Sur les automorphismes de groupes libres et de groupes de surface
Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026, Astérisque, no. 339 (2011), Exposé no. 1023, 34 p.
@incollection{AST_2011__339__323_0,
     author = {Paulin, Fr\'ed\'eric},
     title = {Sur les automorphismes de groupes libres et de groupes de surface},
     booktitle = {S\'eminaire Bourbaki, volume 2009/2010, expos\'es 1012-1026},
     series = {Ast\'erisque},
     note = {talk:1023},
     pages = {323--356},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {339},
     year = {2011},
     mrnumber = {2906359},
     zbl = {1356.20016},
     language = {fr},
     url = {http://www.numdam.org/item/AST_2011__339__323_0/}
}
TY  - CHAP
AU  - Paulin, Frédéric
TI  - Sur les automorphismes de groupes libres et de groupes de surface
BT  - Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026
AU  - Collectif
T3  - Astérisque
N1  - talk:1023
PY  - 2011
SP  - 323
EP  - 356
IS  - 339
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2011__339__323_0/
LA  - fr
ID  - AST_2011__339__323_0
ER  - 
%0 Book Section
%A Paulin, Frédéric
%T Sur les automorphismes de groupes libres et de groupes de surface
%B Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026
%A Collectif
%S Astérisque
%Z talk:1023
%D 2011
%P 323-356
%N 339
%I Société mathématique de France
%U http://www.numdam.org/item/AST_2011__339__323_0/
%G fr
%F AST_2011__339__323_0
Paulin, Frédéric. Sur les automorphismes de groupes libres et de groupes de surface, dans Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026, Astérisque, no. 339 (2011), Exposé no. 1023, 34 p. http://www.numdam.org/item/AST_2011__339__323_0/

[1] A. Ash - Deformation retracts with lowest possible dimension of arithmetic quotients of self-adjoint homogeneous cones, Math. Ann. 225 (1977), p. 69-76. | DOI | EuDML | MR | Zbl

[2] J. A. Behrstock - Asymptotic geometry of the mapping class group and Teichmüller space, Geom. & Topol. 10 (2006), p. 1523-1578. | DOI | MR | Zbl

[3] J. A. Behrstock, B. Kleiner, Y. N. Minsky & L. Mosher - Geometry and rigidity of mapping class groups, prépublication arXiv:0801.2006. | DOI | MR | Zbl

[4] J. A. Behrstock & Y. N. Minsky - Dimension and rank for mapping class groups, Ann. of Math. 167 (2008), p. 1055-1077. | DOI | MR | Zbl

[5] Y. Benoist - Sous-groupes discrets des groupes de Lie, polycopié, Euro. Summer School, 1997.

[6] L. Bers - An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math. 141 (1978), p. 73-98. | DOI | MR | Zbl

[7] M. Bestvina - The topology of Out(F n ), in Proc. Inter. Cong. Math., Vol. II (Beijing, 2002), Higher Ed. Press, 2002, p. 373-384. | MR | Zbl

[8] M. Bestvina, A Bers-like proof of the existence of train tracks for free group automorphisms, prépublication Univ. Utah 2010, voir aussi arXiv: 1001.0325. | MR | Zbl

[9] M. Bestvina & M. Feighn - The topology at infinity of Out(F n ), Invent. math. 140 (2000), p. 651-692. | DOI | MR | Zbl

[10] M. Bestvina & M. Feighn, A hyperbolic Out(F n )-complex, Groups Geom. Dyn. 4 (2010), p. 31-58. | DOI | MR | Zbl

[11] M. Bestvina, M. Feighn & M. Handel - Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997), p. 215-244 | DOI | MR | Zbl

M. Bestvina, M. Feighn & M. Handel - Laminations, trees, and irreducible automorphisms of free groups, erratum : Geom. Fund. Anal. 7 (1997), p. 1143. | DOI | MR | Zbl

[12] M. Bestvina, M. Feighn & M. Handel, The Tits alternative for Out(F n ), I : Dynamics of exponentially-growing automorphisms, Ann. of Math. 151 (2000), p. 517-623. | DOI | EuDML | MR | Zbl

[13] M. Bestvina, M. Feighn & M. Handel, Solvable subgroups of Out(F n ) are virtually Abelian, Geom. Dedicata 104 (2004), p. 71-96. | DOI | MR | Zbl

[14] M. Bestvina, M. Feighn & M. Handel, The Tits alternative for Out(F n ), II : A Kolchin type theorem, Ann. of Math. 161 (2005), p. 1-59. | DOI | MR | Zbl

[15] M. Bestvina & M. Handel - Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992), p. 1-51. | DOI | MR | Zbl

[16] F. Bonahon - The geometry of Teichmüller space via geodesic currents, Invent. math. 92 (1988), p. 139-162. | DOI | EuDML | MR | Zbl

[17] F. Bonahon, Geodesic currents on negatively curved groups, in Arboreal group theory (Berkeley, 1988) (R. Alperin, ed.), Math. Sci. Res. Inst. Publ., vol. 19, Springer, 1991, p. 143-168. | DOI | MR | Zbl

[18] A. Borel & J-P. Serre - Corners and arithmetic groups. Avec un appendice : Arrondissement des variétés à coins, par A. Douady et L. Hérault, Comment. Math. Helv. 48 (1973), p. 436-491. | MR | Zbl

[19] N. Bourbaki - Topologie générale. Chapitres 1 à 4, Springer, 2007. | Zbl

[20] B. H. Bowditch - Intersection numbers and the hyperbolicity of the curve complex, J. reine angew. Math. 598 (2006), p. 105-129. | MR | Zbl

[21] M. R. Bridson & A. Haefliger - Metric spaces of non-positive curvature, Grund. math. Wiss., vol. 319, Springer, 1999. | MR | Zbl

[22] M. R. Bridson & P. De La Harpe - Mapping class groups and outer automorphism groups of free groups are C * -simple, J. Funct. Anal. 212 (2004), p. 195-205. | DOI | MR | Zbl

[23] M. R. Bridson & K. Vogtmann - Automorphism groups of free groups, surface groups and free abelian groups, in Problems on mapping class groups and related topics, Proc. Sympos. Pure Math., vol. 74, Amer. Math. Soc., 2006, p. 301-316. | DOI | MR | Zbl

[24] K. S. Brown - Cohomology of groups, Grad. Texts Math., vol. 87, Springer, ed. corr., 1982. | MR | Zbl

[25] R. Charney & K. Vogtmann - Finiteness properties of automorphism groups of right-angled Artin groups, Bull. Lond. Math. Soc. 41 (2009), p. 94-102. | DOI | MR | Zbl

[26] I. Chiswell - Introduction to Λ-trees, World Scientific, 2001. | MR | Zbl

[27] M. Culler & K. Vogtmann - Moduli of graphs and automorphisms of free groups, Invent. math. 84 (1986), p. 91-119. | DOI | EuDML | MR | Zbl

[28] M. Dehn - Papers on group theory and topology. Translated and introduced by John Stillwell, Springer, 1987. | MR | Zbl

[29] C. Druţu - Quasi-isometric classification of non-uniform lattices in semisimple groups of higher rank, Geom. Funct. Anal. 10 (2000), p. 327-388. | DOI | MR | Zbl

[30] C. Druţu, Query-isometry rigidity of groups, in Géométries à courbure négative ou nulle, groupes discrets et rigidités (L. Bessières, A. Parreau & B. Rémy, éds.), Actes de l'école d'été de l'Institut Fourier, Grenoble, 2004, Séminaires et Congrès, vol. 18, 2009, p. 321-371. | MR | Zbl

[31] A. Eskin - Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. Amer. Math. Soc. 11 (1998), p. 321-361. | DOI | MR | Zbl

[32] B. Farb & M. Handel - Commensurations of Out(F n ), Publ. Math. I.H.É.S. 105 (2007), p. 1-48. | DOI | EuDML | MR | Zbl

[33] A. Fathi, F. Laudenbach & V. Poenaru - Travaux de Thurston sur les surfaces, Astérisque 66-67, Soc. Math. France (1979). | Numdam | MR | Zbl

[34] M. Feighn & M. Handel - Abelian subgroups of Out(F n ), Geom. & Topol. 13 (2009), p. 1657-1727. | DOI | MR | Zbl

[35] A. Furman - Gromov's measure equivalence and rigidity of higher rank lattices, Ann. of Math. 150 (1999), p. 1059-1081. | DOI | EuDML | MR | Zbl

[36] D. Gaboriau, A. Jaeger, G. Levitt & M. Lustig - An index for counting fixed points of automorphisms of free groups, Duke Math. J. 93 (1998), p. 425-452. | MR | Zbl

[37] F. P. Gardiner - Teichmüller theory and quadratic differentials, Pure and Applied Math., Wiley, 1987. | MR | Zbl

[38] É. Ghys - Les groupes hyperboliques, Séminaire Bourbaki, vol. 1989/1990, exp. n° 722, Astérisque 189-190 (1990), p. 203-238. | EuDML | Numdam | MR | Zbl

[39] M. Gromov - Asymptotic invariants of infinite groups, in Geometric group theory, Vol. 2 (Sussex, 1991) (Niblo, A. and Roller, M., eds.), London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, 1993. | MR | Zbl

[40] F. Grunewald & A. Lubotzky - Linear representations of the automorphism group of a free group, Geom. Funct. Anal. 18 (2009), p. 1564-1608. | DOI | MR | Zbl

[41] V. Guirardel & G. Levitt - Deformation spaces of trees, Groups Geom. Dyn. 1 (2007), p. 135-181. | DOI | MR | Zbl

[42] V. Guirardel & G. Levitt, The outer space of a free product, Proc. Lond. Math. Soc. 94 (2007), p. 695-714. | DOI | MR | Zbl

[43] T. Haettel - Compactification de Thurston d'espaces de réseaux marqués, prépublication Univ. Paris-Sud 11 (Orsay), avril 2011.

[44] U. Hamenstädt - Train tracks and the gromov boundary of the complex of curves, in Spaces of Kleinian groups (Minsky, Y. and Sakuma, M. and Series, C., eds.), London Math. Soc. Lecture Note Ser., vol. 329, Cambridge Univ. Press, 2006, p. 187-207. | DOI | MR | Zbl

[45] U. Hamenstädt, Geometry of the mapping class groups III : Quasi-isometric rigidity, prepublication arXiv:math.GT/0512429.

[46] M. Handel & L. Mosher - Subgroup classification in Out(F n ), prepublication arXiv:0908.1255.

[47] J. L. Harer - The virtual cohomological dimension of the mapping class group of an orientable surface, Invent math. 84 (1986), p. 157-176. | DOI | EuDML | MR | Zbl

[48] P. De La Harpe - Free groups in linear groups, L'Enseign. Math. 29 (1983), p. 129-144. | MR | Zbl

[49] W. J. Harvey - Geometric structure of surface mapping class groups, in Homological group theory (Proc. Sympos., Durham, 1977), London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, 1979, p. 255-269. | DOI | MR | Zbl

[50] W. J. Harvey, Boundary structure of the modular group, in Riemann surfaces and related topics : Proc. 1978 Stony Brook Conf., Ann. of Math. Stud., vol. 97, Princeton Univ. Press, 1981, p. 245-251. | MR | Zbl

[51] T. Hattori - Collapsing of quotient spaces of SO(n)SL(n,𝐑) at infinity, J. Math. Soc. Japan 47 (1995), p. 193-225. | DOI | MR | Zbl

[52] N. V. Ivanov - Subgroups of Teichmüller modular groups, Transl. Math. Monog., vol. 115, Amer. Math. Soc., 1992. | MR | Zbl

[53] N. V. Ivanov, Mapping class groups, in Handbook of geometric topology, North-Holland, 2002, p. 523-633. | MR | Zbl

[54] W. Jaco - Lectures on three-manifold topology, CBMS Reg. Conf. Ser. Math., vol. 43, Amer. Math. Soc., 1980. | DOI | MR | Zbl

[55] I. Kapovich & M. Lustig - The actions of Out(F k ) on the boundary of Outer space and on the space of currents : minimal sets and equivariant incompatibility, Erg. Theory Dyn. Syst. 27 (2007), p. 827-847. | DOI | MR | Zbl

[56] I. Kapovich & M. Lustig, Geometric intersection number and analogues of the curve complex for free groups, Geom. & Topol. 13 (2009), p. 1805-1833. | DOI | MR | Zbl

[57] M. Kapovich - Hyperbolic manifolds and discrete groups, Progress in Math., vol. 183, Birkhäuser, 2001. | MR | Zbl

[58] A. Katok & B. Hasselblatt - Introduction to the modern theory of dynamical systems, Encycl. Math. Appl., vol. 54, Cambridge Univ. Press, 1995. | MR | Zbl

[59] Y. Kida - Measure equivalence rigidity of the mapping class group, Ann. of Math. 171 (2010), p. 1851-1901. | DOI | MR | Zbl

[60] B. Kleiner & B. Leeb - Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Publ. Math. I.H.É.S. 86 (1997), p. 115-197. | DOI | EuDML | Numdam | MR | Zbl

[61] M. Korkmaz & A. I. Stipsicz - Lefschetz fibrations on 4-Manifolds, in Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, p. 271-296. | DOI | MR | Zbl

[62] E. Kowalski - The large sieve and its applications : arithmetic, geometry, random walks and discrete groups, Cambr. Tracts Math., vol. 175, Cambridge Univ. Press, 2008. | MR | Zbl

[63] G. Levitt - Automorphisms of hyperbolic groups and graphs of groups, Geom. Dedicata 114 (2005), p. 49-70. | DOI | MR | Zbl

[64] G. Levitt & M. Lustig - Irreducible automorphisms of F n have north-south dynamics on compactified outer space, J. Inst. Math. Jussieu 2 (2003), p. 59-72. | DOI | MR | Zbl

[65] A. Lubotzky, S. Mozes & M. S. Raghunathan - The word and Riemannian metrics on lattices of semisimple groups, Publ. Math. I.H.É.S. 91 (2000), p. 5-53. | DOI | EuDML | Numdam | MR | Zbl

[66] R. C. Lyndon & P. E. Schupp - Combinatorial group theory, Ergebn. Math. Grenzg., vol. 89, Springer, 1977. | MR | Zbl

[67] R. Martin - Non-Uniquely ergodic foliations of thin-type, measured currents and automorphisms of free groups, Thèse, Univ. of California, Los Angeles, 1995. | MR | Zbl

[68] H. A. Masur & Y. N. Minsky - Geometry of the complex of curves, I : Hyperbolicity, Invent. math. 138 (1999), p. 103-149. | DOI | MR | Zbl

[69] J. Milnor - Introduction to algebraic K-theory, Ann. of Math. Studies, vol. 72, Princeton Univ. Press, 1971. | MR | Zbl

[70] E. E. Moise - Geometric topology in dimensions 2 and 3, Grad. Texts Math., vol. 47, Springer, 1977. | MR | Zbl

[71] J. W. Morgan & P. B. Shalen - Degenerations of hyperbolic structures. II : Measured laminations in 3-manifolds, Ann. of Math. 127 (1988), p. 403-456. | DOI | MR | Zbl

J. W. Morgan & P. B. Shalen - Degenerations of hyperbolic structures. III : Actions of 3-manifold groups on trees and Thurston's compactness theorem, Ann. of Math. 127 (1988), p. 457-519. | DOI | MR | Zbl

[72] S. Nag - The complex analytic theory of Teichmüller spaces, Canadian Math. Soc. Ser., Wiley, 1988. | MR | Zbl

[73] A. Papadopoulos & G. Théret - On Teichmüller's metric and Thurston's asymmetric metric on Teichmüller space, in Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, Eur. Math. Soc., 2007, p. 111-204. | DOI | MR | Zbl

[74] A. Parreau - Compactification d'espaces de représentations de groupes de type fini, Math. Z. (2011), doi ://10.1007/s00209-011-0921-8 (online). | MR

[75] F. Paulin - Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. math. 94 (1988), p. 53-80. | DOI | EuDML | MR | Zbl

[76] F. Paulin, Actions de groupes sur les arbres, Séminaire Bourbaki, vol. 1995/1996, exp. n° 808, Astérisque 241 (1997), p. 97-137. | EuDML | Numdam | MR | Zbl

[77] F. Paulin, Sur les automorphismes extérieurs des groupes hyperboliques, Ann. Sci. École Norm. Sup. 30 (1997), p. 147-167. | DOI | EuDML | Numdam | MR | Zbl

[78] F. Paulin, Sur la compactification de Thurston de l'espace de Teichmüller, Séminaires et congrès 18 (2009), p. 421-443. | MR | Zbl

[79] V. Poénaru - Travaux de Thurston sur les difféomorphismes des surfaces et l'espace de Teichmüller, Séminaire Bourbaki, vol. 1978/1979, exp. n° 529, Springer Lect. Notes Math. 770 (1980), p. 66-79. | DOI | EuDML | Numdam | MR | Zbl

[80] I. Rivin - Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms, Duke Math. J. 142 (2008), p. 353-379. | DOI | MR | Zbl

[81] I. Satake - On representations and compactifications of symmetric Riemannian spaces, Ann. of Math. 71 (1960), p. 77-110. | DOI | MR | Zbl

[82] M. Scharlemann - Heegaard splittings of compact 3-manifolds, in Handbook of geometric Topology (Davenport, R. and Sherr, R., eds.), North-Holland, 2002, p. 921-953. | MR | Zbl

[83] J. De Séguier - Sur les automorphismes de certains groupes, C.R.A.S. 179 (1924), p. 139-142. | JFM

[84] J-P. Serre - Arbres, amalgames, SL 2 , 3e éd., Astérisque 46 (1983). | Numdam | Zbl

[85] J-P. Serre, Lie algebras and Lie groups, 2e éd., Lecture Notes in Math., vol. 1500, Springer, 1992. | MR | Zbl

[86] W. P. Thurston - Three-dimensional geometry and topology. Vol. 1, Princeton Math. Series, vol. 35, Princeton Univ. Press, 1997. | MR | Zbl

[87] K. Vogtmann - Automorphisms of free groups and Outer space, Geom. Dedicata 94 (2002), p. 1-31. | DOI | MR | Zbl

[88] K. Vogtmann, The cohomology of automorphism groups of free groups, in Proc. Inter. Cong. Math. Vol. II, Eur. Math. Soc., 2006, p. 1101-1117. | MR | Zbl

[89] G. Voronoï - Nouvelles applications des paramètres continus à la théorie des formes quadratiques, J. reine angew. Math. 133 (1907), p. 97-178. | EuDML | JFM

[90] R. J. Zimmer - Ergodic theory and semisimple groups, Monographs in Math., vol. 81, Birkhäuser, 1984. | MR | Zbl