La classification des groupes p-compacts [d'après Andersen, Grodal, M0ller, et Viruel]
Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026, Astérisque, no. 339 (2011), Exposé no. 1020, 19 p.
@incollection{AST_2011__339__239_0,
     author = {Oliver, Bob},
     title = {La classification des groupes $p$-compacts [d'apr\`es {Andersen,} {Grodal,} {M0ller,} et {Viruel]}},
     booktitle = {S\'eminaire Bourbaki, volume 2009/2010, expos\'es 1012-1026},
     series = {Ast\'erisque},
     note = {talk:1020},
     pages = {239--257},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {339},
     year = {2011},
     mrnumber = {2906356},
     zbl = {1359.55001},
     language = {fr},
     url = {http://www.numdam.org/item/AST_2011__339__239_0/}
}
TY  - CHAP
AU  - Oliver, Bob
TI  - La classification des groupes $p$-compacts [d'après Andersen, Grodal, M0ller, et Viruel]
BT  - Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026
AU  - Collectif
T3  - Astérisque
N1  - talk:1020
PY  - 2011
SP  - 239
EP  - 257
IS  - 339
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2011__339__239_0/
LA  - fr
ID  - AST_2011__339__239_0
ER  - 
%0 Book Section
%A Oliver, Bob
%T La classification des groupes $p$-compacts [d'après Andersen, Grodal, M0ller, et Viruel]
%B Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026
%A Collectif
%S Astérisque
%Z talk:1020
%D 2011
%P 239-257
%N 339
%I Société mathématique de France
%U http://www.numdam.org/item/AST_2011__339__239_0/
%G fr
%F AST_2011__339__239_0
Oliver, Bob. La classification des groupes $p$-compacts [d'après Andersen, Grodal, M0ller, et Viruel], dans Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026, Astérisque, no. 339 (2011), Exposé no. 1020, 19 p. http://www.numdam.org/item/AST_2011__339__239_0/

[1] J. Aguadé - Constructing modular classifying spaces, Israel J. Math. 66 (1989), p. 23-40. | DOI | MR | Zbl

[2] K. K. S. Andersen - The normalizer splitting conjecture for p-compact groups, Fund. Math. 161 (1999), p. 1-16. | EuDML | MR | Zbl

[3] K. K. S. Andersen, T. Bauer, J. Grodal & E. K. Pedersen - A finite loop space not rationally equivalent to a compact Lie group, Invent. Math. 157 (2004), p. 1-10. | DOI | MR | Zbl

[4] K. K. S. Andersen & J. Grodal - Automorphisms of p-compact groups and their root data, Geom. Topol. 12 (2008), p. 1427-1460. | DOI | MR | Zbl

[5] K. K. S. Andersen & J. Grodal, The classification of 2-compact groups, J. Amer. Math. Soc. 22 (2009), p. 387-436. | DOI | MR | Zbl

[6] K. K. S. Andersen, J. Grodal, J. M. Møller & A. Viruel - The classification of p-compact groups for p odd, Ann. of Math. 167 (2008), p. 95-210. | DOI | MR | Zbl

[7] T. Bauer, N. Kitchloo, D. Notbohm & E. K. Pedersen - Finite loop spaces are manifolds, Acta Math. 192 (2004), p. 5-31. | DOI | MR | Zbl

[8] N. Bourbaki - Éléments de mathématique : groupes et algèbres de Lie, Chapitre 9, Masson, 1982 ; réimpression Springer, 2007. | MR | Zbl

[9] A. Clark & J. Ewing - The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974), p. 425-434. | DOI | MR | Zbl

[10] W. G. Dwyer & C. W. Wilkerson - A new finite loop space at the prime two, J. Amer. Math. Soc. 6 (1993), p. 37-64. | DOI | MR | Zbl

[11] W. G. Dwyer & C. W. Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. 139 (1994), p. 395-442. | DOI | MR | Zbl

[12] W. G. Dwyer & C. W. Wilkerson, The center of a p-compact group, in The Čech centennial (Boston, MA, 1993), Contemp. Math., vol. 181, Amer. Math. Soc., 1995, p. 119-157. | MR | Zbl

[13] W. G. Dwyer & C. W. Wilkerson, Product splittings for p-compact groups, Fund. Math. 147 (1995), p. 279-300. | EuDML | MR | Zbl

[14] S. Jackowski & J. Mcclure - Homotopy decomposition of classifying spaces via elementary abelian subgroups, Topology 31 (1992), p. 113-132. | DOI | MR | Zbl

[15] S. Jackowski, J. Mcclure & B. Oliver - Homotopy classification of self-maps of BG via G-actions. I, Ann. of Math. 135 (1992), p. 183-226. | DOI | MR | Zbl

[16] S. Jackowski, J. Mcclure & B. Oliver, Homotopy classification of self-maps of BG via G-actions. II, Ann. of Math. 135 (1992), p. 227-270. | DOI | MR | Zbl

[17] J. Lannes - Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire, Publ. Math. I.H.É.S. 75 (1992), p. 135-244. | DOI | EuDML | Numdam | MR | Zbl

[18] J. M. Møller - N-determined 2-compact groups. I, Fund. Math. 195 (2007), p. 11-84. | DOI | EuDML | MR | Zbl

[19] J. M. Møller, N-determined 2-compact groups. II, Fund. Math. 196 (2007), p. 1-90. | DOI | EuDML | MR | Zbl

[20] D. Notbohm - Topological realization of a family of pseudoreflection groups, Fund. Math. 155 (1998), p. 1-31. | EuDML | MR | Zbl

[21] D. Notbohm, Spaces with polynomial mod-p cohomology, Math. Proc. Cambridge Philos. Soc. 126 (1999), p. 277-292. | DOI | MR | Zbl

[22] B. Oliver - Higher limits via Steinberg representations, Comm. Algebra 22 (1994), p. 1381-1393. | DOI | MR | Zbl

[23] D. Quillen - On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. 96 (1972), p. 552-586. | DOI | MR | Zbl

[24] J-P. Serre - Représentations linéaires des groupes finis, Hermann, 1971. | MR | Zbl

[25] G. C. Shephard & J. A. Todd - Finite unitary reflection groups, Canadian J. Math. 6 (1954), p. 274-304. | DOI | MR | Zbl

[26] J. D. Stasheff - Manifolds of the homotopy type of (non-Lie) groups, Bull. Amer. Math. Soc. 75 (1969), p. 998-1000. | DOI | MR | Zbl

[27] Z. Wojtkowiak - On maps from ho lim F to 𝐙 to 𝐙, in Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, 1987, p. 227-236. | MR | Zbl

[28] A. Zabrodsky - On the realization of invariant subgroups of π * (X), Trans. Amer. Math. Soc. 285 (1984), p. 467-496. | MR | Zbl