va), M(r)ec LP(0Q).

ASTERISQUE 344



4.4. INTEGRAL REPRESENTATION FORMULAS 65

Then @ and 7 also satisfy the following integral representation formulas (modulo
constants):

(4.120) @(z) = Dy (a[an) (z) - d(as(a, 71')) (z), z€Q,

(4.121) (z) = P» (ﬁlm)(m) -9 @m) @), zen.

Proof. — The identity (4.120) can be established, at least at the formal level, by
specializing Green’s formula (4.7) to the case when @ = (Ey;j(z — -))i<k<n, p =
gj(x — ), where x € Q is fixed and j € {1,...,n} is arbitrary. If Q is a bounded
Lipschitz domain, (4.120) can be justified by writing (4.120) for a sequence of sub-
domains (2; approximating the original {2 in the fashion described in Theorem 1.12
on p. 581 in [90], and then letting j — oco. Here, (4.105) and (4.106) are also used.
On the other hand, we also wish to establish (4.120) in the case when  is the
upper-graph of a Lipschitz function ¢ : R®~! — R. In this case, we will show that

(4.122)  8;d(z) = 9; Dy (a|m) (z) - ajd(ag(ﬁ, ﬂ)) (), z€9Q, 1<j<n,

which is enough to prove (4.120) modulo constants.
Fixz € Q,1 < j < n, and for each r, s > 0, consider the bounded Lipschitz domain
(4.123) Dys:={y=4,y:) ER" I xR: |y/| <7, 0<yn—(¥) < s}

Assume r and s are large enough so that x € D, ; and dist(z, 9D, ;) = dist(z, 02).
In particular, (4.122) holds for the domain D, ;. Dividing the boundary of D, , into
its bottom, top, and vertical portions, we can write

(4.124) 8Dy = B,y UT,, UV,
where

B,, = 0D,,NdN,

T,s = {y=9) ER" ' xR: |y| <7, yn = 0(a) + 5},
(4125) Vi, = {y=(,ux) ER" ' xR: || =7, 0<yn —o(¥') < s}.

Consider the version of (4.122) written for the domain D, ,, and let us break the
right hand side into three separate terms corresponding to integrals over the bottom,
top, and vertical portions of 8D, ,, In particular,

(4.126) 8;i(x) = I, + I, + II1,

where the terms I, 5, I, and 111, , correspond to integrals over B, ;,T; s, and V; ¢
respectively. Next, we will monitor what happens to these terms as the parameters
r, s approach infinity (in a suitable fashion).

We first claim that

4127) 8 d(fxs, ) (@) — 8; Sf(z) as r — oo for any f € LP(9Q),p > 1.
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Since z € Q is fixed, for y € 01},

(4.128) |VE( € L1(0Q) forevery 1<gq< o0,

C

PoUS T
and so (4.127) follows by the Lebesgue Dominated Convergence Theorem. Note that
(4.127) also holds if we replace J with J,. Now according to (4.84), we can rewrite
derivatives on 9, f as a sum of derivatives on ¢ and J, applied to tangential deriva-
tives of f. Then since M (Vi), M(r) € LP(9), it follows from (4.127) that the term
I, , converges to the right side of (4.122) as r — oo. By rewriting derivatives on the
double layer as combinations of derivatives on single layers as before, we can also show
that

@129) 1Ll < [ (VB -]+ VEa - )V + @) doy,
Tr,s

(@130) (11Tl < [ (VB — )| +VEa(e ~ D (VA + In(w)]) doy.
Vro

Estimating as in (4.128), for ¢ > 1, we can write

1 1
VE(z — 2)|%d <C/—d <C/ d
/' (@ =2 do. < C | Ty apyea 0% < L+ [y + se)(n-17 “7¥
T, , T, 8D, NN
1 1
gc/————dy'gcs<“—1><l—q)/—dw
DI L, @t fwhmte

(4.131) < Cstn~DA-a),

In particular, repeating the same argument also for Fa,
(4.132) |VE(z —-)+ VEa(z — )lLa(r,.,) < Cs™VGED forany 1< g < oo,

where the L™ estimate follows from (4.128). Then using (4.129), we can estimate
II, ; by
(4.133)
—(n—1)1 .
LI, < Cs™ V5 (|M(VaD)||oon) + IM(m)| Lo o)) — 0 as s — oo.
Let us also note that if z € 8Q is far away from z € , then for any w € I'(2),

|z — w| ~ |z — 2|, and so in fact

c
(4.134) M(VE@ = ))(2) < o

Then for r large,

1
- q < - -
[ mMEBe-pore. < ¢ [ e
BZr,s\Br,.s B2r,s\Br,s
(4.135) < Crin-Hi-a9
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and so after repeating the argument for F, it follows that
(4.136)
IM(VE(@=))+M(VEs(@—))1e(Bsr,\B.,.) < Cr"VE™D, for any 1< ¢ < co.

Then using (4.130), we can show that for R large,
(4.137)

2R

1 Cs »

I3 / |11, 5| dr < RIHE-DT (1M (V@) »a02) + 1M (7)]| Lo (852)) — O as R — oo.
R

Finally, (4.122) can be established by averaging (4.126) over r € [R, 2R] and then
taking the limit as R and s approach infinity.

To establish (4.121), let {e;}1<¢<n be the standard orthonormal basis in R™ and
for z € Q, write

- 0(@@n)@ = [ ((VEa)e-u), 2(@)e)) doty)
= | (Bate v, 02 m(a) do(v)|
= 8, [ /Q A:((Va)w), Vy(Ba(z - y)es)) dy] ) [ /Q m(y)(9eEa) (@ — y) dy]
= 0 [ ((051)4)(03 )@ = 1)+ AOe) 1) O Ea) @ = 1)) dy]| + 7(2)

= —lim / ((3jue)(y)(3eajEA)($ —Y) + MOeuk)(y)(0eOk En ) (z — y)) dy

lzlfflzx
+ m(z)
(4.138)
=+ Nlim [ @ue)O,0Ea) @ — y)dy +(a).
23>

Above, (4.27) and (4.34) have been used in the first equality, (4.6) with @ :=
Ea(x — -)eq in the third, AEA = § and the identity

Ay (Vﬁ, Vy(Ea(z - -)ez) = (5jk5aﬁ + /\6jﬂ6ka)(6jua)(akEA)($ — )dpe
(4.139) = —(0jue)(9;Ea)(z — ) — MOpux)(OkEa)(z — )

in the fourth and, in the fifth, a well-know differentiation formula for singular integrals
plus the fact that

(4.140) /Sn_l(ajakEA)(w)dw =0, Vjke{l,... n})
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On the other hand, since @ is divergence-free, we have 0,,, ux = —vx(9;us)|aq, so
(4.85) gives

P (ﬁlan) (z) = (1+ A)ajdA(aTjkuk)(z) = —(1+X)9;da (Vk(ajuk)lan) @)
= a8 [ Bale- )00 o)
0 /Q (0xEa)(@ — v)(0;8) ) do]

(@.141) = a4 Nlim [ OEE - DEu) @,

YyEN
lz—y|>e

where we have integrated by parts and used divié = 0 in the third equality and
differentiated under the integral sign in the last step (here (4.140) was also used). Now,
(4.121) follows from (4.138) and (4.141). Once this is established for nice domains, we
can use the same approximation arguments from the proof of (4.120) to prove (4.121)
for bounded Lipschitz domains and then also for graph Lipschitz domains. O

The previous representation formulas allow us to prove the following useful identi-
ties.

Proposition 4.4.2. — Let Q C R”, n > 2, be a either a bounded Lipschitz domain or
the upper graph of a Lipschitz function. Then for any =% < p < oo,

(4.142) S@)(Daf, Paf)) = GI+ K\)(-3I + K))f, Vf e hE(09).

Proof. — This follows by applying Green’s formula (4.120) to the functions @ = D) f
and m = P) f and then taking boundary traces. O

Proposition 4.4.3. — Let Q4 C R™, n > 2, be the domains lying above and below the
graph of a Lipschitz function. Assume that the pairs (@4, 74 ) solve the Stokes system
in Q., respectively, and that M(Vidy), M(ny) € LP(99Q) for some p € [1,00). Then
the following boundary identities hold:

(4.143) (FI + K)) (@|on) = S(0) (iix,m+)) in H(09),
and

(4.144) (231 + K3) (0)(iix, 72)) = 8) (D(iix|on), P(ilon))  in HP(89).

Proof. — Since 7_ = —7, applying (4.120) and (4.121) to (@4, 74) gives
(4.145) iii(:c) = :i:@)\ (ﬁi ’BQ) (1‘) F d(a{}(ﬁi,ﬂ':h )(.’L’ , T € Qi;
(4.146) ms(z) = £Py (ai |89)(x) (a (B2,72))(2), @€ Q.
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Applying these identities in the definition of the conormal derivative, we can write
ix,mse) = +0)(Dr(@xlon), Pa(@s lon)
(4.147) T 02 (0 (@, m2)), QO (i m2))-
The jump relation (4.45) then gives
(4.148) 8} (@y,ms) = :i:(’),’,\(@,\(ﬁi loa), Pa(@s |an)) ¥ (FLI+ K;)(B,’,‘(ﬁi,wi)),

which is enough to establish (4.144). Similarly, taking boundary traces in (4.145) and
using the jump relation (4.43) leads to

(4.149) Ut|oq = :t(:i:%[ + K))(€+laq) F S(@:‘(ﬁi, 1)),
from which (4.143) follows. a

4.5. Boundary integral operators and the transmission problem

In this section we assume that {2 is a graph Lipschitz domain in R™, n > 2. As
usual, set Q :=Q, Q_ := R™\ Q. We begin with the following uniqueness result.

Proposition 4.5.1. — Assume that (44,71 ) are solutions to the Stokes system
(4.150) Aty =Vmy, divie=0 in Q4, and M(Vidy),M(ry) € LP(09),
for some 1‘—;—1 < p < 00, and that, in addition, they satisfy

(4.151) dylog = @_|loa and  ON(dy,my) = O)(d_, 7).

Then 44 and w4 are constant.

Proof. — Consider the functions
i, in Q. in Q.
(4.152) =4 ot P and ge=g T
4_ in Q_, n_ in Q_.

Then (@, 7) solves the Stokes system in R™. Let M(Va) := max{M(Vi.,),
M (Vi_)}. Then for every fixed z € R™ and R much larger than dist (z,99), interior
estimates give

~ - 1/1’ _n—1 .
(4153) Vi< (f,  var)" < ORI IMEDl a0

r(z)

After taking the limit as R — oo in (4.153), it follows that Vu = 0 in R", and
hence, 4 is a constant vector. Then since V& = A# = 0 in R", we know that m must
also be constant. O
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Suppose that
(4.154) fe HP(8Q), §e HP(69),

are arbitrary, and for each u € [0,1), consider the following transmission problems:

(4.155)
4y, w4 as in (4.150), 4,7+ asin (4.150),
(T)* {4 dslon — @-loq =, (T,)" q d+loq —-lon = G,
Oy, my) — pd) (i, m_) = f, o iy, my) — (i, 7_) = f,
(4.156)
@y, m+ as in (4.150), 4,7+ as in (4.150),
(T;F) § ditlon — pii-loq = §, (T,) { witlaq — i-loq = g,
O (i@, my) = O (d-,m-) = ], (s, my) = B (@, m-) = .

Let us remark that, given that 2 is a graph Lipschitz domain, a convenient inter-
pretation of the boundary condition @4 |aq —@_|aq = § in (T[f)* is O, @y — 8, G- =
0r;.§ on 09, for every j, k € {1,...,n}. Similar considerations apply to (Tlf)

For any of the problems above and any "T‘l < p < oo fixed, we will say that
problem is well-posed if for any data as in (4.154), there exists a solution (@4,74)
to the problem that must be unique (modulo constants) and which also satisfies the

estimate

(4.157)  |M(Viz)llzroa) + 1M ()l ooy < C (1 flme o0y + 1317 60)) -

Notice that when p = 1, all of the above problems are identical and can be solved
by the functions

(4.158) Gy =DJ—JfinQy and my:=Prj— Qf in Qs

Furthermore, from Proposition 4.5.1, the solution is unique modulo constants. Now
the following claims are obviously true:

(4.159)
(T: )* is well-posed <= (T, )*, written with 2 and Q_ interchanged, is well-posed,

(4.160)
(T; ) is well-posed <= (T};") , written with 2, and Q_ interchanged, is well-posed.
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For p > 0 fixed, the following also hold:

(@4,m4) and (@_,m_) solve (T,;)* for (f, 9

(4.161) <= (tiy,m4) and (pii_, ur_) solve (T,;) for (f, ud),
(@y,m4) and (@-,7_) solve (T )* for (f. )

(4.162) <= (pily, pmy) and (@, 7_) solve (T})) for (£, ug),
(@y,m4) and (G-, 7_) solve (T,F)* for (£, 9)

(4.163) < (pt4,pry) and (pd_, pm_) solve (Tl_/“)* for (f, ud),
(@4,74) and (@_,7_) solve (T}) for (f,7)

(4.164) < (piy,prs) and (pi_, pr_) solve (Tl—/u) for (uf, 7).

From (4.163), we see that analyzing (7,7)* in the case u > 1 is equivalent to
analyzing (7}, )* in the case when u < 1 and vice versa. Of course, from (4.164), there
is also a similar connection between (7}) and (7),). With this in mind, in the sequel
we will only deal with the case when p < 1. Further interconnections between the
well-posedness of the four transmission boundary value problems in (4.155)-(4.156)
are discussed below.

Proposition 4.5.2. — Assume that @ C R, n > 2, is a graph Lipschitz domain and
that 2=1 < p < 00, =1 < A < 1. Then, for each (consistent) choice of the sign + in
the statements below, the following two claims are equivalent:

(i) the transmission problem (Tui)* is well-posed for every p € [0,1),
(ii) the operator

(4.165) + 35T+ K3 - HP(0Q) — HP(9Q)

is an isomorphism for every p € [0,1).

Moreover, for each (consistent) choice of the sign + in the statements below, the
following two claims are also equivalent:

(iii) the transmission problem (Tﬁt) is well-posed for every p € [0,1),
(iv) the operator

(4.166) + 1A T + K : HY(89) — HI(69)

is an isomorphism for every p € [0,1).
Proof. — By (4.159)-(4.160), it suffices to prove all the desired implications for just
one fixed choice of the sign, since interchanging 2, with Q_ means that K becomes

—K . In order to fix ideas, we shall carry out the proof for the choice ‘plus’ of the
sign, with this convention being tacitly used throughout the proof.
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As far as the implication (ii) = (i) is concerned, if the operator (4.165) is an
isomorphism for every p € [0,1), set

(4.167) fi == 0)(DL§, P5§) + ud) (D §, P5§) € HP(9%),
N -1
(4.168) for= (3£ K3)  fi e HP(09),

where the superscripts + indicate that the layer potentials in questions are considered
as mappings functions defined on 912 into functions defined in Q4. Then

(4.169) ix = o h+ D3,
(4.170) e = 0%fH+ 955,

solve (T,f)* and obey natural estimates, i.e.

(4.171) | M (Viie)l e o) + 1M (7+)||Lr00) < C(llﬂlm(an) + ||§HH;’(39))-

Let us now consider the issue of uniqueness for (7,7)* under the assumption that
(4.165) is an invertible operator. To this end, assume that (44,71 ) solve the homo-
geneous version of (T,7)*. Subtracting the two versions of the identity (4.144) and
keeping in mind that 0} (@, 7y) = pd)(d—,m_) and @y|sn = ¥_|sq allows us to
conclude that (34437 + K3)(8)(d-,7-)) = 0. Thus, 8(@-,7-) = 0 and, further,
O)M(@4,my) = 0. With this in hand, the desired conclusion follows from Proposi-
tion 4.5.1. This concludes the proof of (ii) = (i).

In the opposite direction, the a priori estimate associated with the version of (Tl]L )*
when g = 0 reads

180 (g, my) — w8 (G-, m)arony ~ IM(Viy)lLean) + IM (7)o o0
(4.172) HIM (Vi) || Lr o) + | M (7-)|| Lr002)
for any pair of functions (#4,m4) which solve the Stokes system in Q4 and satisfy

Uiloo = d-|aq, M(Viy), M(ry) € LP(09). Specializing this estimate to the case
when 4y = d}_i, 7y = Qhin Qy, with A € H?(99Q), then yields

"ﬁ"m(an) = ||3L\(17—’7T—) - 5;\(ﬁ+»7f+)||u(an)
< CUIM(VEy)leon) + 1M (71)llLeo0) + IM(VE-)| Lo o)
+ | M (72)l Lo o0
> C||33(17+,7F+) - Na.'/\(ﬁ—,ﬂ—)um(an)
(4.173) = ClGE5I + K| aro0),

where C = C(§2,p, u) > 0 is a finite constant. Thus, {%’%I+K§}O< . is a contin-
Su<

uously parametrized family of one-to-one operators with closed range (in particular,
semi-Fredholm) on H?(9N2), which are invertible (via a Neumann series) when p is
sufficiently close to 1. The homotopic invariance of the index then gives that all the
operators in question are invertible on HP(9).
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Consider next the equivalence (iii) <= (iv). First, when the operator (4.166) is an
isomorphism for each u € [0,1), a solution to (T,) which satisfies (4.171) is given by

(4.174) @y = @f[(%}-’:gum)_l(ﬁgwsf)]—dif" in Q,
(4175) m = Py[(JEEI+K,) 1(ﬁ§+5f)]—Qif in Q.

Second, the a priori estimate associated with the problem (Tlf ) implies that, for
each p € [0,1),

litlon — pi-loallaree) = IM(Viy)lrroa) + 1M (m)|eon)
(4.176) HIM (Vi) Leaa) + 1M (7))l Lr 50
for any pair of functions (#4,ms) which solve the Stokes system in Q. and satisfy

0Ny, my) = 8} (i@, m_), as well as M(Viy), M(ry) € LP(99). Specializing (4.176)
to the case when @iy = Dyh, 7+ = Prh in Qu, with b € HP(8Q), yields

IBllar ey = litlse — @-lsalln?oa)
< IM(Viy)|lLeaq) + 1M (Vi) e a0)
(4.177) < Cldyloa — ”'Fi_laQ”Hf(aQ) = C“(%i_tﬁl + Kz\)’-i"Hf(aQ),

where C = C(Q2, p, 1) > 0 is a finite constant. With this in hand and arguing as before,
we then conclude that the operator (4.166) is an isomorphism for every p € [0,1).
There remains the issue of proving uniqueness for (7,7) when the operator (4.166)
is an isomorphism for each p € [0,1). Once again, assume (@4, 74) is a solution of
the homogeneous version of (T,). Then since @ |sn = pi—|sn and oMy, my) =
92 (i, m_), subtracting the two versions of (4.143) yields after some simple algebra,

(2 — “I + K ,\) ( 'an) = 0. Here, we have also made use of the fact that the single

layer does not jump across 9. Hence, @_|gq = 0, and so @4|sq = 0 as well. Then
once again Proposition 4.5.1 may be invoked in order to conclude. O

An immediate corollary of the result above is the following.

Proposition 4.5.3. — Retain the same assumptions as in the statement of Proposi-
tion 4.5.2. Then, for each (consistent) choice of the sign, the operator

(4.178) 2 1 “I + K3 : HP(0R2) — HP(99Q)
is an isomorphism for each y € (0,1) if and only if the operator
(4.179) 21 ”I—!-K,\ H?(69) — HY(6Q)
is an isomorphism for each u € (0,1).

Proof. — This is a consequence of the proof of Proposition 4.5.2 and (4.161)-(4.162).
O
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The above proposition does not cover the case when p = 0, which corresponds
precisely to the operators which solve the Neumann problem (N) and the Regularity
problem (R) in (1.3). This particular aspect is dealt with in in the next chapter, in
Theorem 5.2.3. In order to better explain how the Neumann and Regularity problems
are related to the transmission problems, we first need to introduce the following
definition.

With "—;l < p < oo fixed, we will say that (T,}) is semi-well-posed if for any
f € HP(89) and § € HP(8Q), there exists a solution (@,m4) of (T;f) such that the
functions % and 74 must be unique (modulo constants) and also satisfy the estimate

(4.180) 1M (Vi) e o) + |M(m4) || Lro0) < C (“ﬂ|HP(89) + ||.¢7"Hf(an)) .

Similarly, we will say that (T},") is semi-well-posed if there exists a solution (i, 74)
such that ¥_ and 7_ must be unique (modulo constants) and satisfy

(4.181) 1M (V)| o (aq) + 1M (x-)l|Loony < C (I fllm(o0) + 13l (om) ) -

With these definitions in mind, we can state and prove the following proposition
that details the relationship between the transmission problems and the Neumann
and Regularity problems.

Proposition 4.5.4. — Let Q1 C R™, n > 2, be a graph Lipschitz domains as before.
Recall (1.3). For ﬂ;—l— < p < oo fixed, the following statements are equivalent:

(1) (T;) and (T, )* are both semi-well-posed,

(2) (R) is well-posed in Q4 and (N) is well-posed in Q_,

(3) (T;) and (T, )* are both well-posed.

Moreover, a similar result holds in the case when the roles of + and — are reversed.

Proof. — First, we will show (1) = (2). Assume (T,") and (T}, )* are both semi-well-
posed. For any § € HY(99Q), if (@4, m+) solves (T,t) with data (0, g), then (@4, 74)
will solve (R) in ©, and also satisfy the appropriate estimate. For any feHr (09),
if (@4, m) solves (T;) with data (f,0), then (@_,n_) will solve (N) in Q_ and also
satisfy the appropriate estimate.

To establish uniqueness for (R), assume (@, ) solves the homogeneous version
of (R) in 4. Let (Z—,n_) be a solution to the Neumann problem (N) in Q_ such
that 9} (@_,n_) = 8) (@4, m4). Then (@4, ) will solve the homogeneous version of
(T+), which implies that @4 and 7y must be constant. To establish uniqueness for
(N), assume (@_,m_) solves the homogeneous version of (N) in Q_, and let (@4, my)
be a solution to the Regularity problem (R) in Q4 such that @ |sq = @_|sq. Then
(@4, m4) will solve the homogeneous version of (T, )*, and so @_ and m_ must be
constant.

Next, we will prove (2) = (3). Assume (R) is well-posed in ©; and (N) is well-
posed in Q_. For any f € HP(89) and § € HP(992), let (@4, ) be the solution to (R)
such that @, |s = § and let (4@_,7_) be the solution to (N) such that 8)(@_,m_) =
Oy, my) — f. Then (@4, ) will solve (T;) and satisfy the appropriate estimates.
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To establish uniqueness, assume (@4, 74 ) satisfies the homeogenous version of (7).
Then from the uniqueness for (R), @4 and ;. must be constant. In particular, since
M(ny) € LP(09), it follows that w1y = 0. Then (@_,m_) solves the homogeneous
version of (N) in Q_, which means #_ and m_ must also be constant.

Similarly, if (#_,7_) is the solution to (N) such that & (@_,r_) = f and (@4, 7,)
is the solution to (R) that satisfies @ |aq = @_|sn + g, then (@+,m+) will solve (T;;")*
and also satisfy the appropriate estimates. To establish uniqueness, assume (@4, 1)
satisfies the homeogenous version of (T;)*. Then @_ and 7_ must be constant due
to the uniqueness of solutions to (N). Then it follows that @ |sq = 0 in H] (6R2), and
so from the uniqueness for (R), @+ and w4 must also be constant. Since it is clear
that (3) = (1), this finishes the proof of the equivalence of the statements (1) — (3),
and same result with the roles of 4+ and — reversed follows similarly. O
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CHAPTER 5

THE L» TRANSMISSION PROBLEM WITH p NEAR 2

5.1. Rellich identities and related estimates

Let Q ¢ R™, n > 2, be either a graph Lipschitz domain or a bounded Lipschitz
domain, and fix a vector field h € C{(R™) with real-valued components.

Proposition 5.1.1. — Assume that @4 = (ul:::)ISkS" are real-valued vector fields and
74 are real-valued scalar functions such that
(5.1) Lyiy =Vry, divie =0 in Qg, M(Vﬁi), M(ﬂ':t) € Lz(aﬂ)

Then for every A € R,

/A,\(Vﬁi,Vﬂi)(ﬁ, V)dU = 2/(63(ﬁi,ﬂi),vhﬂi)d0'i /(diVﬁ)A)\(Vﬁi,Vﬁi)dz
o N Q4

+2 / [wi(a,-u,f)(akh,.) — (Bu) (Byu + ,\aku;#)(ajh,»)] dz

Q4
(5.2) = 2/(33(@1,7!}),‘7}117;{:) do + / Q;::: dzx,
N Q4

and
/ (m+)*(h,v) do = —2 / (07 (iig, 74 ), (Ve )h) do £ / (div h)(r4)? dz
oN onN Q4

+ 2 [ (@t )Om)@sut - 0 - Osh) Oums] do
Qi
(5.3) = —2/(6;1(ﬁi,7ri),(Vﬁi)ﬁ) do + / Q;:: dz,
o0 Qx

where Qf denotes any function in Q4 such that, for some finite, purely dimensional
constant C > 0,

(5.4) Oy < C(IVasl? + |m<|?)|Vh|.
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78 CHAPTER 5. THE L? TRANSMISSION PROBLEM WITH p NEAR 2

Proof. — As far as (5.2) is concerned, the idea is to start with (3.41) written for L),
Q.+ and %4 in place of L, Q and u, respectively. Also, D and A are as discussed at
the beginning of § 4.1.

Note that the second solid integral in the right hand-side of (3.42) contains Lu
which, in our case, corresponds to Lyti+ = Vmy. We now further integrate by parts
this gradient operator and use the divergence-free condition on #. The key aspect of
this calculation is that the resulting boundary term combines well with the first inte-
gral in (3.41), in the sense that it “completes” Au to the correct conormal derivative
0 (w4, m) for the Stokes system.

This accounts for the form of the integrand in the first integral in the right hand-side
of (5.2). The first integral on the second line in (5.2) is a byproduct of the integration
by parts just described. Finally, all the other integrals in (5.2) can be easily traced
back to (3.41), finishing the proof of (5.2).

The identity (5.3) is a rewriting of formula (1.5) on p. 775 of [32], in the termi-
nology of conormal derivatives utilized in this work. This concludes the proof of the
proposition. O

The Rellich identities (5.2) and (5.3) will play a vital role throughout. Our first
application is the following estimate for the pressure term.

Proposition 5.1.2. — Assume that
(5.5) Ay = Vry, diviiy =0 in Qy, M(Viy), M(ny) € L*(89).

Then there exists C > 0 such that for any £ > 0,

/|7ri|2(i-i, v) dagcs—lfwal —Vﬂi|2|ﬁ|da+e/|7ri|2|l-i| do
on 1219 on

(5.6) +C / (Vs ]? + |me )|V da.
Q4

Proof. — Combining (5.3) and (5.2) in the case A = —1 gives

/mr"(ﬁ,u) do = —2/<a;1(ai,ni),(vai)ﬁ> do + / 05 do
onN o Q4

:=2/(6,,'1(1Ii,1ri),(Vﬁl—Vﬁi)ﬁ)do—/A_l(Vﬂi,Vﬁi)(ﬁ,u)+/Qfda
onN oN Q4

=2 / (V@] — Vi )v — mav, (Vg — Vig)h) do
on

(5.7) - / A_y(Vig, Vis)(h,v) + / OF do.
a0 Q4
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Then since A_;(Viiy, Viiy) = 3| Vil —ViL|?, the result follows by using Cauchy’s
inequality with epsilon in (5.7). O
Proposition 5.1.3. — For A € [—1, 1], assume that
(5.8) Lty = Vry, divie =0 in Qi, M(Viy), M(ry) € L*(69).

Then there exists C > 0 such that for any € > 0 and any p € [0,1),

/ [AA(WL,, Vi) + pAx(Vi_, qu_)] (h,v) do
on
< iy / (102 (@4, m4) — B (-, =) + plViantly — Vianil—|*] |h| do
onN
6:9) e [[Va? + il + ulVa + gl ] Fl do
on
+1%; /(mm2 +|my )| VA de + £ /(|va_|2 + |7_|?)|Vh| dz.
Q4 Q_

Proof. — First, we point out that if div@y = 0 in Qg then for every j € {1,...,n},

(5.10) {(Vig)v}; = ndjuf = Brkjuf,
and also
(5.11) (Bviix,v) = viv; O = v; Oy uif -

Combining the Rellich identities in (5.2) for %, and @_ gives
[ A, V) + uAr(Va_, V) (i) do
oN
=2 [ (O30, 1), Vi) + 1 (0@, 7-), Vi) do
N
+/ Q,Tda:+u/ 0, dz
- /(aﬁ(m,m) — O}, m), Viily + Vil ) do
N

+1-E—M/<a§(a+,7r+)-uaj(a_,n_),vhm+uvhﬁ_>da

on
(5.12) +/ o d:c+u/ 0, dz.
Q4 Q-
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Using Cauchy’s inequality with epsilon, the last two lines of (5.12) can be bounded
by the right hand side of (5.9). From the definition of the conormal derivative, the
third line in (5.12) can be written as

. /<ag(a+,7r+) — N, ), Vaiiy + Vi) do
519]

= - / (Vi) — (VE_)v, Viily + Vai_) do
on

— it (@R, ), Vi) = (00 7), Vi) do
N

(5.13) - / (B%(@_,m_) + 8%y, my), Vi — Viily) do.
N

From (5.10), the second line of (5.13) can be bounded by the right side of (5.9).
Applying the Rellich identity (5.2) in the case A = 0 to the third line of (5.13) gives

- /(<ag(a+,7r+),v,,a+> - (6,9(11_,7r_),vh11_)) do
N

:—1—2_1_%/(|Vﬁ‘+|2~|Vﬁ_|2)(ﬁ,u)d0+ﬁ/@:dx+f_"—”/9;dm
N Q4 Q_

S / (19eantis * ~ [Veanii— |?) (R, v} do + 12 / OF do + £ / Oy, dz.
a0 Q. Q_
(5.14)

. / (18,2, ~ [0, [) (R, v) do.
N

Since |Vtanﬂ+ |2 - IVtanﬁ_ '2 = (Vtan’l-l,‘+ - Vtan’l-l:_ , Vtan’lj_‘. + Vtan'l_l:._>, the third line
of (5.14) can also be bounded by the right side of (5.9). This leaves the last term of
(5.14), which we will deal with in a moment. Splitting h into its normal and tangential
components gives Vj, = Vi, + (k,v)8,. Using this along with the definition of the
conormal derivative in the last line of (5.13) gives

1-p
a0

- &£ / <32(ﬁ+,7f+) +0p(d-, ), Vi — Vhﬁ'+>d0

- / (0 m4) + 000, 72), Vil = Vi i + (Bl — B, ) (B 1)) do
oN
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= —1—2_% / <82(’II+,7T+) + 63(’!_1:_,#_), Vhtan'l.l:_ — thnﬂ+> do
N
- 1_2—&;;, /(77+ +7l'_)<V,6,,’l_1:_ - y’[i.;.)(ﬁ,l/) do

on
(5.15)

- / (1. 1? — 8,3, [2) (B, v) do.
on

Notice that the last term in formula (5.15) cancels the last term in formula (5.14).
Using (5.11) and Cauchy’s inequality with epsilon, it follows that the third and fourth
lines of (5.15) can be bounded by the right side of (5.9). So combining (5.12), (5.13),
(5.14), and (5.15) finishes the proof of Proposition 5.1.3. a

The previous estimate gives us a good upper bound for terms involving the
quadratic form Ay (Vdy, Viy). Our next result, which is specific to the case A = 1,
seeks to bound terms involving the full gradient, Vi, by terms involving the
symmetric part of the gradient, Vﬂ’l + V44, plus other terms similar to those in the
right hand side of (5.9).

Proposition 5.1.4. — Assume that Q C R™, n > 2, is a Lipschitz domain and that
(5.16) Aty =Vry, divigy =0 in Qi, M(Viy), M(ny) € L2(09).
Then there exists C > 0 such that for any € > 0 and any p € [0,1),

[ Va4 wiva o+ 20580 e, — 2] R v) do
on

< 5(15'”)2 / [lV’[l:I + Vﬁ.;_'z + NlVﬁI + Vﬁ_lz:l 'f—il do
oN

+ﬁf / I:lai(ﬁ+77r+) - Mai(ﬁ—,ﬂ—ﬂz + ﬂlvtand+ - vtanﬁ—lz] |’_7:| do
onN

be [ (V2P + a2 + w97+ plr ] 1 dor
0N

(6.17) +1< /(|Vﬂ+|2+;7r+|2)|vﬁ|dm+{f_%/(|va_|2+|w_|2)|vﬁ|dz.
Q4 Q_

Proof. — Consider the following algebraic identity for a,b € R,

(5.18) 5@ —0)? = 25 (a — pb)® — a® + ub’.
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Writing (5.18) with a = 74 and b = 7_ and applying the Rellich identity (5.3)
gives

e / imy — _[2(F, 1) do
o0
= i; [ —pm 2y do - [ Evydo o [(n o) do
o on 1219}

=z [ -y do 2 [ (07 @), (VR do
o0N on

—2u/ <a;1(a_,7r_),(va_)ﬁ> do + / o7 d:v+u/ O dz.
a0 Q4 Q_

= /(m — pm_)2(h,v)do + 2/ <3;1(ﬁ'+,7r+), (Viy + vabﬁ} do
onN onN

—2u / <a;1(va_,7r_), (Vi_ + vaI)H> do

N
—2/ <8,,_1(ﬁ+,1r+) —ua;l(Vﬁ_,w_),Vhﬁ+>da
N
(5.19) +2u / (87 (@, m_), Vil ~ Vil ) do + / OF dz +p / O, dz.
o9 Q4 Q_

Using the Rellich identity (5.2) in the case A = 0 along with the definition of the
conormal derivative, we can write

/ (Vi) + p|VE_|?] (h,v)do

on
= / [2(80 (s, my), Viiiy) + 2 (00(G-, m_), Vi) do + / oy dzc+u/ 0, dx
N Q4 Q-
= / [2(8) (4, my), Viiiy) + 2u (0, (G-, m_), Viii_)] do + / 0y dz+u/ 0, dz
a0 Qp Q_
+ '}%ﬁ [(611_1(ﬂ+’77+) - uau_l(ﬁ—,”—)’vhﬁ%-) - (63(ﬂ+)77+) - #ai(ﬂ—,”—)»vhﬂﬁ] de
[2}9]
(5.20)
+2u / [(Va_)v, Vaiy — Vai_) + 12((Vidy — V- )y, Vaiy)| do.
on
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If we multiply (5.19) by ﬁ% and add it to (5.20) and also apply the Rellich

identity (5.2) in the case A =1 to the first term in the third line of (5.20), we have
/ [|va+|2 + p|Vi_|? + 2*;;_7; l7r+ - 71'..[ ] (h,v)do
aQ
= [V, V@) + pas(Vi-, V) () do
an

+ﬁ/@:dm+f_’f—#/92dx
Q Q-

- 18 (04, m) - pOYa- 7). Vi) do

oN

+ 2,u/ [((Vﬁ v, Viiy — Vii_) + 12 Z((Vig = Vi), th+)] do

aQ
+ ; 1+£‘.7 /(7!’ - 71-_)2(}_; V)da-.}.ﬁli/(a—l(ﬁ T ) (V'(I +V17,'T)l-1:)do
2(1~p) +TH ) i-n (U, Ty ), + +
aQ o0
— uin /(3;1(11_,77_), (Vi + Vil )h) do
aQ
(5.21)
+ u(ll_i—:) /(8;1(11‘_,7r_),Vh11‘_ — Viily) do.
o0

Notice also that
T — /MT._I =(1- u)<(VﬂI + Vi), 1/> + u<8yﬁ+ - 8,,17_,1/>
(5.22) +u<(Vu+ - Vi_)y,v) — < (@g,my) — ,u@,f(ﬁ'_,ﬂ'_),u>.

Then using (5.10), (5.11), and (5.22), we can bound the first term of the fifth line
of (5.21) as follows,

ks / (4 — pm_)*(h,v)do < C / |Va@l + Vi, |?|h| do
on

(523) +(1__CW / [Iali(a'f" 7|"+) — U alll(ﬁ"? 77—)'2 + ulvtana+ - Vtanﬁ—- Iz] IE' do.
719

The next step is to observe that
(5.24)

Vhits = Vi iia+(0,82) (R, v) = Va, Ga+ [ (VEL+VEL)Y] (R, 1)~ [(Vas)w) (@),
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and therefore from (5.10),
(5.25)

Vaity — Vai-| < |V, + Vit |B] + |Va_T + Va_ |||+ 2|Vianiy — Vienii-|IA.

Then the proposition follows by repeatedly applying Cauchy’s inequality with ep-
silon in (5.21) while using (5.25) for the first term in the fourth line and the last term.
Here, we also use the fact that A (Vix, Vis) = Ve " + Vie|?. O

Using the previous two propositions, we can now prove our main estimates.

Corollary 5.1.5. — Let Q C R™, n > 2, be a Lipschitz domain. For A € (-1, 1], assume
that

(5.26) Lyiiy = Vg, divie =0 in Qu, M(Viy), M(ny) € L?(0Q).
Finally, let k € C*®(R") and C, > 0 be such that

(5.27) 1 < (h(z),7(z)) < C,, Vz €
Then there exists C > 0 such that for x4 € [0, 1),

(5.28) / [IVE|® + p|VE-|?] do
oN

S ﬁ / [la,i‘(’l—i_;_,ﬂ'_;_) - Hay’/\(ﬁ-»ﬂ—)F + 1% |Vtanﬂ+ - Vtanﬁ—lz] do
N

+ oy /(|va+|2+ |74 1)) VA| dz + 555 /(|va_|2+ |7_|?)|Vh| dz.
Q_

Q4

Proof. — Choosing € small enough in Proposition 5.1.2, we can show that

(5.29) /|7ri|2da < C’/[Vﬁi|2da+0/(|Vﬁi|2+|7rlu|2)|\7ﬁ| da.
oN oN Q4

In the case A = 1, since A;(Viy,Viy) = %lVﬁiT + Vii4|?, combining Proposi-
tion 5.1.4, Proposition 5.1.3, and (5.29) gives
/ [IVﬁ+|2 + u|w_|2] do < S / [lVﬁ+T + Va2 pVaT + va_P] do
a9 aQ

+ g]‘(fgjjf/ [|3,£(17f+,7r+) - l‘ai(ﬁ—»ﬂ'—)'Z + 1| Viantly — Vtanf’:—|2] do
on

+eC / [|va+|2+u|va_l2] do,
on
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+15 /(IW+I2 + |7y ?)|Vh| do + £S /(|va_12 + |7 |?)|Vh| dz

04 o
< 6261(?—#)4 / [Iaxi(ﬁ+y7r+) - ;1,311,(1],'_,7['_”2 + uIVtand+ — Vtana—lz] do
on
+ (e it )© [ (19812 + piva- P do
o
Y P
Q4

(5.30)
+ s / (IVa@_ |2 + |7 |?)|VA| dz.
Q_

Then the corollary follows by letting 5 = £2(1 — p)? and choosing &; small enough.
If |\| < 1, there exists Cy > 0 such that |Viiy|? < CyAx(Viig, Viit), and so in this
case, the corollary can be proved more directly using Proposition 5.1.3 and (5.29). O

Corollary 5.1.6. — Let 2 C R™, n > 2, be a Lipschitz domain and assume that, for
some A € (—1,1],

(5.31) Lyiiy = Vmy, divie =0 in Qi, M(Viy), M(ry) € L?(09).
Let & € C*(R") and C, > 0 be such that

(5.32) 1 < (h(z),P(z)) < Co, Yz € 09.
Then there exists C > 0 such that for u € [0, 1),

/[|V17+|2 + 1 |Vi_|?] do
o

< Sy [ (W0, m) = O, 7 + Vi — i sani- ] do
on

(5.33) + /(|va+|2+|7r+|2)|vﬁ| dm+(—1‘j%g/(lVﬁ_|2+|7r_|2)|Vﬁ|da:,

Proof. — For u € (0,1), the corollary follows by applying Corollary 5.1.5 to the
functions

(5.34) Upi=pd_, U_ =iy, py:=pr—, p_:=m4,

and then dividing by p. For p = 0, this follows by simply taking the limit as y —
0. |
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5.2. The case of a graph Lipschitz domain

In this section, we seek to establish the well-posedness of each of the various bound-
ary value problems stated in § 1 in graph Lipschitz domains.

Lemma 5.2.1. — Let Q2 C R®, n > 2, be a graph Lipschitz domain as defined earlier.
Then there exists € = £(02) > 0 such that whenever 2—¢ < p < 2+¢ and p € [0,1),
the following hold:

E

(i) The operators = I + K3 are invertible on LP(092),

+1
21—

R

1

(ii) The operators 3 12T + K are invertible on LP(81), on L2(69), and on

LP(89).

1—

®

Proof. — 1t is enough to prove the lemma in the case p = 2, since the extension to
p € (2—¢,2 +¢) is then a consequence of abstract stability results. For f € L?(6Q)
fixed, let @4 := Jf and 7y := @f in Q4. Then (U4, 7y) will satisfy

Aﬁi = Vﬂ':h, divﬁi =0 in Qi,

Ut|on = U-|oq,

Oy, my) — pONE—, =) = (<21 +wI + (1 - wK}) F on 80,
M(Viy), M(rs) € L2(89).

(5.35)

Since Q. are graph Lipschitz domains, it is possible to select a constant vector field
h that satisfies the hypothesis of Corollary 5.1.5. Applying Corollary 5.1.5 then gives

(5.36) /[lVﬁ+|2+u|\7ﬁ_|2]d0 < c/| —14er 4 K1) f1? do.

21—p

Also, if we apply Corollary 5.1.6 in the case y = 0 with the roles of @, and @_
reversed, we get

(5.37) /|W_|2da < C/|Vtanﬂ_|2dcr=0/IVtanﬁ+|2d0 < C/|V&‘+|2da.

Then combining (5.36) and (5.37), and using (4.45) gives

£l 2200 = 185 (G-, m—) — 8 (@, 74 )|l L2(o02)
< C||Vi- || L2(aa) + C||Vﬁ+||L2(an)

(5.38) < C||Viy | 2a0) < Cll(—31E al+ K3) fll L2 o0)-

From (5.38), it follows that —31 T“%I + K7 is one-to-one and semi-Fredholm for every
p € [0,1). Also, if  is sufficiently close to 1, we have that —31 1 ”I + K3 is invertible
on L%(89) Vla a Neumann series. It follows from the homotopic invariance of the
index that — I + K3 is actually Fredholm with index zero for each y € [0,1), and

therefore -%i—fﬁI + K3 is invertible on L%(0Q). If we exchange the roles of (@, )
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and (@_,7_) in the above argument, we can also show that } 1 I + K73 is invertible
on L2(09). By duality, the operators &3 l—-l’fI + K\ must also be 1nvert1ble on L?(69).
Now, for § € L%(BQ), let ¥y = Drg and 7y = P5g in Q4. Then (4G4, m4) will

satisfy
Aty =Vry, divie =0 in Qg,
Uy loq — pi- Ian =(3Q+pI+(1-pK,)§ on 89,

N (Uy,my) = 0p(@-,m-),
(V’ui),M(ﬂ'i) € L2(6Q).

(5.39)

Applying Corollary 5.1.6 gives

(5.40) /[qu+|2+u|Vu 2 do < c/wm[ Ll g 4 K32 do.

1-p

Also, if we apply Corollary 5.1.5 in the case y = 0 with the roles of ¥, and @_
reversed, we get
(5.41)

/|va_|2da < C’/]8,’,\(17_,77_)|2d0=C/|6,’,\(1I+,7r+)|2da < C/[Vﬁ+|2da.
on
Then combining (5.40) and (5.41), and using (4.43) gives

191 2 60) = I8+ — G-1lz2(a0)
< C|| Vit | z2a0) + ClIVE-||L2(a0)
(5.42) < C|\Viy|20) < Cll(GTELT + K\)Fl 12 (00

From (5.42), it follows that 1 3 1 uI + K is one-to-one and semi-Fredholm for every
u € [0,1), and repeating the same arguments as above leads to the conclusion that
the operators :l:%;—*_’%I + K are in fact invertible on L?(9Q). Since these operators
are invertible on L?(8Q) and L?(8Q), we can establish

(5.43) 912 00) < C||(i%%’,‘f1 + K»)§ll 2 (a0)

for any § € L3(09), which after arguing as above, eventually allows us to conclude
that the operators +3 I + K, are also invertible on L?(092). |

The invertibility of these operators allows us to prove the well-posedness of the
associated boundary value problems, as in the following theorem.

Theorem 5.2.2. — Let Q C R™, n > 2, be a graph Lipschitz domain, and set Q, := Q,
Q_ = R"\ Q. Then there exists € = £(0Q) > 0 such that for any p € (2 —¢,2 + ¢),
the transmission problems (TF) and (T¥)* (cf. (4.155)-(4.156)) are well-posed for any
u € [0,1). Moreover, the Neumann problem (N) and the Regularity problem (R) (cf.
(1.3)) are also well-posed in 24 and Q_ for any p € (2 —¢,2 + ¢).
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Proof. — The well-posedness of (T¥) and (T'¥)* for any p € [0,1) follows directly
from Lemma 5.2.1 and Proposition 4.5.2. Then Proposition 4.5.4 implies that (V)
and (R) are also well-posed. O

With these results in mind, we can prove the following theorem.

Theorem 5.2.3. — Let Q@ C R™, n > 2, be a graph Lipschitz domain and let "T_l <
Po < 2 < p1 < oco. Then for A € (—1,1], the following are equivalent:

(1) the operators

F1EI+ K3 and — J1*41 + K} are invertible on HP(992)

(5.44)
for all 4 € [0,1) and for all p € (p,,p1),

(2) the operators

(5.45) % #I 4+ Ky and — 2 1 “I + K are invertible on HY(99)

for all p € [0,1) and for all p € (po,p1)-
Proof. — First, assume the operators £11*£] + K3 are invertible on HP(99) for
5 1 “I + K and
2 1 #I + K on HY(89), from Proposition 4.5.2, it is enough to show that the
transmission problems (7}7) and (T, ) are well-posed. In fact, given that (5.44) and
(5.45) are invariant under changing the roles of Q, and 2_, we may further conclude
from (4.159)-(4.160) that it suffices to establish that just one of the problems (T}}),
(T,;) is well-posed.
To prove the well-posedness of (TJ‘ ), we can actually reduce matters to the case

2 1 —u
all u € [0,1) and for all p € (po,p1)- To prove the invertibility of 1

when f = 0. To see this, let (1, p+) solve the reduced transmission problem with
datum §+ (1 — u)S’f. Then 4y = ¥4 — df, Ty = Pt — Qf will solve (T,7) and also
satisfy the appropriate non-tangential maximal function estimates. For the rest of the
proof, we will deal with the case when f =0.

Fix p € (po, p1)- First we claim that for § € HY(69),

(5.46) F5I + K)7'0(Drd, PAd)] = Drg in Qu.

To prove this identity, it is enough to consider the case when g is in a dense subclass
of H?(89). Assume § € HP(8Q) N L?(89). Using the jump formula (4.45), it can be
shown that the left and right sides of (5.46) yield the same conormal derivative. Since
the conormal derivatives of each side will be functions in HP(8$) N L2(89), it follows
from the uniqueness for the L? Neumann problem that the left and right sides of
(5.46) differ only by a constant. Finally, since each expression decays at infinity, the
identity must hold. Moving to the boundary in (5.46) gives the useful identity

(5.47) S[(F3 + K3)710)(Drg, P27)] = (31 + K\)§ on 9.
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Next, we claim that the functions

(6.48) @ = d[FH+E) TG+ K TON(D 259)
(649) e = 2 Q[FF+ED TG+ KD TN, 929)]
satisfy the transmission problem (T,f). The jump formula (4.45) gives

O (e, me) = 1o (F3l + KX)(F5L + KNG 1E41 + KX) 7' 0)(DAgPAD)
(5.50) = LG4 KD TI0N(D05 2a9),

and so 9} (@, ,m4) = 8)(@—,n_). For a bounded, linear operator T, assume nl + T
and yI + T are invertible operators for ,v € R. The for 4 € R, the resolvent identity

(551) (I +T)™ = p(y I +T)7 = I + 1) (T +T) = p(ol +T)) (4T +T) !

holds. By applying (5.51) twice and also using the boundary identity (5.47), we can
write

i1 |aq — pi-|oq

= 15 S [((C31+ K™ = GBI+ K™ G LT+ K3) 7100 (923, 929)
—3 4+ K3) T GEET+ KD)(GT + K3 T AL+ KD)T0)(Dxd, P9)]
(=31 + K3)7 (31 + K3) 7100 (Dag, PAD)]
=5 [((31+ KD = GI+K3) ™) 0)(Dag. 229)]
(652) = (I + KT~ (—31+ K))g=3.

NI'-' Nl"‘

To prove uniqueness for (Tl]L ), we will first prove uniqueness for the H? Neumann
problem (V).

Assume (44,74 ) satisfies the homogeneous version of the H? Neumann problem
in Q. Define
(5.53)

= (314 K) ™ = BT+ K1) 02 (Da(@slon), Pa(is1en))| im0,
and
(5.54)

moi= Q[((C31+ KD = BT+ K3) ™) 0(Da(@slon), Pa(@slen))]  in Q.

Arguing as above using (5.47), it follows that @_|sq = @4 |aq. Since @_|sq = U+|an
and 8) (@4, m,) = 0, from (4.144) we have

(5.55) (=31 + K3) (80(@-, 7)) = (31 + K3) (9(@4,m4)) = 0.
Since —%1 + K} is invertible on HP(92), it follows that
(5.56) Oy (-, m-) = 0= 8} (dy, my).
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Then from Proposition 4.5.1, @, and m, are constant. With a similar argument,
we can also prove uniqueness for the AP Neumann problem in Q_.

Let us return to the issue of uniqueness for the transmission problem (7, ). Assume
(@4, m4) solves the homogenous version of (T,). Multiplying the version of (4.144)
corresponding to the sign minus by p and subtracting it from the version of (4.144)
corresponding to the sign plus and making use of the transmission conditions gives

(5.57) (- W (LT + K3) (8) (@, my)) = 0.

Since the operator ;l—ﬁl + K3 is invertible, it follows that 9} (@4, m4) = 0 =
9) (i, m_). Now it follows from the uniqueness of the H? Neumann problem that @
and 74 are constant. This finishes the proof of (1) = (2).

To prove (2) => (1), assume the operators +3 1 #I + K are invertible on HT (0Q)
for all 4 € [0,1) and for all p € (p,,p1). To prove the operators :h2 - “I + K3 are
invertible on H?(0RQ) for all u € [0,1) and for all p € (p,,p1), it is enough to prove
that (Tui)* are well-posed for all p € [0,1) and for all p € (p,,p1), and using a similar
argument as before, this time we can reduce matters to the case when § = 0. We will
focus on (T,})*, as the result for (T,;)* follows similarly.

Fix p € (po,p1). First, we claim that for fe H?(09Q),
(5.58) Dy [(£31 + Kx)'Sf] = 4f in Q.

To prove this identity, it is enough to consider the case when f € HP(OQ) N
L?(8R). Using the jump formula (4.43), it can be shown that the left and right sides
of (5.46) are equivalent on the boundary. Since the boundary version of each side is
a function in H?(8Q) N L2(8Q), it follows from the uniqueness for the L Regularity
problem that the left and right sides of (5.58) differ only by a constant. Then since
each expression decays at infinity, the identity must hold. Computing the appropriate
conormal derivative for each side in (5.46) gives the useful boundary identity

(5.59)
03 (DAL + Kn) 'S, PA((E31 + Kn)7'S)) = (F31 + K3)F  on 602

Next, we claim that the functions

(5.60) @y = i Dx [(E3+ Ky (-3 EEET + Ky) 7S]
(5.61) me o= P [+ KT (-3EET+ K) TS,
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and so 4 |sq = U—|sq. Also, using (5.51) twice gives
2 (BT K™ — w(=3T+ K2)7Y) (—3 2T+ K) ST
=3I+ ) (-3 AT+ K\)(- 31 + Ko) T (-5 22T+ K»)7'SF

1-p
=31+ K\) (-3 + K\)7'Sf
(5.62) = (-4 + KN - GI+ KA)-I)sf.

Using (5.62) as well as the boundary identity (5.59), allows us to write
0@y me) = 0 (i, my) = 8 (Da((31 + K) 7 SF), 95 (31 +K3) 7 7))
0} (22 (GI+ K71 5F), 2 (1 + K71 5F))
(5.63) =GI+K)f - (31 +K)f =T
This proves the existence of a solution to the transmission problem (7,7)*. To
prove uniqueness, we will first establish uniqueness for the HY Regularity problem

(R). Assume (@, 74) solves the homogeneous version of the HY Regularity problem
and define

i =D [((-31+ K™ - BT+ K)7)8(8) @y, mh)] me,
and

T = Py [((—%I+ Kyt - (A1 + KA)-I)s(ag(m,m))] inQ_.

Arguing as above using the boundary identity (5.59), it follows that 9)(@_,7_) =
O (U, 7).
Then since 9 (@—,7_) = 9} (@4, 74+) and @y|sq = 0, using (4.143) gives

(5.64) (31 + Kx)(@-|aa) = (=31 + Kx)(i4]an) = 0.

Since I+ K is invertible on HY(92), we have that @_|sq = 0 = ii1|sn, and then
it follows from Proposition 4.5.1 that ¥, and w;, must be constant.

Returning to the issue of uniqueness for (T‘jr )*, assume (@4, 7+) solves the homo-
geneous version of (T,f)*. Multiplying the version of (4.143) corresponding to the sign
minus by p and subtracting it from the version corresponding to the sign plus, and
also making use of the transmission conditions, gives

(5.65) (1= w)(=5 1241 + K))(G@+|oq) = 0.
Since —%i—f%I + K is invertible on HY(0Q), we have that @, |an = 0 = @_|sq.
Then from the uniqueness of the HY Regularity problem, @+ and 7+ must be constant.

This finishes the proof of the theorem. O

We conclude this section with the following results.
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Lemma 5.2.4. — Let Q C R™, n > 2, be a graph Lipschitz domain. Then there exists
€ > 0 such that for p € (2 — ¢,2 + €), the operator

(5.66) S : LP(8Q) — LE(8Q),

is an isomorphism.

Proof. — For \ € (—1,1] fixed, define the operator ! : L2(8Q) — L2(89) by
(567) ST = (=51 + K (BNDAGT + KL PG+ KN THD) -

Using (5.47) and (5.59), it can be shown that (5.67) is in fact the inverse of (5.66).
O

Lemma 5.2.5. — Let Q C R™, n > 2, be a graph Lipschitz domain. If @ and 7 satisfy
(5.68) Ai=Vr, divi=0inQ, M(Vd),M(r)e L*(09),

then there exists f € L?(09) and ¢ € R™ such that @ = Jf+¢in Qand 7 = Qf in
Q.

Proof. — This follows from Lemma 5.2.4 and the uniqueness (modulo constants) of
the Regularity problem. In particular, @ = J(S™(i|sq)) + ¢ and 7 = Q(S™(i|sq)).
O

5.3. Inverting the double layer on LP for p near 2 on bounded Lipschitz domains
We debut with a few preliminaries. Given a bounded Lipschitz domain Q C R",
n > 2, for each k € N we set
(5.69)
]Rf;a = {Z CiXs; t ¢ € R* and ¥; connected component of 39},
j

(5.70)

R&q, L= {Z CiXap, : ¢ € R¥ and ©; bounded connected component of Qi},
J
(5.71)

R, L= {Z CiXp; : ¢ € R* and 6); bounded connected component of Qi},

2

with the convention that, when k& = 1, we agree to drop it as a superscript. In
particular, we have

(5.72) Rsa, = (Ra, )|,
and
(5.73) Rq = RSo, ®RYg_,
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where the sum is direct but not orthogonal. For instance, we have

1 L
(5.74) [Rag+] NRoq_ = {0} and [Rag_] NRoq, = {0},

where the orthogonal complements are taken in L2(82). Let us also point out here
that

dimR§, =dimRE, =k-by, dimR§ =dimRi, =k b, 1,

5.75
(5.75) dim RE = k- (bo + bn_1),

where the Betti numbers by, b,—_; represent the number of bounded connected com-
ponents of 2, and €2_, respectively. Therefore, the intuitive interpretation of b,_; is
the number of n-dimensional “holes” of €2 .

Lemma 5.3.1. — Let 2 be as above and fix A € R. Then the following identities hold:

(5.76) d(l/’(/l) =0 in Qi, V’l/) € Rag,
(5.77) Swy)=0 on 99, Vi€ Rsq,
(5.78) Ki(wvp)=Fzvp on 0N, Vi€ Roq,.

Proof. — Let D be any bounded component of Q. or Q_. For every z € R™\ 902 and
1 < j < n, an integration by parts based on (4.29) gives

(519) @xo0)i(@) = [ Byl - 9utw) dotw) = — [ @Byl =) dy = 0.
aD D
Thus, from (5.79) and (5.73),

(5.80) d(vxep) =0 in Qu,

which readily yields (5.76). This identity further yields (5.77) by taking boundary
traces. Next, for any D, bounded, connected component of either 2, or Q_,
(5.81)

Q(vxap)(z) = / (Ovw)En)(y—x)do(y) = £xp(z), Vz €R"\9Q, ifDCQy.
oD
In particular,

P € R, = Q(u1/))’aa+= ¥ and Q(m/))laﬂ_: 0,

(5.82) ¥ € Rog_ => Q(u¢)|89+= 0 and Q(m/))‘an_z —y.
Consequently,

(583)  (F+K)) = 02 (d0W)lns, Qwd)las ) = v, V9 € Ron,,

which further entails (5.78). O
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We continue to introduce notation which will be useful hereafter. Let ¥ be the
n(n + 1)/2-dimensional linear space of R™-valued functions 9 = (%;)1<;j<n defined in
R™ and satisfying

(5.84) Ok + Okp; =0, 1<j,k<n,

and note that

(5.85) ¥ = {z/z(w) = Az +d: A, n X n antisymmetric matrix, and @ € R"}.
Now let

(5.86) T(Qy):= {Z(1/Jj|gj)xgj : 9; € ¥, O; bounded component of Q4}.
J

Then for A € (—1,1], we can define

n 1
(5.87) ‘I’)\(Q:t) = Q0 lAl <1,
(), A=1,
and
(5.88) T 0924) = ¥ (Q)]o0s
so that
(5.89)

n- by lfl)\l <1,
nlntl) by if A =1,

n-bp_1 if l/\' <1,

dim U*(89,) =
m #(68:) { D) g, A= 1.

dim ¥} (09_) = {

Finally, set
v1(69) := {XWjls,)xs; : ¥; € ¥, X; component of 902}
(590 and T (59) = RZ, if || < 1,
which implies

(5.91) dim UA(60) = { B Byt ba) i A <1,
=5 (bo +bp—1) if A= 1.
Lemma 5.3.2. — If §) is as before, an alternate characterization of these spaces is
(5.92) @ e UMQy) < @€ C*Qy) and Ax\(Vi, Vi) =0 in Q4.
Furthermore,
(5.93) iy € UM (Qy) = Adlx =0 and divig =0 in Qy.
In particular, for every ¢ € ¥*(Qy),
(5.94) (1,0) solves the Stokes system in ;. and satisfies 8, (¢,0) = 0.
Conversely, if @+ and 74 satisfy the Stokes system in Q4 and @4 € U2 (Q4), then

(5.95) T+ € Rni and Bj(a‘i, 7T:t) € vRaq, .
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Finally,
(5.96) Dr(Yilon) =¥+ in  Qi, Vi € T (Qy),
and
(5.97) (FI+ K\ =0, Vi € T}(004).

Proof. — To see this, first assume ¥4 € ¥*(6Q4). Then (z/;i,O) satisfies the Stokes
system in ., where 1. denotes the natural extension of ¥+ to Q4. Then (5.96)
follows by invoking (4.120), (5.95) and (5.76). Finally, (5.97) is a direct consequence

of (5.96) and the trace formula (4.43). ‘ O
Given a bounded Lipschitz domain © C R™ and p € (2=, 00), set

(5.98) K, (69) = {fe hP(R) : (fip) =0, Vo € w*(ani)},

(5.99) K2, (092) = { Fehrr(dQ): (f9)=0, Vo e \I!’\(OQ)}.

When 1 < p < oo, we shall write Lgi(an) and L{,,(09) in place of hg’i (69)

and hfp » (092), respectively. For further use, we record here the following elementary
lemma.

Lemma 5.3.3. — Let Q C R", n > 2, be a bounded Lipschitz domain. Then
(5.100) TA(00) = ¥ (80Q4) & T (8Q-)

where the sum is direct. In addition,

L
(5.101) vRaq — [‘I’*(aﬂ)] )
where the orthogonal complement is taken in LZ(82). Also, for every p € (1,00),
(5.102) L%, (8Q) — LE(8N) := { FeLro9): / Fdo = o},
* o0
1 L
(5.103) [Rga| = [R3a,| — L5(09),
and

Proof. — Consider the identity (5.100). In one direction, the right-to-left inclusion is a
consequence of (5.73), (5.86), and (5.90). Since, by (5.89) and (5.91), the spaces whose
equality we are trying to establish have the same (finite) dimension, there remains
to show that the sum is direct. To this end, assume that 1 € ¥*(8Q,) N ¥*(Q_)
is arbitrary, and denote by 11 € ¥*(Q.) the natural extension of ¢ in Q.. Now, if
we set 9 := by in Q, the fact that ¢, |sq = ¥_|aq ensures that (5.84) is satisfied
by this function in R™, in the sense of distributions. Hence, zﬁ € V¥, and since it has
compact support, ¥ must vanish in R™. This forces ¢ = 0 on 91, finishing the proof
of (5.100).
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All the other formulas in the statement of the lemma follow more or less directly
from definitions. The proof of the lemma is therefore complete. O

Moving on, for each f € L%(d2), the functions

(5.105) s (2) = Jf(z), mi(2):=Qf(2), z€Q,

solve the Stokes system

(5.106) Ay —Vry =0, divit=0 in Qq,

and satisfy

(5.107) | M(V@s)l|L2(on) + M (7)o o0y < C(OQ ) fllz2(00).

(5.108) [3_(2)] + |l (IVE_(@)| + |7_(@)]) = O(|=*™™) as o] o0, if n 23,
Moreover, if [, 59 f do = 0, then for any n > 2 the decay condition (5.108) improves

to

(5100)  fi-(@)] +1el(|VE-@) + Ir-(@)]) = O(al'") as lal = oo
Consequently, Green’s formula (4.6) gives

(5.110) (A\Vity, Vi) de = /Q (F, (-31+K3) ) do,

and if either n > 3 or faQ fda =0,

(5.111) / (A\Vi_,Vi_)dz = —/aﬂ <Sf, (%I+K§)f> do.

For each p € (%=1, 00), set

n

(5.112) RE . (89) = { Feno9): /6 (%, fdo =0, Vo € vRon, |,
Q

and

(5.113) RE ,(0Q) = {fe hE(892) : /E)Q(«p,f} do =0, Yo € URGQ},

with the convention that, when 1 < p < 0o, we shall write L} _ (69) in place of

lL,vy
hY . (09). For 1 < p < oo, let us also define
(5.114) 2, (89) := {fe LP(89) : / (%, f)do =0, Vo € vRon, },
on

(5.115) LP(89) := {fe LP(89Q) : /a (%, fldo =0, Vo € VRBQ}.
Q

We can also prove the following.
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Lemma 5.3.4. — For any X € (—1,1] and p € (1, 0),
(5.116) T (094) ® TH00-) = ¥NoQ) — L ,(89Q) — L}

1,v4

69).
Also, if 1 < p,p’ < oo satisfy 1/p+ 1/p’ =1, then
(5.117) (L{’v; (09) /vRon. ) = LT, (69)/4*(09:).

Proof. — This can then be easily checked from definitions with the help of the general
formula

Vi Y

11 (5) =34,

(5.118) = ) 7
whenever X is a Banach space, 0 — Y; — Y; — X are closed subspaces, and we
have set V' := {A e X*: A(y) =0, VyeY;},j=1,2. O

Finally, we are ready to state our next result. Before doing so, denote by Ker (T :
A — B) the null-space of a linear operator T from A into B.

Proposition 5.3.5. — Let Q be a bounded Lipschitz domain in R™, n > 2. Then for
each v € R\ [-%, 1] and X € (-1, 1], the operators

202

(5.119) vI + K3 : L*(0Q) — L%(69Q),
and
(5.120) I + Ky : L3(8Q) — Li(09Q),
are injective. Moreover, if —1 < A < 1, the operators
(5.121) + i1+ Ky Li;(aﬂ)/uRaQi — Lﬁ,g (09)/vRaq, ,
as well as
(5.122) £3I + Ky : L2, (09)/9*(89%) — L2, (09)/T*(694),
(5.123) +31I+ Ky : L3, (09)/92(09%) — L}, (69)/9*(09),
are well-defined and injective. In addition,
(5.124) Ker (£11+ Ky : L3, (09) — L2, (09)) = ¥*(0Q4),
(5.125) Ker (£31+ K : L2, (69Q) — L2, (89)) = ¥*(09%),
(5.126) Ker (+1I + K : L;;(an) - L?p; (09)) = vRsq, .

Finally,

Roq if n >
(5.127) Ker (S : L2(99) — L2(9Q)) = { “Roa Hn 23,
VRoq @ W if n =2,

where, for n = 2,

(5.128) W:={feL2 (69): Sf=00n 080, and @f =0 in 4}
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also satisfies

(5.129) dim W < 2.

Proof. — Fix v € R, |y| > %, —1 < A £ 1, and assume that f € L?(09Q) is such
that (vI + K;)f: 0. Also, let (@4, 7+) be as in (5.105) and define @, m in R™ as in
(4.152). Since @4 |aq = U—|aq, it follows that

(5.130) u € W2 (R™).

loc

Next, based on Green’s formula (4.6), for each ¢ € R™ we may write

(7+%)</anfd076>

o) [ (Fade== [ (4+Kf ¢ ao
= - [ (BwFep, e
oN

= —/(Aﬁ—Vﬂ,é’)—/A)\(Vﬁ',Vé’)—-/ﬂ'divé‘
Q Q Q
(5.131) = 0,

which shows that f € L3(89). In particular, the improved decay condition (5.109)
holds which allow us to write

0 = / (W + KN f,Sf)do
onN
= /an<(—v+%)(—%l+K;)f'+(v+%)(%HK;)fTSf”}da
(5.132) = (—7+§)/ AA(Vﬂ,ViZ)dx+(—'y—%)/ Ax(Vi, Vi) dz.
Q4 Q_
Consequently,
(5.133) / Ax\(Vi, Vi) dz =0,
Rn

since —vy — % and —y + % have the same sign and the integrands in the last line of
(5.132) are nonnegative. Next, pick a function 9 € C§°(R™) which is identically one
in a neighborhood of the origin and set ¥;(z) := ¥(x/j), j € N. We have

lim / Ax(V(;1), V(@) dz = lim / Y2 AN(Vi, Vi) dx
J—00 JRn J—0 Jrn

+Jim [ O(1s IV 1Vl + V3, ) de
(5.134) =0
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thanks to (5.133) and the improved decay of @ at infinity. Since, by (5.130), ¥;u €
WL2(R™), Plancherel’s formula (used twice) along with (4.18) then give

0 = hm ANV (¢;1), V(y;1))dz > Kk hm / |V (9;4)|? dz
Rn

K / |Vi)? dz.
R'n

Thus, % is a constant in R™ and decays at infinity, hence ultimately # = 0 in R™.
In turn, this forces 7+ € Rq, , prompting the conclusion that

(5.135)

(5.136) f=0a_,n_) — )iy, my) = v(ry —7_) € vRogq.

Now, from (5.136), (5.78) and assumptions, we get
(5.137) )
0= (vI+K3)f = (W + K3)(vmy) = (VI + K3)(vm-) = (v— 3)(vmy) = (v + 3) (vm-).

Thus, m, is a multiple of m_, and so (5.136) implies f € vRopn, NVvRsqn_. Then
f = 0, as wanted. This finishes the proof of the fact that the operator (5.119) is
injective.

To see that the operator (5.120) is also injective, assume f € L2(9Q) is such that
(vI + K»)f=0.Let @y = D5f in Q4 and 7y = P, f in Q4. In particular,

(5.138)  |i_(z)| = O(jz|'™") and |Vi_(z)| + |7 (z)| = O(|z|™"), as |z| — oo,

which ensures that the integration by parts formula (4.6) works in Q4 to yield

0 = [(O1+K)F, 02D, 2P do
N
= [10+ DGT+KOF+ (7 + D4 +KDF 0N, 9 ) do
on
(5.139) = (7+%)/A,\(Vﬂ‘+,va‘+)dm+('y—%)/A,\(Vﬂ‘_,Vﬁ_)d:c.

Q4

Since v+ % and vy — % have the same sign, it follows from (5.92) that @y € ¥*(Qy)
and therefore @4 |sn = ¥+ for some ¥+ € ¥*(0Q4). Then applying (5.97) gives

(5.140) 0= (v + Kx)f = (v] + K2y — (VI + Kx)y— = (v + )y — (v — L)y

This implies that 1, is a multiple of ¢_, and hence f € ¥*(8Q,)NT*(80Q_) = {0}.
Turning our attention to the operators in (5.121), we note that these are well-
defined since

(5.141) (+£31+K3)(vps) =0, Vou € Ron,,
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and, as a simple application of Green’s formula (applied in the bounded components
of Q1) shows,

(5.142) (+31+K3)2(09) C L, (60).

Consider next f € L@i (09) such that (—3I + K;)f= v, for some ¢ € Ryq_.

Our goal is to show that f € vRyq_. To get started, we note that f € L%(89), thanks

to (5.104). In turn, the fact that f has vanishing moment ensures that if @4, 7+ are
as in (5.105) then (5.109) —and, hence, (5.111) — holds. Then

(5.143) Ax(Viy, Vi, ) ds = / (SF (~3I+K3})f)do = / (Sf,vp)do = 0.
Q4 a0 a0
Thus from (5.92), @y € ¥*(€,). This implies Sf = ﬁ+|ane U (89, ) hence, from
orthogonality considerations,

(5.144) 0=/(99(f,8f)do=/aﬂ((%leK;)f_',Sf}da:/Q A\(Vi_,Vi_)dz.

From (5.92), @ € ¥*(Q_), and in particular, this implies that @_ is harmonic in
Q_. Thus w_ must be locally constant in {2_ and vanish in the unbounded component
of Q_. In other words, m_ € Rq_ and, as a result, we have
(5.145)

F=GI+E)F~ (=3 +K)F = 8@, n_) - vip = —v[(n_|sa) + ¢] € vRoq._.

We also need to show that if f € L2, (09) is such that (31 + K3) f = vy for some

¥ € Rpq, , then necessarily f € vRpq, . To this end, observe that f =vp— (——%I +

K}‘)f € L%(09) by (5.142) and (5.104). With this in hand, the proof is carried out
much as before.

Next, the operators in (5.123) are well-defined due to (5.97) and the fact that (as
it can be checked using Green’s formula in the bounded components of Q1) ,

(5.146) (£31+ K))L3(09) C L3, (69).

l,v4
To see that these operators are injective, we will first show that
(5.147) felL?, (09Q) and (i1 + K))f € ¥}(0Q4) = f € U*(89).

To see this, let ¢ := (——%I + KA)f € UA0Qy) and let iy = Drf in Q4 and
7+ = Prf in Q4. Then (5.138) holds and (4.6) gives

/AA(Vﬁ_,Va‘_)dm = —/(z/z,a,’,\(ﬁ_,w_))da
Q_ o
(5.148) = - / ($,0) (U4, 74)) do = — / (uy,8)(%,0)) do =0,
o0 N
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where ¢ denotes the extension of ¢ € W*(d€2, ) into .. It follows that @_ € ¥ (Q_),

and therefore, 8 (i4,my) = 9) (i, 7_) = —vm_ € VRsq_. Then
(5.149) /A,\(Vﬁ+,Vﬁ+)dx =-— /(u+,8,’,\(ﬁ+,7r+)) do = /(111 + fivr_Ydo =0,
Q4 aQ a0
since 7_ € Rog_ and 4, f € L%, (09). Thus @y € UM€Q,), and so f =iy |an — 1 €
T2 (090,).
In a similar fashion, we can also show that
(5.150) felL}, (09) and (LI + K»)f € ¥}(00_) = f € ¥} (600.).

Here we only wish to remark that in place of (5.148) we write

[awavanas = [woda, )

Q4 a0
(5.151) = / (W, N, m_)) do = / (u_,d)(®,0))do =0,
oN oN

where ¢ € U*(Q_) is such that 9|aq = ¢ := I+ K>)f. The fact that there are no
decay problems when using (4.7) in the next-to-last equality above is ensured by the
fact that ¢ has, as any field in U*(Q_), compact support. This finishes the proof of
the claim made about the operators in (5.123).

Consider next (5.124). For this, the right-to-left inclusion has been already estab-
lished in (5.97) (here (5.116) is also used), whereas the the opposite inclusion can be
read off (5.147) and (5.150). Once (5.124) has been established, (5.125) follows from
Lemma 11.9.21 in the Appendix, granted that

(5.152) + 17+ K, are Fredholm with index zero on L?(892) and L3}(8%).

However, this is proved in (5.165) and (5.167) below, independently of the current
considerations. This finishes the proof of (5.125). As for (5.126), the right-to-left
inclusion is a consequence of (5.78), while the left-to-right inclusion is implicit in the
arguments just below (5.142) and (5.145).

Finally, to prove (5.127), consider first the case when n > 3. Then the right-to-
left inclusion is contained in (5.77). To justify the remaining inclusion, assume that
fe L?(0Q) is such that S f = 0. Consider the functions @y := Jf in Q4 and
74 := Qf in Q4. Then from (4.6),

(5.153) / A\(Viiy, Viiy)de = + / (Sf, iy, m+))do = 0.
Q4 N

Then @1 € ¥*(Q4), which implies that A#: = 0 in Q4, and so 74 must be locally
constant. Furthermore, we have

(5.154) f=0)a_,n_) - 8)(iy,my) =v(my —7_) € VR,
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which proves (5.127) when n > 3.

There remains to consider the case when n = 2, in which situation it may happen
that there exist vector fields in LZ(0Q2) which do not belong to ¥Rsgq, and yet are
sent to zero by S. For example, if @ = B(0,/€) in R%, then Se; = 0 for j = 1,2;
see, e.g. [58], p. 98. Nonetheless, any nonzero vector field f € W necessarily satisfies
i) 89 f do # 0, otherwise the argument in the previous paragraph (in which we take
into account that 7, = @ f_" =0 in Q) places it in ¥Rgq_, thus forcing f = 0, from
orthogonality considerations. This argument shows that the linear mapping W > 1; —
Lo ¥do € R? is injective. Hence, diim W < 2, proving (5.129).

As for (5.127) when n = 2, the right-to-left inclusion is clear from (5.128) and
(5.77). To prove the opposite inclusion, assume that fe L?(09) is such that S f=00n
89, and set @ := Jf, 7 := Qf in Q4. Then [, A\(VZ, V@) dz = [,,(9) (T, ), d) do =
0, since @|gn = 0. Consequently, @ € ¥*(2;) hence, 7 € Rq, by Lemma 5.3.2. This
shows that for every connected component €); of €, there exists a constant ¢; € R
with the property that ¢ fl 9, = c;. If we now set

bo
(5.155) Gi= (Z chagj)u € URaq, — Ker (S : L}(09) — L3(89)),
j=1

then, by (5.81),

(5.156) Q5= cixo, = Af in Q.
J

As a consequence, if ke vRpq_ denotes the projection of f — g onto vRpq, , we
may write f = (f —§— k) + (G+ k), with §+ h € vRaq, ® YRaa_ = Rpn and
f—3—h e W, by (5.156), (5.81) and (5.77). We are therefore left with showing
that W NvRsq = 0. Indeed, if 1+ € Raoq, are such that Q(vy4 +ve_) =0in Q 4,
then (5.81) shows that ¢4 = 0. Thus, if vp, +vp_ € W — L2 (89) to begin with,
then necessarily ¢_ = 0, and the desired conclusion follows. This last step finishes
the proof of (5.127), and concludes the proof of the proposition. a

We continue the discussion of the operators in question with the following results.

Theorem 5.3.6. — Let Q@ C R™, n > 2, be a bounded Lipschitz domain. Then there
exists € = () > 0 with the property that for each p € (2 — €,2 + €) the following
statements are true. First, the operators

(5.157) v+ Ky, 71 + K} : LP(3Q) — LP(89),
(5.158) v+ Ky : LP(09) — LE(99),

are invertible whenever A € (—1,1] and v € R\ [, 1]. Second, the operators

(5.159) + I+ K} ng (09)/vRoq, —> L‘;; (09)/vRsq,
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along with
(5.160) i1+ K, LE, (09)/9*(09%) — LF,, (09)/9*(094),
(5.161) +11+ Ky : LB, (09)/9*(805) — L, (09)/9*(8Q5)

are also invertible whenever A € (—1,1].

Proof. — From known stability results, it suffices to deal with the case p = 2 only. In
this scenario, pick a vector field h € C§°(R™) with supph C D such that (h,v) > &
a.e. on 0R, for some Kk = k(0Q) > 0. Fix f € L?(09) and consider 4y = Jf,m1 = Qf
in Q.. Switching the roles of 4, and @_ in Corollary 5.1.6 and choosing u = 0 gives
IVa_llz200) < CllVeant-llz200) + CIIVSFllz2@_np) + 12l z2(2_nD)
(5.162) = C||Vsanti+ |l 200 + CIIVSFll 2 @_np) + Cl2f |2 @_nD)-
Combining (5.162) and Corollary 5.1.5 then gives
1712200y = 180 (-, m=) = 8 (i, w4 )| 2 (o0)
< O\ Vig||z2a0) + ClIVi-||L2a0)
< C||Viy||z2e0) + CIIVSFl 2 npy + Cll@fllz2(_np)
< C||(—%i—f,’fl + K3 fllz2o0) + CIIVSSFll 2y npy + ClQF 220, D)

(5.163) +C|IVSFl 2_npy + CllQfll L2 np)
Since (5.163) holds for each u € [0,1) and the operators
(5.164) Vd, Q: L2(0Q) — L*(Q4 N D)

are compact, the homotopic invariance of the index then proves

~I + K3 : LP(0Q) — LP(9N2) is Fredholm with index zero

(5.165) X
whenever 2—e<p<2+¢, |y|>3, and Ae(-1,1],

first when p = 2 and then when |p — 2| < ¢ via perturbation results.

In a similar manner, if we consider @4+ = D) f, e = Py f in Q4 for f € L?(09),
we can also show via Corollary 5.1.5 and Corollary 5.1.6 that given ~, A as before,
there exists C = C(99,7,A) > 0 such that

(5.166) || fllz2con) < CI(YT + Kx) fll 12 (om) + residual terms, V f e L}(89),

where the residual terms yield compact operators from L?(8f2) into suitably chosen
Banach spaces. Again using the homotopic invariance of the index and also perturba-
tion results, it follows that

vI + K : LY (0Q) — L7(89) is Fredholm with index zero

(5.167) .
whenever 2—e¢<p<2+¢, [y[/>3, and Me(-1,1].
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Then the invertibility claims made in the statement of (5.157) and (5.158) follow
from (5.165), (5.167), Proposition 5.3.5 and simple functional analysis. To also con-
clude that the operators in (5.159) and (5.160) are invertible, it is enough to establish
that they are Fredholm operators of index zero.

First, let T} denote the operator 31+ K7} acting from LP(892) to LP(8<2) and let T,
denote the same operator acting instead from L% , (Q)/vRaq, to LY, (0R)/vRaq, -

Also, let

(5.168) v: L5 (09) — LP(092)
denote the natural inclusion operator, and let

(5.169) pr: LP(8Q) — L%, (99)

be the projection operator given by
(5.170) ESEDY ( / (Foabe) do )

where the t;’s form an orthonormal basis of ¥*(9Q_). Also, let

(5.171) ﬁi‘ . L?I’i (BQ) _— L‘pi’i (aQ)/VRaQ+
denote the natural projection operator with regards to these spaces. Then using pre-
vious arguments, we can show that the following diagram commutes:

pr T

P (89) —— L7 b (89) /vRaq, —— L%, (09)/vRaq,
(5.172) l . T e
T pr
L?P(09)) ———  LP(8Q) ———— L{;X (09))

The estimate (5.163) shows that T is a Fredholm operator of index zero. Since
t, pr, and pr are also clearly Fredholm, it follows from (5.172) that T> must also be
Fredholm. Furthermore, since the Fredholm index of ¢ is the opposite of the Fredholm
index of pr, it also follows from (5.172) that the index of T, must be zero. The rest of
the cases in (5.159) and (5.160) follow similarly. Finally, that the operator in (5.161)
is an isomorphism is a consequence of the corresponding statement for (5.159) and
duality (cf. (5.117)). O

5.4. Inverting the single layer on L? for p near 2 on bounded Lipschitz domains
The goal of this first part of this section is to prove the following theorem.

Theorem 5.4.1. — For each bounded Lipschitz domain Q@ C R™ with n > 3 there
exists € = £(0Q) > 0 with the property that

(5.173) §: L7(09) [vRoq — I£,,(09)
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is an isomorphism for each p € (2 —¢,2 + ¢).

Proof. — For starters, note that since S(¥Rpq) = 0 and since for every bounded
connected component D of 2.,

(5.174) /aD(Sﬁu)da:/]Ddivdfdw:O, VFeIP(d9), 1<p<oo,

the operator (5.173) is well-defined. Also, from known perturbation results, to prove
the theorem, it suffices to consider the case when p = 2. To this end, recall the identity
(4.142). From previous arguments, we know that :I:%I + K are Fredholm operators,
and so from (4.142), the operator

(5.175) S : L*(80) — L3(09)

must have a finite co-dimensional range, which further implies that its range is closed.
Combining this with (5.127) confirms that the operator in (5.175) is Fredholm. To
finish the proof, it is enough to establish that the Fredholm index of (5.175) is zero,
since a similar argument as in the last paragraph of § 5.3 will then imply that (5.173)
is also a Fredholm operator with index zero. Since, by (5.127), the operator (5.173)
is injective, this would be enough to prove the theorem.

To show that (5.175) has index zero, consider the corresponding operator for the
Lamé system

(5.176) Sy L2(0Q) — LI(09),

defined in a similar manner as (5.175), except that the fundamental solution matrix
E = (Ejk); is replaced by the fundamental solution E#* = (E¥ ),k for the Lameé
system of elastostatics, given by L, @ = pA@ + (A + p)Vdiv @, where

(5.177)

E;f}:‘(x) =

1 (3p+/\ 1 4 B+ A :L‘j.’L‘k)
, z€R™\{0}.
p@a =22 T e N Jo o}

Comparing (5.177) with (4.19) , it is clear that Ejl‘,i‘ (z) — Ejk(x) and VE;Y’,:‘ (z) —
VE; k(z) as A — oo, uniformly for « in compact sets, and so

(5.178) lim Sy =S,
A—00

2Wn—l

in the strong operator norm sense (as operators mapping L?(02) into L?(82)). Since
it is known that (5.176) is Fredholm with index zero when p > 0, A > —%’Li (cf., e.g.,
[31]), it follows from (5.178) that (5.175) has index zero as well. d

Corollary 5.4.2. — For each bounded Lipschitz domain  C R™ with n > 3, there
exists € > 0 such that

(56.179) S : L?,(09)/vRaq — LE(09)
is an isomorphism for each p € (2 —¢,2 + ¢).

Proof. — Since (5.173) is a self-adjoint operator, Corollary 5.4.2 follows directly from
Theorem 5.4.1 and duality. O
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In the second part of this section we treat the case n = 2. The main novelty is
that, for two dimensional bounded Lipschitz domains, the structure of the null-space
of the boundary single layer changes, compared to the higher dimensional case. Cf.
(5.127)-(5.129).

Theorem 5.4.3. — Assume that Q C R? is a bounded Lipschitz domain. Then there
exists € > 0 with the following properties. First, the space

(5.180) {feL? (69): Sf=00ndQ, and @f =0 in O}

is independent of p € (2 — ¢,2 + €). In particular, it agrees with the space defined in
(5.128) and we shall keep denoting this by W. Second, for any p € (2 — ¢,2 + €), the
operator

(5.181)

§: LP(09) [vRoa & W — I2,,.4,(09) = { F € L2,(09) : [yo(Fi¥)do=0Vyp e W}
is an isomorphism.

Proof. — Let € > 0 be such that
(5.182) S : LP(02) — LE(09)

is Fredholm with index zero whenever p € (2 — ¢,2 + ¢). This can be arranged as
before. Then, it follows from Lemma 11.9.21 that that the null-space of S in (5.182)
is independent of p € (2 — £,2 + €). As a consequence,

(5.183) Ker (S : LP(0Q) — LY(09Q)) = vRaa @ W, Vpe (2—¢,2+¢),

where W is as in (5.128). Thus, if we temporarily denote the space (5.180) by W,,
(5.183) implies W, C W, for any p € (2 — €,2 + €). On the other hand, the same
type of argument which led to (5.127) gives the opposite inclusion so that, altogether,
Wy = W, for each p € (2 — €,2 + €). This proves the first claim in the statement of
the theorem.

Going further, the fact that

(5.184) /m(sf,zp)da= 69(f,3¢)da=0, Vo e W,

proves that the operator (5.181) is well-defined. Given that S in (5.182) is Fredholm
with index zero if p € (2—¢,2+¢) and that W is finite dimensional, it follows (similarly
to what we have done in the proof of Theorem 5.4.1) that the operator (5.181) also
has index zero. Since, as seen from (5.183), this is one-to-one, it ultimately follows
that the operator in question is an isomorphism. O

We conclude this section with another important result involving the single layer
in two dimensions.

Theorem 5.4.4. — Let Q C R? be a bounded Lipschitz domain, and define the oper-
ator

(5.185) S: (LP(OQ) [vRon) ®R? — L%, (69) © R?
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by setting
(5.186) (), ) = (sg+a, ][ g‘da)‘
on

Then there exists € = €(02) > 0 such that S is an isomorphism for each p €
(2—¢,2+5¢).

Proof. — From stability results (cf. Theorem 11.9.24), it is enough to treat the case
when p = 2. Consider the decomposition S = S, + S; where

(5.187) S,([3], @) := (S§,0) and S1([7), @) := (a’, ]{9 ] g’do).

Note that S; is an operator of finite rank and is therefore compact. Then since
S, = S is Fredholm with index zero when p = 2, it follows that S = S, + 87 is also
Fredholm with index zero when p = 2. Now to show that S is an isomorphism, it is
enough to show that S is injective. Assume there exists § € L2(99) and ¢ € R? such
that [, gdo = 0 and S§ = —C. Set

(5.188) I—Zi = dg' in Qi, T = Qg in Qi.
Using (5.110) and (5.111), for any X € (-1, 1]
(5.189)
/A,\(Vﬁ+,va’+)dz+ /A,\(Vﬁ_,Vﬁ’_)d:c
o Q_
=/<S§, (-3I+K3)g- (%I+K§)g’>da = —/(Sg‘,g’)do = /(é‘,g‘)da =0.
on o on

Then from (5.92), we know that @y € ¥*(f24) which further implies that 71 €
Roq, and 8 (@4, m+) € vRoq, . Then § = 0)(i—,n_) — 0. (4, m+) € VRsg and so
¢ = —8g = 0. This shows that ([g],&) = 0 as desired, which establishes that S is an
isomorphism when p = 2. O

5.5. LP-boundary value problems on bounded Lipschitz domains for p near 2
In this section we will focus on establishing well-posedness results for bounded

Lipschitz domains. Our first result in this regard is the following.

Theorem 5.5.1. — Assume that 2 C R™, n > 2, is a bounded Lipschitz domain and,
as usual, set Q} =, Q_ := R"\ Q. Also, fix p € (0,1) and X € (—1,1]. Then there
exists € = €(0€2) > 0 such that for p € (2 —¢,2+¢), the transmission boundary value
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problem, concerned with finding two pairs of functions (@4, 71) in Q4 satisfying
Aﬁi = Vﬂ'i, diviii =0 in Qi,

M(Viy), M(m+) € LP(09),

ﬂ+lan_ﬂ' ‘an= g € Li(on),

iy, my) — pdMi_,n_) = f € LP(69),

(5.190)

and the decay conditions
(5.191)
O(|z|* ™) as |z|—o00, if n>3,
u-() ={ —lE(z)(j fda) +0(z|"Y)  as || — oo, if n=2
© on ’ )
(5.192)
0,-(2) = ~LOE)@)([_Fdo)+O(el™) as el w0, 1< <
(5.193)
O(jz]'™™) as |z|—>o00, if n>3,
m-e) = { L((VEA)®), fpq fdo)+O(al™) as Jo] > oo, if n=2

has a unique solution. In addition, there exists C' > 0 such that

(5.194) IM (VL) Lo o0 + 1M () l|zr 00 < Cllgllzr o) + Cll fllLeo0)-
Furthermore, a similar result holds if (5.190) -(5.193) are replaced by

A'L_L':t = Vﬂ':t, divﬁi =0 in Qi,

M(Viy), M(ry) € LP(09),

— . -7 P

u+|an uu_lan g€ LI(BQ)_’,

63‘(’&:+,7T+) - 63(1—1:_,’”'_) = f € LP(HQ),

(5.195)

and the decay conditions
(5.196)

. O(|z|*™) as |z|—> o0, if n>3,

() = { —E(:l:)(f(99 fda) +0(|z|7Y) as |z| 200, f n=2,
(5.197)

0,i-(e) = ~OB))( | Fao)+O(a ) a8 fal o0, 1< <,
(5.198)

O(jz]*™™) as |z|—> o0, if n>3,
() ={ ((VEa)@), [oq fdo) +0(al?) as la| > o0, ifn=2.
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Proof. — Let € > 0 be as in the statement of Theorem 5.3.6. Then for p € (2—¢, 2+¢),
we know the operators

(5.199) — FIEET+ K3 : LP(0Q) — LP(89), 3{Xil+ Ky : LF(3Q) — LE(0%)
are isomorphisms. Now, set

(5.200) fi = f- 82}, Px ) +p8)(Dy g, P> 9) € LP(3Q),

(5.201) o= (2” 1I+K/\) 'F e 17(o0),

where the superscripts * indicate that the layer potentials in question are considered
as mappings from functions defined on 952 into functions defined in Q.. Then

(5.202) gy = —d fa + D33,

(5.203) me = Q0 hH+ P53,

solve (9.32) and obey natural estimates, i.e.

(5204) | M(Vits) o) + IM(r2)llzeon) < C(1dllzzom + I fllzecon) )

Let us now check the decay conditions (5.191)-(5.193). Clearly, (5.191) is a simple
consequence of (5.202) if n > 3. Going further, we note that

fido = / [ 80t5,9 5 do+u / 0N D5 9, 5.9) do
on oN
= / —(1—p) / NNDL G, Py §)do
(5.205) = /
since
(5.206) (D} G, PX3) = 0)(Dx G, Pxg), Ve LE(9D).

On the other hand,

fido = /{m(” L+ K3) frdo

/( I+K,\)f2da+” 1/ fodo

1219

(5.207) = / fado,

so that

(5.208) fgdaz"%/ fido = "‘—~ fdo.
a0 aQ aQ
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Consequently, when n = 2,
i) = Lo R+ D)
= o (A= f_Rdo)@+ B ([ fade) +0Gel™)
~28)( [ Fis)+0(el™) w5 el = oo

in agreement with the case n = 2 of (5.191). Finally, that (5.202)-(5.203) satisfy the
conditions (5.192)-(5.193) can be verified in a similar fashion.

Let us now consider the issue of uniqueness for (5.190)-(5.191). To this end, assume
that (@, m+) solves the homogeneous version of (5.190)-(5.193). The fact that f =0
implies that @_, m_ decay fast enough at infinity for the Green’s formulas

(5.209)

(5.210) @y = £05 (x| ) FHO(@x,ms) in O,

to be valid. Based on (5.210), we may then write

AN U AT CNCRI ACA ) ESCNCAIN ) I

0 (S(0) (i, ms), (B} (s, 7s)) )

(5.211) ¢(Q(6ﬁ(ﬁi, Wﬂ;))) |mu,

hence, invoking (4.121) and the jump-relations of hydrostatic layer potentials,
Rae,ms) = +03(Da(ae], ). (], ))

(5.212) :F(:F%I n K;) (a,i(ai, wi)).

Adding the two versions of the identity (5.212) and keeping in mind that
Ny, my) = po) (u_,7r_), Uylon = U-|an and that (5.206) holds allows us to
conclude that (2n 11 + K3)(0) (-, )) 0. Since "ﬂl + K3) is an invertible
operator, 9, (i—,m_) = 0, and further, 8) (@4, m4) = 0. Movmg to the boundary in
each version of (5.210) then gives

(5.213) (31 + Kx)(i+|o) = Gxlon = —(—31 + K»)(@x|s0),

from which it can be determined that @i|sq = 0. Finally, it follows from returning

to (5.210) again that @4 = 0 in Q4. This forces 74 to be locally constant, but since

w4 = pm— on 0N and m_ decays at infinity, we must have 7+ = 0 in Q4 as well.
The result for (5.195)-(5.198) follows in a similar manner. More precisely, if

+(1-pSfe L”(BQ)
LK) g e LE(00),

Gr:=9g
(5.214) .
92 = (
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then
(5.215) iy = Ag2_d fin Qu,
(5.216) Ty = 1 QAgz—Q f in Qu,

will satisfy (5.195)-(5.198) and also (5.194). As for uniqueness, it can be shown using
(5.210) as above that solutions of the homogeneous version of (5.195)-(5.198) satisfy

(5.217) (—3HE1+ K,) (@-|oa) =

It follows that @_|sn = 0 and therefore @ |sn = 0 as well. With this in mind, it
can also be shown using (5.212) and the transmission conditions that 8 (@+,7+) = 0,
and then uniqueness follows much as above. O

Theorem 5.5.2. — Assume that Q C R™, n > 2, is a bounded Lipschitz domain. Then
for A € (—1, 1], there exists € = £(92) > 0 such that for p € (2—¢,2+¢), the Neumann
boundary value problem, concerned with finding functions (@, ) in § satisfying
Ai=Vmr, divi=0 in §,
(5.218) M(Vd), M(m) € L*(89),
8)(#,m) = f € L(89),
has a solution if and only if f satisfies b, _1(f2) linearly independent constraints. More
specifically, (5.218) has a solution if and only if

(5.219) felm (—%I + K3 : L5, (99) — Lf, (an)).

Whenever a solution of (5.218) exists, it is unique modulo adding to the velocity
field functions from ¥*(12). In addition, there exists C > 0 such that

(5.220) M (V)| Lo o0y + 1M (T)lLeo0) < CllFllLe(o0),

for any solution (&, ) of (5.218).
Finally, a similar result holds for the exterior domain R™ \ Q2 after including the
decay conditions

(5.221)
. O(lz|*™) as |z| =00, if n>3,
= { Z)(fan fd“) +0(|z|7!) as |z| - o0, if n=2,
(5.222)

i) = OE))([_Fdo)+ Ol ™) as ol ~ o0, 1555,
(5.223)

O(|z|*™™) as |¢|— o0, if n>3,
m)_{ ((-VEn)@), Joq fdo) +0(al™) as |z] » oo, if n=2.
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In particular, a solution to the exterior problem exists if and only if
(5.224) felm (%I + K3 L5, (99) — I%, (39)),
and solutions are unique modulo adding to the velocity field functions from ¥*(R™\Q).

Proof. — Let € > 0 be as in the statement of Theorem 5.3.6. Then for p € (2—¢,2+¢),
we know that the operator

(5.225) - I+ Kj: Lgi(aﬂ) [vRsq_ — L{;i (09) /vRs0_

is an isomorphism. Consider the claim that a solution for (5.218) exists if and only if
(5.219) holds.

To justify the right-to-left implication, if (5.219) holds, say f= (=3I + K3)g for
some § € Lf;i (092), then

(5.226) i:=¢gg and w:=(g

will satisfy (5.218) and (5.220).

In the opposite direction, assume that f € Lr(0Q) is such that (5.218) has a
solution (i, 7). Then, if ¢ € ¥*(99,), say ¥ = 1|sq for some ¢ € ¥*(2,), we may
write

f = 5 oM@, 7)) do = A1) w)do =
(5.227) /mw,f)da— /mw,aV(u, ))d Lﬂ(au<¢,o>, Y do =0

Hence, necessarily, f € L z (09).

Having established this, we now use the fact that (5.225) is an isomorphism in
order to find § € Lgi(aﬂ) such that (—%I + K3)g — f = v, for some ¢ € Rya_.
If we now set w := Jg and p := §g in (2, then the pair (w — u,p — 7) solves the
interior Neumann problem with datum vp. We will now make a claim which implies
that, necessarily, ¢ = 0. This, of course, entails f= (—%I + K3)g, proving (5.219).
The claim just alluded to above is the following:

(5.228) if (@) solve (5.218) for f = vy with ¢ € Raq_, then ¢ = 0.

To justify this claim, write (4.120) and recall (5.77) to conclude that @ = D (u|sq)
in Q. Going to the boundary then yields

(5.229) a‘me Ker (—1I+ Ky : L}, (69) — L}

1vg

(09)) = T (394),

by (5.124). Utilizing this back into (4.120) and relying on (5.96) further gives @ €
T*(Q4). Hence, vy = 8, (@, 7) € vRoq, by (5.95) and, ultimately, ¢ = 0 given that
the sum in (5.73) is direct. This concludes the proof of (5.228).

To establish uniqueness, if the functions @ and 7 satisfy the homogeneous version
of problem (5.218), then @ = D) (id|aq) in Q, by (4.120). Going non-tangentially to
the boundary then yields (—3/ + K))(ilon) = 0 on 99 which shows that @|sn €
Ker (—1I + K : L7, (0Q) — L7 u+(89)) = W09, ), by (5.124), since i|sn €
(89) to begin with. Hence, @|sq = ¥|aq for some function ¢ € ¥ (). It

1V+

1u+
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remains to invoke (4.120) once again in order to conclude that, by virtue of (5.96),
@ = 1 in Q. This establishes the claim made about uniqueness for (5.218).

In the case of the exterior domain, a similar argument can be used to establish
the existence of a solution. The key observation is that the decay conditions (5.221)-
(5.223) are strong enough to guarantee that integral representation formulas analogous
to (4.120)-(4.121) hold in R™ \ . More specifically, we have

— Dy (alm) () + J(ag(a, 1r)) (z), zeR"\Q,
(5.231)  w(z) = —P (ﬁlm)(x) +0(8@m)@), ser"\.

These are proved starting with (4.120)-(4.121) written in Bg \ Q, where By is a
ball of radius R, large enough so that Q C Bg, then passing to the limit as R — oo.
The decay conditions (5.221)-(5.223) are then used to show that the contributions
from OBpg tend to zero. With (5.230)-(5.231) in place, the proof of the uniqueness
then proceeds as for the case of bounded domains. O

(5.230)  @(z)

We can also state a similar result for the Regularity problem.

Theorem 5.5.3. — Assume that Q C R™, n > 2, is a bounded Lipschitz domain. Then
there exists € = ¢(9Q) > 0 such that for p € (2 —¢,2 + ¢), the Regularity boundary
value problem, concerned with finding functions (i, 7) in 2 satisfying

Ad=Vr, divi=0 1in Q,
(5.232) M(\Va), M

a=feLi(6n),
has a solution if and only if

(5.233) ferL?, (89).

1,V+

In addition, the solution is unique modulo adding locally constant functions to the
pressure, and there exists C = C(Q,p) > 0 such that

(5.234) |M(V@)| s a0) + 1M ()| Lr a0y < C||f||L';(an)-

Furthermore, a similar result holds for the exterior domain R™ \ Q after including
the decay conditions

2—-n . >
(5.235) i(z) = O(|| . ) as|z| =00, if n2>3,
E(z)A+0(1) as |z]| - o0, if n=2,
1-n . >
(5.236) oi(zy = | Ol ) as le] » oo, if n23,
8;E(z)A + O(|z|™2) as |z| — o0, if n =2,
1-n .
(5.237) n(z) = O(jz|*™™) as |z] = 00, if n>3,
(VEA(z), A) + O(|z|72) as |z| = o0, if n =2,
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where A € R? is an arbitrary vector, specified a priori. In particular, a solution exists
if and only if

(5.238) felL?, (9),

and solutions are unique modulo adding locally constant functions to the pressure.

Proof. — Let € > 0 be as in the statement of Theorem 5.3.6. Then for p € (2—¢,2+¢),
we know that for each A € (—1,1], the operator

(5.239) 3I+Ky: LY, (89)/92(89) — LY

1,V+

(89)/T* (8Q)  is an isomorphism.
We now claim that, if n > 3,

(0Q) @ LP(99) — LT, (092),

T(§1,52) == (31 + K)\)g1 + Sg=  is onto.

T:I7,,

(5.240)

To see that this is indeed the case, consider an arbitrary f e LY (09). It follows

1y
then from (5.239) that there exists g1 € L7, (0€2) with the property that ¥ =
f- (31 + K))§i € ¥2(09). Using (5.116) and Theorem 5.4.1, we can then find
go € LP(OQ) with the property that Sgy = ¥. Thus, T(§1,§2) = f, proving the claim.
In turn, (5.240) and (11.123) in the Appendix show that there exists C = C(Q2,p) > 0
with the following property:

VfeL?, (89) 3(d1,5.) € LP, (09Q)® LP(8Q) with

Lvy 1,v4

(5.241) S ”: ; .
T(g1,2) = f and ||gillzecan) + 192llze80) < Cllflizea0)-

Next, to show that (5.245) has a solution when n > 3 for every given f e L} vy (092),

it suffices to observe that, if (g1, §2) € L7, (0R) ® LP(9Q) are as in the second line
of (5.241), then

(5.242) @:=Drg1 + G2 and 7 := Prg1 + QG

will satisfy (5.232) and (5.234). To establish uniqueness, again, when n > 3, as-
sume that @ and m satisfy the homogeneous version of (5.232). Then (4.120) implies
S(0)(it, 7)) = 0 on ON. Hence, 8. (&, ™) € vRaq, by (5.127). Utilizing this back in
(4.120) and invoking (5.76), we finally arrive at the conclusion that @ = 0 in €.

Turning our attention to the case when n = 2, consider in place of (5.240) the
following claim:

T . L€,V+ (BQ),

T(51,2,¢) := (%I+ K))g1 + Sg2 + ¢ is onto.

(09) ® LP(02) ®R? — LE

(5.243)

The first step in justifying this claim is as before. Namely, given fe L’l’,u+ (09),
we can find some §; € L’f,u+ (09) for which Po = f— (%I + K))§ € ¥ (09).
Since U2 (0Q) — L} ,(89), it follows from Theorem 5.4.4 that there exists g, €

LP(09) and ¢ € R? such that Sg, + ¢ = Yo, and so the operator T' in (5.243) is onto,
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as claimed. With this in hand, the proof of the existence of a solution for (5.232),
which satisfies natural estimates, proceeds as in the case n > 3, treated before.

To prove uniqueness for (5.232) when n = 2, we note that the same argument as
in the case n > 3 shows that, if & and 7 satisfy the homogeneous version of (5.232),
then

(5.244) )@, ) =vp+1, forsome o€ Rpg and ¥ € W.

Plugging this back in (4.120) and keeping in mind (5.76) and (5.183), we may
conclude that ¥ = —Jy and © = @(vy) in Q. In turn, this allows justifying the
integration by parts formula [, Ax(Vi, Vi) dz = [,,(8) (@, 7), @) do. Since ii]aq = 0,
we finally conclude that @ = 0 in 2, by invoking (5.92).

The exterior problem can be solved in much the same way. In this case, the decay
conditions (5.235)-(5.237) with A = 0 are crucial for justifying (5.230)-(5.231) for
solutions of the homogeneous problem. Granted these identities, we once again arrive
at (5.244), after which the solution proceeds much as before. O

We conclude this section with a similar result for the Dirichlet problem.

Theorem 5.5.4. — Assume that 2 C R™, n > 2, is a bounded Lipschitz domain. Then
there exists € = ¢(0€2) > 0 such that for p € (2 — £,2 + €), the Dirichlet boundary
value problem, concerned with finding functions (@, 7) in  satisfying

Adé=Vr, divi=0 in
(5.245) M(a) € L*(69),

s . feLy (09),
has a solution which is unique modulo adding locally constant functions to the pres-
sure. In addition, there exists C' > 0 such that

(5.246) 1M (@)|| Lo 20y < ClI Fll Lo (002)-

Furthermore, a similar result holds for the exterior domain R" \ Q after including
the decay conditions

2—n . >
(5.247) () = 0(|$|q ) as |z| = o0, if n>3,
E(z)A+0(1) as [z] = o0, if n=2,
1-n . >
(5.248) 8;ii(z) = O(lal'™") as |o| = 00, if n>3,
8;E(z)A+O(|z|7?) as |z| — o0, if n=2,
1-n . >
(5.249) (z) = O(ja|*™™) as |z| — 00, if n>3,
<VEA(‘T)>A> + O(le_z) as I.’l:l — 00, if n=2,

where 4 € R? is an arbitrary vector, specified a priori. In particular, a solution to
the exterior problem exists if f € L? (9) and the solution is unique modulo adding
locally constant functions to the pressure.
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Proof. — Let € > 0 be as in the statement of Theorem 5.3.6, and fix p € (2—¢,2+¢).
Let us now assume that n > 3. Using (5.161) and (5.125), it can be checked (much as
in the proof of Theorem 5.5.3), that

T: L3, (99) @ LP(9Q) — L, (99),

(5.250) L . . A+
T(§1,92) = (51 + K\)§1 + Sg>  is onto,
and
F P G1. G- P P i
(5251) Vf € LV+ (aQ) 3 (91992) € Lu+ (an) eL (69) with

T(§1,32) = f and  ||§@illeeaa) + IG2llLoon)y < CllfllLean)-

Now, given an arbitrary f € LP L (09), let (§1,92) € LY, (09) & LP(01) be as in
the second line of (5.251). Then
(5.252) @ := D1 + Sg> and 7 := Prg1 + QF»
will satisfy (5.245) and (5.246).

To establish uniqueness, assume # and 7 satisfy the homogeneous version of (5.245).
With z, € Q fixed, let 2, be a sequence of sub-domains of ) containing z, that
converge to € in the sense described in Lemma 11.12.2 in the Appendix. Define
E;(z) := {Ejx(z)}x where Ej; is as in (4.20), and let g; denote the jth component
of ¢ as defined in (4.21). Then for each 1 < j < n and each 2, from Theorem 5.5.3,
there exists ¥ and ¢’ such that

A7=V¢q, divi=0 in Q,
(5.253) M(V7), M(q') € L¥ (89),
Tloa. = Ej(@o — *)|og.-

Then for each 1 < j < n and each Q,, let

(5.254) é;’ = E; — 7, g5 =¢;i—¢ inQ.

Then G¢ and g¢ will satisfy

(5.255) divG¥ =0in Q,, G _—

and

(5.256) /(AG’"J’ - Vg5, @) dz = ui(z,).
Qa

We now make the important claim that there exists a constant C' > 0 independent
of a such that

(5.257) IM(VGH)l Lo 00y + 1M (5 Lo (00.) < CIIE; ||Lz;’ o)

This is a consequence of the specific way in which the solution of the Regularity
problem has been constructed in the proof of Theorem 5.5.3, Lemma 11.9.13 in the
Appendix, in which we take T, to be the operator (5.240) constructed for 99, in place
of 89, and the fact that the T,’s, after being appropriately identified with operators
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acting on functions defined on 9, converge to T in the operator norm. See (11.206)
and Lemma 11.12.2 in the Appendix for a proof of this latter claim.
Combining (5.256) with (4.7) and (5.255) then gives

(5.258) ui(eo) = [ (02G3,95),) do.
80

Then since M (@) € LP(0R) and #@|sq = 0, we can show via (5.258), (5.257),
and the Lebesgue Dominated Convergence Theorem that u;(z,) = 0 (for this step,
Lemma 11.12.2 is once again used to first replace the integral on 02, with one on
0Q; cf. (11.191)-(11.193)). Since z, was an arbitrary point in Q, it follows that @ = 0
in €, as desired.

When n = 2, the same line of reasoning applies provided that, in place of (5.250),
this time we use
T:LE, (09) ® LP(09) & R? — LP_(09),
T(§1,52,0) = (31 + K2)d1 + SGa + €

The existence of a solution to the exterior Dirichlet problem can be established in
much the same way. To prove uniqueness, assume % and 7 satisfy the homogeneous
version of (5.245) in the exterior domain R™ \  and also satisfy (5.247)-(5.249). Fix
R > 0 large enough that ) C Bp, where Bg := {x € R" : |z| < R}. Let D be the
bounded Lipschitz domain given by D := Bg \ Q. Since # and 7 satisfy the Stokes
system in the exterior of €, it follows that @|sp, € L7(0Bg), and furthermore since
dloq = 0, we can conclude that @|sp € LY, (6D). Theorem 5.5.3 applied for the

vy

(5.259)

domain D then guarantees that there exists a solution to (5.232) with data f = @|sp.
Due to the uniqueness portion of Theorem 5.5.4, the only possible solution is 4 and
m, and therefore

(5.260) Mp(Vii), Mp(m) € LP(8D),

where Mp denotes the non-tangential maximal function associated with the domain
D. This implies that

(5.261) M(Vi), M(m) € LP(89),
and then the uniqueness portion of Theorem 5.5.3 applied to the exterior domain
forces @ = 0, as desired. O
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CHAPTER 6

LOCAL L? ESTIMATES

For the duration of this chapter we assume that Q is a graph Lipschitz domain in
R™, n > 2, and set Q. := Q, Q_ := R" \ Q. Here, we will prove estimates of a local
nature which will be useful throughout. For some fixed z, € 012, let

(6.1) Sk := Sr(z,) = Br(z,) N ON.
Also, define
(6.2) Dpg := Dg(z,) = {z + te, : € Sg,|t| < KR},
where k = k(02) > 0 is a fixed constant, and let
(6.3) D} :=DrnQy and Dy:=DrnQ_.
If Sg := Sgr(x,), for each ¢ > 0 we also set S.g := Scr(x,), with a similar

convention for D.g.

6.1. Pressure, Caccioppoli, and local boundary estimates

For the duration of this section, assume (@, 7 ) satisfy

Aﬁi = Vﬂ'i in Qi,
(6.4) divie =0 in Qu,
M(Viy), M(rs) € L2(89).

Our first local result is the following estimate for the pressure.

Lemma 6.1.1. — For any q > 1, there exists C' > 0 such that

; ; :
(6.5) (][ |7ri|2dw) §C<]l IVﬁi|2dx> +9( M(a‘i)"dcr) .
Dg Dpgr R Sk

Proof. — Parametrize Dﬁ by Sk % (0,kR) 3 (y,t) — ytte, € D}:f?E and fix two balls
B* C D% of radii comparable to R and such that dist (B*,dDz) ~ R. For each
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y € Sg and t € (0,kR) with y & te, € B¥, using the fact that the pressure decays at
infinity, the Fundamental Theorem of Calculus, and interior estimates, we may write

o0 o0
rertedl < [ I(Vra)tsenlds < [ (AT @+ sen)ds
t a1 R
e o)
c
< / — Uy (z)|dz) ds
clb"l(s2 B(y:l:se,,,czs)l ()I )
(6.6) < CR™'M(is)(y)-
Hence,

6.7) ][ ra|dz < 9][ M(is)do < S (][ ML) da) "
B R Sr R Sr

According to the work of Bogovskil [6], it is possible to construct two vector fields
Wy in Dﬁ with the following properties:

0 e ([ o 03
R
6.8 .o — —
(6.8) (ii) wi’zmﬁ: 0,
(i) [IVDzlp2pt) < Cllmsllpe(pz)-

Then integrating by parts, we have

69  [m@vend= [ Vi Va)ds [ @), o) do,
D D% D%

and so using (6.8) and (6.7),

/|7ri|2dm= /A,\(Vﬁi,vwi)dw-{- /ﬂ'id.’l: ( ][‘Kid.’lt>

D% Dt D B*
1
2
SC/lVﬁ;{:HV’lﬁildI-FCR% /|7T:|:|2d.’l,‘ flﬂ':tld.’l,'
DE DE B*
1
2 2
<C /lVﬁi|2dw /va‘ilzdx
p* £

Q=

D
3
+ CR? /mﬁdx R™1 Q]lM(ﬁi)Qda
D% R
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Nj=
N

<C / |Viiy|? dz / |7+ |? dx
Di Di
1
2 ES
(6.10) +CR3! / |74 |2 da ][M(ﬁ‘i)q do | ,
DE R
which is enough to prove the lemma. O

Our next local result is the following Caccioppoli type estimate.

Lemma 6.1.2. — Let pp € [0,1), ¢ > 1, and 1 < s <t < 2. Then there exists C > 0
such that

/lVﬂ+|2dx + u/lVﬁ_|2d:c
DT, D,

< ¢ [/ |ﬂ+|2dm+u/[ﬂ_|2dx
= R2(t—s)[p

+ D

tR tR

+OR™? [( ][SmM(m)q da) Ciu ( ][StRM(ﬁ—)qda>

(6.11) +C [ (@ (@s,m4), @) - (9@, 7o), )| do.
Str

EIC

Proof. — Let n € C§°(R™) be such that n > 0 and suppn C Dyg. Since Ady = Vg
and divdy = 0 in Q4, using the integration by parts formula (4.6), we have that
(6.12)

AVt V(s do =+ [ (O3 s, ma) 1) do + / rs div (1ds) da.

D’.:":R S2r DziR
Multiplying the minus version of (6.12) by u and adding it the plus version gives

/ ANV, VPE,))de + g / AN(Vii_, V(r?a_)) do
D+

Dsr

(6.13) = /7r+div(n2ﬁ+)dx+,u / r_div (n*@_) dz
D;R DZ_R
+ [ (@@ ), 80— w @7 ),50) do
Sar
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Expanding the terms V(n%@s) and div(n2%+) in (6.13) and using Cauchy’s in-
equality with epsilon leads to the following estimate,

/ 2 A\(Viy, Vi) dz + p / n?A\(Vi_,Vi_)dz
D;R D2—R

<c. / Vol o+ [ (90l ds

2R D

te / 7 (Y, + [my 2) do + / 7 (Vi_ [ + %) da

5 Dir
(6.14) + / 7’

2R
S2r

(O (4, m4), Bs) = (O} (-, 7-),3-)| do

Now for any 1 < s < t < 2, let n have the following properties

n=1on Dgg
supp 7 € Dir
0<n<1

IVallze <

(6.15)

C
R(t—s) "

Using (6.15) and Lemma 6.1.1 in (6.14) then gives

/A,\(Vﬂ+,Vﬁ+)dw+u / Ax(Vi_,Vi_)dz

+
DsR DsR

< B /|u+| dw+u/|u 2 do

+eC /qu+|2dw+u/ |Vii_|? dz

tR D

2
q

QN

f( ae) vl f. w@an)
Str Str

(6.16) + [ @m0, 3 - w @ 7)) do
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Next, we claim that (6.16) can be improved to

/|V6+|2dm+u/|Vﬁ‘_|2dz

D.—:R D.sH
—Rz(t /lu+|2dx+»“'/ |- |* dz

+eC /qu+|2d:c+u IVu_|2 m}

tR

+eCR"? {( . M(u+qda) ( ‘. M(i@ )qda)§

e+ [[@En T - 07, do

For |A| < 1, this follows by (4.16). For A = 1, (6.17) can be justified using the
following version of Korn’s inequality which we will prove in § 11.4.

Lemma 6.1.3 (Korn’s inequality). — Let D C R™, n > 2, be a bounded Lipschitz do-
main of diameter R and assume that 1 < p < co. Then there exists a finite, positive
constant C which depends on p and the Lipschitz character of D but not on R, such
that

(6.18) IValloiy < C{IVE + Vi llzo(oy + R @llzrion
uniformly for @ € L7 (D).
Next, we state another useful result.

Lemma 6.1.4 (Hole Filling Lemma). — For any 0 < 8§ < 1, @ > 0, and any non-
decreasing functions A and B, if f is locally bounded and

(6.19) f(8) < (t—s)"™A(t)+ B(t) +6f(t) whenever 79 <s<t<Ty,
then
(6.20) f(s) < C[(t —8)TA(t) + B(t)] whenever 79 < s <t < 7.

For a proof of the Hole Filling Lemma, see the Appendix. Now Lemma 6.1.2 follows
by choosing ¢ small enough in (6.17) and applying the Hole Filling Lemma. O

Our next result is a local estimate for Vi1 on the boundary.
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Lemma 6.1.5. — Let p € [0,1). Then there exists C > 0 such that

/(|va+|2 + p|Vi_|?) do

Sk
S ('I_‘_C;‘;)? / (P'lvtanﬁ+ - vtanﬁ"—’2 + ‘a:}(ﬂ+’7r+) - Ma.i\(ﬁ—,ﬂ-ﬂz) do
Sar
(6.21) +ﬁ[ (Vi ? + |my |2 dz + p / (|\Va_|? + l7r_|2)d:v].
D3p D;r

Proof. — For any 1 < s <t < 2, there exists a smooth vector field ﬁi such that
C
R(t—s)

Then by applying Proposition 5.1.2 with h = E; and ¢ chosen small enough, we
can show that

(6.22) (ﬁi,u) >1 on Ssg, |ﬁ§| < C(89), supphi C Dyr, |VRY| <

(6.23)
/|7ri|2da< )/ [IVEL]? + |ms|?] dm+C/|Vui|2da+ /|7ri|2d0
Ssr D* Str Str

tR

Then from the Hole Filling Lemma, it follows that for any 1 < s <t < 2,

(6.24) /|Wi|2do§ Ri—5) / [IVaL]® + |ms|?] da:+C/ |Viiy|? do.

D:tR Str
Applying Proposition 5.1.3 with h= fzg also gives

/ [Ax(Vily, Viiy) + pAx(Vi, Vi )] do

SsH
< i [ (920 BT )P + i Vianis — Vian- 2] do
Str
o [(IvasP + iro + wia_ + ] do
Str
(6.25) +(—1_€T)R_(t1—_s)[ / (lVﬁ.;.lz + I7T+|2) dr+p / (|V1Z_|2 + |7T_|2) d.’L‘],

Dy Dix

which holds for any 1 < s < t < 2. Consider the case A = 1. Now, fix 1 < s <t <2,
and let t' := 2(s+t) and &' = (s +t'). Then 1 < s < & <t <t <2, and also
s'—s~t —s' ~t—t' ~t—s. Thensince A;(Viy,Viy) = %IV&‘I-I—V&}P, applying
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Proposition 5.1.4 with & = S gives

/ [lVﬁ+|2 + ,U/IV?_I:_P] do < ﬁ; / [A1 (V'&’+,Vﬂ+) + [J:Al(V’l_l:__,Vﬁ_)z] do

Ssr Ss’R
v [ [100m) ~ wOLE P 4 Vs — Vean -] do
Sur
+e / [|v«z+|2 +|my P + plVE_ | + plr_|?] do
Syn
(6.26) +(1€—;L)—RGIT.§[/ IV, + |4 2) dm+u/ (IVa@_|? + |7_|?) dx].
DJq Dy

Combining (6.26) with (6.25) where s and ¢ are replaced by s’ and ' and ¢ is
replaced by €2(1 — u)? and also invoking (6.24) with s replaced by ¢’ gives

/ [V, |® + plViE_|*] do

SsR
< wipyr [ (108 m) = 1O, 7P + il Ve — Veand ] do
S,/ r
+eC [ (VT + a2 + plVa P + plr 2] o
St’R
+ e m | / (Va2 + |4 |?) dz + / (IV@_ 2+ |r_[?) dz]
D:;R Dt—’R
< 5 C oL@ — pdL@ 2 4 | Vianily — Vianti—|?| d
= B(1-p)® I V(u+77r+) K ,,(U_,ﬂ'_)' +N| tanU+ tanu—l o
Str
+eC / [|Vﬂ+|2 +u|v17_|2] do
Str
(6.27) "‘Tio‘fwl—s—)[/ (IVa@L? + |74 ?) d:z:+u/ (IVa_ |2 + |r-|?) d.z'].
D:‘R Dt—R

Since (6.27) holds for every 1 < s < t < 2, after choosing ¢ small enough, applying
the Hole Filling Lemma gives

[ v+ vap]
SsR
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< S / (1081 m1) = pOL (I, 7)1 + bl Vianiiy — Vianii- ] do
Sir

(6.28) + m[ / (Vi ? + |74 ]?) dz + p / (IVa_|? + |r_?) da;],
Dfp D;p

which holds for any 1 < s < t < 2. This is enough to prove the lemma in the case

A = 1. For |A| < 1, there exists Cy > 0 such that |Viy|? < Cy\Ax(Viit, Viy). In this

case, (6.28) is not needed, and the lemma follows more directly by combining (6.25)

and (6.24) and using the Hole Filling Lemma as above. a

The previous lemma also implies the following.

Lemma 6.1.6. — Let p € [0,1). Then there exists C > 0 such that
[ (a2 + i) do
Sr

< (&)‘6‘ / (lvtanﬁ+ - P‘Vta&nﬂ"—l2 +u|6,f‘(11’+,7r+) - 35‘(1],‘_,71’_)]2) do

S2r

(6.20)  +ra /(|V12'+|2+|1r+|2)dx+;4/(|Vﬂ'_|2+|7r_l2)de.
+

2R DZR

Proof. — For p € (0,1), this lemma follows by reversing the roles of Q, and Q_,
applying Lemma 6.1.5 to the functions

(6.30) Uy =pi_, py=pr_, T_=1dy, p_=my,

and then dividing by u. For u = 0, the lemma follows by simply taking the limit as
u— 0F. O

6.2. Reverse Holder estimates

This section will be devoted to proving the following result.

Lemma 6.2.1 (Reverse Holder Inequality). — Let a € (1,2] and let Ds C R, n > 2, be
a family of Lipschitz domains such that

(6.31) diam(Dg) ~ s ~ |Ds|% and D; C D; for s<t.

If u € C'(R™) satisfies

(6.32) / |Vu|?dr < —C—Z/ |u|?dz for every T <s<t<ar,
D, (t—s)? Jp,
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then for any p > 0 and there exists C = C(p,a) > 0 such that

(6.33)

(][DT |u)? dw)% < C( ][DM |ulP dm)’l'.

Proof. — For p > 2, the lemma follows from Hoélder’s inequality. Assume 0 < p < 2.
By dilation, it is enough to consider the case when

][ |ulP dz =1,
D,

and to show that there exists a constant C > 0 such that

(6.34)

(6.35)

Assume

(6.36)

Fix

2n

s
J,

1/a

1/a

lul?dz < C.

|u|? dz > 1.

=1 < q < 2. By the Gagliardo-Nirenberg-Sobolev inequality, there exists a

n+2

finite, positive constant C = C(n, q) such that

(6.37)

(f, wae) ™ <ofs(f wuras)* s (f prras)’]

1

After dilation, we are in the case when 7 = %, and so after applying Holder’s
inequality and (6.32) in (6.37), we have for 1 <s <t <1,

cls( ][Ds,wzdx)% +(f, wirac) ]

(6.38)

s

(][D [ul#5 dz) ™

n_g

IN

cls

21
s™ (t

— [ wia+ o [ juftda]*
5 T — .
—s)? Jp, s"Jp ’

t

Using the fact that I < s <1 in (6.38) then gives

(6.39)

(J,

s

ng o\ g
[ul 7% dz )

<

AN

AN

n—2

Caz

n—2

Ca 7

Ca?
(t—s)

(et ) ([ was)’
(=)
(/D [uf? dz) .

N
Ve
5
=

N
=9
8]

N—r"
Il
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1
Define I(s) := (st |ul? da:) * and choose a € (0, 2—(—',%‘12) such that *& a+p(1-
a) = 2. Then by Hoélder’s inequality,
I(s)? = / |u|? dz = / u|7=7%|u|P0=*) dg

D, D,

(6.40) < (/D |u| 7= d:c)a(/D Iulpda:)l—a < C(/D |u| 7" dz)a,

and so by (6.39),

2(n-q) ng |\ e C 2, \32 C
. naa < noa < = I().
6.41)  I(s) _C(/s|u| dz) ‘t—s(/ptlul dz) 1)
From (6.41), it follows that
(6.42) InI(s) <CO+6IniI(t)—6In(t—s).
where 6 := 5("71‘7%(1) € (0,1). In particular, if we let t = s7 for some 6 < v < 1, then
(6.43) InI(s) <CO+01Inl(s?)—0In(s” —s).
Integrating (6.43) over s € [1,1] against ds gives
1 1 1
(6.44) / lnI(s)fi—S <Co+0 In I(s")ilf -6 In(s” — s) @
1/a S 1/a s 1/a s
By a change of variables, we can write
1 1 1
d
(6.45) 0/ In I(s")—s =719 In I(s)ﬁ <~7'6 InI(s) ﬁ,
1/a $ (1/a)” S 1/a S

after which (6.44) becomes
1
(6.46) 1- 7_19)/ InI(s) iisj < C(8,7).
1/a

Since I(s) is non-decreasing,
1

d
64 @-r00-HiId) <0-170 [ Wi T <),
1/a
which implies that
C(6,v,a)
(6.48) I(1) < et="T0 = C(89Q, p, a).
Thus, the lemma holds. O
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CHAPTER 7

THE TRANSMISSION PROBLEM
IN TWO AND THREE DIMENSIONS

The goal of this chapter is to establish the atomic theory for the transmission
problems (4.155), (4.156) in the case when (2 is a graph Lipschitz domain in R? or
R3. In practice, proving that (ler ) is well-posed for arbitrary graph Lipschitz domains
automatically implies that (Tu_ ) is well-posed for arbitrary graph Lipschitz domains
because of the symmetry of the geometry. With this in mind, in subsequent work we
will often drop the sign and just refer to the transmission problems as (T,) := (T,})
and (T,)* := (T;H)*.

Assume Q C R" is a graph Lipschitz domain, and set 2, := Q, Q_ :=R"\ Q. We
will prove that there exists ¢ = £(0€Q) > 0 such that (T,) and (T),)* are well-posed
for every p € [0,1) and for

(7.1) 2_e<p<2+e n=2,
(7.2) l-e<p<2+e, n=3.

With the case when p is near 2 well understood, we will first establish well-posedness
for p < 1, and then use interpolation to handle the case 1 < p < 2.

7.1. Uniqueness

Recall (4.155), (4.156). In this section, we will prove a few uniqueness results.

Theorem 7.1.1. — Let Q be as above, n > 3, u € [0,1), and fix 2= < p < n — 1.

n

Assume that there exists 1 < ¢ < n — 1 with the following properties:
(7.3)
(i)
(7.4)
(ii) for any f € LI(89),7 € LI(8R), a solution of (T,)* with data (f. ) exists.

n 1 1 n+1
< < ;
n—1 p q mn-—1
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130 CHAPTER 7. THE TRANSMISSION PROBLEM IN TWO AND THREE DIMENSIONS

Then if (i4,74) solves the homogeneous version of (T),)*, the functions @, 7,
pi—, and pm_ must be constant. Moreover, the same result holds if we replace (7},)*
with (T,).

First, we record an auxiliary result, whose proof is given in the appendix.

Lemma 7.1.2 (Hardy’s estimate). — Let Q C R™, n > 2, be the domain lying above the
graph of a Lipschitz function ¢. Assume w is biharmonic in  and M (Vw) € LP(0R)
for some p < n — 1. Then there exist constants ¢ = ¢(w) € R and C = C(62) > 0
such that

1 1

1
7.5 M((w — o* <C|M » h —_ = .
(7.5) M (w — )|l e~ (a) < CIIM(Vw)||Lr(a0) Where T p n-i

Proof of Theorem 7.1.1. — Assume (44, m4) satisfy
(7.6) Aty =Vry, divig =0in Qy4, M(Vﬁi),M(ﬂ':ﬁ) € L”(&Q),

along with
(7.7) a+|m= a_‘m, M@y, my) = pON@_,7_) on O
Applying Lemma 7.1.2 to @+, there exists &4+ € R™ such that M (#+—1) € LP" (99)
where z% = % - ﬁ Using the first transmission boundary condition in (7.7),
7.8 & — & = (@, - ‘ (i - & L7 (89Q),
(7.8) c- — ¢y = (uy c+)an (a c)ane (09)
and so &y = ¢_ =: €. Let us re-denote @+ — ¢ by @1 and then we will show that

c
%4+ =0 and pi_ = 0. Fix z, € R™ \ 92 and b € R™. Also, let
(7.9) T:=E(-—z,)b and §:=q(-—z.)-b,
where E and ¢ are as before. Then (7, ) satisfies

(7.10) A.v—Vq'=0 in R"\ {z,},
dive' = 0 in R™.
We also have that 8)(7,§) € () L"(89) and so by (7.4), we can find (@, p+) that
r>1

solves
4

Awy =Vpy in Qyi,

dividg =0 in Qg,

(7.11) $ | = |69,

B (W, py) — p (B, p-) = (1 — p) 8)(7,q) € LU(09),
M(Vz), M(p+) € LI(09).

Notice also that, by subtracting an appropriate constant as before, we can even
choose Wy so that M () € L (89). Then the functions

—

w-—

\

(7.12) éi =wi—7 and gy :=ps—q,
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must satisfy

AGy =Vg: in Qi\{z,},
div éi =0 in Q4

(7.13) < G+|QQ= G_Lm, )
ab(G-l-?g-l-) = /‘l‘ab(G—-a g—)a

| M(VGy), M(g+) € L9(09).
Fix R > 0, and let ¢ € C* be such that

supp ¥ C Bagr(z,),
¥ =1 on Bgr(z,),
“V"p"LW S %,
V2L < 2.

(7.14)

Applying the integration by parts formula (4.7) to (G+,g+) and (Yiiy, Yy gives

/(L,\C_v"i - Vgy, Piiy)dz
Q4

=+ [[(02(Gu92), ¥its) - @) Wils, ¥rs), C)] do
o

+ [ - V() Ga) do

Q4

+ / (92 div (itz) — 9(div G)| de

Q4
Si | CACRTSRL SR CROL R AL RERN R
N
+ /(L,\ﬂ’ ~ Vs, Gy do
Q4
+ / <2(va‘i)Tv¢ + (AY)de + A [(div @3)Vp + VEL Ve + (\7%)@] G do
(7.15)Qi
+ / {~(re Ve, Gu) + ga [0(diviis) + (e, V9)| - matp(div Ga) } do.
Qx

Let us set 4 := 44 in Q4, 7 := w4 in Q4 , with similar conventions for é, g and W,
p. If we now multiply the minus version of (7.15) by u and add it to the plus version,
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132 CHAPTER 7. THE TRANSMISSION PROBLEM IN TWO AND THREE DIMENSIONS

and then use (7.7) and (7.13), we obtain
| [(2G —Var vtz +u [(12G- - Vg, vii-) do]

Q4 a_
< [l@wadldo+ [ (e vy +asy +A[(Dve+ (V)i G) |da
80 R™\00
(7.16)

+ / [|<“V¢,G’>l + |gll(@, wn] dz.

R"\0Q

Define Ag := Bag(z,) \ Br(z,) and Sg := Ag N 9N. Then using (7.14),

| [(2Gs — Vo vy do+u [(12G- - Voo, pi_)
Q4 Q-

C = C = C % C C =
<Z (16 + 2 7 e gl + < [ 1a
<% [wia+ S [vac+2 [mici+2 [1ae+ 5 [ e
SR AR AR AR AR
(717) = I+II+III+IV+V.

It also follows by direct calculation that

(7.18) 9] <

and |q] <

C C
= R on Ag.

We will also need the following lemma which is proved in [29].

Lemma 7.1.3. — For every Lipschitz domain Q@ C R™, n > 2 (assumed to be either
bounded or of graph type) and any number p > 0, there exists a finite constant
C = C(,p) > 0 such that the estimate

(7.19) lullLon/n-1 (@) < ClIM(u)||Lr(a0)

holds for every continuous function u in €.

Applying Lemma, 7.1.3 to the functions @, Vi, w,w, Vi, and p allows us to conclude
that
(7.20)

Vi,m € L¥1(Qy), Vi, p € LE1(0y), i€ L33 (Q1), and @ € L1 (Q4).
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Combining (7.18) and (7.20), we see that there exists C > 0 independent of R such
that for R > 1, the following estimates hold:

G|l gn < ||@ Tl oon
L e
(7.21) <C+ Rﬂ—2 (R™) = <C@+ R(n~1)(;—1)) <C,

Gl La(sp)y < IM (@)L (sp) + 19l La* (sp)

(7.22) SC+ e 2(R"‘1)q <C(1+R" VG <,
ol ez ) < ol g 1
(7.23) i (R™)'& <C(1+ R VG-V <.
It follows from (7.3) that
1 1 1 1 1 1
(7.24) —f-=-4—<—"— and —+— <1,
P 9 p g n—1 P g
and so we can define 8 > 0 by
1 1 1 1 1 1 1 1 —
(725) Bi=-t-—-— = — -l —l=—— — = 2
p ¢ n-1 p* ¢ P ¢ P ¢ n-1
Returning to (7.17), by (7.20)-(7.23) and Hoélder’s inequality, we have that as
R — o0,
1 1
C \ 7 R N 11 _1
1< 2 ([ ma@r / Gl )" (R < oR-PeD g,
s
" n:l
m<Z(f ( |va|* ) ( [ |3—) (R")!™5% ~i < CRTPD
n—-1 n—1
n a*n n—
IIT < %( || 7= ) ( 3—1> ST < CRPD L,
n—1
p*n -
(7.26)
n—1 n—1

vs%(/ wl%) ( / télﬂ%‘) (Rry=3-3% < OR-) g,
R Ar Ar

Hence, from (7.16),

(7.27) /(LAGJ, ~ Vg4, Yiy)dz + p /(L,\G‘_ —Vg_, yi_)dz =0.
Q4 Q_
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As a direct consequence of the particular construction of the functions (G, g) as a
fundamental solution for the Stokes system, it follows that

(7.28) [ 026 -g, @) dz = (@), .
R™\8Q

If z, € O, then LyG_ —Vg_ =0 in Q_ and so from (7.27) and (7.28), (i@ (z0),b) =
0. Then since this holds for every z, € 4 and b € R”, we must have 4, = 0.
Similarly, if we instead consider the case when z, € Q_, it follows that ui_ = 0.

If we instead assume that (@4, m+) solves the homogeneous version of (T},), then
(7.7) will be replaced by

(7.29) iy . O)(iy,my) =08 (@_,m_) on ON.

Proceeding in a similar fashion as before, this time we can use the hypothesis to
construct functions (G4, g4+ ) that satisfy

4

Aéi =Vgs in Q4 )\ {z.},
divGy =0 in Qg

(7.30) { G+]QQ= MG—l 3
33(G+,g+) = 33(G_,g_),
M(VGy), M(gs) € LI(8Q),

\

along with (7.28). The rest of the proof follows similarly to the previous argument,
except this time we use (7.29) and (7.30) in place of (7.7) and (7.13). This concludes
the proof. O

Although the previous theorem is stated for n > 3, it will be most useful when
n = 3, since in this case, if % < p <1, we can always find g close enough to 2 that
satisfies (7.3)-(7.4). Since we are also concerned with the two dimensional case, we
will need the following result (the reader is advised to revisit the conventions made
at the beginning of § 7):

Lemma 7.1.4. — Let Q C R? be a graph Lipschitz domain and set 2, := Q, Q_ :=
R™\Q. For p € [0,1) and } < p < 1 fixed, assume that (&, 7+ ) solve the homogeneous
version of either (T},) or (T,,)*. Then the functions i, 7}, pii_, and um_ are constant.

Proof. — Since M(Viy) € LP(0N), after subtracting a suitable constant from .,
we can conclude from Lemma 7.1.2 that M(iiy) € LP" (99) where z% = % — 1. Then

by Lemma 7.1.3, the locally integrable function @ := @4 in Q. satisfies @ € LY(R?),
where 1/q = 1/(2p) —1/2. Note that < p < 1 forces g € (2,00). In the same context
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as that of (6.6), we now have

*C . 1/q
|T+(y £ten)| < / = (][ |+ (2)]? dz) ds
¢cR S B(y+tsen,c28)
7.31 < )i °° d_s — CR-1-?/4
( . ) = ||u| Le(R2?) 2+2/q = s

(where C depends on %), leading to
(7.32) ][ |7+|dz < CR™172/9,
B*

in place of (6.7) and, further, to

(7.33) ( ][ |ms]? dz) <C ( ][ | V|2 dx) +CR™17%/9,
B(0,R)NQ+ B(0,R)

in place of (6.5). With this in hand and by proceeding as in the proof of Lemma 6.1.2
we obtain that, whenever u € [0,1),
(7.34)

|V, |? dz + ;L/ |Vi_|?dz < —C—/ |@|? do + CR™*/9,
B(0,2R)

B(0,R)NQ4 B(0,R)NQ— T R?

which should be compared to (6.11). Using the fact that @ € LI(R?) for some g > 2,
allows us to estimate

(7.35) c @2 de < CR™/1,
R?
B(0,2R)
hence altogether
(7.36) / |Viy |2 de + p / |Vi_|?dz < CR™*/9,
B(0,R)NQ4 B(0,R)NQ_

by (7.34)-(7.35), where C is independent of R. Letting R — oo then proves that @
is a constant in Q4 and that pd_ is a constant in Q_. O

7.2. Atomic estimates

This section will be devoted to proving the following two results. Recall the con-
ventions made at the beginning of § 7.

Proposition 7.2.1. — Assume Q@ C R™, n > 2, is a graph Lipschitz domain and fix
Ae (-1, 1] and w € [0,1). As usual, set Q+ =, Q_ :=R"\ Q. Assume there exists

1 < ¢ < 2=1 such that the operators +1 l—ﬁl + K are invertible on L?(92) and the

L9 Dlrlchlet problem is well-posed. Then for (" l)q < p <1, there exists C > 0 such
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that for any f € HZ,(09) and § € HLP(8), there exist functions (@4, 7+ ) that solve
(T,)* (cf. (4.155) and the discussion in the beginning of § 7) and satisfy

IM(Vii)|Lra) + 1M (7))l Lr(00)
(7.37)  +u[|M(VE_)| e o) + pllM(7-)||lr0) < C (||9||H1 »o0) T 171 t(an))

Proposition 7.2.2. — Let ) C R_", n > 2, be a graph Lipschitz domain in R*, n > 2,
and set Q4 = Q Q_ =R"\ Q. Also, fix A € ( 1,1] and p € [0,1). Assume there

=2 such that the operators +1 l—ﬁI + K are invertible on L{(99).

Then for Tﬁq < p < 1, there exists C > 0 such that for any f € HP (09) and
€ H.P(d9), there exist functions (@+,7+) that solve (T,.) and satisfy

[IM(Viiy)llLean) + 1M (74 )|l e (00)
(7.38)  +ullM(VE_)l|Loon) + #IM (7 )llLr o) < C (181412 00y + 11122, 00 ) -

Arguing as in the proof of Theorem 5.2.3, to prove Proposition 7.2.1, we can reduce
matters to considering the case when g = 0. We will first consider the case when f
is a (p, 00)-atom as defined in (2.30). Fix p such that ﬁll_—% <p<1,andlet @ bea
(p, 00)-atom. Since @ € L?(8N), from Lemma 5.2.1, we can define

Gy o= o J((-LEET4 K TE)  in O,
1
2

(7.39) s .
e :=ﬁQ(( 1—HI-i—K,\) 1 ) in Q.

By Proposition 4.2.3, (4.29), (4.47), and (4.45), the functions (%, w4 ) will satisfy

4 - .
Aty =Vmy in Qi

divﬁi =0 in Q:t,
(7.40) . u+‘aﬂ o
3;\(’(7_'_,71'4_)—”8;,\(’(1_,71'_):6 on 6Q’
| IM(ViL)ll2a) + M (1)l L2 (a0) < Cll@l|L2a0)-

Our goal is to show there exists C = C'(9€) > 0 such that
(7.41)

M (Viy)lLeaq) + 1M (7 )l e o) + #llM(VE-)| Leaa) + wllM(m-)||ra0) < C.

By dilation, it is enough to consider the case when @ satisfies

:{[_I

(7.42) suppii - Sl (0), "dllLoo(@Q) < 1, and / addo =0
a9
To begin, we will need the following auxiliary result.

Lemma 7.2.3. — Assume  is a graph Lipschitz domain in R™, n > 2, and let @ be
as in (7.42). Then for 1 < p < 0o, there exists C = C(9R, p) such that

(7.43) | M (Ja@)|| a0y < C.
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Proof. — First, notice that there exists Co(9%, k) > 0 such that
(7.44) |z —y| < Colz—y|, Vzr,ye€df, zel(z).
Fix z = (2',z,) € 0Q and z € T'(z). Then from (7.42), we can write

(145)  Ja(z) = /a Blz - i) dols) = | (86 -y) - Bt dotw)

S1(0)

Then
(146)  1B(—y) - B < CWI(VE): - o)l < O,
for some 0 < 0 < 1. In particular, if y € S1(0) and = € R \ S2¢,(0), then

1

. — 0yl > |z| — Oly| > —|z| —
(7.47) |z = byl 2 |2] = Olyl 2 -1zl - b1yl > 551"l
and so from (7.45) and (7.46),

" C

(7.48) |da(z)| < T Vz € 9N\ Sac, (0).

Thus

— CO ’
(7.49) / |M(J@)P do < C/ ————dz' <C.
99\ Sac, (0) Re-1\B, (0) || 1P

Also if n > 3, from (7.44),
7.50 4a)(x) <C'/ ————|ad(y)| do.
(7.50) Mup@iso [ gl

A similar estimate holds in the case n = 2 when the term |z — y|~("~?) is replaced
by 1+ |log |z — y||. In either case, it follows by Schur’s Lemma that

(7.51) / \M (&) do < c/ dP do < C,
S2¢, (0) S2c,(0)

which, combined with (7.49), finishes the proof. O
The previous lemma allows us to prove the following useful estimate.

Lemma 7.2.4. — Retain the same setting as in Proposition 7.2.1. Let the function @
be as in (7.42) and (@4, 7+) be as in (7 39). Assume that there exists some ¢ > 1
with the property that the operator ————EI + K is invertible on L?(0€2) and the
L7 Dirichlet problem is well-posed. Then there exists C = C(g,09) > 0 such that

(7.52) | M (i) || La(aq) < C.

Proof. — First, since |Sd(z)] < M(Ja)(z) for every z € O, using the previous
lemma we have

(7.53) 5@l zr 00y < C(0R,p) for 1< p < oo.
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Since 44 |aq = U—|sq, multiplying the minus version of (4.143) by u and adding it
to the plus version gives

(7.50)  (1-p) (~32E1 + K,) (@lon) = S (8 (@4, 74) — p8) (@, 7_)) = 5a.

1

Since —E}—__/ﬁl + K is an invertible operator on L?(99), from (7.54) we have

(7.55) ai|m=ﬁ( 171 K,) 7 (Sa).

Then from the well-posedness of the Dirichlet problem, we have

IM(@x)lLaan) < C||ﬂi|an||m(an)

(7.56) < Ol(=3 1251 + Kn) "l geony) - 158l Lagan) < C,
where, for a linear, bounded operator T' mapping a quasi-Banach space X into itself,
IT|| £(x) denotes the operator norm. This finishes the proof of the lemma. d

Next, define the boundary annulus
(7.57) Ag:={(@,p(z"): 2’ € R*!, R< |2'| < 2R} C 89

For u defined in Q., let
Mg (u)(z) == sup {lu(y)| : y €T*(z), |z —y| <R}, =z €09,
M (u)(z) = sup {|u(y)| : y €eT*(z), |t —y| > R}, =z €.

For any real homogenous constant coefficient elliptic operator L and a function u
satisfying Lu = 0 in a domain 9 C R™, we have the well-known interior estimate

(7.59) |D°‘u(x)|§C6—|°‘|(z) ma.x |'u.(z)|

(7.58)

where 6(z) = dist(z,09) and « is any multi-index (cf‘ [70]). Now there exists con-
stants 7 > 0 and k* > 0, depending on 9 and k such that for any x € 92 and
y € T*(z) \ Bgr(z), it holds that Byr(y) C I'i(z) C Qu. Fix 2 € 0Q and let
y € I'*(x) \ Bgr(z). Specializing (7.59) to the case when the domain 9 = B,r(y)
gives
(7.60) Vi) < o max i (2)

T R _y<E ’

and then since By,g(y) C I'L. (z), it follows that
— C * [ =
(7.61) [Vis(y)| < -7773M (@) (),

where M* is the non-tangential maximal function associated with the cones I'%. ().
Taking the supremum over both sides for y € I'(z)\ Br(x), we see that for any = € 912,

(7.62) M (Vits)(a) < W%M*(ag(w).

Next, we need a similar estimate for the function n. Fix an z € 0 and y €

I'*(z)\ Br(z). Let w = I_g—ﬂ’ and then for any t, |y + tw — z| = |y — x| + t. Since we
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know the pressure decays at infinity, the Fundamental Theorem of Calculus gives us
that

(763)  |ms)] < /0 (V) + tw)] dt = / " (At + )] .

Now since y + tw € T'*(z) \ Biyr(z), for the same n and k* as before, we have
By t+r)(y +tw) C I'E (x) and using a similar estimate as before gives

C

(7.64) |(Adg)(y +tw)| < W—!—R—))ZM*(ﬁi)(z)‘
Then for any y € I'*(z) \ Br(z),

(165) ) S GMEE [ o < EM ()@
' 2N 2R | Gy Rz T S R MV
Taking the supremum of both sides then gives

C. ...

(7.66) M (re)(x) < EM (4 ) ().

Since 51"_—123 < p <1, we have that ¢ < f—l"__l—l_)% < 2=1. Define
-1
(7.67) 7:=("T)”~(n—1—p)>o.

Then using (7.62), (7.66), Holder’s inequality, and Lemma 7.2.4, we can conclude
that
(7.68)
c v e
ME (Viz)" + Mg (n+)” < & [(/ M*(ﬁi)qd”) -(R"1)?7<| <CR".
a0

Ar

We need to prove a similar estimate for M%(Vi+) and MJ(ms). The first step will
be to establish the following estimate.

Lemma 7.2.5. — Let @ be as in (7.42) and (@4, 7+) be as in (7.39). If S,rN.S1(0) = 2,
then

(7.69) / [|Vﬁ+|2 + |7r+|2] dz + / [|va_|2 + |7r_|2] dz < CR"—2-3(n=1),
D} Dy
Proof. — Combining Lemma 6.1.1 and Lemma 7.2.4 gives
(7.70) / |r+|?dz < C / |Viy|?dz + CRY 2 (1),
Dy Dy
and so to prove the lemma, it is enough to show that
(7.71) / Vi, |2 de + p / |Vi_|>dz < CRP 23D,

+ -
‘DR DR
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From (7.40), it is clear that
(7.72) (613\(ﬁ+77r+)’ﬁ+> —p,(ab(’l-l:_,ﬂ‘-),ﬁ_> =(d,d@4)=0 on Sepg,

and so combining Lemma 6.1.2 and Lemma 7.2.4 leads to the estimate
(7.73)

/|Vu+|2+u/|Vu_|2_R2 /|u+|2dw+u/ |u_|2da: +CR* 2 (1)
Dl D

for every 1 < s < t < 2. Note that we can assume that
(7.74)
1
RM2-3-D < m[ @4 |? dz+p / |@_|? da:} whenever 1 <s<t<2,
+ -

DtR DtR

otherwise we can prove (7.71) directly by using (7.73). Now, using (7.74) along with
Lemma, 7.73, we have

(7.75) |Viiy > do+p / [Vi_ |2dz< 3)2 /|u+| dm+u/|u |2dx
DYy Dy
Define
(7.76) @:= { Uy in
u_ in Q_.

Then if p € (0,1), we can rewrite (7.75) as

. 2C 4

Dsr D¢r

and so applying Lemma 6.2.1 and using Lemma 7.2.4, we can conclude that

@) (f iapas)' <o(f jaras)’ <o(f marar)t <or-ie-n.
Dr Dar Sar
Combining (7.77) and (7.78) finally gives

(7.79) / |Vii)?dz < —1% / |2 dz < CR* 2731,

+
DR D%R

as desired. The analogous result follows similarly when p = 0, although in this case,
we can apply Lemma 6.2.1 more directly using (7.75). This finishes the proof of the
lemma. O
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Now assume Sgg N S1(0) = @. Then 9 (&4, 74) — nd)(é—,m_) = 0 on Sgg. Using
the well-posedness of the L? Regularity problem, we have for each s € [1, %],

/ [Mg(va+)2+uMg(va_)2] daSC[ / Mpy (V;)?do + / MD-R(Va‘_)2da]

Sk BD:'R oD,
S C[ / |Vtanﬁ+|2 do + H / ‘Vtanﬁ— |2 dO’]
OD:'R 8Ds_R
<c [[Ivaf +uvi ] do
SsR
(7.80) + C[ / Vi, |?do +p / |Vi_ |2da].
8D}, \00 8D ,\00

Integrating (7.80) over s € [1, %] and applying Lemma 6.1.5 and Lemma 7.2.5 then
gives

/ [Mg(va+)2 + uMg(va_)z] do

Sr
¢ o2 2 712 2
<%l [ (VP +insydo+p [ (VE-P + [ [?) da]
D;R D.’i_R
(7.81) < CR¥-5(n-1),

After covering Ar with a finite number of appropriate surface balls, we can then
conclude that

[ iy + umy(va ) do

AR
P r
< CR<"—1)<1—’%>[(/Mg(va+)2da)’ +u(/Mg(va_)2da)2]
Agr AR
(7.82) < CR1-P-3(n-1) — R,

Analogous estimates for Mp(my) follow via a similar argument. These estimates
along with (7.68) then guarantee that

(7.83) / [M(ViL)? + M(r)? + uM (V)P + uM(x_)?] do < CR.
AR
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Finally, using (7.83) along with the L? theory leads to the estimate,

/ [M(Va )P + M(ry)? + pM (VP + uM(x_)?] do
on
< / [M(Va, )P+ M(r,)? + pM(VE_)P + pM(r_)?| do

Ss(0)

+ i / [M(Vﬁ‘+)” + M(m4 )P + pM(VE_)? + pM(x_)?| do

i=3 5,

/MVu+) do /M(?T+) da)]

o0

+C MVu)Zda M(r_)2d %+Cm(2f
(s (e

181 <o / |a|2da)g + ciz—f" <C,
j=3

which proves (7.41). With this in mind, we can finish the

Proof of Proposition 7.2.1. — For any f € H (69), we can write f = o1 Ajdj
such that each @, is a p-atom and (521 1 |”)" < 2||f||Hp (90)- For each @; we can

find @, and 7, that solve (7.40) with datum a] and also satisfy (7.41). Then the
functions @y := Y 721 A @, and 7y := = Y521 Al will satisfy

,

A’l_l:i=V7l'i in Qi,
diviy =0 in Qg,

Uy| =u_|

a0 20 .
oMy, my) —pd)(i_,m_)=f on 89,
M (V)| e aa) + M (74)] e (a0)

(el M(VEo) | Lea) + pllM (=)l e o) < Cllfllaz, 00)-

(7.85)

Since we have reduced matters to the case when § = 0, Proposition 7.2.1 follows.
O

Next, Proposition 7.2.2 can be established in a similar fashion. Here, we can reduce
matters to considering the case when f = 0 and § = @ where @ is a regular (p, co)-atom
satisfying

(7.86) suppa C S1(0), a(0) =0, ||Vtana||Lm(ag) <1
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We need to prove that there exists a solution that satisfies (7.41). Now since @ €
L2(69), we can define

R | 1
+ = 1, @r\(( 21-p
1

Ty 1= ﬁ g’,\( —51_“I+K>‘)—16 in Q4.

£

I+K>\)—'1¢_J: in Qg,

-
|

(7.87)

i

By Proposition 4.2.3, (4.29), (4.47) and (4.45), the functions @4, 7+ will satisfy

( — :
Aui = Vﬂi mn Qi,

divie =0 in Qg,
(7.88) ) u+lan_u u_‘m =g,
O (@4, my) = 8)(d-,m—) on 09,
[ 1M (Vi) L2 o) + 1M (n+)l|L260) < Clldll;2(a0)-
Since we also have @ € L9(0R), it follows from Proposition 4.2.3 that
(7.89) IM (@)l Laany < ll@llLean) < C,
which we will use in place of Lemma 7.2.4. We can also replace (7.72) with
(7.90) (B (s, my),iy) = p (O (G, 7o), @) = (B (4, my),@) =0 on  Spm.

The rest of the proof of (7.41) follows as before except this time, we use Lemma 6.1.6
in place of Lemma 6.1.5 to establish (7.81) from (7.80). This is enough to establish
Proposition 7.2.2. We can now prove the following result regarding p < 1. Before
stating it, recall (1.3), (4.155), (4.156) and the conventions made at the beginning of
§7.

Lemma 7.2.6. — Let n = 2 or 3, and let 2 C R” be a graph Lipschitz domain. Also,
set Q4 :=Q, Q_ := R*"\ Q and fix A € (-1,1] along with x4 € [0,1). Then there
exists € > 0 such that the boundary value problems (7,), (T,)*, (IN), and (R) are

2(:;11) —e<p<l

well-posed for every

Proof. — For p € (0,1), the well-posedness of (T},) and (T,)* follows by choosing ¢
sufficiently close to 2 and applying either Proposition 7.2.1 or Proposition 7.2.2 fol-
lowed by either Theorem 7.1.1 or Lemma 7.1.4. In the case u = 0, the same argument
proves that (T,) and (7,)* are semi-well-posed, and since this will also hold when the
roles of 24 and 2_ are reversed, we can conclude from Proposition 4.5.4 that (T,),
(T,)*, (N), and (R) are also well-posed. ad

7.3. Interpolation arguments

Throughout this section, assume that Q@ C R", n = 2,3, is a graph Lipschitz
domain, and set Q. := Q, Q_ := R™\ Q. Recall from Lemma 5.2.1 that the operators

-1
(7.91) (£3e81+ K;) . LP(9Q) — LP(89)
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are well-defined, linear, and bounded for each p € [0,1), whenever 2 —e <p <2 +e.
Let us denote by Ty the version of (7.91) corresponding to p = 2. We aim to show

2(:_:11) — € < p < 1, there exists C = C(Q, 1, p) > 0 such that

(7.92) ITsll 2 o0y < C, V@ HZ,(89) — atom.

that whenever

Consider the case of Ty (the claim about T_ is handled similarly) and fix an
H? (0Q)-atom @. From the arguments in § 7.2, we know the functions

(7.93) Uy = ﬁd(T_ﬂi) inQy and wy:= ﬁQ(T_,_é‘) in Q4
solve (T,)* with data (0, @) and satisfy the estimate
(7.94)

M (Viy)|lLe o) + IIM(Vr)l|r o) +IM (Vi) L o) + #lIM (V7)) Lea0) < C,

where C is independent of @. From the well-posedness of the Regularity problem, we
also have

|1M(Vi-)llLeaq) + M (Vr-)|| e (a0)
(7.95) < Clla-llgreoa) = Cllill g o) < CIM (VL) Lo o0)
and so (7.94) can be improved to

(7.96)
M (Viy)llLe o) + 1M (Vay)llea) + IM(Vi-)||r o) + 1M (Vr-)|Lran) < C

Thus,

1T @llgr o0y = 1004, m4) — 8 (-, )|l 2, o0

|M (Vi) e o) + 1M (Vry)llLea0)
HIM(VE_)| e aa) + 1M (VT_) | Lr a0
(7.97) C,

by jump-relations, Theorem 4.3.1, and (7.96).
Our next claim is that if f € HE,(0Q) N L%(09) then Ty f € L?(0QN) satisfies

(7.98) 1T £l 12, o) < CllFll a7, 09

where C > 0 is independent of f To see this, we shall invoke an observation made in
(6.5) on p. 948 of [68], which we state here in a slightly more general form than we
need in the current context. Specifically, if 2= < p < 1 and f € HP,(89Q) N L2(69),
there exist a sequence of coefficients ();); € ¢* and a sequence of H% (9)-atoms dj,
such that

IN

IA

F=¥2,2d in HLOQ), Y32, I\ < Cllfllaz, o0, and

(7.99) A N . s
fNn =321 Aj @; converges to f in L#(02) as N — oo.

Now if we consider such a decomposition of f, on the one hand, Ty fN
is Cauchy in HP,(0N), hence convergent in HZL (9f2) to some gi for which
191 2, 00) < C||JF||H§,(BQ), thanks to (7.92). On the other hand, T4 fy — T4 f in
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L2(89). Consequently, for any vector-valued function 7 € Lip (8Q) with compact
support,

(7.100) $-Tifdo= lim [ ¢ Tyfydo=(4,5x),
o0 N—oo /a0

where (-,-) stands for the distributional paring on 9Q (i.e., the pairing between
Lip,,(092) and its topological dual). This proves that T4 f = g4, from which the
estimate (7.98) follows. This establishes that

(7.101) ( 3t 1I+KA) : H7, (0Q) — H,(09)

2(n—1)

nr1- — € <P <1, and further, by

are well-defined, linear, and bounded whenever
interpolating (7.101) with (7.91), that

(7.102) (xietr+K3) " HP(89) — HP(5Q)

are well-defined, linear, and bounded whenever An— l) —e<p<2+e.

In summary, the above reasoning shows that for u € [0,1),
(7.103)

+3 pre 1I + K3 : HP(0Q2) — HP(9RQ) isomorphically, for 2(" 1) —e<p<2+e.

With (7.103) in hand, we can prove the following theorem.

Theorem 7.3.1. — Let n =2 or 3 and 2 C R" be a graph Lipschitz domain. As usual,
set Q4 := Q, Q_ := R™\ ). Then there exists e = €(0?) > 0 such that for A € (-1,1],
€ [0,1), and 2(:—;11) — € < p < 2 + ¢, the boundary value problems (7,), (T,,)* in
(4.155)-(4.156) as well as (N) and (R) in (1.3) are well-posed.

Proof. — The well-posedness of (T},) and (T,)* follows from (7.103), Theorem 5.2.3,
and Theorem 4.5.2. Since this result will also hold if the roles of Q, and Q_ are
reversed, the well-posedness of (N) and (R) follow from Proposition 4.5.4. |
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CHAPTER 8

HIGHER DIMENSIONS

In this chapter, we adapt the arguments of Z. Shen from [78] and [79] in order
to extend our results to the case when n > 4. Specifically, our goal is to prove the
following theorem.

Theorem 8.0.2. — Assume that Q C R™, n > 4, is a graph Lipschitz domain and set
Qy =9, Q_ :=R"\ Q. Then there exists ¢ = £(2) > 0 such that the transmission
problems (T'¥) and (T)* from (4.155)-(4.156) are well-posed for any x € [0,1) and
2(n—1
=
problem (R) in (1.3) are well-posed for

— € < p < 2+ €. Moreover, the Neumann problem (N) and the Regularity
2(n 1) —e<p<2+e.

any

To accomplish this, we will consider the following auxiliary problem,

( A’l_l::};=V7ri in Qi,

divie =0 in Q,
(8.1) (T*) u+|89-—,u.u_|an= g Lr(oR),
6,’,\(’&'4_,71‘4.) = 33‘(1.7_,7!'_),
M(iy) € LP(89).

\

Above, the equality 9) (@4, ) = 9 ('E_,7r_) has to be (suitably) understood in
L? ,(89), when p is near 2. Since the operator 3 2 I + K is invertible on LP(92)
for p near 2, we can show that the functions
(8.2)

i = O\((GELI+ K\)7'G) and  mei= 25 ((GHLI+K)TY) in 0y
solve (8.1) and also satisfy the estimate

(8.3) |M(@x)ll L a0) < ClIFllLr a0

as long as p is near 2. In this chapter, we will extend this result to include 2 — ¢ <
p< 2(:—__31) + €. A key step is to prove the following Reverse Holder estimate for the
non-tangential maximal operator.
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Lemma 8.0.3 (Reverse Holder estimates). — Let 2 C R™, n > 4, be a graph Lips-
chitz domain. As usual, set Q4 := Q and Q_ := R* \ Q. Assume Aidy = Vrg,
diviiy = 0 in Qy4, and define M (@) := max{M(i;), M(@_)} and p, := 2"=1 1f
M(Viiy), M(my) € L?(89) and @4 — pi— = 0 on Siesg for u € [0,1), then

( M(@)P» da) "< c( M(a‘)2do)

Sr S256R

(8.4) +CR(][ |0 (ii4, my) — B (G-, m_)|? dU) .
S2s6r

The Proof of Lemma 8.0.3 is going to be presented in the next section.

8.1. Preliminary estimates

Recall the definitions of Sg and D% from (6.1)-(6.3). We will start with the fol-
lowing result.

Lemma 8.1.1. — If Aty = V74, divie =0 in Qi and M(Vﬁi), M(ﬂ':t) (S Lz(aﬂ),
then

/ |Viiy|?dz + p / |Vi_|? dz
D}, Dy

< % / [M(6+)2+uM(zI_)2] d0+CR//.l,|63‘(11‘+,7r+)_33(@'_,7‘._)|2d0

S2r S2r

©5)  +C [ 10wl - pi|do.
S2r

Proof. — From Cauchy’s inequality, we have that

[ [0 ma), @) - wioda no), )| do
S2r

(8.6)
= [ @@, - i)+ # @@ m) - 03, 7), )| do
S2r
< [ (102wl - w4 wRIOY e w) = B m )+ f ME)) do
S2r

Utilizing (8.6) in Lemma 6.1.2 along with the estimate

(8.7) / |#+|?dz < CR / M(it)? do
D% Sr
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is enough to verify (8.5). a

Let M+ denote the non-tangential maximal functions associated with the bounded
R

domains D}‘;. Consider the following lemma.

Lemma 8.1.2. — Assume A@y = Vry, diviy = 0 in Q4. If M(dy), M(Viy) €
L?(00) and iy — pii— = 0 on Sgg, then
(8.8)
/(MD+ Vu+)2+MD+(7r+) )da+u/(M (Va-)?+ M, (7r_) ) do
R

<C [ podas m) - R m )P o+ o [ (M@ +uM (- )?) do

Ssr Ssr

Proof. — Using the well-posedness of the L? Regularity problem on bounded do-
mains, it follows that for s > 1,
(8.9)

/(MD:I:(V'U/j:) +MD:1:(7T:|:) )do<C/ |Vianti+|? do + C / |Viantis|? do.

Ssr oD nay

Integrating (8.9) over s € [1,2] gives

(8.10) / (Mps (Vitz)? + Mps (n2)?) do < C / IVﬁilzda+% / |V |? do.

Sr S2r DziR

Applying Lemma 6.1.6 and Lemma 6.1.1 and using the assumption that @, —pd_ =
0 on Sgg leads to the estimate

[ O (Vi + My () do 4 [ (M (V)2 4 My (7)) do
Sr Sk

/qu+|2da+u/|Vu_|2da +Cu/|6)‘(u+,7r+) ONi_,n_)|?do
D], Sar

(M (@4)? + pM(i-)?) do.
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Then applying Lemma 8.1.1 and using the fact that @, — uii_ = 0 on Sgg gives
(8.12)

/ (Mpy (V4)? + My (11)?) dor+ g / (Mp (Vi + My (n)?) do

<Cp/|8 (Gy,mq) — O, 7_)|2 da+I(;2 / (M (iy)? + pM(i@-)?) do,
Ssr Ssr

which finishes the proof. O
At this point, we can proceed with the

Proof of Lemma 8.0.3. — Let x € Sg and y € 'y (z) be such that |y —z| > cR. Then
interior estimates yield

(8.13) m@l<of luld<of M@
B:r(y) Sar
From (8.13), it follows that for any p > 0,
( Mg (ds)? d0> < sup Mg (d+)(z)
Sr z€SR
3
(8.14) < C M(iy)do < C ( M(a‘i)zda) .
Sar Szr

Then to prove the lemma, it is enough to show that

o 3
(f MY (ids)P da) < CR ( ][ |0} (T, 7y) — 8,’,\(17_,71'_)|2d0>
Sr S128R

(8.15) +C( ][ M(ﬁ)zda)i.
Si28r

Next, we claim that for z € Sg,

Di (Viig)(2) .
(816) MR(ui) (IJ) < C / *——|7.12— O'(Z) +C M(ui)da.
S2r
Let y € I'y (z) such that |y — z| < cR. Let w : Ijh’ and ¥’ = y + cRw. Then
y' € Ty () and cR < |y’ — z| < 2¢R, and
cR d
— [ty (y + tw)] dt
| g

cR
17) | - ()] = < /0 Vi, (y + tw)] dt.

From interior estimates, for 0 < t < cR,
(8.18)

Vi (y+tw)] < C'][ |Viy(z)|ldz < C Mp+ (Viig)(2) do(z).
Ber(y+tw) Sale) o
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Then combining (8.17) and (8.18), and using Fubini’s theorem yields

cR
@) - @) < C© / [ DMy (Vi) (@) do(a)

Sct(w)
(o o)
< C / / t_("_l)MD;R(Vﬁ_,_)(z) dtdo(z)
S2r(z) ==
Mp+ (Vig)(2)
(8.19) < c i T o(2).
Szn(z) IZ - Z|
Then using (8.19) and (8.13) for y’ gives
li ) < lEe(y') - T @) + 1E ()]
Mp+ (Vig)(2)
(8.20) < cC / P P () +c][ M(@y) do.
|z — 2| Sar

2R

Taking the supremum over y proves the plus version of (8.16). The minus version
follows similarly. Multiplying the minus version of (8.16) by x'/2 and adding it to the
plus version gives

Moy, (V) + 12 My, (V)

My(E)@) + MY ) (@) < © [ e (s
S2r
(8.21) +C ][ (M(iy) + p*/2M(i@_)) do.
Sz2r

Then by the Fractional Integration Theorem, it follows that

(J[ | () + w2 mpga))” da) "

1

2
_, 1/2 %
<CR ( ][52R (MD;R(Vqu) tu MDZ—R(Vu_)) da)

+C (M(iy) + /M) do
S2r

2
- \2 ~ \2
< CR( ][Szn (MD;R(Vqu) + uMp,- (Vi) ) dor)

(8.22) +C ( ][S (M (i) + p M(G_)?) da) i .
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Applying Lemma 8.1.2 gives
1
Pn Pn
( F (@) +w2mpa)) do)
Sr

<C ( ][s (M(@4)* + pM(@-)?) da) ’

(8.23) +OR( ]l 1) (@, my) — 63(6_,1r_)|2do)
Si6r

1
2

For p € (0,1), this is enough to establish (8.15) and prove the lemma. In the case
u = 0, the estimate (8.23) gives that

1
2

1
(8.24) ( MY (i )P da) <C ( M(iy)? da)
Sk Si6r

Therefore to finish the proof, we still need to show that if %, = 0 on Sjosg, then

1
2

( Mg(a-wda)” < CR( f |as<«z+,7r+>—aaw-,n_n?da)
Sr S128R

(8.25) +C ( ][ M (%)? da)a.
Si28Rr

Since 44 = 0 on Si2sr, we can apply Lemma 8.1.2 with u = 0 and get
(8.26)

[ anrorio<c [ (M, (Vi + My () do < 55 [ M) do

S16r S16r Si28r

Arguing as before using fractional integration estimates, we have
(8.27)

£y 3 3
< M@ )P~ da) <CR ( Mp- (Vi_)? da) +C ( M(i_)? da) .
Sr Sar Dan S2r

Now, applying Lemma 6.1.5 with ;4 = 0 and @, exchanged with #_ leads to the
estimate

(8.28) /iVu_|2da<C/ |0} (@ |2da+% /(|Vﬁ_|2+|7r_|2)dx

D;r
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Similarly, using Lemma 6.1.1 and apply Lemma 8.1.1 with x4 = 0 and @ exchanged
with 4_ gives

/(lVﬁ_|2+|7r_|2)dz§%/M(z'/,’_)2dcr+C/ |0 (d_,w_)||d-| do

Dy S2r Sar

(3.29) <% [ M@ ar+cr [102@ )P do
S2r S2r

Combining (8.10) with (8.28) and then using (8.29) yields

(8.30) / MDZ—R(Vﬂ_)ZdGS% / M(@_)*do +C / |0 (@_,m_)|? do.
Sa2r

Si6r Si6r

Then using (8.30) in (8.27) gives

o 3 3
( My (@_ )P da> <CR ( ][ |02 (@, 7_)[? do) +C ( M(i_)? da)
Sr Si16r Si6r

2
(831) SCR( ][ |6,’,\(11’+,7r+)—8;\({[_,77_)|2d0)
Si6r

+C’( M(ﬁ_)2d0> +CR(][ |8,’,\(11’+,7r+)|2>
SwR SIGR
Combining (8.26) with (8.31) is enough to establish (8.25) and finish the proof. O

1
2

We will also need the following technical lemma which is proved by Z. Shen in [79)].

Lemma 8.1.3. — Assume 0 < 8 <1 < a and 1 < ¢ < p. Also, let Qo be a cube in
R"™ and F € L'(2Qo), f € LY(2Qo). Suppose that there exist C;,C> > 0 with the
property that for each dyadic sub-cube Q of Qo with |Q| < B|Qo|, there exist two
integrable functions Fg and Rg on 2Q such that |F| < |Fg| + |Rg| on 2@, and

(8.32) ( ][2Q|RQ|” da:)% Cy {][ |F| dx + ][Q|f|dz] ,

aQ
(8.33) ][ |FQ|dIL‘ Cg]l |f|dx
2Q Q

Then

(8.34) (][ |F|qu> <c |F|dm+C(][ |f|qdaz) ,
0 2Qo 2Qo

where C = C(p,q,C1,Ca,a,8,n) > 0.

IN

IA

The following version of Gehring’s Lemma is also necessary.
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Lemma 8.1.4 (Gehring’s Lemma). — Fix p > 1, and let 1 < ¢ < p. Assume there exists
functions g, h € LP(92) and K > 0 such that for any surface ball Sg,

(8.35) (][SR|g|pda:)% <K (][Sznlglq da)% + <][S2R|h|" da)% .

Then there exist €, > 0 and C > 0, depending only on K, p and g, such that if
0<e<eg,, then

(8.36) / lglPtedo < C / |h|PTe do.
N on

For a proof of this lemma, see the Appendix. Our next lemma will show that that
the estimate (8.3) for solutions of (8.1) continues to hold for larger values of p.

Lemma 8.1.5. — Let Q C R™, n > 4, be a Lipschitz domain, and set p,, := 2(:—_—31)

Then there exists € = £(€2) > 0 such that for any § € L2(8) — LP~(8N) then the
L2-solution (#4,m+) of (8.1) satisfies the estimate

(8.37) /M(ﬁ)p do < C(Q,p) / |g|? do for every p € (2,p, +€),
aQ a0

where, as before, M (@) := max{M (i), M (d-)}.

Proof. — First, let (@+,m+) be as in (8.2). Since § € L?(0N), we have M(uy),
M(Viy), M(ny) € L2?(09). Applying Lemma 7.1.2 then gives that M(idy) €
LP~(8Q). We need to show that @4 satisfies (8.37). Fix Sg C 9. Choose ¢ € C°(R™)

SUCh that ¢ = 1 on Sizgr, ¢ = 0 on N \ Saser, [P < 1 and |V¢| < §. Define
= D\ (31414 K71 (¢#9)) in Qu and set p* = Py (G121 + Kx) 7' (69))
in Qi. Set M (%) := max{M (¥), M(7_)}. Using the L? well-posedness estimate for

U4, we have

(8.38) /M(v do <C / | do.

S256R

Let Wy := @4+ — U+ and pg := w4 — N+. Then we have Wy — pw_=g—¢g =10
on Sigsr and O (Wy,py) = 8} (W_, p—) on 0. Set M (W) := max{M (@), M(w-)}.
Applying Lemma 8.0.3 we then obtain

(8.39) ( M (@)~ aza)E <C ( ][ M(u‘)‘)zda)i.
Sr S128R
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Combining (8.39) and (8.38) then gives

( M (@)Pr do)ﬁ c( ][ (M (@) + M(9)?) da) ’
Sr S128r

<
%
(8.40) < ¢ ( ][ (M@ +|72) do) .
S256R
Then applying Lemma 8.1.3 with

(8.41)
F:= M(ﬁ)z, FSR = M(ﬁ)za RSR = M(u‘;’)2, f = I§|27 and q€ (Lpn/z))

we obtain, with p := 2q € (2,p,),

(8.42) ( M(@)P da) ’ <C ( M ()2 do) ’ +C ( ][ |g|P da) ’ :
Sr S2r S2r

Since this holds for every 2 < p < p, and M (%), § € L1(8N) for every 2 < q < py,
it follows from Lemma 8.1.4 that there exists € > 0 such that

(8.43) /M('L'Z)p do < Cp / |glPdo  whenever 2<p<p,-+e.
aQ aQ
This finishes the proof. O

The previous estimate allows us to establish the invertibility of the boundary inte-
gral operators in the following theorem.

Theorem 8.1.6. — Let Q C R™, n > 4, be a graph Lipschitz domain and fix p € [0,1).
There exists € > 0 such that for 2 —e < p < %ﬁ + €, the operators :t%}—‘_*%l + K
are invertible on LP(99).

Proof. — This has already been established in the case when p is near 2. Let € > 0
be as in Lemma 8.1.5 and fix 2 < p < %?_——31) + . Let § € LP(0N). Then there exists
g; € LP(89) N L#(89) (j € N) such that g; converges to § in LP(9R), as j — oo.
Since %}—fﬁ[ + K is an invertible operator on L?(82), for each j € N, there exists

fi € L3(89) such that
(8.44) (3T + KO f; = §;-

For j fixed, let 4y = @)\f; in Qp and 74 = 9,\]?1- in Q4. Then (@4,74) solves
(8.1) with datum g;. Then by Lemma 8.1.5,

(8.45) /|f,-|pda = /|ﬁ+ —d_|Pdo < 2”/M(11‘)"da < c/ ;1P do,
on on on on

which proves that f; € LP(09). Repeating the above argument with the functions
fi — fx and gj — gk, j,k € N, we can conclude that

(8.46) I.f; = frlloony < OG5 — Grllirony Viik € N.
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Since {g;}; is a Cauchy sequence in LP(9%), it follows that { f; }; is a Cauchy
sequence in LP(9), and so there exists f € LP(99) such that f; converges to f in
LP(0R). Then, for every j € N, formula (8.44) gives

(847) (3 LI+ Kx)F—Fllrron) < 16 LT+ KN (F— i)l Lo o) + 185 — dll e (o9,

so letting 7 — oo yields that (2 T I+ KA)f = §. Thus, the operator %%—'}%I + K
maps onto LP(99), and is therefore semi-Fredholm on L?(9NQ) for every u € [0,1).
For p close enough to 1, the operator ———HI + K, is invertible on LP(0f2) via a
Neumann series, so it has index zero. Then 1 1—"'liI + K has index zero on L?(9012)
for all u € [0,1), so it is, in fact, invertible on L” (BQ) for all p € [0,1). If we reverse
the roles of 4, and @_ and repeat the argument, we can show that the operator

-3 }—*_'ﬁI + K, is also invertible on LP(9€2). This completes the proof. O
We conclude this section with

Proof of Theorem 8.0.2. — Since the operators :t I + K, are invertible on

L*(0Q2) for p € [0,1) and 2 — ¢ < p < 2(: 31) + 6, by duality, the operators

:l:;l—_’iI + K7 are invertible on LP(09) for p € {0,1) and 2(" 1) —e<p<2+e.

Then the theorem follows from Proposition 4.5.2 and Theorem 5 2.3. O

8.2. The Dirichlet problem

This section will be devoted to proving the following result.

Theorem 8.2.1. — Let 2 C R™, n > 2, be a graph Lipschitz domain. Then there exists
€ = g(09Q) > 0 such that for each

2—e < p<oo, if n=2,3,
2—€<p<2(" 1)+5, if n>4,

(8.48)

the Dirichlet problem

Adt=Vn, divi=0 in
(8.49) M(u) € LP(89Y),

i| = feLPo9Q

= f L),

has a solution, which is unique modulo adding functions which are constant in Q to
the pressure term. In addition, there exists a finite constant C > 0 such that

(8.50) 1M (@)|lz»52) < CllfllLr(o0)-

Proof. — Let A € (—1,1]. From Theorem 8.1.6, (7.103), and duality it follows that
the operator

(8.51) I+ Ky : LP(09) — LP(89Q)
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is an isomorphism for each p as in (8.48). Then the functions
(8.52) @= DI+ K\)7f) and 7= PRI+ K7L

will solve (8.49) and satisfy (8.50).

Turning our attention to the issue of uniqueness, let (i, 7) solve the homogeneous

version of (8.50) for some p € (2 — ¢, 2—(:__;31) + €). To fix ideas, assume that § is the

upper-graph of a Lipschitz function ¢ : R®~! — R satisfying ¢(0) = 0, and for each
R > 0, consider the bounded Lipschitz domain
(8.53) Dg:={z=(2',z,) ER" xR: |¢/| < 2R, 0 < z, — p(z') < 2R}.

As it will be shown in § 9.2, via arguments which are independent of the present
considerations, there exists some finite constant C' > 0 which depends only on p and
the Lipschitz character of 2, such that

(8.54) / Mp (€)Pdo <C ilP do,

dDg ODg
where Mp,, stands for the nontangential maximal operator associated with the domain
Dg. In order to continue, set Sg := B(0, R) N 8 and denote by Vg := dDpg \ (SR U
(Sg + Ren)> the lateral side of the boundary of the domain Dg. Then, with M} as
in (7.58), we may write

MY(@Pdo < Mp,(@)Pdo < C |@|P do
Sr ODgr ODR

_ c/ |ﬁ|pda+0/ |1I(~+Ren)|pdor+0/ \@P do
Vr Sk Sr

IA

C |a|P da+C’/ |i(- + Rey)|P do
VR o0

(8.55) =: Ip+IIg,

since ¥ vanishes on 9. Next, observe that if 7 > 0 is a sufficiently small constant
depending only on 952, then for each x € 012, interior estimates and Lemma 7.1.3 give

jde+ Re)) < C(f @)
B(1+Ren,77R)

_nm1 o
CR™7# |[d||l pon/n-1y () < CR™ % || M(@)]| Lo (002)-

n—1

P

(8.56)

IN

In particular,

limp_, |@(x + Re,)| = 0 for each z € 99,

(8.57) - .

and |@(- + Rey)| < M(@) for each R > 0,
so that,
(8.58) Jlim 11 =0,

SOCIETE MATHEMATIQUE DE FRANCE 2012



158 CHAPTER 8. HIGHER DIMENSIONS

by Lebesgue’s Dominated Convergence Theorem. Let us now replace R by 7R in
(8.55) and then integrate the resulting inequality for 7 € [1,3/2]. If we consider the
pipe-like region

(8.59) Pg:={z = (z',z,) ER" ! xR: R/2 < |z'| <4R, 0 < z, — p(z') < 4R},
then, on account of (8.58), we obtain
3/2 3/2
MY(@)Pdo < C / I.rdr+C / Il gdr
Sr 1 1

(8.60)

IA

CR [ |aPde+o(1)<C M(@)P do + o(1)
Pg S4R\SR/2

as R — oo. However, since M (@) € LP(02), we also have fS4R\SR/2 M(@)P do = o(1)
as R — oo. Hence, by Lebesgue’s Monotone Convergence Theorem,

(8.61) M(@)? do = lim MY(@)P do = 0.
0 R—o0 Sk
From this we may, of course, conclude that @ vanishes in €. O
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CHAPTER 9

BOUNDARY VALUE PROBLEMS
IN BOUNDED LIPSCHITZ DOMAINS

9.1. Localization arguments

Let Q be a bounded Lipschitz domain in R™ and consider an open, finite cover of
O with coordinate charts (Z;,¢;), i = 1,...,m. Also, for each %, denote by X; the
graph of ¢; in the system of coordinates induced by Z;.

For fixed p € [0,1), —1 < A < 1, denote by T the operator :l:;l—ﬁI + K on 99,
where K, is as in (4.44), and let T; stands for :I:1 —EI + K,\ on ¥;, where K} is as

in (4.44) but with 9Q replaced by %;. In particular, for each p € (2=1,1] (which we
shall henceforth assume) there exists C = C(A, 1, p) > 0 such that

(9'1) ”f”ﬁ;tm(zi) < C“Tif”ﬁ;él’(gi)? Vf € Halu;p(zi)v 1<i<m.

Next, let {{i}1<i<m be a family of smooth functions with compact support in
Z; which form a partition of unity in a neighborhood of 9. Also, for each i, let
¢ € C§°(Z;) be such that {; = 1 in a neighborhood of supp £;. Then, with X and p as
above, for any f € hl’p (0€2), we may write

I lln2e o0y < CZ 1€: flln1p ) < CZ ||£szIH: pm S CZ IT: (&) 2,0 5,

(92) <C}:ucz (&f nglp(z)+CZ||(1—<1)T(e,f)||H1p(E)
=1
m n-—1 m n-—1

<OY Y N0 GTEN a0 +C YD 105 [(1 = T (€N, (s,

i=1 j=1 i=1 j=1

Above, the first inequality uses the fact that f = Y72, & f on 0R, the second
one follows from Lemma 2.3.1 (here, tilde denotes the extension by zero outside the
support to a function defined on X;), the third is based on (9.1), while the fourth
one is implied by Lemma 2.2.5. Finally, the fifth inequality is a consequence of (2.61)
(here, the tangential derivative operator 0, i is defined as before, but relative to the

system of coordinates induced by Z; in ]R")
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We adopt the following terminology. Call an expression of the form || R f||« residual
if £ maps h P(06Q) compactly into the quasi-Banach space %. Recall the index p*
from (2.48) and observe that for each ¢ € (1,p*), the operator of multiplication by &;
is compact from hLP(89) into L4(X;). This and Lemma 2.2.7 show that the terms in
the last double sum in (9.2) are residual. In order to continue, note that there exists
a family of ‘nice’ singular integral operators { Rx}1<k<n on 02, such that

n
(9.3) 8-, T=%310, +> Ridr,.

k=1

In fact, from the identity (4.98), the Ry’s can be taken to be principal-value singular
integral operators on 9} whose kernels are of the form 9y E(z — y) or xEa(z — y),
1 < k < n. Furthermore, we also have

n
1 + § : .
k=1

where R} is the version of Ry written for £; in place of Q. Consider now a typical
term in the next-to-the-last double sum in (9.2), and for a fixed ¢ € (1,p*), note that

[10-: LGTiEaz s < ClGTiEHnyez,) < CIGTi(E Dm0
IGTi (& f)ll e (o) + 1075 [GT3(& f Mrz, a0
ST (&)l Lacon) + ||<9T1 (GT (&)l e, 0925

Q

(9.5)

thanks to (2.83), (2.91), (2.93), and the fact that the integral operators T; and T have
the same kernel. Since

(9.6) g€ (1,p*) = hlLP(89Q) — LI(dQ) compactly,

and since (;T¢; maps L?(0N) boundedly into itself, we may conclude that the first
term in the bottom line of (9.5) is residual. Regarding the second term, using (9.4)
we may write

O [GTEN] = (B GITEF) + D GR((9,3,6)F) £ 5155 (0 &)f

k=1

(9.7 i%%ﬁ §iar;nf + Z CiRk(ﬁi(aT;‘k )-

k=1
Again, granted (9.6) and the fact that the operators (OT;n ¢)TE;, (,-Rk(a.r;;kﬁi) map
L(89) boundedly into itself, we may further deduce that the first three terms in the

right hand-side of (9.7) give rise to residual expressions. There remains to consider
the terms in the last line in (9.7) which, with the help of (9.3), we further transform
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as

(9 8) :‘:2 1—pn 5131-‘ f + Z Csz(gz(a‘r’ f)) - Z Cz[Rk’ 62](61" f) :I: 2 1 —n é-'la‘r’ f

k=1 k=1

+ z &Rk(a‘r;kf)

k=1

(9.9) =Y GilRi, &l ) +&des (TF).
k=1

Since for every p € (21, 1] there exist ¢ > 1 and s € (0,1) such that A%, (8Q) —
B?1(6€) compactly and since L9 (092) — hP(09), Lemma 2.5.7 shows that each
[Rk,éi]aﬂ-k gives rise to a residual expression. If we also note that

J

(9.10) 1€:0r: (THllnz,00) < CllOrs (THlInz,00) < CITfllnzp a0y

n

then the above reasoning proves that, whenever %1 <p<1l pel0l)and -1 <
A < 1, there exists a constant C > 0 such that

(9.11) ”f”hl”’(BQ) < C||(i%—}—f—_—l%1 + K)\)f"hlép(aﬂ) + residual expressions,

for every f € hLP(8Q).
The estimate (9.11) leads to the following results.

Proposition 9.1.1. — For n = 2,3, let & C R™ be a bounded Lipschitz domain and
assume that p € [0,1) and —1 < A < 1. Then there exists € > 0 such that

(9.12) + 3{EET + Ky : hyiP(89Q) — hyP(09)

are Fredholm operators of index zero for each z(nL;ll—) —e<p<l
Proof. — The estimate (9.11) shows that the operators :tll—ﬂiI + K are bounded

from below modulo compact operators on h P(09Q) for each p € [0,1). In particular,
(9.12) are semi-Fredholm operators. Since they are invertible when y is sufficiently
close to 1, the homotopic invariance of the index may be invoked in order to conclude
that this one-parameter family of operators (indexed by u) consists of Fredholm op-
erators with index zero. O

Corollary 9.1.2. — Let Q C R™, n > 2, be a bounded Lipschitz domain and assume
that 4 € [0,1) and —1 < A < 1. Then there exists ¢ > 0 such that for p € (2(:—4:11) -
£,2+¢),

(9.13) + 1T + K BE(09) — K (8Q)

are Fredholm operators of index zero.
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Proof. — The case p < 1 is covered by the previous proposition. When p > 1, we can
derive an estimate corresponding to (9.11) in a similar fashion as before, although in
this case, since we are dealing with classic Sobolev spaces L} (812), the argument is a
little more straightforward. Again, this type of estimate is enough to prove that the
operators in question are Fredholm with index zero. O

As a result of the previous theorem when p = 0, it can also be shown that the
operators

(9.14) + I+ Ky : Ry, (09) — Y

Lvy

(692)

are Fredholm with index zero. In particular, using Lemma 11.9.21 and (5.124) then
gives

(9.15) Ker ( + 114+ Ky: b2, (09) — hY

P
lvg

vy

(09)) = ¥*(69),

2(n—1)
n+1

for each p € ( —-&,24 5). We can now prove the following theorem.

Theorem 9.1.3. — Let 2 C R™, n > 2, be a bounded Lipschitz domain and assume

—1 < XA < 1. Then there exists € > 0 such that for p € (Z%Elﬁ —¢&,2+¢€), the operators
(9.16) + 3 AT+ K : RE(89) — hT(09)

are isomorphisms for all x4 € (0,1). Moreover, corresponding to the case p = 0, the
operators

(9.17) + 31+ Kx: by, (09)/3Y0Qz) — hY . (69)/9*(895)

Ly

are also isomorphisms.

Proof. — From Theorem 5.3.6, we know the above operators are isomorphisms when
p is near 2. Then since L?(0(2) is dense in h}(0S2), the operators in (9.16) must have
dense range. From Corollary 9.1.2, the range is also closed, and so the operators
are surjective. Since they are also Fredholm with index zero, this implies that the
operators in (9.16) are in fact isomorphisms.

Arguing as in the last paragraph of § 5.3, it follows from Corollary 9.1.2 that
the operators in (9.17) are Fredholm with index zero. Since we know that (9.17) are
isomorphisms when p is near 2 and L} , . (09) is dense in A7 ,, (092), these operators
must have dense range for each p in the desired range. Since the range is also closed,
the operators in (9.17) must be onto, and therefore they are in fact isomorphisms. O

At this point, we are ready to prove the following result with regards to the invert-
ibility of the single layer.

Theorem 9.1.4. — For each bounded Lipschitz domain Q@ C R™ with n > 3, there
exists £ = £(0NQ) > 0 with the property that

(9.18) S : hP(90) / vRop — K, (99)

is an isomorphism for each p € (2—(5—_'_:11—) —&,2+¢).
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Proof. — First, note that the operator (9.18) is well-defined due to (5.77) and (5.174).
We will show that

(9.19) Ker(S : hP(892) — h‘l’(aﬂ)) = v Rapq.

Assume f € hP(82) is such that Sf =0. Then @y := Jf in Q4 and 7y := Qf in
Q. satisfy

Ay = Vry in Qg

0.20) div @y = 0in 0,
it]aq =0,

M(Viy), M(r) € LP(89).

Since M(Viy) € LP(8R), by Lemma 11.5.1, it follows that M(@) € L?" (99)
where 1% = % — —L;. Then since p* > 2 — ¢, uniqueness for the L? Dirichlet problem
guarantees that @1 are locally constant. Then 74 are also locally constant, and so it

follows that

(9:21) f=8)(@-,m) = 8)(iiy, my) = v(my — 7_) € vRon,
which proves (9.19). From (4.142), we know that
(9.22) 50(82(DA(), PA()) = (31 + Kx) o (31 + K»),

as operators on h}(0Q2). Although the identity (4.142) was originally proven for p > 1,
by a density argument, it must also hold for "T”l < p < 1. Now from Corollary 9.1.2,

we know that the operators i%[ + K are Fredholm for p € ( %:_'_;11) —€,2+¢), and
hence from (4.142), we can conclude that the operator

(9.23) S : hP(99) — h2(892)

has a finite codimensional range, which in turn implies that its range is closed. Now
since the operator in (9.23) has closed range and (9.19) holds for all 2(:—_‘__11) —e<p<
2 + ¢, it follows that (9.18) is injective and has closed range for all values of p in this
range. Furthermore, from Theorem 5.4.1, the operator in (9.18) is an isomorphism
when p is near 2, and so applying Theorem 11.9.27 from the Appendix, it must be an

isomorphism for all 2(:;11) —e<p<2+e. O

Since (9.18) is a self-adjoint operator, the following corollary follows immediately
by duality.

Corollary 9.1.5. — For each bounded Lipschitz domain @ C R™ with n > 3 there
exists € = €(02) > 0 with the property that for each

(9.24) 2—e<p<ox if n=23,

(9.25) 2-e<p< =l ye if n>4,
the operator

(9.26) S: L7 (99) / v Rog — L2(59)
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is an isomorphism.
We also have the following results for n = 2.

Theorem 9.1.6. — For each bounded Lipschitz domain Q@ C R? there exists ¢ =
€(02) > 0 with the property that the operator

(9.27) §: (h(89)/vRon) @ R? — B, (09) & R?,
given by
(9.28) S0 = (sg+ f_gao),

N

is an isomorphism for each p € (% —&2+¢).

Proof. — Arguing as in the proof of Theorem 9.1.4, we can establish that (9.23) is a
Fredholm operator for each p € (% —€,2 4 €). Recall the decomposition S = S, + S}
as defined in (5.187). Since we know S, = S is Fredholm, and S; is compact (being an
operator of finite rank), it follows that S is also Fredholm, and therefore has closed
range for all p € (% —€,2 + ¢). Since S is an isomorphism for p = (2 — ¢,2 + ¢)
according to Theorem 5.4.4, it has dense range for all p € (% —¢,2+¢€), and therefore
it is onto for all p in this range. Applying Theorem 11.9.27 from the Appendix, we
can conclude that S is an isomorphism for each p in the desired range. O

It can also be shown that (9.27) is a self-adjoint operator, and so the following
corollary follows immediately by duality.

Corollary 9.1.7. — For each bounded Lipschitz domain Q C R? there exists ¢ =
€(89) > 0 with the property that the operator

(9.29) 5 (L’j L(69) /I/Rag) ®R? — LE(89) & R?
as in (9.28) is an isomorphism for each 2 — e < p < oo.
Next, we state another result involving the single layer in two dimensions.

Theorem 9.1.8. — For each bounded Lipschitz domain 2 C R? there exists ¢ =
€(0Q) > 0 with the property that
(9.30)

S:h"(@Q)/I/Ran@‘W—»h’l’yw(aQ) = {fe Ry, / (f,p)do =0Vp e ‘W}
" ’ a0
is an isomorphism for each p € (2 — ¢,2 +€), where W is as in (5.128).

Proof. — From Theorem 9.1.6, we know Sisan isomorphism for each p € (% —¢€,2+¢).

In particular, S has index zero, and so since S & S — S; where S as in (5.187) is
compact, it follows that S must have index zero for each p € (% —¢€,2+¢€). Using
(5.183) and applying Theorem 11.9.21 then gives

(9.31) Ker (S : h?(092) — h}(00)) = vRaq @ W, Vpe (2 —¢,2+¢),
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and therefore (9.30) is indeed an isomorphism for each p in the desired range. O

Consider now the following transmission boundary value problem for the Stokes
system:

Ay — Ve =0 in Qg,

M(Viy), M(n+) € LP(09),
a‘*lan_ﬁ_im: f ek (o9),

OM(iy,my) — pO(d_,m_) = § € hP(50),

(9.32)

along with the decay conditions
(9.33)
. O(|z|>* ™) as |z|]—> o0, if n>3,
(@)= _ig jdo) + O(|z| ! if n =2
~1B(z)(f o0 dd0) +O(lel™) as lal = oo, if n=2,
(9.34)
0i-(0) = ~3(0,B)@)(f _gdo)+0(el™) a5 lo] » o0, 1< <,
a0
(9.35)
O(|z|*"™) as |z]—>o00, if n>3,
()= L(VE Fdo) +O(|z|~ if n =2
(VEA)(2), £50Gdo) +O(|z|7?) as |zg| 2 oo, ifn=2.
Above, Q C R™ is a bounded Lipschitz domain, u € (0,1) is the transmission
parameter and we have set 0, = Q, Q_ := R™\ Q. Also, when "T_l < p <1, the
integral |, s g do should be interpreted as ((gg, Xo9) eg) r<tn’ with (-, -) denoting the

duality pairing between h?(8) and C(*~D(1/P=1)(5Q)).
We can now prove the following result.

Theorem 9.1.9. — Assume that 2 C R”, n > 2, is a bounded Lipschitz domain and
that "T_l < p <00, —1 < A < 1. Then the following claims are equivalent:
(i) the problem (9.32)-(9.35) is well-posed for every u € (0,1);

(ii) the operator

(9.36) 1etl1 + K3 - hP(0Q) — hP(09)

2p-1
is an isomorphism for every p € (0,1);
(iii) the operator

(9.37) 3951+ K : hY(89) — hE(0Q)

is an isomorphism for every p € (0,1).

Proof. — The proof of the implication (ii) = (i) follows exactly as in the proof
of the first part of Theorem 5.5.1. In the opposite direction, the a priori estimate
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associated with the version of (9.32) when f =0 reads

100 (@4, my) — wO) (-, 7 )heoy =~ IM(Viiy)lLeany + IM (sl o (o0
(9.38) HIM (Vi) Lraa) + IM(7-)|| Lo (a0
for any pair of functions (#+,m+) which solve the Stokes system in 4 and satisfy
Uiloq = d—|oq, M(Viy), M(ry) € LP(09Q). Specializing this estimate to the case
when @+ = Jh, 71+ := @Qh in Q4, with h € hP(0Q), and arguing as in (4.173) then
yields

(9.39) IR lIne (o0 < Cll(3EELT + K3)Allne 00),
where C = C(2,p, ) > 0 is a finite constant. Thus, { 5 1I +K } is a contin-
k= o<p<l

uously parametrized family of one-to-one operators with closed range (in particular,
semi-Fredholm) on h?(8), which are invertible (via a Neumann series) when p is
sufficiently close to 1. The homotopic invariance of the index then gives that all the
operators in question are invertible on h?(92).

Consider next the equivalence (i) <= (iii). First, when the operator (9.37) is an
isomorphism for each u € (0,1), a solution to (9.32)-(9.35) which satisfies (5.204) is
given by
-1

(9.40) @ = —JG+ @A[(éu }I+KA) (s )] in Q,
(941) =my = —-QF+ Q)A[(%” iI+K,\> I(Sg+ )] in Qy,
(9.42) d@_ := —%d§+%%[(§“ I+KA) ( )] in Q_,

1. 1 (1 .
(9.43) m_ = —;Qg+;%[(§ L+ K)o ( f)] in Q_.
Second, if the problem (9.32) is well-posed for each u € (0, 1), then
lutilon — @-loallr@n) =~ IM(ViEi)lreoa) + 1M (74)llLeo0)
(9.44) HIM (Vi) e aa) + M (7-)l|Lr (00)»

for any pair of functions (@1, n+) which solve the Stokes system in {24 and satisfy
oMby, my) = O} (-, m_), as well as M(Viy), M(ry) € LP(0R). Indeed, this is the
apriori estimate associated with the version of (9.32) in which we multiply by p the
first boundary condition, re-denote pi_ by @_, and take § = 0. Now, specializing
(9.44) to the case when @4 = Dah, Ty = Pk in Q., with ke h}(8%2), yields

II’-i"h‘{(f?ﬂ) = |li@+|oq — @-laqlln (a0)
< | M(VEy) || Lean) + 1M ()| Locan) + 1M (V)| 2o a0y + 1M () e (o0)
(9.45) < Clluiilon — d-loallwroa) = CI(GE LT + K3k (o0),

where C = C(f, p, p) > 0 is a finite constant. With this in hand and arguing as before,
we then conclude that the operator (9.37) is an isomorphism for every p € (0,1).
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There remains the issue of proving uniqueness for (9.32) when, say, the operator
(9.37) is an isomorphism for each u € (0,1). Once again, if (Z4+,74) is a solution of
the homogeneous version of (9.32)-(9.35), Green’s formulas (5.210) hold. Multiplying
the version of (5.210) corresponding to the sign minus by p, then adding it to the the
version of (5.210) corresponding to the sign plus yields, after taking boundary traces

(9.46) a+|m+u i ]89= (%I + K,\) (ﬂ‘+|m) - u(—%I + K,\) (11'_ ‘60)

since the single layer does not jump across 9Q and 9 (@y,m4) = po)(d—,7_).
Thus, keeping in mind that @|sq = @-|sq yields, after some algebra, (;ﬁ—il +

KA) (ﬁ+|39) = 0. Hence, i |sn = 0, and so @_|sq = 0 as well. If in place of (4.152),
we now set
7 i O in O,
(9.47) g:={ " 1n. + and m:={ T 1n- *
pi_ in Q_, pm_ in Q_,
then the pair (@, 7) solves the Stokes system in R™ and decay at infinity. Interior

estimates then force that @ = 0 from which the desired conclusion follows. O

Running the same type of argument as above, but for the transmission problem
Aﬁi——Vﬂ'iZO in Q:t,

M(Vﬁi), M(wi) € Lp(aﬂ),

@] -wi-| =ger©n),

on
Ny, my) — M@, m_) = f € h?(89),

(9.48)

with decay conditions
O(z]>*™) as |z|]—> o0, if n>3,

049 ’”“={ B@)(fy Fdo) +0(al™) s la] = o0, if n=2,

(9.50) Bjii_(z) = (0;E) (=) /a fdo) +0(a1™) a5 fel =00, 155 <,

O(z|*™) as |z|—>o00, if n>3,

(8:51) “—@):{ (VE&)@), foq Fdo) +O(la|™) as fo] o0, ifn=2.

in place of (9.32)-(9.35), yields the following result.

Theorem 9.1.10. — Let Q C R™, n > 2, be a bounded Lipschitz domain and assume
that "T_l < p <00, —1< A <1 Then the fact that the transmission problem (9.48)-
(9.51) is well-posed for each u € (0,1) is equivalent with each of the following two
conditions:

(9.52)
(9.53)

%ﬁ{—% + K3 : h?(82) — hP(09) isomorphically, V u € (0,1),
1
-2

I
BELT 4+ K : h5(09) — hE(8Q) isomorphically, ¥ u € (0, 1).

n—1

SOCIETE MATHEMATIQUE DE FRANCE 2012



168 CHAPTER 9. BOUNDARY VALUE PROBLEMS IN BOUNDED LIPSCHITZ DOMAINS

We can now also prove the following theorem.

Theorem 9.1.11. — Let Q2 C R™, n > 2, be a bounded Lipschitz domain and assume

that —1 < A < 1. Then there exists € > 0 such that for p € (%l"—_l}ll —&,2+¢),

(9.54) + ST + K3 : hP(09) — hP(8Q)

are isomorphisms for all u € (0,1). Furthermore, corresponding to the case y = 0, the
operators

(9.55) + 31+ Ky : bl s (09)/vRsq, — hﬁ,g (09)/vRaq,
are also isomorphisms.

Proof. — Let p € (z(nﬂfil—) —¢&2+¢€). If p € (0,1), it follows from Theorem 9.1.3,
Theorem 9.1.9, and Theorem 9.1.10 that the operators in (9.54) are isomorphisms. If
we can show that the operators in (9.55) are Fredholm with index zero, then we can
finish the proof by arguing as in the proof of Theorem 9.1.3.

From Theorem 9.1.4, we know that (9.23) is a Fredholm operator of index zero.

Now, returning to the identity (9.22) and using Corollary 9.1.2, we can conclude that
(9.56) (D), PA()) : 13 (892) — hP(99Q)

is also a Fredholm operator of index zero.
For f € h?(89), let 4y := Jf in Q4 and 7y := @f in Q4. Applying (4.144) to
these functions leads to the identity

(9.57) NDA(SF), Pr(SH) = AT+ K3)(-LI+ K)F, ¥ feh?09).

Although (4.144) only holds as stated for p > 1, the identity (9.57) still holds for
ﬂ;———l < p < 1 by virtue of a density argument. Now, since the operators (9.56) and
(9.23) in the left hand side of (9.57) are Fredholm and the operators in the right side
commute, it follows that the operators

(9.58) + 21+ K5 : hP(09) — h?(8Q)

both have a closed, finite co-dimensional range as well as a finite dimensional kernel.
Hence, they are both Fredholm. Now that we know the operators

(9.59) + AT + K : hP(89) — hP(09)

are Fredholm for all 4 € [0,1), it follows that the Fredholm index must be constant
for all u in this range. Thus the operators in (9.58), which correspond to the case
1 = 0, are Fredholm with index zero. Finally, arguing in a similar fashion as in the
last paragraph of § 5.3, we can show that the operators in (9.55) are also Fredholm
with index zero, as desired. a

We conclude this section with two corollaries.
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Corollary 9.1.12. — Let Q C R, n > 2, be a bounded Lipschitz domain and assume
that —1 < A < 1. Then there exists € > 0 such that for each

2—e<p<oo ifn=23,
(9.60) 2—e<§<%’i};—)+e ifn >4,

and each p € (0,1), the operators

(9.61) 2 1 uI+ K : LP(892) — LP(09))

are isomorphisms for all u € (0,1). Moreover, corresponding to the case y = 0, the
operators

(9.62) + 11+ K : LB, (09)/%*(095) — LP, (09)/9*(094)

are also isomorphisms.

Proof. — This follows from Theorem 9.1.11 and duality. O

To state our second corollary, we need some preparations. Recall the duality result
from (2.68). The dual of hl,(0f) involves the local BMO space. which we briefly
review. For some fixed 0 < r, < diam (912), the space bmo (92) is then introduced as

f€L?0N) and sup f |f — fa.ldo < o0
A, surface ballvV A,
with r < 7,

(9.63) f € bmo (89) &L

(with fa, == F a. f do, where the barred integral indicates averaging), and is equipped
with the natural norm. Then (cf. [15])

(9.64) (r(09)" =bmo(92) and  hl(99) = (vmo (89,
where
(9.65)
f € vmo (89) f € bmo (02) and lim sup ][ |f = fa,|ldo } =0
R—0 Ar m;]rfacg %&11 A
with r <

is Sarason’s space of functions of vanishing mean oscillation. Define the spaces
bmo,, (02), vmo,, (9f2) and C7, (0R) in an analogous fashion to (5.114).

Corollary 9.1.13. — Suppose that @ C R", n € {2, 3}, is a bounded Lipschitz domain
and assume that —1 < A < 1. Then, for each y € (0,1), the operators

(9.66) +3 1 #I + K : bmo (82) — bmo (892),

(9.67) +1 1 #I + K : vino (092) — vmo (69),

are isomorphisms. In addition, corresponding to the case u = 0, the operators
(9.68) +1I + K : bmo,, (09)/%*(0Q%) — bmo,, (8Q)/¥*(80=),
(9.69) +1I+ K : vmo, (8Q)/¥*(8Q) — vmo,,, (8Q)/%*(89),
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are isomorphisms. Finally, there exists € > 0 such that

0<a<j+e ifn=2,

(9.70)
O<a<e ifn=3,

the operators

(9.71) +3 1T+ K : C*(0Q) — C*(89), ne(0,1),
(9.72) +1I+ K : €2, (09Q) /T (095) — CZ, (09)/9*(89)

are also isomorphisms.

Proof. — This follows from Theorem 9.1.11, the above discussion and duality. O

9.2. Main well-posedness results with nontangential maximal function estimates

We can now state some of our main results. The first involves the transmission
problem.

Theorem 9.2.1. — Assume that Q@ C R™, n > 2, is a bounded Lipschitz domain and
set Q4 :=Q, Q_ := R*\ . Also, fix 4 € (0,1) and X € (—1,1]. Then there exists
€ = ¢(09) > 0 such that for each

(9.73) g%’;r_li)—e<p<2+zs

the transmission boundary value problem, concerned with finding two pairs of func-
tions (@4,7+) in Q4 satisfying

A’l_l:_.t = Vwi, divﬁi =0 in Q:t,

M(Viy), M(ry) € LP(09),

71 —i_| =geh}(69),

@, -i-| =genton) )

Ny, 7)) — po,(i-,m_) = f € hP(0Q),

(9.74)

and the decay conditions
(9.75)
i (2) Oo(|z|>*™) as |z|—oo00, if n>3,
i_(z) = o )
~1E(z) (fag fda) +0(|z]"Y) as |z| — o0, if n =2,
(9.76)
() = ~0;B)o)( [ _Fdo)+O(Iel™) s lel =00, 155 <,
(9.77)
O(lz|*"") as |z|—o00, if n>3,
m_(z) =

L(VEa) (@) (Joq fdo) +O(2]™?) a5 |z] > o0, if n=2,
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has a unique solution. In addition, there exists C' > 0 such that

(9.78) IM(Va@s)lLeon) + 1M ()| o) < CllFlnz o0y + Cll fllne o0)-

Proof. — This follows directly from Theorem 9.1.3 and Theorem 9.1.9. O
This leads us to our next result for the Dirichlet problem.

Theorem 9.2.2. — Assume that Q C R™, n > 2, is a bounded Lipschitz domain. Then
there exists € = ¢(9Q) > 0 such that for each

(9.79) 2—-e<p<oo if n=2,3,
(9.80) 2-e<p<¥r=lye if n>4,

the interior Dirichlet boundary value problem

A =Vr, divi=0 in Q,
(9.81) M (@) € L*(89),

— — rg p

q =feLs (59),

has a solution, which is unique modulo adding functions which are locally constant
in © to the pressure term. In addition, there exists a finite constant C' > 0 such that

(9.82) 1M (@)]| Lo a0 < Cll Lo (o0)-

Similar results are valid for the exterior Dirichlet problem, formulated much as
(9.81) with the additional decay conditions

2—n N .
(9.83) i(z) = { O(jz|* ™) as || m 00, if n>3,

E(z)A+0Q) as |z] = o0, if n=2,
O(lz|'"") as |z| > 00, if n>3,

9, E(zx)A + O(|z|™2) as |z| — oo, if n =2,
O(|z|*"") as |z] > 00, if n>3,
(VEa(z), A) + O(|z|~2) as |z| — o0, if n=2,

(9.84) 8;i(x) = {

(9.85) w(z) = {

for some a priori given constant A e R2. Also, the standard nontangential maximal
operator in (9.82) should be replaced by its truncated version.

Proof. — Fix X\ € (-1,1]. From Corollary 9.1.12, for any fe L} (09), there exists
g1 € LY (09) and P, € ¥*(HN_) such that (AI+K»)g +1), = f. Since ¢, € L2(8%),
according to Corollary 9.1.5, when n > 3 there exists go € L” ,(99) such that Sgo =
o. Then

(9.86) i:=DG+dG: and 7:= PG+ 0F
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will satisfy (9.81) and (9.82). The case n = 2 can be treated in a similar manner. In
this case, using Corollary 9.1.7, we can instead find g, € L?,(0f2) and ¢ € R? such

that S, + &= . Then
(9.87) @:=DaG1+JGa+¢& and 7 := P\G1 + QG

will satisfy (9.81) and (9.82). Existence of solutions for the exterior Dirichlet prob-
lem can be established in a similar fashion. This time, when n = 2, we can invoke
Theorem 9.1.6 in order to be able to choose g, such that

(9.88) / Godo = A,
on

which, in turn, will guarantee that the solution just constructed has the appropriate
decay, as prescribed in (9.83)-(9.85). Finally, uniqueness in the case p > 2 follows from
uniqueness for the case when p is near 2, which is guaranteed by Theorem 5.5.4. [

Theorem 9.2.3. — Assume that Q C R”, n € {2, 3}, is a bounded Lipschitz domain.
Then there exists € = £(0€2) > 0 such that if (9.70) holds then the interior Dirichlet
boundary value problem

Ai=Vnm, divi=0 in Q,
(9.89) i e C*(9),
u|m= fece (o9),

has a solution, which is unique modulo adding functions which are locally constant
in 2 to the pressure term. In addition, there exists a finite constant C' > 0 such that

(9-90) léll ey + sup [diSt (z, aQ)I-QIVﬁ'(wN] < Clflica(s9)-

Similar results are valid for the exterior Dirichlet problem with the additional decay
conditions (9.83) imposed.

Proof. — This is proved much as Theorem 9.2.2, with the help of Corollary 9.1.13. O

We next discuss the case of the Dirichlet problem with data from BMO and VMO
spaces. A few preliminaries are necessary. Given a Lipschitz domain @ C R"”, define
the set of Carleson measures, Car (), as the subclass of Borelian measures p on {2
satisfying

p(B(z,r)NQY)

Tn

(9.91)  lpllcar (@) = Sup{ z €09, 0<r < diam (8(2)} < .

We shall also make use of a distinguished subclass, Car.(f2), of the space of Car-
leson measures in €, defined by

u(B(z,r) N Q)

(9.92) pe Cari() & w € Car () and ;im sup 1

—0 z€a9
0<r<d
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Theorem 9.2.4. — Assume that Q C R™, n € {2,3}, is a bounded Lipschitz domain.
Then the interior Dirichlet boundary value problem

Ai=Vr, divi=0 in Q,
(9.93) |Vi|2dist (-, 0Q) dx € Car (),
u|69= f € bmo, (09),

has a solution, which is unique modulo adding functions which are locally constant
in © to the pressure term. In addition, there exists a finite constant C' > 0 such that

(9.94) [ IVa@dist (-, 89) dz|| ¢, ) < Cl fllbmo (8-
and
(9.95) |Vii|2dist (-, 00Q) dz € Car, () < f € vmo (89).

Similar results are valid for the exterior Dirichlet problem with the additional decay
conditions (9.83) imposed.

Proof. — The invertibility of the relevant boundary integral operators has been es-
tablished in Corollary 9.1.13. With this in hand, the we proceed largely as in the proof
of Theorem 9.2.2. The only novel aspect is that, in the current context, we need to
know that the double layer operator 9, maps functions from BMO on the boundary
into densities of Carleson measures. This, however, is covered by the following general
result. Let k& € C°(R™ \ {0}) be an odd function which is homogeneous of degree
—(n —1). Also, fix some b € L>°(92) and assume that the operator

(9.96) Tf(z) = /a k(e = )b(u) 1) do(e), a €
satisfies
(9.97) J1=const in Q.
Then
9.98) (T Hlosllpmo o0y + VT F1Pdist (-,092) da|| 5, ) < Cllflbmo 202

See [65] for a proof of this claim. The proof of the theorem is therefore finished. O
We now turn to the following result for the Regularity problem.

Theorem 9.2.5. — Let Q C R™, n > 2, be a bounded Lipschitz domain. Then there
exists € = £(0) > 0 such that for each p as in (9.73), the interior Regularity boundary
value problem

Ai=Vnm, divi=0 in 9,
(9.99) M(Vd), M(m) € LP(09),
al, = f€hi,, (09),

has a solution, which is unique modulo adding functions which are locally constant
in Q to the pressure.
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In addition, there exists a finite constant C > 0 such that

(9.100) IM (V)| e o) + |M (7)l| e 00) < C||f||h;’,v(an)-

Similar results are valid for the exterior Regularity problem, formulated much as
(9.99) with the additional decay conditions (9.83)-(9.85).

Proof. — Since the operator

(9.101) F+EKx: Ry, [UNOQ) — B, /9N OQ.)

1,V+

is an isomorphism for each p as in (9.73), we can find g € h{’7v+ (092) and 1/_)’0 €

¥ (09Q-) such that (31 + K)\)§1 + ¥, = f. Since 9, € ht,, if n > 3, it follows from
Theorem 9.1.4 that there exists go € h?(0N) such that Sg2 = ¢,. Then

(9.102) 4= Dyg1 +Jg2 and w:= Prg1 + QG2

will satisfy (9.99) and (9.100). When n = 2, it follows from Theorem 9.1.6 that there
exists g, € h?(00) and ¢ € R? such that S§, + &= v,. In this case,
(9.103) G:=Drgh +4G2+C and w:= PG + Q7G>

will satisfy (9.99) and (9.100). Existence of solutions for the exterior regularity prob-
lem can be established in a similar fashion. Much as in the case of the Dirichlet
problem, when n = 2, it is possible to choose g, such that (9.88) holds. This guaran-
tees that our solution has the appropriate decay, as prescribed in (9.83)-(9.85). As for
uniqueness, an inspection of the corresponding argument in the proof of Theorem 5.5.3
shows that the same technique can be used in the current context as well. O

We finish this section with the following result for the Neumann problem.

Theorem 9.2.6. — Let Q@ C R™, n > 2, be a bounded Lipschitz domain and fix A €
(=1,1]. Then there exists € = £(8Q) > 0 such that for each p as in (9.73), the interior
Neumann boundary value problem

Adi=Vrn, divi=0 in
(9.104) M(Vi), M(r) € LP(89),
8)(a,m) = f € hP(89),

has a solution if and only if
(9.105) felm (—%I + K3 ¢ bl (00) - hgi(an)).

Moreover, this solution is unique modulo adding to the velocity field functions from
T*(). In addition, there exists a finite constant C' > 0 such that

(9.106) |M(V@)|| Leo0) + IM(T)||Lra0) < C”ﬂlhr(an)-
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Finally, a similar result holds for the exterior domain R™\ Q if we include the decay
conditions
(9.107)

. O(jz|>*™) as |z|— o0, if n>3,
) = { E(2)(fpq fdo) +0(zI™") as |a| - o0, if n=2,
(9.108)
0,(e) = (E)@) (| _Fdo) +O(el™) a3 s] =00, 1< 5 <,
(9.109)
O(jz|*™™) as |z|]—> o0, if n>3,
m(@) = { ((-VEa)@), foq fdo) +0(al™) as |o] > oo, if n=2.

More precisely, a solution to the exterior problem satisfying the above decay con-
ditions exists if and only if

(9.110) felm (%I+K; 7, (69) —»Lgi(aﬂ)),
and solutions are unique modulo adding to the velocity field functions from ¥*(R™\Q).

Proof. — Since we have established in Theorem 9.1.11 that the operators (9.55) are
isomorphisms and also that (9.15) holds for each p in the desired range, the proof that
a solution exists if and only if f is as in (9.105) follows exactly as in the proof of Theo-
rem 5.5.2. The claim for the exterior Neumann problem, along with the corresponding
uniqueness statement, follows similarly. O

SOCIETE MATHEMATIQUE DE FRANCE 2012






CHAPTER 10

THE POISSON PROBLEM FOR THE STOKES SYSTEM

10.1. Stokes-Besov and Stokes-Triebel-Lizorkin spaces

Here we shall adapt the standard Triebel-Lizorkin and Besov scales to the Stokes
system. Concretely, for a bounded Lipschitz domain 2 in R™, n > 2,and 0 < p, ¢ < oo,
a € R, we set

(10.1)

$B29() = {(&,7) € BRU(Q) ® B, (R) : Ai— Vr =0, divii=0in 0},
(10.2)

SFPI(Q) := {(ﬁ', ) € FPUQ) @ FP (Q): AG—Vr=0, divi=0in Q}

(with the convention that p < oo in the latter case) equipped with the norms || -
lsFza(ays Il sB2a(q), naturally induced by B4(Q)@B%?, () and FRI(Q)SFL4, (Q),
respectively. In particular,

(10.3) SF2P(Q) = SBEP(Q) for every a € R, 0<p < oo.

Our next few results focus on some of the properties of these spaces.

Theorem 10.1.1. — Let 2 C R™, n > 2, be a bounded Lipschitz domain. Then for
every ¢ € R, 0 < p < o0,

(10.4) SF21() is independent of ¢ € (0, 00).

Furthermore, for any p € (251,2], ¢ € (0,00) there exists C = C(,p,q) > 0 such
that

(10.5) IM(Va)ll o a0) + 1M (7)o (o0) < ClI(@ m)lisrry, @)-
Proof. — 1f ¢q1,¢2 € (0,00), we have
(10.6) SFre(@) < [Fre(@)nKerd?] o [FP 9 (Q2) N Ker A]

= [Fpe@ nKera?] © [F29(0) nKera],
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by Theorem 11.7.1. Thus, SF?9(Q) C F?%(Q) @ F5% () and, hence, SF2%(Q) C
SF?%(Q). Similarly, SF?%2(Q) C SF2%(Q), so ultimately, SF2%(Q) = SFP72(Q),
proving (10.4). Finally, (10.5) is a consequence of (10.6) and Theorem 11.7.2. a

Corollary 10.1.2. — Let Q@ C R™, n > 2, be a bounded Lipschitz domain. Then for
each )\ € R, the conormal derivative assignment (&, 7) — 8. (&, 7) induces a bounded
operator

(10.7) ) : SFPE () — kP (%)

whenever “T'l <p<2and0<gqg<oo.
Proof. — This follows directly from (10.5) and Theorem 4.3.1. O

Recall that (-,-)s,p and [,-]¢ stand, respectively, for the real and the complex
method of interpolation.

Theorem 10.1.3. — Let © C R”, n > 2, be a bounded Lipschitz domain and assume
that 0 < go,¢1,9 < 00, ag, a1 € R, ap # 1,0 < 6 < 1. Also, set & = (1 —60)ag +0a;.
Then, if 0 < p < o0,

(10.8) (srze@), sFzm @), =sBRe(@),
Yq

and if 0 < p < o0,

(10.9) (sBze@), sBE2 (@), =SB,
q

Let 0 < pg,p1 < 00, 0 < go,q1 < oo with min{go,¢1} < 00, g, 1 ER, 0<0< 1
and set a = (1 — 8)ag + 0oy, L = lp;f+;f—’l-, and % = AE_EQ"'?;QI‘ Then

1o
(10.10) [sFzeee(@), sFEe ()] = SF2(@).

Finally, if ap,a1 € R, 0 < po, p1,40,¢1 < 0o with min {go,¢1} < 00, then
(10.11) [sBz(9), sBR® (9)]0 = SBPI(Q),
where 0 < <1, a=(1-8)ap + ba;, %=l§;o+z%,and%=1;—09+%-

Proof. — Fix an open cube Q@ C R™ containing £, and for and i = 0,1, set
X = Foon(@) @ FR% (), Zi = F2% (Q) @ F2% 4(Q),

Y; = F5% o(Q\ Q) @ F2% ((Q\ Q) — Z..

QG — a;—

(10.12)

As discussed in [45], the spaces Xo+ X, and Y5 +Y; are analytically convex (cf. the
discussion preceding (11.143) for a definition). Let Eg denote Rychkov’s extension
operator truncated near (2 so that it maps the distributions from the Triebel-Lizorkin
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scale in 2 to distributions supported in the cube Q, with preservation of smoothness.
Also, set L(@,n) := (AT — Vr,div4) and

(10.13) Mi(z) = E(z —y)i(y)dy, zeR",
]Rn

(10.14) oi@) = [ az-v)d)dy zeR",
Rn

(10.15) Maf(z) = Ea(z—y)f(y)dy, ze€R™
R"

In particular,
(10.16) AI-VO =1, divII=0, All=I,

where I stands for the identity operator. The intention is to use Lemma 11.9.23 with
D:= Lo ES and

(10.17) 6w, ) = (Ra(Td + VIIaf) , Ra(00 + £)),

where Rq is the operator of restriction to 2. Note that, in the notation of
Lemma 11.9.23, X;(D) = SF%+%(Q) for i = 0,1. There remains to check that
K := Do G — I, as a bounded linear operator from Z; into itself, actually maps Z;
into Y;, i = 0, 1. To this end, for every pair of test functions (¢,%) € C=(Q)®C(Q),
and every (W, f) € Z;, we compute

(Do G —I)(w, f),(4,v))
=((a [+ viisf) |Q-v[eu7 +1] ‘Q,div [+ VI £ |n) L G9)

(10.18)  ~((@,£),($,4)) =0.

Hence, K (@, f) = 0 in 2 which proves that K maps Z; into Y;. Then (10.8) and
(10.10) follow from Lemma 11.9.23. A similar argument works for the Besov scale and
this finishes the proof of the theorem. O

10.2. Conormal derivatives on Stokes-Besov and Stokes-Triebel-Lizorkin scales

Let X be a Banach space with dual X*. For every n x n matrix F' = (F}*)a,; With
entries from X, and every n X n matrix G = (Gf )a,k with entries from X*, and each
A € R, we set
(10.19) Ax(F,G) = a (\(F2,GY),

where (-, -) is the duality pairing between X and X*, and a?,f’ (A) are as in (4.1). While
our notation does not emphasize the dependence of (-,-) and A, on X, the particular
nature of X should be clear from the context in each case.

The main results-of this section are as follows.
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Proposition 10.2.1. — Let  C R™, n > 2, be a bounded Lipschitz domain and assume
that 0 <s < 1,1 < p,q <00, A € R. Then

(10.20) &) : SBYY, () — BYY,(09)

given by

(1021) (82(@,7), §) = Ax(VaE, VEx($)) — (m,divEx(#)), V4 € BIL (39),

is a well-defined, bounded operator, where Ex is the extension operator introduced in
Theorem 2.5.2 and 1/p+1/p' =1,1/q+1/¢ = 1.

Furthermore, for every (4,7) € SB”% () and % € BY

s+1/p ,(92), the following
integration by parts formula holds:

1- s+1/p

(10.22) 8x(V8, V%) = (v, divas) + (8)(@,7), Tr ).
Proof. — Assume that (u@,w) € SBf_fl/p(Q). Then @ € B”’q1 Q), = B”’q1 ()

and we have A4 — Vr = 0, divi = 0 in Q. Also, 1/) e BYY (69) forces
Ex(¢) € BP i (). Consequently, thanks to Proposition 2.4.4, the matrix

1-s+1/p
VEx(f) € B0, () = (BI,,_1(@)  pairs well with Vil € BYY, (). Ina
similar fashion, divEx(¢) € (B”’ql/p 1(Q)) pairs well with m € B”fl L (). This

shows that 9 (i, ) € (Bfl_’g (69)) = B (09) and
(10.23) 162 (i, ™)l B2 (a0) < C"ﬁ”Bi’fl(n) + C"””B:fl‘l(n)-
P p

This finishes the proof of the well-posedness and boundedness of the operator
(10.20)-(10.21).
Going further, what we have proved up to this point yields

(10.24) <a,§(ﬁ, ), Tmz;> = A, (va, VEx(Tr w)) - <7r,div Ex(Tr) w}
so (10.22) follows as soon as we establish that

(10.25)  Ay(V, V) -, div @) =0, VaeB , (@) with Trd=0.

1- s+1/p

Since, by Theorem 2.5.3, C°(Q) is dense in {@ € B1 S+1/p () : Trw = 0}, it
suffices to prove (10.25) when @ € C°(f2). However, in this scenario, the identity in
(10.25) follows from the fact that A% — V7 = 0 in the sense of distributions in 2. [

Proposition 10.2.2. — Assume that & C R, n > 2, is a bounded Lipschitz domain
and that 0 < s < 1,1 <p,qg< o0, A €R. Then

(10.26) 8, : SF2% () — BYI(99)

given by

(1027) (32(@m), z/7> = Ay (va, VEx( *)) — (m, div Ex(¥)), V4 e Bl (60),
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is a well-defined, bounded operator, where Ex is the extension operator introduced in
Theorem 2.5.2 and 1/p+1/p' =1,1/9g+1/¢ = 1.
In addition, the following identity holds for any (@,w) € SFF%, (), & €

’ s+l/p
Ff-:g+1/p' (Q)
(10.28) Ax(VE, V) = (m,div) + (8 (@), Trw).
Proof. — This closely parallels that of Proposition 10.2.1. |

Note that the definitions (10.21)-(10.27) correspond to a formal application of
Green’s formula (4.6). The applicability of this point of view is limited to the range

1 < p,q < o0, as B9, (09) fails to be a dual space if min{p, ¢} < 1. We nonetheless
have:

Theorem 10.2.3. — Let Q be a bounded Lipschitz domain in R™, n > 2. Also, assume
that A € R. Then the conormal operator from Proposition 10.2.1 extends to a bounded

mapping
o) : SBffl/p(Q) — BP9 (8%2), whenever

10.29
( ) n—n_—1<p<oo70<QS007(n“1)(%—1) <s<l1
+

Analogously, the conormal operator from Proposition 10.2.2 extends to a bounded
mapping
9 : SF, /() — BP? (692), whenever

(10.30) o
= <p<oo, 0<g<oo, (n—l)(%—1>+<s<1.

Proof. — Call a point in R® with coordinates (s,1/p,1/q) “good” if

(10.31) 8, : SFPY, /p(§2) — F4(0Q)  is well-defined and bounded.

Furthermore, call a region E C R3 “good” if all points in FE are good. Then by
Propositions 10.2.1-10.2.2 and Corollary 10.1.2, the following set is good:

(10.32) {(s,%,%) L 1<p<oo, 0<s< 1} and {(1,%,%) ; =l <p§2}.
Also, by Theorem 10.1.3 and Proposition 2.5.8,
(10.33) E good = the convex hull of FE is good.

Finally, if for any E C R® we denote by Pr;,E the projection of E onto the
(horizontal) zy-plane, we note that
E good open set in R® = 9} : SFF}%, /p(R2) — BE(09Q) is bounded
whenever (s,1/p) € PryE and 0 < ¢ < oo.

Indeed, this is a consequence of (10.8) and (2.162) (with p = q), plus (10.4) and
the fact that diagonal Besov and Triebel-Lizorkin spaces coincide.

(10.34)
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With this information available, the end-game in the proof of the theorem is as
follows. First, by (10.32)-(10.33), the interior of the parallelogram with vertices at

(10.35) 0(0,0,0), A(1,0,0), B(1,1,1), C(0,1,1)
is a good set, and so is the segment with end-points
(10.36) P(L,3,3), Q1 32,3)

See picture below:

Q=
>

o
Sy

FIGURE 3.

By (10.33), it follows that the pyramid with vertex at @ (given in (10.36)) and
whose base is the parallelogram with vertices as in (10.35) is good. Since the projection
of this pyramid on the (s, 1/p)-plane is the region described by

(10.37) {(s,%):0<p<oo, (n——l)(%—1)+<s<1},

it follows that the conormal derivative operator is bounded under the conditions
specified in (10.30).

Finally, the corresponding claim about (10.29) is a consequence of what we have
just proved, (10.8) and (2.162). This finishes the proof of the theorem. O

10.3. The conormal derivative of the Stokes-Newtonian potentials

Let © C R™, n > 2, be a bounded Lipschitz domain and assume that "—;1 <p<1l,
(n - 1)(% —1) < s < 1. Call mg € L*>(99Q) a BP? (9N) molecule if there exist

M > ”Tfl and a surface ball S centered at zg € 9 and having radius r € (0, diam )
such that

(10.38) (1) Img(z)| < rs'l"n_l’__l(l +r7 e —zg)) "M+l for z € 09,

(10.39) (2) mg(z)doy, =0 if r <.
o0
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The molecular theory developed by M. Frazier and B. Jawerth in the Euclidean
setting can be adapted to the case of Lipschitz surfaces. In particular, we have (see
[60] for a proof):

Proposition 10.3.1. — Let (n—1)/n <p < 1and (n—1)(; —1) < s < 1. Then, given
an arbitrary bounded Lipschitz domain @ C R"™, n > 2, there exists n = n(6Q2) > 0
such that

1Flszn oo ~ it {(S )"
S

(10.40) f= Z Asmg, mg’s are BY'?, (0Q) molecules, {As}s € E”},
s

uniformly for f € BY?, (0Q).

8

Conversely, there exists C = C(99Q,s,p, M,n) > 0 such that for any countable
family {ms}s of BY",(852) molecules and any numerical sequence {\s}s € 7,

s—1

(10.41) ||Z Asms
S

Bo. om) = Cl{As}sller-

Assume that s e R, 0<p<1,p<¢g< 00, and p < p; < 400, define J := %, and
fix an integer L > max{[J —n —s],—1}. Let  be a bounded Lipschitz domain in R",
n > 2,8 €N, and p > 1 are constants depending on €. Under these circumstances,
call a function Ag a rough atom for F g (Q) if

(10.42) (1) 3Q € R™ such that suppAC Q C Qand pQ C Q,

(10.43) (2) 1Al prramy < QL7

(10.44) (3) / t"A(z)dr =0 if |[y| < L and 1(Q) < 27P.
]Rn

The following result has been proved in [60].

Theorem 10.3.2. — Let ) be a bounded Lipschitz domain in R™, n > 2, and assume
that p,q,s,p1,J, L are as above. Then there exist # € N, and p > 1 such that any
f € F27 () can be expanded in a series

(10.45) f= Z A Ay with convergence in S'(R"),

kez
where the atoms Ay satisfy (10.42)-(10.44) and { Ak }xez € ¢P. Furthermore,
(10.46) |7 g() = inf{“{)‘k}kl|lp§ f= Z)\kAk},

where the infimum is taken over all possible representations of f in a series of atoms
satisfying (10.42)-(10.44).

We are now in a position to discuss the main result of this section.
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Theorem 10.3.3. — Consider a bounded Lipschitz domain © C R", n > 2, and sup-
posed p,q, s are fixed such that ﬂgl <p<oo (n—-1)(1/p-1)4y < s <1and
0 < g < 00. Then, for each A € R,

(10.47) 8)(1,8) : B, -, o() — B4 (09),
(10.48) 6)(I1,8) : FEY _, o(R) — BIZ(89), if p # oo,

are well-defined, linear, and bounded operators.

Proof. — We start with implication (10.48) for 2= < p <1, (n—1)(1/p—1) < s < 1
and p < ¢ < 0o. By Proposition 10.3.1 and Theorem 10.3.2, it is enough to show that
0, (11, ©) maps rough F?:’ /p—2,0(§2)-atoms to BY%, (9Q)-molecules.

Note that current restrictions on indices imply that rough F2:% /p—2,0(§)-atoms
satisfy (10.42)—(10.44) with L > 0. Consider first such a rough atom A supported in
a Whitney cube Q C 2, with center zg € Q and pick zg € 99 such that |xg —z5| =
dist (zg, 09). Then set m := 9, (II(A), O(A)) on N which, so we claim, is a molecule
for BY'? (09) concentrated about the surface ball S := B(zs,1(Q)) N 0Q.

The claim will be justified by checking (10.38)-(10.39). Take the vanishing moment
condition, required when [(Q) is small. Assuming that this is the case, A has one

vanishing moment and, for every ¢ € R",

( aﬂmd0,6'> = /m(m,é‘)da=/m(a,’,\(I'IA,GA),é‘)dg

/ (ATIA — VOA, &) dz = /(A,a} dz
Q Q
(10.49) = ([ Ads, a> =0,

]Rn

by Green’s formula (4.6), written with & = IIA, 7 = ©A, @ = ¢, p = 0, the first
identity in (10.16) and the support condition on A. Thus, [ aqMdo =0, as desired.

Turning to size estimates, we observe that m can be expressed in the form (recall
that zg is the center of Q),

(1050)  m(z)= /Q (02 (B, @y — 2) = oy (B, B — 2) )€ W) A(w) dy,

for some ¢ € C°(f2) such that £ = 1 on Q, { vanishes outside some small neighborhood
cQ,c=c¢(Q)>1,0<¢<1,and [VE < CUQ)L.
For the range of indices we are currently working with,

(10.51) FPf R < LR, if s+;-2-2=-1-71,

where p; > 1 is the index appearing in (10.43), chosen sufficiently close to 1, and
pz > p1. Also, (L% (R™))* = L3?(R"), so that (10.50) together with (10.51) and
(10.43) imply

1 1
(10.52) m(@)| < CIFl s, o 47 ey < CIQIE T IEL]
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where

‘We can see that

Ié(y)l
Iw -yl

+C|(8) (B, My - 2) - )y {E, i}z - 2)) | IVEW)]
(10.54) = I+1I
By the Mean Value Theorem,

11 < Cly=sol sw [V.000{E.q) )| IVEwW)

IVF(y)| <

z€[y,zq]
(10.55) < ClQ) sup ~ V&)l
2€[y,zq] 1T I zl
so that
1
(10.56) I1<C sup —,
2€[y,zqQ] |z — 2|

since |V¢| < I(Q) Using the property that @ is a Whitney cube for 2 and keeping
in mind that y € cQ, z € 09, z € [y,zg], some elementary geometry leads to the
conclusion that |z — zg| < C|z — z|. Consequently,

- |z — zq| ) -
10.57 II <ClQ "(1+
(10.57) @ 0
The same reasoning shows that a similar estimate holds for I, so that altogether,
—n |z — zg| ) -
(10.58) IVl g ey < CU@E (14 2
Similarly,
(10.59)

ClQ) % (1 L l(_Qx)QI)_n <CUQ) % (1 + lml(_Qa;Ql)_n’

where the last inequality rests on the observation that I(Q) is bounded by the diameter
of the domain 2. Then by (10.52), (10.58), and (10.59),

1El gy <

s—1-2=1 lz—xQ'
(10.60) Im(z)| < CUQ) ’ (1+ 1Q) )

Now, by definition, [zg—zs| = dist (g, 00), so that |z—zg| < |[z—zg|+|zgo—2s| <
2|z — zg| for every z € 9Q. If we now set r := I(Q), then

|z — zq] 1|z —azs| 1 ( Ix—ws|>
10.61 1+ —=>1 —— —_
( ) + r +2 r 2 1+ r ’
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which entails

-n
(10.62) Im(z)| < Cr* 1= (1 + W;—x"’"l) .

This proves (10.38) with M :=n+s—-1> —"—;;l and justifies the claim that m is a
molecule for BY'?, (8€2) concentrated about the surface ball S = S,.(zs). At this stage,
Proposition 10.3.1 applies and yields that, for 2= < p <1 and (n—1)(1/p—1) <
s < 1, the operator (10.48) is well-defined and bounded, first for p < g < 0o, and then
for the complementary range, 0 < ¢ < p, by embeddings.

To further expand this range, we shall rely on the observation that

=

(10.63) /6 Q(B,’,‘(Hﬁ, ei), fido = /Q (@, Drf) dz,

i.e., the conormal derivative of Newtonian potential can be viewed as the adjoint of
the double layer. Then, Proposition 10.5.1, the duality results in (2.118)-(2.119) and
interpolation with what we have just proved allows us to cover the range of indices
described in the statement of the theorem.

Finally, the claim made about the operator (10.47) is a consequence of the bounded-
ness of (10.48), the duality reasoning described in the paragraph above (in particular,
contributing to the case p = co) and interpolation. O

10.4. The conormal on Besov and Triebel-Lizorkin spaces: the general case

Let 2 C R", n > 2, be a bounded Lipschitz domain and assume that 1 < p, ¢ < oo,

0<s<LIf@eBy (), eBy, (@) and fe B, ,,(Q) are such that

A@ — Vr = flg in , then as suggested by (4.7), it is natural to define 8 (@, ™) €
BP (89Q2) = (Bflzl(aﬂ))*, 1/p+1/p' =1,1/q+1/¢ =1, X € R, by setting
(10.64)

(8)(@,m) 5 B) = (F,Ex(§)) + A (V, VEx(P)) - (m,divEx(f)), V¥ e BYY (69),

where Ex is the extension operator introduced in Theorem 2.5.2. The conditions on
the indices p, q, s ensure that all duality pairings in the right-hand side of (10.64) are
well-defined. Similar considerations apply to the case of Triebel-Lizorkin spaces. As
before, this duality-based approach is restricted to the case when 1 < p,q < oo, as
B4, (09) fails to be a dual space if min{p, ¢} < 1. We nonetheless have:

Theorem 10.4.1. — Let Q be a bounded Lipschitz domain in R™, n > 2, and assume
that 2= < p < oo and (n—1)(1/p—1)4 < s < 1,0 < g < co. Also, assume that
A € R. Then one can define a concept of conormal derivative, i.e. a bounded, linear
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application
@, 7, f) — 8) (i, 7) » mapping B-'Y(Q) onto BFY,(0N2), where
v f s s—1
(1065) Q‘I:q(n) = {(ﬁ7 ™ f) € B:f% (Q) @ B:_f.l._l(ﬂ) @ Bff%_z’o(g) :

Aﬂ‘—V7r=f|n and divZ =0in Q¢,

which is compatible with (10.64) when 1 < p,q < oo. Furthermore, there exists a
linear, bounded, right-inverse of (10.65).

Similar conclusions are valid in the context of Triebel-Lizorkin spaces, i.e. for the
application

@,m, f) — 8>(i, ) » mapping F2U(£) onto BPP,(89), where
f s s—1
(10.66) FIQ) = {(ﬁ, . f) e F?% (@) @ oo @@ F ()

L s+1-2,0
At —-Vrm = ﬂg and divd = 0 in Q},

assuming that p # oo.
Proof. — Set

(10.67) O3 (i, m) ;o= 03 (i - [nfﬂﬂ, ~ - [e7] |Q) +o(ufe5),

where, in the right-hand side of the above equality, the first conormal derivative is
taken in the sense of (10.29) in Theorem 10.2.3, while the second one is taken in the
sense of (10.47) in Theorem 10.3.3. The properties of this conormal derivative claimed
in the statement of the theorem then follows from this. |

Remark. In what follows, we agree to simplify the notation by writing 8) (&, 7) in
place of 8) (i, m)5, whenever A% — Vr =0 in (.

10.5. Layer potentials on Besov and Triebel-Lizorkin spaces

In this section we establish mapping properties for the hydrostatic layer potentials
on Besov and Triebel-Lizorkin spaces in Lipschitz domains.

Proposition 10.5.1. — Let Q be a bounded Lipschitz domain in R™, n > 2, and assume
that A € R, 2= < p < oo, (n—l)(%—1)+<s<1,and0<q§oo.Then

(10.68) Dx = BY(09) — B, (Q),
(10.69) 4 : B (09Q) — Bf.f% ),
(10.70) P : BP4(9Q) — Bys (),
(10.71) Q: B (09) — BV, _ (),
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are well-defined, bounded operators. Furthermore,

(10.72) Dy : BYP(0Q) — FP9 (),
(10.73)  : BY? (09) — Fs”f:(ﬂ),
(10.74) P : BEP(09) — Fj’i_l(ﬂx
(10.75) Q: BY? (090) — Fff;(ﬂ),

are also well-defined and bounded provided s, p, g are as before and p # co.

Proof. — From Theorem 11.8.1 and Theorem 11.7.1 it follows that
(10.76) D» : BYP(89) — HE , (2;A%) = FP (Q) NKer A®

is well-defined and bounded whenever 0 < p,q < oo, (n—1) (% —1), < s <1, provided
q = 0o if p = 0o. This and real interpolation (cf. Proposition 2.5.4 and Theorem 2.4.2)
then justify (10.68) and (10.72) (in the latter case, we also use monotonicity of the
Triebel-Lizorkin scale to cover the case ¢ = 00). That the operators in (10.70)-(10.71)
and (10.74)-(10.75) are also well-defined and bounded is a consequence of (4.35)-(4.36)
and the mapping properties of the harmonic layer potentials on the Besov-Triebel-
Lizorkin scale proved in [60].
As regards f, Theorem 11.8.2 and Theorem 11.7.1 give that

(10.77) 4 B2?(0Q) — ]HI’;_%_I(Q; A?) = FP4, _ (92) NKer A?

is well-defined and bounded for 0 < p,q < oo, (n — 1)(% - 1)+ < s < 1, granted that
q = oo if p = 0o. Then, much as before, the operators (10.69), (10.73) are seen to be
well-defined and bounded. O

Recall next the boundary layer potential operators K defined in (4.44), its formal
adjoint K3, and S introduced in (4.47).

Proposition 10.5.2. — Let Q be a bounded Lipschitz domain in R", n > 2. If
(n—-l)/n<p§ooand(n—l)(%-—l)Jr <58<10<qg< 00, A €R, then the
operators

(10.78) K : BP9(69) — BPI(99),
(10.79) K3 : B?9,(8Q) — B2, (09),
(10.80) S : B, (6Q) — BP(09),

are well-defined, linear, and bounded.

Proof. — Since

(10.81) TroDy=3I+Kx, Trod=S5,
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the claims about (10.78) and (10.80) are consequences of Proposition 10.5.1 and The-
orem 2.5.2. Finally, using the fact that

(10.82) 83‘ o(d,Q) = _%I+ K3,
together with Theorem 10.2.3 and Proposition 10.5.1, the claim about the operator
(10.79) follows as well. d

For a given bounded Lipschitz domain 2 in R™, n > 2, the range of indices for
which the boundary layer potentials for the Stokes system are invertible on the Besov
scale considered on 9 depends on the dimension n of the ambient space and the
Lipschitz character of 2. The latter is manifested by a parameter € € (0,1] which
can be thought of as measuring the degree of roughness of Q (thus, the larger € the
milder the Lipschitz nature of 2, and the smaller £, the more acute Lipschitz nature
of ). To best describe these regions, for each n > 2 and ¢ > 0 we let ®,, . denote
the following sets. For n = 2, R» . is the collection of all pairs of numbers s,p with
the property that either one of the following two conditions below is satisfied:

(10.83) (I): 0<p<s+3* and 0<s< i,

(IL): -YHf<l-s<i* and H=<s<l

Corresponding to n = 3, R3 . is the collection of all pairs s,p with the property
that either of the following two conditions holds:

(I3): 0<ti » <3 $+32 and O0<s<e,
(10.84)
(II3) : —§<%—§<1—2§§ and e<s<l.

Finally, corresponding to n > 4, we let &, . denote the collection of all pairs s, p
with the property that

(10.85)  (I,): 2(7:1—_—31)“5<1%"n_ii<%+5 and 0<s<1, 1<p<oo.

To proceed, we shall now introduce some versions of the boundary Besov spaces
which are well-suited for the formulation and treatment of boundary value problems
for the Stokes system in Lipschitz domains. Concretely, if 2 is a bounded Lipschitz
domain in R®, n > 2, and (n —1)/n < p < o0, (n—l)(%—1)+ <s<1,0<g<o0,
we set:

(1086) B, (00) = {f e Bre(on) : / (0, f)do =0, Vi € vRoa, },

(10.87) B2(89) := { f e BP1(80) : / W, fldo =0, Vo e uRan}

-
(10-88) B2, 4 ( { f e By, (89) : / @, fydo =0, V¢ € ¥ Bﬂi)}

(10.89) B, (8Q) := { f e BrioQ) : / (%, fldo =0, Vy € w} if n=2
on
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On these spaces, below we show that the boundary hydrostatic layer potentials are
invertible for suitable indices p, q, s. We have:

Theorem 10.5.3. — Assume that (2 is a bounded Lipschitz domain in R", n > 2.
Then there exists € = () € (0, 1] with the following property. If (n—1)/n < p < oo,
(n— 1)(% —1); <5<1,0< g <00, and A € (—1,1], then the operators

(10.90) +1I+ K : B (09)/9*(8Q1) — BPE, (09)/9*(094),
(10.91) 31+ K3 : BYY w» (0Q)/vRoq, — B, A (09) /vRsq, ,
(10.92) S : B2, (09)/vRgq —> BP(09) if n >3,

(10.93) S : By, (09)/vRoq ® W — BY,,(09) if n=2,

(10.94) §: (Br4(09)/vRoq) ® R — BIA(0R) O R? if n=2,

are invertible whenever the pair (s, p) belongs to the region &, ., described in (10.83)-
(10.85).

Proof. — This follows from the invertibility results on Hardy spaces from § 9.1 and
repeated applications of the complex and real method of interpolation. O

10.6. The Poisson problem with Dirichlet and Neumann boundary conditions

Here our goal is to describe the ranges of indices for which the Poisson problem for
the Stokes system equipped with Dirichlet or Neumann boundary conditions is well-
posed for data in Besov and Triebel-Lizorkin spaces in bounded Lipschitz domains.
As a preamble, we record some useful integral representation formulas.

Proposition 10.6.1. — Assume that  is a bounded Lipschitz domain in R", n > 2,
2=l < p< oo, (n—1)(1/p—1)4 <8< 1,and 0 < g < co. Then for every number
A € R and every pair (&,7) € SBYY, () there holds

P

(10.95) @ = DA(Tr @) — J(8) (&, 7)) in Q,

= PA(Trd) - Q(3;(d,m)) in Q.

Similar integral representation formulas are valid in the context of Triebel-Lizorkin
spaces, i.e. when (@, 7) € SF:’fl (€2), granted that p # oco.
P

Proof. — These formulas follow from (4.120)-(4.121), a density argument, and the
mapping properties of the operators involved (established earlier). O

We are now ready to state and prove the first main result of this section, deal-
ing with the inhomogeneous problem for the Stokes system with Dirichlet boundary
condition.
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Theorem 10.6.2. — Let €2 be a bounded Lipschitz domain in R™, n > 2, and for

22l <p<00,0<g< 00, (n—1)(5 —1), <s<1, consider the following boundary

value problem,

Ai—Vr=feB", ,(Q), divi=ge B, (),

10.96 » s

( ) i€ Bf_’fl ), we Bffl‘l(ﬂ), Tr @ = h € BP9(99Q),
p P

subject to the (necessary) compatibility condition
(10.97) / (v,h)ydo = / g(z)dz, for every component @ of Q.
00 0

Then there exists ¢ = ¢(2) € (0, 1] such that (10.96) is well-posed (with uniqueness
modulo locally constant functions in 2 for the pressure), if the pair (s,p) belongs to
the region R, ¢, described in (10.83)-(10.85).

Furthermore, the solution has an integral representation formula in terms of hy-
drostatic layer potential operators and satisfies natural estimates. Concretely, there
exists a finite, positive constant C = C({2,p, ¢, s,n) such that
(10.98)

”ﬁ”B:’_':%(Q) + ”ﬁ”Bff%-l(”)/Rw < C”f”B:f%_z(Q) + C”Q”Bl"%_l(ﬂ) + C||hll 522 (a0)-

Moreover, analogous well-posedness results hold on the Triebel-Lizorkin scale, i.e.
for the problem
AZ-Vr=fe F:’f%_z(ﬂ), divi=g¢€ Fff%_l(ﬂ),

10.99
(10.99) ZeFPL(Q), meFPY (Q), Trd=ge Br?(o0),
P P

where the data is, once again, made subject to (10.97). This time, in addition to the
previous conditions imposed on the indices p, g, it is also assumed that p,q < oo.

Proof. — Let ¥ be such that

(10.100) ve B:’f%_l(ﬂ), divi =g in Q.
For example, we may take

(10.101) v :=VIlag

where Il : BYY, (@) — BYY, | is the harmonic Newtonian potential in Q (i.e.,
14 14
the operator of convolution with Ea from (4.31)). Next, consider w, p for which
(10.102) (w,p) € B>, (®BYI, (), Aw-Vp=f-A¥ and divii=0 in Q.
P 14

-

For this, we may take @ := II(f — A%) and p := O(f — Av), where II, © are as in
(10.13)-(10.14). We now claim that

(10.103) Tro+ Tr@ — h € BPY

S, vy

(69).
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To see this, we first observe that Tr@ + Tra — h € BP9(89). To check the or-
thogonality condition on vRaq, , by virtue of (5.72) it suffices to note that for every
¥ € Rq, we have

/((’ﬁﬂﬁw),v)d)da = /¢div(17+w‘)da:
on Q

Lg¢dw=/ﬁg(u,ﬁ)¢da,

by (10.97). This proves the claim made in (10.103).
Next, we make the claim that if n > 3, then

(10.104)

T : B2 (69Q) @ B™% (09 BP2 (09),
(10.105) . s;”+( )IEB 3—1(4 ) _: s,f'+( )
T(g1,32) := (51 + K»)g1 + Sg»  is onto.

To justify this claim, consider an arbitrary f € B, (09). Then (10.90) gives that
there exists §1 € B, (6€2) such that ¥i=f— (31+Kx)§ € ¥2(69). This, (5.116),
and (10.92) then guarantee the existence of some g, € BY'? (0Q) with the property
that Sgs = 1,5 Consequently, T'(§1, §2) = ﬁ proving the claim.

Having established (10.103) and (10.105), we can now produce a solution for (10.96)
in the form

(10.106) =T+ W+ Dragi + 42, 7:= p+ Prgr + UG,
where

(10.107) (§1,3d2) € B>, (9Q)@®BP%(8Q) are such that T(§,Js) = h—Tro—Tr@.

S, V4

Furthermore, it is implicit in the above construction that (10.98) holds. The case
n = 2 is handled analogously, so we omit the details.
To prove uniqueness, assume that @, 7 solve the homogeneous version of (10.96).
We may then conclude that (i, m) € SBY'!, (?2) and Proposition 10.6.1 gives
P

(10.108) @ = —J(0)(@, ) in Q.
Taking boundary traces of both sides then yields
(10.109) S(0) (@, 7)) =0 in BP%(09),

so that 0} (&, ) € VRpq. Returning with this in (10.108) and invoking (5.76), (5.82),
then gives @ = 0 in 2 and 7 € Rq, , as desired.

For the Triebel-Lizorkin scale a very similar approach works as well. Thus, the
proof of the theorem is complete at this point. a

Our second main result in this section pertains to the Poisson problem for the
Stokes system with Neumann boundary conditions.
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Theorem 10.6.3. — Let Q be a bounded Lipschitz domain in R™, n > 2, and for
lg—l <p<o00,0<q< o0 and (n— 1)(% - 1')+ < s < 1, consider the following
boundary value problem:

(10 110) Aﬂ_Vﬂ':f] B:fl_g O(Q)a divi =0 an
| € BYE,(Q), meBY, (), 8)@my=Fe Bl (00),

where the data are assumed to satisfy the necessary compatibility condition
(10111) & (1f,0) -k etm (~41+ K3 : B, w3 (09) = B2, o (69)).

Then there exists € = (2) € (0,1] such that (10.110) has a unique solution (mod-
ulo adding to the velocity functions from ¥*(Q)) if the pair s,p belongs to the re-
gion R, . described in (10.83)-(10.85). In addition, the solution (normalized so that
Jo(i(x),¥(x)) dz = 0 for every 9 € U*(Q)) satisfies the estimate

(10.112) l@ll7a, @) + I7llgre, (@) < C”ﬂlB"’ql_ @+ C”}-’:”B:”_"l(aﬂy
st+3 s+p-1 st5 2,0
An analogous well-posedness result holds for the problem
Au—Vﬂ—ﬂ FeFrh (@), dvi=0ing,
(10.113) p.a p.a N op
e FIA(Q), weFPL (), 0X@my=he BIA o0,

assuming that p,q < oo, and
(10114)  8}(1f,0F) —F e Im (—31+ K3 : BY?, 5, (99) — B2, ,, (99)).

Proof. — The fact that (10.111) is a necessary condition for the solvability of (10.110)
can be proved following the same set of ideas as in the case of (9.105), after observing
that

(10.115) Gi=a-If, p=n—-0Of
solve
AW —-Vp=0inQ, divi=0in Q,
(10.116) € BS+1 @), pe Bs+1 (),
MW, p) = h—IIf,0f) € B4, (69).
In turn, granted (10.111), existence is seen by taking
(10.117) @ = If - J(-i1+K3)"H0)(Uf,8f) - h),
(10.118) m = Of - Q(-1I+K})1@)1f,ef) - k).
Given our earlier results on the mapping properties of the hydrostatic layer po-
tentials plus the current assumptions on the indices s, p, g, this is easily seen to solve
(10.110).

To establish uniqueness, if the functions # and « satisfy the homogeneous version
of problem (10.110), then @ = Dy (Tr#) in Q, by (10.95). Taking boundary traces

Il
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(in the sense of Besov spaces) then yields (—1I + K))(Tr @) = 0 on 8. This shows

that Tr € U*(89, ), by a variant of (5.124). Hence, Tr @ = v|sq for some function

¥ € ¥*(Q4). It remains to invoke (10.95) once again in order to conclude that, by

virtue of (5.96), & = ¢ in Q. This establishes the claim made about uniqueness for
(10.110).

The treatment of (10.113) is analogous, and this finishes the proof of the theorem.

O

A less precise formulation of Theorem 10.6.3 is that problems (10.110), (10.113)
have solutions for data (f,h) belonging to a finite co-dimensional subspace of
Bf—fl/p—Z,O(Q) & B2% (09Q) and F:-qu/p—z,o(ﬂ) @ BP'?,(8Q), respectively, and unique-
ness holds up to a finite dimensional space.

To see this, let us rephrase condition (10.111) as
(10.119) (F,h) € @ 'Im (— 11 + K5 : BYY, ,\ (89) — B2, ,, (99)),

i

s—l,‘I’i

where ® is the bounded, linear application given by

(10.120) @: BY, (@) @ B2 (0Q) 3 (f,h) — 8] (n 7.e f) — § e BP9 (89).

Since Ker(—3I + K} : B:’fl’wi(an) - B:flwi(aﬂ)) is, thanks to (10.91), a
space of finite codimension in BY (9), the desired conclusion now follows from
Lemma 11.9.22 in the Appendix.

In the case when R™ \ € is connected, we can further rephrase Theorem 10.6.3 in
the following fashion.

Theorem 10.6.4. — Assume that 2 be a bounded Lipschitz domain in R, n > 2, with
connected complement and that 2>1 < p < 00, 0 < ¢ < o0, and (n — 1)(—11; -1), <
s < 1. Then there exists ¢ = () € (0,1] such that the Poisson problem for the
Stokes system with Neumann boundary condition

A -V =ﬂ , feBP . (Q), divi=0in,
(10.121) = Pyq “ pqs+%—2,0 (77 s Pyq
xS Bs;%(ﬂ), e ler-;;—l(ﬂ)’ 9, (@, ) p = h € By, (09),
has a unique solution (modulo adding to the velocity functions from ¥*(f)) if the
pair s,p belongs to the region &%, . described in (10.83)-(10.85) and the data (f,h)

satisfy the necessary compatibility condition
(10.122) /(ﬁ¢> dzx =/ (h,¥)do, Vi e TNN).
Q aQ

In addition, the solution (normalized so that fn @ -9 = 0 for every ¢ € ¥*(Q))
satisfies the estimate

(10123)  fllgrs, @+ Inllzns, (@) < Cllfllsr
14 14

q
1_
Ty

no@ t CllhllBzs (a0)-
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Moreover, an analogous well-posedness result holds for the problem
Ad-Vr=f| , FeFrs , @), dvi=0imnQ,
CeFN,(Q), me Ff;r"%_l(n), 9)(@,m)f = h € BY?,(09),

1
4

(10.124)

assuming that p, ¢ < oco.

Proof. — Given that we are assuming that €_ is connected, it follows that Rsg_ = 0.
Thus, in the current context, (10.91) becomes

(10.125) - 31+ K5 B:’_"L‘I,i(aﬂ) - Bf’_quwi (6%2) isomorphically,

if s,p,q are as in the statement of Theorem 10.5.3. As a consequence, the image of

the operator —3I + K3 acting on B?? _, (99) is the entire space BY _, (99). In
) R 2

turn, this implies that the compatibility condition (10.111) takes the form
(10.126) o2 (11f,0F) —h e B2, ,\ (69).
"t
In other words,
(10.127) /m <aj (nf“, ef) , ¢> do = /m(ﬁ,zp) do, Vi€ ¥ (090).
At this point, there remains to observe that
1) [ (2(ufef),v)do= [ () p@)ds, vyeP@),
a0 Q

as is clear from (4.7) and (5.94). This proves that, in the current context, (10.111)
reduces precisely to (10.122), finishing the proof of the theorem. O
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CHAPTER 11

APPENDIX

11.1. Smoothness spaces in the Euclidean setting

Here we briefly review Besov and Triebel-Lizorkin scales in R™. One convenient
point of view is offered by the classical Littlewood-Paley theory (cf., e.g., [74], [86]).
More specifically, let Z be the collection of all systems {(; }??—.0 of Schwartz functions
with the following properties:

(i) there exist positive constants A, B, C such that

{ supp (¢o) C {z : |z| < A}

11.1 ; )
(1L1) supp ((;) C {z: B2~ 1 < |z| < C27*1} ifjeN;

(ii) for every multi-index a there exists a positive, finite constant C,, such that

(11.2) sup sup 2j'“||a°‘gj(x)| < Cyu;
z€R™ jEN
(iii)
o0
(11.3) ¢j(z) =1 for every =z € R"™.
J
j=0

Let s € R and 0 < ¢ < oo and fix some family {(;}52, € E. Also, let & and S'(R")
denote, respectively, the Fourier transform and the class of tempered distributions in
R™. Then Triebel-Lizorkin space F?9(R™) is defined for each 0 < p < co as
(11.4)

@) = {F e S®): |flrpa —||( TG

o < of.

If 0 < p < 0o then the Besov space BP*?(R"™) can be defined as
(11.5)

BRUR™) = {f € S®™):  |flpper —(ang NGT M) < o0}

=0
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A different choice of the system {(;}52, € E yields the same spaces (11.4)-(11.5),
albeit equipped with equivalent norms. Furthermore, the class of Schwartz functions
in R™ is dense in both B?4(R") and F?9(R"™) provided s € R and 0 < p,q < oo.

As far as the real method of interpolation is concerned, we note the following
classical result.

Theorem 11.1.1. — (cf. [86]) Let o, 01 € R, ap # a1, 0 < qo,q1,9 < 00,0 < 6 < 1,
a = (1-0)ag + 0a;. Then

(11.6) (FEP(R™), FE " (R")e,g = BRUR"), 0<p<oo,
(11.7) (Ba* (R"), Bg:#(R"))g,q = BRR"), 0<p<oo.

Turning to the complex method of interpolation, we have:

Theorem 11.1.2. — Let apg,a; € R, 0 < pg,p1 < 00, and 0 < ¢g,q1 < oo with the
property that either max {pg,go} < 00, or max {p1,¢1} < co. Then

(118) [Pz (RY), F2ye (R = FL9(R™),

where 0 <0 < 1, a = (1 — 8)ag + by, : s = 1p00 +p1, and ; = 1%9 + qel
Furthermore, if ag,a; € R, 0 < po,p1,490,91 < 00 and min {qgo,q1} < 00, then also

(11.9) [BEy® (R™), BE,* (R™)]s = BEY(R™),

where0<0<1,a=(1-—0)a0+0a1,%:%f%—%,and%:%%—%.

When p, ¢ > 1, this is well-known; cf. [33], [85]. For the entire scale p, g > 0, the result
has been established in [62], [45].

11.2. Gehring’s lemma

Let us first recall the definition of a space of homogeneous type, as introduced
by R. Coifman and G. Weiss in [15]. Assume that ¥ is a set equipped with a quasi-
distance, i.e. a function d : ¥ x ¥ — [0, 00) satisfying d(z,y) =0z =y, d(z,y) =
d(y,x) and such that there exists £ > 1, called concavity constant, for which

(11.10) d(z,y) < k(d(z,2) +d(z,9), Vz,y,z€X.

In turn, a choice of a quasi-distance naturally induces a topology on ¥ for which
the balls B(z,r) := {y € £ : d(z,y) < r} (which, unlike the case of a metric space, are
not necessarily open when x > 1) form a base. A well-known theorem of Macias and
Segovia (|57]) asserts that the original quasi-distance function on ¥ can be replaced
by an equivalent one which has the additional property that the associated balls are
open. It is also well-known that ¥ is compact if and only if u(X) < +o0.

A space of homogeneous type is a structure (3, d, u), where d is a quasi-distance
on the set ¥ and p is a measure defined on the minimal sigma-algebra containing all
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Borel sets and all balls, and which is doubling, i.e., there exists a A > 1, called the
doubling constant, such that

(11.11) 0 < pu(B(z,2r)) < Au(B(z,r)) <oco, VzeX, Vr>0.

In the sequel, if A > 0 and B = B(z,r), we shall use the notation AB := B(z, Ar).
Also, the symbol f indicates integral average, and LP(X,du) stands for the Lebesgue
space of y-measurable, p-th power integrable functions on X. The following Calderén-
Zygmund decomposition result and Vitali covering lemma are well known. See, e.g.,

21, [15].

Lemma 11.2.1. — Given a space of homogeneous type (2, d, 1), there exists ¢ > 1 de-
pending only the concavity constant  such that the following holds. If B = {B,}acu
is a family of balls and E := |, B, is pu-measurable and u(F) < oo, then there exists
a sequence of mutually disjoint balls {B;};en C B such that any B € B is contained
in some ¢B;. In particular, E C | J; ¢B;.

Lemma 11.2.2. — For every space of homogeneous type (X, d, 1) with the property
that the balls are open sets there exists a finite constant ¢ > 1, depending only on
the concavity constant  (in fact, the same constant as in Lemma 11.2.1) with the
following significance. Assume that f € L!(Z, du) is a nonnegative function and that
A> ch fdp. Then there exists a sequence of mutually disjoint balls B; = B(z;,7;),
j € N, such that

(11.12) ][ fduS/\<][ fdu VjeN,
CBJ' Bj
(11.13) f < A pointwise py-a.e. on X\ U cB;.
jEN

We are now ready to state the main result in this section which is a version of the
celebrated Gehring’s lemma [36], proved here via an approach more akin to the work
in [41].

Proposition 11.2.3. — Assume that (X, d, p) is a non-compact space of homogeneous
type and that 1 < g < p. Also, suppose g,h are two non-negative functions, g €
L?(%,du), and there exist K > 0 and 5 > 1 such that

1 L L
(11.14) (][ g du) <K (][ g? du) +(][ h? du) for every ball B C X.
B nB nB

Then there exists ¢, > 0, depending only on p, ¢, K,n and k, A (the concavity and
doubling constants for (X, d, u), respectively), such that whenever 0 < € < ¢,

(11.15) /gp+5 du < C/ hPTe dp,
b} b))

where C > 0 depends only on p,q, K, 7, k, A and €.
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Proof. — From an earlier discussion, by eventually replacing the original quasi-
distance on X, there is no loss of generality in assuming that the balls in ¥ are open
sets. Assume that this is the case, and for each r > 0, set

(11.16) G.:={z€X:g(x)>r} and H,:={ze€X: h(z)>r}

For each fixed ¢ > 0 we now perform a Calderén-Zygmund decomposition for the
function g at level (At)?, with A > 1 to be specified later. This gives a sequence of
mutually disjoint balls {B,},en and a constant ¢ > 1 such that

(11.17) ][ g < (AP < ][ g” and ¢P < (A)P p-ae on X\ U cB;.
cB

7] B; jeN
Cf. Lemma 11.2.2 above. In particular, Gx: C |J; ¢B; so by (11.17) we have

(11.18) /G 9P dp < Z/B g" du < (M) D p(eBy).

Next, Hn—lm fn B\G. 9° du < t9, so we may write

(£,,7)
nB;

1 1 ‘
S gldu + / g9’ du)
(M(T]Bj) nB;NG; #(7731) nB;\G¢

1 q
—_— g? du) +t
(N("Bj) nB;NGy
1 1

(11.19) < 2+ 5

ta=t  u(nB;) JuB,ne,
where, in the second and third inequalities, use has been made of the elementary

1 1 1 1

estimates (a + b)e < a9 + b9 valid for any a,b > 0 and M7 <t + tTAf—l valid for any
M >0,t >0 (here ¢ > 1 is used). Going further, a similar argument gives

» v 1 1
11.20 ]l hP du) < (/ h? du) +t < 2t+—_-—/ h? dp.
( ) ( nB nB;NH, 2=t u(nB;) JuB,nH,
A combination of (11.14), (11.17), (11.19) and (11.20), now gives

» K 1
At < ][ g”du) < 2K+2t+(—.—— g"du)
( B; ( ) ta-! #(WBJ') nB;NG,

g?du,

1 1
11.21 +{—- ———/ h”du) .
(121 (t WnBS) Jusom
Hence,
K 1
(11.22) (A=2K = 2)u(nB;) < —/ 9%du + —/ h? dp.
4 JyB;naG. t? JyB,nH,

At this stage, we fix A\ > 2K + 2 (so that A > 1) for the remainder of the proof.
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Next, Lemma 11.2.1 and the doubling property (11.11) ensure that there exists a
set N’ C N such that

the balls {nBj}jen are mutually disjoint,

(11.23) and  p(|JnB;) <C' Y uinBy),

JEN j'eN’

where C’ depends only on A and «. In concert with (11.11), (11.22) and the fact that
the balls in the family {B;} en are mutually disjoint, this estimate allows us to write,
for some C"” depending only on A and &,

> u(eB;) <C"Y  u(B;) = C"u(U Bj) < C"N(U nBj) <C'C" Y unBy)

jEN jEN JjEN jEN j'eN’

c K/ 1
<—— = quu+—/ h"du)
A—2K -2 Z (tq 1B,NG; t Jo,nH,

J'EN’

c K 1
. < — | — q + — p
(11 24) 2K —3 l:tq/eg du tp/th d[.l,] y

where C := C'C" depends only on A and . Note that the last step above uses the
first condition in (11.23). From this and (11.18) we then obtain

CH? K
(11.25) / gPdu < [ ~ / g"du+/ h”du}.
Gt A—2K -2 |t17P Jg, H

t

Recall that A > 1 and p — ¢ > 0, so that G C G, and further,

(11.26) / gPdu = / g7gP " dp < NPTIPTE / g% dp.
Gt\Gat Gi\Gat Gy

By adding (11.25) and (11.26) we arrive at
(11.27)

CKNP o
P, < (_____ p—q) p—q/ q / P
/Gtg ws\3Terk 2tV )T, 0 d”+ x2k —z) [, M

Multiplying both sides of this last inequality by t*, for some a € R to be chosen
momentarily, and then integrating with respect to ¢ in the interval (0,T"), with T'> 0
an arbitrary, fixed number, yields an estimate of the form

T T
/ (/ t*g? du) dt < Co/ (/ tP-atagy du) dt
0 Gg 0 Gt
(11.28) +01/ (/ t*hP du) dt
0 H,

where
CKM? CH\P

11.2 =Ny S A
(11.29) Co=N""+3—r 2 O =32k 3
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Let us now fix & > —1 and use Fubini’s theorem to compute

(11.30)

/OT(/Gtt"‘gpdu)dt=/z(/()Ttaxgtdt)g”du

min {g(z),T} 1 14+a
= a P - P | mi
/)C /0 t%dt ) g(z)" dp(z) = ——— /E g [mm{g,T}] dp,

since xg,(z) =1 if and only if g(x) > ¢. Similarly,

(11.31) / (/ t"h”du) dt = _1_/ hPtetldy,
0 H, a+1 b}

Finally, > —1 and p > ¢ force p— ¢+ a > —1 and the same type of argument as
before gives

/T /t”“”’“ Ydp)dt = ——1——/ [ min { T}]p_q+a+1d
UL 9% dp ey’ g, "

1 a+1
(11.32) S e /E ¢ [min {9, T} dp.
Altogether, for each T' > 0 we obtain
Cola+1)

/zg” [min {g, T}] o du < g° [min {9, T}] o du

(11.33) +C, / hrPtetlqy,
z

p—q+a+1ljx

with Cy, C; as in (11.29). Note that the integral in the left-hand side matches the first
integral in the right-hand side and is finite for each T' > 0 since

a+1
(11.34) / g° [min {g,T}] dp < T2*! / 9P du < +o0,
> >

given that the function g belongs to LP(X,dy). Consequently, in order to absorb
the first term from the right-hand side into the left-hand side we need to choose
a > —1such that p— g+ a+1> (a+1)Cy. If Co > 1, this requirement becomes
O<a+l< —CEO'—_‘II However, if A > max {2K + 2,1} then Cy > 1, as is visible from
(11.29). We obtain

a+1
(11.35) / g7 [min {9, T}] du < C’z/ hPtetlay,
b z

where Cs is independent of T. By letting 7" — oo and invoking Lebesgue’s Monotone
Convergence Theorem, we may now conclude that (11.15) holds whenever 0 < € <

€0 1= &
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Finally, the case € = 0 follows directly from (11.14) by writing
(11.36)

(L 7+)' x5 o0) 2 ([, v4)

where R > 0 is arbitrary and Bg := B(z,, R) for some fixed point z, € ¥, and
then letting R approach infinity. Since ¢ < p, the coefficient of the first integral in
the right-hand side goes to zero, whereas the the coeflicient of the second one stays
bounded. This finishes the proof of the proposition. O

11.3. Hole-filling lemma

Lemma 11.3.1. — Let f be an arbitrary locally bounded function on R with the prop-
erty that there exist real numbers 6y, 6;, nondecreasing functions A and B, a > 0,
and 6 € (0,1) such that

(11.37) f(s) S[A@)(t—s) ™+ B(t)] +6f(t) forall 6y <s<t<0b.
Then there exists C > 0 such that
(11.38) f(r) <ClAR)(R—71)"*+ B(R)] forall 6 <r<R<6.

Proof. — Fix o € (0,1) arbitrary and let to = 7, t;41 = t; + (1 — 0)(R — r)o?, for
each ¢ > 0. Then t, = R, and

n—1

(11.39) t, —r=t, _tO'—Z(t1+1—t)“ 1-0)( —’I')ZO' r)(1—o").

=0

Thus, for each i,

(11.40) f(t:) < [A{ti+1)(1 = 0) (R —7)"%0 7" + B(tis1)] + 0 (ti11)
< [AR)(1=0) (R ~1)"%0"* + B(R)] + 0 (ti+1)-

Multiplying (11.40) by 6* we obtain that

(11.41) 0'f(t:) < I(807%)" + 6'B(R) + 6" f(ti11),

where I := A(R)(1 — 0)"*(R — r)~®. Summing up (11.41) over i, we obtain
n n+1

(11.42) A t)<IZ (60~ °‘)’+B(R)Z€’+20’f(t
i=0 =0 =0 =1

n
Hence, after subtracting > 6°f(t;) from (11.42), we see that
=1

(11.43) flr) < Izn:(oa‘a)" + B(R) i 0 + 0"t f(tpyr).
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Now we select o € (0,1) so that §c~* < 1. Then, after letting n — oo in (11.43),
since f(tn+1) stays bounded, we get that

1
o=«
If now C := max {1——=, o5}, we have that
f(r) <C(I + B(R)) = CI[A(R)(1 - 0)"*(R —1)™* + B(R)]
< C[A(R)(R—T)"%+ B(R)]. O

(11.44) F) <1 + 1 i SB(R).

11.4. Korn’s inequality

The goal of this section is to prove Lemma 6.1.3. For a Lipschitz domain D in R™
and 1 < p < oo, we set LY(D) to be the LP-based Sobolev space of order one in D,
let LY (D) denote the closure of C3°(D) in LY(D), and let L? (D) be the dual of

L’l':O(D), where 1/p+1/p’ = 1.
We start with a result of independent interest.

Lemma 11.4.1. — Let D C R", n > 2, be a bounded Lipschitz domain and suppose
that 1 < p < oo. Then there exists a finite constant C' > 0 depending only on n,
p, the diameter of D, and the Lipschitz character of D such that every distribution
u € L? | (D) with Vu € L” | (D) has the property that u € LP(D) and

(11.45) lulle(py < ClIVullr () + Cllullzr (p)
holds.
Proof. — The problem is local in character, and hence, there is no loss of generality

assuming that D C B(0,1) is a Lipschitz domain which is starlike with respect to
some ball B C D, of radius comparable to the diameter of D via constants which, in
turn, depend only on the diameter and the Lipschitz character of D. Assuming that
this is the case, fix a function § € C°(B) with [6 = 1. In this context, Bogovskii
has constructed a linear operator 4/ with the following properties. First, for each
1< q< oo,

(11.46) J: L(D) = L1 o(D)

is bounded, and if R := diam (D), then

(11.47) the operator norm of 4 in (11.46) is < C(dD, ¢, R).
Second,

(11.48) Jo € C(D) whenever ¢ € C°(D),

and third,

(11.49) divdp=p—0 (/ () da:) for any ¢ € C°(D).
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Then, for any ¢ € C°(D), we may write
(u, )] < [(u, divIp)| + [(u, O)] [, 1)
< (Vu,Jo)| + [{w, el Lo ()
< IVullee ) lFell Ly () + 16w Ollell o )y

(11.50) < C(IVullez, oy + [{u, O)) el Lo py-

Since C2°(D) is dense in L (D), we see that u € (L”’(D)) = LP(D). Finally, since
[{u,8)] < ||u|lL::1(D)||9||L§,:0(D) < C(O)llullLr (p), we also see that (11.45) holds. O

Next, the goal is to prove the following Korn type estimate.

Proposition 11.4.2. — Let D be a Lipschitz domain of diameter R and assume that
1 < p < oo. Then there exists a finite constant C > 0 which depends only on p and
the Lipschitz character of D such that

(11.51) iz o) < C{IVE+ VT llzo(o) + CR oo |,
uniformly for @ € LY(D).

Proof. — Given how the estimate (11.45) dilates with respect to R, matters can be
readily reduced to the case when R = 1. Next, for each j, k € {1,...,n}, we set

(11.52) &jk(@) == 3(8juk + Oru;).
so that (V& + V@' )k = 2¢;x(%). A direct calculation then shows that
(11.53) aiajuk = 8,'Ejk(ﬁ) + 8jeik(ﬁ) - Oke,-,-(a'), Vi, j,k.

In particular, by Lemma 11.4.1 and the fact that V : L?(D) — L” (D) is bounded,

D N85ukllepy < C DD 10:dsunlize oy +CY 10ukllLe (D)

gk gk i gk
<C Z |0k (@)l 7 Dy + CZ lukllLe (D)
i,k k
< Czk lleje (@) o0y + CllEll Lo ()
Js
(11.54) < C|IVE+ Vi ||Lo(py + Cllal 1o(p)-
Now (11.51) readily follows from this. O
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11.5. Hardy’s estimate

Let L be a homogeneous, constant coefficient, elliptic operator. The aim of this
section is to present a result which can, in essence, be attributed to Hardy.

Lemma 11.5.1 (Hardy’s estimate). — Let Q C R™, n > 3, be the domain lying above
the graph of a Lipschitz function ¢ : R®"~! — R. Assume w is a null-solution of L
in 2 and that M(Vw) € LP(9N) for some p < n — 1. Then there exist constants
c=c(w) € R and C = C(89) > 0 such that

1 1 1
(11.55) |M(w — )l Lo~ a0y < ClIM(Vw)||Lra0) where > p n-T

Prior to presenting the proof of this proposition we isolate one technical aspect.

Lemma 11.5.2. — Assume that 2 is a graph Lipschitz domain in R™, n > 2, and that
u € CY(Q),C >0and a > 1 are such that

(11.56) [Vu(z)| < Cdist (z,00)"%, Vzeq.
Then for each z € , the limit
(11.57) c:= tlim u(z + tep)

exists, is independent of z, and, moreover
(11.58) lu(z) — ¢| < Cdist (z,00)'™%, Ve
Proof. — For every z € 2 and t > 0 set

(11.59) c(z,t) :=u(r + te,) + /00 (Onu)(z + sey,) ds.

By (11.56), the integral in (11.59) is absolutely convergent, and, obviously, the
expression in the right hand-side is independent of ¢ > 0. We may thus abbreviate
¢(z) := c(x,t). Hence, the limit

(11.60) tlim u(z +tey) = tlim c(z) = c(x) exists for every x € Q.
— 00 — 00

To prove that this limit is actually independent of z, observe that if z,y € Q are
arbitrary, fixed, and ¢ > 0 is sufficiently large, then every z € [z +te,, y +te,] belongs
to Q and dist (2,0Q) > Ct. Therefore, by (11.56) and the Mean Value Theorem,

(11.61) lu(z + ten) — u(y + ten)| < C(0Q,z,y,u)t™* - 0 as t — oo,

which shows that c(z) = ¢(y), for every z,y € Q. If we now let ¢ € R be ¢(z), € ,
then

lu(z) — ¢ < /000 [(Bnu)(z + sep)|ds

(11.62) < C / [dist(z,an)+s]‘ads=Cdist(x,an)1~a,
0

proving (11.58). a
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In applications, we typically start with a null-solution u of an elliptic operator in
Q which satisfies M(Vu) € LP(9N2) for some 0 < p < n— 1. Fix z € Q and set
R := dist (z, 0). Then by interior estimates and (11.64) below,

1/p o1
(11.63) IVu(x)ISC’(][B( R/z)IVulp) <CR p‘”M(Vu)[[Lp(am.

Note that 0 < p < n — 1 implies @ := (n — 1)/p > 1, so the previous discussion
about the decay of u applies.

Lemma 11.5.3. — For every Lipschitz domain © (bounded, or of graph type) in R",
n > 2, there exists a finite constant C = C(2) > 0 with the following property. For
every measurable set E C € and every measurable function u : 2 — R, one has

(11.64) / |lu(z)| dz < Cldist (E, 092) + diam (E)]/ M (u) do,
E UE)

where

(11.65) UE):={x€d: T} (z)NE #a}.

Proof. — For every § > 0, set 05 := {z €  : dist (z,00) < §}. As shown in [40], for
a class of domains containing those which are Lipschitz, there exists C = C(2) > 0
such that, for every measurable function v : 2 — R,

(11.66) ‘/9 lv(z)|dz < C§ /an M(v) do,

uniformly in § > 0. Let us specialize this to the case when ¢ := dist (E, Q) +diam (F)
and v := uyg. Since, in this scenario, E C 6);, we may write

(11.67)
/ ju(z)| dz = / |(uxe)(z)|dx < C&/ M(uxg)do < C&/ M (u) do,
E 05 an UE)
as desired. O
We are now ready to discuss the
Proof of Lemma 11.5.1. — The argument below is due to Russell Brown [8] and we

are most grateful to him for allowing us to include it here. According to [25], for any
a > 0, we have interior estimates of the form

(11.68) w(@)|* < C fwl®,
B(z,6(x)/2)

where 6(x) := dist (2,09Q). Let ¢ = (2',z,) and T = (2/,(z’)). Then since by
Lemma 11.5.3

(11.69) ][ lw|*dz < C |M(w)|*do, if R=d(zx),
B(:L‘,R) ScR(i)
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we have that

(11.70) lw(z)| < C ( ][ M (w)* da) ,
Ses(z) (F)

hence, further,

(L) fw(z)] < C(z)” "% |M (W) e o0)-

Now since the components of Vw are also null-solutions of L in €2, we can conclude
that

(11.72) IVw(z)| < C6(z) ™" M (V)| Lo (on).

In particular, by Lemma 11.5.2, we can choose ¢ € R such that u := w — ¢ vanishes
at infinity (in the quantitative sense described there). Fix z € 0Q and let y = (v, yn) €
I'(z). Then

(11.73) lu(y)| =

/ Onu(y',t)dt 5/ |Vu(y',t)|dt=/ |[Vw(y', t)|dt.
Yn Yn Yn

Choose a so that -£5 < o <min{1,p}. Now applying (11.70) with Vw in place of
w gives

i
(11.74) lu(y)] < C/ <][ |M(V'w)|°‘d0) dt.
Yn Sct(x)
Let M denote the Hardy-Littlewood maximal function on 2. Then by definition,
(11.75) ][ |M(Vw)|¥do < M(M(Vw)*)(z),
Sci(x)
and so from (11.74),

(11.76) |lu(y)| < CH(M(Vw)™ __l(x)/ / v M(Vw)*(z) do(z) dt.
" Serla)
Notice that if z € S;;(z), then |z — z| < ct. So by switching the order of integration,
we get

)l < CHMMT))E @) [ M(wam( /. t—nl_—ldt) do(2)
o) elz=z1

Cmpu(vu))ie) [ AT aote

on
(11.77) < CMM(Vw)*)a~Y(z) [(M(Vw)®)(z),

where, for 0 < # < n — 1, Iy denotes the fractional integration operator given by

IA

(11.78) Ih(z / ' M2) 402, e o

iL’—-Zln Tp _ ,|ln—1—0
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Taking the supremum over all y € I'(z) in (11.77), we have
(11.79) M (u)(z) < CMM(Vw)*) 71 (z) L (M (V)®) (=),
and so

(11.80) / M(u)? do < C / (MM (Vw)®)P" GV (I, (M(Vw)®)P do.
on onN

Choose r > 1 so that

p p
11.81 1- =1-—=—.

(11.81) (t-ay=1--L =2

Then by Holder’s inequality,
(11.82)

: ¥

/ M@)P do<C ( / (MM (Vw)2))?" &) dcf) ( / (I (M(Vw)®)P™ da) .
a0 i) a9

Let q := Z, s0 that 1 < ¢ <n—1, and pick ¢* such that qi, = % - n—l—l Then from

our choice of r in (11.81), we have the following:

*

fl—a P p _p
(a')p< a )1‘: =—=gq,

a pt o«
(11.83)
1 1 1 1 11 1 l-a a 1 1
B -ty i L1 1 isaa 11
p*r’ p r/ p* pr p n-1 p p n-1 ¢
1 * *l_a *,,,I *1__a * *l_a a* *
@iy L Pz pr_pl-0) p_pl-a) o’ p
Toogr p gr p q p p p
Applying the identities to (11.80) gives
(11.84)

/ M) do < C ( / (M(M(Vw)*))? da) ( / (I, (M(Vw)®)® da)
N N N

It is well known that for 1 < ¢ < n — 1, M is a bounded operator from L?(92) to
L9(89), and I; is bounded from L4(09) to LI (8Q). Then since M(Vw)* € L(5%),
it follows that

1

/ M@P do < C ( / (M(Vw)“)qdo-> ( / (M(Vw)"‘)qda>
on o o
g g
(11.85) = C ( M(Vw)?P da) =C ( M(Vw)? da) ,
/ /
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and so finally we can conclude
(11.86) IM(u)|| Lo+ 90y < CIIM(Vw)]|Lr(a0),
finishing the proof of the lemma. O

11.6. Traces in Hardy spaces

Here we record some useful trace theorems in Hardy spaces for functions in Lips-
chitz domains, which have been recently proved in [42]. The first such result reads as
follows.

Theorem 11.6.1. — Let 2 be a graph Lipschitz domain in R™, n > 2, with outward
unit normal v, and fix
1

-1 1 1
(11.87) 0<p,q< o0, n-2 <r<1 suchthat -+ -=-.
n p q T

Consider also D : C*(Q,CV) — C°(Q,CM) a homogeneous, first-order differential
operator with constant, complex coefficients (i.e., as in (3.1) for m = 1), and denote
by D* its (formal) adjoint and by o(D; &) € CMXN ¢ € R™, its symbol (cf. (3.5)).

Assume that F € C1(Q,CV) and G € C!(Q,CM) are two functions which satisfy

(11.88) DF=0 and D*G=0 in 9,
(11.89) M(F) e LP(09), M(G) € Li(09),

and which are null-solutions of certain strongly elliptic, self-adjoint, second-order,
homogeneous, (real) constant coefficient, differential operators. Let (-,-) denote the
canonical inner product in CM, and for every € > 0, define

(11.90) F.(z):= F(z +€e,), Ge(z):=GCG(z+ce,), z€LQ,

where e, = (0,...,0,1) € R™.
Then (o(D;v)F,,Ge) € HL,(09) for each € > 0, the limit

(11.91) (o(D;V)F,G) := li%1+(a(D; V)F,,G.)

exists in HZ (02), and there exists a finite constant C = C(02, n,p,q) > 0 such that
(11.92) (o (D; V) F, G) || ur,(00) < C |M(F)||Lr00) 1M (G)|| La(o0)-

Furthermore, when 7 = 1, one can define the trace (o(D;v)F,G) € HL(09Q) C
L'(09) in a non-tangential pointwise sense, as

(11.93) (o(D;v(z))F(z),G(z)) = }’llli (o(D;v(z))F(y),G(y)), atae. €N
yel(z)

Finally, in the case when G (F, respectively) is a constant function, one can allow
the index ¢ (p, respectively) in (11.87) to take the value oo as well.
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A suitable version of the above theorem holds for bounded Lipschitz domains, in
which scenario it is natural to employ the local Hardy spaces h7,(9?), introduced in
§ 2.3. Concretely, we have the following.

Theorem 11.6.2. — Let 2 be a bounded Lipschitz domain in R™, n > 2, and fix 0 <
p,q < oo and ﬂ—;—l < 7 <1 such that 1/p+1/g = 1/r. Consider also a homogeneous,
first-order differential operator D with constant coefficients and two functions

(11.94) Fectq,cM), Gecl(n,cM,

which are null-solutions of certain strongly elliptic, self-adjoint, second-order, homo-
geneous, (real) constant coefficient, differential operators in (2, and such that

(11.95) DF=0 and D*G=0 in Q,
(11.96) M(F) € LP(0), M(G) € L(09).

Then there exists a finite constant C = C(99, n,p,q) > 0 and a function in A7, (612),
denoted by (¢(D;v)F,Q), for which
(11.97) {(o(D; V) F, G)||nr, (a0) < C |M(F)||L2a0) |M(G)l|Leca0)

a

and such that the following holds. Let Z be a coordinate cylinder for 952, with axis
in the direction of a unit vector (pointing into 2) denoted by e,, and pick a function
¢ € C§°(R™) with supp¢ C Z. Then

lim (o(D;v(z))F(z + cepn), G(z + €e,)) {(z) do(z)
e=0% Jznan

(11.98) = /3 Q(a(D; V)F,G) ¢ do,

where the last integral above stands for the paring between k], (9€2) and Lip (02).
Finally, in the case when G (F, respectively) is a constant function, one can allow
the index ¢ (p, respectively) to take the value oco.

The case when F is the gradient of a harmonic function u with M(Vu) € LP(99),
G =1, and D = div has been proved by B. Dahlberg and C. Kenig in [18], based
on duality and a refinement of an extension theorem due to N. Varopoulos [89]. The
approach in [42] is more akin to the work of M. Wilson [91]. In applications to the
Stokes system in Lipschitz domains, the following particular case of Theorem 11.6.1,
Theorem 11.6.2 is going to be of particular importance.

Corollary 11.6.3. — Let Q C R™, n > 2, be a graph Lipschitz domain, with outward
unit normal v, and assume that "T'l < r < 1. Then there exists a finite constant
C = C(89,r) > 0 such that for any divergence-free vector field F' : @ — R" with

biharmonic components for which M (F) € LP(8€) there holds
(11.99) (v, F) € HL,(09) and |[(v, F)llg,(o0) < CIM(F)|Lso0)-
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Above, (v, F—") on 9N is considered in the sense of Theorem 11.6.1. Furthermore, a
similar result is valid in the case of a bounded Lipschitz domain Q@ C R", n > 2, in
which case (11.99) reads

(11.100) (v, F) € h,(89) and ||(v, ﬁ)”hgt(an) < CIM(F)llzr(a0),
with (v, F) on 89 defined in the sense of Theorem 11.6.2.

Proof. — Consider F as above, G = 1, ¢ =00, p=r and D := div (so that D* =
—V). In particular, DF = 0, D*G = 0, M(F) € LP(8Q), M(G) € L>*(89) and
(o(D;v)F,G) =i (v, F). Then (11.99), (11.100) follow directly from Theorem 11.6.1
and Theorem 11.6.2, respectively. O

11.7. Spaces of null-solutions of elliptic operators

Let L = Zlﬂ:m a,0" be a constant coefficient, elliptic differential operator of
order m € 2N in R". For a fixed, bounded Lipschitz domain 2 C R", n > 2, denote
by Ker L the space of functions satisfying Lu = 0 in 2. Then, for 0 < p < oo and
a € R, introduce H2 (2; L) the space of functions u € Ker L subject to the condition

{o)-1
(11.101) lullez ;) = 18~V @ ul|| Loy + Z V7 ul| Lo () < +o0.
j=0
Above, V7 stands for vector of all mixed-order partial derivatives of order j and (a)
is the smallest nonnegative integer greater than or equal to a, i.e.,
a, if a is a nonnegative integer,
(11.102) () :=4q [a]+1, ifa>0, a¢N,
0, if a <0,

where [] is the integer-part function. Parenthetically, let us point out that an equiv-
alent quasi-norm on HE (Q; L) is given by

(11.103) 164~V || Lo @) + sup |u(z)],
€6

where @ denotes some fixed compact subset of Q. The following result has essentially
been established in [60]; see also [45], [64]. It extends results from [43], where the
authors have dealt with the case 1 < p,q < 00, s >0, L = A, and [1] where the case
1<p,q<oo,s>0,L=A?is treated.

Theorem 11.7.1. — Assume that L is a homogeneous, constant coefficient, elliptic
differential operator and that  C R™, n > 2, is a bounded Lipschitz domain. Then
(11.104) HE(Q; L) = FPI(Q)NKer L

for every a € R, 0 < p < 00, and 0 < ¢ < co. In particular, for each fixed o € R and
0 < p < oo, the space F27(Q) N Ker L is independent of g € (0, 00).
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Furthermore, corresponding to p = oo, there holds
(11.105) HRS (L) = BRyo® () NKer L
for each k € Ny and s € (0,1).

Our next result is as follows.

Theorem 11.7.2. — Let Q be a bounded Lipschitz domain in R™, n > 2, and assume
that L is a homogeneous, constant (real) coefficient, symmetric, strongly elliptic differ-
ential operator of order 2m, m € N. Then if u € F7177;31+1/p(9) for some %=1 < p < 2,
0 < g < 0o, and Lu = 0 in , it follows that M (V™ 1u) € LP(6N) and a natural
estimate holds.

In the proof of this theorem, the following result from [60] is going to be useful.

Lemma 11.7.3. — Assume that Q is a bounded Lipschitz domain in R"®, n > 2, and
that L is as above. Also, fix k € Ng, 0 < p < 00, and s € R with sp > —1. Then there
exists a relatively compact subset © of Q and C > 0 such that

(11.106)

(fo@ru@ira)” <c [( [ @@ uta)e o)+ sup |u(x)|] ,

z€h
uniformly for u € Ker L.

We now present the

Proof of Theorem 11.7.2. — Recall the area function
(11.107) G(u)(z) = (/ 8(y)* " | Vu(y)|? dy)i, z € 0N0.
I'(z)

As proved by Dahlberg-Kenig-Pipher-Verchota in [20], for every 0 < p < 0o, there
exists C > 0 such that
m—1
(11.108) IM(V™ )| Lo o0) < CIE(V™ u)l|Loan) + C Y IV ullL1 (-
j=0

If {Q,}; is a Whitney decomposition of 2 into Euclidean cubes Q; of side-length
1(Q;), we may then estimate

(11.109)
m—1 P 2—n|om 2 g
(av™ @) doe = | ([ 6@ "IV u@)Proerendy) do
a0 aa Ve
= [ (T ] 667 19"t Pxperendy) dow = 1
oy Y@,
If y € Q; and = € 0Q such that y € I'(z), then z € A;, where A; is the “cone

shadow” of Q; on 09, ie., A; := {zx € 0N : I'(z) N Q; # @}. In particular, o(A;) ~
1(Q;)™ !, uniformly in j.
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Assume that 0 < p < 2. Then

2
1< [ ([ 0P uPxgenydy) do
a0 5 Vo,

< EJ:/A [I(Q,-)(][ijmuﬁ)%]p do

< oxu@rf [wrup s [y
J 3

p
(11.110) S Olullg, . @ <Clulre, @)

provided % > n(% — 1) (or, equivalently, p > "—;1) For the second inequality in
(11.110), we have used the fact that the function V™u € Ker L satisfies the reverse
Holder inequality

(11.111) (][Q |vmu|2)% < C(][ |V"‘u|”)%,
3 Q3

where Q] is concentric double of Q;. Let us also point out that the next-to-last esti-
mate in (11.110) follows straight from definitions when 1 < p < 2 and is a consequence
of Lemma 11.7.3 when 2= < p < 1. Finally, the last estimate in (11.110) is implied

by Theorem 11.7.1.
The above argument shows that | @(V™ u)| 1»(s0) < C'||u||Frz:‘,31+1/P(Q). Since we
also have Ff/'Z(Q) — L"?/("=1)(Q), the desired conclusion now follows from (11.108).
O

11.8. Singular integral operators on Sobolev-Besov spaces

We start with a result describing mapping properties on Besov spaces of integral
operator modeled upon the hydrostatic double layer.

Theorem 11.8.1. — Let Q be a (bounded or graph) Lipschitz domain in R*, n > 2.
Consider the integral operator

(11.112) Tf@) = [ k@i, zeo
a0
satisfying the following conditions:
(11.113) (1) T1 = const,
(11.114) 2) |VEk(z,y)| < Clz —y|~ "D, k=1,...,N,
for some positive integer N. Then, with ¢ := dist (-, 99),
k—1
k—L—s ok ]
(11.115) 1672 =1V T flllzocy + D IV T Flloiy < Cllf 2> (00
j=0
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granted that k € {1,...,N}, 221 <p < oo,and (n—1)(; —1)4 <s <1

For a proof of Theorem 11.8.1 see [60]. The next result gives an analogue of Theo-
rem 11.8.1 for single layer-like integral operators.

Theorem 11.8.2. — Let Q be a bounded Lipschitz domain in R", n > 2, and consider
the integral operator

(11.116) Rf@) = [ k@)f@)doy, e,
a0

whose kernel satisfies the conditions
(11.117) |VEVIk(z,y)| < Clo —y|~ 24D j=0,1,
for k=1,2,...,N, where N is some positive integer. Then
(11.118)

. L

165~V Rfllls (@) + D_ IV RS lo@) < Cllfllmrr,om): k=12, N,
§=0

granted that 21 < p < 0o and (n — 1)(11; -1y <s<LlL

Once again, see [60] for a proof.

11.9. Functional analysis on quasi-Banach spaces

In the first part of this section we discuss a number of results related to Fredholm
theory on quasi-Banach spaces. Since such a topic has intrinsic interest, we adopt
a slightly more general point of view and record a body of results which is richer
than the one strictly required by the applications to the kind of partial differential
equations pursued in this work.

The following useful results appear in [76].

Theorem 11.9.1 (Finite Dimensional Extension Theorem). — Assume that Y is a closed
subspace of a Hausdorff linear topological space X, and that M is a finite dimensional
subspace of X. Then Y + M is closed in X.

Theorem 11.9.2 (Finite Codimension Theorem). — If Y is a closed subspace, of finite
codimension in a Hausdorff linear topological space X, and M is any algebraic com-
plement of Y, then X =Y @& M.

Proposition 11.9.3. — Assume that X is a closed subspace of a Hausdorff linear topo-
logical space. If Y and Z are two linear subspaces of X which complement each other
(ie., Y® Z = X) then Y and Z are closed in X.

Theorem 11.9.4. — Assume that X is a closed subspace of a Hausdorff linear topo-
logical space. Then X is finite dimensional if and only if X is locally compact.
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Proposition11.9.5. — If S:Y — Z and T : X — Y are linear transformations acting
on vector spaces, both of which have finite dimensional kernels, then the composition
ST : X — Z also has finite dimensional kernel and, moreover,

dimKer (ST : X — Z) =dimKer(T: X - Y)
(11.119) +dim [Ker (S:Y = 2Z)NIm(T: X — Y)].

To be precise, this is stated and proved in § 8 of [76] in the case when X =Y = Z,
but the same elementary reasoning applies in the slightly more generality above.

Definition 11.9.6. — Let X be a vector space. A quasi-norm is a nonnegative real-
valued function | - || on X such that
(11.120) lzll =0 <= z=0, [lozll=lellzl, lz+yll<=x(lzl+Ilyl),

where z,y € X, « is any scalar, and k > 1 is independent of z and y.
Call X a quasi-Banach space if there exists a quasi-norm for which this X complete.

Theorem 11.9.7 (Aoki-Rolewicz Theorem). — Let X be a quasi-Banach space. Then
there exists 0 < p < 1 and an equivalent quasi-norm || - || on X such that

(11.121) e +yll” < ll|®” + lyll”, Vz,y e X.

Definition 11.9.8. — If X and Y are quasi-Banach spaces, denote by £(X,Y") the
space of linear, continuous operators from X to Y. An operator T € £(X,Y) is
said to be compact if the image under T' of any bounded subset of X is a relatively
compact subset of Y. Finally, denote by K (X,Y) the space of compact operators
from X into Y.

We equip £(X,Y) with the natural quasi-norm ||T|¢x,y) := sup{||Tz|ly : = €
X, l=zllx <1}

Suppose that X is a quasi-Banach space and T € £(X,X). We claim that the
operator A\I + T is invertible (with I denoting the identity) on X for any A € R with
|A| large enough. Indeed, the inverse can be given in the form of a Neumann series

o0
(11.122) M +T)™ =) (-1 A7,

j=0
which converges in the operator norm if || is large enough. To see this, by
the Aoki-Rolewicz Theorem, there is no loss of generality in assuming that X
is a p-Banach space, for some p € (0,1]. Then || Z;LM(—I)J')\‘J'“ITJ'”%(X,X) <
Siear NTTTHTIG ) < I Sl (NP1l 2(x,x))?P which is a piece of a
convergent geometric series if | T|| g(x,x) < |Al.

Theorem 11.9.9. — Let X and Y be quasi-Banach spaces. Then £(X,Y) is a quasi-
Banach space and K(X,Y) is a closed, two-sided ideal in £(X,Y’).
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When X =Y, this follows from the discussion in § 3 (p. 3.1) in [76]; see also Propo-
sition 9.5 on p. 9.3 in [76]. Once again, having X =Y is inessential for the current
purposes.

Next, we record a result proved in [48]; cf. Proposition 7.8 on p. 132, and Proposi-
tion 7.9 on p. 134. To state it, given two quasi-Banach spaces, we let G1(X,Y’) denote
the set of isomorphic embeddings of X into Y, and G2(X,Y) the set of open mappings
of X into Y.

Proposition 11.9.10. — For any two quasi-Banach spaces X and Y, the set G;(X,Y)
is open in £(X,Y), j = 1,2, and G1(X,Y) N G2(X,Y) is both closed and open in
either of G1(X,Y), G2(X,Y).

The result below is contained in Lemma 4.11 on p. 74 of [48].

Proposition 11.9.11. — Suppose that X, Y are two quasi-Banach spaces. Then A+ K
has closed range for any A € G1(X,Y) and K € X(X,Y).

Consider next two quasi-Banach spaces (X, || - ||x), (Y,||-|ly) andlet T: X - Y
be a linear, bounded operator. Define x(T"; X,Y") to be the smallest constant so that
if y € Y then there exists ¢ € X so that Tz = y and ||z||x < &(T; X,Y)|ylly-
Note that, by the Open Mapping Theorem (which remains valid in the context of
quasi-Banach spaces; cf. Theorem 1.4 in [48]),

(11.123) k(T; X,Y) is finite if and only if T maps X onto Y.

We also let n(T’; X,Y’) be the largest constant so that n(T; X,Y)|z|lx < ||Tz|y
for each x € X. Once again by virtue of the Open mapping Theorem,

(11.124) n(T; X,Y) > 0 if and only if T is injective with closed range.
The result below has been proved in [46].

Lemma 11.9.12. — Suppose that (X, | - ||x), (Y, - lly) are two quasi-normed spaces
such that X is complete. Also, suppose that T': X — Y is a linear, bounded operator
for which the following property is true: there exist 0 < Cyp < +ooand 0 < a < 1
such that for each y in the unit sphere of Y one can find x € X with ||z||x < Cp and
ly - Tz|ly < a.

Then T is onto and k(T'; X,Y) < C, for some C; depending exclusively on Cp, the
quasi-norm constant of X and a.

We shall also need a variant of Lemma 11.9.12 for sequences of operators.

Lemma 11.9.13. — Assume that X, Y are Banach spaces and that (T,)qen is a se-
quence of bounded, linear operators, mapping X into Y, converging to some 7' : X —
Y in the operator norm. If T is onto, then there exists C > 0 and o such that

(11.125) Va>ap, YyeY =3z€ X sothat T,z =y, |z|x < Clylly-
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Proof. — This is a consequence of Lemma 11.9.12. Specifically, there exists Cy such
that if y € Y has ||y|ly = 1 then there exists z € X with ||z||x < Cp and Tz = y. Then
we may write [|[Taz—y|y = |[Taz—Tzlly < |zl x| Ta—Tlrx,v) < CollTa—Tl£x,v)
which shows that, for sufficiently large o, we always have “good” approximate solutions
to Tox = y and this, by Lemma 11.9.12, gives an actual solution with the desired
control of the quasi-norm. O

Definition 11.9.14. — Let X and Y be quasi-Banach spaces. Call T € £(X,Y) Fred-
holm if:

(1) T has a closed range,
(2) T has finite codimensional range,
(3) KerT is finite dimensional and topologically complemented in X.

Set ®(X,Y) :={T € £(X,Y): T Fredholm} and define the index function
(11.126) ind: ®(X,Y) — Z, indT :=dim (KerT) — codim (Im T).

Occasionally, if we wish to stress the spaces on which the operator T is considered,
we may write index (T : X — Y), Ker (T : X — Y), etc. When X =Y, the above
definition becomes a particular case of that in § 6 in [76]. Again, X = Y has been
assumed there merely for convenience, and that removing this assumption does not
affect the subsequent analysis.

As pointed out in § 6 of [76], it is not always the case that a finite dimensional
subspace E of a Hausdorfl, linear topological space X is necessarily topologically
complemented. However, this does happen whenever X* separates X.

Definition 11.9.15. — If X and Y are two quasi-Banach spaces, set

®,(X,)Y) = {Te?(X,Y): T has closed range and a finite dimensional
(11.127) kernel, which is topologically complemented in X},
and
(11.128)

®_(X,Y):={T € £(X,Y) : T has closed range and finite dimensional cokernel}.

The set of semi-Fredholm operators is then defined as ®_(X,Y)U @, (X,Y). The
index function (11.126) can then be extended to the set of all semi-Fredholm operators
by setting

index: ®_(X,Y)U®,(X,Y) — Z U {+o0},

(11.129) ' _ _

index T := dim (Ker T') — dim (coker T')
Clearly,
(11.130) B(X,Y)=d_(X,Y) N, (X,Y).

As shown below, the demand of “having closed range” is superfluous (and, hence,
it may be omitted) in the above definitions of semi-Fredholmness and Fredholmness.
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Lemma 11.9.16. — Let X, Y be two quasi-Banach spaces and assume that T' €
£(X,Y) is such that TX has finite codimension in Y (i.e. there exists M, finite
dimensional subspace of Y such that M +TX =Y). Then TX is closed in Y.

Before presenting the proof, let us note that if X, Y are quasi-Banach then for any
T € £(X,Y),
Y
(11.131) TX has finite codimension in Y <= dim (ﬁ) < +o0.
Furthermore, the codimension of TX in Y is equal to the dimension of the space
Y/TX.

Proof of Lemma 11.9.16. — Let M be a finite dimensional subspace of Y such that
M + TX =Y. By further refining it (e.g., replacing it by a complement of M N TX
in M), it can be also assumed that M N TX = {0}. Being finite dimensional, M is
closed. Consider then T} : X x M — Y, defined by Ti(z,y) := Tz + y, which is
linear, continuous, and onto. Since KerT; = KerT x {0} — X x {0}, it follows that
TX =Ti(X x {0}) is closed in Y, by invoking the next lemma. O

Here is the result alluded to above:

Lemma 11.9.17. — Let X, Y be two quasi-Banach spaces and assume that T €
£(X,Y) is such that TX is closed. If X, is a closed subspace of X with the property
that KerT' C X, then T'X,, is closed in Y.

Proof. — Since X, is closed in X, then X,/KerT is closed in X/KerT. However,
T : X/KerT — TX is an algebraical and topological isomorphism, and T'X, can
be identified with the image of this latter operator of the closed subspace X,/Ker T
Thus, TX, is closed in T'X and, further, in Y. O

The following lemmas further summarize various properties of Fredholm and semi-
Fredholm operators which we will find useful later on.

Theorem 11.9.18. — Let X and Y be Banach spaces and let T € £(X,Y). Then the
following assertions hold.

1) T ed,(X,Y)and S € ®,(Y,Z) then ST € ®,(X, Z) and
(11.132) index (ST) = index (S) + index (T).
(2) If X and Y have reasonable dual spaces, then T € ®4(X,Y) if and only if
T* € ®+(Y™*, X*). Moreover, index (T') = —index (T™).
(3) T € #,(X,Y) if and only if T' is bounded from below modulo compact operators.

That is, there exist a quasi-Banach space Z, a compact operator K : X — Z,
and a positive constant C such that

(11.133) lzllx < C||Tz|y + ||Kz||z for any z € X.

In particular, ®;(X,Y) is open in £(X,Y) and ®,(X,Y) is stable under
addition of compact operators.
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(4) The set ®_(X,Y) is open in £(X,Y) and ®_(X,Y) is stable under addition of
compact operators.

(5) If Xy is a closed subspace of X and T € ®,(X,X) with TX, C Xy, then
T|x, € ®+(Xo, Xo).

(6) T € ®(X,Y) if and only if there exist S1,592 € £(Y,X) and K; € X(Y,Y) and
K, € X(X,X), such that

(11.134) TS =Iy + Ky, ST=1Ix+Ko,.

In fact, we may take S; = Sz € ®(X,Y) (i.e., T is Fredholm if and only if it
is invertible modulo compact operators).
(7) The indezx function (11.129) is continuous.

Proof. — The claims in (1) and (6) appear in § 6 and § 8 of [76], at least when X =Y,
and an inspection of the proof shows that this restriction can be easily removed.

Let us consider (3). In one direction, if T' is bounded from below, modulo compact
operators, introduce A = (T,K) : X — Y @& Z (with the latter space equipped
with the natural quasi-norm ||(y, 2)||yez := llylly +1|2||z). Then (11.133) amounts to
(4;X,Y®Z) > 0,ie A€ G1(X,YDZ) (in the terminology of Proposition 11.9.10) .
Since (0, —K) € X (X,Y®Z), Proposition 11.9.11 then gives that (T,0) = A+(0, —K)
has closed range. Thus, T has closed range, as desired. To show that N := KerT,
which is a closed subspace of X, is finite dimensional, it suffices to check that its unit
ball is sequentially relatively compact (here, Theorem 11.9.4 is used). To this end, fix
an arbitrary sequence {z;}; of vectors in X with ||z;||x < 1 and Tz; = 0. Without
loss of generality, it can be assumed that {Kx;}; converges in Z. Writing (11.133)
for ¢ = z; — xi, then proves that {z;}; is Cauchy, hence, convergent in X. This
concludes the proof of the fact that, for an operator in £(X,Y’), being bounded from
below modulo compact operators entails membership to ®,(X,Y).

Conversely, if T € ®,(X,Y) and Z is a topological complement of KerT' (which,
by Proposition 11.9.3, means that Z is closed in X), define K : X =KerT® Z — Z
by K(z,y) := . Since K has finite rank, K € (X, Z). Then, since T : Z — ImT
is an isomorphism, for each £ € X with z =z, + y, z, € Z, y € KerT, we may
write [[z]|x < £(llZollx + [lyllx) < £(IT2olly + | K2ll2) = k(|| Tzlly + || Kz[|z). Thus,
(11.133) follows.

Next we consider (4). Let T € ®_(X,Y). Then there exists M C Y such that
Y = TX & M and dim M < +oo. Define T : XEBM — Y by T(z,m) := Tz + m.
Then T is onto, and hence from (11.123), C, := n(T X®MY) < +oo. Let R €
£(X,Y) be such that ||R|¢x,y) < ﬁ Deﬁne R:X®&M — Y by R(z,y) =
Rz, and so ||R]IZ(X@M,y) < %: Then from the definition of n(T,X & M,Y), for

any y € Y,|lyly < 1, there exists (z,7m) € X & M such that T(z,m) = y and
l(z,m)llxem < Co. Then

(11.135) ly = (7 + B, m)lly < IRl exemy)li@m)lxem < &,
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and so it follows from Lemma 11.9.12 that T + R is onto. Then
(11.136) Y=Im(T+R)={Tz+m+Rz:z€X,me M}=(T+R)X + M,

and so the range of T + R has finite codimension in Y. From Lemma 11.9.16, T+ R
has closed range, and so T+ R € ®_(X,Y). Therefore ®_(X,Y) is open in £(X,Y).

To see that ®_(X,Y) is stable under addition of compact operators, let T €
®_(X,Y) and K € X(X,Y), and we will show that T+ K € ®_(X,Y). First
we will treat the case when T is onto. Using (11.123), define C; = k(T;X,Y).
Since K € X (X,Y), there exists an operator K; € X(X,Y’) of finite rank such that
IK — K1l gx,v) < 5%1— Define Ty :=T + (K — K3), and let y € Y, ||ly|ly < 1. From
the definition of x(T’; X,Y’), there exists z € X such that y = Tz and ||z||x < Ci.
Then

(11137) |y~ Tually = lly - Tz — (K — K)al| < K - Kallgxlzllx < &,

and so Lemma 11.9.12 implies that T; is onto. Then since 7'+ K = T; 4+ K; and
K; has finite rank, it follows that 7'+ K has finite codimensional range, and then
Lemma 11.9.16 implies that the range of T+ K is closed. This establishes that T+ K €
®_(X,Y) under the assumption that T is onto.

Next, we consider the general case. Let M C Y be such that Y = TX & M and
dim M < +00. Define T, K : X § M — Y by
(11.138) T(z,y):=Tr+y and K(z,y):=Kz.

Since T is onto and K is compact, using the previous case, we know that T+K
has closed range of finite codimension in Y. Then since

(11.139) Im(T+K)={Tz+y+Kz:z€X,ye M} =Im(T+K)+ M,

it follows that the range of T + K has finite codimension in Im (T + K). Then the
range of T' + K also has finite codimension in Y. Lemma 11.9.16 then implies that
the range of T'+ K is also closed, and hence T+ K € ®_(X,Y). This finishes the
proof of (4). For the remaining items, the interested reader is referred to [47]. o

As a consequence of (6) above, we have the following. Consider % a topological
space and let ¥ > A +— Ty € &, (X,Y)UP_(X,Y) be a continuous mapping. Then
the function % 3 A — dim (Ker T)) — dim (coker Ty) € Z U {£oo} is locally constant.
In particular, A — index (T) is constant on each connected component of %.

In the next corollary we single out a consequence of the last point in the above
theorem which is particularly relevant for us in applications.

Corollary 11.9.19. — If T € (X, X) is such that AT + T is a semi-Fredholm operator
for any A € R, |\| > %, then AI + T is actually a Fredholm operator with index zero
for any A in the indicated range.

Proof. — Recalling that for |\| large enough the operator AI + T is invertible (see
the discussion preceding Theorem 11.9.9), the point (6) in Theorem 11.9.18 gives that
index (Al + T') = 0 for any X € R with |A| > 1. Hence, the conclusion follows. d

SOCIETE MATHEMATIQUE DE FRANCE 2012



222 CHAPTER 11. APPENDIX

The following is also a consequence of Theorem 11.9.18. We leave the proof to the
interested reader.

Lemma 11.9.20. — Let X, ¥, Z, W be quasi-Banach spaces and consider the com-
mutative diagram

X — Y
(11.140) ! !
zZ—Ww

where all arrows are linear and bounded. If three of the four arrows are Fredholm
operators then so is the fourth one.

The following result is going to be of importance for us.

Lemma 11.9.21. — Let X;, Y;, j = 1,2, be two quasi-Banach spaces such that the
inclusions X; — X, Y7 — Y5 are continuous, and the second one has dense range.
If T € ®(X1,Y1) N ®(X,,Y3) is such that index (T : X; — Y1) = index (T : X; — Y2)
then Ker (T: X; —» Y1) =Ker (T : X; — Y>).

Proof. — Since T'X; has finite codimension in Yj, there exists a finite dimensional
subspace M of Y; such that TX; & M =Y; (direct, non-orthogonal sum). We claim
that TX, + M = Y,. To prove the claim, observe that Y1 =TX; + M C TX, + M.
Hence, since Y; is densely embedded into Y3, so is T X, + M. Moreover, because
TX, is closed and M is finite dimensional, Theorem 11.9.1 implies that "X, + M is
closed in Y5. Combining these results, the claim follows. Going further, by using the
claim we obtain that dim(%ﬁ) =dim M > dim (T%) which, in turn, implies that
dim coker (T : X; — Y7) > dimcoker (T : X2 — Y3). The latter inequality together
with the fact that the index of T is the same when acting from X; onto Y; for j =1
and j = 2 give that dimKer (T : X; — Y7) > dimKer (T : X2 — Y3). The reversed
inequality is obvious, thus the conclusion follows. O

Lemma 11.9.22. — Let X,Y be quasi-Banach spaces and assume that T € £(X,Y).
If Z — Y is a closed subspace of finite codimension, then 7! Z is a closed subspace
of finite codimension in X.

Proof. — Since T is continuous and Z is closed, it follows that T-1Z is closed as
well. Next, consider the linear operator

(11.141) T:X /T2 — Y /2, T =Ta],

where for each z € X, [z] stands for the class of z in X/T~'Z, and [T'z] stands for
the class of Tz in Y/Z. Clearly, T is one-to-one which then entails

(11.142) dim (X /T712) < dim (Y/Z) < +o0.

Thus, T~1Z is a space of finite codimension in X. O
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We conclude this section with several stability results proved in [46], [45]. First,
we need to recall some definitions. A quasi-Banach space X is called analytically
convez if there is a constant C such that for every polynomial P : C — X we have
IP(0)||x < Cmax),=; [|P(2)||x. It is shown in [44] that if X is analytically convex it
has an equivalent quasi-norm which is plurisubharmonic (i.e. we can insist that the
constant C above can be taken to be 1). Let us also point out that being analytically
convex is equivalent to the condition that

. <
(11.143) Jmax f(Dlx < C max 15()lx,

for any analytic function f: {z € C: 0 < Rez < 1} — X which is continuous on the
closed strip {z € C: 0 < Rez < 1}.

Clearly, any Banach space is analytically convex. Other useful criteria for analytic
convexity can be found in [44], [24], [45]. The relevance of this concept stems from the
fact that Calderén’s complex method of interpolation, originally devised for Banach
spaces, can be most naturally adapted to analytically convex quasi-Banach spaces. A
more thorough discussion in this regard can be found in [45]. Here, we only wish to
quote a result which has been proved in [45].

Lemma 11.9.23. — Let X, Y;, Z;, i = 0,1, be quasi-Banach spaces such that X,NX;
is dense in both Xy and X, and similarly for Zy, Z;. Suppose that Y; — Z;, i =0,1
and there exists a linear operator D such that D : X; — Z; boundedly for i = 0, 1.
Define the spaces

(11.144) X;D):={ueX;: DueY;}, i=0,1,

equipped with the graph norm, i.e. ||ulx,p) := l|lullx, + [|Dully;, ¢ = 0,1. Finally,
suppose that there exist continuous linear mappings G: Z; —» X; and K : Z; - Y;
with the property DoG = I+ K on the spaces Z; for i = 0,1. Then, foreach0 < 0 < 1
and 0 < ¢ < oo,

(11.145) (Xo(D), X1(D))g,q = {u € (Xo,X1)o,q : Du € (Yo,Y1)0,4}-
Furthermore, if the spaces Xy + X; and Yp + Y; are analytically convex, then
(11146) [Xo(D),Xl(D)]g = {’ll, € [X(),X]]g : Due [Yo,Yl]o}, e (0, 1)

We continue with a very useful result which essentially asserts that, on a complex
interpolation scales of quasi-Banach spaces, the property of being invertible is stable
and the inverses are compatible. The Banach space version can be found in [11], [81],
[3], [80], [83]. The theorem below was proved in [45], following earlier work in [46].

Theorem 11.9.24. — Let X, X; and Yy, Y; be two compatible couples of quasi-Banach
spaces and assume that X, + X; and Yy +Y; are analytically convex. Also, consider a
bounded, linear operator T : X; — Y}, j = 0,1. If Xg := [Xo, X1]o and Y := [Yp, Y1]o,
then for each 6 € (0,1), then T induces a bounded linear operator

(11.147) Ty: Xo — Ya, 6€(0,1),
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in a natural fashion. Moreover,
(11.148) 1Tollxo—vs < ITN3 0 xo 1Tl —x,5 0 € (0,1).

Assume next that there exists 8, € (0,1) such that Tp_ is an isomorphism. Then
there exists € > 0 such that Ty continues to be isomorphism whenever |6 — 6,| < e.

Furthermore, if I is any open subinterval of (0, 1) with the property that T}, ! exists
for every 6 € I, then T, ! agrees with T, ! on Y NYy for any 0,6’ € I.

Theorem 11.9.25. — Under the hypotheses of Theorem 11.9.24, if Ty, is surjective and
has finite-dimensional kernel then there exists € > 0 so that dim ker Ty is constant for
|0 —6,] <e.

Theorem 11.9.26. — Retain the same hypotheses as in Theorem 11.9.24 and assume
that Yo NY; is dense in each Yy for 0 < # < 1 (which is automatic for the case of
inner complex interpolation). Then if Ty, is Fredholm, there exists £ > 0 so that Tj
is Fredholm for |§ — 6| < € and the index is constant.

Our last result in this section is a global stability theorem from [46].

Theorem 11.9.27. — Retain the same hypotheses as in Theorem 11.9.24 and, in ad-
dition, assume that there exists 6, € I such that Ty, : X9, — Yp, is an isomorphism.
Then, if n(Tp) > 0 for all 8 € I or if k(Ty) < oo for all & € I, it follows that
Ty : X9 — Yy is an isomorphism for all § € I.

11.10. Surface to surface change of variables
The following result, of general nature, from [39] is going to be useful for us.

Proposition 11.10.1. — Let © C R™ be a bounded Lipschitz domain, ) an open neigh-
borhood of Q, and let F: © — R™ be an orientation preserving C'*°-diffeomorphism.
Then Q := F(2) is a Lipschitz domain and if v, and 0,0 are, respectively, the
outward unit normals and surface measures on 92 and 92, then

(DF1)T(wvoFY)

|(DF-1)T(vo F-1)|’

(11.150) 6 =|(DF~ )T (vo F1)|(|det DF|o F~') F,o,

where (DF~1)7 denotes the transposed of the Jacobian matrix of F~!, and F.o is
the push-forward of the measure o.

(11.149) U=

Below, we study how tangential derivatives transform under changing variables in the
ambient Euclidean space.

Proposition 11.10.2. — In the context of Proposition 11.10.1, and assuming 1 < p <
00, one has

(11.151) ”f”LP(aﬂ) ~ ".foF_lan(aﬁ)’ ”f"L‘l’(BQ) ~ "fOF_IHLI;(aﬁ)'
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Furthermore, for every j,k € {1,...,n},

[(DF-l)T [(Veanf ® v = v ® Vianf) 0 F71] (DF“)] »

(11.152) 8; (foF™!) = [(DF0)T(vo F-Y)]

Proof. — The first equivalence in (11.151) is a direct consequence of Proposi-
tion 11.10.1, whereas the second follows from (11.152) and Proposition 11.10.1.
Consider now the identity (11.152). For each j,k € {1,...,n}, denote by 3;* the
J

tangential derivative on a0 given by v;0r — Ux0;. We then have

o (foF™) = Dgu(foF ") —nxd;(foF)

(11.153) U;((0ef) o F~1)OkF; ' — Ui ((0r f) o F~1)0;F1.

Employing Proposition 11.10.1 we further write

(DF )T (voF™)),(VfoF™'),(DF " )u
[(DF=1)T(vo F71)]
[(DFY)T((VfoF 1)@ (vo F~1))(DF )],

(11.154) = [(DF-)T(vo F1)| ’

U;j((Bef) o FV)OrF; 1 =

where for two vectors a,b € R™ with a = (a1,...,a,) and b = (by,...,b,), we have
set a ® b to stand for the n x n matrix whose ij entry is given by

(11.155) (a®b)ij :==asb;, 4,j€{l,...,n}.
Thus, based on (11.153) and (11.154),

[(DF1)T((VfoF 1) ® (vo FH))(DF )],
|((DF=1)T(vo F1)]
[(DF-)T((VfoF')® (vo F~1))(DF Y],
|((DF=1)T(vo F~1)]

O (foF™) =

(11.156) -

This further gives,

. [(OF YT (agb-bea)(DFY)],,
(11.157) & (foF )= [(DF-1)T(vo F-1)| ’

where
(11.158) a:=VfoF™! and b:=voF L

Since, generally speaking, a ® b—b® a = ap ® b — b ® ap where ap := a — (a - b)b,
we may finally conclude that, for every j, k, (11.152) holds. O
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11.11. Truncating singular integrals

Recall that a function ¢ : U — R, U open subset of R™ is called Lipschitz provided
that there exists M > 0 such that |p(z) — ¢(y)| < M|z —y| for all z,y € U. The best
constant in the above inequality is called the Lipschitz constant of .

The following is an old result of Rademacher (cf.[72]).

Lemma 11.11.1. — Let ¢ be a real-valued, Lipschitz function defined in an open set
U of R™. Then for each 1 < j < n, —g_,;“’]—_ exists at almost every point z in U and
a%‘% € L*(U,R). In fact, ||Vl L is the Lipschitz constant of ¢ and for almost every
x € R™ there exists a vector Vi(z) such that

(11.159) lim 2@ +9) — (@) — (Vo(2),y) | _

0.
yli0 |y]

If U C R? call ® : U — R™ bi-Lipschitz if there exist 0 < M; < My < oo such
that

(11.160) M|z —y| < |®(z) — ®(y)| < Me|z—y|, Vz,yeU.

When U is an open set, it is known (cf. [72]) that necessarily m > n, ® is an open
mapping, the Jacobian matrix D® = (0;®r)1<j<n, 1<k<m exists a.e. in U and

(11.161) rank D®(z) = n for a.e. z € U.
Our goal here is to establish the following.

Proposition 11.11.2. — Let A : R® — R™ be a Lipschitz function with Lipschitz con-
stant M, and assume that F : R™ — R, F € C¥(R™), for some sufficiently large N €
N, F is odd function. For z,y € R™ with & # y we set K(z,y) := |:t—1y|" F (A(Tz):ﬁ(y)),
and for € > 0, define the truncated operator

(11.162) T.f(z) = /| K, sew
T—y|>€
As is well-known (cf., e.g., [63]), if 1 < p < oo and f € LP(R") then the limit
lim._,o T. f(x) exists for almost every x € R™ and the operator

(11.163) Tf(z):= Eli_x{(l)TJ(m), z eR",

is bounded on L?(R™).
Assume that B : R — R™', m/ > n, is a functions satisfying

(11.164) Mz —y| < |B(z) - B(y)| < M|z —y|, Vz,yeR"
for some M > 1. Then if 1 < p < co and f € LP(R™), the limit

(11.165) lim K(z,y)f(y) dy,
€=0J|B(z)— B(y)|>¢
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exists and is equal to T'f(x) (as defined in (11.163)) for almost every z € R™. In other
words, for any function B as in (11.164), one has the representation

(11.166) Tf(z) = lim K(z,y)f(y) dy,
€=20J|B(z)-B(y)|>e

for almost every z € R™.
To prove it, we isolate the key technical step in the form of a lemma, stated below.

Lemma11.11.3. — Let A : R® — R™ and B : R® —» R™, m’ > n, be functions
satisfying

(11.167) |A(z) — A(y)| < M|z ~y|, and

(11.168) M~z —y| <|B(z) - By)| < Mz ~y|, Vz,yeR",

for some constant M > 1. Also let F : R™ xR — R be a C?, odd function. Fix £ € R™
and for each € > 0 consider

(11.169) UE)={yeR": 1> |z—y|l>¢},
(11.170) V(e) ={yeR": [(DB)(z)(z —y)| > ¢, |z —y| <1},
(11.171) W(e):={yeR": |B(z) - B(y)| >¢, |z —y| <1}.
Then
. 1 A@@) = AW 4 _ 1 A(z) — A(y)
) B e G LR /V(e) P G L
— lim 1 A(z) — A(y)
(11.172) = lim /W(e) - yI"F( — ) dy,

provided the Jacobian matrices (DA)(z) and (DB)(x) exist, rank (DB)(z) = n, and
one of the above three limits exists and is finite.

Proof. — Without loss of generality we can take x = 0, A(0) = 0, B(0) = 0. By
Lemma 11.11.1 there exist nonnegative functions n4(t) and ng(t) defined for ¢t > 0,
so that na(t) | 0, np(t) | 0ast | 0 and

(11.173) |A(y) — (DA)(O0)y| < |yl na(lyl),
(11.174) |B(y) — (DB)(0)y| < |yl ns(lyl),

for y € R™. If, for each ¢ > 0, we now introduce A(e) := {y € R" : € > |y| >
el|(DB)(0)|| 71} then V(¢) \ U(e) C A(e). Employing the properties of F, the fact
that V(e) \ U(e) is symmetric with respect to the origin and the estimate (11.173),
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the absolute value of the difference of the first two limits in (11.172) is estimated by

. 1 A(y)
il e ()
. A A(—
- lelfg% /V(e)\U(e) |_yl|~’7 [F(——léyll) + F( (|y|y))] dyl

1 1 [.(AW) A(=y)
355 1w o D) - P (AG2) a

€l0 2

< [ (0Pt [ attoDlui™ay

(11.175) < Clifg'rm(e) =0,

which proves the first equality in (11.172).
In order to prove the second equality in (11.172), observe that for each point
y € V(e)\W(e) we have M ~1|y| < |B(y)| < ¢, so that |y| < eM. That is,

(11.176) yeV(E)\W(E) = |lyl<eM and |B(y)| <e.

Based on this, we may conclude that
(11.177)
y € V(e)\W(e) = [(DB)(0)y| < [(DB)(0)y — B(y)| + |B(y)| < eMnp(eM) + ¢

and, further,

(11.178) y € V(e)\W(e) => e < |(DB)(0)y| < eM np(eM) +e¢.
From (11.176) and (11.178) we may therefore conclude that
(11.179) V(e\W(e) € Z(e; M np(eM); (DB)(0))

where we have set

Z(g;a;R) :={y € R": ¢ < |Ry| < ea+ ¢},

(11.180) . . .
ife >0,a>0,and R is a m' x n matrix of rank n.

Let # ’fv be the k-dimensional Hausdorff measure in RY. To estimate the size of
Z(e; a; R), we first note that

(11.181) Z(g;a;R) =€ Z(1;a;R), Ve>0.

On the other hand, if we set H,, := {Ry : y € R"} then, since R is a rank n matrix,
H,, is an n-dimensional plane in R™ and R : R® — H,, is a linear isomorphism. Hence,

ﬂZ(Z(l;a;R)) = ﬂﬁ({yeR":1<|Ry|§a+l})

(11.182) < cap({(Y ety 1< Y| <a+ 1}).

ASTERISQUE 344



11.12. APPROXIMATING LIPSCHITZ DOMAINS 229

Simple geometric considerations show that the
(11.183) lim 747, ({Y €H,:1<[Y|<a+ 1}) =0.
a—

From this, (11.181), (11.179) and the fact that ng(e M) — 0 as € — 0, we finally
deduce that
7 (V(E\W ()
(11.184) lim =0

e—0 egn

Since the expression l:r:-—ly|“ F(A(Ta)::ﬁ(y)) restricted to V(e)\W () (itself, a subset
of {y e R : eM > |y| > ¢||(DB)(0)||!}) is pointwise of the order e ™, we conclude
that the integral of this function over the set V()\W (e) converges to zero as £ — 0.

Moving on, an argument analogous to (11.178) gives that
(11.185) € —eMnp(eM) < |(DB)(0)y| <&,
uniformly for y € W(e)\V(e). Thus, for reasons similar to those discussed above,
the integral of | L -F (A(w)_A(y)) over W(e)\V(e) also vanishes as € | 0, which

z—y|" lz—y]
completes the proof of the second equality in the conclusion of the lemma. O

After this preamble, it is straightforward to carry out the

Proof of Proposition 11.11.2. — The claim in (11.166) is an immediate corollary of
Lemma 11.11.3 and (11.161). a

11.12. Approximating Lipschitz domains

For various purposes, it convenient to approximate, in a suitable sense, a given
Lipschitz domain with a sequence of sub-domains. Several variants can be found in
the literature. See, for example, [67] and [90] for such approximating schemes involving
C*°-smooth sub-domains. For us here, however, the following approximation result,
proved by A.P. Calder6n in [10], is particularly useful.

Lemma 11.12.1. — Consider a bounded Lipschitz domain € in R™, n > 2, with surface
measure ¢ and outward unit normal v, along with a Lipschitz vector field h on 99,
satisfying

(11.186) |h(z)] =1 and (k(z),v(z)) >~k forae. z €O,
where k € (0,1) is a fixed constant. Let ; be the subset of Q defined by
(11.187) Q:=Q\{z-sh(z): z€0Q, 0<s<t}

Then there exists a small positive number t,, depending only on the Lipschitz
character of €, the Lipschitz constant of h, n, and &, such that the following hold.

(i) Whenever 0 < t < t,, Q; is a Lipschitz domain and
(11.188) 9y = {z — th(z) : = € Q).
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(ii) There exists a covering of Q2 with finitely many coordinate cylinders which also
form a family of coordinate cylinders for 89, for each t € (0,t,). Moreover, for
each such cylinder C(r, h), if ¢ and ¢; are the corresponding Lipschitz functions
whose graphs describe the boundaries of Q and €, respectively in C(r, h), then
IVeille < ||Ve|lLe and Ve, — Vo pointwise a.e. as t — 0F.

(iii) Consider the mapping F, : R® — R™ defined by Fi(z) := z — th(z). Then F; is
bi-Lipschitz, uniformly in ¢ € (0,t,). As a consequence,

(11.189) Ay : 00 — 8y, Ay(z) =z —th(z), € o,

is a bi-Lipschitz function for each ¢ € (0,%,) and the Lipschitz constants of A;
and A, ! are uniformly bounded in t.

(iv) For every t € (0,t,) and every z € 0, there holds A;(z) € I'(z) and

(11.190) sup |z — A¢(z)| < Ct,
€N

for some finite, positive constant C = C(, H)

(v) For each t € (0,t,), there exist positive functions w; : Q2 — R, bounded away
from zero and infinity uniformly in £, such that, for any measurable set F' C 012,

(11.191) /wt do :/ doy,
F A (F)
where do; denotes the surface measure on 0€2;. In addition,
(11.192) sup |1 —we(z)] < Ct, Vte (0,t,),
T€ON

where C is as before.
(vi) If v is the outward unit normal vector to 02, then, with C' as above,

(11.193) sup |v(z) — i (Ae(z))| < Ct, Vi€ (0,t,).
€N

We wish to complement this lemma with several related results (working in the
same context as above). First, consider a function

(11.194) ke CNR™\{0}), k(—z) = —k(z), k(Az)=A'""k(z)if A>0,

where N = N(n) is a sufficiently large integer. To this, we associate the singular
integral operator

(11.195) Tf(z):= €I_i}(r)1+ / k(z —y)f(y)do(y), =€ of.

lz—y|>e
yeEIN

Furthermore, let T3, t € (0,t,), denote the version of the integral operator (11.195)
written for Q) in place of 91).

We claim that for each p € (1,00), there exists C(f, h, k,p) > 0 with the property
that

(11.196) T (f o At_l)] oAy = Tfllran) < CtlfliLeany, Vt€E (0,t5).
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To prove this claim, for z € 99 and t € (0,t,) we write

T(foA @) = lm [ KA - )SATW) do)

e—0t+
1A (z)=y'|>e
y' €09

—  lim / k(As(z) — Ae(v)) F (y)we(y) do(y)

e—0t
1A (z)— A ()| >e
yeEIN

- lim / k(Fu(@) — Fu(y))f (1)we(y) do(y)

e—0+t
|F(z)—Ft(y)|>e
yE

(11.197) = lim k(Ai(z) — Ae(y) f (y)wi (y) do(y).

e—0t

|lz—y|>e
yeN

Above, the first equality follows from (11.195), the second from (11.191), the third
uses the definition of F; introduced in (iii) in Lemma 11.12.1, and the fourth is a
consequence of results in § 11.11. Consequently,

(11.198) Ty(f o A7) (Ae(2)) — Tf(2) = R, f(2) + R f(2),

where, for z € 8Q and t € (0,t,), we have set

(11199) Rif) = Tm [ KAE) - Aw)f@)l) - 1do(y)
=

(11200) Rf() = tm [ K(Ae) ~ M) — Ko — DI @) doy)
lz—y|>e
yEeIN

The operator R} is amenable to Calder6n-Zygmund theory (either directly, or after
changing variables back to d92:) and, by (11.192), we thus obtain

(11.201) I R; fllze o) < Clilwe — 1) fllLea) < Ctllflle (o),

uniformly for t € (0,t,). As for the contribution from R?f, first note that, by the
Mean Value Theorem,

R}f(z)

I

Jim / [k(Ae(z) — Au(w)) — k(z — v)]f(v) do(y)

e—0+

lz—y|>e
yeIN

1
t [ Boite)as
0

(11.202)

SOCIETE MATHEMATIQUE DE FRANCE 2012



232 CHAPTER 11. APPENDIX

where, for z € 89, t € (0,tp) and 6 € [0, 1], we have set

(11203) R2f(@) = lim [ (VR)@—y—0t(h(@) b)) (@) ~he) f ) do(e).

lz—y|>e
yeEIN

By Calderén-Zygmund theory, we have

(11.204) IRZ 6 fllzr(o0) < Cllfllzs(an),
uniformly for ¢ € (0,t,) and 8 € [0, 1]. From this and (11.202), we then obtain
(11.205) I1R? fll Lo o) < CtllfllLe(o0)s

uniformly for ¢ € (0,1,). In concert, (11.201), (11.205) and (11.198) prove (11.196).
Next, we claim that if 1 < j,k < n and 1 < p < oo, then there exists C > 0 such
that

(11.206) ||8,J.,cf — [a.,,;k (fo At_l)] o At”Lp(ag) < Ct”Vtanf”Lp(aQ), Vte (0, to),

where 9, is the tangential derivative operator on 952 introduced in (2.14), and Ort.
J
is its version relative to 0€2;. Of course, it suffices to prove the pointwise inequality

(11.207) 1r,0 f = [0rs, (f 0 ATH)] 0 Au| < Ct|Vianf| on 89, Vi € (0,1,),

where Vi,, is the tangential gradient on 092. To see this, bring in (11.152) written for
the change of variable mapping Fi(x) = x — t h(z). Using the fact that

(11.208) DF; =I+O0(t), DF7'=1+0(), (DF;/Y)T =I+0(t), te(0,t,),
and recalling (11.193), we obtain from (11.152) and (11.149) that
[(Venf) o F @ (DE) T (vo 7))
(DF;H)T(vo FY))
[(DF-I)(V 0 F1) ® (VianSf) 0 F;l]]
I(DFt_l)T(V o Ft—l)l
= [(Vtanf) o At_l ® Vt] L [Vt ® (Vtanf) o At_l] . + O(tl(vtanf) ° At_ll)
kj kj
= (4);(Veanf)k 0 A7" = () (VeanS); 0 A7 + O(t|(Vsanf) 0 A7)
= (Vo AT ) (VeanS )k 0 A7 = (v 0 AT )k(VeanS)j 0 A" + O(t(VieanS) 0 AT )
(11209) = (8 f) o A7 + O(H(VianS) 0 ATH)).
This clearly implies (11.207).

kj

Ot (fo ) =

5 O(t(Vianf) © Fi 1))

Lemma 11.12.2. — In the context of Lemma 11.12.1, let K be the double layer po-
tential operator for the Stokes system on 2, and denote by K% the corresponding
operator considered on 9. Then for each p € (1, 00),

(11.210) IKAf — [K5(f o A7) o Adllzran) < Ctllflicean)y, Vit € (0,t0),
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where C > 0 depends only on 2 and p.

Proof. — Fix f € L7(0Q) with [|fllr(aq) = 1. Also, recall from (4.98) that there
exist Calderén-Zygmund type operators Tji,s on 052, along with their counterparts

T}irs o0 0%, for which the following commutation identities hold:

(11.211) Or, Kx = TjkrsOr,,, O K5 =T 0re, Vi ke{l,...,n}

Turning to (11.210) in the earnest, we first note that
(11.212) |EKxf = [Ki(f o Ay )] o Atllran) < Ct, VYt e (0,t,),
by (11.196) (and (11.193)). Fix now j,k € {1,...,n} and consider
(11.213) 18r,1 (K £) = Br,i (K" (f 0 A7 )] © Ar) o 00)-

Given the goal we have in mind, it is permissible to replace terms in (11.213) with
other expressions that differ from these by residues whose LP norm on 99 is O(t).
With this convention in mind, &, ([K*(f o Ay )] o A;) can then be replaced, thanks
to (11.206) and (11.211), by

(11.214) [0,e, K*(f 0 Ay )] 0 At = [Ty (Ore, (f 0 A7) 0 A
Going further, recall that 9, K f = Tjkrs (0r,, f) and note that this last term can

be replaced by [T}, ((0,, f)oA; 1)]oAs, by (11.196). This matches the last expression
in (11.214), up to an error that can be estimated as follows:

10y f) 0 s = Ope, (Fo AT zooe) & 110r,,f = (Bre, (f 0 A7) 0 Adllzocon)

(11.215) = 0(),
by (11.191) and (11.206). Thus, all errors have been shown to have proper control,
and the estimate (11.210) is proved. a
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