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MULTIPLICATIVE PROPERTIES
OF THE SLICE FILTRATION

Pablo PELAEZ

Abstract. — Let S be a Noetherian separated scheme of finite Krull dimension, and
A% (S) be the motivic stable homotopy category of Morel-Voevodsky. In order to
get a motivic analogue of the Postnikov tower, Voevodsky [25] constructs the slice
filtration by filtering J#(S) with respect to the smash powers of the multiplicative
group G,,. We show that the slice filtration is compatible with the smash product in
Jardine’s category Spt%ﬂ/l* of motivic symmetric T-spectra [14], and describe several
interesting consequences that follow from this compatibility. Among them, we have
that over a perfect field all the slices s, are in a canonical way modules in Spt?ﬂfl*
over the motivic Eilenberg-MacLane spectrum HZ, and if the field has characteristic
zero it follows that the slices s, are big motives in the sense of Voevodsky, this relies
on the work of Levine [16], Rondigs-Ostveer [22] and Voevodsky [26]. It also follows
that the smash product in Spt:‘?ﬂ/l* induces pairings in the motivic Atiyah-Hirzebruch
spectral sequence.

Résumé (Les propriétés multiplicatives de la filtration par les tranches). — Soit S un
schéma noethérien séparé de dimension de Krull finie, et 4#(S) la catégorie homo-
topique stable de Morel-Voevodsky. Afin d’obtenir un analogue motivique de la tour
de Postnikov, Voevodsky [25] définit la filtration par les tranches dans 4#(S) con-
sidérant les smash-produits itérées de le groupe multiplicatif G,,. Nous montrons que
la filtration par les tranches est compatible avec le smash-produit dans la catégorie
de Jardine Spt%ﬂ/l* des T-spectres symétriques motiviques [14]. Cette compatibilité
a plusieurs conséquences intéressantes. D’entre eux, sur un corps parfait tous les
tranches s; sont canoniquement modules dans Spt?ﬂfl* sur le spectre motivique
d’Eilenberg-MacLane HZ, et si le corps est de charactéristique zéro les tranches
s4 sont motifs grands au sens de Voevodsky, ce utilise les résultats de Levine [16],
Rondigs-Ostveer [22] et Voevodsky [26]. Nous montrons aussi que le smash-produit
dans Spt%ﬂ/l* induit des structures multiplicatives sur la suite spectrale motivique de
Atiyah-Hirzebruch.
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INTRODUCTION

Let S be a Noetherian separated scheme of finite Krull dimension, ¢Jm|s be the
category of smooth schemes of finite type over S, M, be the category of pointed
simplicial presheaves on ¢m|gs equipped with the motivic model structure of Morel
and Voevodsky [18], and T in M, be S* A G,, where G,, is the multiplicative group
AL —{0} pointed by 1, and S is the simplicial circle. Let Spt,J#, denote the category
of T-spectra on M, equipped with the motivic stable model structure, and 4% (S)
its homotopy category, which is triangulated. We consider the following objects in
Sptp M

Cl = {Fn(S"ANG;, ANUy) | nyr,8 2058 —n > q;U € dm|s}
where F, is the left adjoint to the n-evaluation functor ev,, : Sptp- M, — JM,. In order

to get a motivic version of the Postnikov tower, Voevodsky [25] constructs a filtered
family of triangulated subcategories of J#(S), which we call the slice filtration:

1) - C ST (8) C SL i (S) € L T (S) C -

where ST 4 eﬂr(S ) is the smallest full triangulated subcategory of 4% (S) which con-
tains C%; and is closed under arbitrary coproducts. The work of Neeman [19], [20],
shows that the inclusion:

iq : SHAH(S) — SH(S)
has a right adjoint r4, and that the functors:
far8q : MH(S) — HH(S)

are exact, where f, = i,7q, and for every X in Sptp M., s4(X) fits in the following
distinguished triangle:

B

X w
fonX —= fiX — > 5,X Z%qu+1X

We say that f;(X) is the (¢ — 1)-connective cover of X and s,(X) the g-slice of X.

Let Spt?/‘l/l* denote the category of symmetric T-spectra on M, equipped with the
motivic symmetric stable model structure defined by Jardine [14], and J#>(S) its
homotopy category, which is triangulated. Since the adjunction:

(V,U, ) : Sptp M, — Spt2M,
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viii INTRODUCTION

given by the symmetrization and forgetful functors is a Quillen equivalence [14], we get
a similar filtration for 4% z:(S). Using the slice filtration (1), it is possible to construct
a spectral sequence which is an analogue of the classical Atiyah-Hirzebruch spectral
sequence in algebraic topology. Namely, let X,Y be in Spt?/’lfl*, and [—, —]§pt be the

set of maps between two objects in J# E(S). Then the collection of distinguished
triangles:
{f;:+1X - quX - 3§X - =7’ q+1X}
generates an exact couple (D}%(Y; X), EV'Y(Y; X)), where:
1. DPYY;X) = [Y, S5 0 fEX]E || and
2. EDUY; X) = [V, 55902 X5 .
Let A be a cofibrant ring spectrum with unit in Spt?/‘%*, and A-mod be the cat-

egory of left A-modules in Spt>,. It follows directly from the work of Jardine [14]
and Hovey [9] that the adjunction:

(AN=U,o): Spt?ﬂfl* — A-mod

induces a model structure A-mod(,) in A-mod, i.e. a map f in A-mod(M,) is a
weak equivalence or a fibration if and only if U f is a weak equivalence or a fibration
in Spt?ﬂfl*. In the rest of this introduction p, g € Z will denote arbitrary integers, and
u:1 — A the unit map of A.
Our main results are the following;:
1. There exists a model structure chffSptf?ﬂ/t* for symmetric T-spectra on i,
such that its homotopy category Rce d?‘( E(S) is triangulated and naturally

equivalent as a triangulated category to %4 M (S) (see diagrams (2) and (3)
at the end of this introduction). Furthermore, the identity:

id : SptZ M, — chffSptgﬂ/l*

is a right Quillen functor, and the functor f; is canonically isomorphic to the
following composition of exact functors:

M (S) 2 Rea () - h™(S)

where Ry denotes a fibrant replacement functor in sptim*, and CE denotes

a cofibrant replacement functor in RCq SptT/‘l/l* For the proof the reader may
look at Theorem 3.3.9, Corollary 3.3. 17 Theorem 3.3.25, corollary 3.3.5, and
Theorem 3.3.22.

2. There exists a model structure Squtq}%ﬂ/l* for symmetric T-spectra on M, such
that its homotopy category SI4# z:(S) is triangulated and the identity:

id : Ros Spty M. — SISptr.
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INTRODUCTION ix

is a left Quillen functor. Furthermore, the functor s, is canonically isomorphic
to the following composition of exact functors:

() HZ(S)

Ry l ] Cf
c= 5

q Wq 1
Ros > (S) —> SIpH™(S) —> Ros MH7(S)

where Wfﬂ denotes a fibrant replacement functor in S9SptFM,. For the proof
the reader may look at Theorem 3.3.50, Corollaries 3.3.59, 3.3.5, and Theo-
rem 3.3.68. In the rest of this introduction f, s> will denote respectively
Cf o Ry, C;: ) WqEﬂL1 o C‘;’: o Ry.

. The smash product of symmetric T-spectra induces the following Quillen bi-
functors in the sense of Hovey [10]:

Rez, SptzMs x Rog, Spopite —— RopraSptr .

—A—

SPSptE M, x SISptT M. SP+aSptE M,

For the proof the reader may look at Theorems 3.4.5 and 3.4.12.

. The homotopy category J#(A-mod) of A-mod(M,) is triangulated. Further-
more, there exist model structures Rga A-mod(M,), S7A-mod(M,) in A-mod
such that their homotopy categories chﬁd}‘{ (A-mod), S?4# (A-mod) are tri-
angulated, and the identity functors:

A-mod(M,) <4 Rgs A-mod(M.) _d, S7A-mod(M,)

are left Quillen functors. We will denote by fi", sg* the following compositions
of exact functors:

e

& (A-mod) Bm Roa M (A-mod) M (A-mod)

& (A-mod) & (A-mod)

le TC(}"
m

C, wm
ch“ M(A-mOd) s S‘IW(A-mod) —y ch“ M(A—mod)

where C7" denotes a cofibrant replacement functor in chffA-mod(ﬂ/l*); and
R, WJi, denote fibrant replacement functors respectively in A-mod(J.),
S?A-mod(M.). For the proof the reader may look at Theorem 2.8.4, Propo-
sition 3.5.3, Theorems 3.5.8, 3.5.49, and propositions 3.5.12, 3.5.54.

SOCIETE MATHEMATIQUE DE FRANCE 2011



x INTRODUCTION

5. If A is cofibrant in RcoﬁSptgﬂfl*, then the exact functors:

f7 ©URm : JH(A-mod) — ##™(S)

52 0 URy : H#(A-mod) — JH*(S)

factor (up to a canonical isomorphism) through % (A-mod) as follows:

W (Aemod) TR 5(S) M (Amod) 2 ™ (s)

!
i lff 53 lsf
v

Y
M (A-mod) 27 () e (A-mod) = fr%(S)

This means that for every A-module M, its (g — 1)-connective cover qu(M ) and

g-slice s?(M ) inherit a natural structure of A-module in Spt?/’lfl*. For the proof
the reader may look at Theorem 3.6.19.

6. If A is cofibrant in chffSpt%jw/’l/l* and its unit map u is a weak equivalence in

SOSptZM,, then the functor:
syt M (S) - SHT(S)

is canonically isomorphic to the following composition of exact functors:

HH(S) A (S)
Rx L ]URT,,
Rea, M (S) & (A-mod)
c? e
| e |

- W’"l- 1
SIME(S) ——= SIH (A-mod) —"> R 4 (A-mod)

where Pf denotes a cofibrant replacement functor in Squtgﬂft*. This means
that for every X in Spt%/(l/l*, its g-slice qu(X ) is naturally equipped with a
structure of A-module in Spt%ﬂ/l*. For the proof the reader may look at Theo-
rem 3.6.20.

7. Let X,X',Y,Y’ be in SptrM,. Then the smash product in Spt=M, induces
natural external pairings in the motivic Atiyah-Hirzebruch spectral sequence:

EPYY;X)® EP 9 (Y, X') — EPtP o+ (Y AY; X A X')

For the proof the reader may look at Theorem 3.6.16.
8. Let HZ denote the motivic Eilenberg-MacLane spectrum in SptZ>, [16, Ex-
ample 8.2.2(2)]. The following result proves a conjecture of Voevodsky [25]:
— If the base scheme S is a perfect field, then for every X in Spt%ﬂfl*, its

g-slice s7'(X) has a natural structure of HZ-module in SptTM..
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INTRODUCTION xi

For the proof the reader may look at Theorem 3.6.22.
9. If we restrict the field even further to the case of characteristic zero, then we
get that the slices may be interpreted as motives in the sense of Voevodsky:
— If k is a field of characteristic zero, then for every X in Spt?/’l/l* its g-slice
s2(X) is a big motive in the sense of Voevodsky [22, Section 2.3].
For the proof the reader may look at Theorem 3.6.23.

The model category RC;zff Spt?ﬂfl* is defined as the right Bousfield localization of

Sptqzwﬂ/l* with respect to the Cgf’fz-colocal equivalences, where ngfz denotes the sym-
metrization of the collection of T-spectra Cd; described above (see Theorem 3.3.9).
On the other hand, S qut%/’l/l* is defined as a right Bousfield localization with respect
to an auxiliary model structure L<q+1Spt§:~m*, which is a left Bousfield localiza-
tion of Sptqzwﬂ/l* and its fibrant replacement functor describes the cone of the map
0> : f7X — X. The model structures Rgs A-mod(M.), S?A-mod(M.) are con-
structed similarly using the left adjoint A A — to define the maps that get inverted in
the Bousfield localization. To show that the smash product in Spt%ﬂ/l* induces Quillen
bifunctors, we use Hovey’s approach to symmetric monoidal model categories [10,
Chapter 4], and the triangulated structure in the homotopy categories RCZff %724 E(S ),

SI K E(S). The Bousfield localizations are constructed following Hirschhorn’s ap-
proach [6]. In order to apply Hirschhorn’s techniques, it is necessary to check that
Spt?/’lfl* and A-mod(M,) are both cellular; for this we rely on Hovey’s general ap-
proach to spectra [11] and on an unpublished result of Hirschhorn (see Theorem 2.2.4).

We now give an outline of this thesis. In Chapter 1, we just recall some standard re-
sults about Quillen model categories. The reader who is familiar with the terminology
of model categories may skip this chapter.

In Chapter 2, we review the definitions of the Morel-Voevodsky stable model struc-
ture for simplicial presheaves Spt; M. and Jardine’s stable model structure for sym-
metric T-spectra Spt%/(l/l*. We also show that these two model structures are cellular,
therefore it is possible to apply Hirschhorn’s technology to construct Bousfield lo-
calizations. In Section 2.8 we recall the construction of the model structures for the
categories of A-modules and A-algebras, where A denotes a cofibrant ring spectrum
with unit in Jardine’s motivic symmetric stable model category. We verify that the
category of A-modules equipped with this model structure also satisfies Hirschhorn’s
cellularity condition. The reader who is familiar with these model structures may ei-
ther skip this chapter or simply look at Sections 2.2, 2.5, 2.7 and 2.8 where we prove
that the cellularity condition holds.

Finally in Chapter 3, we carry out the program sketched above. In Section 3.1,
we review Voevodsky’s construction for the slice filtration in the setting of sim-
plicial presheaves. In Section 3.2, we apply Hirschhorn’s localization techniques to
the Morel-Voevodsky stable model structure in order to construct three families of
model structures, namely chﬁ Sptyr M., L<gSpty M, and SISptpM,. The first fam-
ily, chff Sptr M, is constructed by a right Bousfield localization with respect to the
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xii INTRODUCTION

Morel-Voevodsky stable model structure (see Theorem 3.2.1), and it provides a lift-
ing of Voevodsky’s slice filtration to the model category level (see Theorem 3.2.23).
Moreover, this family has the property that the cofibrant replacement functor Cy pro-
vides an alternative description for the functor f; ((¢ — 1)-connective cover) defined
above (see Theorem 3.2.20). In order to get a lifting for the slice functors s, to the
model category level, we need to introduce the model structures L. ,Sptr M, and
S9Sptr M. The model category L.qSpt, M, is defined as a left Bousfield localization
with respect to the Morel-Voevodsky stable model structure (see Theorem 3.2.29); its
main property is that its fibrant replacement functor W, gives an alternative descrip-
tion for the cone of the natural map f;X — X (see Theorems 3.1.18 and 3.2.52). On
the other hand, the model structure SISpt; M, is constructed using right Bousfield
localization with respect to the model category L.q4+1Spty M. (see Theorem 3.2.59),
and it gives the desired lifting for the slice functor s, to the model category level (see
Theorem 3.2.80).

In Section 3.3, we promote the model structures defined above (Section 3.2) to
the setting of symmetric T-spectra. In this case, Hirschhorn’s localization technol-
ogy applied to Jardine’s stable model structure for symmetric T-spectra allows us
to introduce three families of model structures which we denote by Rc;zﬂSpt‘%/’l/l*,
L<qut§5ﬂfl* and Squtgﬂfl*; where the underlying category is given by symmetric
T-spectra (see Theorems 3.3.9, 3.3.26 and 3.3.50). Using the Quillen equivalence [14]
given by the symmetrization and the forgetful functors, we are then able to show
that these new families of model structures are also Quillen equivalent to the ones
introduced in Section 3.2 (see Theorems 3.3.19, 3.3.42 and 3.3.64). Therefore, these
model structures give liftings for the functors f; and s; to the model category level
(see Corollary 3.3.5, and Theorems 3.3.22(3), 3.3.68(3)), with the great technical ad-
vantage that the underlying categories are now symmetric monoidal. Hence, we have
a natural framework for the study of the multiplicative properties of Voevodsky’s slice
filtration.

In Section 3.4, we show that the smash product of symmetric T-spectra

Rer SptM, x Ros Sptp M. S RC,,;.,sp@m*

SPSptEM, x SISptEM, —— SPHaSptEMN,

is in both cases a Quillen bifunctor in the sense of Hovey (see Theorems 3.4.5 and
3.4.12).

In Section 3.5, we will promote (using the free A-module functor A A —) the model
structures constructed in Section 3.3 to the category of A-modules, where A is a
cofibrant ring spectrum with unit in Spt%ﬂfl*. We will denote these new model struc-
tures by Rc;zﬁA-mod(ﬂ/l*), LgA-mod(M,) and SYA-mod(M,). These new model
structures will be used as an analogue of the slice filtration for the motivic stable ho-
motopy category of A-modules, as well as a tool to describe the behavior of the slice
functors sqz when they are restricted to the category of A-modules. We will see that if
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INTRODUCTION xiii

one imposes some natural additonal conditions on the ring spectrum A, then the free
A-module functor A A — induces a strict compatibility between the slice filtration in
the categories of symmetric T-spectra and A-modules (see Theorems 3.5.22, 3.5.45,
3.5.68 and 3.5.70).

In Section 3.6, we will rely on all the previous constructions to obtain our main
results. We will show that the smash product of symmetric T-spectra induces up to
homotopy natural pairings (see Theorem 3.6.9):

c

FEX) A FE(Y) —2% £2, (X AY)

US
s;‘;‘(X) A s?(Y) 4 sEJrq(X AY)
As a consequence, if A is a ring spectrum in 4% 2(.S') (i-e. up to homotopy) and M is
an A-module in #>(S), then (see Theorem 3.6.13):

1. The (—1)-connective cover of A, f&(A) is a ring spectrum (up to homotopy) in
MH(S).

2. The (g — 1)-connective cover of M, fZ*(M) is a module (up to homotopy) over
3 (4).

3. The direct sum of all the connective covers of A, f=(A) = @nezfr(A) is a
graded ring (up to homotopy) in J# z:(S).

4. The direct sum of all the connective covers of M, f*(M) = ®nezf-(M) is a
graded module (up to homotopy) over fZ(A).

5. The zero slice of A, s3(A) is a ring spectrum (up to homotopy) in #>(S).

6. The g-slice of M, S?(M ) is a module (up to homotopy) over s3'(A).

7. The direct sum of all the slices of 4, s¥(A) = ®pezs>(A) is a graded ring (up
to homotopy) in ##>(S).

8. The direct sum of all the slices of M, s*(M) = @eczs> (M) is a graded module
(up to homotopy) over s=(A).

9. The smash product of symmetric T-spectra induces (via the external pairings
U¢ and U®) natural external pairings in the motivic Atiyah-Hirzebruch spectral
sequence (see definition 3.6.15 and Theorem 3.6.16):

EPY(Y;X)® EP 9 (Y'; X') — EPtPatd (Y AY; X A X)
(avﬂ) t a ~ ,8

We will also see that if we have a cofibrant ring spectrum A with unit in Rcoﬁ Spt?ﬂfl*,
then for every A-module M in Spt>M, (see Theorem 3.6.19):
1. ff(M ) is again an A-module in Spt%ﬂ/t* (not just up to homotopy, but in a
very strict sense).

2. sf(M ) is again an A-module in Spt> M, (not just up to homotopy, but in a very
strict sense).
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xiv INTRODUCTION

Furthermore, if the unit map u is a weak equivalence in SOSptgﬂfl*, then the free
A-module functor A A — induces for every symmetric T-spectrum X (see Theo-
rem 3.6.20), a natural structure of A-module in Spt%ﬂfz* (i-e. not just up to homotopy,
but in a very strict sense) on its g-slice sq2 (X).

Finally, we will be able to prove a conjecture of Voevodsky (see [16, Corol-
lary 11.1.3], [25]), which says that if the base scheme S is a perfect field, then
for every symmetric T-spectrum X, its g-slice s?(X ) is naturally equipped with
a module structure in Spt%m* over the motivic Eilenberg-MacLane spectrum HZ
(see Theorem 3.6.22). If we restrict the field even further, considering a field of
characteristic zero, then as a consequence we will prove that all the slices s 2(X) are
big motives in the sense of Voevodsky (see Theorem 3.6.23).

Tower of Quillen model categories for the slice filtration:

idi/ i/id

ot R ar1Spty s

id L }id
Res Sptr i, Rge Spti,

(2) id ,L }id
Rga-1Sptp M chf;lsptim*

id| }ia
idi/ v j/id

Sptp M, SptZM,

and its associated diagram of homotopy categories:

17 Cq+21, LC;E+2
E‘F—lgﬂ[ﬂﬁ( ’”q+1Cq+l chM( ) VCq+1 CQHM (S)
Cq+1l/ ch-u
LK (S) Ros, #H(S) — "~ Ron, dH>(S)
3) [ &) e
S S A

)

Ca-1) ch_l
[ L |
M (S) H(S) ; M7 (S)
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CHAPTER 1

PRELIMINARIES

All the results in this chapter are classical (see [21], [10], [6], [4], [3]) and are
included here just to fix notation and to make our discussion relatively self contained.

1.1. Model Categories

Model categories were first introduced by Quillen in [21], his original definition has
been slightly modified along the years, we will use the definition introduced in [1].

Definition 1.1.1. — A model category @ is a category equipped with three classes of
maps (W, E,F) called weak equivalences, cofibrations and fibrations, such that the
following azxioms hold:

MC1 : & is closed under small limits and colimits.

MC2 : If f,g are two composable maps in & and two out of f,g,go f are weak
equivalences then so is the third one.

MC3 : The classes of weak equivalences, cofibrations and fibrations are closed
under retracts.

MC4 : Suppose we have a solid commutative diagram:

A—X

7
il 7 e
7/

B——Y

where i is a cofibration, p is a fibration, and either i or p is a weak equivalence,
then the dotted arrow making the diagram commutative exists.

MCS5 : Given any arrow f : A — B in @, there exist two functorial factorizations,
f=poiand f = qoj, where p is a fibration and a weak equivalence, i is a
cofibration, q is a fibration and j is a cofibration and a weak equivalence.
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A map j : A — B will be called a trivial cofibration (respectively trivial fibration)
if it is both a cofibration and a weak equivalence (respectively a fibration and a weak
equivalence).

If a given category & has a model structure, then we get immediately the following
consequences:

Remark 1.1.2. — 1. The limit aziom MC1 implies that there is an initial and a
final object in @, which we will denote by @ and * respectively. We say that the
category & is pointed if the canonical map @ — * is an isomorphism.

2. The azxioms for a model category are self dual, therefore the opposite category
@°" has also a model structure, where a map i : A — B in @°° is a weak
equivalence, cofibration or fibration if its dual i : B — A is a weak equivalence,
fibration or cofibration in @. This implies in particular that any result we prove
about model categories will have a dual version.

3. Let X be an object in &. Then the category (& | X) of objects in € over
X has also a model structure, where the weak equivalences, cofibrations and
fibrations are maps which become weak equivalences, cofibrations and fibrations
after applying the forgetful functor (8 | X) — 4.

4. Similarly the category (X | @) has a model structure induced from the one in
@. We will denote by . the category (x | &) of objects under the final object
of @.

5. Let A, X be two objects in @, then the category (A | @ | X) of objects which
are simultaneously under A and over X has also a model structure induced from
the one in @.

Let X be an object in &. We say that X is cofibrant if the natural map @ — X
is a cofibration. Similarly, we say that X is fibrant if the natural map X — * is a
fibration.

Consider two objects A, X in @. We say that A is a cofibrant replacement for X, if
A is cofibrant and there is a map A — X which is a weak equivalence in &. Dually, we
say that X is a fibrant replacement for A, if X is fibrant and there is a map A — X
which is a weak equivalence in .

Let i : A— B, p: X — Y be two maps in &. We say that 7 has the left lifting
property with respect to p (or that p has the right lifting property with respect to i) if
for every solid commutative diagram:

—>X

A
L S/L
1 Y p
/
B——Y

the dotted arrow making the diagram commutative exists.
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The following are two elementary but extremely useful results about model cate-
gories.

Proposition 1.1.3 (Retract Argument, [10]). — Let & be a model category and f = poi a
factorization of f such that f has the left lifting property with respect to p (respectively
f has the right lifting property with respect to i). Then f is a retract of i (respectively
f is a retract of p).

Proof. — By duality it is enough to show the case where f has the left lifting property
with respect to p.
Consider the following solid commutative diagram:

A—sX

.7
|k
7/

BTB

By hypothesis the dotted arrow j making the diagram commutative exists. But then
the following commutative diagram shows that f is a retract of 4.

id

A a1y m

(N

B—.;‘X—?‘B

Lemma 1.1.4 (Ken Brown’s lemma, [10]). — Let F': & — D be a functor, where & is a
model category. Assume that there exists a class V of maps in D which has the two
out of three property, and that F(i) € ¥ for all trivial cofibrations i : A — B between
cofibrant objects A and B in G. Then F(g) € V for all weak equivalences g: A — B
between cofibrant objects A and B in @.

Proof. — Consider the following commutative diagram:
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where we have a factorization of (g,id) = p o i, with i a cofibration and p a trivial
fibration.

Since A and B are cofibrant, it follows that i 4 and ip are cofibrations. This implies
that 4014, ¢ 0 ip are both cofibrations, and hence C is a cofibrant object in &.

By the two out of three property in &, i ois and i o ig are weak equivalences,
since g, p and idp are weak equivalences. Therefore i o i4 and i o ig are both trivial
cofibrations. It follows that F'(i 0oi4) and F(i o ig) are both in . But then F(p) o
F(ioig) = F(poioipg) = F(id) = id, and since ¥ has the two out of three property,
we have that F(p) is in ¥/. Then the two out of three property for 9 implies that
F(g) = F(p)o F(ioiga) is also in ¥. O

By duality we get immediately the following lemma:

Lemma 1.1.5. — Let F : @ — D be a functor, where @ is a model category. Assume
that there ezists a class ¥ of maps in D which has the two out of three property, and
that F(p) € V for all trivial fibrations p : X — Y between fibrant objects X, Y in @.
Then F(g) € ¥ for all weak equivalences g: X — Y between fibrant objects X and Y
in G. d

The retract argument has the following consequences, which give nice characteri-
zations for the cofibrations and trivial cofibrations (respectively fibrations and trivial
fibrations) in terms of a left lifting property (respectively right lifting property).

Corollary 1.1.6. — The class of cofibrations (respectively trivial cofibrations) in a
model category @ is equal to the class of maps having the left lifting property with
respect to any trivial fibration in @ (respectively any fibration in @). The class of
fibrations (respectively trivial fibrations) in a model category @ is equal to the class
of maps having the right lifting property with respect to any trivial cofibration in @
(respectively any cofibration in @).

Proof. — By duality it is enough to prove the case of cofibrations and trivial cofi-
brations. Suppose that i : A — B is a cofibration in &, then the lifting axiom MC4
implies that ¢ has the left lifting property with respect to any trivial fibration in
@. Conversely, if i : A — B has the left lifting property with respect to any trivial
fibration in &, then the factorization axiom MCS5 implies that i = gl where [ is a
cofibration in & and q is a trivial fibration in &. Since i has the left lifting property
with respect to g, the retract argument (see Proposition 1.1.3) implies that ¢ is a
retract of I. Therefore, the retract axiom MCS3 implies that ¢ is also a cofibration.
The case for trivial cofibrations is similar. O
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Corollary 1.1.7. — Any isomorphism in a model category @ is a cofibration, a fibra-
tion, and a weak equivalence. The class of cofibrations and the class of trivial cofi-
brations in @ are closed under retracts and pushouts. The class of fibrations and the
class of trivial fibrations in & are closed under retracts and pullbacks.

Proof. — It follows immediately from the lifting property characterization (Corol-
lary 1.1.6) for cofibrations, trivial cofibrations, fibrations and trivial fibrations. O

Remark 1.1.8. — Let @ be a model category. Given any object X in @, we can apply
the factorization axiom MCS5 to the natural map @ — X to get a cofibrant replacement
for X:

X
g—=Qx 2. x

where QX is cofibrant and QX is a trivial fibration. We also get fibrant replacements
for X when we factor the natural map X — *:

X
X s Rx — >

where RX is fibrant and RX is a trivial cofibration. The factorization aziom MC5

implies also that these two constructions are functorial.

Definition 1.1.9. — Let @, B be two model categories. A functor F : & — B is called
a left Quillen functor if it has a right adjoint G : B — @, and satisfies the following
conditions:

1. If i is a cofibration in G, then F(i) is also a cofibration in B.

2. If § is a trivial cofibration in G, then F(j) is also a trivial cofibration in B.

The right adjoint G is called a right Quillen functor, and the adjunction
(F7 G7 ‘P) 18— %

is called a Quillen adjunction.

Definition 1.1.10. — Let (F,G, ) : & — B be a Quillen adjunction. We say that F is
a left Quillen equivalence if for every cofibrant object X in & and every fibrant object
Y in B the following condition holds:

— A map f : X — GY is a weak equivalence in & if and only if its adjoint
ft:FX —Y is a weak equivalence in B.

In this case G will be called a right Quillen equivalence, and (F,G,y) a Quillen
equivalence.
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Definition 1.1.11. — Let G be a model category, and let X be an object of G. We say
that X is a cylinder object for X, if we have a factorization of the fold map

XX —Y=x

9%

X
where i is a cofibration and s is a weak equivalence.

Definition 1.1.12. — Let & be a model category, and let X be an object of G. We say
that X is a path object for X, if we have a factorization of the diagonal map

X—A—>X><X

1A

X

where p is a fibration and r is a weak equivalence.

Definition 1.1.13. — Let @ be a model category and consider two maps f,g: X — Y.
We say that f is left homotopic to g (f A g) if there ezists a cylinder object X for
X, together with the following factorization:

XX (£,9) v

\ A

X
The map H is called a left homotopy from f to g.

Definition 1.1.14. — Let & be a model category and consider two maps f,g: X — Y.
We say that f is right homotopic to g (f ~g) if there exists a path object Y forY,
together with the following factorization:

(f.9) Y xY
p

The map H is called a right homotopy from f to g.

Definition 1.1.15. — Let @ be a model category and consider two maps f,g: A — B.
We say that f is homotopic to g (f ~ g) if f and g are both left and right homotopic.
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Definition 1.1.16 (cf. [21]). — Let G be an arbitrary category and W a class of maps
in . The localization of & with respect to W will be a category w'eg together with
a functor

v:8—wlg

having the following universal property: for every w € W, y(w) is an isomorphism,
and given any functor F : @ — 9D such that F(w) is an isomorphism for every
w € W, there is a unique functor 6 : W '@ — D, such that 0oy = F, i.e. the
following diagram commutes:

F

174
7
s
s
s

wlyg

D

Theorem 1.1.17 (Quillen). — Let & be a model category. Then there exists a category
Ho @, which is the localization of @& with respect to the class W of weak equivalences,
and is called the homotopy category of &. Ho# is defined as follows:

1. The objects of Ho8@ are just the objects in &.
2. The set of maps in Ho & between two objects X,Y is given by the set of homotopy
classes between cofibrant-fibrant replacements for X and Y :

Hompou(X,Y) = ma(RQX, RQY)

and the composition law is induced by the composition in &.

Let HoY., Hoy, HoG s be the full subcategories of Ho generated by the cofibrant,
fibrant and cofibrant-fibrant objects of @ respectively. In the following diagram, all the
functors are equivalences of categories:

Ho %,
/ m
% (\\
Ho&. Ho@
m /
\ %
Ho& f

where the adjoints to the equivalences given above are constructed taking cofibrant,
fibrant and cofibrant-fibrant replacements.

Proof. — We refer the reader to [21, I.1 Theorem 1]. a
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Theorem 1.1.18 (Quillen). — Let (F,G, ) : & — B be a Quillen adjunction. Then the
adjunction (F, G, ) descends to the homotopy categories, i.e. we get an adjunction:

(QF,RG, ¢) : Hol —— HoB

Furthermore, if (F, G, ¢) is a Quillen equivalence, then (QF, RG, ¢) is an equivalence
of categories.

Proof. — We refer the reader to [21, 1.4 Theorem 3]. O

1.2. Cofibrantly Generated Model Categories

In this section we recall the definition of a cofibrantly generated model category.

In order to get the functorial factorizations required in axiom MCS5, we need to
introduce ordinals, cardinals, and regular cardinals. For a definition of these, see [6,
Chapter 10]. It will be convenient in some situations to consider an ordinal A as a
small category, with objects equal to the elements of )\, and a unique map from a to
bifa <b.

Definition 1.2.1. — Let & be a category that is closed under small colimits, and let
Y be a class of maps in €. If X is an ordinal, then a M-sequence in & is a functor
A:X— G, ie a diagram

AO_)AI_)..._yAﬁ_)... (ﬂ<A)
such that for every limit ordinal v < A\ the induced map
colimp,Ag — A,

is an tsomorphism.

The composition of the A-sequence is the map Ag — colimg.)Ag.

If Ag — Agy1 isin V for any B < A, we say that the \-sequence is a A-sequence of
maps in ¥, and the transfinite composition Ay — colimg<Ag is called a transfinite
composition of maps in V.

Proposition 1.2.2. — Let & be a model category, then the cofibrations and trivial cofi-
brations in @ are both closed under transfinite composition.

Proof. — The cofibrations and trivial cofibrations in & are characterized by a left
lifting property. But the universal property of the colimit clearly preserves this lifting
property under transfinite composition. O

Definition 1.2.3. — Let € be a category closed under small colimits, and let V be a
class of maps in 6.
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1. If k is a cardinal, then an object D in € is k-small relative to ¥, if for every
reqular cardinal A > k and every \-sequence

AO_)A].—')”'_)A[‘]_)"' (/3<A)
of maps in V, we have a bijection of sets:
colimgyHomg (D, Ag) — Homg(D, colimg<Ag)

2. An object D in € is small relative to V if it is k-small relative to ¥ for some
cardinal k, and it is small if it is small relative to the class of all maps in ©.

Definition 1.2.4. — Let G be a category, and let I be a set of maps in G.

1. We define I-inj as the class of maps in € that have the right lifting property
with respect to every map in I.
2. We define I-cof as the class of maps in G that have the left lifting property with
respect to every map in I-inj.
Definition 1.2.5. — Let € be a category closed under small colimits, and let I be a set
of maps in &, then
1. The relative I-cell complexes are the maps that can be constructed as a transfi-
nite composition of pushouts of elements of I.
2. An object A of € is an I-cell complex, if the map @ — A is a relative I-cell
complez.
3. A map is an inclusion of I-cell complexes if it is a relative I-cell complex whose

domain is an I-cell complex.
We will denote the class of relative I-cell complexes as I-cells.

Remark 1.2.6. — Since the left lifting property is preserved under pushouts and trans-
finite compositions we have that I-cells C I-cof.

Theorem 1.2.7 (Quillen’s small object argument). — Let & be a category closed under
small colimits, and let I be a set of maps in €. Assume that the domains of all the
maps in I are small with respect to I-cells. Then for every map f : X — Y in G,
there is a functorial factorization

X—=Egl-Lsy
where i is in I-cells, and p is in I-inj.
Proof. — We refer the reader to [21], [6], or [10]. O

Definition 1.2.8. — A model category @ 1is cofibrantly generated if there exist sets I
and J of maps in &, such that:

1. The domains of all the maps in I are small with respect to the I-cells.
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2. The domains of all the maps in J are small with respect to the J-cells.
3. The class F N'W of trivial fibrations in @ is equal to I-inj.
4. The class F of fibrations in & is equal to J-inj.

In this situation, I will be called the set of generating cofibrations, and J will be called
the set of generating trivial cofibrations.

To work with spectra, we need to start with a pointed model category. The following
result will allow us to go from an unpointed cofibrantly generated model category to
a pointed one.

Theorem 1.2.9 (Hirschhorn). — Let @ be a cofibrantly generated model category with
set of generating cofibrations I and set of generating trivial cofibrations J. Then the
associated pointed model category G, (see Remark 1.1.2) is also a cofibrantly generated
model category, with set of generating cofibrations F(I) = I, and set of generating
trivial cofibrations F(J) = Jy, where F is the functor F : & — @, defined on objects
A in @ as the pushout in the commutative diagram:

A

|

* — F(A)= A4

%)

and on mapsi: A — B in @ as:

iHid

F(A) = A+ B[]* = F(B)

Proof. — We refer the reader to [7, Theorem 2.7]. a

1.3. Cellular Model Categories

In this section we review Hirschhorn’s cellularity, which is the main property that
a model category has to satisfy if we want to construct Bousfield localizations.

Definition 1.3.1. — Let € be a category closed under small colimits, and let I be a set
of maps in €. If i : A — B is a relative I-cell complez, then a presentation of ¢ is a
pair consisting of a A-sequence

Ag— AL — - > Ag— - (B<A)
for some ordinal \, and a sequence of ordered triples
{(T7°,¢°, 1)}
such that:

1. The composition of the A-sequence is isomorphic to i
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2. For every B < A
(a) T? is a set.
(b) €? is a function e : TP — 1.
(c) Ifi € T? and e? 18 the element C; — D; of I, then hf is a map hf :C; —
Ag, such that there is a pushout diagram

R G | g

i€Th ieTh

w ]

Aﬂ N Aﬂ+1

Definition 1.3.2. — Let & be a category closed under small colimits, and let I be a set
of maps in €. If

itA— B, A=Ag— A1 — - — Ag— - (B<N\), {T?,eP, WP}

is a presented relative I-cell complex, then

1. The presentation ordinal of ¢ is A.

The set of cells of ¢ is []g<x Th.

The size of ¢ is the cardinal of the set of cells of i.

If e is a cell of i, the presentation ordinal of e is the ordinal B such thate € TS.
If B < A, then the (-skeleton of i is Ag.

oLk N

The next remark follows directly from the previous definitions.

Remark 1.3.3. — If € is a category closed under small colimits, and I is a set of maps
in &, then a presented relative I-cell complez is entirely determined by its presentation
ordinal \, and its sequence of triples {(T?,e”,hP)} <.

Definition 1.3.4. — Let € be a category closed under small colimits, and I a set of
maps in G. If

i:A> B, A=Ay > A1 — > Ag— - (B<N), {T? €%, 1P} 5

15 a presented relative I-cell complex, then a subcomplex of i consists of a presented
relative I-cell complex

TtA—B A=Ay A — - = Ag— - (B< ), {T?,&°, 1P} 5

such that
1. For every B < A, T8 C TP and &° is the restriction of €® to T8,
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2. There is a map of A-sequences

id

A Ay A, Ay
o ]
A Ao A, A,

id

such that, for every B < X\ and every i € T‘B, the map ﬁf : C; — fiﬂ is a
factorization of the map hiﬁ : C; — Ag through the map ;15 — Ag.

Proposition 1.3.5. — Let € be a category closed under small colimits, and I a set
of maps in € such that the relative I-cell compleres are monomorphisms, then a
subcomplex of a presented relative I-cell complex is entirely determined by its set of
cells {TP}g<x.

Proof. — The definition of a subcomplex implies that the maps /L; — Ag are all
inclusions of subcomplexes (see definition 1.2.5(3)). Since inclusions of subcomplexes
are monomorphisms, there is at most one possible factorization h’? of each hf through

fiﬂ — Ag. O

Proposition 1.3.6. — Let G be a category closed under small colimits, and let I be a
set of maps in & such that the relative I-cell complexes are monomorphisms. If

i:A— B, AZAO—’AI_’“'_’Aﬂ_’"‘(,@<)\), {Tﬁ,eﬁ,hﬁ}gO\

is a presented relative I-cell complex, then an arbitrary subcomplex of i can be con-
structed by the following inductive procedure:

1. Choose an arbitrary subset T0 of T°.
2. If B < X and we have defined {T”},Kg, then we have determined the object fig
and the map Ag — Ag. Consider the set

{i e TP|h? : C; — Ap factors through Ag — Ag}

Choose an arbitrary subset TP of this set. For every i € T8 there is a unique
map 71? :C; — Ag that makes the diagram

Ci
aﬂl <
Ay — Ay
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commute. Let x‘iﬁ+1 be defined by the pushout diagram

e IIo.

ieTh i€Th
1| |
Ag Apir
Proof. — It follows immediately from the definitions and Proposition 1.3.5. O

Corollary 1.3.7. — Let € be a category closed under small colimits, and let I be a set
of maps in € such that the relative I-cell complexes are monomorphisms. Consider
an arbitrary

i:A—> B, A=Ag— A1 — - > Ag—---(B<A), {Tﬁaeﬂvhﬁ}ﬂo\

presented cell complex. Assume that S is a set and take an arbitrary family {As}ses
of subcomplexes of i : A — B, then there exists a subcomplexr UscgAs which represents
the union of the given family.

Proof. — It follows immediately from Proposition 1.3.6. O

Definition 1.3.8. — Let & be a category closed under small colimits, and let I be a set
of maps in §.

1. If v is a cardinal, then an object A of G is y-compact relative to I if, for every
presented relative I-cell complex i : X — Y, every map from A to Y factors
through a subcomplez of i of size at most 7.

2. An object A of G is compact relative to I if it is y-compact relative to I for
some cardinal 7.

Definition 1.3.9. — Let & be a cofibrantly generated model category with set of gener-
ating cofibrations I.

1. If v is a cardinal, then an object X of @ is ~y-compact if it is y-compact relative
to I (see definition 1.3.8).
2. An object X of @ is compact if there is a cardinal v for which it is «y-compact.

To complete the definition of a cellular model category, we need to introduce the
concept of effective monomorphism.

Definition 1.3.10. — Let © be a category that is closed under pushouts. The map i :
A — B is an effective monomorphism if ¢ is the equalizer of the pair of natural
inclusions B = B[], B.

Remark 1.3.11. — In the category of sets, the class of effective monomorphisms is
just the class of injective maps.
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Definition 1.3.12 (cf. [6]). — Let @ be a model category. We say that @ is cellular if
it satisfies the following conditions:

1. @ is cofibrantly generated (see definition 1.2.8) with set of generating cofibrations
I and set of generating trivial cofibrations J.

2. Both the domains and codomains of the maps in I are compact (see definition
1.3.9).

3. The domains of the maps in J are small relative to I (see definition 1.2.8).

4. The cofibrations in @ are effective monomorphisms (see definition 1.3.10).

When we have a cellular model category & with set of generating cofibrations I,
the relative I-cell complexes will be called relative cell complexes.

Theorem 1.3.13 (Hirschhorn). — Let & be a cellular model category. Then the associ-
ated pointed model category @. equipped with the model structure considered in The-
orem 1.2.9 is also cellular.

Proof. — We refer the reader to 7, Theorem 2.8]. O

1.4. Proper Model Categories
In this section we just recall the definition of proper model categories.

Definition 1.4.1. — Let @ be a model category. We say that & is left proper if the class
of weak equivalences is closed under pushouts along cofibrations, i.e. in any pushout

A X
BT>Y

diagram

h
—_—

where i is a cofibration and h is a weak equivalence, we then have that h, is also a
weak equivalence.

Definition 1.4.2. — Let @ be a model category. We say that @ 1is right proper if the
class of weak equivalences is closed under pullbacks along fibrations, i.e. in any pullback

|l

B_~h_>Y

diagram

h*
—_—

where p is a fibration and h is a weak equivalence, we then have that h* is also a weak
equivalence.
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Definition 1.4.3. — Let G be a model category. We say that & is proper if it is both
left and right proper.

Theorem 1.4.4 (Hirschhorn). — Let @ be a left proper, right proper, or proper model
category. Then the associated pointed model category @, (see Remark 1.1.2) is also
left proper, right proper, or proper.

Proof. — We refer the reader to [7, Theorem 2.8]. d

1.5. Simplicial Sets
Let A denote the category of well ordered finite sets, i.e. the category with objects:
n={0<1<---<n}
where n > 0; and maps the weakly order preserving functions, i.e.:
Homa(m,n) = {f:m —n[i <j = () < f(j)}

There exists a canonical set of generators for the maps in A, called cofaces (6° :
n — n + 1), and codegeneracies (¢ : n + 1 — n), defined as:

oo fi i<
8@ =1" o
7+1, ifj>1

» Js ifj<i
a4 =19" o
j—1, ifj>i
The cofaces and codegeneracies satisfy a list of relations called the cosimplicial
identities:

576t =491 fori<j
glst =40l fori<j
o't =id
(4) oo
ottt =id
ol st =6"1g7 fori>j+1
dlot =o't fori<j
Definition 1.5.1. — A simplicial set X is a contravariant functor from the category A

to the category of sets.

We will denote the category of simplicial sets by SSets, where the maps between
two simplicial sets X and Y are just the natural transformations n: X — Y.

It follows from the cosimplicial identities that to specify a simplicial set X, it is
enough to give sets Xg, X1,...,Xn,...; where X; = X (i) together with face maps
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d; : Xp — Xpn-1 (d; = X(6%)) and degeneracy maps s; : X, = Xp11 (85 = X(0%)),
satisfying the following relations which are called simplicial identities (these are just
the duals with respect to the cosimplicial identities):

d;d; =dj_1d; fori<jy
d;s; =s;_1d; fori<j

5) d;s; = %d
diy18; =id
d;s; =s;di_y fori>j+1
8;8; =s5418 fori<j

There exist three particular interesting families of simplicial sets: A™, A™ and
A%; they are defined in the following way:

(6) A" = Homa (-, n)

OA™ is the subobject of A™ characterized by:

(7 (0A™), = {f : m — n|f is not surjective}

and finally A} is the subobject of OA™ given by:

(8) (AD)m={fimonf0<1<-<k<-<n}gim(f)}

where {0 <1<+ < k<. < n} denotes the well ordered set n with the k element
removed.
We also have the dual notion of cosimplicial set:

Definition 1.5.2. — A cosimplicial set X is a covariant functor from the category A
to the category of sets.

Given any category &, we can also define simplicial and cosimplicial objects in G,
where a simplicial (respectively cosimplicial) object X in € is just a contravariant
(respectively covariant) functor from A to &.

Let Top be the category of compactly generated Hausdorff topological spaces.
Consider the following family of objects in Top:

|A™| = {(to, t1,- -, tn)lt: = 0, t; =1} CR™H!

We get a cosimplicial object |A®| in Top if we define the coface and codegeneracy
maps for |A”| as:

5t |An |+

(9)

(to,tl,...,tn)l—-——> (to,...,ti_l,o,ti,...,tn)
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and

O.i:IAn+1| |An|
(10)
(to,tl, . ,tn+1) — (t(), oy tic1, bt i, tiga, .. ,tn+1)
Now we are ready to define the geometric realization functor:
| = |: SSets — Top

Let X be a simplicial set, then its geometric realization | X| is the following topo-
logical space:
(11) X| = lim |A"|

An X

where the indexing category to compute the colimit has objects given by the simplices
over X, i.e. maps of simplicial sets A™ — X; and morphisms given by commutative

N

The geometric realization functor | — | has a right adjoint:

triangles:

An

ford:n—-m

Sing : Top — SSets
called the singular functor and defined in the following way:
Sing(T) : A°P Jets

n +—————— Hompop (|A"|, T')

(12)

with faces and degeneracies induced by the cofaces and codegeneracies of the cosim-
plical object |A®|.

We say that a map of simplicial sets § : X — Y is a weak equivalence if its geometric
realization |6| : | X| — |Y| is a weak equivalence of topological spaces, i.e. m;(|6], *) is
an isomorphism for any ¢ > 0, and for every choice of base point * € | X|.

With all the previous definitions, we are ready to give a cofibrantly generated
model category structure on the category of simplicial sets. Take I = {0A"™ — A"}
and J = {\} — A"}

Theorem 1.5.3 (Quillen). — The category of simplicial sets SSets has a cofibrantly
generated model category structure, where the weak equivalences, the set of generating
cofibrations I and the set of generating trivial cofibrations J are defined as above.

Proof. — The proof is probably one of the most difficult in abstract homotopy theory.
We refer the reader to [21, I1.3 Theorem 3], [4] or [10]. : O
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1.6. Simplicial Model Categories

Simplicial model categeries were defined by Quillen in [21], we will follow the
approach in [4, Chapter 2] and [6, Chapter 9.

Definition 1.6.1. — Let @ be a category. We say that @ is simplicial if it satisfies the
following azioms:

1. There exists a functor

@°" x § — SSets

X, Y ——— Map(X,Y)

such that

2. The set of 0-simplices in Map(X,Y') is equal to the set of maps in & from X to
Y, i.e. Map(X,Y)o = Homg(X,Y).

3. For every triple X,Y,Z of objects in @, there exists a map of simplicial sets
called composition law

ox,y,z : Map(Y, Z) x Map(X,Y) —— Map(X, 2)

which is compatible with the composition in &.

4. There ezists a map of simplicial sets ix : x — Map(X, X), for every object
X et

5. There exist three commutative diagrams (see [6, definition 9.1.2]), which give
the associativity of the composition law, and right and left unit properties for
the map ix.

Definition 1.6.2. — Let @ be a model category, we say that & is a simplicial model
category if it is a simplicial category (see definition 1.6.1) and satisfies the following
two arioms:

SMO : 1. For every X € @, the functor

Map(X,—-): & SSets
Y ——— > Map(X,Y)

has a left adjoint

X ® — : SSets a
KH———X® K

such that the adjunction is compatible with the simplicial structure on @,
i.e. Map(X ® K,Y) & Map(K,Map(X,Y)), where the simplicial set on
the right hand side is the one defined in Remark 1.6.3(1).
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2. For every Y € €, the functor

Map(—,Y) : €°P SSets

X+ > Map(X,Y)

has a left adjoint

Y~ : SSets — ©°°
K+——>YK

such that the adjunction is compatible with the simplicial structure on &,
i.e. Map(X,YX) = Map(K,Map(X,Y)), where the simplicial set on the
right hand side is the one defined in Remark 1.6.3(1).
SMT : For any cofibration i : A — B in @ and fibration p : X — Y in @, the
map

Map(B, X) — ). Map(A, X) Xmap(a,y) Map(B, Y)
18 a fibration of simplicial sets, which is trivial if either ¢ or p is a weak equiva-
lence.

Remark 1.6.3. — 1. The category of simplicial sets SSets has a canonical sim-
plicial model category structure where Map(X,Y) is the simplicial set having
n-simplices

Map(X,Y), = Homggets(X x A™,Y)

with faces and degeneracies induced from the cosimplicial object A®.

2. The associated category of pointed simplicial sets SSets, equipped with the in-
duced model structure from SSets (see Remark 1.1.2) has a natural simplicial
model category structure.

Lemma 1.6.4. — Let @ be a simplicial model category. Suppose that i : A — B,
p: X — Y are maps in @ and j : L — K is a map of simplicial sets. Then the
following are equivalent:

1. For every solid commutative diagram of simplicial sets

L Map(B, X)
i -7 %Wﬁ
K = Ma'p(A, X) ><Map(A,Y) Ma'p(Ba Y)

the dotted arrow making the diagram commutative ezists.
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2. For every solid commutative diagram in @

AQK [Jagr B® L =D.¢
iDj[ //// lp
BRK - Y

the dotted arrow making the diagram commutative erists.
3. For every solid commutative diagram in &

A XK

/7
z[ 7 L(J",p*)
BT XL xy. YK

the dotted arrow making the diagram commutative exists.
Proof. — It follows directly from the existence of the adjunctions in axiom SMO0. O
The following is a useful criterion to check axiom SMT.

Proposition 1.6.5. — Let &G be a model category with a simplicial structure (see defi-
nition 1.6.1), satisfying axiom SMO, then the following are equivalent:

1. @ satisfies axiom SMT.
2. Suppose thati: A — B is a cofibration in &, and j : L — K is a cofibration of
stmplicial sets, then the map

05
A®K|[aer BRL—>Bo K

is a cofibration in @, which is trivial if either i or j is a weak equivalence.
3. Suppose that p: X — Y is a fibration in @, and j : L — K is a cofibration of
simplicial sets, then the map

xK ) xpy, v

is a fibration in @, which is trivial if either p or j is a weak equivalence.
Proof. — Tt follows from Lemma 1.6.4 and Corollary 1.1.6. |

These characterizations of axiom SMY, allow to construct “simplicial” cylinder
(respectively path) objects for any cofibrant (respectively fibrant) object A of &.
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Proposition 1.6.6. — Let G be a simplicial model category, and let A be a cofibrant
object in @. Then the following diagram represents a cylinder object for A

AN = AJ[A

|

AR Al S AR+ A

Proof. — Proposition 1.6.5 implies that ¢ is a cofibration. In the following commuta-
tive diagram

ARx=2 A
L e
t
AR A? AR+ A

S
proposition 1.6.5 implies that t is a trivial cofibration, so by the two out of three
property for weak equivalences we have that s is a weak equivalence. It only remains
to show that A® 0A! - A® « is the fold map A[[ A — A, but this follows from the
next commutative diagram:
AR x O
id®d; [ id
ARIN — = AQ Al — =A@«

id®do/] "

AR *

The dual statement for path objects is the following.

Proposition 1.6.7. — Let @ be a simplicial model category, and let X be a fibrant object
in &. Then the following diagram represents a path object for X

X'EX*TX"’N%XXX g

One of the interesting consequences we get when we have a simplicial model cate-
gory £, is that we can compute the maps in the homotopy category Ho # simplicially.

Proposition 1.6.8. — Let X,Y be a pair of objects in @, where X is cofibrant and Y
is fibrant. Then [X,Y] = moMap(X,Y), where [X,Y] = Homyog(X,Y).
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Proof. — Since X is cofibrant and Y is fibrant, we have that [X,Y] is just the set
of homotopy classes of maps between X and Y. On the other hand, axiom SM7
implies that Map(X,Y') is a fibrant simplicial set (Kan complex), so moMap(X,Y) is
computed using the simplicial homotopies given by A! — Map(X,Y), which by the
adjunction are in bijection with the homotopies given by X ® Al — Y. But these are
just homotopies between X and Y, since Proposition 1.6.6 implies that X ® Al is a
cylinder object for X. O

Corollary 1.6.9. — Let @ be a simplicial model category, and consider a couple of
objects X,Y in @. Then [X,Y] = moMap(RQX, RQY).

Proof. — By construction [X,Y] is equal to set of homotopy classes of maps be-
tween RQX and RQY. But RQX, RQY are both cofibrant and fibrant objects in
@, so Proposition 1.6.8 implies that this set of homotopy classes of maps is equal to
moMap(RQX, RQY). |

Another simple but very useful consequence of having a simplicial model category
@, is that we can also detect weak equivalences in & at the level of simplicial sets.

Proposition 1.6.10. — Let @ be a simplicial model category, and let h : A — B be
a map between two cofibrant (respectively fibrant) objects in @. Then h is a weak
equivalence if and only if for every fibrant (respectively cofibrant) object X in @,
h* : Map(B, X) — Map(A, X) (respectively h, : Map(X, A) — Map(X, B)) is a weak
equivalence of simplicial sets.

Proof. — By duality, it is enough to consider the case in which A, B are cofibrant ob-
jects in &. Assume that h is a weak equivalence. Since weak equivalences of simplicial
sets have the two out of three property, then by Ken Brown’s lemma (see Lemma 1.1.4)
we can assume that h is a trivial cofibration. The conclusion then follows from axiom
SM7 which implies that for any fibrant object X in &, h* : Map(B, X) — Map(4, X)
is a trivial fibration of simplicial sets, so in particular h* is a weak equivalence.

For the converse, it is enough to show that h* : [B,X] — [A,X] is a bijection
for every fibrant object X in #. But since for every fibrant object X in &, h* :
Map(B, X) — Map(4, X) is a weak equivalence of simplicial sets, in particular we
have that h* : moMap(B,X) — moMap(A4, X) is a bijection, and the result follows
from Proposition 1.6.8 since A, B are cofibrant in ¥ and X is fibrant in @. O

Corollary 1.6.11. — Let G be a simplicial model category and consider a couple of
objects A, B in @, and a map h : A — B between them. Then the following conditions
are equivalent:

1. h is a weak equivalence in G.
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2. For every fibrant object X in @, (Qh)* : Map(QB, X) — Map(QA, X) is a weak
equivalence of simplicial sets.

3. For every cofibrant object C in &, (Rh), : Map(C, RA) — Map(C,RB) is a
weak equivalence of simplicial sets.

Proof. — (1) & (2). We have that h is a weak equivalence if and only if every (or
some) cofibrant approximation Qh : QA — QB is also a weak equivalence. Since
QA, @B are cofibrant the result follows from Proposition 1.6.10.

(1) & (3). We know that h is a weak equivalence if and only if every (or some)
fibrant approximation Rh : RA — RB is also a weak equivalence. But RA, RB are
fibrant, so the result follows from Proposition 1.6.10. O

1.7. Symmetric Monoidal Model Categories

Symmetric monoidal model categories were introduced by Hovey in [10, Chapter 4].
In this section we just recall some of his definitions and results without proof. This
is the language that we will use in Section 3.6 to construct external pairings for the
slice filtration.

Definition 1.7.1. — Let & be a monoidal category. We say that a category D is a left
©-module if the following conditions are satisfied:
1. There exists a bifunctor @ : € x D — D
2. For every pair of objects X,Y in G and every object A in D there exists a natural
isomorphisma: (X Q@Y)®A—- X ® (Y ® A4).
3. For every object A in D there exists a natural isomorphism!:1® A — A, where
1 denotes the unit for the monoidal structure on 6.
4. Three coherence diagrams commute (see [10, definition 4.1.6]).

We also have right modules over a given monoidal category.

Definition 1.7.2. — Given three categories G,9,5, we define an adjunction of two
variables as a bifunctor ® : & x D — & together with two extra functors Hom, :
PP x & — € and Hom; : P x § — D, such that there exist the following two

adjunctions:
1. Homg(X ® Y, Z) ——> Homg(X, Hom, (Y, Z))
2. Homg(X ® Y, Z) —2> Homg(Y, Hom(X, Z))

Definition 1.7.3. — We say that a category € is closed monoidal if it is a monoidal
category such that the bifunctor ® : € x € — & giving the monoidal structure is an
adjunction of two variables.
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Definition 1.7.4. — Given model categories @, B, D an adjunction of two variables
®: @ x B— D is called a Quillen adjunction of two variables, if given a cofibration
i:A— B in @ and a cofibration j : C — D in B, the induced map

is a cofibration in D which is trivial if either i or j is a weak equivalence. In this case,
we will refer to the functor ® as a Quillen bifunctor.

Lemma 1.7.5 (Hovey). — Let @, B, D be three model categories and let ® : Gx B — D
be an adjunction of two variables. Then the following conditions are equivalent:
1. ® is a Quillen bifunctor.
2. Given a cofibration j : C — D in B and a fibrationp: X — Y in 9D, the induced
map

(j*ap*) : HOII],.(D, X) —_— HOIIIT (C: X) ><Hom,-(C,Y) HOIIIT(D, Y)

is a fibration in @ which is trivial if either j or p is a weak equivalence.
3. Given a cofibration i : A — B in @ and a fibrationp: X — Y in D, the induced
map

('1:*, p*) : HOIII[(B, X) —_— HOIII[(A, X) xHoml(A,Y) HOII][(B, Y)
is a fibration in B which is trivial if either i or p is a weak equivalence.

Proof. — It follows immediately from the adjunctions that appear in the definition
of an adjunction of two variables (see definition 1.7.2), and the lifting property char-
acterization for cofibrations, fibrations, trivial cofibrations and trivial fibrations. [

Remark 1.7.6 (c£.[10])). — Let ® : & x B — D be a Quillen bifunctor. Then if A is
a cofibrant object in @, the functor A® — : B — D is a Quillen functor with right
adjoint Homy(A, ) : D — B. Similarly if B is a cofibrant object in B, we get a
Quillen functor — ® B : @ — 9 with right adjoint Hom, (B, —). Finally, if X is
a fibrant object in D, we get a Quillen functor Hom,(—,X) : B — @°° with right
adjoint Hom(—, X) : &°° — B.

Definition 1.7.7. — A monoidal model category & is a closed monoidal category with
a model category structure, such that the following conditions are satisfied:
1. The bifunctor @ : @ x & — @ giving the monoidal structure is a Quillen bifunc-
tor.
2. Let g: Q1 — 1 be a cofibrant replacement for the unit 1. Then the natural maps
qRid: Q1A —-10A,idRqg: AR QL - AR 1 are weak equivalences for
any cofibrant object A in &.

We have an analogous definition for symmetric monoidal categories.
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Proposition 1.7.8 (Quillen). — The category of simplicial sets SSets is a symmetric
monoidal model category.

Proof. — We refer the reader to [21, II.3 Theorem 3]. O

Proposition 1.7.9 (Hovey). — Let & be a monoidal model category, with unit 1 equal
to the terminal object *, and assume that * is cofibrant. Then the associated pointed
category G, (equipped with the model structure described in Remark 1.1.2) is also a
monoidal model category, which is symmetric if & is.

Proof. — We refer the reader to [10, Proposition 4.2.9]. O

Corollary 1.7.10. — The category of pointed simplicial sets SSets, is a symmetric
monoidal model category.

Proof. — It follows immediately from Propositions 1.7.8 and 1.7.9. O

Definition 1.7.11. — Let (F,G,p) : @ — B be a Quillen adjunction between two
monoidal model categories. We say that (F, G, ) is a monoidal Quillen adjunction f
F is a monoidal functor (see [10, definition 4.1.2]) and the map F(q1) : F(Q1) — F1
is a weak equivalence. In this situation we say that F is a left Quillen monoidal
functor.

Definition 1.7.12. — Let @ be a monoidal model category. A @-model category is a
left @-module B equipped with a model category structure such that the following
conditions hold:
1. The action map — ® — : G x B — B is a Quillen bifunctor.
2. If ¢ : Q1 — 1 is a cofibrant replacement for 1 in €, then the map q ® id :
Ql® A — 1Q® A is a weak equivalence for every cofibrant object A in B.

The simplicial model categories discussed in Section 1.6 are just SSets-model cat-
egories.

Proposition 1.7.13 (Hovey). — Let & be a monoidal model category where the unit 1 is
equal to the terminal object *. Assume that * is cofibrant. If B is a @-model category,
then the associated pointed category B, has a natural @,-model category structure.

Proof. — We refer the reader to [10, Proposition 4.2.19]. |

Proposition 1.7.14 (Hovey). — Let @, B, D be three model categories, and let — @ — :
Gx B — D be a Quillen bifunctor. Then the total derived functors define an adjunction
of two variables @ : Ho x HoB — HoD, with adjoints given by RHom, : (Ho#)°P x
Ho% — B and RHom, : (HoB)°? x HoP — Ho@.

Proof. — We refer the reader to [10, Proposition 4.3.1]. a
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Theorem 1.7.15 (Hovey). — Let & be a (symmetric) monoidal model category. Then
Ho®@ can be given the structure of a closed (symmetric) monoidal category. The
adjunction of two variables (%, RHom;, RHom,) which gives the closed structure
on Ho@ is the total derived adjunction of (®,Hom;,Hom,) described in Proposi-
tion 1.7.14. The associativity and unit isomorphisms (and the commutativity isomor-
phism in case @ is symmetric) on Ho@ are derived from the corresponding isomor-
phisms of &.

Proof. — We refer the reader to [10, Theorem 4.3.2]. O

1.8. Localization of Model Categories

In this section we recall some of Hirschhorn’s constructions [6, Sections 3.1, 3.2]
restricted to the case where all the model categories are simplicial.

Definition 1.8.1. — Let G be a model category and let V be a class of maps in @. A
left localization of & with respect to ¥ is a model category Ly @ equipped with a left
Quillen functor X : & — Lo 8 satisfying the following properties:

1. The total left derived functor LA : Ho@ — HoL @ takes the images in Ho@ of
the elements in Y into isomorphisms in HoLq G.

2. If B is a model category and 7 : G — B is a left Quillen functor such that Lt :
Ho# — Ho®B takes the images in Ho@ of the elements of V into isomorphisms
in HoB, then there erists a unique left Quillen functor o : Ly@ — B with
oA=T.

Definition 1.8.2. — Let G be a model category and let V be a class of maps in G. A
right localization of & with respect to ¥ is a model category Ry @ equipped with a
right Quillen functor p : & — Ry & satisfying the following properties:

1. The total right derived functor Rp : Ho&4 — HoRq & takes the images in Ho@
of the elements in V into isomorphisms in HoRy @.

2. If B is a model category and 7 : @ — B is a right Quillen functor such that Rt :
Ho®% — Ho®B takes the images in Ho@ of the elements of V into isomorphisms
in HoB, then there exists a unique right Quillen functor o : Ry@ — B with
op=T".

From the universal property, we immediately get the following uniqueness state-
ment.

Remark 1.8.3. — Let @ be a model category and ¥ a class of maps in G. If a left
or right localization of @ with respect to V exists, then it is unique up to a unique
isomorphism.
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Definition 1.8.4. — Let @ be a model category and V a class of maps in @.

1. An object A of @ is Y-local if A is fibrant and for every map f : C — D in
Y, the induced map of simplicial sets Map(QD, A) — Map(QC, A) is a weak
equivalence.

2. Amap f : C — D in G is a Y-local equivalence if for every ¥-local object
A, the induced map of simplicial sets Map(QD, A) — Map(QC, A) is a weak
equivalence.

Definition 1.8.5. — Let @ be a model category and ¥V a class of maps in G.

1. An object A of & is V-colocal if A is cofibrant and for every map f : C — D
in ¥, the induced map of simplicial sets Map(A, RC) — Map(A, RD) is a weak
equivalence.

2. Amap f:C — D in & is a Y-colocal equivalence if for every 9-colocal object
A, the induced map of simplicial sets Map(A, RC) — Map(A, RD) is a weak
equivalence.

The following definition will be necessary for the construction of right Bousfield
localizations.

Definition 1.8.6. — Let @ be a model category and let K be a set of objects in &.

1. Amap g : X — Y is a K-colocal equivalence if for every object A in K the
induced map of simplicial sets (Rg). : Map(QA,RX) — Map(QA,RY) is a
weak equivalence.

2. If ¥ is the class of K-colocal equivalences, then a V-colocal object will be called
K -colocal.

Proposition 1.8.7 (Hirschhorn). — Let & be a model category and let ¥ be a class of
maps in G.

1. The class of V-local equivalences satisfies the two out of three property (see
MC2 in definition 1.1.1).
2. The class of V-colocal equivalences satisfies the two out of three property.

Proof. — We refer the reader to [6, Proposition 3.2.3]. O

1.9. Bousfield Localization

In this section we review Hirschhorn’s construction of Bousfield localizations [6,
Section 3.3] in the restricted situation where all the model categories are simplicial.
These constructions will be the main technical ingredient in our approach to produce
a lifting of the slice filtration to the model category setting (see Chapter 3).
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Definition 1.9.1. — Let @ be a model category and let V be a class of maps in G. The
left Bousfield localization of & with respect to V (in case it exists) is a model category
structure Loy @ on the underlying category of @ such that

1. the class of weak equivalences of Ly @ is defined as the class of V-local equiva-
lences of & (see definition 1.8.4).

2. the class of cofibrations of Ly 8 is the same as the class of cofibrations of G.

3. the class of fibrations of Ly @ is defined as the class of maps that have the
right lifting property with respect to the maps which are cofibrations and V-local
equivalences.

We will also need the dual notion of right Bousfield localization.

Definition 1.9.2. — Let G be a model category and let V be a class of maps in G.
The right Bousfield localization of & with respect to V' (in case it exists) is a model
category structure Ry@ on the underlying category of @ such that
1. the class of weak equivalences of Ry @ is defined as the class of V-colocal equiv-
alences of & (see definition 1.8.5).
2. the class of fibrations of Ry @ is the same as the class of fibrations of &.
3. the class of cofibrations of Ry 8 is defined as the class of maps that have the
left lifting property with respect to the maps which are fibrations and ¥-colocal
equivalences.

Proposition 1.9.3 (Hirschhorn). — Let @ be a model category and V a class of maps
in @. Let Ly @ be the left Bousfield localization of @ with respect to ¥, then

1. every weak equivalence in @ is a weak equivalence in Ly @.

2. the class of trivial fibrations of Ly @ equals the class of trivial fibrations of &.
3. every fibration of Ly @ is a fibration of &G.

4. every trivial cofibration of & is a trivial cofibration of Ly 8.

Proof. — We refer the reader to Proposition 3.3.3 in [6]. a
We then get the dual version for right Bousfield localizations.

Proposition 1.9.4 (Hirschhorn). — Let @ be a model category and V a class of maps
in @. Let Ry 8 be the right Bousfield localization of @ with respect to V, then
1. every weak equivalence in @ is a weak equivalence in Ry @.
2. the class of trivial cofibrations of Ry @ equals the class of trivial cofibrations of
a.
3. every cofibration of Ry @ is a cofibration of G.
4. every trivial fibration of @ is a trivial fibration of Ry 8.

Proof. — We refer the reader to Proposition 3.3.3 in [6]. O
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Proposition 1.9.5 (Hirschhorn). — Let @ be a model category and ¥ a class of maps
in 4.

1. If Ly @ is the left Bousfield localization of @ with respect to V, then the identity

functorid : @ — Ly 8 is a left Quillen functor with right adjointid : Ly @ — &.

2. If Ry @ is the right Bousfield localization of @ with respect to V, then the identity

functorid : Ry @ — @ is a left Quillen functor with right adjointid : & — Ry @.

Proof. — It follows immediately from Propositions 1.9.3 and 1.9.4. O
Theorem 1.9.6 (Hirschhorn). — Let & be a model category and let ¥ be a class of maps
in G.
1. If Ly @ is the left Bousfield localization of @ with respect to ¥, then the identity
functorid : & — Lo @ is a left localization of @ with respect to V' (see definition
1.8.1).

2. If Ry @ is the right Bousfield localization of @ with respect to V then the identity
functor id : & — Ry 8@ is a right localization of @ with respect to V.

Proof. — We refer the reader to [6, Theorem 3.3.19]. O
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CHAPTER 2

MOTIVIC UNSTABLE AND
STABLE HOMOTOPY THEORY

In this chapter we review the construction of the Morel-Voevodsky motivic stable
model structure and the construction of Jardine’s motivic symmetric stable model
structure (see Sections 2.4 and 2.6). We also show that these two model structures
satisfy Hirschhorn’s cellularity condition (see Sections 2.5 and 2.7). Therefore, it is
possible to apply Hirschhorn’s localization techniques to get Bousfield localizations
with respect to these two model structures. Finally, in Section 2.8 we recall the con-
struction of the model structures for the categories of A-modules and A-algebras,
where A denotes a cofibrant ring spectrum in Jardine’s motivic symmetric stable
model category. We will see that the category of A-modules equipped with this model
structure also satisfies Hirschhorn’s cellularity condition.

2.1. The Injective Model Structure

Let S be a Noetherian separated scheme of finite Krull dimension, and consider
the category Jm|s of smooth schemes of finite type over S. (Jm|s)nis will denote the
site with underlying category Jm|s equipped with the Nisnevich topology. We are
interested in the category A°PPre(dm|s)nis of presheaves of simplicial sets on ¢m|s.
The objects in A°PPre(dm|s)nis can also be described as simplicial presheaves on
¢Jm|s. The work of Jardine (see [13]) shows in particular that A°PPre(Jm|s)nis has
the structure of a proper simplicial cofibrantly generated model category.

We will denote by A, the representable simplicial presheaf corresponding to the
objects U in Jm|s and n in A, i.e.

Ay = (dm|s x A)°P Jets
(V,m) ———— (Homgy,, s (V,U)) x (A")m,
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32 CHAPTER 2. MOTIVIC UNSTABLE AND STABLE HOMOTOPY THEORY

The following functor gives a fully faithful embedding of Jm|s into A°PPre(dm|s)nis:
Y: nghtls —_— AOPPI‘e(y!}nls)Nis
U———AY,
we will abuse notation and write U instead of AY,. Given any simplicial set K we can
consider the associated constant presheaf of simplicial sets which we also denote by
K,i.e.
K : (dm|s x A)P —— Jets
(U,n) K,

The category of simplicial presheaves A°PPre(¢m|s)nis inherits a natural simplicial

structure from the one on simplicial sets.
Given a simplicial presheaf X, the tensor objects for the simplicial structure on
A°PPre(dm|s)nis are defined as follows:

X ® — : SSets — A°PPre(Jm|s)nis
where X ® K is the following simplicial presheaf:
X QK : (Jgn|s x A)°P Jets

U,n)———— X, (U) x K,

The simplicial functor in two variables is:
Map(—, —) : (A°PPre(dm|s)nis)°P X A°PPre(dm|s)nis — SSets
where Map(X,Y) is the simplicial set given by:
Map(X,Y) : A°P Jets

n+————— Homacrpre(yn|s)nis (X ® A™,Y)
and finally for any simplicial presheaf Y we have the following functor
Y~ : SSets — (A°PPre(dms)nis)
where YX is the simplicial presheaf given as follows:
Y (dm|s x A)°P Jets

(U, n)  ——— Homssets(K X An, Y(U))

Let t be a point in (Jm|s)nis. Denote by 6, the fibre functor which assigns to every
simplicial presheaf its stalk at ¢:

0; : AOPPI‘e(ngh'l/ls)Nis ——— > SSets
X—0(X)=X;
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2.1. THE INJECTIVE MODEL STRUCTURE 33

Now we proceed to define the model structure on A°PPre(Jm|s)nis constructed by
Jardine. A map f : X — Y in A°PPre(¢Jm|s)nis is defined to be a weak equivalence,
if f induces a weak equivalence of simplicial sets in all the stalks on (J7|s)nis, i-e. if
for every point t in (Jm|s)nis the map

6:(f)

0:(X) 0:(Y)

is a weak equivalence of simplicial sets.

The set I of generating cofibrations is given by all the subobjects of A7, for U in

dm|s and n > 0, i.e.

[={Y = AJ|U € (dnls),n > 0}
it is easy to see that a map ¢ : X — Y is in I-cell if and only if it is a monomorphism,
ie. in(U) : Xn(U) — Y,(U) is an injective map of sets, for every U in gm|g, n > 0.

Let A be a cardinal, and X a simplicial presheaf on (Jm|s. We say that X is
X-bounded if the cardinal of all the simplices of X is bounded by A, i.e. | X,(U)| < A
for every U in ¢m|s, n > 0. The site (Jm|s)nis is essentially small, so we can find
a cardinal k such that x is greater than 2%, where « is the cardinality of the set
Map(dnls) of maps in dnls.

We say that a map j : X — Y of simplicial presheaves in ¢m|s is a trivial cofibra-
tion, if it is both a cofibration and a weak equivalence. The set J of generating trivial
cofibrations is given by all the trivial cofibrations where the codomain is bounded by
the cardinal k described above, i.e.

J={j: X —Y]|jis a trivial cofibration and Y is k-bounded}

Theorem 2.1.1 (Jardine). — The category A°PPre(Jm|s)nis of simplicial presheaves on
the Nisnevich site (Jm|s)nis, has the structure of a proper simplicial cofibrantly gen-
erated model category where the class W of weak equivalences, and the sets I,J of
generating cofibrations and generating trivial cofibrations are defined as above.

Proof. — We refer the reader to [13, Theorem 2.3]. a

The model structure defined above will be called the injective model structure for

A°PPre(dm|s)nis-

Remark 2.1.2. — The cofibrations for the injective model structure on A°PPre(dm|s)nis
have the following properties:
1. The class of cofibrations coincides with the class of relative I-cell complezes,
therefore a map is a cofibration if and only if it is a monomorphism.
2. Ifamapi: A— B in A°PPre(dm|s)nis s a cofibration then for every point t in
(dm|s)nis the associated map 6.(3) : 0:(A) — 6:(B) is a cofibration of simplicial
sets.
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34 CHAPTER 2. MOTIVIC UNSTABLE AND STABLE HOMOTOPY THEORY

3. Every object A in A°PPre(Jm|s)nis is an I-cell complez, therefore every object
in A°PPre(dm|s)nis 18 cofibrant.

The category A°PPre(dm|s)nis of simplicial presheaves on the smooth Nisnevich
site (Jm|s)nis also has a closed symmetric monoidal structure which is compatible
with the injective model structure, i.e. A°PPre(dm|s)nis equipped with the injective
structure is a symmetric monoidal model category in the sense of Hovey (see definition
1.7.7).

The closed symmetric monoidal structure is defined as follows:

AOpPre(Mis)Nis X AOPPI‘e(dﬂlls)Nis —_— AOPPre(g&nls)Nis
(X, Y)+ XxY

where X x Y is the presheaf of simplicial sets defined as follows:

X XY : (dm|g x A)°P Jets
(U,n) —————— X, (U) x Y, (U)

and the functor that gives the adjunction of two variables is the following:
Hompe(—, —) : (A°PPre(dm|s)nis)°P X A°PPre(dm|s)nis — A°PPre(Jm|s)nis
where Homp,(X,Y) is the simplicial presheaf given by:
Homp.(X,Y) : (dn|s x A)P Jets
(U,n) + Hom acepre(gn|s)nis (X X A7, Y)

Proposition 2.1.3. — Let X,Y,Z be simplicial presheaves on (Jm|s)nis-

1. There is a natural isomorphism of simplicial sets
Map(X x Y, Z) —> Map(X, Homp,.(Y, Z))
2. There is a natural isomorphism of simplicial presheaves on (Jm|s)nis
Homp;(X x Y, Z) —> Hompye(X, Hompy. (Y, Z))
Proof. — (1). To any n-simplex « in Map(X x Y, Z)
(X®A") XY —> (X xY)®A" —2> 7
associate the n-simplex a, in Map(X, Homp,(Y, Z))
ay : X @ A™ - Homp,(Y, Z)

coming from the adjunction between — x Y and Homp,e(Y, —).
(2). To any n-simplex « in Hompe(X % Y, Z),(U)

(X XA XY —> (X xY) x A} —2> 7
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2.1. THE INJECTIVE MODEL STRUCTURE 35

associate the n-simplex a, in Homp.(X, Homp,(Y, Z)),(U)
. : X X A, > Homp (Y, Z)

coming from the adjunction between — x Y and Homp,((Y, —). O

Lemma 2.1.4 (cf. [14]). — The category A°PPre(dm|s)nis of simplicial presheaves on
the smooth Nisnevich site (Jm|s)nis equipped with the injective model structure is a
symmetric monoidal model category (see definition 1.7.7).

Proof. — We need to check that the conditions (1)-(2) in definition 1.7.7 are satisfied.
Since every object is cofibrant in A°PPre(dm|s)nis, condition (2) is trivially satisfied.
To check condition (1), we need to show that if we take two cofibrations ¢ : A — B and
j : C — D for the injective model structure on A°PPre(dm|s)nis, then the induced
map
i0j:AxD [ BxC—BxD
AxC

is also a cofibration, which is trivial if either ¢ or j is a weak equivalence. To see that
1[0 is a cofibration, it is enough to show that ¢ O j(U) is a cofibration of simplicial
sets for every U in (m|g, but this is true since the category of simplicial sets is a
symmetric monoidal model category.

Now we show that (] is a trivial cofibration if either ¢ or j is a weak equivalence.
The definition of weak equivalences for the injective model structure implies that is
enough to prove it at the level of the stalks, so let t be any point in (¢m|s)nis, and
consider the induced map of simplicial sets

0,05):0,(A) x 0,(D) [T  6:(B) x 6,(C) — 6.(B) x 6,(D)
0:(A)x0:(C)

Now since the category of simplicial sets is in particular a symmetric monoidal model
category, we have that (i 00 j) is a trivial cofibration if either i or j is a weak
equivalence. Since this holds for every point ¢ in (Jm|s)nis, we have that s 0 j is a
cofibration in A°PPre(¢dm|s)nis which is trivial if either ¢ or j is a weak equivalence,
hence the result follows. O

Lemma 2.1.5 (Morel-Voevodsky, cf. [18]). — Let X,Y be two fibrant simplicial
presheaves in the injective model structure, and consider a map f : X — Y.
The following are equivalent:

1. f is a weak equivalence in the injective model structure for A°PPre(dm|s)nis-
2. For every U in Jm|s the map

fU): X(U) - Y(U)

is a weak equivalence of simplicial sets.
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Proof. — Assume that f is a weak equivalence in A°PPre(¢dm|s)nis- Since X,Y are
fibrant and weak equivalences of simplicial sets satisfy the two out of three property,
by Ken Brown’s lemma (see Lemma 1.1.4) we can assume that f is a trivial fibration
in A°PPre(n|s)nis- Now consider U as an element of A°PPre(dJm|s)nis- Since every
object in A°PPre(dm|s)nis is cofibrant, axiom SMT7 for simplicial model categories
implies that: f, : Map(U, X) — Map(U,Y) is a trivial fibration of simplicial sets, but
this is just equal to f(U) : X(U) — Y (U).

Conversely, suppose now that for every U in A°PPre(dm|s)nis, f(U) : X(U) —
Y (U) is a weak equivalence of simplicial sets. Let ¢ be an arbitrary point in (J7|s)nis-
We know that ¢ is associated to a pro-object {Uy} in (dJm|s)nis- Therefore 6;(f) :
0:(X) — 6,(Y) is a filtered colimit of weak equivalences of simplicial sets, hence a
weak equivalence of simplicial sets. But this implies that f is a weak equivalence in

A°PPre(\;J7n|S)Nis. O

Definition 2.1.6. — Let X be a simplicial presheaf on (Jm|s)nis- We say that X sat-
isfies the B.G. property if any elementary Cartesian square

UxwV——V

b

U w

of smooth schemes over S with p étale, i an open immersion and p~*(W -U) 2 W -U
(both equipped with the reduced scheme structure) maps to a homotopy Cartesian
diagram of simplicial sets after applying X

X(W) X(V)

| |

X(U) — XU xw V)

Theorem 2.1.7 (Jardine). — Let X be a simplicial presheaf on (Jm|s)nis- Then X sat-
isfies the B.G. property if and only if any fibrant replacement X — GX in the injective
model structure for A°PPre(dm|s)nis s a sectionwise weak equivalence of simplicial
sets, i.e. for any U in Jm|s,

gx (U)

X(U) GX(U)
9x (U) is a weak equivalence of simplicial sets.
Proof. — We refer the reader to [14, Theorem 1.3]. O
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2.1. THE INJECTIVE MODEL STRUCTURE 37

Definition 2.1.8. — Consider U € {m|s with structure map ¢ : U — S, i.e. ¢ is a
smooth map of finite type. Then we have the following adjunction (see [5, proposition
1.5.1]):

(671, bs, ) : APPre(dm|s)nis — A°PPre(dm|u)nis

where ¢~ and ¢. are defined as follows:

¢! : A°PPre(dm|s)nis — A°PPre(dm|u)nis

X o 1X
with ¢~1X defined as the composition of ¢ and X :
#xid
(¢l x A)°P : (dmls x A)°P

X /

Jets
and the right adjoint ¢. is given by:
¢* : A°pPre(gJ}n|U)Nis I AOPPI’e(d}nls)Nis
X — X
where ¢.X is the following simplicial presheaf:
& X : (Im|s x A)°P Jets

(Vin) ————— X (V x5 U)

Remark 2.1.9. — Let ¢ : U — S be a smooth map of finite type, and let Y be an
arbitrary simplicial presheaf on (Im|v)nis- It follows immediately from the description
of the functors ¢~ and ¢, that the counit of the adjunction (¢~, ¢, @)

$~1pY — =Y

18 an isomorphism which can be naturally identified with the identity map on Y, in
particular ¢~ ¢, Y is canonically isomorphic to Y.

Proposition 2.1.10. — Let ¢ : U — S be a smooth map of finite type, and let X be an
arbitrary simplicial presheaf on (Jm|s)nis- Then we have a canonical isomorphism:

6o~ 1 X — Hompe(U, X)
Proof. — To any n-simplex « in (¢«¢ 1 X)n(V) = Xn(V x5 U)
AV xUZAY, v —> X
associate the n-simplex o, in Homp(U, X ), (V)

A} o Homp, (U, X)
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coming from the adjunction between — x U and Homp,.(U, —). O

Proposition 2.1.11. — Let ¢ : U — S be a smooth map of finite type, let X be a
simplicial presheaf on (Jm|s)nis and Y a simplicial presheaf on (dm|y)nis- Then we
have the following enriched adjunctions:

1. There is a natural isomorphism of sirﬁplz’cial sets
Map(¢~1X,Y) —= Map(X, ¢.Y)
2. There is a natural isomorphism of simplicial presheaves on (Jm|s)Nis
Hompy(X, ¢.Y) —— ¢, (Hompyo(¢ X, Y))
3. There is a natural isomorphism of simplicial presheaves on (Jm|y)nis
¢ (Hompyo(X, ¢.Y)) — Homp:o(¢7' X, Y)
Proof. — (1): To any n-simplex « in Map(¢~1X,Y)
$THX @A) 2 g IX QA" —=Y
associate the n-simplex o, in Map(X, ¢.Y)
X®A" > ¢,Y

coming from the adjunction between ¢! and ¢,.
(2): To any n-simplex a in Hompe(X, #.Y )n(V) (where V € (dm|s))

X X AL —%5 4,V
associate the n-simplex a* in ¢.(Homp,(¢71X,Y))n (V)
671X X AL,y ZTUX X AY) 2>y

coming from the adjunction between ¢! and ¢,.
(3): To any n-simplex a in ¢! (Hompe(X, $.Y))n(V) (where V € (Jm|v))
X x A} 2= 6,Y

associate the n-simplex o* in Homp,e(¢™1X,Y ), (V)

*

¢IX X AT = 91X x A}) =Y
coming from the adjunction between ¢~! and ¢,. O

Definition 2.1.12 (cf. [14]). — Let X be a simplicial presheaf on (Jm|s)nis- We say that
X 1is flasque if:

1. X is a presheaf of Kan complezes.
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2. Every finite collection V; — V, i = 1,...,n of subschemes of a scheme V
induces a Kan fibration

X(V) = Map(V, X) —— Map(U, Vi, X)

Remark 2.1.13. — 1. Let X be a simplicial presheaf on (Jm|s)nis which is fibrant
in the injective model structure for A°PPre(Jm|s)nis- Then X is flasque and
satisfies the B.G. property.

The class of flasque simplicial presheaves is closed under filtered colimits.

The B.G. property is stable under filtered colimits.

The functors ¢~ and ¢, preserve flasque simplicial presheaves.

AN ol

The functors ¢~ and ¢, preserve the B.G. property.

2.2. Cellularity of the Injective Model Structure

In this section we prove that the injective model structure on A°PPre(dm|s)nis is
cellular (see definition 1.3.12). This is an unpublished result due to Hirschhorn, which
also appears in [8, Theorem 1.4]. The author would like to thank Jens Hornbostel for
the discussion related to Hirschhorn’s cellularity results.

Lemma 2.2.1. — Let A be a simplicial presheaf on the smooth Nisnevich site
(dm|s)nis- Then A is small (see definition 1.2.8).

Proof. — Let u be the cardinal of the set S4 of simplices of A, i.e.

Sa= [ 4.
Ve(dnl|s)n=0
and let x be the successor cardinal of u. Since k is a succesor cardinal, we have that
K is a regular cardinal (see [6, Proposition 10.1.14]).
We claim that A is k-small with respect to the class of all maps in A°*Pre(dm|s)nis-
In effect, consider an arbitrary A-sequence where A is a regular cardinal greater than
K,

XO.._)XI_.)..._)X,B_)... (ﬁ<A)

we need to show that the map colimg«xHomaorpre(ym|s)nis (A) Xg) — Hom(A4, X)) is
a bijection. To check the injectivity, we just take sections on every U € (Jm|s), and
use the fact that every simplicial set is small (see [10, Lemma 3.1.1]). To check the
surjectivity, consider an arbitrary map f : A — X, now the restriction of f to every
simplex of A (A}, — A), factors through some Xz with 8 < A. Since A is a regular
cardinal and there are fewer than x simplices in A (where kK < ), there exists X,
with & < A such that the restriction of f to every simplex of A factors through X,.
But this implies that f factors through X,, and therefore we get the surjectivity. [
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Lemma 2.2.2. — Consider the category A°PPre(Jm|s)nis of simplicial presheaves on
the smooth Nisnevich site (Jm|s)nis equipped with the injective model structure. Then
all the cofibrations in A°PPre(dm|s)nis are effective monomorphisms.

Proof. — A map i: A — B is an effective monomorphism if and only if for every U €
(dm|s), n > 0 the induced map i, (U) : Ap(U) — B, (U) is an effective monomorphism
of sets, this is true since all small limits and colimits are computed termwise. Now in
the injective model structure for A°PPre(¢m|s)nis the class of cofibrations coincides
with the class of monomorphisms. But this implies that all the cofibrations are effective
monomorphisms in A°PPre(¢m|s)nis, since in the category of sets any injective map
is an effective monomorphism (see Remark 1.3.11). O

The next proposition is an unpublished result due to Hirschhorn, which also ap-
pears in [8, Lemma 1.5], nevertheless the proof given here is slightly different since
it also handles the case of a relative I-cell complex, which is necessary according to
Hirschhorn’s definition of compactness (see definition 1.3.12).

Proposition 2.2.3. — Let I be the set of generating cofibrations for the injective
model structure in the category of simplicial presheaves A°PPre(dm|s)nis (see The-

orem 2.1.1). The domains and codomains of the maps in I are compact relative to
I.

Proof. — Let u be the cardinal of the set S; of simplices corresponding to all the
domains and codomains of the maps in I, i.e.

sr= ]I II A.w)uB.)
(i:A—-B)el Ue€(dm|s),n>0
and let K be the successor cardinal of u. Since x is a successor cardinal, we have that
it is a regular cardinal (see [6, Proposition 10.1.14]).
If X is a presented I-cell complex with presentation ordinal A,

i:0-X,0=Xo—= X1 == Xg— - (B<N), {T°,€°,hP}cx

we claim that every cell e of X is contained in a subcomplex X, of X of size less than
k. This follows from a transfinite induction argument over the presentation ordinal
of e (see definition 1.3.2). If the presentation ordinal of e is 0, then the cell e defines
a subcomplex of X of size 1, this gets the induction started. Now assume that the
result holds for every cell of presentation ordinal less than 8 < A, and consider an
arbitrary cell e of presentation ordinal 3. The attaching map h, of this cell has image
contained in the union of fewer than « simplices {s¢} of X (since the domain of h is
also a domain for a map in I), now each such simplex s° is contained in a cell e; of
presentation ordinal less than 3 and the induction hypothesis implies that each such
cell e, is contained in a subcomplex X of size less than k, thus taking the union of
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all these subcomplexes X, (which is possible by Corollary 1.3.7 since all the I-cells
are monomorphisms in this case) we get a subcomplex X/ of size less than « (since &
is regular) which contains the image of the attaching map h.. Therefore if we define
X, as the subcomplex obtained from X after attaching the cell e via h., we get a
subcomplex of size less than k containing the given cell e. This proves the claim.

Now if A is a simplicial presheaf on (Jm|g) which is a domain or codomain of a
map in I, we have that A has less than  simplices. Consider a map j : A — X where
X is a presented I-cell complex,

i: - X, B=Xo—= X1 == Xg—--(8<N), {T?,e#,hP}5n

then the image of j has less than « simplices {s;}, each such simplex s; is contained

in some cell e; of X which by the previous argument is contained in a subcomplex X,

of X of size less than k. We take now the union of all these subcomplexes X to get a

subcomplex X; of X of size less than x (since & is regular) which contains the image

of j. Therefore j factors through the subcomplex X; which has size less than «.
Finally, we consider a relative cell complex f: X — Y,

[ X-Y, X=X X1 —--—Xg— - (B<N), {T?,*,hP}sn

Take any map j : A — Y where A is a domain or codomain of a map in I. Since all
the inclusions are I-cells for the injective model structure, we have that X is a cell
complex,

1:0-X, 0=Xy-2X1—>--—2Xg—---(B<v), {Tﬁ,eﬂ,h'@}[k,,

Combining this presentation of X with the presentation of f we get a presentation
for Y as a cell complex, where X is a subcomplex. The previous argument shows that
the image of j is contained in a subcomplex W’ of Y where the size of W’ is less
than . Taking the union of W’ and X we get a subcomplex X of f having the same
size as W’ (as a subcomplex of f) which contains the image of j. Therefore j factors
through X where Xy is a subcomplex of f of size less than «, and this shows that A
is k-compact relative to I. O

Finally we are ready to prove Hirschhorn’s cellularity theorem.

Theorem 2.2.4. — The category A°PPre(dm|s)nis of simplicial presheaves on the
smooth Nisnevich site (Jm|s)nis 15 a cellular model category when it is equipped with
the injective model structure, the sets of generating cofibrations and generating trivial
cofibrations are the ones considered in Theorem 2.1.1.

Proof. — We have to check that the conditions (1)-(4) of definition 1.3.12 hold. (1) fol-
lows from Theorem 2.1.1 which shows that the injective model structure is cofibrantly
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generated. (2) follows from proposition 2.2.3 and (3) follows from Lemma 2.2.1 which
says that every simplicial presheaf is small. Finally (4) follows from Lemma 2.2.2. O

Theorem 2.2.4 will be used to show that the category Spt,(m|s)nis of T-spectra on
¢m|s equipped with the motivic stable model structure is cellular (see Theorem 2.5.4).
This will allow us to apply all the localization technology of Hirschhorn [6] to construct
new model structures for Sptr(7|s)nis-

2.3. The Motivic Model Structure
Let A} be the affine line over S. Consider the following set of maps
VYu ={my:Ux A5 —U|U € (dnls)}

In [18] Morel and Voevodsky show in particular that for simplicial sheaves on
(Jm|s)nis the left Bousfield localization for the injective model structure with respect
to Vs exists, and furthermore they show it is a proper simplicial model structure.
Their work was extended to the case of simplicial presheaves by Jardine in [14,
Section 1]. Following Jardine we call this localized model structure the motivic model
structure on A°PPre(dm|s)nis-

Theorem 2.3.1 (Morel-Voevodsky, Jardine). — Consider the category of simplicial
presheaves on the smooth Nisnevich site (Jm|s)nis equipped with the injective model
structure. Then the left Bousfield localization (see Section 1.9) with respect to the set
of maps ¥ defined above exists. This model structure will be called motivic, and the
category A°PPre(dm|s)nis equipped with the motivic model structure will be denoted
by M. Furthermore M is a proper and simplicial model category.

Proof. — We refer the reader to [14, Theorem 1.1]. a

The following theorem gives explicit sets of generating cofibrations and trivial cofi-
brations for /M; and it also shows that with this choice of generators, // has the
structure of a cellular model category. In [8, Corollary 1.6] it is also proved that # is
cellular.

Theorem 2.3.2. — M is a cellular model category, where the set Ins of generating
cofibrations and the set Jy; of generating trivial cofibrations are defined as follows:
1. Ins = I where I is the set of genmerating cofibrations for the injective model
structure on A°PPre(Jm|s)nis (see Theorem 2.1.1).
2. Ju ={j : A — B} such that:
(a) j is a monomorphism.
(b) 7 is @ Va-local equivalence.

ASTERISQUE 335



2.3. THE MOTIVIC MODEL STRUCTURE 43

(c) The size of B as an I-cell complex (see definition 1.8.2) is less than k,
where k is the cardinal defined by Hirschhorn in [6, definition 4.5.3].

Proof. — By Theorem 2.2.4 the injective model structure on A°PPre(n|s)nis is
cellular. Therefore we can use Hirschhorn’s techniques (see Section 1.9) to construct
the left Bousfield localization with respect to the set of maps ¥5; defined above. This
model structure is identical to the motivic model structure of Theorem 2.3.1 since
both are left Bousfield localizations with respect to the same set of maps. Now using
[6, Theorem 4.1.1] we have that the motivic model structure is cellular. So it only
remains to show that the sets of generating cofibrations and trivial cofibrations are
the ones described above. For the set of generating cofibrations it is clear. Theorem
4.1.1 in [6] implies that the generating trivial cofibrations are the maps j : A — B
where j is an inclusion of I-cell complexes and a ¥js-local equivalence, and the size of
B is less than «. The result follows from the fact that in the injective model structure
for A°PPre(m|s)nis, I-cell is just the class of monomorphisms and that every object
in A°PPre(dm|s)nis is an I-cell complex (see Remark 2.1.2). O

Following Jardine we say that a simplicial presheaf X is motivic fibrant if X is
Y m-local.

Proposition 2.3.3. — The following conditions are equivalent:
1. X is motivic fibrant.
2. X is fibrant in the injective structure and for every U in Jm|s the map induced
byUx AL, - U
Map(U, X) — Map(U x A}, X)

is a weak equivalence of simplicial sets.
3. X is fibrant in the injective structure and for every U in Jm|s the map induced
byU x x - U x A}

Map(U x AL, X) — Map(U x *, X)

s a weak equivalence of simplicial sets, where * — A}.; s any rational point for
AL,

4. X is fibrant in the injective structure and for every U in ¢m|s the map induced
by U x - U x Ak

Map(U x Ak, X) — Map(U x *, X)

is a trivial fibration of Kan complezes, where x — AL is any rational point for
AL.
S
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5. X is fibrant in the injective structure and for every U in dm|s the map induced
byU x x - U x A}

Homp, (U x A}, X) — Homp,(U x *, X)

is a trivial fibration between fibrant objects in the injective model structure for
A°PPre(Jm|s)nis, where ¥ — A} is any rational point for AL.

Proof. — The claim that (1) and (2) are equivalent follows from the definition of
9 m-local and the fact that every simplicial presheaf is cofibrant in the injective model
structure. (2) and (3) are equivalent since the following diagram is commutative

UUxx—>Ux A}
|
U

and weak equivalences of simplicial sets satisfy the two out of three property. (3)
and (4) are equivalent since the injective structure is in particular a simplicial model
category.

(4) = (5): Since A°PPre(Jm|s)nis equipped with the injective model structure is
a symmetric monoidal model category we have that

Homp,.(U x A}, X) —2 > Hompye(U X %, X)

is a fibration between fibrant objects in the injective structure. It only remains to show
that p is a weak equivalence in the injective model structure. Lemma 2.1.5 implies
that it is enough to show that

14
Homp:o(U x AL, X)(V) 2% Homp,e(U x *, X)(V)

is a weak equivalence of simplicial sets for every V in (¢m|s). But for any simplicial
presheaf Z we have a natural isomorphism of simplicial sets Z(V) = Map(V, Z),
therefore p(V') is just

v
Map(V,Homp,(U x A}, X)) ), Map(V, Homp,(U x *, X))
Now using the enriched adjunctions of Proposition 2.1.3, p(V') becomes

v
Map(V x U x AL, X) Lz>Ma~p(V x U x *,X)

and by hypothesis we know that this map is a weak equivalence of simplicial sets.
(5) = (4): Since the injective model structure is simplicial, we have that

Map(U x AL, X) — > Map(U x *, X)
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is a fibration between Kan complexes. So it only remains to show that f is a weak
equivalence of simplicial sets. By hypothesis we have that

Homp,(U x AL, X) —2 > Hompy (U % *, X)

is a trivial fibration between fibrant objects in the injective model structure. Lemma
2.1.5 implies that if we take global sections at S:

s
Hompy (U x AL, X)(8) 2% Hompye(U x *, X)(S)
we get a weak equivalence of simplicial sets. But p(S) is natural isomorphic to
Map(U x AL, X) —= Map(U x *, X)
so this proves the result. O

Proposition 2.3.4. — Let X be a motivic fibrant simplicial presheaf on the smooth
Nisnevich site (Jm|s)nis- Then for any Y in A°PPre(dm|s)nis, the simplicial presheaf
Homp,(Y, X) is also motivic fibrant.

Proof. — Since the injective structure is a syinmetric monoidal model category (see
Lemma 2.1.4) we have that Homp,.(Y, X) is a fibrant object for the injective model
structure. Proposition 2.3.3(5) implies that for every U in ¢Jn|g, the map

Homp; (U x AL, X) —> Homp(U x *, X)

is a trivial fibration between fibrant objects in the injective model structure for
A°PPre(¢m|s)nis, and since the injective model structure is simplicial we have that

Map(Y, Homp,(U x A}, X)) 2+ Map(Y, Homp (U X *, X))

is a trivial fibration of Kan complexes. Now using the enriched adjunctions of propo-
sition 2.1.3, p. becomes

Map(Y x U x AL, X) —2> Map(Y x U x %, X)
and finally
Map(U x A}, Homp,(Y, X)) —2* > Map(U x *, Homp,(Y, X))

therefore Proposition 2.3.3(4) implies that Homp,e(Y, X) is motivic fibrant since p,
is a trivial fibration of Kan complexes for every U in (Jm|s). O

Since the motivic and the injective model structures have the same class of cofi-
brations and the same set of generating cofibrations, it follows that the cofibrations
for the motivic model structure also have the properties described in Remark 2.1.2.

Corollary 2.3.5. — M is a symmetric monoidal model category.
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Proof. — The cofibrations for the motivic and injective model structures coincide,
therefore it only remains to show that if we have two cofibrationsi: A — B,j: C — D
where j is a motivic weak equivalence, the induced map

Z.Dj:AxDI_IAchXC—)BXD

is a trivial cofibration in /. Since every simplicial presheaf is cofibrant in the motivic
model structure, it is enough to prove the following claim: For any trivial cofibration j :
C — D in /M and for any simplicial presheaf A, the induced map jxid : CxA — Dx A
is a trivial cofibration in J#. Since the injective model structure for A°?Pre(dJm|s)nis
is a symmetric monoidal model category (see Lemma 2.1.4) we have that j x id is a
cofibration, so it only remains to show that it is a weak equivalence in /. Let X be
any motivic fibrant simplicial presheaf, Proposition 2.3.4 implies that Homp,.(A4, X)
is also motivic fibrant, therefore since j is a weak equivalence in /¥, the map

Map(D, Hompye(4, X)) —— Map(C, Hompy (4, X))

is a weak equivalence of simplicial sets. Now using the enriched adjunctions of Propo-
sition 2.1.3, j* becomes

Map(D x A, X) —— Map(C x 4, X)

and this implies that j x id : C x A — D x A is a weak equivalence in /i, hence the
result follows. 0O

Remark 2.3.6. — Proposition 1.7.9 implies that the associated pointed category
A°PPre,(m|s)nis of pointed simplicial presheaves is also closed symmetric monoidal,
we denote by X AY the functor giving the monoidal structure, and by Homy,, (X,Y)
the adjunction of two variables.

Proposition 2.3.7. — Let M, denote the pointed category associated to M (see Re-
mark 1.1.2), i.e. the category with pointed simplicial presheaves as objects and base
point preserving maps. The model structure on M. induced from the model struc-
ture on M is cellular, proper, simplicial and symmetric monoidal. Furthermore, M,
is a SSets,-model category (see definition 1.7.12). The sets Inr,, Ju, of generating
cofibrations and trivial cofibrations respectively, are defined as follows:

1.
In, = {is : Yy < (AD)+}
where i : Y — A7 is a generating cofibration for M (see Theorem 2.3.2(1)).

Im, ={j+ 1 Ay - By}
where j is a map in the set J defined in theorem 2.3.2(2), i.e. j is a generating
trivial cofibration for M.
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Proof. — Theorems 2.3.1, 2.3.2 together with Corollary 2.3.5 imply that M is cel-
lular, proper, simplicial and symmetric monoidal. Then theorem 1.3.13 and theorem
1.4.4 imply that the associated pointed category M, with the induced model structure
is cellular (with the sets of generating cofibrations and trivial cofibrations as defined
above) and proper. Now Proposition 1.7.13 implies that 7, is a SSets,-model cate-
gory, and this induces a simplicial model structure in U, since the natural functor
SSets — SSets, which adds a disjoint base point is a left Quillen monoidal functor.
Finally Proposition 1.7.9 implies that ¥, is symmetric monoidal. O

Definition 2.3.8 (cf. [14]). — Let X € M be a simplicial presheaf. We say that X is
motivic flasque if:

1. X is flasque (see definition 2.1.12).
2. For every U € Jm|s the map
X(U) = Map(U, X) — Map(U x Ag, X) = X (U x Ag)

induced by the projection U x Ay — U is a weak equivalence of simplicial sets.

Remark 2.3.9. — 1. The class of motivic flasque simplicial presheaves is closed un-
der filtered colimits.
2. The functors ¢~ and ¢, (see definition 2.1.8) preserve motivic flasque simplicial
presheaves.
3. If X is fibrant in the motivic model structure for A°PPre,(dm|s)nis then X is
also motivic flasque.

Definition 2.3.10 (cf. [14]). — Let X € M. be a pointed simplicial presheaf. We say
that X is compact if:

1. All inductive systems Zy — Zy — --- of pointed simplicial presheaves induce
isomorphisms

Homﬂh (X5 111_9 Zl) = 1_an Homm. (Xr Zz)

2. If Z is motivic flasque, then Homy,, (X, Z) is also motivic flasque.
3. The functor

Homy, (X,-): M. — M,

takes sectionwise weak equivalences of motivic flasque pointed simplicial
presheaves to sectionwise weak equivalences.

Proposition 2.3.11. — Let X € M, be a pointed simplicial presheaf, and let

Zl._..ézz__q.
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be an inductive system of pointed simplicial presheaves. If X is compact in the sense
of Jardine (see definition 2.3.10) then:

(X, lim Z;] = lim[X, Zi]
where [—, —] denotes the set of maps in the homotopy category associated to M,.

Proof. — Let R denote a functorial fibrant replacement in ., such that the natural
map Ry : Y — RY is always a trivial cofibration. Consider the following commutative
diagram:

Z1 22 “en ll_I)n Zi J R(I_I_I_)n Z,)

T

RZ, ——> RZy —> -+ ———>11_II)1RZ, TR(I}_E}RZz)

Since all the maps Z; — RZ; are trivial cofibrations, it follows that the induced map
i: h_rg Z; — 1_151 RZ; is also a trivial cofibration. Therefore:

(13) [X,lim Z;] = [X,lim RZ;] = [X, R(lim RZ;)]

We have that the pointed simplicial presheaves RZ; are motivic fibrant, then Re-
mark 2.1.13(3) implies that lim RZ; satisfies the B.G. property. Therefore using The-
orem 2.1.7 we get that the map jg : li_n)lRZ,- — R(l_u_)n RZ;) is a sectionwise weak
equivalence. On the other hand lim RZ; and R(lim RZ;) are both motivic flasque (see
Remark 2.3.9(1)), and since X is compact we have that

lim Homyy, (X, RZ;) = Homy, (X, lim RZ;) — Homy, (X, R(lim RZ;))

is a sectionwise weak equivalence of simplicial sets. Taking global sections at S we get
the following weak equivalence of simplicial sets:

lim Map(X, RZ;) — Map(X, R(lim RZ,))

Therefore
(14) (X, R(im RZ;)] = moMap(X, R(lim RZ;))
= molim Map(X, RZ;) = li_rr)nroMap(X, RZ;)
On the other hand:
(15) lim moMap(X, RZ;) = lim[X, RZ;]

Hence equations (13), (14) and (15) imply that
[X,lim Z;] = [X, R(lim RZ;)] = im[X, RZ;] & lim[X, Zi]
—5 — — —

as we wanted. O
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Definition 2.3.12. — Let A € M, be an arbitrary pointed simplicial presheaf. We de-
fine the functor of A-loops as follows:

QA:.m* m:x
X +— Homy,, (4, X)

Remark 2.3.13. — 1. The functor of A-loops Q4 has a left adjoint given by smash
product with A, i.e.

—NA M, — M,
X——XAA

2. The adjunction
(— /\A,QA,(P) F My ——> M,

is a Quillen adjunction.

2.4. The Motivic Stable Model Structure

In [14] Jardine constructs a stable model structure for the category of T-spectra
on Jm|s. In order to define this stable model structure, he constructs two auxiliary
model structures called projective and injective. In this section we recall Jardine’s
definitions for these three model structures on the category of T-spectra.

Let S!' denote the constant presheaf associated to the pointed simplicial set
A'/0AY, let S™ denote S* A--- A St (n-factors) and let G, denote the multiplicative
group over the base scheme S, i.e. G,, = A} — {0} pointed by the unit e for the group
operation. Let T = S A G,y,.

Proposition2.4.1. — 1. T = S* AG,, is compact in the sense of Jardine (see defi-
nition 2.3.10).
2. Consider U € ¢Jm|s and r,s > 0. Then the pointed simplicial presheaf S™ A
G;, NUL is compact in the sense of Jardine, where G, denotes Gy, A -+ A Gy,
(s-factors).

Proof. — 1t follows immediately from [14, Lemma 2.2]. O

Definition 2.4.2. — 1. A T-spectrum X is a collection of pointed simplicial
presheaves (X™)n>0 on the smooth Nisnevich site Jm|g, together with bonding
maps

TAX?—Z > xntl
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2. Amap f: X —Y of T-spectra is a collection of maps
X’n .; Y’n
in M, which are compatible with the bonding maps, i.e. the following diagram:

idAf™
TAX" TAY"

Xn+1 __7;1—_.> Yn+1

commutes for alln > 0.
3. With the previous definitions we get a category called the category of T-spectra
which will be denoted by Sptr(m|s)nis-

The category of T-spectra has a natural simplicial structure induced from the one
on pointed simplicial presheaves.
Given a T-spectrum X, the tensor objects are defined as follows:

X A — : SSets — Sptr(Jn|s)Nis
K——>XAK

where (X A K)® = X™ A K, and the bonding maps are

o~ o™ Aid
TAXPAK,) —= (TAX™)AK, L xmAK,
The simplicial functor in two variables is:
Map(—, =) : (Sptr(dm|s)nis)°P x Sptr(dm|s)nis SSets
(X, Y)+ Map(X,Y)

where Map(X,Y), = Homgpy_, (gn|s)nie (X A A%, Y), and finally for any T-spectrum
Y we have the following functor
Y~ : SSets — (Sptr(dn|s)nis)°P
Kt Y¥

where (Y¥)" = (Y")X+ with bonding maps

T A (Y7)Ks —2e (T A Y™K L5 (ynttyKe
where for U € (Jm|s), a(U) is adjoint to

idT(U) /\evK+

T(U) A (Y (U))K+ A Ky — 5 T(U) AY™(U)
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Remark 2.4.3. — 1. In fact there ezists an adjunction of two variables (see defini-
tion 1.7.2):

— A — : Sptp(dm|s)nis X SSets, —— Sptr(dm|s)Nis

which induces the simplicial structure for T-spectra described above via the
monoidal functor SSets — SSets, which adds a disjoint base point.

2. For any two given spectra X, Y, the simplicial set Map(X,Y) is just Map, (X,Y)
(i.e. the pointed simplicial set coming from the adjunction of two variables de-
scribed above) after forgetting its base point

wp: X —*——Y

We have the following family of shift functors between T-spectra defined for every
nez

sn : Spty(dm|s)Nis —— Sptr(dm|s)nis
Xt X[n]

where X |[n] is defined as follows:

(X[a])™ = {* ifm+n<0.

Xmtn ifm+n>0.

with the obvious bonding maps induced by X. It is clear that sp = id and that for
n > 0, s, is right adjoint to s_,, i.e.

Homgpt . (n|s)nis (X, ¥ [1]) = Homgpe . (g )nis (X [—7], Y)
We define the projective model structure as follows.

Definition 2.4.4. — Consider the following family of functors from the category of
pointed simplicial presheaves to the category of T-spectra:

F, My —— SptT(W[S)Nis
X ——— (2P X)[-n]
where X3 X is defined as follows:

(EEX)F=TFAX

(16)

where the bonding maps are the canonical isomorphisms T A (T* A X) S T*1X and
T A X is just X.

We also have the following evaluation functors from the category of T-spectra to
the category of pointed simplicial presheaves:

Ev, : SptT(M'S)Nis — M,
X X"
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where n > 0. It is clear that Fj is left adjoint to Fvy. This implies that for every
n > 0, F, is left adjoint to Ev, and F_,, is left adjoint to Q% o Evy.

We say that a map of T-spectra f : X — Y is a level equivalence if for every n > 0,
f*: X™— Y™ is a weak equivalence in J,.

Let Ips, and Jps, denote the sets of generating cofibrations and trivial cofibrations
for M. (see Proposition 2.3.7).

Theorem 2.4.5 (Jardine). — There exists a cofibrantly generated model structure for
the category Sptr(dJm|s)nis of T-spectra with the following choices:

1. The weak equivalences are the level weak equivalences defined above.
2. The set I of generating cofibrations is

1= Faim.)
n>0

3. The set J of generating trivial cofibrations is

J = U Fn(JM*)

n>0
This model structure will be called the projective model structure for T'-spectra. Fur-
thermore, the projective model structure is proper and simplicial.

Proof. — We refer the reader to [14, Lemma 2.1]. 0O

Remark 2.4.6. — Let f : A — B be a map of T-spectra.

1. f is a cofibration in the projective model structure if and only if f°: A° — B°
and the induced maps

G )

T AB"[ppan A®H ————= pnt!

are all cofibrations in M,.
2. f is a fibration in the projective model structure if and only if f is a level motivic
fibration, i.e. for everyn >0, f*: A™ — B"™ is a fibration in M,.

Proposition 2.4.7. — Let n > 0. Consider M, and Sptr(dm|s)nis equipped with the
projective model structure (see Theorem 2.4.5). Then the adjunction

(Frn, Evp, @) : M, — Sptp(dm|s)nis

is a Quillen adjunction.

Proof. — It is enough to show that FEwv, is a right Quillen functor. Let p: X — Y
be a fibration in the projective model structure for Spty(7|s)nis, then p is a level
motivic fibration. In particular, Ev,(p) = p™ : X™ — Y™ is a fibration in M.
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Now let ¢ : X — Y be a trivial fibration in the projective model structure for
Sptr(Jm|s)nis- Then g is a level motivic trivial fibration. In particular, Fv,(q) = ¢™ :
X™ — Y™ is a trivial fibration in J,. O

‘We now proceed to define the injective model structure for the category of T-spec-
tra.

We say that a map of T-spectra i : A — B is a level cofibration (respectively level
trivial cofibration) if for every n > 0, i® : A" — B™ is a cofibration (respectively
trivial cofibration) in /.. Notice that a map i : A — B is a level cofibration if and
only if it is a monomorphism in the category of T-spectra.

Let A be an arbitrary T-spectrum. We say that A is A-bounded if for every n > 0,
the presheaf of pointed simplicial sets A™ is A-bounded.

Theorem 2.4.8 (Jardine). — Let k be a regular cardinal larger than 2* where « is the
cardinality of the set Map(dm|s) of maps in Jm|s. There exists a cofibrantly generated
model structure for the category Sptr(Jm|s)nis of T-spectra with the following choices:
1. The weak equivalences are the level weak equivalences.
2. The set I of generating cofibrations is

I={i:A— B}

where 1 satisfies the following conditions:
(a) 7 is a level cofibration.
(b) The codomain B of i is k-bounded.
3. The set J of generating trivial cofibrations is

J={j: A—- B}

where j satisfies the following conditions:
(a) j is a level trivial cofibration.
(b) The codomain B of j is k-bounded.
This model structure will be called the injective model structure for T'-spectra. Fur-
thermore, the injective model structure is proper and simplicial.

Proof. — We refer the reader [14, Lemma 2.1]. O

Remark 2.4.9. — 1. Let f : A — B be a map of T-spectra. Then f is a cofibration
in the injective model structure for Spty(dm|s)nis if and only if f is a level
cofibration.

2. The identity functor on Sptr(dJm|s)nis induces a left Quillen functor from the
projective model structure to the injective model structure.

Proposition 2.3.7 implies in particular that M, is a closed symmetric monoidal
category. The category of T-spectra Sptr(dm|s)nis has the structure of a closed
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M.-module, which is obtained by extending the symmetric monoidal structure for
M, levelwise.
The bifunctor giving the adjunction of two variables is defined as follows:
— A — : Sptp(dmls)Nis X M — Sptr(dm|s)nis
(X ) A) ; XNA
with (X A A)” = X™ A A and bonding maps given by

o™ Aid 4o

TAX"AA) —> (TAXYAA—T52 5 yntlp g4
The adjoints are given by:
Q_— : MP x Sptp(dm|s)nis — Sptr(dmls)nis

(A, X)+ QuX
hom, (-, —) : (Sptz(dm|s)nis)°P x Sptr(dm|s)nis M.
(X,Y) hom,(X,Y)

where (24X)" = 24X™ and the bonding maps T' A (24 X™) — Q4 X"*! are adjoint

to
idAevy n

TAQAX™ANA TAXY 2L xntl

and hom,(X,Y) is the following pointed simplicial presheaf on n|s:

hom,(X,Y) : (dn|s x A)°P Jets
(U,n) Homgpe . (gmis)nie (X A (A7) +,Y)
Proposition 2.4.10. — 1. Let Sptp(dm|s)nis denote the category of T-spectra

equipped with the projective model structure. Then Sptr(dm|s)nis is a M.-model
category (see definition 1.7.12).

2. Let Sptr(dJm|s)nis denote the category of T-spectra equipped with the injective
model structure. Then Spty(dm|s)nis 45 a M.-model category.

Proof. — In both cases we need to check that conditions (1) and (2) in definition
1.7.12 are satisfied. Condition (2) is automatic since the unit * [ | * is cofibrant in ..

(1): To check condition (1) in definition 1.7.12 we use Lemma 1.7.5(3) which implies
that it is enough to prove the following claim: Given a cofibration i : A — B in K,
and a fibration p : X — Y in Spty(m|s)nis then (4%, ps) : QX — QaX X,y QBY
is a fibration of T-spectra (in the projective model structure), which is trivial if either
i or p is a weak equivalence. But fibrations in the projective model structure are level
motivic fibrations, by Proposition 2.3.7 we have that J/, is a symmetric monoidal
model category, so in particular (i*,p.) is a level motivic fibration which is trivial if
either i or p is a weak equivalence. This proves the claim.
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(2): We will prove directly that we have a Quillen bifunctor, i.e. given a cofibration
i: A — Bin M, and a level cofibration j : C — D of T-spectra, we will show that
i0j: DANAJJcaaC A B — D A B is a level cofibration (i.e a cofibration in the
injective model structure) which is trivial if either 7 or j is a weak equivalence. But
cofibrations in the injective model structure are level cofibrations, and since M, is a
symmetric monoidal model category, we have that ¢ [Jj is a level cofibration which is
trivial if either 7 or j is a weak equivalence. This finishes the proof. |

If we fix A in M,, we get an adjunction
(= AN A,Q4,04) : Sptr(dm|s)nie — Sptr(dmls)is

Proposition 2.4.11. — Let A in M, be an arbitrary presheaf of pointed simplicial sets
on Jm|s.

1. The adjunction (— A A,Qa,p4) defined above is a Quillen adjunction for the
projective model structure on Sptp(dm|s)Nis-

2. The adjunction (— N A,Qa,p4) defined above is a Quillen adjunction for the
injective model structure on Sptr(Jm|s)Nis-

Proof. — Since every object A in M, is cofibrant, the result follows immediately from
Proposition 2.4.10. O

Proposition 2.4.12. — Let X,Y be two arbitrary T-spectra and let A in M, be an
arbitrary presheaf of pointed simplicial sets. Then we have the following enriched
adjunctions:

Map(A, hom,(X,Y)) —%> Map(X A A,Y) —> Map(X, Q24Y)

Homy, (A, hom,(X,Y)) —i»- hom,(X A A,Y) —— hom, (X, Q4Y)

where the maps in the first row are isomorphisms of simplicial sets and the maps in
the second row are isomorphisms in M.,.

Proof. — We consider first the simplicial adjunctions: To any n-simplex t in
Map(A, hom,(X,Y))

A® A" —> hom,(X,Y)
associate the following n-simplex in Map(X A A,Y):

at
XAdgar 2Oy

corresponding to the adjunction between X A — and hom, (X, —).
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To any n-simplex ¢ in Map(X A A,Y)

A"®@XAA—= X NA® A" —>Y
associate the following n-simplex in Map(X,Q4Y):

XoAr —==aArgx 2% a0,y

corresponding to the adjunction between — A A and Q4.

We consider now the isomorphisms of simplicial presheaves: To any simplex s in
Homy, (A,hom,(X,Y))

AANAYL —> hom,(X,Y)
we associate the following simplex in hom, (X A A,Y)

xnanap 2Py

corresponding to the adjunction between X A — and hom, (X, —).
To any simplex s in hom,(X A A,Y)
XAAPANA—ZS XANANAYL —S >y
we associate the following simplex in hom,(X,Q4Y)

xnap <Y,y

corresponding to the adjunction between — A A and Q4. O

We now proceed to define the stable model structure for the category of T-spectra.
Consider the functor Qr of T-loops in Spt;(Jm|s)nis- There is another way to promote
the T-loops functor from the category of pointed simplicial presheaves to the category
of T-spectra.

Definition 2.4.13. — We define the functor Q% as follows:

Q% : Sptr(dm|s)nis — Sptr(dnls)nis
X 0L X

where (Q5X)" = QrX™ and the bonding maps T A QrX™ — Qp X" are given by
the adjoints to

Qp(o?
QrX" S Qr(QrX™l)

where a7 : X™ — Qr X"t is adjoint to the bonding map
XnATi.TAXn__i>Xn+1

Following Jardine we call the functor Q% the fake T-loops functor.
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Remark 2.4.14. — The fake T-loops functor Q% has a left adjoint =¥ called the fake
T-suspension functor defined as follows:
24 : Sptr(dm|s)nis — Sptr(dmls)nis
X TEX

where (£4X)" =T A X™ and the bonding maps are
idAd" :TA(TAX") - TAX"H

We will denote by X1 the left adjoint (— AT) to Qr.

For any T-spectrum X, the adjoints o” : X™ — QrX™*t! of the bonding maps
are the levelwise components of a map o, : X — Q4X[1]. Consider the following
inductive system of T-spectra:

Q0. 1] Q7)%0.[2]

X 2= QL X[1] (94)2X[2] —

and denote its colimit by Q17X . The functor Qr is called the stabilization functor.

Following Jardine, J will denote a fibrant replacement functor for the projective
model structure and I will denote the corresponding fibrant replacement functor for
the injective model structure on Sptr(7|s)nis. The tranfinite composition X —
Q7 X will be denoted nx, and we define 7jx as the composition

nx Qr(ix)

X QrX QrJX

We say that a map f : X — Y of T-spectra is a stable equivalence if it becomes
a level equivalence after taking a fibrant replacement and applying the stabilization
functor, i.e. if Q7 J(f) : QrJX — QrJY is a level equivalence of T-spectra.

Remark 2.4.15. — Let f : X —» Y be a map of T-spectra.

1. f is a stable equivalence if and only if the map
1QrJ(f) : IQrJX — IQrJY

is a level equivalence of T-spectra.
2. If f is a level motivic equivalence, then f is also a stable equivalence.

Theorem 2.4.16 (Jardine). — Let Spty(dm|s)nis be the category of T-spectra equipped
with the projective model structure (see Theorem 2.4.5). Then the left Bousfield lo-
calization of Spty(dm|s)nis with respect to the class of stable equivalences exists, and
furthermore it is proper and simplicial. This model structure will be called motivic
stable, and the category of T-spectra Spto(dn|s)nis, equipped with the motivic stable
model structure will be denoted by Sptp M.

Proof. — We refer the reader to [14, Theorem 2.9]. ]
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Proposition 2.4.17. — Let n > 0. Consider the adjunction
(Fna Evna ‘P) s M ——> SptTm*
described in Proposition 2.4.7. Then (Fy,, Ev,, ) is a Quillen adjunction.

Proof. — It follows immediately from Proposition 2.4.7 and the following fact:
— The identity functor on Spty(dm|s)nis is a left Quillen functor from the projec-
tive model structure to the motivic stable model structure.

O

Lemma 2.4.18 (Jardine). — Letp: X — Y be a map of T-spectra. Then p is a fibration
in Sptp M. (we then say that p is a stable fibration) if the following conditions are
satisfied:
1. p is a fibration in the projective model structure for Sptr(dm|s)nis, i-€. p is a
level motivic fibration.
2. The following diagram is level homotopy Cartesian:

X X QrJX

Pt LQTJ(P)

Y —QrJY
ny
Proof. — We refer the reader to [14, Lemma 2.7]. O

Lemma 2.4.19 (Jardine). — Let X be a T-spectrum. The following are equivalent:

1. X is a fibrant object in Sptp M. (we then say that X is stably fibrant).

2. X is a fibrant object in the projective model structure for T spectra (i.e. X is
level motivic fibrant) and the adjoints to the bonding maps o7 : X™ — QrX™+!
are weak equivalences in M,.

3. X is a fibrant object in the projective model structure for T-spectra and the
adjoints to the bonding maps are sectionwise weak equivalences of simplicial
sets, i.e. for any U € (Jm|s) the induced map o™ (U) : X™(U) — QrX"T1(V)
is a weak equivalence of simplicial sets.

Proof. — We refer the reader to {14, Lemma 2.8]. O

We say that a T-spectrum X is stably fibrant injective, if X is a fibrant object in
both the motivic stable and the injective model structures for Spty(7|s)nis-

Corollary 2.4.20. — Let X be a T-spectrum. Then IQrJX is a stably fibrant injective
replacement for X, i.e. the natural map

X —>IQrJX
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s a stable weak equivalence and IQrJX is stably fibrant injective.

Proof. — 1t is clear that rx is a stable weak equivalence and that IQrJX is fibrant
in the injective model structure for Spty(dm|s)nis, so we only need to show that
IQrJX is stably fibrant. Since the identity functor on Spty(7|s)nis is a left Quillen
functor from the projective to the injective model structure (see remark 2.4.9(2)), we
have that IQrJX is in particular a fibrant object in the projective model structure
for T spectra. Lemma 2.4.19(3) implies that it is enough to show that the adjoints
to the bonding maps for IQrJX, o7 : (IQTJX)" — Qr(IQrJX)™*! are all sec-
tionwise weak equivalences of simplicial sets. We will prove that using the following
commutative diagram, and showing that the top row and the vertical maps are all
sectionwise weak equivalences of simplicial sets:

(QrIX)" — = Qp(QrJX)"+

o

(IQrJX)" —> Qp(IQrJ X))+

A cofinal argument implies that the adjoints of the bonding maps for QrJX:

(QrIX)" — = Qp(QrIX)™*!

are isomorphisms, so in particular these maps are sectionwise weak equivalences of
simplicial sets.

Since the B.G. property (see definition 2.1.6) is preserved under filtered colimits
and the fibrant objects for M, in particular satisfy the B.G. property (see Theo-
rem 2.1.7), we have that the pointed simplicial presheaves (QrJX)™ satisfy the B.G.
property. Therefore Theorem 2.1.7 implies that the maps (QrJX)" — (IQrJX)"
are sectionwise weak equivalences of simplicial sets.

Remark 2.3.9(1) implies that the pointed simplicial presheaves (QrJX)™ are all
motivic flasque, and since the simplicial presheaves (IQrJX)™ are fibrant in M,
we have that (IQrJX)™ are also motivic flasque. Now since T is compact in the
sense of Jardine (see Proposition 2.4.1), we have that the maps Qr(QrJX)"*! —
Qr(IQrJX)™*! are sectionwise weak equivalences of simplicial sets. This finishes the

proof. O

Corollary 2.4.21. — Let A in M, be an arbitrary pointed simplicial presheaf, and let
X be a stably fibrant T-spectrum. Then QX is also stably fibrant.

Proof. — Using Proposition 2.4.11 we have that Q4 is a right Quillen functor for
the projective model structure on Spty(dJm|s)nis, therefore in particular Q4 X is level
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fibrant. Lemma 2.4.19(2) implies that o7 : X™ — QrX"*! are motivic weak equiva-
lences between motivic fibrant objects. X, is a symmetric monoidal model category,
then Ken Brown’s Lemma 1.1.5 implies that 24(07) : QaX — QaQrX"*! is a
motivic weak equivalence. Let 8™ : Q4 X" — Q7Q4 X"+ be the adjoint to the bond-
ing map T A Q4 X™ — Q4 X" for the spectrum Q4X, then we have the following
commutative diagram:

QAxn _91_> QTQAXWH

QaQr X"l
where t is the isomorphism which flips loop factors. Then the two out of three property
for weak equivalences in M, implies that the maps 6" : Q4 X" — Q4 X"*! are

motivic weak equivalences. Finally, lemma 2.4.19(2) implies that Q4 X is stably fibrant
as we wanted. O

Lemma 2.4.22 (Jardine). — Let f : A — B be a map of T-spectra. The following are
equivalent:

1. f is a weak equivalence in Sptp M,.
2. For every stably fibrant injective object X, f induces a bijection

f* N [B7X]Spt _ [A)X]Spt

in the homotopy category associated to SptpM.,.
3. For every stably fibrant injective object X, f induces a bijection

f*:[B,X] —[A,X]

in the projective homotopy category for Sptp(dm|s)nis-
4. For every stably fibrant injective object X, f induces a weak equivalence of sim-
plicial sets

f* : Map(B, X) —> Map(4, X)
Proof. — We refer the reader to {14, Lemma 2.11 and Corollary 2.12]. O

Proposition 2.4.23. — Let A in M. be an arbitrary presheaf of pointed simplicial sets.
Then the adjunction

(_ A A, QA, SOA) . SptTﬂ/l* —_— SptT/q/t*
is a Quillen adjunction.

Proof. — Since the cofibrations in the stable and projective model structures for
T-spectra coincide, we have that — A A preserves stable cofibrations (since — A A is a
left Quillen functor for the projective model structure). So it only remains to show that
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if j : B — C is a trivial cofibration in Spt; M., then jAid: BAA — C A A is a weak
equivalence in Spt;M.. Let X be an arbitrary stably fibrant injective T-spectrum,
corollary 2.4.21 implies that 4 X is also stably fibrant, and since 24 is a right Quillen
functor for the injective model structure on Spt,(J7|s)nis (see Proposition 2.4.11), we
have that Q24X is also fibrant in the injective model structure. Thus Q4 X is stably fi-
brant injective, then Lemma 2.4.22 implies that j* : Map(C, Q4 X) — Map(B,Q4X)
is a weak equivalence of simplicial sets. Using the enriched adjunction of Proposi-
tion 2.4.12, j* becomes (j A id)* : Map(C A A, X) — Map(B A A, X). Finally since
(j Aid)* is a weak equivalence for every stably fibrant injective spectrum X, we get
that j Aid: C A A — B A A is a weak equivalence in Spt; W,. a

Proposition 2.4.24. — Sptp M. is a M.-model category (see definition 1.7.12).

Proof. — Condition (2) in definition 1.7.12 follows automatically since the unit in
M, is cofibrant. It only remains to prove that if i : A — B is a cofibration in %, and
j:C — D is a cofibration in Sptp M, then i j: DAA[[cAaCAB - DABisa
cofibration in Spt; M. which is trivial if either ¢ or j is a weak equivalence. Since the
cofibrations in the projective and the motivic stable model structure for Sptr(n|s)nis
coincide, and Proposition 2.4.10 implies in particular that the category of T-spectra
equipped with the projective model structure is a #.-model category, we have that
10 7 is a cofibration in the motivic stable structure. It only remains to show that
1O j is a stable weak equivalence when either ¢ or j is a weak equivalence. If i is
a weak equivalence (i.e. a trivial cofibration) then using Proposition 2.4.10 again we
have that 70 j is a level weak equivalence, therefore i [ j is also a stable equivalence
(see Remark 2.4.15). Finally if j is a stable equivalence (i.e. a trivial cofibration in
the motivic stable structure) then we consider the following commutative diagram

idg Al
ChA CAB
J/\idA l/f
DAA DAA[[gnaCAB

i0j

DAB
Proposition 2.4.23 implies that j Aidg and j A idp are both trivial cofibrations in
SptrM.. Thus f is also a trivial cofibration (since it is the pushout of j Aid4 along
idg A 1), and therefore the two out of three property for stable weak equivalences
implies that ¢ (J j is a stable equivalence. This finishes the proof. O

In order to prove that the motivic stable model structure on Spty(dm|s)nis is in fact
“stable”, i.e. that the T-suspension functor X7 is indeed a Quillen equivalence, Jardine
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introduces bigraded stable homotopy groups which allow to give another criterion to
detect motivic stable weak equivalences.

Definition 2.4.25. — Let X be an arbitrary T-spectrum. The weighted stable homo-
topy groups of X are presheaves of abelian groups 7 ;X (wheret,s € Z) on Jmn|s. For
U € (Jm|s) the sections my s X (U) are defined as the colimit of the inductive system:

[St+n A G:r-:-n’anU] N [St+n+1 A Gf:"+l,Xn+1|U] —_

where [—, X*|y] denotes the set of maps in the homotopy category associated to
the motivic model structure on the category A°PPre,(dm|y)nis of pointed simplicial
presheaves on the smooth Nisnevich site over the base scheme U, and the transition
maps are given by taking suspension with T and composing with the bonding maps of
X. The index t is called the degree and the index s is called the weight of m; ¢ X.

Proposition 2.4.26. — Consider t,s € Z and U € (Jm|s). Then the following functor:

X1, X(U)

is representable in the homotopy category associated to SptpM.. To represent it we
can choose any spectrum of the form (see definition 2.4.4)

Fa(SPAGYL AUL)

where n,p,q >0, p—n=t and q—n = s.

Proof. — Since every pointed simplicial presheaf on Jm|g is cofibrant in /., Propo-
sition 2.4.17 and Corollary 2.4.20 imply that

[Fo(SPAGE, AUL), Xspt 2 [SPAGEL AUL, (IQTJX)"]

where [—, —|spt denotes the set of maps between two objects in the homotopy category
associated to Sptp M., and [—, —] denotes the set of maps in the homotopy category
associated to M,. Since QrJX — IQrJX is in particular a level motivic trivial
fibration we have the natural isomorphism

(" AGF, AUy, (IQrIX)"] = [SP AG, AU, (QrJ X)"]

Now since SP A G, AU, is compact in the sense of Jardine (see Proposition 2.4.1),
using Proposition 2.3.11 we have that

SPAGI AU, (QrJX)"] = lim[SPH AGEHH AUL, (JX)"H]
" >0
J1Z
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Since /MU, is in particular a symmetric monoidal model category (see Proposition 2.3.7)
and U, € A°PPre,(dm|s)nis is cofibrant, we have that

B (SP7 A GE AU, (JX)™] = ISP A G, Homy, (U, (JX)™7))
j=0 >0

Proposition 2.1.10 implies that

lim(S™7 A G5}, Hom, (Us, (JX)™*)] 2 Lim[S7* A G, g9 (JX)™]
J20 j=20

where ¢ : U — S is the structure map defining U as an object in Jm|s.
Now since M, is in particular a simplicial model category, and ¢.¢~*(JX)"HJ =
Homgy,, (U, (JX)™7) is a fibrant object, we have that

mo(Map(SPH A G, 6,971 (JX)"*7))

computes [SPTI A GLH, ¢.¢~1(JX)"7]. The enriched adjunctions of proposition
2.1.11 imply that

IR

Map(¢~(SP* AGE), 71 (X))
= Map(S*"*7 AGEY, ¢~ (JX)")

Map(SP+ AGEH, g™ (JX)™HT)

Let 1y : ¢ 1(JX)"*/ — Ry¢~1(JX)"* be a functorial fibrant replacement for
¢~ 1(JX)™*7 in the category of pointed simplicial presheaves A°PPre, (¢Jm|y)nis on
the smooth Nisnevich site over U equipped with the motivic model structure. It is
clear that (JX)"*7 is motivic flasque (see definition 2.3.8) and satisfies the B.G.
property (see definition 2.1.6) on A°PPre, (¢7|s)nis, and since ¢! preserves both
properties we have that ¢~1(JX)™*J is motivic flasque and satisfies the B.G. property
on A°PPre,(dm|y)nis- Thus ry is a sectionwise weak equivalence, and since SPT7 A
G217 is compact in the sense of Jardine in A°PPre, (| )nis (see Proposition 2.4.1)
we have that

Homy, (P47 AGELH, ¢~ 1 (J X))
(17) lru*
Homy,, (S7*7 AGEH, Ry¢~! (JX)™H)

is also a sectionwise weak equivalence. Taking global sections at U we get a weak
equivalence of simplicial sets:

Map(S7+ A GE7,¢7(JX)"+)
(18) |
Map(S7+ A G5, Ryg™ (JX)™+)
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Thus Map(SPT AGZH, e~ (J X)) and Map(SPHI A G, Ry~ 1(J X)) are
naturally weakly equivalent simplicial sets. Since A°PPre,(m|y)nis is a simplicial
model category we have that

moMap(SPH A G, Ry~ (J X))

computes [SPI A G, ¢~ H(J X))y = [SPH A GEHI, (JX)"H|y], where [—, —|u
denotes the set of maps in the homotopy category associated to the motivic model
structure on A°PPre,(dJm|y)nis.- Thus [SPHI A G, ¢~ (JX)™ 1] is naturally iso-
morphic to [SPTI A GZFI, (JX)™+I|y]. This implies that
[Fa(SPAGE AUL), X]spe = Um[SPH AGEY, 6,67 (JX)™H]
j=0

(19) > lm[SPH AGEH, (JX)™H|y)
j=>0

o~ li_n_)l[Sp"'j A ng+j,Xn+J'|U]
Jj=20
2 Mpeng—nX{U) =m,:X(U)
Therefore the functors [F,(S? A G, A Uy ), —|spt and m s(—)(U) have canonically
isomorphic image for every T-spectrum X. To finish the proof we will give an element
a € . s(Fr(S? AGZ, AU, ))(U) which induces an isomorphism of functors

[Fa (P AGE, AUY), =Jspr —= mu,e(=)(U)
Let 37 be the unit of the adjunction between — A U, and Homy,, (U, —) evaluated
in St A GSH:
3 , ) .
St A G+~ Homy,, Uy, ST AGEH AUL) = ¢ud1(SHH A GEH AUL)

Now let 47 be the adjoint to 37 corresponding to the adjunction between ¢! and ¢,:
. . ] . .
¢S AGT) —— 71 (SHI AGHH AUL)

Let [yi] € [6=1(S°4 A G3H), 6= (S* A G AUy = (879 A G39, (S A
G+ A Uy)|u] denote the map induced by 77 in the homotopy category associated
to A°PPre.(Jm|y)nis equipped with the motivic model structure. It is clear that the
maps [y’/] define an element

a € Im[S*T AGHH, (S NG AUL)|u]
Jj20

But
(S AGSH (STIAGH AU W] =[S AGH, (8P AGLH ™" AUL)|u)
[S™HT NG, (Fu(SP AGE, AUL)Y (v
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Thus

a € IS A Gy, (Fu(SP AGL AUL)Y o] = me,s (Fa(SP A G, AUL))
320

Finally it is clear that a induces the required isomorphism of functors
[Fn(SP AGE, AUL), —lspt —— mt,s(—)(U)

since by construction a is compatible with the isomorphisms in (19) which are induced
by ry : ¢~ Y (JX)"H — Ryé~1(JX)"* via the natural maps ry* in the diagrams
(17) and (18), where ry denotes a functorial fibrant replacement in the category
A°PPre, (Jm|y)nis equipped with the motivic model structure. O

Proposition 2.4.27 (Jardine). — Let f : X — Y be a map of T-spectra. The following
are equivalent: :

1. f is a weak equivalence in Sptp M.
2. For every t,s € Z, f induces an isomorphism

7Tt,s(f) : 7Tt,sX — Wt,sY
of presheaves of abelian groups on Jm|s.

Proof. — We refer the reader to [14, Lemma 3.7]. O

Corollary 2.4.28. — Let f: X — Y be a map of T-spectra. The following are equiva-
lent:

1. f is a weak equivalence in Sptp M.
2. For every n,p,q > 0 and every U € dm|g, f induces an isomorphism

[Fa(SP AGE, AUL), Xlspr — [Fu(SP AGE, AUL), Ylspr
in the homotopy category associated to Sptp M.
Proof. — It follows immediately from Propositions 2.4.27 and 2.4.26. O
Theorem 2.4.29 (Jardine). — The Quillen adjunction:
(B, Qr, ) : Sptp M. — Sptr M,
is a Quillen equivalence.
Proof. — We refer the reader to [14, Theorem 3.11 and Corollary 3.17]. o

Proposition 2.4.30 (Jardine). — The natural map X5X — X[1] from the fake suspen-
sion functor to the shift functor is a weak equivalence in SptpM.. Therefore the fake
suspension functor and the shift functor are naturally equivalent in the homotopy cat-
egory associated to Sptp M.
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Proof. — We refer the reader to [14, Lemma 3.19]. O

Proposition 2.4.31 (Jardine). — The fake suspension functor E% and the suspension
functor L are naturally equivalent in the homotopy category associated to Sptp M. .

Proof. — We refer the reader to [14, Lemma 3.20]. O

Corollary 2.4.32 (Jardine). — The T-loops functor Qr, fake T-loops functor Qf., and
shift functor s_1 (s—1X = X[-1]) are all naturally equivalent in the homotopy cate-
gory associated to Sptp M.

Proof. — Tt follows immediately from Propositions 2.4.30 and 2.4.31. O

Proposition 2.4.33. — Let X € A°Pre.(dm|s)nis be a pointed simplicial presheaf
which is compact in the sense of Jardine (see definition 2.3.10), and let F,(X) be the
T -spectrum constructed in definition 2.4.4. Consider an inductive system of T'-spectra:

Zy A Zy
Then

[Fn(X), lim Zi]spe = Hm[F, (X)), Zi]spt
where [—,—]spt denotes the set of maps in the homotopy category associated to
Sptr M.

Proof. — Since X is cofibrant in ., Proposition 2.4.17 and corollary 2.4.20 imply
that

[Fn(X)’li_I,nZi]Spt = [Xa(IQTJli_n}Zi)n]
(X, (QrJ lim Z;)"]

IR

where [—, —] denotes the set of maps in the homotopy category associated to J,.
Since X is compact in the sense of Jardine, we have that Proposition 2.3.11 implies
the following:

(X, (Q@rJlim Z,)"] = lLm[S AGJ, A X, (Jlim Z;)"H]

Jj20
> lim[S? AG, A X, (lim Z;)" ]
720 -
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Now Lemma 2.2(4) in [14] implies that S7 A GJ, A X are all compact in the sense of
Jardine, therefore using proposition 2.3.11 again, we have:

lim[S7 A G, A X, (lim Z;)"*9] = lim lim[S7 A G, A X, (Z:)™]
lim 1 — =

> 72020

lim Lim[$7 A G, A X, (Z:)"*]
i>0 >0

im[X, (QTJZ:)"]

i>0

lig[X, (IQ7JZ:)"]

i>0

lim[Fo (X), Zilspe

i>0

IR

IR

IR

IR

and this finishes the proof. O

2.5. Cellularity of the Motivic Stable Model Structure

In this section we will show that Spt; M, is a cellular model category. For this we
will use the cellularity of M, (see Proposition 2.3.7) together with some results of
Hovey [11].

The cellularity for the motivic stable model structure is also proved in [8, Corol-
lary 1.6]. However, our proof is different since we use the characterization for weak
equivalences given in corollary 1.6.11(2) (which holds in any simplicial model cate-
gory) whereas the argument given in [8, Corollary 1.6] relies on [11, Theorem 4.12]
which does not apply to the model category /M, described in Proposition 2.3.7 (see
(11, p. 83)).

Theorem 2.5.1 (Hovey). — Let Spt(dJm|s)nis be the category of T-spectra equipped
with the projective model structure (see Theorem 2.4.5). Then the category
Sptr(dm|s)nis s a cellular model category where the sets of gemerating cofibra-
tions and trivial cofibrations are the ones described in Theorem 2.4.5.

Proof. — Proposition 2.3.7 implies that the model category M, is in particular cellu-
lar and left proper. Therefore we can apply Theorem A.9 in [11], which says that the
category of T-spectra equipped with the projective model structure is also cellular
under our conditions. O

Theorem 2.4.5 together with Theorem 2.5.1 imply that the projective model struc-
ture on Spty(¢m|s)nis is cellular, proper and simplicial. Therefore we can apply
Hirschhorn’s localization technology to it. If we are able to find a suitable set of
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maps such that the left Bousfield localization with respect to this set recovers the mo-
tivic stable model structure, then an immediate corollary of this will be the cellularity
of the motivic stable model structure for Spt(dJm|s)nis-

Definition 2.5.2 (Hovey, cf. [11]). — Let Ins, = {Y} — (AZ)+} be the set of generating
cofibrations for M, (see Proposition 2.3.7). Notice that Y, may be equal to (A7)+.
We consider the following set of maps of T-spectra

CY
S = {Fe1(T AYy) —— FiYy}
where (Y is the adjoint to the identity map (in A°PPre,(Jm|s)Nis)
id: TA Y+ — E11k+1(FkY+) =TA Y+

coming from the adjunction between Fy.1 and Eviy; (see definition 2.4.4).
Proposition 2.5.3 (Hovey). — Let X be a T-spectrum. The following conditions are
equivalent:

1. X is stably fibrant, i.e. X is a fibrant object in Sptr M.

2. X is S-local.
Proof. — Tt follows from [11, Theorem 3.4] and lemma 2.4.19. O

Now it is very easy to show that the motivic stable model structure for T-spectra
is in fact cellular.

Theorem 2.5.4. — Sptp M. is a cellular model category with the following sets IK‘,I*,
J}CI* of generating cofibrations and trivial cofibrations respectively:

Iy, = Ukso{Fe(Y+ = (A7)4) | U € (dmls),n > 0}

Jy. ={j:A— B}
where j satisfies the following conditions:
1. j is an inclusion of I{l*-complezces.

2. j is a stable weak equivalence.

3. the size of B as an III\:I‘ -complex is less than k, where k is the regular cardinal
described by Hirschhorn in [6, definition 4.5.3)].

Proof — By Theorem 2.5.1 we know that Sptr(dm|s)nis is cellular when it is
equipped with the projective model structure. Therefore we can apply Hirschhorn’s
localization techniques to construct the left Bousfield localization with respect to the
set S of definition 2.5.2. We claim that this localization coincides with Spt;%,. In
effect, using Proposition 2.5.3, we have that the fibrant objects in the left Bousfield
localization with respect to S coincide with the fibrant objects in Spt;M,.. Therefore
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amap f: X — Y of T-spectra is a weak equivalence in the left Bousfield localization
with respect to S if and only if Qf* : Map(QY,Z) — Map(QX,Z) is a weak
equivalence of simplicial sets for every stably fibrant object Z (here @ denotes the
cofibrant replacement functor in Sptr(dJm|s)nis equipped with the projective model
structure). But since Spt; M, is a simplicial model category and the cofibrations
coincide with the projective cofibrations, using corollary 1.6.11(2) we get exactly the
same characterization for the stable equivalences. Hence the weak equivalences in
both the motivic stable structure and the left Bousfield localization with respect to S
coincide. This implies that the motivic stable model structure and the left Bousfield
localization with respect to S are identical, since the cofibrations in both cases are
just the cofibrations for the projective model structure on Spts(7|s)nis-

Therefore using Theorem 4.1.1 in [6] we have that Spt M, is cellular, since it is
constructed applying Hirschhorn technology with respect to the set S.

The claim with respect to the sets of generating cofibrations and trivial cofibrations
also follows from [6, Theorem 4.1.1] and the fact that I7; is just the set of generating
cofibrations for the projective model structure on Spty(d7|s)nis- O

Theorem 2.5.4 will be one of the main technical ingredients for the construction of
new model structures on Spt(¢m|s)nis which lift Voevodsky’s slice filtration to the
model category level.

2.6. The Motivic Symmetric Stable Model Structure

One of the technical disadvantages of the category of T-spectra Sptr (dm|s)nis (see
definition 2.4.2) is that it does not inherit a closed symmetric monoidal structure from
the category of pointed simplicial presheaves M,. Symmetric spectra were introduced
by Hovey, Shipley and Smith in [12] to solve this problem in the context of simplicial
sets.

Their construction was lifted to the motivic setting by Jardine in [14], where he
constructs a closed symmetric monoidal category of T-spectra together with a suit-
able model structure which is Quillen equivalent to the category Spty M. (see Theo-
rem 2.4.16). In this section we describe some of his constructions and results that will
be necessary for our study of the multiplicative properties of the slice filtration.

Definition 2.6.1. — For n > 0, let ¥,, denote the symmetric group on n letters where
3o is by definition the group with only one element.
The (q,p)-shuffle ¢, , € X414 is given by the following formula:

con(i) = i+tp f1<i<q.
P i—q fq+1<i<p+gq.
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Definition 2.6.2 (Jardine, cf. [14]). — 1. A symmetric T-spectrum X is a collection
of pointed simplicial presheaves (X™),>o on the smooth Nisnevich site Jgm|g,
together with:

(a) Left actions

Yp X X" — X"
(b) Bonding maps

TAX" .L. xntl

such that the iterated composition
TT AN X" —— Xntr

is X, X X, -equivariant for r > 1 and n > 0.
2. Amap f: X —-Y of symmetric T-spectra is a collection of maps
xn ;. YY"
in M, satisfying the following conditions:
(a) Compatibility with the bonding maps, i.e. the following diagram:

dAf™
TAX" TAY™
a"i la"
Xn+1 s yn+1

commutes for alln >0
(b) f™ is X,,-equivariant.
3. With the previous definitions we get a category, called the category of symmetric
T-spectra which will be denoted by Sptx(Jm|s)Nis-

Example 2.6.3. — Given any pointed simplicial presheaf X in M., the T-spectrum
Fo(X) has the structure of a symmetric T-spectrum; where the left action of ¥, on
Fo(X)» =T™ A X is given by the permutation of the T factors.

In particular if we take X = S°, we get the sphere T-spectrum; which will be
denoted by 1.

The category of symmetric T-spectra has a simplicial structure similar to the
one that exists for T-spectra, which is induced from the one on pointed simplicial
presheaves.

Given a symmetric T-spectrum X, the tensor objects are defined as follows:

X A — : SSets — Spt (Jm|s)nis
KH——>XAK
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where (X A K)® = X™ A K which has an action of ¥, induced by the one in X™
and the functor — A K, and with bonding maps

I~ U"/\idK+
TAX"ANKy)——= (TAX")ANKy X"IAK,
The simplicial functor in two variables is:
Map 5(—, —) : (Spt7(dmls)nis) X Spt7 (dmls)nis SSets
(X, V) Map 5(X,Y)

where Map 5(X,Y ) = Homgyiz () s)n,. (X A AT, Y), and finally for any symmetric
T-spectrum Y we have the following functor

Y~ : SSets — (SptZ(dm|s)nis)°P
Kt YK

where (Y¥)™ = (Y™)%+ which has an action of ¥,, induced by the one in Y™ «nd the
K -loops functor, and with bonding maps

T A(YP)Ke —2s (T A Ym)Ks S8 (i)
where for U € (Jm|s), a(U) is adjoint to

idT(U)AevK+

TWU)A(Y™U))E+ AK, T(U)AY™(U)

In a similar way, it is possible to promote the action of /., on the category of
T-spectra to the category of symmetric T-spectra, i.e. the category of symmetric
T-spectra Spt>(Jm|s)nis has the structure of a closed M,-module, which is obtained
by extending the symmetric monoidal structure for M, levelwise.

The bifunctor giving the adjunction of two variables is defined as follows:

— A — : Spt3(dmls)nis X M. — Spt3(dm|s)nis
(X, A) XANA

with (X A A)™ = X™ A A which has an action of ¥,, induced by the one in X™ and
the functor — A A, and with bonding maps

o™ Aid 4o

TAX"ANA)—= (TAXYAA—TZD5A o xnt1 g 4
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The adjoints are given by:
Q_— : P x SptF(¢hmls)nis —> SptT(dhnls)nis

(A, X) — QAX
hom’(—,—) : (Spt7(¢m|s)nis)°P X SPtT (s )nis M,
(X,Y) hom?(X,Y)

where (24X)™ = Q4X™ which has an action of ¥,, induced by the one in X™ and
the A-loops functor, with bonding maps T'A (24 X™) — Q4 X™*! adjoint to

idAev gy

TAQAX")ANA T/\Xn_L.XnH
and hom?>(X,Y) is the following pointed simplicial presheaf on m|g:
hom?”(X,Y) : (Jm|s x A)°P Jets

(U,n) Homgpes (gn sy (X A (AF)+,Y)

The main difference between the categories of T-spectra and symmetric T-spectra
is that the latter has a closed symmetric monoidal structure, i.e. it is possible to
construct the smash product of two symmetric T-spectra.

Definition 2.6.4 (cf. [14]). — 1. A symmetric sequence X is a collection of pointed
simplicial presheaves (X™)n>0 on the smooth Nisnevich site Jn|s, together with
left actions

Yo X X" —— X"
2. Amap f: X - Y of symmetric sequences consists of a collection of ¥,,-equiv-
artant maps
X" —y"
in M.
3. With these definitions we get a category, called the category of symmetric se-
quences which will be denoted by (M, )*.

Definition 2.6.5. — Let X andY be two symmetric sequences. Then the product X®Y
is given by the following symmetric sequence:
XeY)"= \/ Z.®z,xz, XPAY?
p+q=n
Remark 2.6.6. — A symmetric T-spectrum X can be identified with a symmetric se-

quence X equipped with a module structure over the sphere spectrum, i.e. with a map
of symmetric sequences:

1®X_UL>X

satisfying the usual associativity conditions.
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Definition 2.6.7 (cf. [12]). — For every n > 0, we have the following adjunction:
(Gny Evn, @) : My ——> (M)
where Ev,, is the n-evaluation functor
Ev, : (M)E — M,
X X"
and Gy, is the n-free symmetric sequence functor:
Gn : My —— (M,)E
X —— Gnp(X)

where

G (X)™ = * if m#n.
" " A\ Voes, X if m=n.

Definition 2.6.8 (cf. [14]). — For every n > 0, we have the following adjunction:
(F3y Bug, @) : My —> Sptz(dmls)nis

where Ev,, is the n-evaluation functor

Ev, : Spt?(mlS)Nis — M.

X X"

and FT is the n-free symmetric T-spectrum functor:

FE My —> Spt%(dh‘&ls)Nis

X—18Gh(X)

Definition 2.6.9 (cf. [14]). — Let X and Y be two symmetric T-spectra. Then the
smash product X AY is given by the colimit of the following diagram

ox ®id

1 XQY XQY

where the bottom arrow is the following composition

id
¢ X91Y —2% . XY

1 XQY

Proposition 2.6.10 (Jardine). — The category of symmetric T-spectra Sptr(dm|s)nis
has a closed symmetric monoidal structure where the product is given by the smash
product described in definition 2.6.9, and the functor that gives the adjunction of two
variables is the following:

HomSpt?,(—a _) : (sptg(&nls)Nis)op X Spt?‘(WL'S)NiS —— Spt’?(Mb)Nis
(Xa Y) — HomSpt,? (X1 Y)
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where Homg,,s (X,Y)" = homZ(FZ(S°)AX,Y), and the adjoints o™ to the bonding
maps are given as follows: Let ¢ : F2, | (T) 2 FZ,(S°) AT — FZ(S°) be the adjoint
corresponding to the inclusion determined by the identity in X, 41
te:T = Bupsa(F(SY) = Zpr 8y, TA \) 8= \/ T
o€EX, 0€2n+1

then o7 is the following map induced by ¢ Aid:

(¢nid)

homZ(FZ(S°) A X,Y) ———— hom>(FZ (S°) AT A X,Y)

The twist isomorphism 7 : X ANY — Y A X is induced levelwise by:

t

XPAYY YIAXP
|
(X ® Y)p+q (Y ® X)p+q

Finally, the unit is given by the sphere T-spectrum FZ(S°) = 1.
Proof. — We refer the reader to [14, Section 4.3]. O

Proposition 2.6.11. — Let X,Y be two arbitrary symmetric T-spectra and let A in
M. be an arbitrary pointed simplicial presheaf. Then we have the following enriched
adjunctions:

(200 Map(A, hom®(X,Y)) —o= Map (X A 4,Y) —o= Map n(X, 24Y)
(21)  Homy, (4, homZ(X,Y)) —> homZ(X A A,Y) —== hom?”(X,Q,Y)

(22) Homg,;» (XNA)Y) % Homg,,;» (X,Q4Y)

where the maps in (20) are isomorphisms of simplicial sets, the maps in (21) are
isomorphisms of simplicial presheaves, and the map in (22) is an isomorphism of
symmetric T-spectra.

Proof. — We consider first the simplicial adjunctions: To any mn-simplex ¢ in
Map(4, hom; (X,Y))

AAA" —>hom>(X,Y)
associate the following n-simplex in Map 5 (X A 4,Y):

a(t)
XANANA" —>Y

corresponding to the adjunction between X A — and homE(X ,—)-
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To any n-simplex ¢t in Map (X A A,Y)

APAXANA—>XANANA" —>Y
associate the following n-simplex in Map (X, Q24Y):

o B(t
xaar—=arax 2% v

corresponding to the adjunction between — A A and 4.
We consider now the isomorphisms of simplicial presheaves: To any simplex s in
Hom 4, (A, hom”(X,Y))

ANAL ——>hom?(X,Y)
we associate the following simplex in hom>(X A A,Y)

X/\A/\A',}Ls);y

corresponding to the adjunction between X A — and hom?> (X, —).
To any simplex s in homZ(X A 4,Y)

XANAZAA—=S> XANANAY S5y

we associate the following simplex in homZ(X,Q4Y)

xaap g,y

corresponding to the adjunction between — A A and 4.

Finally, we consider the isomorphism of symmetric T-spectra: Using the adjunction
given by € in (21), we get for every n > 0 the following commutative diagram, where
the vertical maps are isomorphisms of simplicial presheaves:

(¢Aidxanna)”

hom”(FZ(SY) A X AN A,Y) homZ(FZ,,(T) A X A A,Y)

9 l N L
hom?(FZ(S%) A X,Q4Y) T hom?”(FZ,,(T) A X,Q4Y)
By definition (see Proposition 2.6.10) the diagram above is equal to:

Homg,,s (X A A, Y)" o QrHomg,:s (X A 4, Yy)rt!
o [/E =3 l/e
Homg,,s (X, Q4Y)" — QrHomg,s (X, QaY)"!

This induces the isomorphism 4. O
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Proposition 2.6.12. — Let X,Y,Z be three arbitrary symmetric T-spectra. Then we
have the following enriched adjunctions:

(23) Map 5(X AY, Z) —— Map (X, Homg,,z (Y, X))
(24) hom? (X AY, Z) —— hom; (X, Homg,z (Y, 2))
(25) HOInSpt?. (X A K Z) —;—> HomSptqz. (Xa HomSpt,EI;, (K Z))

where the map in (23) is an isomorphism of simplicial sets, the map in (24) is an
isomorphism of simplicial presheaves, and the map in (25) is an isomorphism of
symmetric T-spectra.

Proof. — We consider first the simplicial adjunctions: To any mn-simplex t in
Map (X \Y, Z)

A"AXAY —=XAY ANA"—>Z

associate the following n-simplex in Map (X, Homg,,» (Y, Z)):
o A(t)
X A A" — A" A X —> Homg,,= (Y, Z)
corresponding to the adjunction between — A'Y and Homg,» (Y,-).
We consider now the isomorphisms of simplicial presheaves: To any simplex s in

hom>(X AY, Z)

APAXAY == XAY ANAL —*»> 7
we associate the following simplex in homZ (X, Homyg,,= (Y, Z))

X AAL —=- A7 A X 2 Homg,s (Y, 2)

corresponding to the adjunction between — AY and Hom SptE (Y,-).

Finally, we consider the isomorphism of symmetric T-spectra: Using the adjunction
given by « in (24), we get for every n > 0 the following commutative diagram, where
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the vertical maps are isomorphisms of simplicial presheaves:

hom?>(FZ(S°)A X AY, Z)

>k hom?Z(FZ, (T) AX AY, Z)

n

hom (FF(S°) A X,Homg,,z (Y, Z)) P

hom; (FY(T) A X, Homyg,= (Y, Z))
By definition (see Proposition 2.6.10) the diagram above is equal to:
Homg,» (X AY, Z)" ) QrHomg,s (X AY, Z)"+!

gln Eln

Homyg,,;z (X, Homg,,z (Y, Z))" —— QrHomg,s (X, Homg,s (Y, Z))ntt
a*

This induces the isomorphism . O

The following proposition will have remarkable consequences in our study of the
multiplicative properties for Voevodsky’s slice filtration.

Proposition 2.6.13 (Jardine). — Let A, B be two arbitrary pointed simplicial presheaves
in M.. Then we have an isomorphism:

FP(A) A F3(B) —> FZ,,(AAB)
which is natural in A and B.

Proof. — We refer the reader to [14, Corollary 4.18]. O

For the construction of the motivic stable model structure on the category of
T-spectra, it was necessary to introduce the projective and injective model struc-
tures (see Theorem 2.4.16). In [14], Jardine considers an injective model structure for
symmetric T-spectra as a preliminary step in the construction of a model structure
which turns out to be Quillen equivalent to Spt; .. We will also need to consider a
projective model structure for symmetric T-spectra, in order to show that this stable
model structure for symmetric T-spectra is cellular.
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Definition 2.6.14. — Let f : X — Y be a map of symmetric T-spectra. We say that f
is a level cofibration (respectively level fibration, level weak equivalence), if for every
n > 0, the map f™* : X™ — Y™ is a cofibration (respectively a fibration, a weak
equivalence) in M.,.

In Proposition 2.3.7 we used Iy, and Jys, to denote the sets of generating cofibra-
tions and trivial cofibrations for ..

Theorem 2.6.15 (Hovey). — There exists a cofibrantly generated model structure for
the category Spty(dm|s)nis of symmetric T-spectra with the following choices:
1. The weak equivalences are the level weak equivalences.
2. The set I of generating cofibrations is
I= U FY(In,)
n>0
3. The set J of generating trivial cofibrations is
J=|JFX(Un.)
n>0
This model structure will be called the projective model structure for symmetric
T-spectra. Furthermore, the projective model structure is left proper and simplicial.

Proof. — Proposition 2.3.7 implies that the model category M, is in particular
pointed, proper, simplicial and symmetric monoidal. We also have that every pointed
simplicial presheaf in M, is cofibrant. Then the result follows immediately from
Theorems 8.2 and 8.3 in [11]. O

Remark 2.6.16. — Let f : X — Y be a map of symmetric T-spectra.
1. f is a fibration in Spt(m|s)nis equipped with the projective model structure if
and only if f is a level fibration.
2. f is a trivial fibration in SptT(Jm|s)nis equipped with the projective model struc-
ture if and only if f is both a level fibration and a level weak equivalence.

It follows directly from the definition that every symmetric T-spectrum after for-
getting the X,-actions becomes a T-spectrum in Sptr(Jm|s)nis. Therefore we get a
functor:

U : Spt7(dmls)nis — St (dnls)nis
It turns out that this forgetful functor has a left adjoint.

Definition 2.6.17 (Jardine, cf. [14]). — Let X be an arbitrary T-spectrum in
Sptr(dm|s)nis- Then X has a natural filtration {L, X }n>o called the layer filtration,
where L, X 1is defined as

X0 xt . . X" TAX",T?AX",...
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and furthermore
X =2limL,X
It is also possible to give an inductive definition for the layers L,X using the
following pushout diagrams (see definition 2.4.4):

Fop1(TAX™) — > L, X

| |

Frp1 (X)) —— Lny1 X
Proposition 2.6.18 (Jardine). — We have the following adjunction

(Vy U7 (P) : SptT(YJ}”’IS)Nis I Spt?’(&"'ug)NiS
The functor V is called the symmetrization functor and is defined as follows:

1. For every pointed simplicial presheaf X on the smooth Nisnevich site (Jm|s)nis
we have

V(Fu(X)) = Fy'(X)

2. V is constructed inductively using the layer filtration (see definition 2.6.17) to-
gether with the following pushout diagrams (see definition 2.6.8):

FZ,(T AX") ——= V(LX)

| |

Fra (X)) ——V(Lpt1X)
3. Finally, V(X) =1lim V(L,X)
Proof. — We refer the reader to [14, p. 507] O

Proposition 2.6.19. — The adjunction

(V7 Uv (P) : SptT((J}n’ls)NiS E—— Spt’?(d}n'S)le

is enriched in the categories of simplicial sets and pointed simplicial presheaves on
(dm|s)nis, i.e. for every T-spectrum X and for every symmetric T-spectrum Y we
have the following natural isomorphisms:

Map =(VX,Y) ———;—> Map(X,UY)

hom?®(VX,Y) —— hom,(X,UY)
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Proof. — We consider first the simplicial isomorphism: Given any n-simplex ¢ in
Map =(VX,Y)

VXAA" —>Y
consider the map corresponding to the adjunction between — A A” and —4" in
Spt7 (Jmls)nis
VX s yar
Now use the adjunction between V and U to get the map:

x s ya") = (Uy)2”

and finally use the adjunction between — A A™ and —2" in Spty(d7|s)nis to get the
associated n-simplex €(t) in Map(X,UY):

e(t)
XANA" —UY
We consider now the isomorphism of simplicial presheaves: Given any simplex s in
hom>(VX,Y)
VXANAY sy
consider the map corresponding to the adjunction between — A Aj, and Qa7 — in
Spt%(ﬁdmb)Nis
VX~ QapY
Now use the adjunction between V and U to get the map:
x > UQapY) =Qan UY

and finally use the adjunction between — A Af, and Qar in Sptr(dm|s)nis to get
the associated simplex 7(s) in hom, (X,UY):

xaAg 2 gy O

We say that a map f: X — Y of symmetric T-spectra is an injective fibration if it

has the right lifting property with respect to the class of maps which are both level
cofibrations and level weak equivalences.

Theorem 2.6.20 (Jardine). — There exists a model structure for the category
Spt(dm|s)nis of symmetric T-spectra with the following choices:

1. The weak equivalences are the level weak equivalences.
2. The cofibrations are the level cofibrations.
3. The fibrations are the injective fibrations.
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This model structure will be called the injective model structure for symmetric T-spec-
tra. Furthermore, the injective model structure is proper, simplicial, and cofibrantly
generated with the following sets I, J of generating cofibrations and trivial cofibrations,
respectively (see Theorem 2.4.8):

1. The set I of generating cofibrations is
I={V():VA—- VB}

where i satisfies the following conditions:
(a) 7 is a level cofibration in Sptr(dm|s)Nis-
(b) The codomain B of i is k-bounded.
2. The set J of generating trivial cofibrations is

J={V(j):V(4) - V(B)}

where j satisfies the following conditions:
(a) 7 is a level trivial cofibration in Spty(dm|s)nis-
(b) The codomain B of j is k-bounded.

Proof. — We refer the reader to [14, Theorem 4.2]. O

Remark 2.6.21. — The identity functor on SptZ(m|s)nis induces a left Quillen func-
tor from the projective model structure to the injective model structure.

Definition 2.6.22. — 1. Let Z be a symmetric T-spectrum. We say that Z is injec-
tive stably fibrant if Z satisfies the following conditions:
(a) Z is fibrant in Spty(dJm|s)nis equipped with the injective model structure.
(b) UZ is fibrant in SptpM,.
2. Let f : X — Y be a map of symmetric T-spectra. We say that f is a stable
weak equivalence if for every injective stably fibrant symmetric T-spectrum Z,
the induced map

Map 5 (Y, Z) —— Map (X, 2)

is a weak equivalence of simplicial sets.
3. Let f: X —» Y be a map of symmetric T-spectra. We say that f is a stable
fibration if U f is a fibration in Sptp M. (see theorem 2.4.16).

In Theorem 2.5.4 we used I3, and J7; to denote the sets of generating cofibrations
and trivial cofibrations for Spt, ..

Theorem 2.6.23 (Jardine). — There exists a model structure for the category
Sptx(dm|s)nis of symmetric T-spectra with the following choices:

1. The weak equivalences are the stable weak equivalences.
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2. The cofibrations are the projective cofibrations (see Theorem 2.6.15), i.e. they
are generated by the set

U F¥w) = Vi)
n>0
3. The fibrations are the stable fibrations.
This model structure will be called motivic symmetric stable, and the category of
symmetric T-spectra, equippped with the motivic symmetric stable model structure
will be denoted by Spt%ﬂ/l*. Furthermore, Spt?/’l/l* is a proper and simplicial model
category.

Proof. — We refer the reader to [14, Proposition 4.4 and Theorem 4.15]. |

Remark 2.6.24. — Let p : X — Y be a map of symmetric T-spectra. Then p is a
trivial fibration in Spt%ﬂfl* if and only if Up is a trivial fibration in Sptyp M.

Proposition 2.6.25. — Spt‘%ﬂfl* is a M.-model category (see definition 1.7.12).

Proof. — Condition (2) in definition 1.7.12 follows automatically since the unit in
M, is cofibrant. It remains to show that

— A — : Spt(dmls)nis X My — Spt7(dmls)nis
is a Quillen bifunctor. By Lemma 1.7.5 it is enough to prove the following claim:
Given a cofibration i : A — B in /M, and a fibration p : X — Y in SptZ.,, then
the map

(5% ,px

QBX —Z% QBY XQaY QAX
is a fibration in Spt%ﬂfl* which is trivial if either ¢ or p is a weak equivalence.
But this follows immediately from the following facts:

1. A map of symmetric T-spectra f : X — Y is a fibration (respectively a trivial
fibration) in Spt>, if and only if Uf : UX — UY is a fibration (respectively
a trivial fibration) in SptpM..

2. For every symmetric T-spectrum X and for any pointed simplicial presheaf A
in M., we have that U(Q4X) = Q4UX, where the right hand side denotes the
action of M, in Sptp M,.

3. Sptp M. is a M.-model category (see Proposition 2.4.24). O

Corollary 2.6.26. — For every pointed simplicial presheaf A € M., the adjunction
(= AA,Qa—, ) : SptEM, —> SptE M.,

is a Quillen adjunction.
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Proof. — We have that every pointed simplicial presheaf is cofibrant in .. Then
the result follows from Proposition 2.6.25. O

Theorem 2.6.27 (Jardine). — Let T = S* A G,, € M,.. Then the Quillen adjunction:
(— AT, Qr, ) : Spt3M, —> Sptr.M,
is a Quillen equivalence.

Proof. — Let 7, € denote the unit and counit of the adjunction (— A T, Qr, ¢). By
Proposition 1.3.13 in [10], it suffices to check that the following conditions hold:

1. For every cofibrant symmetric T-spectrum A in Spt:}ﬁﬂfl*, the following compo-
sition
Q RT/\A
A" an(T A d) —2E D 0 R(T A A)
is a weak equivalence in Spt%ﬂft*, where R denotes a fibrant replacement functor
in SptZM,.
2. For every fibrant symmetric T-spectrum X in Spt%ﬂfl*, the following composi-
tion
idAQRTX ex
TAQQrX) ———— T A (QrX) — X
is a weak equivalence in Spt?ﬂ/l*, where @) denotes a cofibrant replacement
functor in Spt?ﬂfl*.

(1): It follows directly from Corollary 4.26 in [14].

(2): By construction the map Q%7X : Q(27X) — QX is a weak equivalence in
SptFM,. Therefore by Lemma 4.25 in [14], we have that id A Q97X is also a weak
equivalence in Spt:‘,‘:wﬂ/l*. Then by the two out of three property for weak equivalences,
it suffices to show that ex is a weak equivalence in Spt?ﬂfl*.

Since X is fibrant in Spt2M,, it follows that U X is fibrant in Spty .. Therefore by
Lemma 2.4.19(2) we have that U X is in particular level fibrant. Then by Corollary 3.16
in [14] it follows that the map:

EUX ZT/\(QTUX)—>UX

is a weak equivalence in Sptp M., but this is just U(ex). Hence by Proposition 4.8 in
[14], we have that ex is a weak equivalence in Spt?ﬂfl*, as we wanted. O

Proposition 2.6.28 (Jardine). — Spt2 M, is a symmetric monoidal model category
(with respect to the smash product of symmetric T-spectra) in the sense of Hovey (see
definition 1.7.7).

Proof. — We refer the reader to [14, Proposition 4.19). O
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Corollary 2.6.29. — Let A be a cofibrant symmetric T-spectrum in SptZM,. Then the
adjunction:

(_ A Aa HomSpt;:i (Aa _)a (P) : Spt?‘m* —_— Sptqzn/’%*
is a Quillen adjunction.
Proof. — It follows directly from Proposition 2.6.28. O

Theorem 2.6.30 (Jardine). — The adjunction:
(V,U, ) : Sptyp M, — SptE L,
given by the symmetrization and the forgetful functor is a Quillen equivalence.

Proof. — We refer the reader to [14, Theorem 4.31]. |

2.7. Cellularity of the Motivic Symmetric Stable Model Structure

In this section we will show that the model category Spt?ﬂfl* is cellular. For this
we will use the cellularity of M, (see Proposition 2.3.7) together with some results of
Hovey [11].

Theorem 2.7.1 (Hovey). — Let Spt>(dm|s)nis be the category of symmetric T-spec-
tra equipped with the projective model structure (see Theorem 2.6.15). Then
SptZ(Jm|s)nis is a cellular model category where the sets of generating cofibra-
tions and trivial cofibrations are the ones described in Theorem 2.6.15.

Proof. — Proposition 2.3.7 implies that K, is in particular a cellular, left proper and
symmetric monoidal model category. We also have that T = S! A G,, is cofibrant
in M,. Therefore we can apply Theorem A.9 in [11], which says that the category
of symmetric T-spectra equipped with the projective model structure is also cellular
under our conditions. O

Theorem 2.6.15 together with Theorem 2.7.1 imply that the projective model struc-
ture on Spty(Jm|s)nis is cellular, left proper and simplicial. Therefore we can apply
Hirschhorn’s localization technology to construct left Bousfield localizations. If we are
able to find a suitable set of maps such that the left Bousfield localization with respect
to this set recovers the motivic stable model structure on Spt2(¢|s)nis, then an im-
mediate corollary of this will be the cellularity of the motivic stable model structure
for symmetric T-spectra.
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Definition 2.7.2 (Hovey, cf. [11]). — Let I, = {Yy — (A7 )+} be the set of generating
cofibrations for M. (see Proposition 2.8.7). Notice that Y; may be equal to (A})+.
We consider the following set of maps of symmetric T-spectra

¢z
Sz = {FZ (T AYy) —5 FE(Yy)}

where 4{ 18 the adjoint corresponding to the inclusion determined by the identity in
Ykt1

te : TAYy = Bue1(FR(Yy)) = Sk ®mxs, (TA \ Yi)= |/ TAY,
oE€EY TEX k41

coming from the adjunction between FEH and Evgy1 (see definition 2.6.8)

Proposition 2.7.3 (Hovey). — Let X be a symmetric T-spectrum. The following condi-
tions are equivalent:

1. X is stably fibrant, i.e. X is a fibrant object in Spt?ﬂ/l*.

2. X is Ss-local.

Proof. — It follows from definition 8.6 and Theorem 8.8 in [11], together with defi-
nition 2.6.22(3) and lemma 2.4.19. O

Now it is very easy to show that the motivic symmetric stable model structure for
symmetric T-spectra is in fact cellular.

Theorem 2.7.4. — Spt%/'%* is a cellular model category with the following sets IL, J&
of generating cofibrations and trivial cofibrations respectively:

g = v = F)

= J{FP(Y3) = FE((AR)4) | U € (¢mls),n > 0}
k>0

{j:A— B)

I
where j satisfies the following conditions:
1. j is an inclusion of I -complezes.
2. j is a stable weak equivalence of symmetric T-spectra.

3. the size of B as an IL-complex is less than k, where & is the reqular cardinal
described by Hirschhorn in [6, definition 4.5.3].

Proof. — By Theorem 2.7.1 we know that Spt?(d}rd s)nis is cellular when it is
equipped with the projective model structure. Therefore we can apply Hirschhorn’s
localization techniques to construct the left Bousfield localization with respect to the
set Sy of definition 2.7.2. We claim that this localization coincides with Spt?ﬂ@. In
effect, using Proposition 2.7.3, we have that the fibrant objects in the left Bousfield
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localization with respect to Sy, coincide with the fibrant objects in Spt%ﬂfl*. Therefore
amap f: X — Y of symmetric T-spectra is a weak equivalence in the left Bousfield
localization with respect to Sy, if and only if @ f* : Mapx(QY, Z) — Mapx(QX, Z) is
a weak equivalence of simplicial sets for every stably fibrant object Z (here Q denotes
the cofibrant replacement functor in Spt>(dm|s)nis equipped with the projective
model structure). But since Spt?ﬂ/l* is a simplicial model category and the cofibra-
tions coincide with the projective cofibrations, using corollary 1.6.11(2) we get exactly
the same characterization for the stable equivalences. Hence the weak equivalences
in both the motivic symmetric stable structure and the left Bousfield localization
with respect to Sy coincide. This implies that the motivic symmetric stable model
structure and the left Bousfield localization with respect to Sy are identical, since the
cofibrations in both cases are just the cofibrations for the projective model structure
on Sptr(dms)Nis-

Therefore using [6, Theorem 4.1.1] we have that the motivic symmetric sta-
ble model structure on Sptx(¢m|s)nis is cellular, since it is constructed applying
Hirschhorn technology with respect to the set Sy.

The claim with respect to the sets of generating cofibrations and trivial cofibrations
also follows from [6, Theorem 4.1.1]. O

Theorem 2.7.4 will be used for the construction of new model structures on
Spt%(d}nl s)nis which are adequate to study the multiplicative properties of Voevod-
sky’s slice filtration.

2.8. Modules and Algebras of Motivic Symmetric Spectra

In this section A will always denote a ring spectrum with unit in Spt?(g&ﬂ S )Niss
and A-mod will denote the category of left (or right) A-modules. In case A is a
commutative ring spectrum, we will denote the category of A-algebras by A-alg. Our
goal is to define the model structures induced by the motivic symmetric stable model
structure on the categories of A-modules and A-algebras, and to show some of their
properties.

Proposition 2.8.1. — We have the following adjunction between the categories of sym-
metric T-spectra and A-modules:

(AN —,U,p): Spty(dm|s)nis — A-mod

where U(N) = N after forgetting the A-module structure, and A\ X has a structure
of A-module induced by the ring structure on A.
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Proof. — The unit 1 and counit § of the adjunction are defined as follows:

u g Aid

nx X =21AX
ON:ANUN)=AAN

UMAANX)=AANX
N

KN

where u4 is the unit of A and py is the map inducing the A-module structure on
N. a

The category of A-modules inherits a simplicial structure from the one that exists
on symmetric T-spectra (see Section 2.6).
Given an A-module M, the tensor objects are defined as follows:

M A — : SSets —— A-mod
K——MAK

where (M A K)™ = M™ A K., ie. it coincides with the tensor object defined for
symmetric T-spectra and has a structure of A-module induced by the one in M.
The simplicial functor in two variables is:
Map A-mod(—, —) : (A-mod)°P x A-mod SSets
(M,N)} MapA-mod(M,N)

where Map A-mod(M, N)n, = Homg.moa (M A A%, N), and finally for any A-module N
we have the following functor
N~ : SSets — (A-mod)°P
K——— NK

where (NX)? = (N™)¥+, i.e. it coincides with the cotensor object defined for sym-
metric T-spectra and has a structure of A-module 4 A (N)E+ — NX+ adjoint to

1d/\evK+ u

AN (N)E+ ANK, AANN N

where p is the map that induces the A-module structure on N.

Similarly, it is possible to promote the action of /%, on the category of symmetric
T-spectra to the category of A-modules, i.e. the category of A-modules A-mod has
the structure of a closed /M,-module, which is obtained by extending the symmetric
monoidal structure for M, levelwise.

The bifunctor giving the adjunction of two variables is defined as follows:

— A —: A-mod x M, — A-mod
(M,D)——— M AD

with (M AD)® = M™AD, i.e. it coincides with the tensor object defined for symmetric
T-spectra and has a structure of A-module induced by the one in M.
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The adjoints are given by:

Q_—: MP x A-mod — A-mod

(D,N)———> QpN

hom?™°4(—, ) : (A-mod)°? x A-mod M
(M,N) hom”™°4(M, N)

where (QpN)™ = QpN™, i.e. it coincides with the cotensor object defined for sym-
metric T-spectra and has a structure of A-module AA (Q2pN) — QpN adjoint to

idAevp N

ANQpN)AD AAN N

and homf‘m"d(M , IN) is the following pointed simplicial presheaf on Jm|g:

hom? ™4 (M, N) : (dn|s x A)°P Jets
(U1 TL) f HomA~m0d(M A (AE)+a N)

Proposition 2.8.2. — The adjunction (see Proposition 2.8.1)
(AA=,U,¢) : Sptr(dn|s)nis — A-mod

is enriched in the categories of simplicial sets and pointed simplicial presheaves on
(Jm|s)Nis, i-e. for every symmetric T-spectrum X and for every A-module N we have
the following natural isomorphisms:

Ma'p A-mod(A A X7 N) %‘ MapE(Xa UN)

hom/A™°4(A A X, N) —— homZ(X,UN)
Proof. — We consider first the simplicial isomorphism: Given any n-simplex t in
Map g-mod(A A X, N)
ANXAAY L5 N
use the adjunction between A A — and U to get the associated n-simplex €(t) in
Mapy(X,UY):
t)
X ANAL L- UN

We consider now the isomorphism of simplicial presheaves: Given any simplex s in

hom”™4(AA X, N)
ANXA(AL)y —=N
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use the adjunction between A A — and U to get the associated simplex 7(s) in
homZ(X,UN):

XA L) A N O

If A is a commutative ring spectrum, then A-mod is a closed symmetric
monoidal category, where the monoidal structure is induced by the one exisiting on

Spt7(¢dm|s)nis. Namely,
— A4 — : A-mod x A-mod —— A-mod

(M,N)I- —— > M A4 N

Hom 4_10d4(—, =) : (A-mod)°P? x A-mod A-mod
(M7 N) t HomA—mod(M, N)
where M A4 N is defined as the colimit of the following diagram

pum Aid

ANMAN MAN

with the bottom arrow given by the following composition

dAp

MAAAN —2% = MAN

tAid

ANMAN
and Hom 4 p,04(M, N) is defined as the limit of the following diagram

*

Homg,,.z (M, N) Homg,,=(AA M, N)

(BN )«

If A is not commutative, the bifunctor — A 4 — defines instead an adjunction of two
variables from the categories of right and left A-modules to the category of symmetric
T-spectra:

— Aa — : A-mod, x A-mod; — Spt2(m|s)Nis
(M,N)1 MAs N
given a right A-module M, the right adjoint to

M A4 —: A-mod; — Spt?(g&?ﬂs)ms

is given by

Homg,z (M, —) : Spt> (| s)nis — A-mod,
where Homg,,» (M, Z) has a structure of left A-module

wiAAN HomSptg(M, Z) — Homsptg(M, Z)

defined as the adjoint of the following composition

M A AANHomg,s (M, Z) — ™. M A Homg,s(M,2) %+ 7
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where p s denotes the map defining the right A-module structure for M and € denotes
the counit of the adjunction between M A — and Homyg,,;= (M, —). The construction
of the remaining adjoint is similar.

Definition 2.8.3. — We will say that A is a cofibrant ring spectrum if A is a ring
spectrum with unit in Spt?(gf}nl s)Nis which is cofibrant in the motivic symmetric stable
model structure Spty M, (see Theorem 2.6.23).

Theorem 2.8.4. — Let A be a cofibrant ring spectrum in Spt‘;—‘"m*. Then the adjunction
(see Proposition 2.8.1):

(AN —=,U,p) : Spt2M, — A-mod

induces a model structure for the category A-mod of A-modules, i.e. a map f in
A-mod is a fibration or a weak equivalence if and only if U(f) is a fibration or a weak
equivalence in Spty M, (see Theorem 2.6.23).

This model. structure will be called motivic stable, and the category of A-modules
equipped with the motivic stable model structure will be denoted by A-mod(M,).

Proof. — We have that Sptqzwﬂ/l* is a cellular model category (see Theorem 2.7.4), i.e.
in particular a cofibrantly generated model category, and a monoidal model category
in the sense of Hovey (see Proposition 2.6.28). Therefore, since A is cofibrant the
result follows from [9, Corollary 2.2]. O

Remark 2.8.5. — Notice that Proposition 4.19 in [14] implies that Spty M, satisfies
the monoid aziom of Schwede-Shipley [23, definition 3.3] and hence by [23, Theo-
rem 4.1(1)] Theorem 2.8.4 holds even if the ring spectrum A is not cofibrant. How-
ever, the reason for restricting our discussion to cofibrant ring spectra in Spt%ﬂ/l* 18
that our main results (Theorems 8.6.19 and 3.6.20) only hold under an even stronger
condition, namely A being cofibrant in chffSpt%:«ﬂ/l* (see Theorem 3.3.50). This turns
out to be essential since we need an analogue of Proposition 2.8.9 for chffSptgﬂ/l*
(see Proposition 3.5.20 and Theorems 3.5.22, 3.5.70(4)).

Lemma 2.8.6. — Let f : A— A’ be a map between cofibrant ring spectra in Spt‘%m*,
which is compatible with the ring structures. Then the adjunction:

(A" Aa —,U,p) : A-mod(M,) — A’-mod(M.)

is a Quillen adjunction. Furthermore, a map w: M — M’ in A’-mod(M.) is a weak
equivalence if and only if Uw is a weak equivalence in A-mod(M.).

Proof. — It is clear that U : A’-mod(M,) — A-mod(M,) is a right Quillen func-
tor, since the fibrations (respectively, trivial fibrations) for both model structures
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are detected in Spt?ﬂfl*. Finally, the claim related to the weak equivalences follows
immediately from Theorem 2.8.4. O

Proposition 2.8.7. — Let f : A — A’ be a weak equivalence between cofibrant ring
spectra, in Spt?ﬂ/t*, which is compatible with the ring structures. Then f induces a
Quillen equivalence between the motivic stable model structures of A and A’ modules:

(A" Ag —,U, ) : A-mod(M,) — A’-mod(M.)

Proof. — It follows immediately from Theorem 2.4 in [9] together with the fact
that the domains of the generating cofibrations for Spt?ﬂ/t* are cofibrant (see Theo-
rem 2.7.4). O

Proposition 2.8.8. — Let f : A — A’ be a map between cofibrant ring spectra in
Spt‘;:«ﬂ/l*, which is compatible with the ring structures. Then the adjunction

(A" Aa —,U, ) : A-mod(M,) — A’-mod(M.)

is enriched in the categories of simplicial sets and pointed simplicial presheaves on
(dm|s)nis, i-e. for every A-module M and for every A’-module N we have the following
natural isomorphisms:

Map 4/.mod(A’ A4 M, N) —;>— Map 4 oqa(M,UN)

homfl'mOd(A’ Aa M,N) —>; hom?™°4(M,UN)
Proof. — The proof is exactly the same as the one in Proposition 2.8.2. O

Proposition 2.8.9. — Let A be a cofibrant ring spectrum in Spt=M., and let i be a
cofibration in A-mod(M.,). Then U(i) is also a cofibration in Spt=M,.

Proof. — Theorem 2.7.4 implies in particular that Spt?/‘lfl* is a cofibrantly generated
model category. Therefore the proposition follows directly from [9, Corollary 2.2]. O

Proposition 2.8.10. — A-mod(M,) is a:

1. proper model category.
2. simplicial model category.
3. M.-model category (see definition 1.7.12).

Proof. — (1): It follows directly from the fact that Spt3J, is a proper model category
(see Theorem 2.6.23), together with Theorem 2.8.4 and Proposition 2.8.9.

(2): Since the cotensor objects N¥ for the simplicial structure are identical in
A-mod(M,) and Spt2,, the results follows from theorem 2.8.4 and theorem 2.6.23
which implies in particular that Sptgm* is a simplicial model category.
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(3): Since the cotensor objects Qp N for the M,-action are identical in A-mod (M, )
and Spt?ﬂ/l*, the results follows from the fact that Spt?ﬂft* is a M,-model category
(see Proposition 2.6.25) together with Theorem 2.8.4. |

Theorem 2.8.11. — A-mod(M,) is a cellular model category with the following sets

T4 mod; Ja-mod Of generating cofibrations and trivial cofibrations respectively (see The-
orem 2.7.4):

Ipmod = A/\Ig
= Jlidni: ANFP(Y;) > ANFP((AY)1) | U € (¢mls),n > 0}
k>0
Jamod = AANJE={idAj:ANX - AANY}

where j : X — Y satisfies the following conditions:

1. j is an inclusion of Ig; -complezes.

2. j is a stable weak equivalence of symmetric T-spectra.

3. the size of Y as an IL-complez is less than k, where k is the reqular cardinal
described by Hirschhorn in [6, definition 4.5.3].

Proof. — We have to check that the conditions (1)-(4) of definition 1.3.12 hold.

By construction (see Theorem 2.8.4) it is clear that 4 moq and J4.moq are gener-
ators for the model structure on A-mod(,). This takes care of (1).

By adjointness, to prove (2) it suffices to show that the domains and codomains
of IL are compact relative to I4.mod. However, the domains and codomains of I%
are cofibrant in Spt=,, which is in particular a cellular model category (see The-
orem 2.7.4). Hence [6, Corollary 12.3.4] implies that the domains and codomains of
I;"; are compact with respect to the class of cofibrations in Spt‘;‘:/’lfl*. Finally, Proposi-
tion 2.8.9 implies that all the maps in I4_0q4 are cofibrations in Spt%ﬂfl*. Thus, the
domains and codomains of Ig are compact with respect to I4.moa, as we wanted.

Again by adjointness, to prove (3) it suffices to show that the domains of JZ are
small relative to I4.;moq. But Proposition 2.8.9 implies that all the maps in 14 104 are
cofibrations in Spt2M,. Therefore by [6, Theorem 12.4.4] we have that the domains
of Jg are small relative to I4.moq, Since Spt%ﬂ/l* is a cellular model category (see
Theorem 2.7.4).

Finally, Proposition 2.8.9 implies that the cofibrations in A-mod(M,) are in partic-
ular cofibrations in Spt>,, which is a cellular model category (see Theorem 2.7.4).
Therefore the cofibrations in A-mod(i,) are effective monomorphisms in Spt7 ..
This takes care of (4) since the limits and colimits in A-mod(#,) are computed in
SptZM,. O
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Theorem 2.8.12. — Let T = S* A G,, € M.. Then the adjunction:
(— AT, Qr,¢) : A-mod(M,) — A-mod(M,)

is a Quillen equivalence.

Proof. — Every pointed simplicial presheaf in /i, is cofibrant, therefore proposition
2.8.10(3) implies that — A T : A-mod(M.) — A-mod(M,) is a left Quillen functor.

Let 7, € denote the unit and counit of the adjunction (— A T, Qr, ¢). By Proposi-
tion 1.3.13 in [10], it suffices to check that the following conditions hold:

1. For every cofibrant A-module M in A-mod(M,), the following composition

Q RT/\M
M- (T A M) 22 E D)

QrR(T A M)

is a weak equivalence in A-mod(M,), where R denotes a fibrant replacement
functor in A-mod(M,).
2. For every fibrant A-module M in A-mod(/M,), the following composition

idAQTM

T A Q(Qr M) T A (QrM) =2~ M

is a weak equivalence in A-mod(M,), where @} denotes a cofibrant replacement
functor in A-mod(M..).

(1): By Proposition 2.8.9 we have that M is cofibrant in Spt%,. Thus the result
follows immediately from theorems 2.6.27(1) and 2.8.4.

(2): It follows directly from Theorem 2.8.4, Proposition 2.8.9 and theorem 2.6.27(2).

O

Proposition 2.8.13. — Let A be a cofibrant commutative ring spectrum in Spt;“iﬂfl*.
Then A-mod(M.) is a symmetric monoidal model category in the sense of Hovey (see
definition 1.7.7).

Proof. — This follows directly from Theorem 2.7.4, Proposition 2.6.28 and [9, Propo-
sition 2.8(2)]. O

If A is not commutative, then we get a weaker version of the previous proposition.

Proposition 2.8.14. — Let A be a cofibrant ring spectrum in Spt3M,. Then — Ay —
defines a Quillen adjunction of two variables (see definition 1.7.4) from the motivic
model structure for right and left A-modules to the motivic symmetric stable model
structure:

— Aa —: A-mod(M,), x A-mod(M,); — SptZM,
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Proof. — We need to show that given a cofibration i : M — M’ in A-mod(M,), and
a cofibration j : N — N’ in A-mod(M.);, the induced map

i04j:MAAN [ M AaN— M AsN'
MAAN

is a cofibration in Spt?ﬂ/t*, which is trivial if either ¢ or j are trivial.

Clearly it is enough to do it for the generating cofibrations and trivial cofibrations
in A-mod(M,) (see Lemma 3.5 in [23]). Theorem 2.8.11 implies that A A IE, A A
JL (IZ AN A, JL A A) are the sets of generating cofibrations and trivial cofibrations
for A-mod(M.), (respectively for A-mod(M.),), where I, JL denote the sets of
generating cofibrations and trivial cofibrations for Spt%/’%*.

Now

IENAOAANIE = IZ0ANIE CIZOI1E-cof C IE-cof

where the equality follows by definition, the first inclusion follows from the fact that
A is cofibrant in Spt%ﬂfl* and Spt?ﬂfl* is a symmetric monoidal model category (see
Proposition 2.6.28), and the last inclusion follows from the fact that SptZ, is a
symmetric monoidal model category. A similar argument shows that

JENAOAANIE = JEOANIE CIEOIE-cof C JE-cof
and finally, the remaining case follows from this by symmetry. O

In the rest of this section, we assume that A is a commutative ring spectrum with
unit in SptZ(m|s)nis- The category of A-algebras is a symmetric monoidal category,
where the monoidal structure coincides with the one exisiting on A-mod. Namely,

— A4 — : A-alg x A-alg —— A-alg
(C,D)r——CAuD

However, the category of A-algebras is not a closed symmetric monoidal category, i.e.
the functor C A4 — : A-alg — A-alg does not have in general a right adjoint.

Proposition 2.8.15. — We have the following adjunction between the categories of sym-
metric T-spectra and A-algebras:

(T, U, ) : Spty(dm|s)nis — A-alg

where U(N) = N after forgetting the A-algebra structure, and T(X) = AN[],50 X"
has a structure of A-algebra induced by concatenation together with the ring structure
on A.

Proof. — The unit n of the adjunction is

X 1A X2 4 A XA U(T(X)) = AN pso X7
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where u 4 is the unit of A. On the other hand, the counit § of the adjunction is induced
by iterating the map that induces the A-algebra structure of B

A/\HB/\kL—QAAHnZOBAn“&—B“)B O
Lemma 2.8.16. — Let IL, JI be the sets of generating cofibrations and trivial cofibra-

tions for the motivic symmetric stable model structure Spt‘;:wﬂ/l* of symmetric T-spectra
(see Theorem 2.7.4). Then:

1. The domains of IZ are small relative to X A IL-cell for every symmetric T-spec-
trum X.

2. The domains of JE are small relative to X A J& -cell for every symmetric T -spec-
trum X.

3. The maps of X A J&-cell are weak equivalences for every symmetric T'-spectrum
X.

Proof. — Let I, J denote the sets of generating cofibrations and trivial cofibrations
for the category of symmetric T-spectra Spt(¢m|s)nis equipped with the injective
model structure (see Theorem 2.6.20), where the cofibrations and the weak equiva-
lences are defined levelwise. Hence every symmetric T-spectrum is cofibrant in the
injective model structure. On the other hand, theorem 2.6.20 implies that the injec-
tive model structure is cofibrantly generated and that the codomains of the generating
cofibrations I are small relative to I. Thus, applying [6, Corollary 11.2.4] we get that
every symmetric T-spectrum is small with respect to the class of level cofibrations.

(1): It suffices to show that every map in X A IZ is a level cofibration. But this
follows directly from [14, Proposition 4.19], since every symmetric T-spectrum X is
cofibrant in the injective model structure.

(2): It suffices to show that every map in X A JZ is a level cofibration. But this
is a consequence of [14, Proposition 4.19], since every symmetric T-spectrum X is
cofibrant in the injective model structure.

(3): This follows immediately from [14, Proposition 4.19], since every symmetric
T-spectrum is cofibrant in the injective model structure. O

Theorem 2.8.17. — Let A be a cofibrant commutative ring spectrum in Sptgzwﬂ/l*. Then
the adjunction (see Proposition 2.8.15):

(T,U,) : Spty M, — A-alg

induces a model structure for the category A-alg of A-algebras, i.e. a map f in A-alg is
a fibration or a weak equivalence if and only if U(f) is a fibration or a weak equivalence
in Spt2 M, (see Theorem 2.6.23).
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This model structure will be called motivic, and the category of A-algebras
equipped with the motivic model structure will be denoted by A-alg(M.). Further-
more, A-alg(M.) is a cofibrantly generated model category with the following sets
Ia aig, Ja-aig Of generating cofibrations and trivial cofibrations respectively (see
Theorem 2.7.4):

IA-alg = T(Ig)
= U{T6) : T(FEE(Y) - T(FF((AY)+)) | U € (dmls),n > 0}
k>0
Jawg = TWE)={TG): T(X) - T(V)}
where j : X —'Y satisfies the following conditions:
1. j is an inclusion of I%-complezes.
2. j is a stable weak equivalence of symmetric T'-spectra.

3. the size of Y as an Ig -complez is less than k, where k is the regular cardinal
described by Hirschhorn in [6, definition 4.5.3].

Proof. — Theorem 2.7.4 implies that Spt?»ﬂ/l* is in particular a cofibrantly generated
model category, and by Proposition 2.6.28 we have that Spt?ﬂft* is a symmetric
monoidal model category. Therefore the result follows immediately from Lemma 2.8.16
and [9, Theorem 3.1]. O

Proposition 2.8.18. — Let A be a cofibrant commutative ring spectrum in Spt?/’lfl*,
and let f : B — B’ be a map of A-algebras which is a cofibration in the motivic
model category A-alg(M.) of A-algebras. If B is cofibrant in A-mod(M.), then U f is
a cofibration in A-mod(M.).

Proof. — It follows directly from Lemma 6.2 in [23]. |
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CHAPTER 3

MODEL STRUCTURES FOR THE SLICE FILTRATION

This chapter contains our main results. In Section 3.1, we recall Voevodsky’s con-
struction of the slice filtration in the context of simplicial presheaves. In Section 3.2,
we apply Hirschhorn’s localization techniques to the Morel-Voevodsky stable model
structure Spt,-JM,, in order to construct three new families of model structures, namely
ch“SptTﬂ/l*, L .,Spty M, and SISpt M. These model structures will provide a lift-
ing of Voevodsky’s slice filtration to the model category setting. Furthermore, we will
also get a simple description for the exact functors f; ((¢ — 1)-connective cover) and
84 (g-slice) defined in Section 3.1, in terms of a suitable composition of cofibrant and
fibrant replacement functors.

In Section 3.3, we promote the model structures introduced in section 3.2 to
the setting of symmetric T-spectra. These new model structures will be denoted by
Res Sptr M., L< Spt7M,. and S9Spt7M,. We will prove that the Quillen adjunc-
tion given by the symmetrization and the forgetful functors descends to a Quillen
equivalence for these three new model structures. As a consequence we will see that
the model categories ch“Spt:,Ewﬂ/l*, L<qut§1/’1/l* and Squtgﬂ/l* provide a lifting for
Voevodsky’s slice filtration and give an alternative description for the functors f, and
sq. The great technical advantage of these model structures relies on the fact that the
underlying category is symmetric monoidal. Hence, we have a natural framework to
describe the multiplicative properties of the slice filtration.

In Section 3.4, we will show that the slice filtration is compatible with the smash
product of symmetric T-spectra.

In Section 3.5, we will promote the model structures constructed in Section 3.3 to
the category of A-modules, where A is a cofibrant ring spectrum with unit in Spt?ﬂ't*.
We will denote these new model structures by Rgz A-mod(M.), L<qA-mod(M.)
and S?4-mod(M,). These new model structures will give an analogue of the slice
filtration for the motivic stable homotopy category of A-modules. We will see that
when one imposes some natural additional conditions on the ring spectrum A, the free
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98 CHAPTER 3. MODEL STRUCTURES FOR THE SLICE FILTRATION

A-module functor (A A —) induces a strict compatibility between the slice filtration
in the categories of symmetric T-spectra and A-modules.

In Section 3.6 we will use all our previous results to show that the smash product
of symmetric T-spectra induces natural pairings (in the motivic stable homotopy
category) for the functors f, and s,. We will see that for every symmetric T-spectrum
X, and for every q € Z:

1. fqu is a module (up to homotopy) over the (—1)-connective cover of the sphere
spectrum f3'1.

2. sEX is a module (up to homotopy) over the zero slice of the sphere spectrum
b
syl

We will verify that the smash product of symmetric T-spectra induces natural external
pairings in the motivic Atiyah-Hirzebruch spectral sequence (see definition 3.6.15):

EPA(Y; X) ® BP9 (Y, X') — EP+P a+d (Y AY'; X A X)
(a’ﬂ) f o~ ﬂ

We will also see that for an A-module M, with A a cofibrant ring spectrum with unit
in Spt;aﬂ/’l/l*, which also satisfies the additional hypothesis that are required in section
3.5:

1. f;:M is again an A-module in Spt§m,, (not just up to homotopy, but in a very
strict sense).

2. quX is again an A-module in Spt?/’l/l* (not just up to homotopy, but in a very
strict sense).

Then we will prove that if the ring spectrum A and its unit map u : 1 — A satisfy
the conditions that are required in Section 3.5, the free A-module functor A A —
induces for every q € Z and for every symmetric T-spectrum X, a natural structure
of A-module (in SptZM,, i.e. not just up to homotopy, but in a very strict sense) on
its g-slice s? (X).

Finally, we will be able to prove a conjecture of Voevodsky (see [16, Corol-

lary 11.1.3], [25]), which says that if the base scheme S is a perfect field, then for

z
q

equipped with a module structure in Sptqzﬂﬂ/l, over the motivic Eilenberg-MacLane

every ¢ € Z and for every symmetric T-spectrum X, its g-slice s;’(X) is naturally

spectrum HZ. If we restrict the field even further, considering a field of characteristic

zero, then as a consequence we will prove that all the slices s?X are big motives in
the sense of Voevodsky.
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3.1. The Slice Filtration

Let 4#(S) denote the homotopy category associated to Spt, M. We call f#(S) the
motivic stable homotopy category. We will denote by [—, —|spt the set of maps between
two objects in 4#(S), and ¢ € Z will be an arbitrary integer. In [25] Voevodsky
constructs the slice filtration on motivic stable homotopy theory, using sheaves on the
Nisnevich site (7|s)nis instead of simplicial presheaves as the underlying category.
In this section we recall his construction in the context of simplicial presheaves.

Definition 3.1.1. — Let Qs denote a cofibrant replacement functor in Sptp M.; such
that for every T-spectrum X, the natural map:

(o}
QsX e X

is a trivial fibration in SptpM,.

Proposition 3.1.2. — The motivic stable homotopy category J#(S) has a structure of
triangulated category defined as follows:

1. The suspension functor E%,JO s given by
— NS MH(S) — SHH(S)
XH——>Q,X NS
2. The distinguished triangles are isomorphic to triangles of the form

A—=p-1sc—t-5l04

where i is a cofibration in Sptp M., and C is the homotopy cofibre of i.

Proof. — Theorem 2.4.16 implies in particular that Sptp M. is a pointed simplicial
model category, and Theorem 2.4.29 implies that the adjunction:

(— A S, Qs1,¢) : Sptp M, — Sptp M,

is a Quillen equivalence. The result now follows from the work of Quillen in [21,
sections 1.2 and 1.3] and the work of Hovey in [10, chapters VI and VII] (see [10,
Proposition 7.1.6]). O

Note 3.1.3. — Forn € Z, £3° will denote the n iteration of the suspension functor
ifn>0 (Eglo =id) or the (—n)t* iteration of the desuspension functor for n < 0.

Lemma 3.1.4. — Let X € M, be a pointed simplicial presheaf which is compact in the
sense of Jardine (see definition 2.3.10), and let F,(X) be the T-spectrum constructed
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in definition 2.4.4. Consider an arbitrary collection of T-spectra {Z;}ic; indezed by
a set I. Then
[Fn(X), [T Zilspe 2 [ [Fa(X), Zilspe
i€l i€l

Proof. — If the indexing set I is finite then the claim holds trivially since #(S)
is a triangulated category and. therefore finite coproducts and finite products are
canonically isomorphic. Thus we can assume that the indexing set [ is infinite.

Choosing a well ordering for the set I there exists a unique ordinal p which is
isomorphic to the ordered set I (see [6, Proposition 10.2.7]). We will prove the lemma
by transfinite induction, so assume that for every ordinal A < p, F,,(X) commutes in
A#(S) with coproducts indexed by A. If p = A+ 1, i.e. if u is the sucessor of A, then

I z.=] 2.) [] 2
a<i+1 a<

Therefore

[Fa(X), Ha<A+1 Za]Spt — ([Fa(X), Ha<>\ Za]Spt) a ([Fa(X), ZA]Spt)
but by the induction hypothesis

[Fo(X), [T Zalset = J] [Fa(X), Zalspt

a<A a<

IR

thus

IR

[Fn(X), H Za]Spt H [FH(X)» Za]spt
a<A+1 a<A+1
as we wanted.

It remains to consider the case when u is a limit ordinal. In this case Proposi-
tion 10.2.7 in [6] implies that we can recover the map * — [[, <, Zo as the transfinite
composition of a u-sequence:

AO__.)AI_)..._)AE—-)... (ﬂ<u)
where Ay = *, Ag = [« g Za, and the maps in the sequence are the obvious ones.
In particular we have that [[,., Zo & li_r)nﬂ< Ap.

Since X is compact, Proposition 2.4.33 implies that:
[Fn(X), lim Agspe = im [F(X), A]spt
B<p B<p

Now using the induction hypothesis we have:

[Fn(X), Aglspt = H [Fn(X), Zalspt

a<fB

and using Proposition 10.2.7 in [6] again, we get:

li_n} H [Fr(X), Za]spt = H [Fn(X),Za]Spt
B<ra<pB a<p
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3.1. THE SLICE FILTRATION 101

thus
[Fn(X)a H Za]Spt = H [Fn(X)aZa]Spt
a<p a<lp
as we wanted. O

Proposition 3.1.5. — The motivic stable homotopy category J#(S) is a compactly
generated triangulated category in the sense of Neeman (see [19, definition 1.7]). The
set of compact generators is given by (see definition 2.4.4):

c=J U F(SAG,AUY)
n,1,820 U€(dmls)

i.e. the smallest triangulated subcategory of S (S) closed under small coproducts and
containing all the objects in C coincides with J#(S).

Proof. — Since f#(S) is closed under small coproducts, we just need to prove the
following two claims:

1. For every F,,(S" AG:, AU,) € C; mapping out of F,,(S™ AGE, AUy) commutes

with coproducts in #(S), i.e. given a family of T-spectra {X;};c; indexed by
a set I we have:
[Fu(S" AGE, AU, ] Xilspe = [[[Fa(S™ A G, AUL), Xilspe
il iel
2. If a T spectrum X has the following property: [F,,(S" A G3, AUL), X]gpt = 0
for every F,,(S" AGS, AUL) € C, then X = x in J#(S).

(1): It follows immediately from Lemma 3.1.4 since we know by Proposition 2.4.1
that the pointed simplicial presheaves S™ A G, A U, are all compact in the sense of
Jardine.

(2): Consider the canonical map X — * in Spt;M,. Corollary 2.4.28 together with
our hypotheses imply that X — * is a weak equivalence in Spt;,, therefore X = x
in f#(S) as we wanted. a

Corollary 3.1.6. — Let f : X — Y be a map in S#(S). Then f is an isomorphism if
and only if f induces an isomorphism of abelian groups:
T s I T s
[Fn(8" A Gy AUL), Xlspt —— [Fn(S" A Gy, AUL), Yspt
for every F,(S"ANG:, AUL) € C.
Proof. — (=): If f is an isomorphism in J#(S) it is clear that the induced maps f,

are isomorphisms of abelian groups for every F,,(S" AG:, AU,) € C.
(«): Complete f to a distinguished triangle in 4#(S):

XLyt z ooy
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Then f is an isomorphism if and only if Z 2 * in J#(S).
Now since the functor [F;,(S" AGS, AUL), —]spt is homological, we get the following
long exact sequence of abelian groups:

[Fr(S"AGE, AUL), Xlspt
f.
[Fo(S"AGE, AU ), Y]spt
gx
[Fn(STAGE, AUL), Z]spt
ha

[Fa(ST A Gl AUL), B Xspr <5 [Fasa (ST AGE AUL), Xlsin

T
=30 fu Lf.
[Fa(S™ NG AUL), BEY Tspt <o [Frta (ST A G AUL), Ylspe
T

But by hypothesis all the maps f, are isomorphisms, therefore [F,(S™ A G2, A
Uy), Z]spt = 0 for every F,(S" AG3, AU4) € C. Since f#(S) is a compactly gener-
ated triangulated category (see Proposition 3.1.5) with set of compact generators C,
we have that Z = x. This implies that f is an isomorphism, as we wanted. ]

Definition 3.1.7 (Voevodsky, cf. [25]). — We define the effective motivic stable homo-
topy category J#° ff(S) C H(S) as the smallest triangulated full subcategory of
M (S) that is closed under small coproducts and contains

Cest = U U Fo(S" NGy, AUL)

n,r,s>0;5—n>0 UE(dm|s)

Definition 3.1.8 (Voevodsky, cf. [25]). — For q € Z, we define 244 (S) C f#(S) as
the smallest triangulated full subcategory of % (S) that is closed under small coprod-
ucts and contains

ck= U U Fu(S"AGE, AUY)

n,r,820;s—n>q UE(dm|s)
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Definition 3.1.9 (Voevodsky, cf. [25]). — The collection of triangulated subcategories
oL AHC T(S) gives a filtration on f#(S) which is called the slice filtration, i.e. we
have an inductive system of full embeddings

C 2 gt (9) € SL T (S) C DL ST (S) C ...

and Proposition 3.1.5 implies that the smallest triangulated subcategory of A#(S)
containing X1 dﬂe ) for all g € Z and closed under small coproducts coincides with

A (S).

Proposition 3.1.10. — The triangulated category 3 d?‘[ (S) is compactly generated
in the sense of Neeman, where the set of compact generators is

CL = U U Fu(S"AG AUY)

n,r,s>0;s—n>q U€(dm|s)

Proof. — By construction S1.4# Eff(.S') is closed under small coproducts. Therefore
we just need to check the following two properties:

1. For every F,,(S"AG:,AU,) € Clg; Fr,(S"AGS, AU, ) commutes with coproducts
in DL (S), i.e. given a family of T-spectra {X; € L4 (S)}ics indexed
by a set I we have:

Hong'weff(s)(pn(ST A an A U+), Hiel Xz)
HiEI HomquMeff(s) (Fn(ST /\ an /\ U+), Xz)

2. If a T-spectrum X € S1 4% eff(S) has the following property:
Homz%w{eff(s)(Fn(Sr A an A U+),X) =0

for every F,,(S™ AG$, AUL) € C;, then X = x in E%«(A‘%eﬂ(S)

(1): It follows immediately from proposition 3.1.5 since E1.J4#" eﬂr(S ) is in particular
a full subcategory of 4#(S).

(2): The natural map X — * is an isomorphism in ET.4#" (S (s ) if and only if for
every Z € L1 K efr(S ) we get an induced isomorphism of abelian groups

Hong‘w[eff(s)(z, X) i. HomE}M‘*“(S)(Z’ *) = 0

and since 1. 4#°" (S f(s ) is a full subcategory of 4#(S), this last condition is equivalent
to: For every Z € 214K eﬂ( S) we have an induced isomorphism of abelian groups

2, X]spt —> [Z, *]spt = 0
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Let @x be the full subcategory of f#(S) generated by the T-spectra Y satisfying the
following property

[E;’OY’ X ]Spt — [E;’OY’ *]Spt =0

for all n € Z. To finish the proof it is enough to show that X1 4#° ft”(S) C €y,
and by construction of Equf{eff(S), it suffices to prove that @x is a triangulated
subcategory of J#(S) which is closed under small coproducts and contains the objects
Fn(S"AGS, AUy ) € C%;:. The claim that @x is triangulated follows immediately from
the fact that the functor [—, X]gp¢ is cohomological. The claim that &x is closed
under small coproducts follows from the universal property of the coproduct. Finally
by hypothesis @x contains the generators F,,(S™ AG$, AUy) € Cd;. This finishes the
proof. O

Corollary 3.1.11. — Let f: X — Y be a map in Z%WH(S). Then f is an isomor-
phism if and only if one of the following equivalent conditions holds:

1. For every F,,(S"AGS, AU, ) € C;, f induces an isomorphism of abelian groups:

Hongwweff(s)(Fn(Sr A\ G:n A U+),X)

2

Hong‘meﬂ(s)(Fn(Sr A an A U+), Y)

2. For every F,(S"AG}, AUL) € Cds, f induces an isomorphism of abelian groups:

[Fu(S™ A G, AUL), Xlsps D2 [Fo (ST AGS, AUL), Y]spe
Proof. — Since by construction ¥.¢4#° #(S) contains CJ; and it is a full subcategory
of M (S), we get immediately that (1) and (2) are equivalent.
We will prove (1). It is clear that if f is an isomorphism then the induced maps f,
considered above are all isomorphisms of abelian groups. Conversely, assume that all
the induced maps:

Hongﬂyﬂ[eﬂ”(s) (Fn(sr A G:n A U+), X)

|

HOIIlEqTMeff(S)(Fn(ST A (an A U+),Y)

are isomorphisms for F,(S™ A G:, AU, ) € C;. Complete the map f: X - Y toa
distinguished triangle in %% °7(S):

x—tey—Lsz t.oslox
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3.1. THE SLICE FILTRATION 105

then f is an isomorphism if and only if Z & % in Z1.4#° % (S). Now since the functor
Homgg gyete ) (Fr(S™ AGE, AU4), —) is homological, we get the following long exact
sequence of abelian groups:

HomEqTMeff(S)(Fn(S’ ANGE, AUL),X)
Ix
HOmE%Meff(S)(Fn(ST NG AUL)Y)
9n

Hong‘w{eff(s)(Fn(sr A G,‘:n A U+),Z)

h. Homz;weff(s)(Fn+1(ST A G';j-l A U+), X)
y
Homga gyert () (Fu (S A Gg AUL), Z7°X) fe
E,lr’of, HomE;Meff(S) (Fn+1(ST A an+1 A U+), Y)

1,0
ET
o~

Homygg gyert 5y (Fu(S™ A G AUL), 52°Y)

But by hypothesis all the maps f, are isomorphisms, therefore
Homz;w{eff(s)(Fn(Sr A G:n A U+), Z) = 0

for every F,(S™ A GS, A Uy) € Cl. Since TLA#7(S) is a compactly generated
triangulated category (see Proposition 3.1.10) with set of compact generators C2z, we
have that Z = . This implies that f is an isomorphism, as we wanted. O
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Proposition 3.1.12. — The inclusion

iq : SEMT(S) —— H(S)
has a right adjoint
rq : JH(S) —— SLH (S (s
which is also an exact functor.
Proof. — We have that Z1.4# eﬂ(S) is a compactly generated triangulated category

(see Proposition 3.1.10), and it is clear that the inclusion %4 is an exact functor which
preserves coproducts. Then the existence of the exact right adjoint r, follows from

Theorem 4.1 in [19]. a

Remark 3.1.13. — 1. Since the inclusion i, : E%MEH(S) — M (S) is a full em-
bedding, we have that the unit of the adjunction id > Tqlq 15 an isomorphism of
functors.

2. We define fq = iqrq. Then clearly for1fq = fq+1 and there exists a canonical
natural transformation fqi1 — f,.

Proposition 3.1.14. — Letg: X — 'Y be a map in SH(S). We have that f,(9) : foX —
fqY is an isomorphism in SH(S) if and only if for every Fro(S" NG5, AUy ) € Cz
the induced map:

[Fa(8™ A G, AUL), Xlspr —g [Fa(S7 A G, AUL), Ysp
is an isomorphism of abelian groups.

Proof. — We have that f, = i,r,, where i, : SLA#°T(S) — J#(S) is a full embed-
ding. Therefore, fq(g) is an isomorphism in 4#(S) if and only if r,(g) is an isomor-

phism in 2477 (S).
Hence, Corollary 3.1.11 implies that f;(g) is an isomorphism if and only if for every

Fo(S" AGE, AUy ) € Ol the induced map:

Homz%w{eﬁ(s)(Fn(ST N an A U+), TqX)

l/rq(g)*

Hong_'dﬂeff(s) (Fn(ST A an A U+), TqY)

is an isomorphism. Fix F,(S™ A G5, A U;) € C%;. Finally since ig,7, are adjoint
functors and C%; C BL. 44 *f (), we have the following commutative diagram, where
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the vertical arrows are all isomorphisms:

Homz%weff(s) (Fn(sr AN an A U+),'qu)

x

o Homz%“y{eﬁ'(s) (Fn(ST A an A U+), TqY)

[Fa(S™ A G2, AUL), Xlspr =~

=

[Fn(8" AGry AUL), Yspe

Therefore, f,(g) is an isomorphism if and only if for every F,(S" AG3, AU, ) € Cy
the induced map:

[Fn(S7 A GR AU, Klspn == [Fa(S7 A GEL AU, Vs

is an isomorphism, as we wanted. O

Proposition 3.1.15. — The counit of the adjunction constructed in Proposition 3.1.12,
fq =1q7q LA id, has the following property:

For any T-spectrum X, and for any compact generator F,(S™ AGS, AUy ) € Cg,
the map fo X % X in AH(S) induces an isomorphism of abelian groups:

[Fn(sr A an A U+)7 qu]Spt %} [Fn(ST A an N U+)7X]Spt

Proof. — Let F,,(S" AG5, AU,) be an arbitrary element in CZ;. Since F,,(S"™ AGS, A
Uy) € E%dﬂeﬁ(S) for n,r,s > 0 with s — n > ¢, we get the following commutative
diagram:

[Fa(S" AGS, AUL), foX]spt — 22— [Fo(S™ AGE, AUL), X]spt

| |

[ia(Fa(S™ A Gy AU, iqroXspr —— lia(Fa(S" A Gy AUL)), Xlspe
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Now using the adjunction between i, and r, we have the following commutative
diagram:

[iq(Fr(S" A Gy, AUL)),iq7q X]spt

O«

IR

[iq(Fn(Sr A an A U+))aX]Spt

R

Hongqm[eff(s) (Fn(S"' A (G':n A U+), 'f'qiq'/'qX)

M

TrgX | = Homz;w[eff(s)(Fn(Sr A an A U+),TqX)

Homz;w{eﬂ'(s) (Fn(ST A an A U+), qu) id

\

HOmE%Meff(S)(Fn(ST A G:n A U+), TqX)

where 7 is the unit of the adjunction between iy and r4. This shows that fx, is an
isomorphism, as we wanted. O

Theorem 3.1.16 (Voevodsky, cf. [25]). — There ezist exzact functors
sq : MH(S) —— H(S5)

together with natural transformations

such that the following conditions hold:
1. Given any T-spectrum X, we get the following distinguished triangle in 4% (S)

(26) fer1X foX i 8qX ik E#quﬂx

2. For any T-spectrum X, s,X is in SL A% (S).
3. For any T-spectrum X, and for any T spectrum Y in E?IM‘BH(S),
[Y, 'SqX]Spt =0.

Proof. — Since the triangulated categories $4 ##°7(S) and £ 4#°7(S) are both
compactly generated (see Proposition 3.1.10), the result follows from Proposi-
tions 9.1.19 and 9.1.8 in [20]. a

ASTERISOUE 335



3.1. THE SLICE FILTRATION

109

Definition 3.1.17 (Voevodsky). — Given an arbitrary T-spectrum X, the sequence of
distinguished triangles (26) is called the slice tower of X. The T-spectrum s, X is
called the g-slice of X, and the T-spectrum f, X is called the (g — 1)-connective cover

of X.

Theorem 3.1.18. — There exist exact functors

s<q : BH(S) — M(S)

together with natural transformations

Teq:id —— 8«4

. 1,0
O<q ' S8<q ——> ET fq

such that the following conditions hold:

1. Given any T-spectrum X, we get the following distinguished triangle in J#(S)

(27)

foX —= X % 5o X SwlOf x

2. For any T-spectrum X, and for any T spectrumY in E%Meﬂ(S), Y, s<qX]spt =

0.

Proof. — The result follows from Propositions 9.1.19 and 9.1.8 in [20], using the fact
that the triangulated categories 7. 4#° % (S) and J# () are both compactly generated
(see Propositions 3.1.5 and 3.1.10).

O

Proposition 3.1.19. — Let X be an arbitrary T-spectrum. We have the following

commutative diagram, where all the rows and columns are distinguished triangles in

H(S):

for1 X foX . 8¢X : S fann X

i \

U (o4

fq+1X X <q+1 S<q+1X <q+1 E;qu_‘_lx

T<gq tq l

* S<qX S<gX *

O<gq [
27 farn X SR foX —— o I8 X —— 51 fen X

T Tq Ep 0g
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Proof. — It follows from Theorems 3.1.16 and 3.1.18, together with the octahedral
axiom applied to the following commutative diagram:

fq—HX qu O

N

X
Proposition 3.1.20. — Let f : X — Y be a map in SHH(S). We have that

3<qf . S<qX — S<qY
is an isomorphism in M (S) if and only if f induces the following isomorphisms of
abelian groups:

(s<qf)x
[Fr(S"AG;, ANUL), 8<qX]spt — [Fa(S" AGE, AUL), 8<qY ]spt

for every F,,(S" AGS, AU ) ¢ Clg.
Proof. — (=): Assume that s, f is an isomorphism. Then it is clear that (s<qf). is
also an isomorphism for every F,(S" AG3, AUy ) ¢ Cls.

(«): Corollary 3.1.6 implies that s<4f is an isomorphism in 4#(S) if and only if
for every F,,(S" A G, AUL) € C, the induced maps:

(s qf)*
[Fa(STAGS, AUL), 5<qX]spt ——> [Fu(S™ AGS, AU4), 5<qY |spt

are isomorphisms of abelian groups.
But Theorem 3.1.18(2) implies that for every F,(S™ A G§, AU, ) € Cds, we have:

02 [Fo(S™ AGE AUL), s<qXlspt s [Fu(S™ A Gl AUL), 5<g¥ Jspe 2 0

thus (s<qf)« is an isomorphism in this case.
Thus in order to show that s, f is an isomorphism, we only need to check that for
every F,(S" AGS, AUy ) ¢ Ck:, the induced maps:

(s<qf)x
[Fa(S™ A GEy AU ), 5<oXsp <2 [FA(ST A GE) AUL), 52Y Joo

are all isomorphisms of abelian groups; but this holds by hypothesis. This finishes the
proof. O

Proposition 3.1.21. — Let f : X — Y be a map in S#(S). We have that
Sqf 18X — 8,Y

is an isomorphism in SH(S) if and only if f induces the following isomorphisms of
abelian groups:

(sqf)x
[Fn(ST A an A U+),SqX]Spt _— [Fn(ST A Gﬁn A U+),8qY]Spt
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for every F,(S™ AGS, ANU,) € Cl; where s —n = gq.

Proof. — (=): Assume that s,f is an isomorphism. Then it is clear that (s,f). is
also an isomorphism for every F,(S” A G5, AU,) € Cd; with s —n = gq.

(«): Theorem 3.1.16(2) implies that s,X and s;Y are both in E%Weﬁ(S). There-
fore using Corollary 3.1.11 and the fact that X%.(4#° %(S) is a full subcategory of
&#(S), we have that s, f is an isomorphism if and only if the maps:

(sqf)x
[Fn(sr A G:n A U+)a qu]SPt I [Fn(sr A an A U+)a SqY]Spt

are all isomorphisms of abelian groups for every F,(S" AGS, AUy ) € C;.
But if s — n > ¢+ 1, we have that F,,(S" A G5, AU,) is in fact in EqTHdS‘{eﬁ(S);
and using Theorem 3.1.16(3) again, we have that in this case:

022 [Fo(S™ A Gl AUL), 84X Jspt > [F(S7 AGE, AU, 54Y Jspe 20
Thus in order to show that s, f is an isomorphism, we only need to check that the
maps:

[Fn(S" AGp AUL), g X ]spt e [Fn(S" NGy AUL), 5qY spe
are all isomorphisms of abelian groups, for every F,(S™ A G, A Uy) € C; with
s —n = q. This finishes the proof. O

3.2. Model Structures for the Slice Filtration

Our goal in this section is to use the cellularity of Spt; M, (see Theorem 2.5.4),
to construct relying on Hirschhorn’s localization techniques, several families of model
structures on Spt(m|s)nis via left and right Bousfield localization. These new model
structures will provide liftings in a suitable sense for the functors

fqr8<q:8q H(S) — & (9)
described in Section 3.1.

The first family of model structures on Spty(dJm|s)nis Will be constructed via right
Bousfield localization. These model structures will have the property that the cofi-
brant replacement functor coincides in a suitable sense with the functor f, defined
in Remark 3.1.13. This will provide a natural lifting of Voevodsky’s slice filtration to
the level of model categories. In the rest of this section ¢ € Z will denote an arbitrary
integer.

Theorem 3.2.1. — Consider the following set of objects in Sptp M.
ck= U U Fu(S"AGy, AU

n,r,s20;s—n>q U€E(dm|s)
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The right Bousfield localization of Sptp M, with respect to the class of Clz-colocal
equivalences ezists (see definitions 1.8.6 and 1.9.2). This model structure will be called
(g—1)-connected motivic stable, and the category of T'-spectra equipped with the (q—1)-
connected motivic stable model structure will be denoted by RCZ« Sptr M. Furthermore
RCg“SptTﬂ/l* is a right proper and simplicial model category. The homotopy category
associated to Ros Sptp M. will be denoted by Roa JH(S).

Proof. — Theorems 2.4.16 and 2.5.4 imply that Spt; M, is cellular, proper and sim-
plicial. Therefore we can apply Theorem 5.1.1 in [6] to construct the right Bousfield
localization of Spt; M, with respect to the class of C;-colocal equivalences. Using
Theorem 5.1.1 in [6] again, we have that this new model structure is right proper and
simplicial. O

Definition 3.2.2. — Let C,; denote a cofibrant replacement functor in chffSptTﬂ/l*;
such that for every T-spectrum X, the natural map

CX
C., X s x

is a trivial fibration in chﬂSptTﬂft*, and CoX is always a Clz-colocal T-spectrum.

Proposition 3.2.3. — 1QrJ is also a fibrant replacement functor in RC;:“SptTﬂ/l* (see
Corollary 2.4.20).

Proof. — Since RC;zff Sptr M, is the right Bousfield localization of Spt; M, with re-
spect to the Cdz-colocal equivalences, by construction we have that the fibrations and
the trivial cofibrations are identical in ch“SptTﬂ/l* and Spty M, respectively. This
implies that for every T-spectrum X, IQrJX is fibrant in ch“SptTﬂ/l*, and using
[6, Proposition 3.1.5] we have that the natural map:

X
x —22  1orJx

is a weak equivalence in chﬁSptTﬂfl.. Hence IQrJ is also a fibrant replacement
functor for Rgs Sptr .. O

Proposition 3.2.4. — Let f : X — Y be a map in SptyM.. We have that f is a
Clg-colocal equivalence if and only if for every Fn(S™ AGS, AUL) € Cl, f induces
the following isomorphisms of abelian groups:

[Fa(8" A G2 AUL), Xlsp —L> [Fa(8™ AG3, AUL), Vs

Proof. — (=): Assume that f is a Clz-colocal equivalence. Since all the compact
generators F,,(S"AG$, AU,) are cofibrant in SptM., we have that f is a CZz-colocal
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equivalence if and only if the following maps are weak equivalences of simplicial sets:
Map(F,(S" AGE, AUL), IQTJX)
l(l QT Jf)x
Map(F,(S"AG:, AUL), IQTJY)

for every F,,(S™ AGS, AUy ) € Ck;. Since Sptp M, is a simplicial model category and
F,(S™ AGS, AU,) is cofibrant, we have that Map(F,(S™ A GS, AU, ), IQrJX) and
Map(F,(S"AG:, AU, ), IQrJY) are both Kan complexes, thus we get the following
commutative diagram where the top row and the vertical maps are all isomorphisms
of abelian groups:

moMap(F,,(S"AG:, AUL), IQTJIX)
IQTJf)

o~

~ moMap(F,(S" AGE, AUL ), IQTJY)

[Fu(S™ A G2y AUL), Xlspr ~
\
[Fo(S"AG:, AUL),Yspt
Therefore

[Fa(57 A Gin A U, Xlspr =5 [l A G AT), Voo

is an isomorphism of abelian groups for every F,,(S"AGS, AU,) € CZ;, as we wanted.

(«<): Fix F,(S" AGS, ANU,) € Ck;. Let wo, no denote the base points correspond-
ing to Map, (F,,(S™ A G5, A U4),IQ7rJX) and Map, (Fr(S™ A G, A U4), IQTJY)
respectively. We need to show that the map:

Map(F,(S" AG:, ANUL), IQrJX)
L(IQTJfL
Map(F,,(S" AGy, AUL), IQrJY)

is a weak equivalence of simplicial sets.
We know that the map

j : Fn+1(Sr+1 A Gfrz’-l A U+) — Fn(ST A an A U+)
which is adjoint to the identity map
id: ST AGET AUy = EBup 1 (Fa(STAGE, AUL)) = ST AGEF AU,
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is a weak equivalence in Spt; .. Now since F,,(S™ A G5, AU,) and F,;(S™ A
G:F! A U,) are both cofibrant and Spty M, is a simplicial model category, we can
apply Ken Brown’s lemma (see Lemma 1.1.4) to conclude that the horizontal maps
in the following commutative diagram are weak equivalences of simplicial sets:

Map(F,(S" AGS, AU,), IQrJX)

\

(IQrJf). Map(Fp11(S™TYAGEH AUL), IQrJX)
Map(F,(S"AGE, AUL), IQrJY) (IQrJf).

\

Map(Fp+1 (ST AGET AUL), IQTJY)

Hence by the two out of three property for weak equivalences, it is enough to show
that the following induced map

Map(Fr41(S™ AGH AUL), IQTJX)
i(IQTJf),«
Map(Fn+1(S’"+1 A G;’i’;‘pl A U+), IQTJY)

is a weak equivalence of simplicial sets.
On the other hand, since Spt; M, is a pointed simplicial model category, we have
that Lemma 6.1.2 in [10] together with Remark 2.4.3(2) imply that the following

ASTERISQUE 335



3.2. MODEL STRUCTURES FOR THE SLICE FILTRATION 115

diagram is commutative for k > 0:

T wo Map(Fpn (S™ A G, AUL ), IQrJX)

w

Tk.noMap(F, (8™ AGS, AUL), IQrJY)

TewoMap, (Fn(S™ A GE, AUL), IQrJX)

N%

TknoMap, (Fn(S" AGS, AUL), IQTJY)

1R

IR

[Fa(STAGE, AUL) ASE IQTI X spt

W\

[Fo(STAGE, AUL) A S, IQTTY |sps

R

IR

[Fa(S"AGS, AUL) A S*, X]spt

\

[Fa(S™ AGZ AUL) A S, Y]spr

R

IR

[Fr(S*+T AGS, AUL), Xspt

\

F (S**" AGS, AUL), Yspt

but by hypothesis we have that the bottom row is an isomorphism of abelian groups.
Therefore all the maps in the top row are also isomorphisms. Then for every F,(S™ A
G$, AU,) € C%;, the induced map

(IQTJf)x
_—

Map(F,(S™ AGS, AU,), IQrJX) Map(F,(S™ AGS, AU,), IQrJY)

is a weak equivalence when it is restricted to the path component of Map(F,(S™ A
G2, AU4),IQ7JX) containing wo. But F11(STAGSH AU ) is also in CY;, therefore
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the following induced map
Map, (S, Map, (Fr11(S" AGSFL AUL), IQrJX))
IQTJf)« L
Map, (S, Map, (Fri1(S"AGEFL AU, ), IQTJY))

is a weak equivalence of simplicial sets, since taking S*-loops kills the path components
that do not contain the base point.

Finally, since Spt /U, is a simplicial model category we have that the rows in the
following commutative diagram are isomorphisms:

Map, (S*, Map, (Fn41(S" A G AUL), IQTJX)

\

(IQTJf). Map, (Frt1(STAGEFLAUL) A SY IQTJIX)

Map, (S, Map, (Frt1(S" AGSEAUL), IQTJY)) (IQTJf)x
Map, (Fpt1(S" AGEFLAUL) A S IQTJY)

Hence the two out of three property for weak equivalences implies that the right
vertical map is a weak equivalence of simplicial sets. But F,,+1(S" AGSPAUL) A S?
is clearly isomorphic to F,1+1(S™"1 A G5! A U,), therefore the induced map

Map(FnH(S’"“ A Gfrjl ANUL),IQTJIX)
l(IQTJf)*
Map(Fr41(S™ AGH AUL), IQTJY)

is a weak equivalence, as we wanted. O

Corollary 3.2.5. — Let f : X — Y be a map in Sptp M.. We have that f is a Clg-colo-
cal equivalence if and only if the following map

TqX M rqY

is an isomorphism in LA (S).

Proof. — The result follows immediately from Proposition 3.2.4 and Corol-
lary 3.1.11(2). O
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Corollary 3.2.6. — Let X be an arbitrary T-spectrum X. We have that X = * in
chffd}’( (S) if and only if the following condition holds:
For every F,(S" ANGS, AU,) € Cli:

[Fu(S™ NG, AUL), X]spe 220

Proof. — We have that X is isomorphic to * in RC:“M (S) if and only if the map
* — X is a Clz-colocal equivalence. But Corollary 3.2.5 implies that x — X is a
Cz-colocal equivalence if and only if

* g (x) ——>rgX

becomes an isomorphism in L% ##°%(S).

Finally by Corollary 3.1.11(2) we have that * — 7,X is an isomorphism in
PR N7/ %(S) if and only if for every F,(S™ AGS, AU,) € CZ; the following induced
maps are isomorphisms of abelian groups:

02 [Fo(S7 A G, AUY), Hspt —= [Fn(S7 A G, AUY), X]spe
as we wanted. O

Lemma 3.2.7. — Let f : X — Y be a map in Sptp M. We have that f is a Coz-colocal
equivalence if and only if Qs1IQTJ(f) is a Clg-colocal equivalence.

Proof. — Assume that f is a Cl-colocal equivalence. We need to show that
Qs11Q7J(f) is a Clz-colocal equivalence. Fix F,,(S"AG$, AU,) € Cl;. Since Sptp M,
is a simplicial model category and all the compact generators F,(S™ A G, AU,) are
cofibrant, we have the following commutative diagram:

F.(STAGE, A , Qo T X

[Fo(S"™ AGE, AUL), Q1 IQrJY [sps

R

R

[Fn(ST A an A U+) A Slvx]Spt

—L

[Fa(S™ A G2y AUL) A S, Y sy

R

IR

[Fn(sr+1 A an A U+)»X]Spt o
—

[Fn(S™t AGy, AUL), Yspt

but using Proposition 3.2.4 and the fact that f is a Cz-colocal equivalence, we have
that the bottom row is an isomorphism, therefore the top row is also an isomorphism.
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Using Proposition 3.2.4 again, we have that Qg: IQrJ(f) is a Cgﬂ-colocal equivalence,
as we wanted.

Conversely, assume that Qg IQ7J(f) is a Clz-colocal equivalence. Fix F,(S™ A
G2, AUy ) € CL:. Proposition 3.2.4 implies that the top row in the following commu-
tative diagram is an isomorphism:

[Frt1(S™ NG AUL), QSIIQTJ-};]spt

[Frs1(STAGEL AUL), Q1 IQrJTY ]sps

1R

IR

Foi1(STAGSHYAUL) ASY, X]gpt
m P

—

[Frt1(S"AGHFY AUL) A ST, Yspe

R

IR

[Fn(S" NG5, ANUL), X]spt

fu
[Fo(S"AGE, AUL), Y]spe .

therefore the bottom row is also an isomorphism. Finally using Proposition 3.2.4
again, we have that f is a Clz-colocal equivalence. This finishes the proof. O

Corollary 3.2.8. — The adjunction
(-— A Sl, Qsl y (p) : 120;1ff SptTﬂ/l* E— chff SptTﬂ/l*
is a Quillen equivalence.

Proof. — Using Corollary 1.3.16 in [10] and Proposition 3.2.3 we have that it suffices
to verify the following two conditions:

1. For every cofibrant object X in ch“SptT/'l/l*, the following composition

Qg1 IQTJX/\SI

X 5 Qe (X ASYH Qs IQTJ(X A SY)

is a Clg-colocal equivalence.
2. Qg1 reflects Clz-colocal equivalences between fibrant objects in chffSptT/’l/l*.
(1): By construction Rge Sptp i, is a right Bousfield localization of Sptp M,
therefore the identity functor

id : ch“SptTﬂ/l* _— SptTﬂ/l*

is a left Quillen functor. Thus X is also cofibrant in Spt;M,. Since the adjunction
(—=AS1,Qs1, ) is a Quillen equivalence on Spt M., [10, Proposition 1.3.13(b)] implies
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that the following composition is a weak equivalence in SptpM,:

1
Qg1 IQrJX"S
—_—

X X5 Qg (X ASY Qs IQrJ(X A SY)

Hence using [6, Proposition 3.1.5] it follows that the composition above is a CZg-colo-
cal equivalence.
(2): This follows immediately from Proposition 3.2.3 and Lemma 3.2.7. a

Corollary 3.2.9. — chffd% (S) has the structure of a triangulated category.

Proof. — Theorem 3.2.1 implies in particular that chffSptTﬂ/t* is a pointed simpli-
cial model category, and Corollary 3.2.8 implies that the adjunction

(= A 8%, Qs1,9) : Rgs_Sptr M — Rea Sptp s
is a Quillen equivalence. Therefore the result follows from the work of Quillen in [21,

sections 1.2 and 1.3] and the work of Hovey in [10, chapters VI and VII]. O

Remark 3.2.10. — The adjunction (E7,Qr,9) is a Quillen equivalence on Sptp M.
However it does not descend even to a Quillen adjunction on the (g — 1)-connected
motivic stable model category ch“SptTﬂ/l*.

Proposition 3.2.11. — We have the following adjunction
(Coq, 1Q1J, ) : Ros, M (S) —— M (S)
between exact functors of triangulated categories.
Proof. — Since ch”SptTﬂ/l* is the right Bousfield localization of Spt; M. with
respect to the Clg-colocal equivalences, we have that the identity functor id :

Rga Spty M. — Sptp M, is a left Quillen functor. Therefore we get the following
adjunction at the level of the associated homotopy categories:

(Co, 1Q7J, ) : Rog, M (S) —— ##(S)

Now Proposition 6.4.1 in [10] implies that Cy maps cofibre sequences in chﬂgﬂ[ (S)
to cofibre sequences in 4% (S). Therefore using Proposition 7.1.12 in [10] we have that
Cy and IQrJ are both exact functors between triangulated categories. O

Proposition 3.2.12. — The unit of the adjunction
(Co, IQ1J, ) : Roa M (S) —— J#(S)
ox : X = IQrJCyX is an isomorphism in ch“d?[ (S) for every T-spectrum X, and

the functor:
Cq : Ros, MH(S) — M (S)
is a full embedding.
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Proof. — For any T-spectrum X, we have the following commutative diagram in
chff Sptp M.
CX
C.X ! X
1QrJ%e* L lIQT Jx
I1QrJC, X IQrJX
X e 19

where IQrJC®X is in particular a weak equivalence in Spty,. But since
chffSptTﬂ/t* is the right Bousfield localization of Sptp M, with respect to the
Clz-colocal equivalences, Proposition 3.1.5 in [6] implies that I QrJCX is also a
C:-colocal equivalence.

On the other hand, by construction we have that C;¥ is a CZg-colocal equivalence.
Therefore IQ7J%* and C;¥ both become isomorphisms in Rca ##(S).

Finally, since ox is the following composition in chffd;‘{ (S):

C,X

cHt 1QrJCaX
= IQrJC, X

=]

it follows that ox is an isomorphism in ch“d?[ (S) as we wanted. This also implies
that the functor

Cq: Res MH(S) — HH(S)
is a full embedding. (]

Proposition 3.2.13. — Let f : X —Y be a map in Rgs MH(S). We have that f is an
isomorphism if and only if the following condition holds:
For every F,(S™ AG$, ANU,) € C%;, the induced maps

(Caf)s
[Fn(ST AGS, AUL), CyXlspt ——= [Fn(ST AGS, AUL), CoYsp

are all isomorphisms of abelian groups.
Proof. — Complete the map f to a distinguished triangle in Rc;z“d}’[ (S):

x—1-v z RELD ¢

We have that
Cof

(28) C, X CcY C.Z »0C,x

is also a distinguished triangle in chffgb’{ (S), therefore Cyf is an isomorphism in
chﬁgﬂ{ (S) if and only if CqZ = * in chffd% (S); and since C, is a cofibrant re-
placement functor in Rge Sptr . we have that f is an isomorphism in Res MH(S)
if and only if Cyf is an isomorphism in chffng% (S).
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Hence, f is an isomorphism in Rge #(S) if and only if CqZ = x in Roa JH(S).
Now Corollary 3.2.6 implies that CqZ = * in ch“gﬂ[ (S) if and only if for every
Fo(S"AG:, AUy) € Cly:

[Fo(S"AG], ANUL),CyZ]spy =0

But Proposition 3.2.11 implies that the diagram (28) is a distinguished triangle
in J#(S); and since for every F,(S™ A GE, AUL) € Ck;, the functor [F,(S™ A G, A
U4 ), —]spt is homological, we get the following long exact sequence of abelian groups

[Fn(ST A an A U+)’ CqX]Spt
(Cqaf)e
[Fn(sr A Gws'n A U+)a CqY]Spt

[F.(S™ AGE, AUL), CyZlspe

[F.(S” AG2, AU, ), 20C, X]sp <§— [Fot1(S™ AGEFL AUL), CoXlspt

T

(B3°Cqf)e L(cqf)*

[Fa(S™ A G AUL), TRCo Y lsps <5 [Fsa (ST A GEL AUL), CoY s

T

Therefore [F},(S"™ AGS, AUL),CqZ]spt = 0 for every F,(S™ AGS, AUL) € Ck; if and
only if the induced map

(Cqf)x
[Fr(S"AG;, ANUL), CqXspt — [Fa(S" AGS, AU ), CqYlspt

is an isomorphism of abelian groups for every F,,(S" AG$, AU,) € CX:. This finishes
the proof. O

Proposition 3.2.14. — Let A be an arbitrary T-spectrum in 1. 4#° #(S). We have that
(QsA) A S* is a Clz-colocal T-spectrum in Sptp M,

Proof. — Let wyp, no denote the base points corresponding to Map, (QsA, IQrJX)
and Map, (QsA, IQTJY) respectively.
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It is clear that Q;A = A in 4#(S); then Q A is in E%WE(S), since A is in
DINY T(S) and p-N% 2 *#(S) is a triangulated subcategory of J# (S).

Since SptpJM, is a simplicial model category, we have that Qs A A S is cofibrant in
Spty M., hence it suffices to check that for every Clz-colocal equivalence f : X — Y,
the induced map

I Jf)«
Map(QsA A S, IQrJX) —2x0)-

Map(Q,A A S, IQrJY)
is a weak equivalence of simplicial sets.

Now Corollary 3.2.8 together with Proposition 3.2.3 imply that for every n > 0,
QsnIQTJ(f) is also a Clz-colocal equivalence. Hence Corollary 3.2.5 implies that
725 IQ7J(f) is an isomorphism in SLA#°T(S). Since Q, 4 € L4 (S), we have
that ,Q. A = Q,A4, then by Proposition 3.1.12 we get the following commutative
diagram where both rows and the left vertical map are isomorphisms of abelian groups:

Hongﬂd;[eff(s) (Q3147 ’l”qﬂsn IQTJX) ——g——> [QSA7 QSnIQTJX]Spt
(rgQsnIQT J f)« [2‘ (QsnIQTJf)«

Homz%vy{eff(s)(QsA, ’qusnIQTJY) = [QSA, QSnIQTJY]spt

Therefore the right vertical map is also an isomorphism of abelian groups.

Now since Spty M, is a pointed simplicial model category, we have that
Lemma 6.1.2 in [10] together with Remark 2.4.3(2) imply that the following di-
agram is commutative for n > 0, where all the vertical maps together with the
bottom row are isomorphisms of abelian groups:

I Jf)
71-"ywoN[‘a'p(QsA, IQTJX) _(i.L

| |

Wn,woMa‘p* (QSAa IQTJX) Wn,noMa’p* (Q8A7 IQTJY)

EL LE

Qs A, Qsn IQTJ X]spt NN Qs A, Qs IQT Y |spt

TnnoMap(Qs A, IQTJY)

QT Jf)«

Therefore all the maps in the top row are also isomorphisms. Thus, the induced map

(IQrJf).

Map(Q, 4, IQrJX) Map(Q, A, IQrJY)
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is a weak equivalence when it is restricted to the path component of Map(Q; A, IQrJX)
containing wp. This implies that the following induced map

Ma'p* (Sla Map* (QSA’ IQTJX))
IQTJf)« L
Ma'p* (517 Ma'p* (QsAa IQTJY))

is a weak equivalence since taking S!-loops kills the path components that do not
contain the base point.

Finally, since Spt; U, is a simplicial model category we have that the rows in the
following commutative diagram are isomorphisms:

Map, (5%, Map, (Q,A, IQrJ X)) —= Map, (Q,A A §*,IQJ X)
(IQTJf),.l l(IQTJf)*
Ma'p* (Sl, Map* (QsAv IQTJY)) —3> Ma‘p* (QSA A Sl’ IQT‘]Y)

Hence the two out of three property for weak equivalences implies that the right
vertical map is a weak equivalence of simplicial sets, as we wanted. O

Corollary 3.2.15. — Let X be an arbitrary T-spectrum in EL.J4H eH(S). We have that
Qs X is a Clz-colocal T-spectrum in Sptop M,

Proof. — Let R denote a fibrant replacement functor in Sptp M. such that for every
T-spectrum Y, the natural map

Ry
Y —RY
is a trivial cofibration in Sptyp M.. Then RQ ;X is cofibrant in Spt,M,. Now the map

Q.X "% RQ,X
is in particular a weak equivalence in Spt;M,, therefore using [6, Lemma 3.2.1(2)]
we get that Q,X is CJg-colocal if and only if RQX is Clz-colocal. We will show that
RQ:X is Clz-colocal.

By hypothesis X is in 3.4 *f(S) and it is clear that Q,X = X in J# (S). Hence
QsX is also in T 4K eﬁ(S) since it is a triangulated subcategory of 4#(S). There-
fore Q51 RQ,X is also in . 4#° ff(S) since g1 RQs;X computes the desuspension
271°Q. X of Q. X.

Using Proposition 3.2.14 we have that (Q,Qs: RQsX)AS! is Cls-colocal. But since
the adjunction

(— A Sl, QSI,(p) : SptTﬂ/l* E— SptTm*
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is a Quillen equivalence, we have the following weak equivalence in Spt;M,:

Q.1 RQs X |
€rQ,x0(Q,5 7 Aid)

(QSQSLRQSX) A St RQSX

where € denotes the counit of the adjunction considered above.
Finally using [6, Lemma 3.2.1(2)] again, we get that RQ,X is C;-colocal. This
finishes the proof. O

Proposition 3.2.16. — Let p be the counit of the adjunction:
(Co, IQ1J, ) : Roa M (S) —— 4#(S)
For every T'-spectrum X, the map
re(px) : 7qCelQrIX — 14X

is an isomorphism in LLAH® #(S); and this map induces a natural isomorphism be-
tween the following exact functors

rqCqlQrJ
M(S) —_ sim(S)

Tq

Proof. — The naturality of the counit p, implies that ro(p-) : 7,CeIQrJ — 714 is
a natural transformation. Hence, it is enough to show that for every T-spectrum X,
rq(px) is an isomorphism in E%WH(S).

Consider the following diagram of T'-spectra:

IQrJX

CIQrJX —* 1QrJX <2877

X

where IQrJ¥ is a weak equivalence in Spt;.#, and C’g QrJIX s a Cz-colocal equiva-

lence. Then it is clear that ry(IQ7JX) is an isomorphism in X3.4#° #(S). On the other

hand, Corollary 3.2.5 implies that ro(CI977X) is also an isomorphism in X7.4#’ °f(9).
And this proves the result, since px is just the following composition in 4 (S):

277X IQrJ*X)!
C,IQrJX IQrJX —X~° + x O

Proposition 3.2.17. — Let 0 be the counit of the adjunction

(ig, 7, ) : SHelH " (8) —— MH(S)
For any T-spectrum X in Sptp M., the map
IQrJ(0x) : IQTJ(igrg) X —— IQrJX
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is an isomorphism in ch“d?{ (S); and this map induces a natural isomorphism be-
tween the following exact functors

IQTJ(iqrq)
M(S) —__ Ros, H(S)
1QrJ

Proof. — The naturality of the counit 8, implies that IQ7J(0-) : IQ7J(igrq) —
IQrJ is a natural transformation. Hence, it is enough to show that for every T-spec-
trum X, IQrJ(6x) is an isomorphism in Rga #(S).

By Proposition 3.2.13 it is enough to show that for every F,,(S"AGS, AUy ) € Clz
the induced maps

[Fn(S™ NGy, ANUL), CoIQrJ (igrg) X]spt
LCQIQTJ(OX),
[Fo(S"AGS, ANUL), ColQrJ X]spt

are all isomorphisms of abelian groups.
Consider the following commutative diagram in 4#(S):

Cq,I J(6
CIQrd (igrg) X S1977) ¢ 1Grx
C;QTJiqqu [ tC;QTJx
I J(6
1Qrd(igrg X — 227700 | 10.7x

where C497 7% X and Cle77X are by construction maps of T-spectra and Cg-colocal
equivalences. Therefore proposition 3.2.4 implies that for every F,(S" AG?, AU, ) €
CZ; the induced maps

[Fn(ST A G:n A\ U+), CqIQTJ(’L.qTq)X]Spt [Fn(Sr N an A U+), CqIQTJX]Spt
(C;QTJiqqu).l L(C;QTJX)'
[Fn(S™ A Gr, AUL), IQTJ (igrq) X]spt [Fn(8" A Gy, AUL), 1Q7J Xspy

are both isomorphisms of abelian groups.
On the other hand, Proposition 3.1.15 implies that we have an induced isomorphism
of abelian groups:

[Fn(S" AG;, ANUL), IQTJ (ig7¢) X]spt
lIQTJ(Gx)*
[Fr(S" A Gy AUL), IQT I X]spy
for every F,(S" AGS, AUL) € Cs.
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Finally, this implies that for every F,(S™ A G, AUL) € Cds, we get the following
induced isomorphisms of abelian groups

[Fr(STAGE, ANUL), ColQrJ (igrq) Xspt
lC.,IQTJ(Gx)*
[Fn(S" AG, AUY), CqIQTJX]Spt

as we wanted. O

Proposition 3.2.18. — Let 0 be the counit of the adjunction

(iq,Tq,S(’) : Z%Weﬂ‘(s) —_— M(S)
For any T -spectrum X , the map
ClQrJ(0x) : ColQrJ(igrq) X —— CoIQrJX

is an isomorphism in A#(S); and this map induces a natural isomorphism between
the following ezact functors

CoIQrJ(igrq)
M(S) —_—_HM(S)
CoIQTJ

Proof. — The naturality of the counit 8, implies that CoIQrJ(0-) : CoIQrJ (iqrq) —
CoIQrJ is a natural transformation. Hence, it is enough to show that for every
T-spectrum X, CoIQrJ(0x) is an isomorphism in J#(S).

But this follows immediately from Proposition 3.2.17 together with Proposi-
tion 3.2.11. O

Proposition 3.2.19. — For every T-spectrum X, the natural map

IQ J(iqrq)X

ColQrJ(igre) X i IQrJ (igrg) X

is a weak equivalence in Sptp M. Therefore we have a natural isomorphism between
the following exact functors

CeIQr J(igrg)

M (S) M (S)

IQTJ(iq'V‘q)

Proof. — The naturality of the maps C’f : C¢gX — X implies that we have an induced
natural transformation of functors CoIQrJ(iqrq) — IQ7J(iqrq). Hence, it is enough

to show that for every T-spectrum X, Cg QrIliara)X 5 5 weak equivalence in Sptr M,
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Consider the following commutative diagram in Spt;JU,:

I J(igrg)X
Q. (C AT Cara) X,

QsColQrJ(igre) X QsIQrJ(igry) X
QSCqIQTJ(iqrq)Xl/ LQiQTJ(iqrq)X
CoIQrJ(igre) X T IQTJ(igrg) X

Since @) is a cofibrant replacement functor in Sptp M., it follows that the vertical
maps are weak equivalences in Spt; .. Hence by the two out of three property for

CIQTJ(iqTq)X

weak equivalences it suffices to show that Q;(Cy ) is a weak equivalence in

Sptr M.

On the other hand we have that by construction C;QTJ(i"T")X is a C%
equivalence, and [6, Proposition 3.1.5] implies that the vertical maps in the diagram
above are also CZz-colocal equivalences. Then by the two out of three property for

-colocal

Clz-colocal equivalences we have that QS(CJ Qr J(iqr")x) is a Clz-colocal equivalence.

Now by construction we have that CoIQrJ(i47q)X is a Clz-colocal T-spectrum,
and that Q,CqIQrJ(igrq)X is cofibrant in Spt;M,. Since QY@ Iliar)X g i
particular a weak equivalence in Sptp M., using [6, Lemma 3.2.1(2)] we have that
QsCqIQrJ(iqre)X is also a Clg-colocal T-spectrum.

It is clear that IQ7J(igre) X = igryX in J#(S), therefore IQ7J(iqry)X is in
4 M (S) since DL (S) is a triangulated subcategory of #(S) and iqTqX
is in nggﬂ[eﬂ(S). Then using Corollary 3.2.15, we have that Q.IQrJ(i,r¢)X is a
Clg-colocal T-spectrum.

Finally we have that QS(C;QTJ“"T")X) is a Clz-colocal equivalence, and that
QsCqIQrJ (iqre) X, QIQrJ(igrq) X are both Cls-colocal T-spectra. Then [6, Theo-
rem 3.2.13(2)] implies that Q, (C;QTJ(iqT“)X) is a weak equivalence in Sptp M., as we
wanted. O

Theorem 3.2.20. — For every T-spectrum X, we have the following diagram in S#(S):

foX
e . 1QrIf,X

foX =igreX

(29) o | gloTIex

CalQrIfoX —— o> CyIQrJ X
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where all the maps are isomorphisms in S#(S). This diagram induces a natural iso-
morphism between the following exact functors:

fa

() MH(S)
CoIQrJ

Proof. — Since IQrJ is a fibrant replacement functor in Spt;JU,, it is clear that
IQrJf+X becomes an isomorphism in the associated homotopy category #(S).
The fact that C;QT” +X is an isomorphism in & (S) follows from Proposi-
tion 3.2.19. Finally, Proposition 3.2.18 implies that CqIQ7J(fx) is also an isomor-
phism in £#(S). This shows that all the maps in the diagram (29) are isomorphisms
in ##(S), therefore for every T-spectrum X we can define the following composition

in J#(S)

I1QrJfaX

=1

foX 1QrJ foX

(30) o | (19T Ia%)

CalQrJ foX ——o s C,IQrJX

which is an isomorphism. The fact that IQrJ is a functorial fibrant replacement in
Sptr M., propositions 3.2.19 and 3.2.18, imply all together that the isomorphisms
defined in diagram (30) induce a natural isomorphism of functors f, 3 CIQrJ.
This finishes the proof. O

Theorem 3.2.20 gives the desired lifting to the model category level for the functor
fq- Now we proceed to show that the homotopy categories chﬂyﬂ( (S) are in fact

equivalent to the categories L3.4#° ﬁ(S) defined in Section 3.1.
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Using Propositions 3.1.12 and 3.2.11, we get the following diagram of adjunctions:

(Cq,IQT J,9)
R, ##(S) —T" = ##(S)
] (iq qu "P)
ff
T (S)
(31)
Cq
Ros, #(5) H(S)
1QrJ
“|]-
q ff
ST (S)
where all the functors are exact.
Proposition 3.2.21. — The adjunctions of diagram (31) induce an equivalence of cat-
egories:
rqCq
—_—
(32) Res H(S) S (S)
I1Qr Jig
between chﬂgﬂ( S) and X} d}"(eﬂ( S).
Proof. — It is enough to show the existence of the following natural isomorphisms

between functors:

id ; (IQrJig)(r¢Cq)
(33)

(rqCq)(IQT1 Jig) id

We construct first the natural equivalence €. Let f : X — Y be a map in Rge J#(S).
Applying the functor i,7,C,, we get the following commutative diagram in 4#(S):

igrqCeX CeX
liqrchf Cqof []
igrgCqY cY

Ocqy
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where 0 denotes the counit of the adjunction between i, and r,. Now if we apply the
functor IQrJ, we have the following commutative diagram in ch“d}’{ (S):

1QTJ(0cyx)

I1QrJigr,CoX — IQTJCX <Z— X
IQTJiqqu’qf[ IQTJquL Lf
1Q7Jigr CqY 1077 0ory) IQrJCY 5y Y

where o denotes the unit of the adjunction between C; and IQrJ. But Propo-
sitions 3.2.17 and 3.2.12 imply that all the horizontal maps are isomorphisms in
Roa fH(S). Now if we define

ex = (IQrJ (8¢, x)) " o (ox)

we get the natural isomorphism of functors € : id — (IQrJiq)(rqCy).

To finish the proof, we proceed to construct the natural equivalence 7. Let f : X —
Y be a map in SL K ff(S). Applying the functor CoIQrJiq, we get the following
commutative diagram in 4#(S):

Pig x

C IQrJi X i X
C'qIQTJiqu Liqf
C IQrJiY : iY
oy

where p denotes the counit of the adjunction between Cy and IQrJ. Now if we apply
the functor r,, we have the following commutative diagram in SL4#°" (S):

rq(pi ) T
74CoIQrJig X X s rgigX <2 X
"'quIQTJiqu "'q'iqfl/ tf
1,CoIQrJiY reigY ~———Y
N TQ(p’iq y) Y

where 7 denotes the unit of the adjunction between i, and r,. But Proposi-
tion 3.2.16 and Remark 3.1.13 imply that all the horizontal maps are isomorphisms
in £2.#°%(S). Now if we define

nx = (1x) "t org(pi, x)

we get the natural isomorphism of functors n : (ryCq)(IQrJiq) — id. This finishes
the proof. O
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Proposition 3.2.22. — 1. We have the following commutative diagram of left
Quillen functors:
Cq+1SptTﬂfl* id Rga Sptr .
(34) \ /
Sptr M.

2. For every T-spectrum X, the natural map:

Cqg1X
q
Cqu+1X —_— Cq+1X
is a weak equivalence in A (S), and it induces a natural equivalence C’C"“Ll
Cq o Cqtr1 — Cyi1 between the following functors:

Cq 1
Roarrdd#(S : Reoa M (S)
(S)

3. The natural transformation fq411X — fqX (see Theorem 3.1.16(1)) gets canon-
ically identified, through the equivalence of categories 1oCyq, IQTJiq constructed

in Proposition 38.2.21; with the following composition in 47 (S)

CyCor1IQTIX
(cfay wx)
Cot11QTIX C IQrJX

which is induced by the following commutative diagram in Sptp MU,

( IQTJX)
CyCr1IQrJX Chi C IQrJX
(35) C‘?QHIQTJXL [C;QTJX
Cor1IQrJX e IQrJX
q

Proof. — (1): Since RCQ{:‘—I Sptr M, and Rga SptrM, are both right Bousfield local-
izations of Spt;M., by construction the identity functor

id
chf-:-l SptTm* LG SptTm*
chffSptTﬂ/l* —a Sptr M.
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is in both cases a left Quillen functor. To finish the proof, it suffices to show that the
identity functor

id : Rga Sptp M. — ch;frl Sptp M.

is a right Quillen functor. Using the universal property of right Bousfield localizations
(see definition 1.8.2), it is enough to check that if f : X — Y is a C;-colocal
equivalence in Sptp M, then IQrJ(f) is a Cg; !_colocal equivalence. But since IQ7JX
and IQrJY are already fibrant in Spt; M., we have that IQrJ(f) is a ng !_colocal
equivalence if and only if for every F,,(S™ A Gg, AU,) € C4, the induced map:

Map(F,,(S"AG:, AUL), IQTJX)
iIQTJ(f)*
Map(F,(S"AG2, AUL),IQTJY)

is a weak equivalence of simplicial sets. But since C’g; lc Cls, and by hypothesis f
is a CZz-colocal equivalence; we have that all the induced maps IQ7J(f). are weak
equivalences of simplicial sets. Thus IQrJ(f) is a C’g; 1_colocal equivalence, as we
wanted.

Finally (2) and (3) follow directly from Proposition 3.2.21, Theorem 3.2.20 together
with the commutative diagram (34) of left Quillen functors constructed above and [10,
Theorem 1.3.7]. O

Theorem 3.2.23. — We have the following commutative diagram of left Quillen func-
tors:

id
RC:fde Sptp M
i \
(36) Rga Sptr . _d Sptr M.
id /
chf; 1Sptp M,
id
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and the associated diagram of homotopy categories:

R o1 JH(S)

eff

/

Cqt1

Ca41 I1QrJ IQTJ\
C \
:ffM(S) IQ;J M(S)

(37 fie _—
Cor —

/

Col |1QrJ

Rpa14#(S)

eff

\

gets canonically identified, through the equivalences of categories 74Cq, IQ1Jiq con-
structed in Proposition 3.2.21; with Voevodsky’s slice filtration:

z:‘;“z;meff(&\
ig+1 Tq \T:q:ll\

(38) DL (S)

A (S5)

1q

T

q /
g1

(2 Tq—1
q q
Tq—1

/
R AT

Proof. — It follows immediately from propositions 3.2.22 and 3.2.21. a
Remark 3.2.24. — The drawback of the model structures on chff Sptp M. is that it is

not clear if they are cellular again. Therefore in order to recover a lifting for the slice
functors sq, we are forced to take an indirect approach.
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The first step in this new approach will be to construct another family of model
structures on Spty(dJm|s)nis, via left Bousfield localization; such that the fibrant
replacement functor provides an alternative description of the functors s, defined in
Theorem 3.1.18.

Definition 3.2.25. — For r > 1, we define D" using the following pushout diagram of
simplicial sets:
Sr—l _jL> Sr——l X Al

|k

* DT

where jo is the following composition:

idxd1

Sr—l o~ Sr—l X AO Sr—l X Al

and let 11 : "~ — D" be the following composition:

id xdg

Sr—l o~ Sr—l X AO Sr—l X Al _p_> D"

Remark 3.2.26. — It is clear that the canonical map * — D" is a trivial cofibration
in the category of pointed simplicial sets.

Proposition 3.2.27. — For every r > 1,s > 0, and for every scheme U € dm|s; the
pointed simplicial presheaf on the smooth Nisnevich site over S

D" NG, AU
has the following properties:

1. it is compact in the sense of Jardine (see definition 2.58.10).
2. the canonical map * — F,(D" A G3, AUy) is a trivial cofibration in SptpM,.
3. the canonical map F,(D" AGS, AUL) — * is a weak equivalence in Sptp M.

Proof. — (1): It is clear from the construction that D" has only finitely many non-
degenerate simplices. Therefore the result follows from [14, Lemma 2.2].
(2): Proposition 2.3.7 implies that i, is a SSets,-model category; and since G;, A
U, is cofibrant, we have the following Quillen adjunction:
—/\Gin AU+

SSets, M,
Map, (G:nAU+ 7_)

But * — D" is a trivial cofibration of pointed simplicial sets, therefore the induced
map
*xZx NG ANU ——= D" NG, AU
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is a trivial cofibration in M,. Finally using Proposition 2.4.17 we have that
(Fn, Evp, @) : M, —> Sptp M,
is a Quillen adjunction. Hence the canonical map
* 2 F(x) — F, (D" NG, AUY)
is a trivial cofibration in Spt; M., as we wanted.

(3): It follows immediately from (2) and the two out of three property for weak
equivalences. O

Proposition 3.2.28. — For every compact generator F,(S"AG3, AU,) € C (see Propo-
sition 3.1.5), there exists a natural cofibration:

U
tn,rs

F,(S"AGE, AUY)

F, (D™ AGS, AUY)

Proof. — We define .Y, . as F,(t1 A G5, AUy), where ¢; : S* — D"t! is the map
constructed in definition 3.2.25.

It is clear that ¢; is a cofibration of pointed simplicial sets, therefore the result
follows from Propositions 2.4.17 and 2.3.7 which imply that F;, and — AG], AU, are

both left Quillen functors. O

Theorem 3.2.29. — Consider the following set of maps in SptypM.:
(39)  L(< @) ={l,.: Fa(S"AGE AUL) = Fu(D™ AGE, AUL) |

F.(S"AG;, AUL) € O}
The left Bousfield localization of Sptr M, with respect to the L(< q)-local equivalences
ezists. This new model structure will be called weight<? motivic stable. L«gSpt M,
will denote the category of T-spectra equipped with the weight<9 motivic stable model
structure, and L, 4% (S) will denote its associated homotopy category. Furthermore

the weight<? motivic stable model structure is cellular, left proper and simplicial; with
the following sets of generating cofibrations and trivial cofibrations respectively:

IL(< q) = I{,[* = Unzo{Fn(Y+ - (ATI})-!')}

JL(<q)={j:A—>B}
where j satisfies the following conditions:

1. j is an inclusion of I1:C1, -complexes.

2. j is a L(< q)-local equivalence.

3. the size of B as an I}",.,‘ -complex is less than k, where k is the regular cardinal
defined by Hirschhorn in [6, definition 4.5.3].
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Proof. — Theorems 2.5.4 and 2.4.16 imply that Sptr M, is a cellular, proper and sim-
plicial model category. Therefore the existence of the left Bousfield localization follows
from [6, Theorem 4.1.1]. Using [6, Theorem 4.1.1] again, we have that L.,Spt; M,
is cellular, left proper and simplicial; where the sets of generating cofibrations and
trivial cofibrations are the ones described above. O

Definition 3.2.30. — Let W, denote a fibrant replacement functor in L.aSptpM.;
such that the for every T-spectrum X, the natural map:

X

Wq
X — WX
is a trivial cofibration in L.,Sptp M., and WX is L(< q)-local in Sptp M.

Proposition 3.2.31. — Q; is also a cofibrant replacement functor in L<,Sptp M, (see
definition 3.1.1), and for every T-spectrum X the natural map

Q¥
QSX — X

is a trivial fibration in L Sptp M.

Proof. — Since L,Sptp M, is the left Bousfield localization of Spt; M, with respect
to the L(< g)-local equivalences, by construction we have that the cofibrations and the
trivial fibrations are identical in L,Spt; M. and Spt; M, respectively. This implies
that for every T-spectrum X, Q;X is cofibrant in L,Spt- M., and we also have that
the natural map

QX
QSX —_— X

is a trivial fibration in L.,Spt;M.. Hence @, is also a cofibrant replacement functor
for L<qutTﬂ’l*. O

Proposition 3.2.32. — Let Z be an arbitrary T-spectrum. We have that Z is L(< q)-lo-
cal in Sptp M. if and only if the following conditions hold:

1. Z is fibrant in Sptp M.

2. For every F,(S"AGS, ANUL) € Clg, [Fa(S"AG3, AUL), Z]spy 20

Proof. — (=): Assume that Z is L(< g)-local. Then by definition we have that Z
must be fibrant in Spt .. Since all the T-spectra F,(S™ A G, A U;) and F,(D" A
G2, AU,) are cofibrant, and Z is L(< g)-local; for every F,(S" AGS, AU,) € Cl; we
get the following weak equivalence of simplicial sets:

U
(tnrs)”

Map(F, (D™ AGS, AUL), Z) Map(F,(S" AG:, AUL), Z)
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Now we have that Spt M, is in particular a simplicial model category, therefore we
get the following commutative diagram:

U
(tnrs)”

=

moMap(Fr (D™ A G}, AUL), Z)

4

[Fn(DT+1 A G:n A U+)7 Z]Spt

moMap(F,(S"AGE, AUL), Z)

lg

[Fr(S™ A Gy, AUL), Zsp

(I"rl)],v‘,s)*

where the vertical arrows and the top row are isomorphisms. Therefore we get the
following isomorphism:

(Lvlz],r,s)*

=1

[Fa (D71 A G, AUY), Zlspr [Fa(S™ AGS, AU, Zlspe
Finally Proposition 3.2.27(2) implies that [F,, (D™t AG$, AUL), Z)spt = 0. Thus, for
every F,,(S™ A GS, AUL) € C; we have that [F,(S™ AG3, AUL), Z]spy = 0, as we
wanted.

(«=): Assume that Z satisfies (1) and (2). Let wg, 1o denote the base points
corresponding to the pointed simplicial sets Map, (F,,(D"™*! A G, A Uy), Z) and
Map, (F,(S"AG:, AU,), Z) respectively. Since F,,(S"AG:, AU ) and F,,(D"AG;,AUL)
are always cofibrant, it is enough to show that the induced map:

U
(tn,rs)”

r,s)
Map(Fy (D" A G}, AUY), Z) ———— Map(Fr(S" A Gy, AUL), Z)

is a weak equivalence of simplicial sets for every map L,({ms € L(< q).

Fix 1] ., € L(< q). By Proposition 3.2.27(3) we know that the map F,(D"*' A
G2, ANUy) — * is a weak equivalence in SptyM,. Then Ken Brown’s lemma (see
Lemma 1.1.4) together with the fact that Spt; U, is a simplicial model category,

imply that the following map is a weak equivalence of simplicial sets:
* & Map(*, Z) — Map(F,, (D™ AGS, AUL), Z)

In particular Map(F, (D"™* AG$, AU,), Z) has only one path connected component.
Since Sptp M, is a simplicial model category, we have the following isomorphism
of abelian groups

ToMap(Fy (S™ A G, AUy ), Z) —— [Fn(S™ A G, AUL), Zlsp

but our hypothesis implies that [F,,(S" AG3, AUL), Z]spt = 0, hence moMap(Fy, (S™ A
G:, ANU4), Z) =0, ie. Map(Fn(S™ A G, AU,),Z) has only one path connected
component.
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Now Proposition 3.2.27(2) implies that * — F,(D™t! A G3, A Uy) is a trivial
cofibration in Spt;M,, and since — A S! is a left Quillen functor, it follows that

* 2 x NSk —— F (D" AGE, AUL) A SF

is also a trivial cofibration for k > 0. Therefore [F,, (D™ AGS, AUL) A S*, Z]sp, 20,

1Y . 4)* is an isomorphism of abelian groups:

and this implies that the induced map (

02 [Fu(D™+ AGS, AUL) A SK, Zlsp

(X ) [

[Fo(S™AGE, AUL) A S, Zlspy & [Fn(S** AGS, AUL), Zlspt

since by hypothesis [F,,(S**" A G2, AU,), Z]spt 2 0.

On the other hand, since Spt+JU, is a pointed simplicial model category, we have
that Lemma 6.1.2 in [10] together with Remark 2.4.3(2) imply that the following
diagram is commutative for £ > 0 and all the vertical arrows are isomorphisms:

Tk,woMap(Fn (D™ A G, AU ), Z)

m

Tk,noMap(Frn(S™ AG;, ANUS), Z)

ThywoMap, (Fr(D™ A Gy, AUL), Z)

U
(trms)”

TkmoMap, (Fn(S"™ A G;, AUL ), Z)

1R

1R

[Fo(D™YAGE, AUL) A S*, Z)sps

(e

n,r,s)*

[Fn(STAGS, ANUL) A Sk, Z]spe

R

1R

[Fo(D™ AGS, AUL) A S*, Z]gpe

U
(tnms)”

[Fn(Sk+T A Gy, A U+), Z]Spt
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but we know that the bottom row is always an isomorphism of abelian groups, hence
the top row is also an isomorphism. This implies that the map

(e

)x
n,r,s

Map(F, (D™ AG;, AU), 2)

Map(Fu(S” A G2, AUY), 2)

is a weak equivalence when it is restricted to the path component of Map(F, (D™ A
G2, AUL), Z) containing wy. However we already know that Map(F, (D™t A G5, A
U;),Z) and Map(F,(S™ A G2, AU,), Z) have only one path connected component.
This implies that the map defined above is a weak equivalence of simplicial sets, as
we wanted. O

Corollary 3.2.33. — Let m,n € Z with m > n. If Z is a L(< n)-local T-spectrum in
Sptr M., then Z is also L(< m)-local in Sptp M.

Proof. — We have that CJg C CZ, since m > n. The result now follows immediately
from the characterization of L(< g)-local objects given in Proposition 3.2.32. O

Corollary 3.2.34. — Let Z be a fibrant T-spectrum in Sptp M.. We have that Z is
L(< q)-local if and only if Q51 Z is L(< q)-local.

Proof. — (=): Assume that Z is L(< g)-local. We have that Z is fibrant in SptM.;
and since Spt; M, is a simplicial model category, it follows that Qg1 Z is also fibrant.

Fix F,(S" AGS, ANUy) € C%;. Since Spty U, is a simplicial model category, we
have the following natural isomorphisms:

[Fu(S"AGE AUL), Qe Zlspe & [Fu(S™AGE AUL) A S, Zlsye

[FH(ST+1 A an A U+)7 Z]Spt

IR

but Proposition 3.2.32 implies that [F,(S™ A G$, AUL), Z]spt =2 0, hence [F,,(S™ A
G2, ANU4), Q51 Z]spy = 0 for every Fr(S™ AGS, AUy) € Ck:. Finally, using Proposi-
tion 3.2.32 again, we have that Q51 Z is L(< g¢)-local, as we wanted.

(«): Assume that Qg:1Z is L(< g)-local. Since by hypothesis Z is fibrant in
Sptr M., Proposition 3.2.32 implies that it is enough to show that for every
Fo(S"AGE, ANUL) € Cs:

[Fa(S™ NGl AUL), Zspe 20

Fix F,(S" AGS, AU,) € C;. Since Spt,M, is a simplicial model category, and Z is
fibrant by hypothesis; we have the following natural isomorphisms of abelian groups:
[Fr1(S"AGH AUL), Q51 Z)spe = [Fopa (STHAGE AUL), Z]spe

[Fn(S" A Gy AUL), Z]spt

IR
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Now using Proposition 3.2.32 and the fact that Q51 Z is L(< ¢)-local, it follows that
[Fro1(S" AGEH AUL), Qg1 Z)spy = 0. Therefore, [F,(S™ A GS, AUL), Z)spt = 0 for
every F,(S" AGS, AUL) € C%;, as we wanted. O

Corollary 3.2.35. — Let Z be a fibrant T-spectrum in SptrM.. We have that Z is
L(< q)-local if and only if IQrJ(QsZ A SY) is L(< q)-local.

Proof. — (=): Assume that Z is L(< g)-local. Since IQTJ(Qs;ZAS?') is fibrant, using
proposition 3.2.32 we have that it is enough to check that for every F,(S"AGS, AUL) €
CLz, [Fa(ST NG, ANUL) IQTI(QsZ A SY)|spr = 0. But since — A S? is a Quillen
equivalence, we get the following diagram:

[FH(ST A an A U+)7IQTJ(QSZ A Sl)]Spt

\

Frop1(S"TUAGET AUL), IQTI(QsZ A SY)]spt
1%

[Fat1(S" AGSH AUL), Zspe =

1,0
Z:T

o

Frr1(STTAGHTAUL), Qs Z A S
P

where all the maps are isomorphisms of abelian groups. Since Z is L(< g)-local, Propo-
sition 3.2.32 implies that [F,41(S™ A G5 A UL ), Z]spt =2 0. Therefore

[F"(Sr A G:n A U+)7IQTJ(Q5Z A Sl)]Spt =0

for every F,(S™ A G}, AU, ) € C;, as we wanted.

(«): Assume that IQTJ(QsZ A S') is L(< g)-local. By hypothesis, Z is fibrant;
therefore Proposition 3.2.32 implies that it is enough to show that for every F,(S™ A
G:, ANU;) € Ckg, [Fn(S™ ANGE, AUL), Z]spy = 0. Since Sptp M, is a simplicial model
category and — A S* is a Quillen equivalence; we have the following diagram:

[Fn(S™AGy, AUL), Q1 IQTI(QsZ A SV)]sp
[Fn(ST~ A ng A U+) A Sla QsZ A Sl]Spt % [Fn(sr A an A U+)a Z]Spt
T
where all the maps are isomorphisms of abelian groups. On the other hand, using

Corollary 3.2.34 we have that Qg IQrJ(QsZ A S') is L(< g)-local. Therefore using
Proposition 3.2.32 again, we have that for every F,(S™ AGS, AU,) € Clg:

[Fa(S” AG;, AUL), Zlsps & [Fu(S™ A Gy AUL), 51 1QT I (QsZ A S™)]spe 2 0
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and this finishes the proof. O

Corollary 3.2.36. — Let f : X — Y be a map in SptpM.. We have that f is a
L(< q)-local equivalence if and only if for every L(< q)-local T-spectrum Z, f induces
the following isomorphism of abelian groups:

f*
[Y, Z]Spt —_— [X) Z]Spt

Proof. — Suppose that f is a L(< g)-local equivalence, then by definition the induced
map:

(Qs )"
Ma'p(QsYa Z) —_— Map(QsX’ Z)

is a weak equivalence of simplicial sets for every L(< g¢)-local T-spectrum Z. Proposi-
tion 3.2.32(1) implies that Z is fibrant in Spt; M., and since Spt; M, is in particular
a simplicial model category; we get the following commutative diagram, where the
top row and all the vertical maps are isomorphisms of abelian groups:

reMap(Q.Y; Z) 22X rMap(Q. X, 2)

E[ [g

[Y; Z] Spt [Xy Z]Spt

*

hence f* is an isomorphism for every L(< g)-local T-spectrum Z, as we wanted.
Conversely, assume that for every L(< g)-local T-spectrum Z, the induced map

f*
[Ya Z]Spt _— [X7 Z]Spt

is an isomorphism of abelian groups.

Since L«qSpt; M, is the left Bousfield localization of Spt#, with respect to the
L(< g)-local equivalences, we have that the identity functor id : Sptp(dm|s)nis —
L ,Sptp M, is a left Quillen functor. Therefore for every T-spectrum Z, we get the
following commutative diagram where all the vertical arrows are isomorphisms:

(QsS)*
Homp_ u(s)(QsY, Z) —— Homp__ 1 (s)(Qs X, Z)

. E -

[Ya Wq Z]Spt [X, Wq Z]Spt

but W,Z is by construction L(< g)-local, then by hypothesis the bottom row is an
isomorphism of abelian groups. Hence it follows that the induced map:

(Qs )
Homy _, 4(5)(QsY, Z2) —> Homy_ 4 (s)(Qs X, Z)
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is an isomorphism for every T-spectrum Z. This implies that @, f is a weak equivalence
in L<¢Spty M., and since Q) is also a cofibrant replacement functor in L .,Spt; M.,
it follows that f is a weak equivalence in L.,Spt;M,. Therefore we have that f is a
L(< g)-local equivalence, as we wanted. O

Lemma 3.2.37. — Let f: X — Y be a map in SptpM.. We have that f is a L(< q)-lo-
cal equivalence if and only if

QsfANId: QX AS' - QY AS!
is a L(< q)-local equivalence.
Proof. — Assume that f is a L(< g)-local equivalence, and let Z be an arbitrary

L(< g)-local T-spectrum. Then Corollary 3.2.34 implies that Qg1 Z is also L(< g)-lo-
cal. Therefore the induced map

Map(Q.Y, 51 Z) ‘%7 Map(Q. X, 251 2)

is a weak equivalence of simplicial sets. Now since Spty M. is a simplicial model
category, we have the following commutative diagram:

Map(Q,Y, Qg1 Z) —— 1)

!

Map(Q;Y A S, Z)

Map(Q; X, 251 Z)

[C_y

S fAid)*
_ QSR Map(Q, X A S, Z)

and using the two out of three property for weak equivalences of simplicial sets, we
have that

(Qs fAId)™

Map(Q,Y A S%, Z) Map(QsX A S, Z)

is a weak equivalence. Since this holds for every L(< g)-local T-spectrum Z, it follows
that

QsfNid: QX AS* - QY AS!

is a L(< g)-local equivalence, as we wanted.
Conversely, suppose that

Q. fANid: Qs XAS' - QY AS!

is a L(< g)-local equivalence. Let Z be an arbitrary L(< g)-local T-spectrum. Since
Sptp M, is a simplicial model category and — A S! is a Quillen equivalence, we get
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the following commutative diagram:

Qs fAid)*
QIND” _10,X A ST, IQrT(QsZ A SY)]sp

gl Lg

[QsYASlaQsZASI]Spt [QSX/\SI7Q3Z/\SI]Spt

g]z;" E,}'O]E

[Yv Z]SPt [X’ Z]Spt

QY ASYIQTJ(QsZ A SY)lspt

(Qs fAid)”

I

Now, Corollary 3.2.35 implies that IQ7J(QZ AS?) is also L(< g)-local. Therefore us-
ing Corollary 3.2.36 we have that the top row in the diagram above is an isomorphism
of abelian groups. This implies that the induced map:

£
[Ya Z}Spt —_— [Xa Z]Spt

is an isomorphism of abelian groups for every L(< g)-local spectrum Z. Finally using
Corollary 3.2.36 again, we have that f: X — Y is a L(< g)-local equivalence, as we
wanted. O

Corollary 3.2.38. — The following adjunction:

(— A SY,Qg1,0) : LegSptp,

L<qutTﬂ/l*
is a Quillen equivalence.

Proof. — Using Corollary 1.3.16 in [10] and Proposition 3.2.31 we have that it suffices
to verify the following two conditions:

1. For every fibrant object X in L.,Spt;M,, the following composition

Q X
Q.5 Aid

(QsQs1 X) A S Qe X)AS' = x

is a L(< ¢)-local equivalence.
2. — A S reflects L(< gq)-local equivalences between cofibrant objects in
L 4Sptp M.

(1): By construction L.,Sptr M, is a left Bousfield localization of Spt; M., there-
fore the identity functor

ld . L<qutTﬂfl* _— SptTﬂfl*

is a right Quillen functor. Thus X is also fibrant in Spt; .. Since the adjunction
(=ASY,Q61, ) is a Quillen equivalence on Spt; ., [10, Proposition 1.3.13(b)] implies
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that the following composition is a weak equivalence in Spt;M,:

Q X
Q, 5" Aid

(QsQ51 X) A St Qe X)ASt > x

Hence using (6, Proposition 3.1.5] it follows that the composition above is a L(< q)-lo-
cal equivalence.
(2): This follows immediately from Proposition 3.2.31 and Lemma 3.2.37. a

Remark 3.2.39. — We have a situation similar to the one described in remark 3.2.10
for the model categories RC;zﬁSptTﬂ/t* ; i.e. although the adjunction (X1,Qr1,9) is a
Quillen equivalence on Sptr M., it does not descend even to a Quillen adjunction on
the weight<? motivic stable model category L,Sptp M.

Corollary 3.2.40. — The homotopy category L, ¥ (S) associated to L Spty M, has
the structure of a triangulated category.

Proof. — Theorem 3.2.29 implies in particular that L.,Spt; U, is a pointed simpli-
cial model category, and Corollary 3.2.38 implies that the adjunction

(— A Sl, QSI,(p) : L<qutTﬂ/l,, g L<qutT/7’l*

is a Quillen equivalence. Therefore the result follows from the work of Quillen in [21,
sections 1.2 and I.3] and the work of Hovey in [10, chapters VI and VII]. d

Corollary 3.2.41. — L_,Sptyp M, is a right proper model category.

Proof. — We need to show that the L(< g)-local equivalences are stable under pull-
back along fibrations in L.,Spt; M. Consider the following pullback diagram:

ZL‘)X
S
W—7—Y

where p is a fibration in L,Spt; M., and w is a L(< g)-local equivalence. Let F' be the
homotopy fibre of p. Then we get the following commutative diagram in L.,4#(S):

QY —2>p—tsx—Lsy
S s
QaW p F F VA e w

Since the rows in the diagram above are both fibre sequences in L ,SptM,, it follows
that both rows are distinguished triangles in L.,# (S) (which has the structure of a
triangulated category given by Corollary 3.2.40). Now w, idr are both isomorphisms
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in L% (S), hence it follows that w* is also an isomorphism in L .,4#(S). Therefore
w* is a L(< g)-local equivalence, as we wanted. O

Proposition 3.2.42. — We have the following adjunction
(st Wq) QO) : M(‘S’) . L<0M(S)

of exact functors between triangulated categories.
Proof. — Since L,Sptr M, is the left Bousfield localization of Spt M, with respect
to the L(< g)-local equivalences, we have that the identity functor id : Spt; M. —

L Spty M, is a left Quillen functor. Therefore we get the following adjunction at the
level of the associated homotopy categories:

(Qs, Wa, ) : FH(S) —— L<qgd#(5)

Now Proposition 6.4.1 in [10] implies that Qs maps cofibre sequences in 4#(.S) to
cofibre sequences in L.,#(S). Therefore using Proposition 7.1.12 in [10] we have
that @, and W, are both exact functors between triangulated categories. O

Proposition 3.2.43. — Let nx : Q,W,X — X denote the counit of the adjunction

(Qsa Wq7 <P) : M(S) - L<QM(S)
Then the following conditions hold:

1. For every T-spectrum X, we have that nx is an isomorphism in Lo 8#(S).
2. The ezact functor

Wy i Leqd#(S) — HH(S)
is a full embedding of triangulated categories.
Proof. — (1): We have that nx is the following composition in L.,4#(S):

WgeX (qu)_l

QWX 2 - W, X

o

where QZV"X is a weak equivalence in Spt;M,.. Now [6, Proposition 3.1.5] implies
that QZV"X is a L(< g)-local equivalence, i.e. a weak equivalence in L.,SptrM,.
Therefore Q4 ** becomes an isomorphism in L.,#(S), and this implies that nx is
an isomorphism in L.,4#(S), as we wanted.

(2): It follows immediately from (1). d

Proposition 3.2.44. — For every F,(S"AGS, AUy) € Ck;, the map x — F,(STAGS, A
U,y) is a L(< q)-local equivalence in Sptp M.
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Proof. — Let Z be an arbitrary L(< g)-local T-spectrum. Then proposition 3.2.32(2)
implies that the following induced map

0= [Fn(sr A an A U+)7Z]Spt I [*,Z]Spt =0
is an isomorphism of abelian groups. Therefore using Corollary 3.2.36, it follows that

* — Fp(S"AG:, AUy) is a L(< g)-local equivalence. O

Proposition 3.2.45. — Let f : X =Y be a map in L., 8#(S). We have that f is an
isomorphism in L., 8#(S) if and only if one of the following equivalent conditions
holds:
1. The following map
w,x YD wy
is an isomorphism in SH(S).
2. For every F,(S" AG2, ANU,) ¢ Ck:, the induced map

(Waf)«
[Fn(ST A an A U+)7 WqX]Spt —E—> [Fn(ST A an A U+)7 WqY]Spt

is an isomorphism of abelian groups.
3. For every F,(S" ANGS, AUL) ¢ Cds, the induced map
HomLQW(S)(QSFn(ST NG AUL),X)
|
Homy _ r(s)(QsFn(S" AG;, AUL),Y)
is an isomorphism of abelian groups.

Proof. — Proposition 3.2.43 implies that f is an isomorphism in L.,4#(S) if and
only if W, f becomes an isomorphism in ##(S). Thus it only remains to show that
(1), (2) and (3) are all equivalent.

(1) & (2) Corollary 3.1.6 implies that W, f is an isomorphism in 4% (S) if and only
if for every F,,(S™ A G3, AU, ) € C the following induced map

(Waf)s
[Fu(S™ A Gl AUL), WoXlspt —5> [Fu(ST A Gl AUL), WY st

is an isomorphism of abelian groups. But using proposition 3.2.32(2) we have that for
every F,,(STAGS, AUy) € Ck,
02 [Fr(S" NGy, AUL), WoX]spt = [Fn(S™ A G, AUL), WoYspe

since by construction W,X and W,Y are both L(< g)-local T-spectra. Hence W, f
is an isomorphism in 4#(S) if and only if for every F,(S™ A G5, AU,) ¢ Cl; the
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following induced map

(Wqf)«
[Fu(S™ A Gl AUL), WoXlspr ol (B (ST A G2, AUL), WY s

is an isomorphism of abelian groups.
(2) & (3) By Proposition 3.2.42 we have the following adjunction between exact
functors of triangulated categories:

(Q57 an (P) : W(‘S’) - L<QM(S)
In particular for every F,(S™ A G5, AUy ) ¢ Clz, we get the following commutative

€
diagram, where all the vertical arrows are isomorphisms of abelian groups:

[Fn(ST A an A U+)» WqX]Spt

w\

= [Fn(ST /\an /\U+)7WQY]Spt

HomL<qW(S)(QSFn(ST/\GSm /\U+)7X) =
\
Homy__1(s)(QsFrn(S™ NG5, AUL),Y)

therefore the top row is an isomorphism if and only if the bottom row is an isomor-
phism of abelian groups, as we wanted. O

Lemma 3.2.46. — Let Z be a L(< q)-local T-spectrum. We have that f,Z = x in
& (S) (see Remark 8.1.13).

Proof. — Let j : ¥ — Z denote the canonical map. Proposition 3.1.14 implies that
fq(d) + # = fo(x) — f¢X is an isomorphism in J4#(S) if and only if for every F,(S™ A
G3, AU,) € C%; the induced map

02 [Fu(S7 A G2, A UL, lspe 2222 [F(S™AGE, AUL), Z)sps

is an isomorphism of abelian groups. Therefore it is enough to show that for every
Fo(S™ AGE, AUy ) € Clz, we have [F,(S™ A GS, AU,), Z)spy = 0. But this follows
from proposition 3.2.32(2), since Z is L(< g)-local by hypothesis. O

Corollary 3.2.47. — For every T-spectrum X, Qs fqX = * in L. #(S).

Proof. — We will show that the map * — Q,f,X is an isomorphism in L.,4#(S5).
By Yoneda’s lemma it suffices to check that for every T-spectrum Z, the induced map

HomL<qd'r’{(S)(star Z) —_— HoquM(S)(*, Z) =0
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is an isomorphism of abelian groups. Now Propositions 3.2.42 and 3.1.12 imply that
we have the following isomorphisms:

Homp__1(5)(Qsfo X, Z)

IR

[foX, W Z]spt = [igre X, WeZ]spt
Homyga gyert(5) (g X, 7qWe 2)

IR

Finally since i, is a full embedding, we have
HomEqTWeef(S)(qu, rqgWeZ) & [igre X, iqreWeZlspt = [f4X, fWeZ]spt
and Lemma 3.2.46 implies that f,W,Z = x in #(S). Hence
Homp_ u(5)(QsfoX, Z) = [foX, feWeZ]spt = [fo X, *|spt =0

as we wanted. O

Proposition 3.2.48. — For every T-spectrum X, the natural map in L. J4#(S)

Qo(m<gX)
QX —2= %, QuseX
is an isomorphism, where w4 is the natural transformation defined in Theorem 3.1.18.
Furthermore, these maps induce a natural isomorphism between the following exact
functors

W (S) T Leg#(S)

st<q

Proof. — The naturality of m4 and the fact that (), is a functor imply that the maps

Qs(m<¢X) induce a natural transformation Q, — Qs5<,. Hence it suffices to show

that for every T-spectrum X, the map Q;(7<,X) is an isomorphism in L. 4#(S).
Theorem 3.1.18 implies that we have the following distinguished triangle in 44 (.S):

TeqX OcqgX
qu —X _iq__} S<qX BALL Eclr’oqu

and using Proposition 3.2.42, we get the following distinguished triangle in L. ,# (S):

Qs(m<qX) Qs(0<qX)

QquX QSX st<qX Z'_II'IOstqX
But Corollary 3.2.47 implies that Q,fqX = * in L. ##(S), therefore Qs(m<X) is
an isomorphism in L,4#(S), as we wanted. d

Corollary 3.2.49. — For every T-spectrum X, the natural map in JH(S)

WeQs(m<qX)

WquX Wqus<qX
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is an isomorphism. Furthermore, these maps induce a natural isomorphism between
the following exact functors

WQQs
M(S) _—___ M(S)
WqQ33<q
Proof. — Since Qs, W, are both functors and 7«4 : id — s<4 is a natural transfor-

mation (see Theorem 3.1.18); we have that the maps W,Qs(m<4X) induce a natural
transformation W,Qs — WyQs5<,. Therefore it suffices to see that for every T-spec-
trum X, the map W,Q;(7<4X) is an isomorphism in 4#(S).

But Proposition 3.2.48 implies that the map Q,(m<4X) is an isomorphism in
L, ##(S). Therefore using Proposition 3.2.42, we have that W,Q,(m<,X) is also
an isomorphism in 4#(S). d

Lemma 3.2.50. — For every T-spectrum X, IQrJ(Qs$<qX) is L(< q)-local in
Sptp M.

Proof. — Proposition 3.2.32 implies that it is enough to show that IQrJ(Qs5<¢X)
satisfies the following properties:

1. IQTJ(Qs8<qX) is fibrant in SptM,.
2. For every F,(S" AG:, AUL) € Cls

[Fn(S" A Gy, AUL), IQT I (Qs8<qX)]spt = 0

The first condition is obvious since IQ7J is a fibrant replacement functor in
Spty M.

Fix F,(S™ AG$, AU,) € C;. Using Theorem 3.1.18(2) and the fact that CJ; C
Equ}‘(eﬂ(S), we have that

[Fu(S” A Gy AU, 8<qXspt 20
Therefore
[Fn(S" AGy, AUL) IQT I (Qs8<qX)lspt = [Fn (8" A Gy, AUL), 8<qX]spt 20
for every F,,(S"AGS,AU,) € Cds. This takes care of the second condition and finishes
the proof. 0O
Proposition 3.2.51. — For every T-spectrum X the natural map

Qss<qgX

QRsS<qX 2 WqQ33<qX
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is a weak equivalence in SptpM.. Therefore, we have a natural isomorphism between
the following exact functors

Qss<q

M(S) ____ _ M(S)

WyQss<q

Proof. — The naturality of the maps WqX : X — W,X implies that we have an

induced natural transformation of functors Qss<q — W Qss<4. Hence, it is enough

to show that for every T-spectrum X, WqQ +9<aX i5 5 weak equivalence in Spt; H,.
Consider the following commutative diagram in SptM,:

Q33<qX IQTJ(Q35<qX)
(40) W,,Q”“XL llQTJ(WqQ”“X)

WiQs8<qX —— IQ1J(WyQs5<4X)

where the horizontal maps are weak equivalences in Spt; .. Hence, the two out
of three property for weak equivalences implies that it is enough to show that
I1QrJ (Wf ”s<"X) is a weak equivalence in Sptp M.

By construction the map WqQ 9<aX 5 g L(< g)-local equivalence, and since the
horizontal maps in diagram (40) are weak equivalences in Spt; M., it follows from
[6, Proposition 3.1.5] that these horizontal maps are also L(< g)-local equivalences.
Therefore, the two out of three property for L(< g)-local equivalences implies that
IQTJ(WQQSSQX) is a L(< g)-local equivalence.

Now Lemma 3.2.50 implies that IQ7rJ(Qss<¢X) is L(< g)-local. On the other
hand, since the map

Wqus<qX —_— IQTJ(Wqus<qX)

is a weak equivalence in Spt; M., W;Qs5<4X is by construction L(< g)-local, and
IQTrI(WQss<qX), WyQss<qX are both fibrant in SptpM,; it follows from [6,
Lemma 3.2.1] that IQ7J(W,Qs5<¢X) is also L(< g)-local.

Finally we have a L(< g)-local equivalence

88 X
1QrJ(Wie <™

IQTJ(Q33<qX) IQTJ(Wqus<qX)

where the domain and the codomain are both L(< g)-local. Then Theorem 3.2.13 in
[6] implies that IQrJ (WqQ ’8<“X) is a weak equivalence in Spt;M,. This finishes the
proof. O
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Theorem 3.2.52. — For every T-spectrum X, we have the following diagram in &% (S):

s<qX

s
3<qX ~ Qs'5<qX

(41) o WqQS"<qx

WqQs(m<q)

=

WqQ33<qX WqQSX
where all the maps are isomorphisms in HH(S). This diagram induces a natural iso-
morphism between the following exact functors:

S<q

M(S) _—__ M(S)

W,Qs

Proof. — Since Qs is a cofibrant replacement functor in Spt;J., it is clear that
Q§<"X becomes an isomorphism in the associated homotopy category 4% (.S).

The fact that W, **<eX s an isomorphism in (S) follows from Proposi-
tion 3.2.51. Finally, Corollary 3.2.49 implies that W,Qs(7<4) is also an isomorphism
in & (S). This shows that all the maps in the diagram (41) are isomorphisms in
A% (S), therefore for every T-spectrum X we can define the following composition in

4 ()

(@<

S<gX Qs8<qX

(42) o WQ83<¢1X

- q

WeQs5<q X W,Q:X

(Wqu(""<q))”1

which is an isomorphism. The fact that Qs is a functorial cofibrant replacement in
Sptr M., proposition 3.2.51 and Corollary 3.2.49, imply all together that the iso-
morphisms defined in diagram (42) induce a natural isomorphism of functors s, =
W,Qs. This finishes the proof. d

Remark 3.2.53. — Theorem 8.2.52 gives the desired lifting to the model category level
for the functors s<4 defined in Theorem 3.1.18.
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Proposition 3.2.54. — We have the following commutative diagram of left Quillen
functors:

SptTﬂ't*

L<q+1Sptp M. L4Sptp M.

id

Proof. — Since LSpty M. and L<g41Spt;y M, are both left Bousfield localizations
for Spt M., we have that the identity functors:

id : SptTﬂfl* —— L<qutTﬂ’l*
id : SptTﬂfl* e L<q+ISptTﬂ4*
are both left Quillen functors. Hence, it suffices to show that
id : L<q+15ptTﬂfl* _— L<qutT/(1’l*

is a left Quillen functor. Using the universal property for left Bousfield localizations
(see definition 1.8.1), we have that it is enough to check that if f : X — Y is a
L(< g+ 1)-local equivalence then Q;(f) : @sX — QY is a L(< g)-local equivalence.

But Theorem 3.1.6(c) in [6] implies that this last condition is equivalent to the
following one: Let Z be an arbitrary L(< g)-local T-spectrum, then Z is also L(<
g+ 1)-local. Finally, this last condition follows immediately from corollary 3.2.33. O

Corollary 3.2.55. — We have the following adjunction

(Qs,qu‘P) : L<q+1M(S) —_— L<q¢y{(5)

of exact functors between triangulated categories.
Proof. — Proposition 3.2.54 implies that id : L<g4+1Sptp My — L<,Sptp M, is a left

Quillen functor. Therefore we get the following adjunction at the level of the associated
homotopy categories

(Qs; Wy, ) : Legi1#(S) — L #(S)

Now Proposition 6.4.1 in [10] implies that @, maps cofibre sequences in L«q414#(S)
to cofibre sequences in L% (S). Therefore using Proposition 7.1.12 in [10] we have
that @, and W, are both exact functors between triangulated categories. O
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Theorem 3.2.56. — We have the following tower of left Quillen functors:

id
L <gq+1 SptT/’%*

id
/ id

(43) Spty M, — > L Sptp M,

\ id
id

L<q_1SptTﬂ'l*

id

together with the corresponding tower of associated homotopy categories:

Qs Wat1
/L<q+1d#(3)
/W:+1/ Qs Wy
(44) aH#(S) o L ##(S)

Furthermore, the tower (44) satisfies the following properties:

1. All the categories are triangulated.
2. All the functors are exact.
3. Qs is a left adjoint for all the functors Wj.

Proof. — It follows immediately from propositions 3.2.42, 3.2.54 and Corollary 3.2.55.
O
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Remark 3.2.57. — The great technical advantage of the categories L. Spto M. over
the categories RCZ“SptTﬂ/l* is the fact that L.4Sptr M. are always cellular, whereas
it is not clear if ch“SptTﬂ/t* satisfies the cellularity property. Therefore we still can
apply Hirschhorn’s localization technology to the categories LoSptpM.. This will
be the final step in our approach to get the desired lifting for the functors sq (see
Theorem 3.1.16) to the model category level.

Definition 3.2.58. — We consider the following set of T-spectra
S(q) ={Fn(S"AG,AU;)€Cls—n=¢q} CC
(see Proposition 3.1.5 and definition 3.1.8).

Theorem 3.2.59. — The right Bousfield localization of the model category
L <q4+18pt M. with respect to the S(g)-colocal equivalences exists. This new model
structure will be called g-slice motivic stable. SISpt M. will denote the category of
T-spectra equipped with the g-slice motivic stable model structure, and SIS (S) will
denote its associated homotopy category. Furthermore the q-slice motivic stable model
structure is right proper and simplicial.

Proof. — Theorem 3.2.29 implies that L.,+1Spt7 M, is a cellular and simplicial
model category. On the other hand, corollary 3.2.41 implies that L.q41Spt;z M, is
right proper. Therefore we can apply Theorem 5.1.1 in [6] to construct the right
Bousfield localization of L ,41Sptr M. with respect to the S(g)-colocal equivalences.
Using [6, Theorem 5.1.1] again, we have that SYSpt; M, is a right proper and simpli-
cial model category. O

Definition 3.2.60. — Let P, denote a functorial cofibrant replacement functor in
S9SptM.; such that for every T-spectrum X, the natural map
x
PX 1sXx
is a trivial fibration in SISptyp M., and PyX is a S(g)-colocal T-spectrum in
Lcq+1Sptp M.

Proposition 3.2.61. — We have that W, is also a fibrant replacement functor in
S9Sptr M, (see definition 3.2.80), and for every T-spectrum X the natural map

WX
X q+1 Wq+1X

is a trivial cofibration in SISptp M.

Proof. — Since S9Spt; M, is the right Bousfield localization of L«gq.4+1Spty M, with
respect to the S(g)-colocal equivalences, by construction we have that the fibrations
and the trivial cofibrations are identical in SSptp M, and L q.1Sptr M, respectively.
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This implies that for every T-spectrum X, Wy;1X is fibrant in S9Sptr M., and we
also have that the natural map:

WX
X a+1 W X

is a trivial cofibration in S9Spt; .. Hence W, is also a fibrant replacement functor
for S9Sptp M. |

Proposition 3.2.62. — Let f : X — Y be a map of T-spectra. We have that f is a
S(q)-colocal equivalence in L q1Sptp My if and only if for every F,(S"AG;, AUy ) €
S(q) the induced map

(Wq+lf)*

[Fr(S" NGy, AUL), Wq+1X]Spt [Fa(S" NG, AUL), Wq+1Y]Spt

is an isomorphism of abelian groups.

Proof. — (=>): Assume that f is a S(g)-colocal equivalence. All the compact gener-
ators F,,(S™ A G2, AUy ) are cofibrant in Lq41Sptr M., since they are cofibrant in
Sptr M., and the cofibrations are exactly the same in both model structures.
Therefore we have that f is a S(g)-colocal equivalence if and only if for every
F,(S"AG:, AUL) € S(g) the following maps are weak equivalences of simplicial sets:

(Wq+lf)~

Map(Fn(ST A an A U+), Wq+1X) Map(Fn(Sr A an A U+), Wq+1Y)

Since L<q4+1Sptp M, is a simplicial model category, we have that Map(F,(S™ A G;, A
U,),Wy41X) and Map(F,,(S™ A G, AUy),Wy41Y) are both Kan complexes. Now
Proposition 3.2.32(1) implies that W,,1X, W,1Y are both fibrant in Spt; 1., there-
fore since Spt;y M, is a simplicial model category we get the following commutative
diagram where the top row and all the vertical maps are isomorphisms of abelian
groups:

woMap(Fn(S’ A an A U+), Wq+1X)
(Wat1£)«

o

moMap(Frn(S" A Gy, AUL), Wei1Y)

R

[Fn(S" A Gy, ANUL), Woi1 X]spt

[Fn(S"AG;, ANUL), Wei1Yspe

IR
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Therefore

(Wq+1f)*

[Fa(S7 A Gl AUL), Wy Xspr [Fu(S7 A G2 AUL), War Vs

is an isomorphism of abelian groups for every F,(S"AG3, AU, ) € S(q), as we wanted.

(«): Fix F,(S" AG:, AU4) € S(q). Let wo, no be the base points corresponding
to Map, (Fr41(S" AGSH AU, ), Wey1X) and Map, (Fr41(STAGE A UL ), WoiY)
respectively. We need to show that the map:

(Wat1f)«

Map(F,(S" A Gy, AUL), Woi1X) Map(F(S" A Gy, AU4), Wei1Y)

is a weak equivalence of simplicial sets. Let
G Fap1(STTEAGEAUL) = Fo(S”AGE, AUY)
be the adjoint to the identity map
id: STTAGE AU — Evg 1 Fo(STAGE, AUL) = STTLAGEH AU,

We know that j is a weak equivalence in Spt; M., therefore [6, Proposition 3.1.5] im-
plies that j is a L(< ¢ + 1)-local equivalence, i.e. a weak equivalence in L 441 Sptp M.
Now since F,(S™ A G2, AU,) and F,41(S™ A G5! A UL) are both cofibrant in
L cq+1Spty My, and L.g41Sptr M, is a simplicial model category, we can apply Ken
Brown’s lemma (see Lemma 1.1.4) to conclude that the horizontal maps in the fol-
lowing commutative diagram are weak equivalences of simplicial sets:

Map(Fo(S" A G, AUL), W1 X) —2 Map(Foy1(S™! A G AU ), Woi1 X)
(Wq+1f)~l l(WQ-Flf)*
Map(Fu(S™ A G;, AUL), Wes1Y) — Map(Fr41 (ST A G AUL), WoinY)
J

Hence by the two out of three property for weak equivalences, it is enough to show
that the following induced map

Map(Fn11(S™ AGH AUL), Wi X)
L(Wq+1f)*
Map(Fn11(S™ AGHF AUL), WerY)

is a weak equivalence of simplicial sets.

On the other hand, since Spt; M, is a pointed simplicial model category and
We+1X, WY are both fibrant in Spt; M, by proposition 3.2.32(1); we have that
Lemma 6.1.2 in [10] together with Remark 2.4.3(2) imply that the following diagram
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is commutative for k > 0:

ThwoMap(Fri1(S™ A G AUL), Wor1X)
(Wq+1f)*

ThnoMap(Fnt1(S" A Gy AUL), WepnY)

71"63#401\/[3'1):« (Fn+1(Sr A Gf—:l A U+)7 Wq+1X)
Wat1£)«

R

ThnoMap, (Frt1(S™ AGHT AUL), W Y)

[Frs1(STAGHT AUL) A S* Wi X]sps
Wat1f)«

R

1R

[Frt1(S™ AGHI AUL) A S*, Woi1Y]sps

R

[Fr1(SMTAGH AUL), Wos1 Xspe
(Wat1£)

[Frt1(S¥T AGY AUL), Woi1Yspe

but by hypothesis we have that the bottom row is an isomorphism of abelian groups,
since Fy,+1(S¥*™ A G2+ AU,) is also in S(q). Therefore all the maps in the top row
are also isomorphisms. Hence, the induced map

Map(Fn+1(ST A G::l A U+), Wq+1X)
L(Wq+1f)~
Map(Fn4+1(S” A Gt AUL), WoiaY)

is a weak equivalence when it is restricted to the path component of Map(F,41(S™ A
G5 AU4), Wy41X) containing wp. This implies that the following induced map

Map, (5!, Map, (Fas1(87 A G AUL), Won X))
l(Wqu)*
Map, (5", Map, (Fa1(S" A GEF AT, ), Wy )
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is a weak equivalence since taking S'-loops kills the path components that do not
contain the base point.

Finally, since Spt;JU, is a simplicial model category we have that the rows in the
following commutative diagram are isomorphisms:

Map, (S, Map, (Fn+1(S" A Gt AU ), Woi1X))

\

(Wat1£)« Map*(FnH(ST A Gf,j_l N U+) A Sl, Wq+1X)

Map*(Sl, Map, (Frn+1(S™ A Gf,j—l ANUL),Wy1Y)) (Wat1f)s
Map*(Fn+l(ST A Gfrjl A U+) A Slv Wq+1Y)

Hence the two out of three property for weak equivalences implies that the right
vertical map is a weak equivalence of simplicial sets. But Fj,+1(S" AGSPAUL) A S?
is clearly isomorphic to Fy,+1(S™1 A GSH A U, ), therefore the induced map

Map(Fri1(S™ NG AUL), Wea X)
L(Wq+1f)*
Map(Frt1(S™ AGHH A UL), WiaY)
is a weak equivalence, as we wanted. (]

Corollary 3.2.63. — Let f : X — Y be a map of T-spectra. We have that f is a
S(q)-colocal equivalence in L<q41Sptr M, if and only if

Wotrf

Wo1 X WY
is a Clz-colocal equivalence in SptpM,.

Proof. — (=): Assume that f is a S(g)-colocal equivalence, and fix F,,(S" A G;, A
U;) € C%;. By Proposition 3.2.4 it suffices to show that the induced map

[Fn(ST A G:n A U+), Wq+1X]Spt;
(45) (Wq+1f).l
[Fn(S™ NG, AUL), Was1Yspe

is an isomorphism of abelian groups.
Since F,(S™ AGS, AU, ) € Cl;, we have two possibilities:
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1. s—n=gq,ie F,(S"AG:, AUy) € S(q)-
2. s—n>q+1,ie Fo(STAGE AU,) € O

In case (1), Proposition 3.2.62 implies that the induced map in diagram (45) is an
isomorphism of abelian groups.
On the other hand, in case (2), we have by Proposition 3.2.32(2) that

[Fn(sr A an AUy), Wq+1X]Spt 0= [Fn(Sr A (G:n AUy), Wq+1Y]Spt

since by construction Wy 41X and Wy11Y are both L(< g + 1)-local T-spectra. Hence
the induced map in diagram (45) is also an isomorphism of abelian groups in this case,
as we wanted.

(<=): Assume that Wy, f is a Clg-colocal equivalence in Sptp M., and fix F,,(S™ A
G AUy) € 5(q).

Since S(q) C C%;, it follows from Proposition 3.2.4 that the induced map

(Wq+1f)*

[Fn(S™ AG;, AUL), Wor1X]spt [Fo(S"AG;, ANUL), Wop1Yspe

is an isomorphism of abelian groups. Therefore, Proposition 3.2.62 implies that f is
a S(g)-colocal equivalence in L g41Spt;M,. This finishes the proof. O

Lemma 3.2.64. — Let f : X — Y be a map of T-spectra. We have that f is a
S(q)-colocal equivalence in L<g41Sptp My if and only if

951Wq+1(f) . QSI Wq+1X —_— 951Wq+1Y

is a S(q)-colocal equivalence in L<qy1Sptp M.

Proof. — Assume that f is a S(g)-colocal equivalence. We need to show that
Qg1 Wyi1(f) is a S(g)-colocal equivalence in Lqq1SptrTM,y.

Fix F,(S" A G;, AUy) € S(q). Corollary 3.2.34 implies that Qg Wy41X and
Qs:Wy 1Y are both L(< g+ 1)-local; and proposition 3.2.32(1) implies that
Qg1 We1 X and Qe1Wy1Y are both fibrant in Sptp .. Therefore using the
fact that Sptp M. is a simplicial model category, we get the following commutative
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diagram:

[Fo(S™ AGS, AUL), Q1 Wip1 X]spt

\(w

[Fa(S" NGy AUL), Q51 Wei1Y]spe

IR

[Fn(Sr A (an, A U+) A Sl)Wq+1X]Spt

[Fn(ST A G:n A U+) A 517Wq+1Y]Spt

IR

IR

R

[Fa(S™ AG, AUL), Wor1 X]spe

[FH(ST-'-I A an A U+)v Wq+1Y]Spt

but using Proposition 3.2.62 and the fact that f is a S(q)-colocal equivalence, we have
that the bottom row is an isomorphism, therefore the top row is also an isomorphism.
Hence, the induced map:

[Fn(ST NG:, ANUL), Qs Wq+1X]spt
EL(QSIWqu)*

[Fn(ST A an A U+), QSI Wq+1Y]Spt

is an isomorphism of abelian groups for every F,,(S"AG?, AU,) € S(q). Finally, using
Proposition 3.2.62 again, together with the fact that Qg1 W, 1X and Qg W, 1Y are
both L(< g + 1)-local T-spectra; we have that Qg1 Wy11(f) is a S(g)-colocal equiva-
lence in Lq41Spty M., as we wanted.

Conversely, assume that Qg1 Wy.1(f) is a S(g)-colocal equivalence in L« ¢41Spty M,
and fix F,(S" A G5, A Uy) € S(q). Corollary 3.2.34 implies that Qe Wg 1 X
and Qg Wyy1Y are both L(< g+ 1)-local; and proposition 3.2.32(1) implies that
Q51 Wy41X and Qg1 Wy,1Y are both fibrant in SptyM,. Therefore using the fact that
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Sptr M. is a simplicial model category, we get the following commutative diagram:

[Frot1 (ST A G AUL), Q1 Woi1 X spe
Qg1 Wai1f)

o

[Fn+1(sr A Gfr;'_l A U+)7QSIWq+1Y]Spt

R

R

[Fn+1(ST A Gfrj‘l A U+) A Sl’ Wq+1X]Spt.

W\

[Fat1(STAGH AUL) A SY Weg1Yspy

R

[Frt1(S™H A G AUL), Wor1 X]sp

[Frt1 (ST A G AUL), Wog1Yspe

R

R

R

[Fn(S" NGy, AUL), Wor1X]spt

(Wat1)x
[Fn(S" AGR AUL), WoiaYspe

Since Qg1 Wy41f is a S(g)-colocal equivalence, we have that Proposition 3.2.62 to-
gether with the fact that Qg1 W,11X and Qg, Wy41Y are both L(< ¢ + 1)-local imply
that the top row in the diagram above is an isomorphism; therefore the bottom row
is also an isomorphism. Thus, the induced map:

(Wq lf)*
[Fr(S™ NGy, AUL), Wot1 X]spe —;———> [Fa(S" A Gy ANUL), WoiaYspt

is an isomorphism of abelian groups for every F,(S" A GZ, AU,) € S(q). Now using
Proposition 3.2.62 again, we have that f is a S(g)-colocal equivalence. This finishes
the proof. O

Corollary 3.2.65. — The adjunction
(= A SY, Qs1, ) : SISptp M, — SISptp M,

is a Quillen equivalence.
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Proof. — Using Corollary 1.3.16 in [10] and Proposition 3.2.61 we have that it suffices
to verify the following two conditions:

1. For every cofibrant object X in S9Spt M., the following composition

xnst
Q1 Wi

X 5 Qa(X ASYH Qg1 W1 (X A SY)

is a S(g)-colocal equivalence.
2. Qg1 reflects S(g)-colocal equivalences between fibrant objects in S?Spt ..
(1): By construction S9Spt, M, is a right Bousfield localization of L«g41Sptr M.,
therefore the identity functor

id . SqutTﬂ’l* _— L<q+1SptTﬂ’l*

is a left Quillen functor. Thus X is also cofibrant in L.g41Sptr M. Since the ad-
junction (— A S*,Qg1,¢) is a Quillen equivalence on L.g41Spty M., [10, Propo-
sition 1.3.13(b)] implies that the following composition is a weak equivalence in
L<q4+1SptpMsy:

xas?
s1Weii

X 2 1
X— Qs (XASYH QSIWq+1(X/\S )

Hence using 6, Proposition 3.1.5] it follows that the composition above is a S(g)-colo-
cal equivalence.
(2): This follows immediately from Proposition 3.2.61 and Lemma 3.2.64. O

Remark 3.2.66. — We have a situation similar to the one described in remarks 3.2.10
and 3.2.39 for the model categories Rc;z“SptTﬂ/l* and LqSptp M, ; i.e. although the
adjunction (X1, Qr,¢) is a Quillen equivalence on Sptp M., it does not descend even
to a Quillen adjunction on the g-slice motivic stable model category SISpto M.

Corollary 3.2.67. — SI4#(S) has the structure of a triangulated category.

Proof. — Theorem 3.2.59 implies in particular that S9Spt; M, is a pointed simplicial
model category, and Corollary 3.2.65 implies that the adjunction

(= A SY,Qg1,¢) : SISptp M, — SISptp M.

is a Quillen equivalence. Therefore the result follows from the work of Quillen in [21,
sections 1.2 and 1.3] and the work of Hovey in [10, chapters VI and VII]. O

Proposition 3.2.68. — We have the following adjunction
(Pg, Wat1, ) : SIHH(S) —— Lcgr1ddH(S)

of exact functors between triangulated categories.
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Proof. — Since S9Spt; M. is the right Bousfield localization of L.g11Sptr M.
with respect to the S(g)-colocal equivalences, we have that the identity functor
id : S9Sptyp M. — Lcqy1Sptp My is a left Quillen functor. Therefore we get the
following adjunction at the level of the associated homotopy categories:

(an Wq+la (P) : Sq(tﬂ[(s) - L<‘I+1W(S)

Now Proposition 6.4.1 in [10] implies that P, maps cofibre sequences in S94#(S)
to cofibre sequences in L<g+14#(S). Therefore using Proposition 7.1.12 in [10] we
have that P, and W, are both exact functors between triangulated categories. [J

Pfoposition 3.2.69. — The identity functor
id : SISptp M, — chff Sptr M.
is a right Quillen functor.
Proof. — Consider the following diagram of right Quillen functors

L<q+1 SptTﬂ/l* ;d) SptT/(l/l* ""IL‘ chﬁ. SptTm*

_ >
_ -
id _ -
- id

S9Spty M,

By the universal property of right Bousfield localizations (see definition 1.8.2) it suf-
fices to check that if f: X — Y is a S(g)-colocal equivalence in Lq41Spt;y M., then
Woirf : Wepi X = WopY is a Cgﬂ—colocal equivalence in SptpM,. But this follows
immediately from Corollary 3.2.63. O

Corollary 3.2.70. — We have the following adjunction
(Cqs Was1,9) : Ros MH(S) —— S94#(S)
of exact functors between triangulated categories.

Proof. — By Proposition 3.2.69 the identity functor id : ch“SptTﬂ/l* — SISptr M.
is a left Quillen functor. Therefore we get the following adjunction at the level of the
associated homotopy categories:

(Cqs Wot1, ) : RCZ“M(S) — SIHH(S)

Now Proposition 6.4.1 in [10] implies that C; maps cofibre sequences in chffd}‘( (S)
to cofibre sequences in S?4#(S). Therefore using Proposition 7.1.12 in [10] we have
that C, and W, are both exact functors between triangulated categories. O

Lemma 3.2.71. — If A is a cofibrant T-spectrum in SISptp M., then the map * — A
is a trivial cofibration in L,SptpM..
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Proof. — Let Z be an arbitrary L(< g)-local T-spectrum in Spt;M%.. We claim that
the map Z — x is a trivial fibration in S9Spt;M,. In effect, using Corollary 3.2.33
we have that Z is L(< g + 1)-local in Spt; M., i.e. a fibrant object in L«g41Sptp M.
By construction S9Spt; M, is a right Bousfield localization of Lg441Sptr M., hence
Z is also fibrant in S?Spt; M. Then by Proposition 3.2.62 it suffices to show that for
every F,(S" AGS, ANUL) € S(q) (i.e. s—n=gq):

02 [Fo(S" AGS, AUL), Z)sps

But this follows immediately from Proposition 3.2.32, since Z is L(< ¢)-local.
Now since S9Spty M, is a simplicial model category and A is cofibrant in
SISptr M., we have that the following map is a trivial fibration of simplicial sets:

Map(A, Z) — Map(A4, x) = *
The identity functor
id : SqutTﬂ/l* —— L<q+1SptT.7%*

is a left Quillen functor, since SISptr M. is a right Bousfield localization of
L<q+1SptyM,. Therefore A is also cofibrant in L« q41Spty M., and since L« q41Sptp M,
is a left Bousfield localization of Spt;MK,; it follows that A is also cofibrant in

Sptr M. On the other hand, we have that Z is in particular fibrant in Spt; ..

Hence moMap(A, Z) computes [A, Z]spt, since Spt; M, is a simplicial model category.

But Map(A, Z) — * is in particular a weak equivalence of simplicial sets, then

[A, Z]Spt =0

for every L(< g)-local T-spectrum Z. Finally, Corollary 3.2.36 implies that + — A
is a weak equivalence in L.4Sptr M, . This finishes the proof, since we already know
that A is cofibrant in L.¢Spty M,. O

Lemma 3.2.72. — The natural map

sg X

Cq
CysqX 54X

is a weak equivalence in Sptp M.

Proof. — Consider the following commutative diagram in Spt;.:

sqgX
§gX ~————— Q454X
Cqsqxw ,Icfssqx
CysqX — CoQs5,X
Cqe(Qs77)
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By construction C;"X, Cq +*aX are both weak equivalences in Rga SptrJi.; and [6,

Proposition 3.1.5] implies that Qz"x is a Clz-colocal equivalence in Sptp M., i.e.
a weak equivalence in RC;szSptTﬂ/l*. Then the two out of three property for weak
equivalences implies that Cy( ﬁqx) is a weak equivalence in Rca Sptr ..

Now [6, Theorem 3.2.13(2)] implies that Cq(QZ"X) is a weak equivalence in
Sptp M., since Cys,X and CyQ,3,X are by construction Clz-colocal T-spectra in
Sptp M. It is clear that Qz"X is a weak equivalence in Spt;M., then by the two out
of three property for weak equivalences, it suffices to show that C(? %X is a weak
equivalence in Spt ..

By Theorem 3.1.16(2) we have that s,X is in E%MEH(S), then_corollary 3.2.15
implies that Q,s,X is Clz-colocal in SptyM,. We already know that C(? X is a
CZ:-colocal equivalence in Spt;J,; then [6, Theorem 3.2.13(2)] implies that CqQ +9aX
is also a weak equivalence in Spt;JM,, since by construction C;Q,s,X is a Cog-colocal
T-spectrum. This finishes the proof. O

Lemma 3.2.73. — For every T-spectrum X, we have that IQrJsqX (see Theo-
rem 3.1.16) is L(< q + 1)-local.

Proof. — Proposition 3.2.32 implies that it suffices to check that IQrJs, X satisfies
the following conditions:

1. IQrJsyX is fibrant in SptpM,.
2. For every F,(S" AGS, AUL) € CY,

[Fr(S" NGy AUL), IQr T3¢ X]spt = 0

Condition (1) holds trivially, since IQrJ is a fibrant replacement functor in
Sptyp M.

Fix F,(S" AGS, AU,) € CIFY. Since C4* C BL f#°% (), it follows from Theo-
rem 3.1.16(3) that:

[Fo(S"AG;, ANUL), IQrT5qX]spt = [Fr(S™ AG;, ANUL), 54X ]spt =0
and this takes care of condition (2). |
Lemma 3.2.74. — For every T-spectrum X, ColQrJ fg11X = x in SIHH(S).

Proof. — Consider the following commutative diagram in SptpM,:

fa41X
Q! 1QrJfat1X
Qsfe+1X for1X ! 1Q7J fg1X
Qsfg+1X fq+1X IQrJfq+1X
(46) Cq Cq Cq
C X X I
qufq+1 Cq(Qi‘l'“x) Oqfq+1 W)Cq QTqu+1X
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We claim that all the maps in the diagram (46) above are weak equivalences in
Sptr M. In effect, it is clear that all the maps in the top row are weak equivalences
in Spt;M,. Hence, by the two out of three property for weak equivalences it suffices
to show that C2*/+ % C,(QL™) and C,(IQ7Jf++1X) are all weak equivalences in
Sptr M.

On the other hand, [6, Proposition 3.1.5] implies that all the maps in the top row
are weak equivalences in ch“ Sptr M., and it is clear that all the vertical maps are
also weak equivalences in RC:“SptTﬂ/l*. Thus, by the two out of three property for
weak equivalences we have that all the maps in the diagram (46) above are weak
equivalences in chﬁSptTﬂ/l*.

By construction we have that CyQsf+1X, Cqfq+1X and CoIQrJ fgr1X are
all Clz-colocal T-spectra in SptpM,. Then [6, Theorem 3.2.13(2)] implies that
Co(QI**) and C,(IQ7Jf++1%X) are both weak equivalences in SptpJ,.

Now, by Proposition 3.1.12 we have that f,11X € DL 47T (5) C ST (9).
Thus, Corollary 3.2.15 implies that Q; fo4+1X is a CZz-colocal T-spectrum in Sptp ..
Then using [6, Theorem 3.2.13(2)] again, we have that C,? Jar1X s a weak equiva-
lence in Spt; M, since by construction CqQ,fe+1X is a Clg-colocal T-spectrum and
C$+¥4+1% s & C%-colocal equivalence in Spty ..

This proves the claim, i.e. all the maps in the diagram (46) above are weak equiva-
lences in Spt;M,. Then using [6, Proposition 3.1.5] again, we have that all the maps
in the diagram (46) above are also weak equivalences in SISptr M. Therefore, to
finish the proof it is enough to check that * — Q,f,4+1X is a weak equivalence in
SISptp M.

But Corollary 3.2.47 implies that * — Q,fg+1X is a weak equivalence in
L 44+1Sptr M. Therefore, using [6, Proposition 3.1.5], we have that * — Qsfq+1X
is a S(g)-colocal equivalence in L«q11Sptr M., i.e. a weak equivalence in S¢Spt, M.
This finishes the proof. O

Proposition 3.2.75. — For every T-spectrum X, the following maps of T-spectra:

I1QrJsgX

sqgX
(47) 5o X —197T | IQrJsX C IQrJs X

are both weak equivalences in Sptp M.
Furthermore, these weak equivalences induce natural isomorphisms between the fol-
lowing ezxact functors

M)~ M(S)

IQTJsq
IQrJsq

() ()
ColQrJs,
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Proof. — The naturality of the maps IQrJ* : X — IQrJX and C;f : CoX — X
implies that we have induced natural transformations of functors sq — IQrJsg and
CoIQrJsq — IQrJsy. Hence, it is enough to show that for every T-spectrum X,
IQrJ%X and C’;QTJS"X are weak equivalences in Spt, U,.

It is clear that IQ7J%X is a weak equivalence in Spt, M., since IQrJ is a fibrant
replacement functor for Spt ..

‘We now proceed to show that C,f QrJsaX is a weak equivalence in Spt; M. Consider
the following commutative diagram in Spt;JM.:

CSqX
s X - Cqys4X
IQrJ®a¥ L lcq(IQTJSQ")
I1QrJs,X Giari C IQrJs, X

Lemma 3.2.72 implies that C;"X is a weak equivalence in Spty M,. Since we know
that IQrJ%* is always a weak equivalence in Spt;/M,, the two out of three property
for weak equivalences implies that it suffices to check that C,(IQrJ*X) is also a
weak equivalence in Spty M,

Using [6, Proposition 3.1.5], we have that IQrJ%* is a Clz-colocal equiva-
lence. Then the two out of three property for C;-colocal equivalences implies that
C,(IQrJ*X) is a Cl-colocal equivalence, since by construction Cg** and C{97 /%X
are both CZz-colocal equivalences.

Finally, by construction Cys,X and CoIQrJsqX are both Cls-colocal, therefore
[6, Theorem 3.2.13(2)] implies that C,(IQ7J%X) is a weak equivalence in Spt; M.,
as we wanted. 4

Proposition 3.2.76. — For every T-spectrum X, the natural map:

CqIQrJsgX

C IQrJs, X — Woi1C IQr s, X

is a weak equivalence in Sptp M.
Furthermore, this weak equivalence induces a natural isomorphism between the fol-

lowing exact functors
CQIQT qu

W (S) M (S)

Wo1CoIQrJsg

Proof. — The naturality of the maps WX, : X — W 41X implies that we have an
induced natural transformation of functors CqIQrJs; — Wy1CqIQ1Js,. Hence, it
is enough to show that for every T-spectrum X, quII QrJsaX s o weak equivalence

in SptT/(M* .
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Consider the following commutative diagram in Spt;.J%,:

IQrJsgX
IQrJs, X — Wos1IQrJs, X
C;QTJaqu ]WH](C';QTJS‘IX)
ClQrJs, X T Wat1CqlQr s X
q+1
By construction, W;ff" JeaX 45 a L(< g+ 1)-local equivalence, and Wy411Q7J s, X

is L(< g+ 1)-local in SptpM,. By Lemma 3.2.73 we have that IQrJs,X is also
L(< g + 1)-local. Therefore, [6, Theorem 3.2.13(1)] implies that W;flT 750X is a weak
equivalence in Sptp M,.

Now, it follows directly from Proposition 3.2.75 that CJQTJS‘*X is a weak equiv-
alence in Spt;JU,. Hence by the two out of three property for weak equivalences, it

suffices to show that Wq+1(C,§ QTJS"X) is a weak equivalence in Spt ..
IQrJseX

We already know that Cy is a weak equivalence in Spt; M., then using
[6, Proposition 3.1.5] we have that C;QTJS"X is a L(< g+ 1)-local equivalence.

Then the two out of three property for L(< q + 1)-local equivalences implies that
Wq+1(C',§QTJs"X) is also a L(< g+ 1)-local equivalence, since by construction
W, 2r7%a% and Wt 977X are both L 1)-local equival

a+1 an a+1 are bo (< g + 1)-local equivalences.

Finally, by construction Wy 11QrJsqX and Wy11CIQrJ5,X are L(< g+ 1)-lo-
cal in Sptp M., then [6, Theorem 3.2.13(1)] implies that Wq+1(CgQTJs"X) is a weak

equivalence in Sptp M., as we wanted. O

Proposition 3.2.77. — For every T -spectrum X, the natural map:

Wq4+1CqIQrJsgX

Wq+1CqIQTJSqX : Cqu+1CqIQTJSqX

is a weak equivalence in Sptp M..
Furthermore, this weak equivalence induces a natural isomorphism between the fol-
lowing ezxact functors

Wq+1CqIQTJ8q

M (S) 4 (S)

CqWe41CoIQrJs,

Proof. — The naturality of the maps C;( : CgX — X implies that we have an
induced natural transformation of functors CoWy11CIQrJsq — W 1C IQrJs,.

CWq+1CqIQTquX

Hence, it is enough to show that for every T-spectrum X, Cy is a weak

equivalence in Spt M,.
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Consider the following commutative diagram in Spt;W,:

cCe1QTIogX
CIQrJs X ‘ CoCelQrJs, X
ch.;.l:QTquxl l/cq(wﬁ;:QTquX)
Wor1ColQrJs, X AN CoWo1CIQrJs, X
q

By construction Cg*'®77*% s a (C%-colocal equivalence, and C,IQrJs.X,
CyCeIQrJssX are both Clz-colocal in SptpM,. Therefore, [6, Theorem 3.2.13(2)]

CS1977%aX i5 a weak equivalence in SptyJ,.
Now, it follows directly from Proposition 3.2.76 that WqCJfII QrJseX s a weak equiv-

implies that

alence in Spt;M,. Hence by the two out of three property for weak equivalences, it

suffices to show that Cq(Wq(iflI QTJS“X) is a weak equivalence in Spt; ..

We already know that chlfll QrIsaX s a weak equivalence in Sptp M., then

using [6, Proposition 3.1.5] we have that chlfll @risaX is a Clz-colocal equiva-

lence. Then the two out of three property for Cz-colocal equivalences implies that

ColQrJs X . . . . ACelQrJs,X
C,(W, 4 @774y is also a C%-colocal equivalence, since by construction Cy ¢’ 977%

Wot1CIQrJsg X .
and Cg ** 19775 X gre both CZs-colocal equivalences.

Finally, by construction C;CqIQrJ3,X and CqWe;1CeIQrJs,X are Clz-colocal
in Spt;M,, then [6, Theorem 3.2.13(2)] implies that Cq(Wq(i’II QrJsaXy s a weak

equivalence in Spt; M., as we wanted. O

Proposition 3.2.78. — For every T-spectrum X, the following natural maps in
RC:“M(S) (see Proposition 3.1.15 and Theorem 3.1.16):

1QrJ(8 IQT J(nX)
1Qrrx <2277 rqopgpx 1T

1QrJs,X

become isomorphisms in SIA# (S) after applying the functor Cy:

CoIQrJ(6x) CoIQrJ(x))
LT X

CIQrJX CIQrJf,X CIQrJs,X

=

Proof. — Proposition 3.2.17 implies that the map

1QrJ(6x)

1QrJf, X 1QrJX

is an isomorphism in Rgs 4#(S). Hence using Corollary 3.2.70 we have that

ColQrJf,x S8r0x),

CIQrJX

is an isomorphism in SY4#(S).
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On the other hand, Theorem 3.1.16(1) implies that we have the following distin-
guished triangle in 4% (S):

o
fo1 X foX 5qX 52 for1 X

Proposition 3.2.11 implies that after applying IQrJ we get the following distinguished
triangle in Rge 4#(S)

IQrJ(n))

IQTqu-HX —_— IQTquX IQTJSqX —_— Z;JOIQTqu+1X

Now Corollary 3.2.70 implies that after applying C,; we get the following distinguished
triangle in SYA#(S)

CoIQrJ(x))
CoIQrIfe1 X — CoIQrJf X

CqIQTJSqX
27°CIQr T fr11 X

Therefore it is enough to check that CoIQrJ fo+1X = * in SI4#(S). But this follows
directly from Lemma 3.2.74. O

Corollary 3.2.79. — For every T-spectrum X, the following natural maps in 4#(S)
(see Proposition 8.1.15 and Theorem 3.1.16):

]

X—% gx— Tt s X
become isomorphisms in SH(S) after applying the functor CoWo11CeIQrJ:

CqWe41CqIQT J(0x)

o

CoWo1CoIQrJ X

Cqu+ICqIQTquX
o~ LCqu+1CqIQTJ(7";()
Cy W1 CalQrJs X

Furthermore, these maps induce natural isomorphisms between the following ezact
functors

CqWa41CqlQr Jsg

A (S) A (S)
CqWa41CeIQT J fq
Cqu+lchQTqu

A (S) M (S)
CoWa1ColQTJ
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Proof. — The naturality of the maps ﬂ';{ t foX — 54X and Ox : fg X — X im-
plies that we have induced natural transformations of functors C,W,11CoIQrJ f; —
CoWe1CqIQrJsq and CaWo 1 CoIQrJ fq — CqW,11CoIQ7J. Hence, it is enough to
show that for every T-spectrum X, C;Wo11CoIQrJ (71"‘;( ) and CqWy41CqIQrJ(0x)
are weak equivalences in Sptp ..

Proposition 3.2.78 implies that the following natural maps

C,IQrJ(6 CoIQrJ(n))
R T Cu1QrTs X

C,IQrJX CIQrJf, X

o

are isomorphisms in S9¢#(S). Then the result follows immediately from Corol-
lary 3.2.70 and Proposition 3.2.11. O

Theorem 3.2.80. — For every T-spectrum X , we have the following diagram in 4 (S):

Wat1CelQrJs, X
Ww w%q"
ColQrJse X CoWai1ClQrJs, X
(48) cleTIaX Lg chchqIQTJ(n;‘)]a
IQrJse X CoWar1CIQrJ fo X
IQTJ:“’X]g Cqu+1CqIQTJ(9x)L§
5qX CoWar1CoIQrJ X

where all the maps are isomorphisms in S (S). Furthermore, this diagram induces a
natural isomorphism between the following exact functors:

Sq

M (S) o (S)

CqWar1CoIQTJ

Proof. — The fact that IQrJ%* and C;QTJS"X are isomorphisms in 4% (S) follows
from Proposition 3.2.75. Now Proposition 3.2.76 implies that Wgﬁll @rJsaX s an iso-

morphism in 4#(S), and proposition 3.2.77 implies that C’;V e+10aIQ7J5aX 4 2150 an
isomorphism in 4#(S). Finally, Corollary 3.2.79 implies that C,W,41CyIQ7J (77;1’( )

and CqWy41C,IQrJ(0x) are both isomorphisms in 4#(.S).
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This shows that all the maps in the diagram (48) are isomorphisms in 4#(S),
therefore for every T-spectrum X we can define the following composition in J#(S)

curapsgt CHRTIS X arsex.
W%’ wr aXy-1
ColQrJs X CoWat1CoIQrIseX
(49) (CiRT72aXy-1 ] o (CqWeq41CIQrI(n X)) ™1 Lg
IQrJs X CoWar1CoIQrJ fo X
IQTJSQX]E‘ Cqu+1quQTJ(9x)lE
S¢X CoWe1CoIQrJX

which is an isomorphism.

On the other hand, Propositions 3.2.75, 3.2.76 and 3.2.77, and Corollary 3.2.79
imply all together that the isomorphisms defined in diagram (49) induce a natural
isomorphism of functors s, 3 CqWq41CeIQrJ. This finishes the proof. O

Proposition 3.2.81. — Let 1 denote the unit of the adjunction (Cq,Wgy1,p)

Rga MH(S) — SIM(S) constructed in Corollary 3.2.70. We have that the natural
transformation my : fg — s, (see Theorem 3.1.16) gets canonically identified, through
the equivalence of categories r4Cy, IQTJiq constructed in Proposition 3.2.21 with the

following map in S#(S):

Cq(MrQrax)
_

CIQrJX CqWo41C,IQrJX

Proof. — It follows directly from Theorem 3.1.16, Corollary 3.2.63 together with [20,
Proposition 9.1.8]. d

Remark 3.2.82. — Theorem 8.2.80 gives the desired lifting to the model category level
for the functors sq defined in Theorem 3.1.16; and it completes the program that we
started at the beginning of this section, where the goal was to get a lifting for the slice
functors sq.

3.3. The Symmetric Model Structure for the Slice Filtration

Our goal now is to lift the model structures constructed in section 3.2 to the
category of symmetric T-spectra, in order to have a natural framework for the study
of the multiplicative properties of Voevodsky’s slice filtration.
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Let 4%~ (S) denote the homotopy category associated to SptzM.. We call 4#>(S)
the motivic symmetric stable homotopy category. We will denote by [—, —]§pt the set
of maps between two objects in J# E(S), and g € Z will be an arbitrary integer.

Definition 3.3.1. — Let Q5. denote a cofibrant replacement functor in Sptqzw/’%* ; such
that for every symmetric T-spectrum X, the natural map

X

Q=X @8 X
is a trivial fibration in Spt‘%ﬂft*.
Definition 3.3.2. — Let Ry, denote a fibrant replacement functor in Spt;":/’lft* ; such that

for every symmetric T-spectrum X, the natural map

X

RE
X —— RsX
is a trivial cofibration in Spt7M..

Proposition 3.3.3. — The motivic symmetric stable homotopy category J# E(S) has a
structure of triangulated category defined as follows:

1. The suspension Z;JO functor is given by
— ASY: HH(S) ——= SHT(S)
XH———>QsXAS!
2. The distinguished triangles are isomorphic to triangles of the form

A—>p—lsct-5l0y

where 1 is a cofibration in Spt%ﬂfl*, and C is the homotopy cofibre of i.

Proof. — Theorem 2.6.23 implies in particular that Spt%ﬂfl* is a pointed simplicial
model category, and Theorem 2.6.27 implies that the adjunction:

(— A S, Qg1,¢) : SptrM, —> SptaM,

is a Quillen equivalence. The result now follows from the work of Quillen in [21,
sections 1.2 and I.3] and the work of Hovey in [10, chapters VI and VII] (see [10,
Proposition 7.1.6]). O

Theorem 3.3.4. — The adjunction
(V,U, ) : Sptp My, — Spt%ﬂfl*
giwen by the symmetrization and the forgetful functors, induces an adjunction

(VQs, URs, p) : dH#(S) —= SH>(S)
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of exact functors between triangulated categories. Furthermore, VQ, and URyx are
both equivalences of categories.

Proof. — Theorem 2.6.30 implies that the adjunction (V,U,¢) is a Quillen equiva-
lence. Therefore we get the following adjunction at the level of the associated homo-
topy categories:

(VQs,URs, @) : H(S) — S(S)

Now [10, Proposition 1.3.13] implies that VQ,, U Ry are both equivalences of cat-
egories. Finally, Proposition 2.6.19 together with [10, Proposition 6.4.1] imply that
V Qs maps cofibre sequences in ##(S) to cofibre sequences in J# E(.So’). Therefore
using Proposition 7.1.12 in [10] we have that VQ, and URyx, are both exact functors
between triangulated categories. O

Corollary 3.3.5. — 1. The ezact functor (see Remark 3.1.13)
fo: H(S) — HH(S)
gets canonically identified with the following exact functor:

fo: H7(S) AT (S)
X —— VQ,(f,(UR=X))

ie. f=VQso foURs.
2. The ezact functor (see Theorem 3.1.18)
S<q : MH(S) — H(S)
gets canonically identified with the following exact functor:
Seq : HT(S) M (S)
X H——>VQs(5«¢(URs X))

ie. 5<q=VQs05.0URs.
3. The ezact functor (see Theorem 3.1.16)

sq : MH(S) —— M (S)
gets canonically identified with the following exact functor:
§q: M(S) ——— JHZ(S)
X +—>VQ,(sq(URs X))
i.e. g =VQ,05,0URs.

Proof. — It follows immediately from Theorem 3.3.4. O
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Lemma 3.3.6. — Let X € M, be a pointed simplicial presheaf which is compact in
the sense of Jardine (see definition 2.3.10), and let FX(X) be the symmetric T-spec-
trum constructed in definition 2.6.8. Consider an arbitrary collection of symmetric
T-spectra {Z;}ic1 indezed by a set I. Then

(F20), [ 28 = [T (FY(X), Zi3
i€l i€l

Proof. — We have that F> = V o F,, (see Proposition 2.6.18). Therefore, the result
follows directly from Lemma 3.1.4 together with Theorems 2.6.30 and 3.3.4. O

Proposition 3.3.7. — The motivic symmetric stable homotopy category JH# E(S) s a
compactly generated triangulated category in the sense of Neeman (see [19, definition
1.7]). The set of compact generators is given by (see definition 2.6.8):

c®= U FZS™AG,AUL)
n,rs20 UE(dnls)

i.e. the smallest triangulated subcategory of S Z(S’) closed under small coproducts
and containing all the objects in C* coincides with J# Z(S).

Proof. — 1t follows directly from Proposition 3.1.5, Lemma 3.3.6 and theorems 2.6.30,
3.3.4. O

Corollary 3.3.8. — Let f : X — Y be a map in fH>(S). Then f is an isomorphism
if and only if f induces an isomorphism of abelian groups:

T s e T s
[FnE(S /\Gm/\U'f-),X]gpt—)[FE(S /\GmAU+)?Y]§pt
for every FX(S™ AGS, AU,) € CE.

Proof. — (=): If f is an isomorphism in #>(S) it is clear that the induced maps
f« are isomorphisms of abelian groups for every F=(S" A GS, AU,) € C*.
(«): Complete f to a distinguished triangle in 4# Z(S):

x 1oy toz toslox

Then f is an isomorphism if and only if Z & x in > (S).
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Now since the functor [F2(S"AGS, AU,), —]Ept is homological, we get the following
long exact sequence of abelian groups:

[F2(S7 A G, AUL), XIG,
fe
[FZ(S" A G5 AUL), YIE,,
o
[FZ(S" A Gy AUL), ZIG,
ha.
[F2(S™ NGy, AUL), BR0XI5,, {— F2,1(STAGH AUL), XIE,,
=r0fs Lf.

[FR(S™ NG AUL), S1Y Iy <o [Fa (ST A G AUL), Y,

But by hypothesis all the maps f, are isomorphisms, therefore [FZ(S™ A GS, A
U,), Z]é’pt = 0 for every FZ(8" AGS, AU, ) € C=. Since J#>(S) is a compactly gen-
erated triangulated category (see Proposition 3.3.7) with set of compact generators
C%, we have that Z = . This implies that f is an isomorphism, as we wanted. O

Theorem 3.3.9. — Consider the following set of objects in Spt%ﬂ/l* (see Theo-
rem 3.2.1):
ck= U U FXSAG, AU
n,r,s20;s—n>q U€E(dn|s)

The right Bousfield localization of Spt?ﬂfl* with respect to the class of C’gf’fz -colocal
equivalences ezists (see definitions 1.8.6 and 1.9.2). This model structure will be called
(g — 1)-connected motivic symmetric stable, and the category of symmetric T-spectra
equipped with the (g — 1)-connected motivic symmetric stable model structure will be
denoted by chﬂsp@m*. Furthermore RCZ“Spt?/(%* is a right proper and simplicial
model category. The homotopy category associated to ch“Sptgﬂ/l* will be denoted by

Rgs ##(S).
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Proof. — Theorems 2.6.23 and 2.7.4 imply that Spt:?m* is a cellular, proper and
simplicial model category. Therefore we can apply Theorem 5.1.1 in [6] to construct
the right Bousfield localization of Spt;’:‘-/’lft* with respect to the class of Cgf’fz—colocal
equivalences. Using Theorem 5.1.1 in [6] again, we have that this new model structure
is right proper and simplicial. O

Definition 3.3.10. — Let C’f denote a cofibrant replacement functor in ch“spt%m* ;
such that for every symmetric T-spectrum X, the natural map
=X
CZX ——X

is a trivial fibration in chffSptqg/‘l/l*, and CqEX is always Cgf’fz-colocal in Sptg‘wﬂft*.

Proposition 3.3.11. — Ry is also a fibrant replacement functor in Rc;z“Spt?/’I/l* (see
definition 8.3.2), and for every symmetric T-spectrum X the natural map

Rg

X — Ry X

is a trivial cofibration in chffSptgﬂ/t*.

Proof. — Since ch“ Spt?ﬂft* is the right Bousfield localization of Spt%/‘l/l* with re-
spect to the Cgf’fz—colocal equivalences, by construction we have that the fibrations and
the trivial cofibrations are identical in ch“Sptgﬂ/l* and Spt%ﬂfl* respectively. This
implies that for every symmetric T-spectrum X, Ry X is fibrant in RCZ“Spt%ﬂ/l*, and
we also have that the natural map

R%
X — REX

is a trivial cofibration in chffSptqzﬂﬂ/t*. Hence Ry is also a fibrant replacement functor
for Rga Sptz .. O

Proposition 3.3.12. — A map of symmetric T-spectra f : X — Y is a Cgf’fz-colocal
equivalence in Spto=M, if and only if the underlying map URg(f) : URsX — URsY
is a Cz-colocal equivalence in Sptp M.

Proof. — Consider FZ(S" AGS, AU,) € Cgf’fz. Using the enriched adjunctions of
proposition 2.6.19, we get the following commutative diagram where all the vertical
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arrows are isomorphisms:

Map 5(FZ(S" AG:, AUL), ReX) Map 5(FZ(S"AGS, AU,),RsY)

| |

Map 5 (V (Fn(S7 AGS, AU )), ReX) ~212 Map w(V(Fa(S™ A G, AUL)), RsY)

Map(F,,(S” AGS, AU,),URsX) Map(F,(S" AGS, AU, ), URsY)

Since URs X and URsY are both fibrant in Spt;p M., we have that URs(f) is a
Cgﬂ—colocal equivalence in Spt; M, if and only if the bottom row in the diagram above
is a weak equivalence of simplicial sets for every F,,(S" AG3, AU ) € CZ;. By the two
out of three property for weak equivalences we have that this happens if and only if the
top row in the diagram above is a weak equivalence for every F=(S"AGS, AU, ) € Cgf’fz.
But this last condition holds if and only if f is a Cgf’fz-colocal equivalence in Sptqul/t*.

This finishes the proof. O

Proposition 3.3.13. — Let f : X — Y be a map of symmetric T-spectra. We have that
fisa Cgflfz-colocal equivalence in SptoM, if and only if for every FZ(S"AG:, AU4) €
C%7, the induced map:

[FE(ST NG, AUL), XI5, —2> [FE(ST A G, AUL), Y15,

is an tsomorphism of abelian groups.

Proof. — By Proposition 3.3.12, f isa Cgf’f—colocal equivalence in Spt?ﬂ/l* if and only
if URx(f) is a Clg-colocal equivalence in Sptp M. Using Proposition 3.2.4 we have
that URx(f) is a Cz-colocal equivalence if and only if for every F,(S"AGS, AU,) €
CZ%., the induced map

URs(f)«

[F(S™ NG, AUL), URs X]spt [Fo(STAGS, AUL), URsY |spt

is an isomorphism of abelian groups.
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Now Theorem 2.6.30 implies that we have the following commutative diagram,
where all the vertical arrows are isomorphisms:

(Fn(S™ AGE, AUL), URs X)sp — 2 L [F(S" AGS, AUL), URsY Jsp
i sL fs r J/ l
[V(Fn(s /\GmAU+))7X]§pt [V(Fn(s /\Gm /\U-l—)):Y]gpt
U ) |

[FE(STAG;'LAU+)5X]§pt [FE(STAG:nAU-F)’Y]gpt

Therefore f is a Cgﬁz-colocal equivalence if and only if for every F2(S"AGS, AU,) €
C’gf’fz, the bottom row is an isomorphism of abelian groups. This finishes the proof. [

Lemma 3.3.14. — Let f : X — Y be a map of symmetric T-spectra. We have that
fisa Cg{’f-colocal equivalence in Spt2M, if and only if Qg1 Rsf is a C’gf’fz-colocal
equivalence in Spt?ﬂ/l*.

Proof. — It follows from Proposition 3.3.12 that f is a Cgf’fz-colocal equivalence
in Spt?ﬂfl* if and only if URsf is a Clz-colocal equivalence in Sptp .. Since
URsX,URsY are both fibrant in Spt; M., using Lemma 3.2.7 we have that URx f
is a Cz-colocal equivalence if and only if QsiURsf = U(Qs:1 Rxf) is a Clz-colocal
equivalence in Sptp ..

Finally, since Qg1 Ry X, Qg1 RyY are both fibrant in Spt:%ﬂ/l*, we have by Propo-
sition 3.3.12 that U(Qs: Ry f) is a Clg-colocal equivalence if and only if Qg1 Rs f is a
C’ggfz-colocal equivalence. This finishes the proof. : O

Corollary 3.3.15. — The adjunction
(— A8, Qs1,9) : Res Spty M, — Rga Sptr i,
is a Quillen equivalence.

Proof. — Using Corollary 1.3.16 in [10] and Proposition 3.3.11 we have that it suffices
to verify the following two conditions:

1. For every cofibrant object X in ch“Spt%ﬂ/l*, the following composition

xnast
Q51 Ry

X X Qg (X A SY Qg1 Rs(X A SY)

is a Cgf’fz-colocal equivalence.
2. Qg1 reflects Cgf’rz—colocal equivalences between fibrant objects in ch“Spt%ﬂ/l*.
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(1): By construction chffSpt:_,zwﬂ/t* is a right Bousfield localization of Spt:,,
therefore the identity functor

s 3. = z
id : Rc;sz SptTM* —_— SptTﬁ’l*

is a left Quillen functor. Thus X is also cofibrant in Spt%ﬂ/l*. Since the adjunction
(=ASY,Qg1, ) is a Quillen equivalence on Spt> M., [10, Proposition 1.3.13(b)] implies
that the following composition is a weak equivalence in Spt%ﬂfl*:

xast
Qg1 Ry

X > Qa(X ASYH Qg1 Rs(X A SY)

Hence using [6, Proposition 3.1.5] it follows that the composition above is a Cgf’fz—colo-
cal equivalence.
(2): This follows immediately from Proposition 3.3.11 and Lemma 3.3.14. O

Remark 3.3.16. — The adjunction (X1,Qr,¢) is a Quillen equivalence on Spt‘%ﬂfl*.
However it does not descend even to a Quillen adjunction on the (¢ — 1)-connected
motivic symmetric stable model category RCq“Spt%/’l/l*.

Corollary 3.3.17. — chffd?{ E(S) has the structure of a triangulated category.

Proof. — Theorem 3.3.9 implies in particular that ch“Sptqul/l* is a pointed simpli-
cial model category, and Corollary 3.3.15 implies that the adjunction
(= AS',9Qs1,9) : Rog SptiM. — Res, Sptp.

is a Quillen equivalence. Therefore the result follows from the work of Quillen in [21,
sections 1.2 and 1.3] and the work of Hovey in [10, chapters VI and VII]. d

Proposition 3.3.18. — We have the following adjunction
(CZ, Rz, ) : Ros M (S) —— ™ (S)
between exact functors of triangulated categories.

Proof. — Since ch“spt%m* is the right Bousfield localization of Spt?ﬂfl* with
respect to the Cgf’rx-colocal equivalences, we have that the identity functor
id : chffSptgﬂ/l* — SptyM, is a left Quillen functor. Therefore we get the
following adjunction at the level of the associated homotopy categories:

(CF, Rs,¢) : Ros, M (S) — o> (S)

Now Proposition 6.4.1 in [10] implies that C;IE maps cofibre sequences in
chﬁd?[ =(8) to cofibre sequences in J# (S). Therefore using Proposition 7.1.12
in [10] we have that CE and Ry are both exact functors between triangulated
categories. O
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Theorem 3.3.19. — The adjunction
(V.U ) : Rs, SptrMe — Res, Spty .
given by the symmetrization and the forgetful functors is a Quillen equivalence.

Proof. — Proposition 3.3.12 together with the universal property for right Bousfield
localizations (see definition 1.8.2) imply that

U : Rgg SptzM, — Reg, Sptr .

is a right Quillen functor. Using Corollary 1.3.16 in [10] and Proposition 3.3.11 we
have that it suffices to verify the following two conditions:

1. For every cofibrant object X in ch“SptTﬂ/l*, the following composition

URYX

X 2> UV(X) URsV(X)

is a weak equivalence in chﬁSptTﬂ/l*.
2. U reflects weak equivalences between fibrant objects in Rga_ SptrM..
(1): By construction chffSptT/"l/l* is a right Bousfield localization of Spt .,
therefore the identity functor
id : chﬂ_ SptTﬂfl* —_— SptTﬂ’l*

is a left Quillen functor. Thus X is also cofibrant in Spt; .. Since the adjunc-
tion (V,U, ) is a Quillen equivalence between Spt; M, and SptZ M., [10, Proposi-
tion 1.3.13(b)] implies that the following composition is a weak equivalence in Spt;M,:

VX

UR
X - UV(X) = URsV(X)

Hence using [6, Proposition 3.1.5] it follows that the composition above is a C%;-colo-
cal equivalence in Spt;M,, i.e. a weak equivalence in RCq“SptTﬂ/l*.
(2): This follows immediately from Propositions 3.3.11 and 3.3.12. d

Corollary 3.3.20. — The adjunction
(V,U,9) : Res, Sptr My — Reoa Sptyi,
given by the symmetrization and the forgetful functors, induces an adjunction
(VCq,URx, ) : Ros, d#(S) — Roa d#™(S)

of ezact functors between triangulated categories. Furthermore, VC, and URs are
both equivalences of categories.
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Proof. — Theorem 3.3.19 implies that the adjunction (V,U, ) is a Quillen equiva-
lence. Therefore we get the following adjunction at the level of the associated homo-
topy categories:

(VCq,URz,9) : Ros, d#(S) —= Ros o (S)

Now [10, Proposition 1.3.13] implies that V'Cy, U Ry, are both equivalences of cat-
egories. Finally, Proposition 2.6.19 together with [10, Proposition 6.4.1] imply that
VC, maps cofibre sequences in chffg%’ (S) to cofibre sequences in chffgﬂ[ Z(9).
Therefore using Proposition 7.1.12 in [10] we have that V'C, and U Ry, are both exact
functors between triangulated categories. O

Now it is very easy to find the desired lifting for the functor f, : 4# E(8) » M Z(8)
(see Corollary 3.3.5(1)) to the model category level.

Lemma 3.3.21. — 1. Let X be an arbitrary T-spectrum in RCZ“SptTﬂ/l*. Then the
following maps in SptZM,

CqX C;::,Vqu
VQ.(Cx) %) L ve,x

CE(VC,X)
induce natural isomorphisms between the functors:

Cy 0VCy,VCq,VQs 0 Cy : Ros H(S) — ™ (S)

Res ™ (S)

y \f
ve,

R 4#(S) M (S)

X %1
M (S)

ax : VQy(CyX) —= CE(VC,X)

Given a T-spectrum X

will denote the isomorphism in JSH E(S) corresponding to the natural isomor-
phism between VQ, 0 Cy and CF o VC,.

2. Let X be an arbitrary symmetric T-spectrum. Then the following maps in
chﬁSptTﬂ’l*

IQrJUReX U(Rg®™)

IQrJ(URsX) URs X

URs(RxX)

ASTERISQUE 335



3.3. THE SYMMETRIC MODEL STRUCTURE FOR THE SLICE FILTRATION 183

induce natural isomorphisms between the functors:

IQrJ oURs,URs,URs o Ry : #4™(S) — Ros o (S)

URs I1QTJ
) AL Rgs d#(S)

HT(S)

Rea,

(S

Given a symmetric T-spectrum X
Bx : IQrJ(URgX) — = URz(Re X)

will denote the isomorphism in chffd?( (S) corresponding to the natural iso-
morphism between IQrJ o URy and URyx o Ry.

Proof. — (1): It follows immediately from Theorem 1.3.7 in [10] and the following
commutative diagram of left Quillen functors:

v
chff SptTM* —_— chﬁ Spt?ﬂ’l*

id L id

Sptr M, SptZ M,

(2): It follows immediately from the dual of Theorem 1.3.7 in [10] and the following
commutative diagram of right Quillen functors:

RC'Z“ SptTm* <U— RC’:“ Spt?ﬂfl* Od
id ] id
Sptp M. = Spt>.,

Theorem 3.3.22. — Let X be an arbitrary symmetric T-spectrum.
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1. The diagram (29) in Theorem 3.2.20 induces the following diagram in SH>(S):

I J URy X
VQs(CqQT fq( > ))

VQs(IQrJ fo(URs X)) ~ VQy(CoIQrJ fo(URsX))
(50) o | VQ,(IQpJfaURnX) VQ.(CoIQrJ(Burgx)) |
foX =VQ,(f,(URsX)) VQs(CIQrJ(URs X))

where all the maps are isomorphisms in SH E(S). Furthermore, this diagram
induces a natural isomorphism between the following exact functors:

fq

M (S) M (S)
VQs0CeIQTJoURSs

2. Let € be the counit of the adjunction (see Corollary 3.3.20):
(VCq,URz,¢) : Ros, H(S) — Ros ™ (8)

Then we have the following diagram in H>(S) (see Lemma 3.8.21):

. CEVC(Bx) o
CE(VC(IQrI(URsX))) . CP(VC,(URs(RxX)))
(51) A1QrJ(URp X) | & >~ | CZ(ergx)
VQ4(CoIQrJ(URs X)) CrReX = f7X

where all the maps are isomorphisms in #>(S). This diagram induces a natural
isomorphism between the following exact functors:

VQ,0C,IQrJoURs

#HZ(S) ()

CPRe=f7

3. Combining the diagrams (50) and (51) above we get a natural isomorphism
between the following exact functors:

fa
M (S) L MHZ(S)

'
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Proof. — It is clear that it suffices to prove only the first two claims.
(1): It follows immediately from theorems 3.2.20 and 3.3.4.
(2): It follows immediately from Lemma 3.3.21 and Corollary 3.3.20. O

Proposition 3.3.23. — Let ¢ denote the counit of the adjunction (CqE,Rz, ®)
Roa M E(S) — M (S) constructed in Proposition 3.8.18. Then the natural trans-
formation 6, : fq — id (see Proposition 3.1.15) gets canonically identified, through
the equivalence of categories T,Cq, IQTJiq, VCy, URs, VQ;s and URy constructed
in Proposition 3.2.21, corollary 3.3.20 and Theorem 3.3.4; with OqE =e€.

Proof. — By construction 6, is the counit of the adjunction

(ig,q, ) : SLAHT(S) — BH(S)

(see Proposition 3.1.15). The result follows immediately from Proposition 3.2.21, corol-
lary 3.3.20 and theorem 3.3.4. O

The functor ff gives the desired lifting for the functor fq to the model category
level, and it will be used in the study of the multiplicative properties of Voevodsky’s
slice filtration.

Proposition 3.3.24. — 1. We have the following commutative diagram of left
Quillen functors:
id
R at1 Spty iy Rga Sptr .
52
2 e
SptZ M,

2. For every symmetric T-spectrum X, the natural map:

z
E,Cq+1X

CPCE, X CE.X

. . . E )
is a weak equwalence in A (S), and it induces a natural equivalence Cq Cara™

CF oCFy ) — CZ between the following functors:

Rgqn d™(S) s M (S)

\/
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3. The natural transformation fo11X — f; X (see Theorem 3.1.16(1)) gets canon-
ically identified, through the equivalence of categories 7,Cq, IQrJiq, VCq and
URs, constructed in Proposition 3.2.21 and corollary 3.3.20; with the following
composition pY : 5, X — fFX in ME(S)

. Cf C(?-FIREX
s ’C"“RE%' @E*)
CE RxX CERnX

which is induced by the following commutative diagram in Spt%ﬂ/l*

= E,R):X)

CECE Ry X —— "~ C¥RsX

(53) qu,c;:Hszl ‘/Cf,nzx

CZ,RsX — > Ry X

q ,Rp X
q+1

Proof. — (1): Since chftlsptim* and Rce Spt7. are both right Bousfield local-

izations of Spt?/(%*, by construction the identity functor
id : ch;frl Spt> M. — SptI M,

id : Rgs_Spt7 M. — Sptp .
is in both cases a left Quillen functor. To finish the proof, it suffices to show that the
identity functor
id : Ros SptpMa — chglsp%m*

is a right Quillen functor. Using the universal property of right Bousfield localizations
(see definition 1.8.2), it is enough to check that if f : X — Y is a C% -colocal
equivalence in Spt?ﬂfl* then Ry f is a Cgf;“ LE_colocal equivalence. But since Ry X
and RsY are already fibrant in Spt?.,, we have that Rx(f) is a Cg; L2 _colocal
equivalence if and only if for every F2(S™ AG3, AU,) € CIf L% the induced map:

Map = (FZ(S" AGS, AU, ), ReX)
L(R):f%
Map s(FZ(S" AGS, AUL),RsY)

is a weak equivalence of simplicial sets. But since C% LE ¢ C’gf’fz, and by hypoth-
esis f is a Cgf’fz—colocal equivalence; we have that all the induced maps (Rsf). are
weak equivalences of simplicial sets. Thus Ry f is a Cg:f' LE_colocal equivalence, as we
wanted.
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Finally (2) and (3) follow directly from Proposition 3.2.21, Corollary 3.3.20, Theo-
rems 3.2.20, 3.3.22 together with the commutative diagram (52) of left Quillen functors
constructed above and [10, Theorem 1.3.7]. O

Theorem 3.3.25. — We have the following commutative diagram of left Quillen func-
tors:

id

RCq+ 1 Spt%ﬂ’l*

eff
id
id \

(54) RCZ“Spt?ﬂ/l* —d. SptZM,

1d /

Ru-1Spty i,

eff

id

and the associated diagram of homotopy categories:

Reani H7(S)
eff \
5 =

(55) Rgs 7 (S) = ()

gets canonically identified, through the equivalences of categories roCq, IQ7Jiq, VC,
and URs, constructed in Proposition 3.2.21 and Corollary 3.8.20; with Voevodsky’s
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slice filtration:

Proof. — It follows immediately from proposition 3.3.24, Corollary 3.3.20 and Theo-
rem 3.2.23. ]

Theorem 3.3.26. — Consider the following set of maps in Spt;‘zﬂfl* (see Theo-

rem 3.2.29):

(57) L3(<q) = {V(iL,,) : FE(ST AG, AUL) — FE(D™ AGE, AUS) |
FY(S"AG, AUL) € C}

The left Bousfield localization of Spt%ﬂfl* with respect to the L¥(< q)-local equiva-

lences exists. This new model structure will be called weight<? motivic symmetric

stable. L<qut¥ﬂ/Z* will denote the category of symmetric T-spectra equipped with

the weight<? motivic symmetric stable model structure, and L, E(S) will denote

its associated homotopy category. Furthermore the weight<? motivic symmetric sta-

ble model structure is cellular, left proper and simplicial; with the following sets of
generating cofibrations and trivial cofibrations respectively:

Itz (< ) = 18 = UnzolF (Ys = (A5)+)}

where j satisfies the following conditions:

1. j is an inclusion of IL-complezes.
2. j is a L¥(< q)-local equivalence.

ASTERISQUE 335



3.3. THE SYMMETRIC MODEL STRUCTURE FOR THE SLICE FILTRATION 189

3. the size of B as an Ig -complez is less than k, where K is the reqular cardinal
defined by Hirschhorn in [6, definition 4.5.3].

Proof. — Theorems 2.7.4 and 2.6.23 imply that Spt?‘w/’lft* is a cellular, proper and sim-
plicial model category. Therefore the existence of the left Bousfield localization follows
from [6, Theorem 4.1.1]. Using [6, Theorem 4.1.1] again, we have that L<qutr_,E~ﬂ/l*
is cellular, left proper and simplicial; where the sets of generating cofibrations and
trivial cofibrations are the ones described above. O

Definition 3.3.27. — Let qu denote a fibrant replacement functor in L<qut§E~ﬂ'l*;
such that for every symmetric T-spectrum X, the natural map:

WX
X ——WrX
is a trivial cofibration in L Spty M., and WZEX is L¥(< g)-local in Spt> ..

Proposition 3.3.28. — Qx is also a cofibrant replacement functor in L<qut¥ﬂ/Z* (see
definition 8.3.1), and for every symmetric T-spectrum X the natural map

X

Q
QEX L} X
18 a trivial fibration in L<qut§~ﬂ/Z*.

Proof. — Since L<qut:>,31/’1/l* is the left Bousfield localization of Sptg‘zm* with respect
to the L¥(< g)-local equivalences, by construction we have that the cofibrations and
the trivial fibrations are identical in L<qut;‘3/"lfl* and Spt?/‘%* respectively. This im-
plies that for every symmetric T-spectrum X, @z X is cofibrant in L<qut¥ﬂfl*, and
we also have that the natural map

X

Q
QsX ==X

is a trivial fibration in L<qut§Jlfl*. Hence @y is also a cofibrant replacement functor
for L SptTM.. O

Proposition 3.3.29. — Let Z be a symmetric T-spectrum. We have that Z is
L¥(< q)-local in SptZM, if and only if UZ is L(< q)-local in SptpM,.

Proof. — We have that Z is L¥(< g)-local if and only if Z is fibrant in SptZ.#, and
for every
o Fu(STAGE, AUL) = Fo(D™YAGE, AUL) € L(< q)

n,T,8
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the induced map
Map (V (Fa(D" AGS, AUL)), Z)
]{V(Lg,r,s)*
Map s(V(F,(S" AGE, AUL)), Z)
is a weak equivalence of simplicial sets.
On the other hand, we have that UZ is L(< g¢)-local in Spt; M, if and only if UZ

is fibrant in Spt;Ji, and for every iY . : F,(STAGS, AUL) — F (D™ AGS, AUL) €
L(< q), the induced map

(LU *

n,r,s

Map(F, (D™ AGS, AU,),UZ) Map(F,,(S™ AGS, AUL),UZ)

is a weak equivalence of simplicial sets.
Then the result follows from the following facts:

1. By definition, Z is fibrant in Spt‘%ﬂfl* if UZ is fibrant in Sptyp M.
2. Proposition 2.6.19, which implies that the adjunction

(V,U, ) : Spty M, — Spt=u,

is enriched in the category of simplicial sets.
|

Proposition 3.3.30. — Let Z be a symmetric T-spectrum. We have that Z is
L¥(< q)-local in Spt:>,:~/’l/l,k if and only if the following conditions hold:

1. Z is fibrant in Sptgm*.

2. For every FZ(S" NG, AU4) € Cgf’f):, [FE(S"AGE, AUL), Z]gpt ~0

Proof. — It follows directly from Propositions 3.3.29 and 3.2.32, together with the
fact that (V, U, ) : Sptp M, — SptrM, is a Quillen adjunction. a

Corollary 3.3.31. — Let Z be a fibrant symmetric T-spectrum in Spt;,zﬂﬂ/l*. We have
that Z is L*(< q)-local in Spt2M, if and only if Qg1 Z is L¥(< q)-local in Spt=,.

Proof. — By Proposition 3.3.29 we have that Z is L¥(< g)-local if and only if UZ is
L(< g)-local in Spt;M.. Now Corollary 3.2.34 implies that UZ is L(< g)-local if and
only if Q:UZ = U(Qs1Z) is L(< ¢)-local.

Therefore using Proposition 3.3.29 again, we get that Z is L¥(< g)-local if and
only if Qg1 Z is L¥(< gq)-local. O

Corollary 3.3.32. — Let Z be a fibrant symmetric T-spectrum in Spt?ﬂ/l*. We have
that Z is L*(< q)-local in Spt2M, if and only if Rs(QsZ A S*) is L¥(< g)-local in
Spt2M,.

ASTERISQUE 335



3.3. THE SYMMETRIC MODEL STRUCTURE FOR THE SLICE FILTRATION 191

Proof. — (=): Assume that Z is L¥(< ¢)-local. Since Rx(QxZ AS!) is fibrant, using
proposition 3.3.30 we have that it is enough to check that for every F= (S"AGS, AU, ) €
C%”, [FX(S™ A G, AUL),Re(QsZ A SY))E,, = 0. But since — A S is a Quillen
equivalence, we get the following diagram:

[FE(S" AGS, AUL), Re(QsZ A SY)E,,

-

[FE (ST AGET AUL), Re(QsZ A SY)IE,,

[FE+1(STAG;'_1AU+)7Z]§M =
=30

o

[F7§+1(ST+1 A Gfrj-l A U+)7QEZ A Sl]?pt

where all the maps are isomorphisms of abelian groups. Since Z is L¥(< g)-local,
Proposition 3.3.30 implies that [F-,;(S” AGSH AUL), Z]gpt 2 0. Therefore

[FZ(S" AGS, AUL), Re(QsZ A S5 &

for every FZ(S™ AGS, AU,) € C%”, as we wanted.

(«<): Assume that Rs(QzZ A S') is L¥(< g)-local. By hypothesis, Z is fibrant;
therefore Proposition 3.3.30 implies that it is enough to show that for every F=(S™ A
G3, AUy) € C%F, [FE(S™ NG, AUL), Z]5,, 2 0. Since Spt7M, is a simplicial model
category and — A S! is a Quillen equivalence; we have the following diagram:

[FE(S" AGE, ANUL), Q51 Re(QsZ A 51)]§pt

5 0

=k
[FZ(S™ AG3, AUL) ASY, QeZ A SY]5,, ~—

o

[FnE(Sr A Gs’m A U+)7Z]§pt

where all the maps are isomorphisms of abelian groups. On the other hand, using
Corollary 3.3.31 we have that Qg1 Rx(QsZ A S?) is L¥(< g)-local. Therefore using
Proposition 3.3.30 again, we have that for every F2(S" AGS, AU,) € Cg&zz

[FX(S" NGy, AUL), Z5p, = [F (ST AG, AUL), Q51 Rs(QsZ A S5, 20

and this finishes the proof. O

Corollary 3.3.33. — Let f : X — Y be a map of symmetric T-spectra. We have that
f is a L¥(< q)-local equivalence in SptyM, if and only if for every L=(< q)-local
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symmetric T-spectrum Z, f induces the following isomorphism of abelian groups:
5
[, Z]gpt - [Xv Z]gpt

Proof. — Suppose that f is a L¥(< g)-local equivalence, then by definition the in-
duced map:

Q=1
Map (QxY, Z) —> Map =(Q=X, Z)

is a weak equivalence of simplicial sets for every L¥(< g)-local symmetric T-spectrum
Z. Proposition 3.3.30(1) implies that Z is fibrant in Spt{,gwﬂ/l*, and since Spt‘%ﬂfl* is
in particular a simplicial model category; we get the following commutative diagram,
where the top row and all the vertical maps are isomorphisms of abelian groups:

Q=f)"
moMap 5(QxY, Z) ——— moMap 5(Qs X, Z)

Y, 215, (X, Z]5p

*

hence f* is an isomorphism for every L*(< ¢)-local symmetric T-spectrum Z, as we
wanted.

Conversely, assume that for every L¥(< g)-local symmetric T-spectrum Z, the
induced map

[¥, 215, —— X, 2],
is an isomorphism of abelian groups.
Since L<qut721/’l/l* is the left Bousfield localization of Spt?ﬂ/l* with respect to
the L¥(< g)-local equivalences, we have that the identity functor id : Spt%/’l/l, —

L<qut§.ﬂft* is a left Quillen functor. Therefore for every symmetric T-spectrum Z, we
get the following commutative diagram where all the vertical arrows are isomorphisms:

Q=f)”
Homp = s)(QsY,2) @=1y Homp__y=(s) (@=X, 2)

gl LE

Y, WEZ|Z, (X, W7 Z)3,

*

but W2 Z is by construction L*(< g)-local, then by hypothesis the bottom row is an
isomorphism of abelian groups. Hence it follows that the induced map:

@=h*
Hom; __ 4= (5 (QsY, Z) L; Hom;_ 475 (QsX,Z)

is an isomorphism for every symmetric T-spectrum Z. This implies that Qx f is a weak
equivalence in L<qut¥ﬂfl*, and since Qx is also a cofibrant replacement functor in
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L<qut§J%,,, it follows that f is a weak equivalence in L<qut§1ﬂfl*. Therefore we
have that f is a L¥(< g)-local equivalence, as we wanted. O

Lemma 3.3.34. — Let f : X —» Y be a map of symmetric T-spectra. We have that f
is a L=(< q)-local equivalence in Spt=M, if and only if

QsfAid: Qs X ASt - QY A S?

is a L¥(< q)-local equivalence in Spt3M,.

Proof. — Assume that f is a L¥(< g)-local equivalence, and let Z be an arbitrary
L*(< g)-local symmetric T-spectrum. Then Corollary 3.3.31 implies that Qg1 Z is also
L¥(< g)-local. Therefore the induced map

Map 5(QsY; 051 2) =% Map £(Qe X, 251 2)

is a weak equivalence of simplicial sets. Now since Spt%ﬂft* is a simplicial model
category, we have the following commutative diagram:

@I, Map 5(QsX, 21 2)

[g

Map £(QsX A S, Z)

Map =(QsY, 251 2)

]

d)*
Map E(QEY A Sl,Z) M

and using the two out of three property for weak equivalences of simplicial sets, we

have that

(QsfAid)™
_

Map 5(QsY A S, Z) Map 5(QsX A S, Z)

is a weak equivalence. Since this holds for every L¥(< g)-local symmetric T-spectrum
Z, it follows that

QsfAid: Qs X AS' - QY A S?

is a L¥(< g)-local equivalence, as we wanted.
Conversely, suppose that

QsfAid: Qs X AS' - QY A S?

is a L¥(< ¢)-local equivalence. Let Z be an arbitrary L*(< q)-local symmetric T-spec-
trum. Since Spt?ﬂfl* is a simplicial model category and —AS? is a Quillen equivalence,
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we get the following commutative diagram:

[QsY A SY,Re(QsZ A SY)E,, (Q=fnid)*

gl Lg

(@Y ASY,QzZ A S5, [@sX A S, QsZ A SYE,,

E]E}‘O z:;”]e

Y, 215, (X, Z]5,

[@sX A S, Rs(QsZ A SY)IE,,

(QefAid)”

-
Now, Corollary 3.3.32 implies that Rx(QsZ A S') is also L¥(< g)-local. Therefore us-

ing Corollary 3.3.33 we have that the top row in the diagram above is an isomorphism
of abelian groups. This implies that the induced map:

£
[Y1 Z]gpt - [X7 Z]gpt

is an isomorphism of abelian groups for every L¥(< g)-local symmetric spectrum Z.
Finally using Corollary 3.3.33 again, we have that f : X — Y is a L¥(< ¢)-local
equivalence, as we wanted. ]

Corollary 3.3.35. — The following adjunction:

(— A SY,Qs1,9) : Lo,SptrM,

L<qut?1:~m*

is a Quillen equivalence.

Proof. — Using Corollary 1.3.16 in [10] and Proposition 3.3.28 we have that it suffices
to verify the following two conditions:

1. For every fibrant object X in L<qut¥/’l/l*, the following composition

Qgslx/\id ex
(Qgﬂle)/\Sl (QSIX)/\Sl—>“X
is a L¥(< g)-local equivalence.
2. — A S' reflects L¥(< g)-local equivalences between cofibrant objects in
L SptrM,.

(1): By construction L,Sptr, is a left Bousfield localization of SptZ M., there-
fore the identity functor

id : L.,Spt> M, —> SptrL,

is a right Quillen functor. Thus X is also fibrant in Spt?ﬂfl*. Since the adjunction
(—=ASY,Qg1, ) is a Quillen equivalence on Sptr M., [10, Proposition 1.3.13(b)] implies
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that the following composition is a weak equivalence in Spt%/’l/t*:

Q
z

X
ST Aid

(QsQg51 X) A S? Qe X)A S == x

Hence using [6, Proposition 3.1.5] it follows that the composition above is a
L¥(< q)-local equivalence.
(2): This follows immediately from Proposition 3.3.28 and Lemma 3.3.34. O

Remark 3.3.36. — We have a situation similar to the one described in remark 3.3.16
for the model categories chffSptgﬂ/l* ; i.e. although the adjunction (Z1,Q1,9) is a
Quillen equivalence on Spt%ﬂfl*, it does not descend even to a Quillen adjunction on
the weight<? motivic symmetric stable model category L<qut%‘:/’1/l*.

Corollary 3.3.37. — The homotopy category L<qd7[E(S) associated to L<qut72Ji/l*
has the structure of a triangulated category.

Proof. — Theorem 3.3.26 implies in particular that L<qut§5ﬂfl* is a pointed simpli-
cial model category, and Corollary 3.3.35 implies that the adjunction
(= ASY,Qg1,9) : LegSptEM, — L ,Sptr M,
)
is a Quillen equivalence. Therefore the result follows from the work of Quillen in [21,
sections 1.2 and 1.3] and the work of Hovey in [10, chapters VI and VII]. O
Corollary 3.3.38. — L<qut¥ﬂft* s a right proper model category.

Proof. — We need to show that the L¥(< ¢)-local equivalences are stable under pull-
back along fibrations in L<qut¥ﬂfl*. Consider the following pullback diagram:

Z—w*—F‘X

ST
W—1U">Y

where p is a fibration in L<qut¥m*, and w is a L¥(< g)-local equivalence. Let
F' be the homotopy fibre of p. Then we get the following commutative diagram in

Leg#™(S):

q

Qg Y F—>X Y
SR
QW ——F 7L W

Since the rows in the diagram above are both fibre sequences in L<qut12~ﬂ/l*, it follows
that both rows are distinguished triangles in L, 4# % (S) (which has the structure of a
triangulated category given by Corollary 3.3.37). Now w, id s are both isomorphisms in
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Lo % (S), hence it follows that w* is also an isomorphism in Lot % (S). Therefore
w* is a L¥(< ¢)-local equivalence, as we wanted. a

Proposition 3.3.39. — We have the following adjunction

(Qs, WZ,¢) : dH(S) — Legf#™(S)

of exact functors between triangulated categories.

Proof. — Since L<qut§3/(l/l* is the left Bousfield localization of Sptr_,zwﬂ/l* with respect
to the L¥(< g)-local equivalences, we have that the identity functor id : Spt»f,v‘:ﬂ/l* —
L<qut§“‘~/’%* is a left Quillen functor. Therefore we get the following adjunction at the
level of the associated homotopy categories:

Qs W3, 0) : H(S) — Log#7(S)

Now Proposition 6.4.1 in [10] implies that Qs maps cofibre sequences in 4# E(S)
to cofibre sequences in L,d# E(S). Therefore using Proposition 7.1.12 in [10] we
have that Qx and Wf are both exact functors between triangulated categories. L[]

Lemma 3.3.40. — Let X be a L(< q)-local spectrum in SptpM.. We have that QX
and URsV Qs X are also L(< q)-local in Sptp M.

Proof. — Since X is L(< g)-local, it follows that X is fibrant in Spt;-M.. By definition
we have that the natural map

Q¥
QSX —_— X

is a trivial fibration in Spt; M., therefore @,X is also fibrant in Spt;M.. Hence [6,
Lemma 3.2.1(a)] implies that Qs X is L(< g)-local.

Since the adjunction (V,U,¢) is a Quillen equivalence between Spt; M. and
Sptgm*, we have that URgVQ,X is fibrant in Spt; M., and [10, Proposi-
tion 1.3.13(b)] implies that the composition

VQsX

R
Qs X 22X UV(Q,X) T, URsVQ.X

is a weak equivalence in Spt,M,. Since we already know that Q,X is L(< g)-local, us-
ing [6, Lemma 3.2.1(a)] again we get that URsV Q,X is also L(< g)-local in SptJU,.
This finishes the proof. O

Proposition 3.3.41. — Let f : X — Y be a map in Sptp M. We have that f is a
L(< q)-local equivalence in Sptp M. if and only if VQ f is a L¥ (< q)-local equivalence
in SptoM,.
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Proof. — (=): Assume that f is a L(< g)-local equivalence, and let Z be an arbitrary
L*(< g)-local symmetric T-spectrum. Then Z is fibrant in SptZ./,, and using the-
orem 2.6.30 we get the following commutative diagram where all the vertical arrows

are isomorphisms:

(VQs )"
VQsY, Z]?pt ———[VQ,X, Z]}S:pt
[Yv UZ]Spt . [Xv UZ]Spt

By Proposition 3.3.29 we have that UZ is L(< g)-local in Spt;M,, hence corollary
3.2.36 implies that the bottom row in the diagram above is always an isomorphism.
Therefore the top row in the diagram above is an isomorphism for every L¥(< g¢)-lo-
cal symmetric T-spectrum Z, then by Corollary 3.3.33 it follows that VQ,f is a
L*(< q)-local equivalence in SptZ.,.

(«=): Assume that VQ,f is a L*(< q)-local equivalence in Spt3/M,, and let Z be
an arbitrary L(< g)-local T-spectrum in Spt; .. We need to show that the induced
map:

Map(Q.Y, Z) 21X Map(Q. X, 2)

is a weak equivalence of simplicial sets.

But Theorem 2.6.30 implies that the adjunction (V,U, ¢) is a Quillen equivalence
between Spt; M, and Spt¥ M., therefore using [10, Proposition 1.3.13(b)] we have
that all the maps in the following diagram are weak equivalences in Spt M.

z U(Rg%°?)onq,
7 Q.z (g " Jona, 2 URsVQ,.Z

Lemma 3.3.40 implies in particular that Z,Q,Z,URsVQsZ are all fibrant in
Sptp M. Now using the fact that Spt; M. is a simplicial model category together
with Ken Brown’s lemma (see Lemma 1.1.5) and the two out of three property for
weak equivalences, we have that it suffices to prove that the induced map:

Map(Q.Y, URsVQ.Z) ‘27X Map(Q. X, URzV Q, 2)

is a weak equivalence of simplicial sets. Using the enriched adjunctions of Proposi-
tion 2.6.19, we get the following commutative diagram where all the vertical arrows
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are isomorphisms:

Map(Q,Y,URsVQ,2) — =1 . Map(Q.X,URzVQ.2)

Map E(VQSY: RZVQsZ) V. f) Ma'p E(VQsXa REVQSZ)

Finally, Lemma 3.3.40 implies that URxV Q,Z is L(< ¢)-local in Spt; M., therefore
by Proposition 3.3.29 we have that RsVQ,Z is L*¥(< q)-local in Spt%ﬂfl*. Since VQ, f
is a L¥(< g)-local equivalence and VQ,X,VQ,Y are both cofibrant in Spt?ﬂfl*, it
follows that the bottom row in the diagram above is a weak equivalence of simplicial
sets. This implies that the top row is also a weak equivalence of simplicial sets, as we
wanted. O

Theorem 3.3.42. — The adjunction
(V,U,9) : LgSptp My — LoSpti,
given by the symmetrization and the forgetful functor is a Quillen equivalence.

Proof. — Proposition 3.3.41 together with the universal property for left Bousfield
localizations (see definition 1.8.1) imply that

V . L<qsptT.ﬂ/l* e L<qut§:’\ﬂ/Z*
is a left Quillen functor. Using Corollary 1.3.16 in [10] and Proposition 3.2.31 we have

that it suffices to verify the following two conditions:

1. For every fibrant object X in L<qut¥714*, the following composition

V(QYF) ex
VQUX) —1 %) L yyx)
is a weak equivalence in L<qut§5ﬂ/l*.
2. V reflects weak equivalences between cofibrant objects in L,Spt; ..
(1): By construction L.,Spt7. M, is a left Bousfield localization of Spt> M., there-
fore the identity functor

id : L<,Sptr M, — SptEu,

is a right Quillen functor. Thus X is also fibrant in Spt;aqﬂ/l*. Since the adjunc-
tion (V,U,¢) is a Quillen equivalence between Spt; M, and Spty.M,, [10, Proposi-
tion 1.3.13(b)] implies that the following composition is a weak equivalence in SptEM,:

V(QY™) ex
————

VQ,U(X) VU(X)—X

ASTERISQUE 335



3.3. THE SYMMETRIC MODEL STRUCTURE FOR THE SLICE FILTRATION 199

Hence using [6, Proposition 3.1.5] it follows that the composition above is a
L¥(< g)-local equivalence.
(2): This follows immediately from Propositions 3.2.31 and 3.3.41. |

Corollary 3.3.43. — The adjunction
(V,U, ) : L<gSptp My —— L oSpti,
given by the symmetrization and the forgetful functors, induces an adjunction
(VQs, UWZ, 0) : Lt (8) —— L™ (8)

of ezact functors between triangulated categories. Furthermore, VQs and U Wf are
both equivalences of categories.

Proof. — Theorem 3.3.42 implies that the adjunction (V,U,y) is a Quillen equiva-
lence. Therefore we get the following adjunction at the level of the associated homo-
topy categories:

(VQs, UWZE, ) : Leqd#(S) —— Lo ™ (S)

Now [10, Proposition 1.3.13] implies that VQ,, U qu: are both equivalences of
categories. Finally, Proposition 2.6.19 together with [10, Proposition 6.4.1] imply
that V@, maps cofibre sequences in L.,4#(S) to cofibre sequences in L, J# £(9).
Therefore using Proposition 7.1.12 in [10] we have that V@, and U qu are both exact
functors between triangulated categories. O

Now it is very easy to find the desired lifting for the functor 5., : J# 2(5’) —
K 2(S) (see Corollary 3.3.5(2)) to the model category level.

Lemma 3.3.44. — Let X be an arbitrary symmetric T-spectrum.
1. The following maps in L<qut¥ﬂ/l*

VQsX V(QSQSX)

Qv X) — 2" v x YU vo,@.x)

induce natural isomorphisms between the functors:

Qs oVQs,VQs,VQ, 0 Qs : fH(S) — Leg™(S)
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ME(S)\
VQ,s Qs
H(S) ve. Log#™(5)
X Vo,
Lo #(S)

Given a T-spectrum X
rx : Qu(VQoX) —> VQ,(Q,X)

will denote the isomorphism in Lo Jd# E(S) corresponding to the natural iso-
morphism between Qx o VQs and VQs 0 Q.
2. The following maps in Sptp M,

wZx uvwrx

URs(WFPX) Rz ) UWEX

W, (U WqE X)
induce natural isomorphisms between the functors:

URs oWE,UWE , Woo UW?E : Loq#™(S) — J#(S)

M (S)

N

Leqd#™(S) H(S)

L<q#(S5)

Given a symmetric T-spectrum X

px : URs(WEX) ——= W, (UWEX)

will denote the isomorphism in M (S) corresponding to the natural isomorphism
between URs o W and Wy o UW .
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Proof. — (1): It follows immediately from Theorem 1.3.7 in [10] and the following
commutative diagram of left Quillen functors:

\4

Sptr M. Spt2 M,

L<qutTﬂ’l* T‘ L<qut¥ﬂ4*
(2): It follows immediately from the dual of Theorem 1.3.7 in [10] and the following
commutative diagram of right Quillen functors:

Spty M ~——— SptEu, O

L<qutTﬂ/l* <‘U_‘ L<qutf1\:~ﬂ’l*

Theorem 3.3.45. — Let X be an arbitrary symmetric T-spectrum.

1. The diagram (41) in Theorem 8.2.52 induces the following diagram in S# E(.S').'

VQs(st<q(UR2X))
VQS(W;?”«;(UREX))
VQ.(QI<tVREX) | VQs(WyQs5<q(URs X))
(58)
§<eX = VQ,(s<o(UR: X)) = | VQa(WoQ(r ;™))

VQs(Wqu(UREX))

where all the maps are isomorphisms in S 2:(S). Furthermore, this diagram
induces a natural isomorphism between the following exact functors:

S<gq

A ) ()

VQsoW,Qs0URs

2. Let n be the unit of the adjunction (see Corollary 8.3.43):

(VQs, UWZE, @) : Laq#(S) — Lo ™ (S)
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Then we have the following diagram in S (S) (see Lemma 3.8.44):

W UWE (rx)

W (UW (Q=(VQsX))) W, (UWZ(VQs(QsX)))
(59) has(va.n | = | Walng,x)~"
URE(WqEQE (VQSX)) WquX

where all the maps are isomorphisms in fH ZJ(S ). This diagram induces a natural
isomorphism between the following exact functors:

URzoWZQsoVQ,

A (S) A (S)

Wqu

3. Let € denote the counit of the adjunction (see Theorem 3.3.4):

(VQs, URs, p) : H(S) — ()

and let v denote the natural isomorphism constructed above in (2). Then we
have the following diagram in J# z:(S):

VQ.(URsW}QsVQ,(URsX))
W\x)
VQs(wrex) | W(IEQEVQS(UREX)
(60)
VQs(Wqu(UREX)) = WqEQz(fx)

WqEQEX = SEqX

where all the maps are isomorphisms in S E(S). This diagram induces a natural
isomorphism between the following exact functors:

VQsoW,Qs0URs

MHE(S) dHZ(S)

A _.3
W Qe=s,
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4. Combining the diagrams (58) and (60) above we get a natural isomorphism
between the following exact functors:

S<q
Al p—— )
qu
Proof. — 1t is clear that it suffices to prove only the first three claims.
(1): It follows immediately from theorems 3.2.52 and 3.3.4.
(2): It follows immediately from Lemma 3.3.44 and Corollary 3.3.43.
(3): It follows immediately from (2) above, and Theorem 3.3.4. O

The functor sgq gives the desired lifting for the functor 5., to the model category
level.

Proposition 3.3.46. — We have the following commutative diagram of left Quillen
functors:

Sptr M.

L<g11Sptz. L<qSptr My

id

Proof. — Since L<qut§5ﬂfl* and L<q+1SptTE~ﬂ/Z* are both left Bousfield localizations
for Spt:‘,zwﬂ/l*, we have that the identity functors:

id : SptZ M, —> L SptZ M,
id : Spt2 M, —> L4 1Sptor M.
are both left Quillen functors. Hence, it suffices to show that
id : Lg1Spt3E M, —> L Spt3 M.

is a left Quillen functor. Using the universal property for left Bousfield localizations
(see definition 1.8.1), we have that it is enough to check that if f : X — Y is a
L¥(< g+1)-local equivalence then Qs f : Q=X — QxY isa L¥(< ¢)-local equivalence.

But Theorem 3.1.6(c) in [6] implies that this last condition is equivalent to the
following one: Let Z be an arbitrary L¥(< g)-local symmetric T-spectrum, then Z is
also L¥ (< g+1)-local. Finally, this last condition follows immediately from proposition
3.3.29 and corollary 3.2.33. o

Corollary 3.3.47. — We have the following adjunction

(@, WE, ) : LegridH™(8) — Loy (S)

of exact functors between triangulated categories.
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Proof. — Proposition 3.3.46 implies that id : L<q+1Spt¥/‘1fl* — L<qut§aﬂfl* is a left
Quillen functor. Therefore we get the following adjunction at the level of the associated
homotopy categories

(QE,W.,E,SD) : L<q+1¢%(2(5) - L<q¢Wz(s)

Now Proposition 6.4.1 in [10] implies that Q5 maps cofibre sequences in L g1 4# = (S)
to cofibre sequences in Lo d# E(S). Therefore using Proposition 7.1.12 in [10] we
have that Qs and qu are both exact functors between triangulated categories. [

Theorem 3.3.48. — We have the following tower of left Quillen functors:

L<q+1 Spt?ﬂ’l*

(61) SptE, —3~ L SptE,
q

id
X\

L<q—1Spt72 M,

together with the corresponding tower of associated homotopy categories:

Q= qu+1

Leqni ()
—

(62) HEE(S) W Leg%(S)
QWQ;E Qs | [WE,

T L H5(S)
Qs Wf—z
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The tower (62) gets canonically identified, through the equivalences of categories VQs,
URys, and U WqE constructed in Theorem 3.3.4 and Corollary 3.8.43; with the tower
(44) defined in theorem 3.2.56. Moreover, this tower also satisfies the following prop-
erties:

1. All the categories are triangulated.

2. All the functors are ezact.

3. Qx is a left adjoint for all the functors Wf.

Proof. — It follows immediately from propositions 3.3.39, 3.3.46, Corollary 3.3.47
together with Theorem 3.3.4 and Corollary 3.3.43. O

Definition 3.3.49. — We consider the following set of symmetric T-spectra
$%(q) = {FE(S" NG AUY) € CPls —n = g} C C%
(see Proposition 3.1.5 and definition 3.1.8).

Theorem 3.3.50. — The right Bousfield localization of the model category L<q+1Spt¥ﬂfl*
with respect to the S*(q)-colocal equivalences exists. This new model structure will be
called g-slice motivic symmetric stable. S’qut%ﬂfl* will denote the category of sym-
metric T-spectra equipped with the q-slice motivic symmetric stable model structure,
and SI4H E(.S') will denote its associated homotopy category. Furthermore, the q-slice
motivic symmetric stable model structure is right proper and simplicial.

Proof. — Theorem 3.3.26 implies that L<q+1Spt¥ﬂfl* is a cellular and simplicial
model category. On the other hand, corollary 3.3.38 implies that L<q+1Spt¥/’lfl* isright
proper. Therefore we can apply Theorem 5.1.1 in [6] to construct the right Bousfield
localization of L<q+1Spt¥ﬂfl* with respect to the S¥(q)-colocal equivalences. Using
(6, Theorem 5.1.1] again, we have that Squt‘%ﬂfl* is a right proper and simplicial
model category. O

Definition 3.3.51. — Let qu denote a cofibrant replacement functor in Squtgﬂ/l* ;
such that for every symmetric T-spectrum X, the natural map
=, X
PPX > X
is a trivial fibration in SISptyM,, and PX is always a S¥(q)-colocal symmetric
T -spectrum in L<q+1Spt¥/’1/l*.

Proposition 3.3.52. — qu+1 is also a fibrant replacement functor in SISptT M, (see
definition 8.8.27), and for every symmetric T-spectrum X the natural map

z,X

w
q+1 b3)
X —— WX
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is a trivial cofibration in Squt:‘,Ewﬂ/l*.

Proof. — Since Squt?-m* is the right Bousfield localization of L.q4+1 Spt?ﬂfl* with
respect to the S¥(g)-colocal equivalences, by construction we have that the fibrations
and the trivial cofibrations are identical in Squtfnﬂfl* and L<q+1Spt¥7%* respectively.
This implies that for every symmetric T-spectrum X, ij,_lX is fibrant in Squtgm*,
and we also have that the natural map

X

w
q+1 b))
X—> WQ+1X

is a trivial cofibration in SISptZM,. Hence qu+1 is also a fibrant replacement functor
for SISptTM,. O

Proposition 3.3.53. — Let f - X — Y be a map in L.g41SptEM.. We have that f
is a S*(q)-colocal equivalence in L<q+ISpt§~ﬂfl* if and only if the underlying map
UWZ,(f): UW,IEHX — UWqEHY is a S(g)-colocal equivalence in L.qy1Sptyp M.

Proof. — Consider F2(S™ A G, AU,) € S*¥(q). Using the enriched adjunctions of
proposition 2.6.19, we get the following commutative diagram where the vertical ar-
rows are all isomorphisms:

Map 5(F7 (8" AG;, AUL), Wi, X)

\V‘Ilﬁl‘f‘\\

Map £(F3(5™ A Gl AUL), WE,Y)

Map 5(V (Fa(S™ A G, AUY)), WE, X)

Map 5(V (Fn(S™ A G35, AUL)), Wai Y)

IR

1R

Map(F,(S” A GS, AUL), UWE  X)

UVVEX\

Map(F,(S" AGS, AUL),UWZE,Y)

Since U W;:HX and UW;:HY are both fibrant in L<q41Sptp M., we have that
UWZ,(f) is a S(g)-colocal equivalence in L<g11Spty M. if and only if the bot-
tom row in the diagram above is a weak equivalence of simplicial sets for every
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F.(S" AG:, AU,) € S(q). By the two out of three property for weak equivalences
we have that this happens if and only if the top row in the diagram above is a weak
equivalence for every F>(S™ AGS, AU, ) € S¥(q). But this last condition holds if and
only if f is a S¥(g)-colocal equivalence in L<q+18pt;“:ﬂ/l*. This finishes the proof. [

Proposition 3.3.54. — Let f : X — Y be a map in L<q+1Spt§m*. We have that f is a
S%(q)-colocal equivalence in L<q+1Spt¥/’lfl* if and only if for every FX(STAGS, AU, ) €
S%(q), the induced map:

(W)

[FE(S" AGE, AUL), W, +1X] [FE(S™AGS, AUL), WE L YIE,,

is an isomorphism of abelian groups.

Proof. — By Proposition 3.3.53, f is a S¥(g)-colocal equivalence in L<q+1Spt§ﬂfl*
if and only if UWZ,(f) is a S(g)-colocal equivalence in L.g41SptyM.. Since
Uw, +1X Uw +1Y are both fibrant in L<g41Sptr M., using Proposition 3.2.62
we have that UW; 2 1(f) is a S(g)-colocal equivalence if and only if for every
F,(S" NG, AU4) € S(g), the induced map

UWqE+1(f)*

(Fo(STAGS. AUL),UW, E | Xsps [Fa(S™ A G, AUL), UWE, Ylsps

is an isomorphism of abelian groups.

Now since W, +1X W, +1Y are also fibrant in SptF#,, Theorem 2.6.30 implies
that we have the following commutative diagram, where all the vertical arrows are
isomorphisms:

[Fn(sr N (Gin A U+) uw, +1X]Spt

\

(UWZ f)e
o o [ (Sr/\(Gs /\U+) uw, +1Y]Spt
[V(Fa(8™ AGy, AUL)), q+1X1sPt B

[V(Fa(S" A G, AUL)), Wi YIS,

q

[FR (ST NGy, AUL), Woia X5

(WE.5). .
" [FE;(S /\Gm/\U-F)anz-;-lY]gpt

Therefore f is a ST (g)-colocal equivalence if and only if for every Fr(S™ A GS, A
Uy) € S%(q), the bottom row is an isomorphism of abelian groups. This finishes the
proof. a

SOCIETE MATHEMATIQUE DE FRANCE 2011



208 CHAPTER 3. MODEL STRUCTURES FOR THE SLICE FILTRATION

Corollary 3.3.55. — Let f : X — Y be a map of symmetric T-spectra. We have that
f is a S¥(q)-colocal equivalence in L<q+1Spt¥ﬂft* if and only if
Weaf

Wi, X ———>WZY

is a Cgf’fz-colocal equivalence in Spt?ﬁft*.

Proof. — (=): Assume that f is a S¥(q)-colocal equivalence, and fix F- (5" A GS, A
Uy) e Cg&z. By Proposition 3.3.13 it suffices to show that the induced map

[FYX(S™ NGy, AUL), WL XI5,
(63) WEo5). l
[FE(S™ AGE, AUL), WE,YIZ,,

is an isomorphism of abelian groups.

Since FX(S"AG?, AUL) € C’gf’fz, we have two possibilities:

1. s—n=gq,ie FX(S"AGS, AUL) € S%(q).

2. s—n>q+1,ie F2(STAGS, AUy) € CIAH>

In case (1), Proposition 3.3.54 implies that the induced map in diagram (63) is an
isomorphism of abelian groups.

On the other hand, in case (2), we have by Proposition 3.3.30(2) that

[FE(ST A G AUL), WE X 1By, 202 [FE(S7 AGE, AUL), WE, YIS,

since by construction WqEHX and anlY are both L¥(< g + 1)-local symmetric
T-spectra. Hence the induced map in diagram (63) is also an isomorphism of abelian
groups in this case, as we wanted.

(«): Assume that W2, f is a C%;"-colocal equivalence in Spt7.i,, and fix F2(S"A
G, AUL) € 5% ().

Since S%¥(q) C C’gf’fz, it follows from Proposition 3.3.13 that the induced map

(W20

[FZ(S™ AG, AUL), Weii XI5y, [ (S" NG AUL), Waia Vg

q

is an isomorphism of abelian groups. Therefore, Proposition 3.3.54 implies that f is
a §%(q)-colocal equivalence in L<q+1Spt72~ﬂ/l*. This finishes the proof. O

Lemma 3.3.56. — Let f : X — Y be a map in L<q+1Spt§~ﬂfl*. We have that f is a
S%(q)-colocal equivalence in L<q+1Spt72~ﬂ/l* if and only if Qg Wf_,_l f is a S¥(q)-colocal
equivalence in L<q+1Spt7}:~/’lft*.

Proof. — It follows from Proposition 3.3.53 that f is a S¥(g)-colocal equivalence in
L<q+1Spt¥ﬂft* if and only if U WQEJrl f is a S(g)-colocal equivalence in Lg41Spty My.
Since U W;’HX, U Wf_‘,_lY are both fibrant in L.g41Spty M., using Lemma 3.2.64
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we have that UWZ,, f is a S(g)-colocal equivalence if and only if Qs UWgi,f =
U(Qs: W2, f) is a S(g)-colocal equivalence.

Finally, since Qg1 WqE_HX , Qg1 Wf_‘_lY are both fibrant in L<q+1Spt§5m*, we have
by Proposition 3.3.53 that U(Qg: qu_,_l f) is a S(g)-colocal equivalence if and only if
Qs:WZ , f is a §%(g)-colocal equivalence. This finishes the proof. O

Corollary 3.3.57. — The adjunction
(= ASY, Qg1,¢) : S9SptrM, — SISptTM,

is a Quillen equivalence.

Proof. — Using Corollary 1.3.16 in [10] and Proposition 3.3.52 we have that it suffices
to verify the following two conditions:

1. For every cofibrant object X in Squtr‘},zwﬂ/t*, the following composition

=,xAs1
251 q+1

X - Qu(X ASY Qs W2 (X ASY)

is a S%(q)-colocal equivalence.
2. Qg1 reflects S¥(g)-colocal equivalences between fibrant objects in quptﬁm*,

(1): By construction SISptF M, is a right Bousfield localization of L1Spt7 M.,
therefore the identity functor

id : SISptEM, —> Lg11Sptr.

is a left Quillen functor. Thus X is also cofibrant in L<q+ISpt¥ﬂfl*. Since the ad-
junction (— A S,Qg1,¢) is a Quillen equivalence on L<q+1Spt§~ﬂfl*, [10, Propo-
sition 1.3.13(b)] implies that the following composition is a weak equivalence in
L<q+ISPt¥m*:

=,xA8!
st Wata

Q
X X Qg (X ASY Q51 WE (X A ST

Hence using [6, Proposition 3.1.5] it follows that the composition above is a
S%(q)-colocal equivalence.
(2): This follows immediately from Proposition 3.3.52 and Lemma 3.3.56. O

Remark 3.3.58. — The adjunction (S1,Qr, ) is a Quillen equivalence on SptyM,.
However it does not descend even to a Quillen adjunction on the q-slice motivic sym-
metric stable model category Squtgﬂ/Z*.

Corollary 3.3.59. — SiK Z(S) has the structure of a triangulated category.
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Proof. — Theorem 3.3.50 implies in particular that Squtgﬂfl* is a pointed simplicial
model category, and Corollary 3.3.57 implies that the adjunction

(= A8, Qs1, ) : SISptTEM, — SISpt3 M,

is a Quillen equivalence. Therefore the result follows from the work of Quillen in [21,
sections 1.2 and 1.3] and the work of Hovey in [10, chapters VI and VII]. O

Proposition 3.3.60. — We have the following adjunction
(PP, W1, 0) : SIMHT(S) — Leqradk™(S)
between exact functors of triangulated categories.

Proof. — Since Squtjzw/’l/t* is the right Bousfield localization of L<q+1Sptqz~ﬂ/l* with
respect to the S¥(q)-colocal equivalences, we have that the identity functor id :
Squtgﬂfl* — L<q+1Spt¥ﬂfl* is a left Quillen functor. Therefore we get the following
adjunction at the level of the associated homotopy categories:

(PF W1, 9) : STHZ(S) — Legd™(S)

Now Proposition 6.4.1 in [10] implies that P,” maps cofibre sequences in S7# E(8)
to cofibre sequences in Lcgy14# »(S). Therefore using Proposition 7.1.12 in [10] we
have that qu and Wfﬂ are both exact functors between triangulated categories. O

Proposition 3.3.61. — The identity
id : Squt;’%ﬂfl* —_— chff Spt¥ﬂ4*
is a right Quillen functor.

Proof. — Consider the following diagram of right Quillen functors

id id
L<q+1SptEM, — SptEM, —— Rog Sptz.
7
id -

SISptEM,

By the universal property of right Bousfield localizations (see definition 1.8.2) it suf-
fices to check that if f : X — Y is a S¥(g)-colocal equivalence in L<q+1Spt¥7%*, then
qu+1 f: WqE_HX — WqEHY is a C’gf‘fz—colocal equivalence in Spt>,. But this follows
immediately from Corollary 3.3.55. O

Corollary 3.3.62. — We have the following adjunction
(CE,WE,,¢) : Ros ™ (S) — S (S)

of exact functors between triangulated categories.
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Proof. — By Proposition 3.3.61 the identity functor id : chﬁspt?m* — Squtgﬂfl*
is a left Quillen functor. Therefore we get the following adjunction at the level of the
associated homotopy categories:

(CE,WE 1, ¢) : Ros MT(S) — S14#>(5)

Now Proposition 6.4.1 in [10] implies that C’f maps cofibre sequences in
chﬁdﬂ (S) to cofibre sequences in SI4# > (S). Therefore using Proposition 7.1.12
in [10] we have that Cf and W2, are both exact functors between triangulated
categories. O

Lemma 3.3.63. — If A is a cofibrant symmetric T-spectrum in qupt%:"m*, then the
map x — A is a trivial cofibration in L<qut¥ﬂfl*.

Proof. — Let Z be an arbitrary L¥(< g)-local symmetric T-spectrum in Sptgﬂ/l*. We
claim that the map Z — * is a trivial fibration in sqsp%m*. In effect, using Propo-
sition 3.3.29 and Corollary 3.2.33 we have that Z is L¥(< ¢ + 1)-local in SptZ7,,
i.e. a fibrant object in L<q+1Spt§1ﬂ/l*. By construction Squtjzw/(%* is a right Bous-
field localization of L<q+ISpt§3m*, hence Z is also fibrant in Squt%:wﬂ/l*. Then by
Proposition 3.3.54 it suffices to show that for every F2(S™ A GS, AUy) € S%(q) (i-e.
s—n=gq):

0= [Ff(sr /\Gin A U+)7Z]§pt

But this follows immediately from Proposition 3.3.30, since Z is L¥(< g)-local.
Now since Squtgﬂfl* is a simplicial model category and A is cofibrant in
Squtqzwﬂ/l*, we have that the following map is a trivial fibration of simplicial sets:

Map »(A4,Z) —— Map (A, *) = *
The identity functor
id : SISptrE M, —> L q11Sptr M.

is a left Quillen functor, since Squti_,Ewﬂ/l* is a right Bousfield localization of
L<q+1Spt¥ﬂfl*. Therefore A is also cofibrant in L<q+1Spt¥ﬂ/l*, and since L<q+1Spt:‘,E~ﬂ/l*
is a left Bousfield localization of Spty4,; it follows that A is also cofibrant in
Spt2>M,. On the other hand, we have that Z is in particular fibrant in SptrM,.
Hence moMap (A4, Z) computes [A, Z]gpt, since Spt2M, is a simplicial model cat-
egory. But Map 5(A4,Z) — x* is in particular a weak equivalence of simplicial sets,
then

[Av Z]gpt =0
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for every L¥(< q)-local symmetric T-spectrum Z. Finally, Corollary 3.3.33 implies
that *+ — A is a weak equivalence in L<qut§3m*. This finishes the proof, since we
already know that A is cofibrant in L<qutq}:~ﬂft*. O

Theorem 3.3.64. — The adjunction
(V,U,¢) : S9Sptp M, — SISpt2 M,

given by the symmetrization and the forgetful functors is a Quillen equivalence.
Proof. — Proposition 3.3.53 together with the universal property for right Bousfield
localizations (see definition 1.8.2) imply that

U : SISptz M, — SISptp .
is a right Quillen functor. Using Corollary 1.3.16 in [10] and Proposition 3.3.52 we
have that it suffices to verify the following two conditions:

1. For every cofibrant object X in S9Spt; M., the following composition
nx UW;:%"YX b))
X —UV(X) ————UW;,V(X)
is a weak equivalence in S4Sptp M,.
2. U reflects weak equivalences between fibrant objects in Squt‘%ﬂfl*.
(1): By construction S?Spt, M, is a right Bousfield localization of L«g41Spty M.,
therefore the identity functor

id : S9Sptp My — L<g41Sptp My

is a left Quillen functor. Thus X is also cofibrant in L.441Spt;M,. Since the adjunc-
tion (V, U, ¢) is a Quillen equivalence between L q441Spt; %, and L<q+1Spt§~ﬂ/l*, (10,
Proposition 1.3.13(b)] implies that the following composition is a weak equivalence in
L 4+1Sptop M,

T, vX

U 1
X Z2-uvx) — UWZ,V(X)

Hence using [6, Proposition 3.1.5] it follows that the composition above is a S(g)-colo-
cal equivalence in L<g41Spty My, i.e. a weak equivalence in SISpt, ..
(2): This follows immediately from Propositions 3.3.52 and 3.3.53. a

Corollary 3.3.65. — The adjunction
(V,U, ) : SISptp M, —> SISpt=M,
given by the symmetrization and the forgetful functors, induces an adjunction

(VP UWE,, @) : SIfH(S) — S9#>(S)
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of exact functors between triangulated categories. Furthermore, VP, and U Wq}jJrl are
both equivalences of categories.

Proof. — Theorem 3.3.64 implies that the adjunction (V,U, ¢) is a Quillen equiva-
lence. Therefore we get the following adjunction at the level of the associated homo-
topy categories:

(VP, UWZE 1, ) : ST (S) — S141™(S)

Now [10, Proposition 1.3.13] implies that V Py, U qu+1 are both equivalences of
categories. Finally, Proposition 2.6.19 together with [10, Proposition 6.4.1] imply that
V P, maps cofibre sequences in S7¢#(.S) to cofibre sequences in SI4# *(S). Therefore
using Proposition 7.1.12 in [10] we have that V P, and U Wq‘vﬂrl are both exact functors
between triangulated categories. O

Now it is very easy to find the desired lifting for the functor 3, : 4#>(S) — J#>(S)
(see Corollary 3.3.5(3)) to the model category level.

Lemma 3.3.66. — 1. Let X be an arbitrary T-spectrum in chffSptTﬂ/l*. Then the
following maps in Squtgm*
v chqx Cf'chx
v, Cx) — L ve,x CE(VC,X)

induce natural isomorphisms between the functors:

CF oVCq,VCq, VP o Cy: Ron JH(S) — SIdH™(S)

Rgs ##™(S)

e N

Ve,
Res H(S) e SIH(S)
Cq

eff
\ %

SIH#(S)

Given a T-spectrum X
0x 1 VP(CeX) —— CE(VC,X)
will denote the isomorphism in SIAH 2:(S) corresponding to the natural isomor-

phism between V Py o Cy and CF o VC,.
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2. Let X be an arbitrary symmetric T-spectrum in Squtg‘Jlfl*. Then the following
maps in chff Spty M.
UW;:+1X W§+1x)

Wit U(R
Wi (UWE X) <2 UWE, X —2

URsx (W,;‘J_,_l X)
induce natural isomorphisms between the functors:

Wos1 oUW, UW1, URs o Wiy : ST (S) — Ros MH(S)

SIS (S

=
UWaia %\
UWE
by

S (S) Ros, 4 (S)

m%

Ros JH¥(S)

eff

Given a symmetric T-spectrum X
x : Wep1 (UWZ, X) —— URx (W2, X)

will denote the isomorphism in chffd?[ (S) corresponding to the natural iso-
morphism between Wy 10U W;:“ and URx, o W(ﬁ_l.

Proof. — (1): It follows immediately from Theorem 1.3.7 in [10] and the following
commutative diagram of left Quillen functors:

\4
RC:H Sptr M RCfo Spt%ﬂ’l*

S9Sptr My ——= SISpt7 M,

(2): It follows immediately from the dual of Theorem 1.3.7 in [10] and the following
commutative diagram of right Quillen functors:

chff Sptp M. <U— RC;?“ Spt?/’%* ]

SISpty My ~—— SISpt7 M,
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Lemma 3.3.67. — Let X be an arbitrary T-spectrum, and let n be the unit of the
adjunction (see Corollary 3.3.65):

(VP UWZE @) : SIMH(S) — SIph™(S)

We have the following diagram in Rgs 4#(S) (see Lemma 3.3.66):

WorUWE | (ox)
W tUWE, VP, CoX — 7 L W, \UWE, ,CPVC,X
Woti(ncgx) | = o~ [ToBve,x
Wo1CyX URsWZ. ,CEVC, X

where all the maps are isomorphisms in chﬂdf{ (S). This diagram induces a natural
isomorphism between the following exact functors:

Wqt1Cq
Reoa MH(S) Roa M (S)
URsWZ,,CPVC,
Proof. — It follows immediately from lemma 3.3.66 and Corollary 3.3.65. O

Theorem 3.3.68. — Let X be an arbitrary symmetric T-spectrum.
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1. The diagram (48) in Theorem 3.2.80 induces the following diagram in SH 2(S’):

§,X =VQs(s,URsX)
VQs(IQrJoaVReX) | o

VQs(IQrJsqURsX)
VQy(Cg T MR |

VQs(CelQrJIsqURs X)

va, (ch;gthTquuazx) o

(64) VQs(Wy11CoIQrJs,URs X)

Wy41CqIQrJsqURp X
VQs(Cq q+1%~q q ) o

VQs(CaW,41CoIQrJs,URs X)
VQ4(CqWqa41CoIQr J(mg "2X)) | =
VQs(CaW,41CIQrJ f,URs X)

VQs(CqWoy1CIQrJ(Burg x)) |

VQ(CqWyas1CoIQrJURsX)

where all the maps are isomorphisms in #>(S). This diagram induces a natural
isomorphism between the following exact functors:

Sq

() ()

VQ,0C,W,41C,IQrJoURy

2. Let € denote the counit of the adjunction (see Corollary 3.3.20):

(VCq,URs,¢) : Ros M (S) — Ros > (S)
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and let § denote the natural isomorphism constructed in Lemma 3.3.67. Then
we have the following diagram in SH>(S) (see Lemmas 3.3.67 and 3.8.21):

CqZWqEHCf'RgX =s'X
Cq(ew>, cPrpx) |
C’qE(VCqURquE,rlCQEREX)
CEVC,URsW[ ,Cl(ergx) | &
CFVC,URsW, ,CF(VCURs R X)
(65) CPVC,(Sungryx) |
CPVCy(Wg11Cq)URs R X

CJVCWqt1Cq(Bx) |
CPVCW441Co(IQrJURs X)

QW 1 1CqIQTJURS X | o

VQ.Cy(Wyei1C,IQrJURs X)

where all the maps are isomorphisms in JH Z:(S ). This diagram induces a natural
isomorphism between the following ezact functors:

VQs0C,Wy41CeIQr JoURy

HHE(S) ME(S)

SwE O po_ T
Cq Wgi1Cq Rx=s,

3. Combining the diagrams (64) and (65) above we get a natural isomorphism
between the following exact functors:

() 2 5(S)

Proof. — 1t is clear that it suffices to prove only the first two claims.

(1): This follows immediately from theorems 3.2.80 and 3.3.4.

(2): This follows immediately from lemmas 3.3.21 and 3.3.67 together with Corol-
lary 3.3.20. a

Proposition 3.3.69. — Let n denote the unit of the adjunction (C7,Wr,,¢) :
RCZHME(S) — SIME(S) constructed in Corollary 3.8.62. The natural trans-
formation mg : fq — sq (see Theorem 3.1.16) gets canonically identified, through
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the equivalence of categories r,Cy, IQrJiq, VCyq and URy constructed in Proposi-
tion 8.2.21 and corollary 3.3.20; with the following map 71'5 : qu — sf in S E(S):

Cr(nrgx)

CPRyX CEWS,,CPRs X

Proof. — The result follows easily from Proposition 3.2.81, Corollaries 3.3.20, 3.3.65
and Theorem 3.3.68. (]

Remark 3.3.70. — The functor s;‘: gives the desired lifting for the functor 5, to the
model category level, and it will be the main ingredient for the study of the multi-
plicative properties of Voevodsky’s slice filtration. This completes the program that we
started at the beginning of this section.

3.4. Multiplicative Properties of the Slice Filtration

Our goal in this section is to show that the smash product of symmetric spectra is
compatible in a suitable sense with the slice filtration. To establish this compatibility
in a formal way, we will use the model structures constructed in Section 3.3. In the
rest of this section p, ¢ € Z will denote arbitrary integers.

Lemma 3.4.1. — The sphere spectrum 1 is cofibrant in RCo“Sptqzwﬂ/l*, SOSptgm* and
Spt?ﬂ/l*.

Proof. — By proposition 3.3.61 and Theorem 3.3.9 we have that it is enough to show
that 1 is cofibrant in Rgo_ Sptr M.

Now, Corollary 3.2.15 implies that F(S°) is a C%-colocal T-spectrum in Spt, M.,
since Fp(S°) € ##°¥(S). Then using [6, Theorem 5.1.1(2)] we have that Fy(S°) is a
cofibrant object in Rgo Sptr M., and this implies that 1 = V (Fp(S9)) is also cofibrant

in Rcoﬁspt%m*, since the symmetrization functor
. p
V . chffSptTﬂ/l* —_— RC;)“SptT/(l/l*
is a left Quillen functor. O

Lemma 3.4.2. — Let A be a symmetric T-spectrum.
1. If A is cofibrant in chffSptEﬂ/l*, then the functor Homsm¥ (A, —) maps fibra-
tions in chf;rq Spty M, to fibrations in ch“Sp@ﬂft*.
2. If A is cofibrant in Spt>M,, then the functor Homg,» (A, =) maps fibrations
in ch’;;" Sptf,‘:wﬂ/l* to fibrations in ch“ Spt?/’l/l*.
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Proof. — Since ch“Spt?/’l/l*, RC:“ Spt?/’l/l* and Ropf-;—q Spt%/‘l/l* are all right Bousfield
localizations of Spt?ﬁ/l*, we have that the fibrations in all these model structures
coincide and also the identity functor

id : Ror, Spt7 M. ——> Spty,

is a left Quillen functor. Therefore if A is cofibrant in RC:“ Spt?ﬂft*, then A is also
cofibrant in Spt>M,. Hence it suffices to prove (2).

So assume that A is cofibrant in Spt%m*, and let f : X — Y be an arbitrary
fibration in RC::{q Spt?ﬂfl*. Then using Corollary 2.6.29 together with the fact that

A is cofibrant in Spt%ﬂ/l*, we get that
fa
Homsptg(A, X) —— Homg,,;=(4,Y)
is a fibration in Spt%ﬂfl*, or equivalently a fibration in Res Spt?ﬂ/l*. O

Lemma3.4.3. — If A = F2(S" AGS, AU,) is an arbitrary element in S*(p), i.e.
s—mn =p, and F is a symmetric T-spectrum such that the map F' — x is a trivial
fibration in ch«;qutgﬂfl*; then m : Homgp,» (A, F) — x is a trivial fibration in
eff

Res Sptr M.

Proof. — Since A is cofibrant in Sptqzqﬂ/l*, it follows directly from Lemma 3.4.2 that
7 is a fibration in chff Spt?ﬂfl*. Thus, it only remains to show that n is a weak
equivalence in RCq“Spt%/’l/l* .

Fix FF(S*AGL AV,) € C%7. By construction chf)frqut?ﬂ/l* is a right Bousfield
localization of SptZ M., therefore F is also fibrant in Spt>.,. Since A is cofibrant and
F is fibrant in Spt>M,, corollary 2.6.29 implies that we have the following natural
isomorphism of abelian groups:

[FJE(Sk A Gin A V+)vH0mSpt¥(A7 F)]Sz,pt = [FJE(Sk A G'lm A V+) A AaF]gpt
and Proposition 2.6.13 implies that:
FP(S*AGLAVLNA = FP(S*AGL AVL)AFZ(STAG, AUL)
> FR. (ST AGH AU xsVy)
But clearly F, (S¥" AGL* AU x5 Vy) € CPF®¥ and since F — * is a weak

equivalence in chf;,q Spt?ﬂfl*, we have by Proposition 3.3.13:

0 = [FFR (S AGL* AU x5 V4), Flgy
[sz(sk A Gin A V+)7H0mSpt¥ (A» F)]gpt

1

Finally, using Proposition 3.3.13 again, we get that m is a weak equivalence in
RCqﬁSptr_%ﬂ/l*, as we wanted. O
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Lemma 3.4.4. — If A is a cofibrant symmetric T-spectrum in RCp“Spt?ﬂ/l*, and
F is a symmetric T-spectrum such that the map F — x is a trivial fibration in
ch;fuq SpteM,; then  : Homg,, ;= (A, F) — % is a trivial fibration in Rga SptrM,.

Proof. — Since A is cofibrant in Rcr SptrM,, it follows from Lemma 3.4.2(1) that
7 is a fibration in ch“Spt%ﬂ/l*. Thus, it only remains to show that w is a weak
equivalence in chﬂsp%m*.

Fix F2(S" AGE, AUy) € CZ&E. Then Lemma 3.4.3 together with Proposi-
tion 3.3.24(1) imply that

Homg,,z (F2(S" AGy, AUL), F) — «

is a trivial fibration in chff Sptqzwﬂ/l*. Now, since A is cofibrant in RC:»ff Spt?ﬂ/t* which
is in particular a simplicial model category, we have that the induced map:

Map 5(4, Homgy,s (F(S™ AGj, AU), F)) —— Map 5(4, +) = *

is a trivial fibration of simplicial sets. Finally using the enriched adjunctions of Propo-
sition 2.6.12, this last map gets canonically identified with

Map 5(F (5" A G;, AUL), Homgpz (4, F))

|

Map n(F2(STAGE, AUL), %) = *

Since Homg,;» (A, F) is in particular fibrant in Spt>/,, by definition we have that

Tis a ngfz—colocal equivalence in Spt?ﬂfl*, i.e. a weak equivalence in ch”Sptgm,.
This finishes the proof. O

Theorem 3.4.5. — The smash product of symmetric T-spectra
— A—: Rer Sptz M. X Rge Sptpi, —> chgqsptim*
is a Quillen bifunctor in the sense of Hovey (see definition 1.7.4).

Proof. — By Lemma 1.7.5, it is enough to prove the following claim:

Given a cofibration ¢ : A — B in RCp“Spt?ﬂ/l* and a fibration f : X — Y in
Rr+a Spt2 M., the induced map

eff

(*, f) : Homgyz (B, X) —— Homgy,z (4, X) XHomg,z(4,Y) Homg,,=(B,Y)

is a fibration in ch“Spt?ﬂ/l* which is trivial if either 7 or f is a weak equivalence.
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Since chff Spt?ﬂfl*, RoqffSptgﬂ/l* and Rop&-q Spt?ﬂ/l* are all right Bousfield local-
izations of Spt%/(%*, we have that the fibrations in all these model structures coincide
and also the identity functor

(66) id : Ror, SptrM. ——> SptE,

is a left Quillen functor. Hence it follows that i is cofibration in Spt;‘zﬂ/l* and f is
fibration in Spt7,. Then Proposition 2.6.28 implies that (i*, f,) is a fibration in
Spt2M,, or equivalently a fibration in ch“Spt?ﬂft*.

Now assume that i is a trivial cofibration in RC:H Spt?ﬂfl*. Since the identity functor
considered in (66) above is a left Quillen functor, we have that 7 is also a trivial
cofibration in Sptqzwﬂ/l*. Hence using proposition 2.6.28 again, we have that (¢*, f.) is
in particular a weak equivalence in Sp%m*. Then [6, Proposition 3.1.5] implies that
(i*, f+) is also a weak equivalence in Rgs_ SptrM..

Finally, assume that f is a trivial fibration in RC:fJfrq Spt?/’lfl*. Consider the following

1

X—Y
where the diagram on the left is a pullback in R p+q Spt?ﬂfl* and the diagram on the
eff

commutative diagrams

—_—% oA

—>-

right is a pushout in Rer SptZM,. We already know that the map (i*, f,) is a fibration
in Roa Spt=M., therefore it is clear that Hom SptZ (B/A, F) is the homotopy fibre of
(2*, fi) in ch“Spt%/’l/l*. On the other hand, it is clear that « is a trivial fibration in
RC:fJfrq Spt>M, and ¢ is a cofibration in RC:)“Spt?ﬂ/l*.

By Corollary 3.3.17 we have that the homotopy category associated to RC:“Spt?/”l/l*
is triangulated, hence to check that (i*, f.) is a weak equivalence in chffSpt:%m* it
is enough to show that the map

(L Homsptg(B/A, F) —_— ¥

is a weak equivalence in RCq“Spt%ﬂ/l*. But this follows immediately from lemma,
3.44. a

Lemma 3.4.6. — Ifi: A — B is a cofibration in L<pSpt¥ﬂfl*, andj:C — D isa
cofibration in L<qut§ﬂfl*; then for every r € Z, the map

BAC]Iurc AND BAD

is a cofibration in L<,~Spt¥/’lfl*.
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Proof. — Since L<pSpt¥ﬂ/l*, L<qut12~ﬂ/l* and L<rSpt72~/’l/l* are all left Bousfield lo-
calizations of Spt?ﬂfl*, we have that the cofibrations in these four model categories
coincide.

Then the result follows immediately from Proposition 2.6.28. O

Lemma3.4.7. — If A = FX(S" AGS, AU,) is an arbitrary element in S*(p), i.e.
s—n=p, and Z is an arbitrary L¥ (< p+ q)-local symmetric T-spectrum in Spt%ﬂ/l* ;
then Homg,;» (A, Z) is a L*(< q)-local symmetric T-spectrum in Spt M.

Proof. — By Proposition 3.3.30 it is enough to check that the following two conditions
hold:
1. Homgy,s (4, Z) is fibrant in Spt=M,.
2. For every FF(S* AGL AVy) € cLr
[F}*(S* A G A V), Homg,z (A, 2)]5,: 20
Since Z is L¥(< p + g)-local in Spt%ﬂ/l*, we have that Z is in particular fibrant in

Spt?ﬂfl*. Now Corollary 2.6.29 together with the fact that A is cofibrant in Spt%ﬂfl*
imply that Homg,,;= (A, Z) is fibrant in SptZM,. This takes care of the first condition.

Fix F*(S* AGL, A VL) € Cgf’fz. Since A is cofibrant and Z is fibrant in Spt=.,
it follows from Corollary 2.6.29 that we have the following natural isomorphism of
abelian groups:

[FJE(Sk A Glm A V+)7H0m.5'pt¥ (Av Z)]gpt = [FJE(Sk A Gin A V+) A A» Z]gpt
Using Proposition 2.6.13 we have the following isomorphisms of symmetric T-spectra:
FF(S*AGL AVLINA = FP(SFAGL AVL)AFZ(S"AGS, AUY)

& FR(SMTAGH AU xs V)
But clearly FJ; (S AGL* AU x5 V) € CPHe® Since Z is L*(< p + g)-local in
Spt2M,, Proposition 3.3.30 implies:
0 = [FR(SMTAGH AU xsV4), 25,
= [FJE(Sk A Ggm A V+)a HomSpt;%(Av Z)]Ept
This finishes the proof. O
Lemma 3.4.8. — If A is a symmetric T-spectrum such that the map x — A is a trivial
cofibration in L<pSpt§3ﬂfl*, and Z is an arbitrary L* (< p+q)-local symmetric T-spec-

trum in Spt=M,; then Homsptg(A, Z) is a L¥(< q)-local symmetric T-spectrum in
Sptr ..

Proof. — By Proposition 3.3.30 it is enough to check that the following two conditions
hold:
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1. Homg,z (A, Z) is fibrant in Spt2M,.
2. For every FZ(S™ AG3, AU,) € %P
[FE(ST A G’iz A U+)7 HomSpt;:. (Aa Z)]gpt =
Since Z is L¥(< p + ¢)-local in Spt?ﬂfl*, we have that Z is in particular fibrant
in Spt%:wm*. By construction L<,,Spt¥ﬂ/l* is a left Bousfield localization of Sptgﬂft*,

then it follows that A is cofibrant in Spt?ﬂft*. Therefore, Corollary 2.6.29 implies that
Homg,,z (A, Z) is fibrant in SptZM,. This takes care of the first condition.

Fix FZ(S"AGS,AU,) € Cg&z. Using Lemma 3.4.7 together with Proposition 3.3.46,
we get that the induced map

Homsptg(Ff(S’ NG, ANUL), Z) —— %

is a fibration in L<pSpt¥/’I/l*. Since L<pSpt72~ﬂ/t* is a simplicial model category and
x — A is a trivial cofibration in L<pSpt‘;:ﬂﬂ/l*, it follows that the following map is a
trivial fibration of simplicial sets:

Map 5 (A4, Homsptg(FE(Sr NGy, ANUL),Z)) —— Map (A, *) = *
Finally using the enriched adjunctions of Proposition 2.6.12, the map above becomes:

Map = (FZ(S" AGE, A Us),Homg,,= (4, Z))

|

Map 5(F2(S" AGS, AUL), %) = *
which is in particular a weak equivalence of simplicial sets. We already know that
Homyg,» (4, Z) is fibrant in SptF M., and we have that F>(S" AG?, AU, ) is cofibrant
in Spt?ﬂfl*. Since Spt‘%ﬂfl* is a simplicial model category, we have that
0 = mMapx(FZ(S"AGE, AUL), Homg,,» (4, 2))
[FnE(ST A Giz A U+)7 HomSptTE.(A7 Z)]Ept

IR

for every FZ(S" AGS, AUy ) € Cgf’fz. This finishes the proof. a

Lemma 3.4.9. — If A,C are symmetric T-spectra such that x — A is a trivial cofi-
bration in L<pSpt¥/’%*, and x — C is a trivial cofibration in L<qut§~ﬂfl*; then
t:% — C A A is a trivial cofibration in L, ,Spt2M,.

Proof. — Since A is in particular cofibrant in L<pSpt§ﬂfl* (respectively C is cofi-

brant in L<qutr_,E~ﬂ/l*), it follows directly from Lemma 3.4.6 that ¢ is a cofibration

in L<p+qutr§/’%*. Thus, it only remains to show that ¢ is a weak equivalence in
)

L<p+qutTﬂ/l*.
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Let Z be an arbitrary L¥(< p + ¢)-local symmetric T-spectrum in Spt=,. Then
by Lemma 3.4.8, we have that Homg,» (4, Z) is L¥(< g)-local in SptZM,. Now
Corollary 3.3.33 implies that

[Cv HomSptf, (Aa Z)]Ept =0

But A, C are in particular cofibrant in Spt?ﬂft*, and Z is in particular fibrant in
Spt?ﬂ/l*, then using Corollary 2.6.29 we get the following isomorphism:

[C A Aa Z]gpt = [C7 HomSpt¥ (A7 Z)]Sz,pt =0

Hence the induced map
0 [CAA, ZIEy, — > [¥, 215, =

is an isomorphism for every L¥(< p + q)-local T-spectrum Z. Thus, using Corol-
lary 3.3.33 again, we have that ¢ is a L¥(< p + g)-local equivalence. This finishes the
proof. O

Lemma 3.4.10. — If A= FX(S"AG2,AU,) is an arbitrary element in S*(p), i.e. s—
n = p, and F' is a symmetric T-spectrum such that the map F' — * is a trivial fibration
in SPTISptE M, ; then T : Homyg,,z (A, F) — * is a trivial fibration in S9SptEM,.

Proof. — F is fibrant in L<p+q+1Spt§5ﬂfl,, since by construction SP+ISptEM, is a
right Bousfield localization of L<p+q+1Spt¥ﬂfl*. Applying Lemma 3.4.7, we get that
Hom SptE (A, F) is fibrant in L<q+1Spt¥ﬂfl*; and since SISpt=M, is a right Bousfield
localization of L1Spt7 M., it follows that Hom SptZ (A, F) is fibrant in SISptZM,.

By Proposition 3.3.54 it only remains to check that for every F}*(S¥ AGL, AV,) €
S%(q), ie. l—j=gq,

[1.71]2(‘9’c A Gin A V+)a HomSpt,IE, (A7 F)]gpt =0

Since A is cofibrant in Spt%ﬂ/l* and F is in particular fibrant in sptim,,, corollary
2.6.29 implies that we have the following natural isomorphism of abelian groups:

[F]E(Sk A Gin A V+)»H0mSpt¥(A7F)]§pt = [FJE(Sk A Gf’n A V+) A AaFlgpt
But using Proposition 2.6.13 we get:

FP(S*AGL AV ANA = FP(S*AGL AVL)ANFY(STAGS, AUL)
> FPL(SMTAGH AU x5 V)

and it is clear that F=

P (ST AGHT AU x5 Vi) € S¥(p+9).
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Finally, since F' — x is a trivial fibration in S”"'qut;"Eﬂ/t*, using Proposition 3.3.54

we get that for every FjE(Sk AGL, AVL) € S%(q):

0 = [FR,(S**"AGH® AU xsV4), Flgy,
[FJZ(Sk A Gin A V+), HomSpt,IE. (A) F)]gpt

IR

as we wanted. O

Lemma 3.4.11. — If A is a cofibrant symmetric T-spectrum in S”Spt}%ﬂ/l*, and F is a
symmetric T-spectrum such that the map F' — * is a trivial fibration in S”+qut¥ﬁfl* ;
then m : Homg,,z (A, F) — * is a trivial fibration in SISptEM,.

Proof. — F is fibrant in L<p+q+1Spt7}:~ﬂfl*, since by construction S”*’qut%/‘%* is a
right Bousfield localization of L<p+q+1Spt¥ﬂ/t*. Now, Lemma 3.3.63 implies that
* — A is a trivial cofibration in L<pSpt72~ﬂ/l*. Applying Lemma 3.4.8, we get that
Homyg,;= (A, F) is fibrant in L, 41Spt>M,; and since S¢Spty.M, is a right Bousfield
localization of L«g41Spt7 M., it follows that Homg,,;» (A, F) is fibrant in SISpt= .

Fix FX(S" AG2, AU,) € S®(q), i.e s — n = g. Applying Lemma 3.4.10 we have
that

Homg,z (Fy (8" A Gy, AU4), F) —— «

is a trivial fibration in S”Spt?ﬂft* which is in particular a simplicial model category.
Therefore the induced map

Map E(A, Homsptg(FE(Sr ANGE, A Uy), F)) —— Map 5 (A4, *) = *

is a trivial fibration of simplicial sets. Finally using the enriched adjunctions of Propo-
sition 2.6.12, the map above becomes:

Map E(FE(ST NGg A U+)’ HomSpt;:: (4, F))
Map 5(FE(S" A Gl AUL), %) = »

which is in particular a weak equivalence of simplicial sets. We already know that
Homsptg(A, F) is fibrant in L.g.Spt>M., then by definition it follows that 7 is

a S*(q)-colocal equivalence in L<q+ISpt¥/‘%*, i.e. a weak equivalence in Squtgﬂfl*.
This finishes the proof. O

Theorem 3.4.12. — The smash product of symmetric T-spectra
— A —: SPSptZ2 M, x SISpt2M, —> SPTISptEM,

is a Quillen bifunctor in the sense of Hovey (see definition 1.7.4).
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Proof. — Since
— A —: SPSpt¥ M, x SISptE M, —> SPHISptE L,

is an adjunction of two variables (see Lemma 1.7.5), it follows that it is enough to
prove the following two claims:

1. Leti: A — B be a cofibration in S”Spt?/‘lfl*, and let j : C — D be a cofibration
in Squtfwﬂ/l*. Assume that either i or j is trivial. Then

i0j
BAC]Jaurc AAD . ~BAD

is a trivial cofibration in S”+qut§~/”1/l*.
2. Let i : A — B be a cofibration in S”Sptgﬁﬂfl*, and let p: X — Y be a trivial
fibration in SP+9Spt=M,. Then

HOmSPt? (B, X) A HomSpt;;i (B, Y) XH°mspt§, (A,Y) Homsptg (A, X)

is a trivial fibration in SISpt7M,.

(1): By symmetry, it is enough to consider the case where ¢ is a cofibration
in S”Spt?ﬂfl*, and j is a trivial cofibration in Squt:%/’I/l*. Since Squtiﬂfl* and
S”Spt%ﬂfl* are right Bousfield localizations of L<q+1Spt§3/‘l/l* and L<p+ISpt¥ﬂ/l*
respectively, we have that the identity functor

id : SISptrE M, —> L qr1Spta,
id : SPSpty M, —> Lp11SptrM.

is in both cases a left Quillen functor. This implies in particular that ¢ is a cofibration
in L<p+1Spt72~ﬂ/l* and j is a cofibration in L<q+1Spt¥ﬂfl*. Then by Lemma 3.4.6 we
have that ¢ [J j is a cofibration in L<p+q+1Spt§~ﬂfl*.

By construction S”+qut¥m* is a right Bousfield localization of Lpq41 Spt%ﬂfl*,
hence the trivial cofibrations in both model structures are exactly the same. Thus, it
only remains to show that ¢ (0 j is a weak equivalence in L<p+q+18pt§~m*.

Consider the following pushout diagrams in Spt;M,:

i J

A B C D
I
* —> B/A * — D/C

By construction S Spt%/’lfl* is a right Bousfield localization of L<q+1Spt72~ﬂ/l*; there-
fore the trivial cofibrations coincide in both model structures. This implies that j and
k are both trivial cofibrations in L<q+1Spt§ﬂ/l*. On the other hand, it is clear that ¢ is
a cofibration in SPSptZM,. Then Lemma 3.3.63 implies that ¢ is a trivial cofibration
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in L.,Spt>M,. Using Lemma 3.4.9, we get that the map * — (B/A) A (D/C) is a
trivial cofibration in L<piq41 Spt%ﬂfl*.

Finally, since i[Jj is a cofibration in L pq4+1SptZ M., it follows that (B/A)A(D/C)
is the homotopy cofibre of i(1j in L<ptq+1 Spt%ﬂfl*. But Corollary 3.3.37 implies that
the homotopy category associated to L<p+q+1Spt?-m* is triangulated. Therefore i [
is a trivial cofibration in L<p+q+1Spt¥m*, since its homotopy cofibre is contractible.

(2): Using (1) above together with the fact that

— A —: SPSptE M, x SISptE M, —> SPHISptE M,

is an adjunction of two variables, we have that (i*,p.) is a fibration in qupt%}vm*.
Thus, it only remains to show that (i*,p.) is a weak equivalence in Squtgﬂ/l*.
Consider the following diagrams in SptM,:

i K

A B F——x%
| |
*—T>B£A X—Y

where the diagram on the left is a pushout square and the diagram on the right is a
pullback square. It is clear that ¢ is a cofibration in SpSptr_%/’l/l* and that « is a trivial
fibration in SP+9SptZM,. Then Lemma 3.4.11 implies that Homg,» (B/A,F) — *
is a trivial fibration in Squtgﬂfl*.

We already know that (i*,p.) is a fibration in S Spt%ﬂfl*, therefore
Homg,,» (B/A,F) is the homotopy fibre of (i*,p,) in S9SptFM,. Finally, by
Corollary 3.3.59 we have that the homotopy category associated to S"Sptgﬂfl* is
triangulated. Therefore it follows that (¢*,p.) is a trivial fibration in Squtgiﬂ/l*,
since its homotopy fibre is contractible. O

Remark 3.4.13. — Notice that the weight<? motivic symmetric stable model structures
are not compatible with the smash product of symmetric T-spectra, since the bifunctor

— A —: LepSptaM, X LegSptrM, —> LepioSptaM,

is not a Quillen bifunctor, contrary to the case of the q-connected motivic symmet-
ric stable model structures chffSptqzﬂﬂ/l* (see Theorem 8.4.5) and the q-slice motivic
symmetric stable model structures SISptE M, (see Theorem 3.4.12).

In effect, fix ¢ € Z and assume that the bifunctor defined above is a Quillen bifunc-
tor. It follows from Lemmas 3.3.68 and 3.4.1 that the map * — 1 is a trivial cofibration
n L<OSpt¥m*. Then, for every fibrant symmetric T-spectrum F in L<qut¥/’%* we
have that the map

Homsptg(l,F) >F >«
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is a trivial fibration in L. SpteM, (contrast with Lemma 8.4.8). Therefore the ho-
motopy category L % E(S) associated to L,Spt>M, is trivial. By Theorem 3.3.45
this implies that the functors

>
sZ, T(S) — SHT(S)
are all trivial, i.e. sEqX = 0 for every symmetric T-spectrum X. Then, it follows
from Proposition 3.1.19, Corollary 8.3.5 and Theorem 38.8.68 that all the slices are
also trivial, i.e. quX =0 for every symmetric T-spectrum X .
Finally, if our base scheme S is a perfect field then the zero slice of the sphere

spectrum sg (1) is given by the motivic Eilenberg-MacLane spectrum HZ (see [26]
and [16, Theorem 10.5.1] ), which is not trivial. So we have a contradiction.

Remark 3.4.14. — Theorems 3.4.5 and 3.4.12 establish formally the compatibility be-
tween the smash product of symmetric T-spectra and Voevodsky’s slice filtration. In the
remaining sections we will see that they have remarkable consequences; for instance if
A is a cofibrant ring spectrum with unit in Spt%ﬂfl*, then under mild conditions the
slice filtration preserves A-module structures in Spt?ﬂfl*.

3.5. Further Multiplicative Properties of the Slice Filtration

In this section A will always denote a cofibrant ring spectrum with unit in Spt%ﬂfl*.
Our goal is to use the motivic model structure A-mod (M, ) for the category of A-mod-
ules (see Section 2.8) together with the model structures for the category of symmetric
T-spectra constructed in Section 3.3 (which provide a lifting of the slice filtration to
the model category level), in order to get an analogue of the slice filtration for the
category of A-modules. The main results of this section guarantee that under suit-
able conditions, the (¢ — 1)-connective cover fqz (M), SEQ(M ) and the g-slice s3' (M)
of an arbitrary A-module M in Spt?/’lfl*, inherit a natural structure of A-module in
Sptq):w/’l/l*; and that the unit map u : 1 — A satisfying some natural additional condi-
tions, induces for every symmetric T-spectrum X a natural structure of A-module in
Spt7 M, on its g-slice s (X).

Let 4% (A-mod) denote the homotopy category associated to A-mod(M.). We call
&% (A-mod) the motivic stable homotopy category of A-modules. We will denote by
[-, —]m the set of maps between two objects in J#(A-mod), and p,q € Z will be
arbitrary integers.

Definition 3.5.1. — Let Q.,, denote a cofibrant replacement functor in A-mod(M.);
such that for every A-module M, the natural map

QM

QmM—>‘M

ASTERISQUE 335



3.5. FURTHER MULTIPLICATIVE PROPERTIES OF THE SLICE FILTRATION 229

is a trivial fibration in A-mod(M.).

Definition 3.5.2. — Let R,,, denote a fibrant replacement functor in A-mod(M.); such
that for every A-module M, the natural map

M

Rm
M — R, M
is a trivial cofibration in A-mod(M.).

Proposition 3.5.3. — The motivic stable homotopy category of A-modules 4% (A-mod)
has a structure of triangulated category defined as follows:

1. The suspension E;’O functor is given by
- AS': M (A-mod) — S (A-mod)
M——— QM AS?
2. The distinguished triangles are isomorphic to triangles of the form

M—>N-"1-0-Ls5lNy

where i is a cofibration in A-mod(M,), and O is the homotopy cofibre of i.

Proof. — By Proposition 2.8.10(2) we have that A-mod(,) is a pointed simplicial
model category, and Theorem 2.8.12 implies that the adjunction:

(= ASY,Qg1,¢) : A-mod(M,) — A-mod(M.)

is a Quillen equivalence. The result now follows from the work of Quillen in [21,
sections 1.2 and 1.3] and the work of Hovey in [10, chapters VI and VII] (see [10,
Proposition 7.1.6]). O

Theorem 3.5.4. — The adjunction
(AA—,U, ) : SptzM, — A-mod(M.)
defined in Proposition 2.8.1, induces an adjunction
(AAQz=,URn, ) : J(S) — d#(A-mod)
of ezact functors between triangulated categories.

Proof. — The proof is exactly the same as in Theorem 3.3.4. We leave the details to
the reader. O

Lemma 3.5.5. — Let X € M, be a pointed simplicial presheaf which is compact in the
sense of Jardine (see definition 2.3.10), and let F(X) be the symmetric T-spectrum
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constructed in definition 2.6.8. Consider an arbitrary collection of A-modules {M;}icr
indexed by a set I. Then

il iel
Proof. — The proof is exactly the same as in Lemma 3.3.6. We leave the details to
the reader. 0

Proposition 3.5.6. — The motivic stable homotopy category of A-modules J# (A-mod)
is a compactly generated triangulated category in the sense of Neeman (see [19, def-
inition 1.7]). The set of compact generators is given by (see definition 2.6.8):
cr= | U AAFI(S AGE AUL)
n,r,820 U€(dnm|s)
i.e. the smallest triangulated subcategory of 4% (A-mod) closed under small coproducts
and containing all the objects in C™ coincides with & (A-mod).

Proof. — The proof is exactly the same as in Proposition 3.3.7. We leave the details
to the reader. O

Corollary 3.5.7. — Let f : M — N be a map in ##(A-mod). Then f is an isomor-
phism if and only if f induces an isomorphism of abelian groups:

[ANFE(S™ AGiy AUL), Ml —= [A A FE(S™ NG, AUL), Nl
for every ANFZ(S" AGS, AUL) € C™.

Proof. — The proof is exactly the same as in Corollary 3.3.8. We leave the details to
the reader. O

In the rest of this section some results will be just stated without proof. In every
case, the proof is exactly the same as the one given in Section 3.3, taking into consid-
eration all that has been proved so far in this section together with proposition 2.8.2,
the cellularity for the motivic model category of A-modules (see Theorem 2.8.11),
and the fact that the generators A A F2(S™ A G, AU,) € C™ are all cofibrant in
A-mod(M,) (this follows immediately from Theorem 2.8.4).

Theorem 3.5.8. — Consider the following set of objects in A-mod(M,) (see Theo-
rem 3.2.1):
cum = U U AAFI(S"AGE AUL)
n,r,s>0;s—n>q U€E(dn|s)
The right Bousfield localization of A-mod(M.) with respect to the class of C5" -colocal

equivalences exists (see definitions 1.8.6 and 1.9.2). This model structure will be called
(¢ — 1)-connected motivic stable, and the category of A-modules equipped with the
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(@ — 1)-connected motivic stable model structure will be denoted by chﬁA-mod(ﬂ/l*).
Furthermore chﬁA-mod(/’I/l*) is a right proper and simplicial model category. The ho-
motopy category associated to RCZ“A-mod(ﬂ/l*) will be denoted by chffd?[ (A-mod).

Remark 3.5.9. — Notice that we can not use the adjunction
(AN=,U,p): chffSptgﬂ/l* - RC:“A-mod(ﬂ/l*)

for the construction of RC:“A-mod(/’i/l*), since we do not know if the model structure
for ch“Spt?/’i/l* is cofibrantly generated.

Definition 3.5.10. — Let C* denote a cofibrant replacement functor in
chﬂA—mod(ﬂfl*) ; such that for every A-module M, the natural map
crm S0
q M

is a trivial fibration in RCq“A-mod(ﬂ/l*), and CI*M is always Cly"-colocal in

A-mod(M,).

Proposition 3.5.11. — R, is also a fibrant replacement functor in RCq“A-mod(ﬂ/l*)
(see definition 3.5.2), and for every A-module M the natural map

M

M —"> R M
is a trivial cofibration in Rgs A-mod(My).
Proposition 3.5.12. — The adjunction
(= A8, Q61,0) : Rgs A-mod(M.) — Rga A-mod(M,)

is a Quillen equivalence, and chﬁd}’[ (A-mod) has the structure of a triangulated
category.

Proposition 3.5.13. — We have the following Quillen adjunction
(id,id, ¢) : Rgs_A-mod(M.) — A-mod(M,)
which induces an adjunction
(C;", Ry, 0): RC;;“M(A-mod) —— M (A-mod)
between exact functors of triangulated categories.
Theorem 3.5.14. — The adjunction (see Theorem 3.2.1)

(AN=,U,p): chﬁspt%m* ——= Rga_A-mod(M.)
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given by the free A-module and the forgetful functors is a Quillen adjunction, and it
induces an adjunction

(AACFZ=,URm, ) : Ros #H#(S) — Rz, M (A-mod)
of exact functors between triangulated categories.

Proposition 3.5.15. — We have the following commutative diagram of left Quillen
functors:

Ras1SptT M. i Rgs Spti.

\/

AN— SptTﬂ/l* AN—

(67) An

chf-:-l A-mod(m*) id RC:“A-IDOd(m*)

S |

A-mod(M,)

and the following associated commutative diagrams of homotopy categories:

ch M (A-mod)
ANCE -
(68) Rea gff’{ (S) M (A-mod)
\ %
M (S)
o \
(69) A (A-mod) Rgs #H*(S)
X\ /

Res & (A-mod)
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Theorem 3.5.16. — We have the following commutative diagram of left Quillen func-

tors:
id id
Ra11Spt7 M —> Roer A-mod(M.)
id id id id
(70) Sptt, < Reg, SptpM, —> Ros, A-mod(,) % A-mod(.)

el
\k id id /

Ro-a SptZM, Ire Rq-1 A-mod(M,)

eff eff

id id

and the following associated commutative diagrams of homotopy categories:

Rpen ™ (S) — Roer H (A-mod)

eff

ff —
e A/\Cq+1 \
> = m m
Cir1 Camr Cat Cdi1

eff

(1) H(S) <03~ Rog M (8) — Ros, #H (A-mod) —c7'~ (A-mod)
\Cz - ¢z or /c;"_ )
RoaprdH(S) — Rouos d (A-mod)

eff eff
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Reoari 1™ (S) JR:RCZ;@% (A-mod)

eff

7 ™~

Rs Ry R, Ry,

\
(72) ME(S) —Rs> Res, MHE(S) ST, Rga M (A-mod) <Rn.— A#(A-mod)

\R R R R/
)‘\): m /m

ch_lwﬂ(s)U(R_ RC:;;I M(A-mOd)

eff

Theorem 3.5.17. — If A is a commutative cofibrant ring spectrum in Spt?ﬂft*, then
the symmetric monoidal structure for the category of A-modules, induces the following
Quillen bifunctor in the sense of Hovey (see definition 1.7.4):

— /\A — chﬂA-mod(ﬂ/l*) X chffA-mod(ﬂ/l*) _ chf-;—q A-mod(ﬂfl*)

Proof. — The proof is similar to the one given for Theorem 3.4.5. We leave the details
to the reader. O

If the ring A is not commutative, then we need to impose some additional conditions
in order to get a weaker version of the previous result (see Theorem 3.5.21).

Lemma 3.5.18. — Let f : A — A’ be a map between cofibrant ring spectra in Spt?ﬂfl*,
which is compatible with the ring structures.

1. The adjunction:
(A" Aa—,U,¢) : Rgs A-mod(M,) — Rga A’-mod(M.)

is a Quillen adjunction.
2. Furthermore, a map w: M — M’ in Rgs A’-mod(JM.) is a weak equivalence if
and only if Uw is a weak equivalence in chffA-mod(/’l/l*).
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Proof. — (1): Lemma 2.8.6 implies that U : A’-mod(M,) — A-mod(M,) is a right
Quillen functor. Consider the following commutative diagram of right Quillen functors:

U

A’-mod(M,) A-mod(M.)

o |

chff A'_mod(ﬂ/l*) T > Rcv:ff A—mod(ﬂ/l*)

then the universal property of right Bousfield localizations together with proposition
2.8.8 imply that the dotted arrow U is a right Quillen functor.

(2): Let R,,, R, denote fibrant replacement functors in A-mod(M,) and
A’-mod(M,) respectively, and let N be an arbitrary A’-module. We have the
following commutative diagram in A-mod(M.):

Rm
N R,.N
RY, t LRm(Rﬁ,)

le N ﬁ Rm le N
R, ™

Lemma 2.8.6 implies that all the maps in the diagram above are weak equivalences
in A-mod(.).

Now fix F,,(S"AG:, AU4) € Cgf’fz. Using the naturality of the diagram above to-
gether with Proposition 2.8.8, we get the following commutative diagram of simplicial
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sets:

Ma’pA'-mod(Al A Fn(ST /\'ng A U+)’ I?’m'M)
(le‘w)*

R

Map 4/ moq (A’ A Fo(S"AGE, AUL), Ry M)

Ma’pA-mod(AAFn(Sr/\an/\U+),URmIM) o
\%\
(R ™My, Map 4 mod(AA Fo(STAGE, AUL), UR,w M')
Ma'pA-mod(A A FTL(ST A G:n A U+)7 RmURm’M) (Rg;am'M,)*
(URm(Ry))+ Map 4 oq(AA Fn(S™ AGS, AUL), RnURp M)
Map g moa(A A Fa(S” A Gl AU), URR M) VAR,
URw)«

Map 4 0a(ANAFp(S"AGE, AUL), UR,, M)
where the top vertical arrows are isomorphisms of simplicial sets. But A-mod(M.),
A’-mod(M,) are simplicial model categories (see proposition 2.8.10(2)) and the nat-
ural maps RYE~M UR,. (RM), R,({ER'"'MI and UR,, (R%’) are all weak equivalences
between fibrant objects, thus by Ken Brown’s lemma (see Lemma 1.1.5) all the vertical
arrows are weak equivalences of simplicial sets.

Therefore, the top row is a weak equivalence of simplicial sets if and only if the
bottom row is a weak equivalence of simplicial sets. This proves the claim. O

Proposition 3.5.19. — Let f : A — A’ be a map between cofibrant ring spectra in
Spt%ﬂfl*, which is compatible with the ring structures. Assume that f is a weak equiv-
alence in Spt2M,. Then the adjunction

(A" Aa—=,U,¢) : Ros A-mod(M.) — Rga A’-mod(M.)
is a Quillen equivalence.
Proof. — We have shown in lemma 3.5.18(1) that

(A" Aa =, U,¢) : Ros A-mod(M,) — Rgs A’-mod(JL.)
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is a Quillen adjunction.
Now let 7, € denote the unit and counit of the adjunction (A’ Agx —, U, ¢). By
Corollary 1.3.16(c) in [10], it suffices to check that the following conditions hold:

1. For every cofibrant A-module M in Rgs_ A-mod(M,), the following composition

RA'/\AM

ANy M — R (A’ Ay M)

nMm=fAaid
e

M>AANs M

is a weak equivalence in Rca_ A-mod(M,), where R,/ denotes a fibrant replace-
ment functor in A’-mod(M,) (see Proposition 3.5.11).
2. U reflects weak equivalences between fibrant objects in Rge A'-mod(M.).

(1): Since id : Rgz A-mod(M.) — A-mod(M.) is a left Quillen functor, we
have that M is also cofibrant in A-mod(:,). Hence, proposition 2.8.7 implies that
R:};,A“‘M omnu is a weak equivalence in A-mod(#,). Finally, by [6, Proposition 3.1.5]
we have that R;‘,‘;,AAM o7 is a weak equivalence in Reoa A-mod(M,), as we wanted.

(2): This follows immediately from Lemma 3.5.18(2). d

PrJEosition 3.5.20. — Let A be a cofibrant ring spectrum in Sptqzﬂﬂ/t*, which is also
Cgf’fz-colocal (equivalently cofibrant in Rco“Spt?ﬂ/l* ). For every cofibration f: M —
N in chﬁA—mod(ﬂfl*), we have that f is also a cofibration in chﬂSpt:}ﬁm*.

Proof. — Let (see Theorem 2.8.11)

A(K) = Jamoa U {ANFE(S™ AGE, AUL) ® 0AF —
ANFE(S"AGE, AUL)@A* |s—n>q,k >0}

Since A-mod(M,) is in particular a simplicial model category (see Proposi-
tion 2.8.10(2)), using definitions 5.2.1, 16.3.1 and Propositions 5.3.6, 16.1.3 in [6], we
have that f is a retract of a cofibration g : M — O in A-mod(M,) for which there is
a weak equivalence h : O — P in A-mod(/M,) such that the composition ho g is a
relative m—cell complex.

It is clear that it is enough to check that g is a cofibration in chﬂspt?m*. Now,
using Lemma 5.3.4 in [6], we have that this follows from:

1. g is a cofibration in Spt%ﬂfl*.

2. h is a weak equivalence in Spt3.,.

3. hog is a cofibration in Rga, Spt=M,.

(1): This follows directly from Proposition 2.8.9.

(2): This follows directly from Theorem 2.8.4.

(3): Let & denote the class of cofibrations in ch“Spt‘;‘wﬂ/l*. Theorem 2.8.11 im-
plies that Ja.moq is a set of generating trivial cofibrations for A-mod(. ), therefore
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Proposition 2.8.9 and Theorem 2.8.4 imply that all the maps in J4.moq are trivial cofi-
brations in Spt7.M,. But ch“Spt?ﬂ/l* is a right Bousfield localization with respect

to Spt%ﬂ/l*, hence all the maps in J4.y04 are also trivial cofibrations in chff Spt%ﬂft*.
We have that in particular

Jamod = ANJE ={idAj:AANX - ANY}
is contained in &. On the other hand, by hypothesis the map * — A is a cofibra-
tion in chffSpt)%ﬂ/l* and by construction * — F,(S"™ A G2, A U,) are cofibrations
in RC;:“Sptqzwﬂ/l* for s — n > g. Then Theorem 3.4.5 together with the fact that
chff Spt?ﬂ/l* is a simplicial model category (see Theorem 3.3.9) imply that

{ANFE(S"AGE AUL) @AY - ANFE(S"AGE, AUL) ® AF |
s—n>g,k>0}

is also contained in &. Therefore, we have that all the maps in A(K) are contained in
G.

Finally since limits and colimits in A-mod are computed in Spt% (7| s)nis, We have
that h o g is a relative &-cell complex in Spt?(&nl s )Nis, and since © is clearly closed
under coproducts, pushouts and filtered colimits, we have that h o g is a cofibration
in Rga Sptzl. O

Theorem 3.5.21. — Let A be a cofibrant ring spectrum in Spt%ﬂft*, which is also cofi-
brant in RCS“Spt%/’I/l*. Then — Ag — defines a Quillen adjunction of two variables
(see definition 1.7.4) from the (p — 1)-connected motivic model structure for right
A-modules and the (q—1)-connected motivic model structure for left A-modules to the
(p + g — 1)-connected motivic symmetric stable model structure:

— Aa —: Ror A-mod(M.), X Rgs A-mod(M.); — chfthptgiﬂ/l*
Proof. — By Lemma 1.7.5, it is enough to prove the following claim:

Given a cofibration i : N — N’ in Rgs A-mod(/M,); and a fibration f : X — Y in
R p+a Spt?ﬂfl*, the induced map
eff

HomSPt? (N, X)
J{(i',f*)
Homspta? (N, X) XHomspt§ (N,Y) HomSpt;E (N/, y)

is a fibration in Rcfn A-mod(M,), which is trivial if either ¢ or f is a weak equivalence.

However, Proposition 3.5.20 and Lemma 3.5.18(2) imply that ¢ is also a cofibration
in chﬁSpt%m*, which is trivial if 7 is a weak equivalence in Rcs_ A-mod(M,);. Now,
it follows from Theorem 3.4.5 that (¢*, f,) is a fibration in RC:ﬂSpt%m* which is
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trivial if either i or f is a weak equivalence. By Lemma 3.5.18(2) we have that it
suffices to check that (¢*, f.) is a fibration in Roe A-mod(M,),.

Since Rc:“Sptqum* is a right Bousfield localization with respect to Spt?/’lfl*, we
have that (i*, f,) is a fibration in SptZJ#,; hence it follows from Theorem 2.8.4 that
(¢, f+) is also a fibration in A-mod (/). However, by construction Rcz_ A-mod (M),
is a right Bousfield localization with respect to A-mod(M.),, therefore the classes
of fibrations in both model structures are identical. Thus (i*, fi) is a fibration in
Ror A-mod(M.)r, as we wanted. O

Theorem 3.5.22. — Let A be a cofibrant ring spectrum in Spt%/’%*, which is also
ngfz-colocal in SptrM, (equivalently cofibrant in Rco“Spt%m* ), and let M be an
arbitrary A-module. Then the solid arrows in the following commutative diagram:

m
CqM

C7 (Ry) cg (e Ci(RT )
C’RnM — CPM <——C¥C"M ——— C’R.C'M

I [ [

[ [ [

! | orm | Rm O

(73) lcf,RmM C;: M | ;3 Cqg'M | C;: RmCg*M
I | [
i / m m
R,M-—-— - — >M<—-—-—-—- - CqM ————— >—RquM
RM cr gCTM

& (A-mod)
cq URm
(74) Rog, 4 (A-mod) H(S)
M /5’7
R 7 (S)
Proof. — Clearly it suffices to show that CJ'(R)Y), C»(Cy-M), cf(Rﬁ‘;"M) and
C'qE FmCTM o re all weak equivalences in Spty.,.

Proposition 3.5.11 implies that R is a weak equivalence in Rea, A-mod(M,), then
applying lemma 3.5.18(2) to the unit map 1 — A we have that R is a weak equiva-
lence in chffSptqzﬂﬂ/l*. By construction C,? BmM and C;E’M are both weak equivalences
in RCfo Spt%ﬂfl*. Hence, the two out of three property for weak equivalences implies
that C7’(Rpy) is a weak equivalence in Rgs_ Spt7M.. However, C°R,, M and CZM
are both Cgf’fz-colocal; therefore [6, Theorem 3.2.13(2)] implies that C}*(RY ) is a weak
equivalence in Spt2,.
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Using Lemma 3.5.18(2) again, we have that C;"’M is a weak equivalence in
Rea Spt>M,. But CqE’M and C;: G M are both weak equivalences in RC;:“Spt%/’%*,
thus the two out of three property for weak equivalences implies that C;: (C’;"’M )
is also a weak equivalence in RC:“Spt?ﬂ/l*. However, by construction CfM and
CFCI"M are both Cgf’fz-colocal; hence by [6, Theorem 3.2.13(2)] we have that
Cf(C;”*M ) is a weak equivalence in Spt>,.

By Proposition 3.5.11 we have that R,C,?M is a weak equivalence in Rge A-mod(.),

. . Co'M . . .
then lemma 3.5.18(2) implies that Ry’ is a weak equivalence in chﬁsptim,,.

£,C" M 2, RmCI"M . .
Now, C;"7* " and C3 " ™ % are both weak equivalences in chffSptg/’%*. Thus,

the two out of three property for weak equivalences implies that C;:‘ (RS{’ M) is a weak
equivalence in ch“Spt?ﬂ/l*. However, by construction, C;’C;*M and C}RnCo*M
are both Cgf’fz-colocal; therefore [6, Theorem 3.2.13(2)] implies that C’;"(R,C,;" M) is a
weak equivalence in Spt?ﬂft*.
cr M
We already know that C>*(R' = ) is a weak equivalence in Spt> M., and definition

3.5.2 together with Theorem 2.8.4 imply that Rﬁ‘;"M is also a weak equivalence in
Sptqzwﬁ/l*. Therefore, to show that C’f Rm G M is a weak equivalence in Spt‘%/’lft*, it
suffices to check that C;: oM 55 a weak equivalence in SptT.M,. Now, by construction
we have that Cf CM s a ngfz-colocal equivalence in Spt>M, and that CEC;"M
is a C%Z-colocal spectrum, thus by [6, Theorem 3.2.13(2)] it only remains to show
that C"M is Cgi;fz—colocal. But this follows from our hypothesis which says that A is

Cgf’fz—colocal together with Proposition 3.5.20. This finishes the proof. O

Remark 3.5.23. — Notice that Theorem 8.5.22 does not follow from the general non-
sense (see Proposition 8.5.15), since it gives a compatibility between compositions of
left and right adjoints.

Theorem 3.5.24. — Fizq € Z. Let f : A — A’ be a map between cofibrant ring spectra
in Spt’?m*, which is compatible with the ring structures. Assume that there exists
p € Z such that A, A’ are both Cff’rz-colocal in Spt%ﬂft* and f is a weak equiva-
lence in Rc:ﬁSptgﬂ/l* (equivalently in Rcr A-mod(M.)). Then f induces a Quillen
equivalence between the (q— 1)-connected motivic stable model structures of A and A’
‘modules:

(A" A4 —,U,9) : Rga A-mod(M,) —— Rpa A’-mod(M.)
Proof. — Since A and A’ are C%>-colocal, [6, Theorem 3.2.13(2)] implies that f is a
eff

weak equivalence in Spt?/’%*. Therefore, the result follows directly from proposition
3.5.19. 0
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Theorem 3.5.25. — Consider the following set of maps in A-mod(M.) (see Theo-
rem 3.3.26):

(75) L™<q)={ldAV (Y, ) ANF2(S"AG, AUL) —
ANFE(D™ AGS, AUL) |[FE(STAGE, AUL) € %7}

The left Bousfield localization of A-mod(M.) with respect to the L™(< g)-local
equivalences exists. This new model structure will be called weight<? motivic stable.
LcqA-mod(M,) will denote the category of A-modules equipped with the weight<?
motivic stable model structure, and Lq4# (A-mod) will denote its associated homo-
topy category. Furthermore the weight<? motivic stable model structure is cellular,
left proper and simplicial; with the following sets of generating cofibrations and trivial
cofibrations respectively:

Ipm(<g) = Tamod = Unzo{A A FE (Y, — (A%)4)}

JL"‘((q) = {] . A — B}
where j satisfies the following conditions:

1. j is an inclusion of Ia_ymoq-complezes.

2. j is a L™(< q)-local equivalence.

3. the size of B as an I4_moq-complez is less than k, where k is the regular cardinal
defined by Hirschhorn in [6, definition 4.5.3].

Remark 3.5.26. — Notice that the model category L<qut§3m* is not a symmetric
monoidal model category (see Remark 3.4.13), i.e. the smash product and the model
structure are not compatible, therefore in general it is not possible to use the adjunction

(AN —,U, ) : SptZ(dm|s)nis — A-mod

for the construction of a model structure on the category of A-modules. However,
if A satisfies additional conditions (see Proposition 3.5.41), then the adjunction
above induces a model structure on the category of A-modules which coincides with
LqA-mod(M.) (see Proposition 3.5.41 and Theorem 3.5.44).

Definition 3.5.27. — Let W denote a fibrant replacement functor in L, A-mod(M.);
such that for every A-module M, the natural map:

m,M

M——q—e-W;nM

is a trivial cofibration in LqA-mod(M.), and Wi* M is L™(< q)-local in A-mod(M,).
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Proposition 3.5.28. — Q., is also a cofibrant replacement functor in L, A-mod(M.)
(see definition 3.5.1), and for every A-module M the natural map

(o}
QmM — M

is a trivial fibration in L., A-mod(M.).

Proposition 3.5.29. — Let M be an A-module in SptZM,. We have that M is L™(<
q)-local in A-mod(M.) if and only if UM is L¥(< q)-local in Spt2M,.

Proposition 3.5.30. — The adjunction:

(— A SYHQs1,¢) : LegA-mod (M)

LgA-mod(M,)

is a Quillen equivalence, and the homotopy category L,4#(A-mod) associated to
L.qA-mod(M.) has the structure of a triangulated category.

Corollary 3.5.31. — L.gA-mod(M,) is a right proper model category.
Proposition 3.5.32. — We have the following Quillen adjunction:
(id,id, ¢) : A-mod(M,) — L<qA-mod(M,)

which induces and adjunction:

(@my Wi, ) : e (A-mod) — > L (A-mod)
of exact functors between triangulated categories.
Theorem 3.5.33. — The adjunction:

(AN =,U, ) : Lo SptFM, — L<gA-mod(M.)

given by the free A-module and the forgetful functor is a Quillen adjunction, and it
induces an adjunction:

(AAQu=, UW,9) : Logi™(S) — LgH(A-mod)

of exact functors between triangulated categories.
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Proposition 3.5.34. — We have the following commutative diagram of left Quillen
functors:

Spt> M.
id id
/ AA‘\
Lg1Sptp My —— L SptZ M,
(76) [
A-mod(M.,) An-
L<g+1A-mod(M,) L.qA-mod(M.)

and the following associated commutative diagrams of homotopy categories:

M (A-mod)
(77) () ANQw- L<qid(A-mod)
\ %
Leq#™(
SH(A- mod)
(78) L <qif# (A-mod) H(S)
uwr” /‘;:
Lo (S)
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Theorem 3.5.35. — We have the following commutative diagram of left Quillen func-
tors:

id id

L<q418ptp M > Legr1A-mod(M,)

AN—

id id

(79) SPEEM, ~> Ly SptE, — LegA-mod(.) <= A-mod(,)

id id

L<q_1Spt12~/"l/l*A—> L4—1A-mod(M,)

AN—

id id

and the following associated commutative diagrams of homotopy categories:

L<q+1d}’(2(3)‘@£<q+1d%(A—mod)
7 ™~

QE QZ Qm Qm
/ \

(80) M (S) —Qz— L<qd}’(2(5)mL<qW(A'm0d) <Qm— H(A-mod)

N _—

Qs Qs Qm Qm

I —
L<q—1WE(5A/@;P<q—1M(A'mOd)
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Lequid(S) 5 L<qridh(A-mod)

q+1
/WE wm \v'"

e W ! RN
(81)  ME(S) <WE— L, H(S) owy Lo (A-mod) —W;"> 4 (A-mod)
Wi, Wi, wrn, wr 1/
~ _—

Leq ¥ (S)m a1 (A-mod)

Lemma 3.5.36. — Let f : A — A’ be a map between cofibrant ring spectra in Spt2M,,
which is compatible with the ring structures. If g: M — N is a L™(< q)-local equiva-
lence in A-mod(M,), then idAg Qmg: A AaQmM — A ANaAQrN isa Lm'(< q)-lo-
cal equivalence in A'-mod(M.,), where Q., denotes a cofibrant replacement functor in
A-mod(M,).

Proof. — Let Z be an arbitrary L™ (< g)-local A’-module in A’-mod(,). Lemma
2.8.6 implies that A’ Aq QmM, A’ Ag QN are both cofibrant in A’-mod(M, ). There-

fore it suffices to show that the induced map

(idAaQmg)”

Ma'pA’-mod(A, ANa QmN, Z) MapA'-mod (A/ Aa QmMa Z)

is a weak equivalence of simplicial sets. However, using Proposition 2.8.8 we get the
following commutative diagram, where the vertical maps are isomorphisms of simpli-
cial sets

(idAAQmg)”*
Ma'pA’—mod(A, Aa Qva Z) - >

4

MapA-mod(QmN’ UZ)

Ma'pA'-mod(A, Aa Qva Z)

lg

Ma'pA-mod (Qva UZ)

(Qmg)*

Finally, Proposition 3.5.29 implies that UZ is L™ (< g¢)-local in A-mod (M, ), therefore
the bottom row is a weak equivalence of simplicial sets, since by hypothesis g is a
L™(< g)-local equivalence in A-mod(M.). Hence, the two out of three property for
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weak equivalences implies that the top row is also a weak equivalence of simplicial
sets, as we wanted. O

Proposition 3.5.37. — Let f : A — A’ be a map between cofibrant ring spectra in
Spt%ﬂfl*, which is compatible with the ring structures. Then the adjunction:

(A"Aa —,U,p) : LegA-mod(M,) — Ly A'-mod(M.)

is a Quillen adjunction.

Proof. — Lemma 2.8.6 implies that A’ Ag — : A-mod(M,) — A’-mod(M,) is a left
Quillen functor. Consider the following commutative diagram of left Quillen functors:

A,/\A—

A-mod(M,) A’-mod(M.)

o Ji

LgA-mod(M,) Z’/\_Ai L A'-mod(M.)

then the universal property of left Bousfield localizations together with lemma 3.5.36
imply that the dotted arrow A’ A4 — is a left Quillen functor. O

Lemma 3.5.38. — Let f : A — A’ be a map between cofibrant ring spectra in
Spt?ﬂ/l*, which is compatible with the ring structures. If f is a weak equivalence in
SptZ M, (equivalently in A-mod(M.,)), then for every L™ (< q)-local A-module M in
A-mod(M,), we have that Q,,M and UR,, (A’ Aa QM) are also L™(< q)-local in
A-mod(M.), where Q., denotes a cofibrant replacement functor in A-mod(M.) and
R, denotes a fibrant replacement functor in A’-mod(M.).

Proof. — Since M is L™(< g)-local, it follows that M is fibrant in A-mod(M.,). By
definition we have that the natural map
Qm
QM —/— M

is a trivial fibration in A-mod(M.), therefore Q,, M is also fibrant in A-mod(M,).
Hence [6, Lemma 3.2.1(a)] implies that Q,, M is L™(< g)-local. Proposition 2.8.7 im-
plies that the adjunction (A’ A4 —, U, ¢) is a Quillen equivalence between A-mod(.)
and A’-mod (M, ), therefore we have that U R, (A’ A4 QmM) is fibrant in A-mod (M),
and [10, Proposition 1.3.13(b)] implies that the composition

A'AAQmM
NMQmM ( m! )
—_—

QmM — U(A/ Aa QmM) URm’(AI A4 QmM)

is a weak equivalence in A-mod(M.). Since we already know that Q,M is L™(<
q)-local, using [6, Lemma 3.2.1(a)] again we get that UR,, (A’ Ax QM) is also
L™(< g)-local in A-mod(M,). This finishes the proof. O
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Lemma 3.5.39. — Let f : A — A’ be a map between cofibrant ring spectra in Spt%/‘lft*,
which is compatible with the ring structures. If f is a weak equivalence in Sptizwﬂ/l*
(equivalently in A-mod(M,)); then g : M — N is a L™(< q)-local equivalence in
A-mod(M.) if and only if idA A Qmg : A NAQmM — A'AgQmN is a L™ (< q)-local
equivalence in A’-mod(M.), where Q., denotes a cofibrant replacement functor in

A-mod(M,).

Proof. — (=): It follows directly from Lemma 3.5.36.

(«<=): Assume that id Ay Qmg is a L™ (< q)-local equivalence in A’-mod (M, ), and
let Z be an arbitrary L™ (< q)-local A-module in A-mod(,). We need to show that
the induced map:

(Qmg)”
MapA-mod(QmN’ Z) —_— Ma'pA-mod(QmM) Z)

is a weak equivalence of simplicial sets.

But Proposition 2.8.7 implies that the adjunction (A’ Ag —,U,¢) is a Quillen
equivalence between A-mod(M.) and A’-mod(M.), therefore using [10, Propo-
sition 1.3.13(b)] we have that all the maps in the following diagram are weak
equivalences in A-mod (M, ):

A'AAQmZ
Q,Zn U(le Axm )oNQm 2

Z QmZ URm’(Al Aa QmZ)

where R, denotes a fibrant replacement functor in A’-mod(/#,). Lemma 3.5.38 im-
plies in particular that Z, Q.nZ, UR,/ (A’ Aa QmZ) are all fibrant in A-mod(M,).
Now using the fact that A-mod(M,) is a simplicial model category together with
Ken Brown’s lemma (see Lemma 1.1.5) and the two out of three property for weak
equivalences, we have that it suffices to prove that the induced map:

Ma'pA-mod(QmNa UR, (A, v QmZ))
|/(ng)*
Ma’pA-mod(QmM, URm' (Al N4 QmZ))

is a weak equivalence of simplicial sets. Using the enriched adjunctions of proposition
2.8.8, we get the following commutative diagram where all the vertical arrows are
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isomorphisms:

Ma'pA-mod (QmN7 URm’ (A, Aa QmZ))

W

MapA-mod (QmMa URm’ (A/ N4 QmZ))

R

MapA’-mod(A/ Na QmN, Rm’ (A, Aa QmZ))

\‘%

Ma‘pA’-mod (A, v QmMy Ry (A, Na QmZ))

Finally, Lemma 3.5.38 implies that UR,/ (A’ A4 @nZ) is L™(< g)-local in
A-mod(M,), therefore by Proposition 3.5.29 we have that R, (A’ Ax QnZ) is
L™ (< g)-local in A’-mod(M,). Since id Ay Qmg is a L™ (< g)-local equivalence
and A’ Aa QmM, A’ A4 QN are both cofibrant in A’-mod (M, ), it follows that the
bottom row in the diagram above is a weak equivalence of simplicial sets. This implies

R

that the top row is also a weak equivalence of simplicial sets, as we wanted. O

Proposiiion 3540. — Let f : A — A’ be a map between cofibrant ring spectra in
Spt‘;:wm*, which is compatible with the ring structures. If f is a weak equivalence in
Spt=M,, then the adjunction:

(A" Aa =, U, @) : LegA-mod(M,) — Ly A’ -mod(M,)
is a Quillen equivalence.
Proof. — Proposition 3.5.37 implies that the adjunction (A’ Ag —, U, ¢) is a Quillen

adjunction. Using Corollary 1.3.16 in [10] and Proposition 3.5.28 we have that it
suffices to verify the following two conditions:

1. For every fibrant A’-module M in L.,A’-mod(M,), the following composition

id UM .
A A QUM —24 D g p UM~

is a weak equivalence in L.gA’-mod(M.), where @Q,, denotes a cofibrant re-
placement functor in A-mod(M.) (see proposition 3.5.28).
2. A’ ANy — reflects weak equivalences between cofibrant A-modules in
L.gyA-mod(M,).
(1): By construction L4 A’-mod(M,) is a left Bousfield localization of A’-mod(.),
therefore the identity functor

id : L<qA"-mod(M,) — A’-mod(M,)

ASTERISQUE 335



3.5. FURTHER MULTIPLICATIVE PROPERTIES OF THE SLICE FILTRATION 249

is a right Quillen functor. Thus M is also fibrant in A’-mod(%,). Proposition 2.8.7 im-
plies that the adjunction (A’ A4 —,U, ¢) is a Quillen equivalence between A-mod(M.,)
and A’-mod(JM,), hence using [10, Proposition 1.3.13(b)] we have that the following
composition is a weak equivalence in A’-mod(M.):

idA4(QYM)

A'Ag QUM A ANfJUM 2> M

Therefore [6, Proposition 3.1.5] implies that the composition above is a L™ (< g)-local
equivalence.
(2): This follows immediately from Proposition 3.5.28 and Lemma 3.5.39. a

Proposition 3.5.41. — Let A be a cofibrant ring spectrum in Spt?ﬂ/l*, which is also
cofibrant in S°SptEM,. The adjunction:

(A A=,T, 30) : Spt?(MIS)NiS — A-mod

between symmetric T-spectra and A-modules, together with the model structure
L<qut¥ﬂfl* (see Theorem 3.8.26), induces a model structure on A-mod, which we
will denote by f:;A-mod(/’%*); i.e.a map f : M — N of A-modules is a fibration
or a weak equivalence in E:;A-mod(ﬂ/l*) if and only if Uf is a fibration or a weak
equivalence in L<qut¥m*. Furthermore, the model category i:;A-mod(/’l/L*) 18
cofibrantly generated, with the following sets of generating cofibrations and trivial
cofibrations respectively:

Itm<qy = Iamoa=ANIE
= Jldri: ANFE(Yy) - AAFE((AY)1) | U € (dmls),n > 0}
k>0

where j : X — Y satisfies the following conditions:
1. j is an inclusion of I’k -complezes in L<qut¥ﬂfl*.
2. j is a L¥(< q)-local equivalence in SptTM,.
3. the size of Y as an Ig -complez is less than k, where k is the regular cardinal
defined by Hirschhorn in [6, definition 4.5.3].

Proof. — Using a result of D. Kan (see Theorem 11.3.2 in [6]), we have that it is
enough to prove that the following conditions hold:

1. The domains of Iym(<q) (respectively jL—"‘\(;q/)) are small relative to the
I m(<q)-cells (respectively Jpm(<q)-cells) in the category of A-modules.

2. U maps relative m—cell complexes to weak equivalences in L<qut¥m*.
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(1): By adjointness it suffices to check that the domains of I LE(< q) (respec-

tively J 5(< q)) are small relative to the I;m .g)-cells (respectively m-cells) in

Spt7(¢m|s)nis- Theorem 3.3.26 implies that L ,Spt3, is in particular a cofibrantly

generated model category with the sets I;» and J as generating cofi-
L¥(< q) L &

(<
brations and trivial cofibrations, therefore by [10, Propositio(n 2?%.16] it only remains
to show that all the maps in I;m(<q)-cells (respectively m-cells) are cofibrations
(respectively trivial cofibrations) in L<qut§3/‘%*.

Since A is in particular cofibrant in Spt%ﬂft* and the cofibrations in Sptzzwﬂ/l* and
L<qut¥ﬂ4* are identical, Proposition 2.6.28 implies that all the maps in I;m (g are
cofibrations in L<qut§‘3«ﬂfl*. However, the class of cofibrations is closed under coprod-
ucts and filtered colimits, and the limits and colimits in the category of A-modules
are computed in Spt%(d}nl 5)Nis, hence all the maps in Iy m(<q-cells are cofibrations
in L,SptyM..

By hypothesis A is cofibrant in SOSptgﬂ/l*, and every map j in J I%(< q) is clearly
a trivial cofibration in L<qut§\:~ﬂfl*. Since Sq‘ISptgﬂ/l* is a right Bousfield localiza-
tion with respect to L<qut§‘:/‘1/l*, we have that every map j in J L5(< q) is also a
trivial cofibration in Sq“ISpt;ﬁﬂfl*. Therefore, Theorem 3.4.12 implies that all the
maps in Jpm (<4 are trivial cofibrations in Sq—lsp%m*, and since Sq_ISptgiﬂfl* is a
right Bousfield localization with respect to L<qut§3ﬂ/Z*; we get that all the maps in

jL_m\(:q/) are also trivial cofibrations in L<qut§Jlfl*. Finally, since the class of trivial
cofibrations is closed under coproducts and filtered colimits, and the limits and col-
imits in the category of A-modules are computed in SptZ(m|s)nis, we have that all
the maps in m—cells are also trivial cofibrations in L<qut§m*.

(2): We have shown that every map in m—cells is a trivial cofibration in
L<qut¥ﬂfl*. In particular, every relative m—cell complex is a weak equivalence
in L<qut:,2~7l/l*, as we wanted. O

Remark 3.5.42. — Notice that we can not use the same argument as in Theo-
rem 2.8.4 to construct the model structure I’::;A-mod(/"l/t*), since the model category
L<qut¥ﬂ/l* is not a symmetric monoidal model category (see Remark 8.4.13), i.e. the
monoidal structure on symmetric T-spectra is not compatible with the model structure
on L<qut¥ﬂ/l*. Therefore, the hypothesis of A being cofibrant in SOSptTEJ%* is really
necessary.

Lemma 3.5.43. — Let A be a cofibrant ring spectrum in Spt%ﬂfl*, which is also cofi-

brant in SOSptyM,. Then the model category Z:;A-mod(ﬂ/l,.) described in Proposi-
tion 8.5.41 is simplicial.
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Proof. — Since the cotensor objects NX for the simplicial structure are identical
in f:;A—mod(ﬂ/l*) and L,SptrM., the results follows from proposition 3.5.41 and
theorem 3.3.26 which implies in particular that L<qut¥m* is a simplicial model
category. O

Theorem 3.5.44. — Let A be a cofibrant ring spectrum in Spt?-ﬂ/l*, which is also cofi-
brant in S°SptT M.. We have that the model structures L,A-mod(M.,) (see Theo-
rem 3.5.25) and L<q -mod(M,) (see Proposition 3.5.41) on the category of A-mod-
ules are identical.

Proof. — Theorem 3.5.25 and Proposition 3.5.41 imply that both L.,A-mod(M,)
and L.4A-mod(M,) have

J{idAi: ANFE(YL) = AANFP((A])4) | U € (dmls),n > 0}

k>0

as set of generating cofibrations. Hence the cofibrations in L.4,A-mod(M,) and
ZA—mod(ﬂ/l*) are exactly the same. It suffices to check that the weak equivalences
in both model structures are identical.

However, Theorem 3.3.26 and Lemma 3.5.43 imply that L.,A-mod(M,) and
E:;A-mod(/’l/l*) are both simplicial model categories. Therefore, corollary 1.6.11(2)
implies that it is enough to show that the fibrant objects in L.4A-mod(M,) and
Z:;A-mod(ﬂ/l*) coincide. But this follows directly from Propositions 3.5.29 and
3.5.41. O

Theorem 3.5.45. — Let A be a cofibrant ring spectrum in Spt;“:m*, which is also cofi-
brant in SOSptgm*, and let M be an arbitrary A-module. Then the solid arrows in
the following commutative diagram:

R, M~ — — — - — — — ———->Q2WQ
©= Qs(RM) Q| Q= (@M) QEQ,"‘ Qe (W Qm™M) "
| | |
|
(82) @™ Q¥ | Qg | qpiem|
| | |
Y Y m Y
R M~ M i QM e W QM
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induce a natural equivalence between the functors:

Leq#(A-mod)

y%\

(83) ## (A-mod) Lo, ™ (S)

HZ(S)

Proof. — 1t suffices to show that all the maps W @nM QM RM and Qi are
weak equivalences in L<qut¥ﬂfl*. Proposition 3.3.28 implies that Qg"‘M is a weak
equivalence in L<qut§-7%*.

Since A is cofibrant in SOSpti‘,?/’l/l*, Theorem 3.5.44 and Proposition 3.5.41 imply
that it is enough to show that Wy»9mM QM and R} are weak equivalences in
L4A-mod(M,). By construction (see definition 3.5.27) W9~ s a weak equiva-
lence in L,A-mod(M.), and Proposition 3.5.28 implies that QM is a weak equiva-
lence in L.,A-mod (M, ). Finally, by construction (see definition 3.5.2) RM is a weak
equivalence in A-mod(/,), and [6, Proposition 3.1.5] implies that R is also a weak
equivalence in L.,A-mod(/K,). This finishes the proof. O

Remark 3.5.46. — Notice that Theorem 3.5.45 does not follow from the general non-
sense (see Proposition 3.5.34), since it gives a compatibility between compositions of
left and right adjoints.

Theorem 3.5.47. — Fizq € Z. Let f : A — A’ be a map between cofibrant ring spectra
in Spt?/’%*, which is compatible with the ring structures. Assume that one of the
following conditions holds:
1. f is a weak equivalence in Spty M, (equivalently in A-mod(M,)).
2. There exists p € Z such that A, A’ are both L¥(< p)-local in Spt2M, and f is
a weak equivalence in L<pSpti}:~m,,.
3. There exists p € Z such that A, A’ are both Cg’f‘fz-colocal in Sptqzwﬂ/l* and f is a
weak equivalence in RC:“Spt?m* (equivalently in Rcr A-mod (M) ).

Then f induces a Quillen equivalence between the weight<% motivic stable model struc-
tures of A and A’ modules:

(A" A4 =,U,p) : LegA-mod(M,) — Lcq A’ -mod(M,)

Proof. — (1): This is just proposition 3.5.40.
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(2): Since A and A’ are L=(< p)-local in Spt¥ M., [6, Theorem 3.2.13(1)] implies
that f is a weak equivalence in Spt?ﬂ/l*. Therefore the result follows from Proposi-
tion 3.5.40.

(3): Since A and A’ are Cff’fz-colocal in Spt2>M,, using [6, Theorem 3.2.13(2)] we
have that f is a weak equivalence in Spt?ﬂ/t*. Thus, the result follows from Proposi-
tion 3.5.40. O

Definition 3.5.48. — We consider the following set of A-modules
S™(q) = {AANFP(S"AG:, AUL) €C™|s—n=gq} CCH"
(see definition 8.3.49).

Theorem 3.5.49. — The right Bousfield localization of the model category
Lcg+1A-mod(M,) with respect to the S™(q)-colocal equivalences exists. This new
model structure will be called g-slice motivic stable. S?A-mod(M,) will denote the
category of A-modules equipped with the q-slice motivic stable model structure, and
SIA (A-mod) will denote its associated homotopy category. Furthermore, the g-slice
motivic stable model structure is right proper and simplicial.

Remark 3.5.50. — Notice that we can not use the adjunction (A A —,U, )
SISptEM, — SIA-mod(M,) for the construction of SIA-mod(M,), since we
do not know if the model structure for Squtgﬂfl* is cofibrantly generated.

Definition 3.5.51. — Let P* denote a cofibrant replacement functor in S?A-mod(M.);
such that for every A-module M, the natural map
P'm.,M
quM 2 s M
is a trivial fibration in S9A-mod(M.), and P*M is always a S™(q)-colocal A-module
in Legr1A-mod(M,).

Proposition 3.5.52. — W[, is also a fibrant replacement functor in S?A-mod(M.)
(see definition 3.5.27), and for every A-module M the natural map
m,M

w
q+1 m
M — Wi, M

is a trivial cofibration in S7A-mod(M,).

Corollary 3.5.53. — Let f : M — N be a map of A-modules. Then f is a S™(q)-colocal
equivalence in L.gy1A-mod(M,) if and only if

wm o f
m q+1
W M

W, N

is a CIi™-colocal equivalence in A-mod(M.).
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Proposition 3.5.54. — The adjunction
(= A8, Qs1,9) : S2A-mod(M,) — STA-mod (M)

is a Quillen equivalence, and ST# (A-mod) has the structure of a triangulated cate-
gory.

Proposition 3.5.55. — We have the following adjunction

(P, WJt1,p) : STM((A-mod) — Lqs1f#(A-mod)
between exact functors of triangulated categories.
Proposition 3.5.56. — The identity functor

id : $7A-mod(M,) — Rce A-mod(M.)

s a right Quillen functor, and it induces the following adjunction

(CT"Wit1,9) : Ros M (A-mod) —— S94#(A-mod)
of exact functors between triangulated categories.

Lemma 3.5.57. — If M is a cofibrant A-module in SYA-mod(M,), then the map * —
M is a trivial cofibration in L.qA-mod(M,).

Theorem 3.5.58. — The adjunction
(AA=,U,p): SISptEM, — S?A-mod(M,)

giwen by the free A-module and the forgetful functors is a Quillen adjunction, and it
induces an adjunction

(ANPE—UWIL,, @) : SIS (S) — SItH (A-mod)
of exact functors between triangulated categories.

Proposition 3.5.59. — We have the following commutative diagram of left Quillen

functors:
Res Sptyst, "5 Ros A-mod(M.)
(84) idt id
b
SSptp M. — > S?A-mod (M)
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and the following associated commutative diagrams of homotopy categories:

Rga o (A-mod)

z

/
<3

)  Rond4(S) e SO (A-mod)
X %
SIMT(S)
S (S)
(86) S (A-mod) TWets Roa JH*(S)

eff

%\ URn

Rga i (A-mod)

Theorem 3.5.60. — Let A be a commutative cofibrant ring spectrum in Sptﬁ;‘:m*. Then
the symmetric monoidal structure for the category of A-modules, induces the following
Quillen bifunctor in the sense of Hovey (see definition 1.7.4):

— Aa —: SPA-mod(M,) x S9A-mod(M,) —> SPT9A-mod(M,)

Proof. — The proof is similar to the one given for Theorem 3.4.12. We leave the
details to the reader. O

If the ring A is not commutative, then we need to impose some additional conditions
in order to get a weaker version of the previous result (see Theorem 3.5.65).

Lemma 3.5.61. — Let f : A — A’ be a map between cofibrant ring spectra in Spt%ﬂfl*,
which is compatible with the ring structures. Then the adjunction:

(A" Aa —,U,p) : S2A-mod(M,) — S?A’-mod(M,)

is a Quillen adjunction.

Proof. — Proposition 3.5.37 implies that U : Lg41A’-mod(M,) — L<g41A-mod(M,)
is a right Quillen functor. Consider the following commutative diagram of right Quillen
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functors:

Legi1A-mod(M,) —L> Lg41A-mod(M,)

o Ji

S1A’-mod(M,) — - ke S?A-mod (M)

then the universal property of right Bousfield localizations together with proposition
2.8.8 imply that the dotted arrow U is a right Quillen functor. O

Proposition 3.5.62. — Let f : A — A’ be a map between cofibrant ring spectra in
Spt;‘:wﬂ/l*, which is compatible with the ring structures. If f is a weak equivalence in
Spt?ﬂfl*, then the adjunction:

(A"Aa—,U, ) : SYA-mod(M,) — STA"-mod(M.)

is a Quillen equivalence.

Proof. — We have shown in lemma 3.5.61 that
(A" Aa —, U, ) : S9A-mod(M,) — S?A’-mod(M.)

is a Quillen adjunction.
Now let 7, € denote the unit and counit of the adjunction (A’ Ay —,U, ). By
Corollary 1.3.16(c) in [10], it suffices to check that the following conditions hold:

1. For every cofibrant A-module M in S?A-mod (M, ), the following composition

. m’,AI/\AM
nm=fAaid q+1

M2AANM ——"2—s A Ag M ™ (A’ Aa M)
is a weak equivalence in S?A-mod(M,), where W;’}_’l denotes a fibrant replace-
ment functor in S7A’-mod(M,) (see Proposition 3.5.52).

2. U reflects weak equivalences between fibrant objects in S7A4’-mod(M,).

(1): Since id : S9A-mod(M.) — L<q+1A-mod(M,) is a left Quillen functor, we have
that M is also cofibrant in L<g441A-mod(M,). Hence, theorem 3.5.47(1) implies that
W;‘L,I’AlAAM onu is a weak equivalence in Lcg41A-mod(M,). Finally, by (6, Proposi-
tion 3.1.5] we have that WﬁliA’AAM onu is a weak equivalence in S9A-mod (M), as
we wanted.

(2): Let g : M — N be a map between fibrant A’-modules in S9A’-mod(M,), such
that Ug is a weak equivalence in S?A-mod(M,).

Fix FZ(S" AG2, AU,) € S%(q) (see definition 3.3.49). Using the enriched adjunc-

tions of Proposition 2.8.8, we get the following commutative diagram of simplicial sets
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where the vertical arrows are isomorphisms

Ma'pA'-mod(Al A FE(ST A an A U+)’ M)

\

Ma'pA’-mod(Al A FE(ST A an A U+)a N)

1R

IR

Ma‘pA-mod(A A FnE(ST A G;s'n, A U+)’ UM)

M

Map 4 .q(AAFE(S" AGS, AU,),UN)

Now M and N are both fibrant in Lgy1A’-mod(M,) (this follows from Proposi-
tion 3.5.52), hence Proposition 3.5.37 implies that UM and UN are also fibrant in
L 4+1A-mod(M,). Therefore, the bottom row in the diagram above is a weak equiva-
lence of simplicial sets, since by hypothesis Ug is a weak equivalence in S?A-mod(M.).
Finally, by the two out of three property for weak equivalences we get that the top row
is also a weak equivalence of simplicial sets, and this implies that g is a weak equiva-
lence in S9A’-mod(M,), since M and N are both fibrant in L.g41A’-mod(M,). O

Lemma 3.5.63. — Let f: A — A’ be a map between cofibrant ring spectra in Spt%ﬂfl*,
which is compatible with the ring structures. Assume that A and A’ are cofibrant in
SOSpt=M,. Then w: M — M’ is a weak equivalence in STA’-mod(M,) if and only
if Uw is a weak equivalence in STA-mod(M,).

’

Proof. — Let Wi, Wi, denote fibrant replacement functors in L<41A-mod (. )
and L.g4+1A’-mod(M,) respectively, and let N be an arbitrary A’-module. We have
the following commutative diagram in L.q41A-mod(M,):

m,N

w
q+1 m

N Wi, N
m/ N /N
Wq+1 [ LW‘;?FI(WJ:I )

m’ m m’

Wq+1N m! Wq+1 q+1N
Wm,Wq+1N

since A, A’ are both cofibrant in SOSptf?w/’l/l*, Theorem 3.5.44 and Proposi-
tion 3.5.41 imply that all the maps in the diagram above are weak equivalences
in L<g41A-mod(M,).

Now fix AA F2(S" AGE, AU;) € S™(q) (see definition 3.5.48). Using the nat-
urality of the diagram above together with Proposition 2.8.8, we get the following
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commutative diagram of simplicial sets:

Ma‘pA’-mod(A, A FE(ST A an A U+)’ W;-‘:-IIM)

W' w).
= Ma'pA’-mod(A, A FE(ST A Gin A U+)7 W;—T—/IM’)
Ma‘pA-mod(AAFE(ST /\an A U+)’UW¢;n+’1M) =
W w).
(W Map 4 moa (A A FE(ST AGS, AUL), UWIY, M)
Map 4.moa(A A FE(S™ AGE, AUL), Wi UWIY, M) WM
L (UW W)
UWIL (W M)). Map 4 moda(AAFZ(STAGS, AUL), W, UW™ M)
Map 4 moa(A A FZ(S™ AGS, AUL), UWTE M) W (WM,
YW w).

MapA-mod(A A FE(ST A an A U+)v UW:;?—IMI)

where the top vertical arrows are isomorphisms of simplicial sets. But L <441 A-mod(M,),

Lg+1A’-mod(M,) are simplicial model categories (see theorem 3.5.25) and the nat-

! !
m,UW™ M "M m,Uw™m M " M
’ q+1 m m, ’ q+1 m m,
ural maps W, , UW, (W ), Wi and UW7,(W,1{" ) are

gq+1
all weak equivalences between fibrant objects, thus by Ken Brown’s lemma (see
Lemma 1.1.5) all the vertical arrows are weak equivalences of simplicial sets.
Therefore, the top row is a weak equivalence of simplicial sets if and only if the

bottom row is a weak equivalence of simplicial sets. This proves the claim. O

Proposition 3.5.64. — Let A be a cofibrant ring spectrum in Spt?ﬂfl*, which is also
cofibrant in SOSpt‘;‘wﬂ/l*. For every cofibration f : M — N in S?A-mod(M.) we have
that f is also a cofibration in qupt:%m*.
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Proof. — Let (see Theorem 3.5.25)

AK) = Jpm(<qs1) U {ANEE(S"AGE, AUL) ® 0AF —
ANFZ(S" NG ANUL)®AF | s —n=gq,k>0}

Since L<q41A-mod(M,) is in particular a simplicial model category (see Theo-
rem 3.5.25), using definitions 5.2.1, 16.3.1 and Propositions 5.3.6, 16.1.3 in [6], we
have that f is a retract of a cofibration g : M — O in L.g41A-mod(M,) for which
there is a weak equivalence h : O — P in L.q41A-mod (M) such that the composition
h o g is a relative m-cell complex.

It is clear that it is enough to check that g is a cofibration in S"Spt%ﬂ/l*. Now,
using Lemma 5.3.4 in [6], we have that this follows from:

1. g is a cofibration in L<q+1Spt§~m*.
2. h is a weak equivalence in L<q+1Sptr§/‘l/l*.
3. hogis a cofibration in Squtjzﬂ/‘I/l*.

(1): Since L<g+1A-mod(M,) is a left Bousfield localization with respect to
A-mod(M,), we have that the cofibrations are exactly the same in both model
structures. Hence g is a cofibration in A-mod(M,), and Proposition 2.8.9 implies that
g is also a cofibration in Spt=,. But L<q+1Spt¥/‘lfl* is a left Bousfield localization
with respect to Spt?ﬂfl*, therefore g is a cofibration in L<g41 Spt?ﬂ/l*.

(2): Since A is cofibrant in S°Spt>M,, Theorem 3.5.44 and Proposition 3.5.41
imply that h is a weak equivalence in L.g41 Spt{,‘:wﬂ/l*.

(3): Let & denote the class of cofibrations in S9Spt>M,. Theorem 3.5.25 implies
that Jpm(<q+1) is a set of generating trivial cofibrations for L.g41A4-mod(/i,), and
since A is cofibrant in S’OSpt§7l/l*, theorem 3.5.44 together with Proposition 3.5.41
imply that all the maps in Jym(<441) are weak equivalences in L<q+1Spt§~ﬂfl*.

Now, L<q+1A-mod(M,) is a left Bousfield localization with respect to A-mod (M),
thus all the maps in Jym(<q41) are cofibrations in A-mod(Ji.), and Proposition 2.8.9
implies that the maps in Jpm(<441) are also cofibrations in Sptgm*. However,
L<q+1Spt§3ﬂ/l* is a left Bousfield localization with respect to Sptg‘wﬂ/l*, hence all the
maps in Jpm(<q41) are cofibrations in L<q+1Spt¥ﬂfl*.

Therefore, all the maps in Jpm(<441) are trivial cofibrations in L<q+ISpt¥ﬂft*. But
Squt;:‘w/’I/l* is a right Bousfield localization with respect to L<g4+1 Spt‘%m*, hence all
the maps in Jpm(<q41) are also trivial cofibrations in S9SptEM,. We have that in
particular Jym(<g4+1) is contained in @. On the other hand, by construction * —
FZ(S" A G2, AU,) are cofibrations in ch“Spt?/’I/l* for s — n = g, thus, Proposi-
tion 3.3.61 implies that * — F,,(S” A G2, A Uy) are also cofibrations in SISptZ.,
for s — n = q. By hypothesis the map * — A is a cofibration in SOSptgﬂfl*, then
Theorem 3.4.12 together with the fact that Squtgﬂ/l* is a simplicial model category
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(see Theorem 3.3.50) imply that
{ANFE(S"AGE, AUL)®OAF - ANEE(STAGE, AUL) @ A |
s—n=gq,k>0}

is also contained in €. Therefore, we have that all the maps in A(K) are contained in
G.

Finally since limits and colimits in A-mod are computed in Spt%(g&n|s)NiS, we have
that ho g is a relative ©-cell complex in SptZ(n|s)nis, and since § is clearly closed
under coproducts, pushouts and filtered colimits, we have that h o g is a cofibration
in SISptr,. O

Theorem 3.5.65. — Let A be a cofibrant ring spectrum in Spt%ﬂft*, which is also cofi-
brant in SOSptgﬂ/Z*. Then — A g — defines a Quillen adjunction of two variables (see
definition 1.7.4) from the p-slice motivic model structure for right A-modules and the
g-slice motivic model structure for left A-modules to the (p+q)-slice motivic symmetric
stable model structure:

— A4 —: SPA-mod(M,), x S9A-mod(M,); —= SP+ISptEL,

Proof. — By Lemma 1.7.5, it is enough to prove the following claim:
Given a cofibration ¢ : N — N’ in S9A-mod(M.); and a fibration f : X —» Y in
SP+4SptZ M,, the induced map

Homg,;» (N, X)

L(i‘ 2fx)

Homsptg (N, X) X Homsm? (N,Y) Homsptf. (N” Y)

is a fibration in S? A-mod(/M,), which is trivial if either ¢ or f is a weak equivalence.

However, Proposition 3.5.64 and Lemma 3.5.63 (1 is cofibrant in S°Spt>, by
Lemma 3.4.1) imply that ¢ is also a cofibration in Squtgw/’l/l*, which is trivial if 4
is a weak equivalence in S?A-mod(M,);. Now, it follows from Theorem 3.4.12 that
(3%, f+) is a fibration in SPSptyM, which is trivial if either i or f is a weak equiva-
lence. By Lemma 3.5.63 we have that it suffices to check that (¢*, f.) is a fibration in
SP A-mod (M, ).

By definition SPSpt:M, is a right Bousfield localization with respect to
L<p+1Spt¥m*, hence the fibrations in both model structures coincide. This im-
plies that (i*, f.) is a fibration in L<p+ISpt72~m*. Now, proposition 3.5.41 and
Theorem 3.5.44 imply that (i*, f.) is also a fibration in L ,4;A-mod(M,), since
we are assuming that A is cofibrant in SOSptgﬂ/l*. However, by construction
SP A-mod(M.), is a right Bousfield localization with respect to L<p41A-mod(M.)r,
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therefore the classes of fibrations in both model structures are identical. Thus (¢*, fi)
is a fibration in SP A-mod(M.),, as we wanted. O

Lemma 3.5.66. — Let f : A — A’ be a map between cofibrant ring spectra in Spt?ﬂ/l*,
which is compatible with the ring structures. Assume that A and A’ are cofibrant
in SOSptyM,. Furthermore, assume that A’ is also cofibrant in A-mod(M.). If
f is a weak equivalence in SOSptgﬂ/l*, then for every cofibrant A-module M in
S9A-mod(M,), the induced map

id
MAA M —I24 g M

is a weak equivalence in SYA-mod(M,).

Proof. — Lemma 3.4.1 implies that 1 is cofibrant in SOSptgﬂfl* and A is by hypothesis
cofibrant in SOSptgﬂfl*, thus by Lemma 3.5.63 it suffices to check that f A4 id is a
weak equivalence in Squtgm*,

Using Lemma 3.5.63 again, we get that f is a weak equivalence in S°A-mod (M.).
Now, M is cofibrant in S7A-mod(M,) and f : A — A’ may be considered as a map
of right A-modules; therefore theorem 3.5.65 together with Ken Brown’s lemma (see
Lemma 1.1.4) imply that it suffices to show that A and A’ are both cofibrant in
S%A-mod(M,).

We have that 1 is cofibrant in SOSpt)fw/‘l/l* by Lemma 3.4.1, therefore Theorem 3.5.58
implies that A is cofibrant in S°A-mod (M, ).

Now, since S°A-mod(M,) is a right Bousfield localization with respect to
L1 A-mod(M.), [6, Proposition 3.2.2(2)] implies that to show that A’ is cofibrant in
S° A-mod(M,) it suffices to check that A’ is cofibrant in L.; A-mod(/M,) and that f
is a weak equivalence in L; A-mod(M,).

On the other hand, L<;A-mod(M,) is a left Bousfield localization with respect
to A-mod(M,), hence A’ is cofibrant in L.y A-mod(,) since by hypothesis A’ is
cofibrant in A-mod(M.).

Finally, we are assuming that f is a weak equivalence in SOSptgﬂfl* and that A,
A’ are both cofibrant in S°SptFM,; therefore, [6, Theorem 3.2.13(2)] implies that
f is also a weak equivalence in L<ISpt§JI/Z*. But since A is cofibrant in SOSptgﬂfl*,
we can apply Proposition 3.5.41 and Theorem 3.5.44 to conclude that f is a weak
equivalence in L; A-mod(M,), as we wanted. a

Proposition 3.5.67. — Let f : A — A’ be a map between cofibrant ring spectra in
Spt‘%m*, which is compatible with the ring structures. Assume that A and A’ are
cofibrant in S°SptZM.,. Furthermore, assume that A’ is also cofibrant in A-mod(M,).
If f is a weak equivalence in SOSptgﬂfl*, then it induces a Quillen equivalence between
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the q-slice motivic stable model structures of A and A’ modules:

(A"'Aa =, U, @) : STA-mod(M,) — S?A’-mod(M.)

Proof. — We have shown in lemma 3.5.61 that
(A" Aa —,U,p) : S1A-mod(M,) — STA’-mod(M,)

is a Quillen adjunction.
Now let 7, € denote the unit and counit of the adjunction (A’ A4 —, U, ). By
Corollary 1.3.16(c) in [10], it suffices to check that the following conditions hold:

1. For every cofibrant A-module M in S?A-mod(M,), the following composition

m/ A'A g M
=fAaid
MEAANM -2 A M s ™ (A A M)

is a weak equivalence in S?A-mod(M,), where W +1 denotes a fibrant replace-
ment functor in S9A’-mod(M.) (see Proposition 3.5.52).
2. U reflects weak equivalences between fibrant objects in S?7A’-mod(M,).

(1): Lemma 3.5.66 implies that f A 4id is a weak equivalence in S?7A-mod(J, ), and
Lemma 3.5.63 implies that Wq"_’HA MM s also a weak equivalence in S7A-mod (M, ).
Therefore, the result follows from the two out of three property for weak equivalences.

(2): This follows immediately from Lemma 3.5.63. a

Theorem 3.5.68. — Let A be a cofibrant ring spectrum in Spt%ﬂfl*, which is also cofi-
brant in RCoHSptgﬂ/l*, and let M be an arbitrary A-module. Then the solid arrows in
the following commutative diagram:

5 5 ZepM) 5 CT(RY) )
CPWELCTM = = 5 CTOT M CEM CERnM

[ CEW,, ) | [

| . | |

| m m ,cm | m |
(87) Joy et o et g oM

[ | I

vcva cC™M > ]\vj ————— >R VM

1™~q m,Cm M q T T omm RM m

Wq_'_'l a Cq m
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induce a natural equivalence between the functors:

Res ()
(88) Rgs #(A-mod) SIgHZ(S)
X\ M
S (A-mod)
Proof. — Clearly, it is enough to prove that the maps :erlc ‘;"M, Cf ’C‘;nM, C‘IE(C;"*M )

and CT(RM) are all weak equivalences in SISpt7. ..

Lemma 3.4.1 implies that 1 is cofibrant in SOSptﬁ_,Ewﬂ/t*, and Proposition 3.3.61
implies that A is also cofibrant in S°SptZM,.

Now, Proposition 3.5.52 implies that W, is a fibrant replacement functor in
S9A-mod(M,), then using Lemma 3.5.63 we get that W‘;:_IC T M i a weak equivalence
in SISptTM,.

By construction Squtgm* is a right Bousfield localization with respect to
L<q+1Spt§~ﬂft*, and on the other hand, L.g41 Spt;,‘zﬂ/l* is a left Bousfield localization
with respect to Spt?ﬂfl*. Hence, [6, Proposition 3.1.5] implies that it suffices to show
that the remaining maps C;[J ’C‘TM, CZ(CmM) and CZ(RM) are weak equivalences
in Spt7M,. We will show that this is the case.

Since A is cofibrant in RCSRSpt?/’I/l*, Proposition 3.5.20 implies that C7"M is

. 2,00 M s . .
cofibrant in chﬂSpt¥ﬂfl*, and Cg “ is by definition a weak equivalence in

RogffSptgﬂ/l*; therefore [6, Theorem 3.2.13(2)] implies that C;: G M s a weak
equivalence in Spt?ﬂd*, since CqEC;"M is also cofibrant in RC:“Spt?/‘l/l*.

Since C(;\:C;"M and CqEM are both cofibrant in ch”Spt?wm* by construction,
using Theorem 3.2.13(2) in [6] we get that if C7(C;™™) is a weak equivalence in
chffSptgﬂ/l*, then it is also a weak equivalence in Spt3:M,. But it is clear that
qu CaM and C,;v"M are both weak equivalences in RCZ"Spt;‘Em*, then by the two out
of three property of weak equivalences, it is enough to check that the map C;”*M is
a weak equivalence in ch“Spt%/’I/l*. Applying lemma 3.5.18 we get that C;"’M is a
weak equivalence in ch“Spt?/’%*, since C’;"*M is by construction a weak equivalence
in chﬁA—mod(/‘l/l*).

Since C’M and CyR,, M are both cofibrant in ch“Spt%/‘l/t* by construction,
using Theorem 3.2.13(2) in [6] again, we get that if CZ(R)) is a weak equivalence
in ch“Spt¥ﬂ/l*, then it is also a weak equivalence in Spt%ﬂfl*. But it is clear that
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C’f’M and C;:’R’"M are both weak equivalences in Rga Spt2 M., then by the two out
of three property of weak equivalences, it is enough to check that the map RY is a
weak equivalence in Rcv;zff Spt?ﬂ/t*. However, Theorem 2.8.4 and definition 3.5.2 imply
that RM is a weak equivalence in Spt?/’%*, and by [6, Proposition 3.1.5] we have that
RM is a weak equivalence in chff Spt%‘:/’l/l*. This finishes the proof. O

Remark 3.5.69. — Notice that Theorem 8.5.68 does not follow from the general non-
sense (see Proposition 3.5.59), since it gives a compatibility between compositions of
left and right adjoints.

Theorem 3.5.70. — Fizq€ Z. Let f : A — A’ be a map between cofibrant ring spectra
n Spt?/’lfl*, which is compatible with the ring structures. Assume that one of the
following conditions holds:

1. f is a weak equivalence in Spt?ﬂft*.

2. There exists p € Z such that A, A’ are both L*(< p)-local in Spt> M, and f is
a weak equivalence in L<pSpt‘;J~ﬂ/l*.

3. There ezists p € Z such that A, A’ are both Cff’fz-colocal in Spt?ﬂfl* and f is a
weak equivalence in RCSHSP%M* (equivalently in Ry A-mod(M.)).

4. A, A’ are both cofibrant in RC;)“Sptgﬂ/l*, A’ is also cofibrant in A-mod(M.)
and f is a weak equivalence in SOSpt;’%J(%*.

5. A, A’ are both cofibrant in S°SptZM,, A’ is also cofibrant in A-mod(M,) and
f is a weak equivalence in SOSptg/’lfl*.

Then f induces a Quillen equivalence between the q-slice motivic stable model struc-
tures of A and A’ modules:

(A" Ag =, U, ) : S1A-mod(M,) — S2A"-mod(M.)

Proof. — (1): This is just Proposition 3.5.62.

(2): Since A and A’ are L*(< p)-local in SptF.M,, [6, Theorem 3.2.13(1)] implies
that f is a weak equivalence in Spt?ﬂfl*. Therefore the result follows from Proposi-
tion 3.5.62.

(3): Since A and A’ are Cféz-colocal in Spt>M,, using [6, Theorem 3.2.13(2)] we
have that f is a weak equivalence in Spt%ﬂ/l*. Thus, the result follows from Proposi-
tion 3.5.62.

(4): Proposition 3.3.61 implies that A and A’ are both cofibrant in S°Spt% 7.,
therefore the result follows from Proposition 3.5.67.

(5): This is just proposition 3.5.67. O
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3.6. Applications

In this section we will describe some of the consequences that follow from the
compatibility of the slice filtration with the smash product of symmetric T-spectra
in the sense of Theorems 3.4.5 and 3.4.12, as well as those that follow from the
compatibility between the slice filtration on the categories of symmetric T-spectra
and A-modules in the sense of Propositions 3.5.15, 3.5.34, 3.5.59 and Theorems 3.5.22,
3.5.45, 3.5.68, 3.5.70. In the rest of this section p,q € Z will denote arbitrary integers.

Proposition 3.6.1. — The model categories RCO“Spthwﬂ’l* and SOSpt‘%ﬂft* are both
symmetric monoidal model categories (with respect to the smash product of symmet-
ric T-spectra) in the sense of Hovey (see definition 1.7.7).

Proof. — 1t follows directly from Lemma 3.4.1, together with theorems 3.4.5 and
3.4.12 O

Theorem 3.6.2. — The triangulated categories S (S), Reo M 2(S) and SOHHZ(S)
inherit a natural symmetric monoidal structure from the smash product of symmetric
T-spectra. The symmetric monoidal structure is defined as follows:

1.
— AV~ BHE(S) x S (S) —— SHZ(S)

(X, Y) Q=X AQsY

— AL~ : Ro M7(8) x Roo, ™ (S) — Reo MHT(S)
(X,Y)1 CyX ACFY

— AL~ SO (S) x SOMZ(S) — SO M (S)
(X,Y)+ PSX APYY

Proof. — 1t follows directly from Propositions 2.6.28 and 3.6.1, together with Theo-
rem 1.7.15. ]

Proposition 3.6.3. — The following ezact functors between triangulated categories are
both strong symmetric monoidal:

CF : Roo ™ (S) —— H™(S)
CF : Roy, ™ (S) — SO#™(S)
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Proof. — Propositions 2.6.28 and 3.6.1 imply that Spt%ﬂfl*, Rcoff Spt%m* and
SOSptgﬂfl* are all symmetric monoidal model categories in the sense of Hovey. Now,
using Theorem 3.3.9 and Proposition 3.3.61 we have that the following adjunctions
(id,id, ¢) : Rco Spt7M. —> SptZM,
(id,id, ¢) : chffSptgﬂ'l* —> SOSptZMm,

are both symmetric monoidal Quillen adjunctions (see definition 1.7.11). The result
then follows immediately from Theorem 4.3.3 in [10]. O

Corollary 3.6.4. — The following exact functors between triangulated categories are
both lax symmetric monoidal:

Ry : SH%(8) Reo o##7(S)
WE : SO (S) — Roo M7(S)

Proof. — By Proposition 3.3.18 and Corollary 3.3.62 we have the following adjunc-
tions

(CF, Rs,¢) : Roo ST (S) —— M= (S)
(0337 lev(p) : RC’S“ME(S) - SOME(S)

Using Proposition 3.6.3 we have that the left adjoints for Rz, and W are both strong
symmetric monoidal. Finally by standard results in category theory we get that the
right adjoints Ry and W are both lax symmetric monoidal (see [15, Theorem 1.5]).

O

Proposition 3.6.5. — The smash product of symmetric T-spectra induces the following
Quillen adjunctions of two variables (see definition 1.7.12):

chffSptqzwﬂ/l* is a RcoffSpt;,“:/’l/l* -model category in the sense of Hovey.

. Squtﬁﬂ/l* is a SOSptrM,-model category in the sense of Hovey.
. SptZM, is a RCoﬁSptgﬂ/Z* -model category in the sense of Hovey.

> oW N

. Squtf),:JI/l* isa RCo“Spt?wﬂ/l* -model category in the sense of Hovey.

Proof. — (1): This follows immediately from Lemma 3.4.1 and Theorem 3.4.5.
(2): This follows immediately from Lemma 3.4.1 and Theorem 3.4.12.
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(3): It follows from proposition 2.6.28 and Theorem 3.3.9 which imply that the
following composition is a Quillen adjunction of two variables:

(id.id)
-~ SptEa, x SptEu,

SptZM,

(4): It follows from proposition 3.3.61 and Theorem 3.4.12 which imply that the
following composition is a Quillen adjunction of two variables:

Reo, SptE M, x SptZ M.

id,id)

Rgo Spti, x STSptyt, — 2~ SOSptE M, x SIS, O
[—A_
SISpt= M,
Theorem 3.6.6. — The smash product of symmetric T-spectra induces the following

natural module structures (see definition 1.7.1):
1. The triangulated category chﬁg%’ E(S ) has a mnatural structure of
Roo M % (8)-module, defined as follows:
~ AV~ Reo, d#™(S) X Rog, M (S) — Roz, (5
(X,Y)+ CFX ACTY

2. The triangulated category SIAHZ(S) has a natural structure of
SOME(S)-module, defined as follows:

— AL SOHZ(S) x SIMHT(S) —— SISHT(S)
(X,Y)F PFX ANPFY

3. The triangulated category ME(S) has a natural structure of
chﬁdﬂ (S)-module, defined as follows:

= AV~ Reo, ™ (8) x J(8) & (S)
(X,Y) CFX AQsY

4. The triangulated category SIAHZ(S) has a natural structure of
Reo M % (8)-module, defined as follows:

— AL —: Roo ™ (S) x SIMH™(S) —— SI4#*(S)
(X,Y)+ C()):X/\quy
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Proof. — This follows directly from Lemma 3.4.1, Proposition 3.6.5 and [10, Theo-
rem 4.3.4]. O

Theorem 3.6.7. — The smash product of symmetric T-spectra induces the following
adjunctions of two variables (see definition 1.7.2) which are also bilinear pairings:

1.
— A¥ —: Rop d#7(S) x Res, M (S) — Roorad™(S)
(X,Y) — CFX ACTY

— AL —: SPHZ(S) x SIMHT(S) —= SPHafH ™ (S)
(X,Y)} PEX ANPFY

Proof. — (1): By Theorem 3.4.5 we have that
— A —: Rgr Spt7M. x Rga Sptz M, — chgqspt%m,,
is a Quillen bifunctor. Then Proposition 1.7.14 implies that
— ¥~ Rop, f#™(S) x Rg, 7 (8) —— Roprad™(S)
(X,Y) CFX ACTY

is an adjunction of two variables. Finally, since the coproduct of two cofibrant objects
is always cofibrant, and X A (Y ][] Z) is canonically isomorphic in Spt%(g}'}nb)ms to
(X AY)[I(X A Z), we get that the pairing — AT — is bilinear.

(2): By Theorem 3.4.12 we have that

— A —: SPSptE M, x SISptZ M, — SPTISptE M,

is a Quillen bifunctor. Then Proposition 1.7.14 implies that
— AL~ SPAHT(S) x SIS (S) —= SPHIgH T (S)
(X,Y)t PPEX A PfY

is an adjunction of two variables. Finally, since the coproduct of two cofibrant objects
is always cofibrant and X A (Y [[ Z) is canonically isomorphic in SptZ(dm|s)nis to
(X AY)TI(X A Z), we get that the pairing — A — is bilinear. |
Proposition 3.6.8. — Let X,Y be two arbitrary symmetric T-spectra.

1. There ezists a natural bilinear isomorphism in JH>(S):

X, Y
CEX ACTY —— CZ, (CFX ACTY)
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2. There exists a natural bilinear map in RCpf;ng&’[ Z(9):
X, Y

CZRsX ACERgY 2>~ Ry(X AY)

3. There eists a natural bilinear isomorphism in SPYISH>(S):

mX,Y
CZX ANCPY == CZ, (CEX ACTY)
4. There exists a natural bilinear map in ch‘;—q ME(S):
XY

m
CEWE L X ANCEWE )Y ——> W7 (X AY)

Proof. — (1): Theorems 3.4.5 and 3.3.9 imply that we have the following commutative
diagram of Quillen bifunctors:

Rer SptyM. x Ros Spti,

]

=
RC:f-:—q SptTﬂ/t*

Spt2M,

Using [10, Theorem 1.3.7] we get the natural isomorphism m,, which is bilinear since

s AE A%
the functors C’p , Cq , Cp tq

(2): By proposition 3.3.18 we have the following adjunctions:
(CZ,Rs,¢) : Ror fH™(S) —— #H™(S)
(CZ, Rz, ) : Ros ™ (S) —— #™(S)
(Cyqr Rey @) : Ropral™(8) — ot (5)

are all exact and the smash product is bilinear.

Let ¢, €; denote the respective counits, and let ﬁzg( Y be the following composition

in M= (S):
msz.REy)_l
CE+q(CEREX A C‘?REY) - CEREX A C?RSY
mXY :
v
XAY

Then using the adjunction between CEH and Ry considered above, we define mf Y

as the adjoint of mf’y. The naturality of m, follows from:
1. the naturality of m,
2. the naturality of the fibrant replacement functor, and
3. the naturality of the counits €, and ¢,.
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Finally we have that ms is bilinear since:

1. m; is bilinear

T 0 0%
2. the functors C', Cy', Cp'y .

3. the smash product is bilinear.

and Ry are all exact, and

(3):Theorem 3.4.5 and proposition 3.3.61 imply that we have the following com-
mutative diagram of Quillen bifunctors:

z 3z
RC:)ff SptTﬂ’l* x RCfo SptTm*

|

b3}
Rcfgq SptTﬂfl*

z
id Sp+qutTm*

Using [10, Theorem 1.3.7] we get the natural isomorphism mg, which is bilinear since

T A A
the functors Cp , Cq s Cp tq

(4):By corollary 3.3.62 we have the following adjunctions:

are all exact and the smash product is bilinear.

(CF,WE,,9): chﬂdﬂz(S) — SPHE(S)
(CE,WZ1,¢) : Ros M (S) —— S14#™(S)
(CI}J:+q’ W1§+q+1, ) : chf;rwmz(s) —— SPrafH(S)

Let €5, €; denote the respective counits, and let Thf’y be the following composition

in SPHaH(S):

= z
( Wp+1x'wq+1")—1
3

CP(CEWE X NCEWEY) CPWE L X NCPWE)Y
|
mY |
‘ Y e;(/\er
XAY

Then using the adjunction between CZ,, and WEH 41 considered above, we define

p+q
my"Y as the adjoint of mf"’. The naturality of my4 follows from:
1. the naturality of mg
2. the naturality of the fibrant replacement functors, and
3. the naturality of the counits €, and ¢,.

Finally we have that m4 is bilinear since:

1. mg3 is bilinear

2. the functors CE, Cf, Cfﬂ,

3. the smash product is bilinear.

by s p>
W1, Wiip and Wi, are all exact, and
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Theorem 3.6.9. — The smash product of symmetric T-spectra induces the following
natural pairings (external products):

1. For every couple of symmetric T-spectra X, Y we have the following natural
map in WE(S) (see Proposition 3.6.8):

UC
fEXNFPY - frg(X AY)
CEREX A C;:REY CE+qRE(X A Y)
1 p+qlv2
Cr (CERsX ACFRyY)

which induces a bilinear natural transformation between the functors:

WHE(S) x () ——= SHT(S)

X Y)— prX /\quY

MHZ(S) x S (S) —— S (S)

(X,Y)—— % (X AY)

p+q
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2. For every couple of symmetric T-spectra X, Y we have the following natural
map in = (S) (see Proposition 3.6.8):

b)) )
st/\qu

8

CyW2 CPRsX ANCEWE, ,CERsY So (X AY)

1CEReX,WE  CERypY

=
m:V’H' 3 21 CE+ p+q+ICE+qR>3(X AY)

1R

CE

2 (CEWZ, ,CZRs X A CEWE, CERxY)

cPRrRpXx,CTRyY

= = XY
Cryq(m, ) CrraWrta+1Cpia(mzY)

CE

praWpiqr1(Cy ReX NCTRsY)

o
= = Ry X,RyY =
CE  WE  1(m; \

cx +q+10pz+q(CER)3X A CEREY)

pt+q

which induces a bilinear natural transformation between the following functors:

W (S) x JHT(S) —— H™(S)

(X,Y)————> sy X AsyY

B (S) x M (S) — M7 (S)

(X,Y) ———— 53, (X AY)

Proof. — (1): This follows immediately from (1) and (2) in Proposition 3.6.8.
(2): This follows immediately from (1), (4), (3) and (2) in Proposition 3.6.8. O

Theorem 3.6.10. — The pairings Uy, , and U, . constructed in theorem 3.6.9 are com-
patible with the natural transformations p and 7= (see propositions 3.3.24(3) and

3.8.69) in the following sense:
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1. For every couple of symmetric T-spectra X, Y ; the following diagram is com-
L )
mutative in M (S):

X

Aid
EAXAfEY — 2 EX A fEY
Upt1,q l lug,q
f1§+q+1(X AY) T p+q(X AY)
p+g+1

2. For every couple of symmetric T-spectra X, Y ; the following diagram is com-
. . >
mutative in SH~(S):

dApZ

FEX A fELY fEXAFEY

U;,q+ll lU;,q

2 (X AY) _ 2 J(XAY)
”p+q+1

3. For every couple of symmetric T-spectra X, Y ; the following diagram is com-
T )]
mutative in 4 (S):

fEX A ffY SEX A quY
Ui,ql tui,q
p+q(X AY) £,XAY p+q(X AY)
pta
Proof. — (1): This follows from the following commutative diagram of left Quillen

(bi)functors (see Theorems 3.4.5 and 3.3.25), together with the construction of the
external pairing U¢ given in Theorem 3.6.9(1) and the construction of the natural
transformation p given in Proposition 3.3.24(3):

Ry SptEM, X R, SptFM, idxid Rop SptEM, x Rgs Sptyl,
\\ /
SptE,
ROP+q+l SptTﬂ/l* Cp+q SptT/(l/l*

(2): This follows from the following commutative diagram of left Quillen
(bi)functors (see Theorems 3.4.5 and 3.3.25), together with the construction of
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the external pairing U° given in theorem 3.6.9(1) and the construction of the natural
transformation p given in Proposition 3.3.24(3):

idxid

= 2
R, Spt7 My X Roasi SptEil Ree Spt7M, x Rga Spty.

\/

—A— Sptqznﬂ'l* —A-

chf-;—qﬂ Spt%m* chf-;—q Spt?ﬂ’l*

id

(3): This follows from the following commutative diagram of left Quillen
(bi)functors (see Theorems 3.3.25, 3.4.5, 3.4.12 and Propositions 2.6.28, 3.3.61),
together with the construction of the external pairings U°, U® given in theorem
3.6.9(1)-(2) and the construction of the natural transformation 7> given in Proposi-
tion 3.3.69:

SptZ M. x SptE M, SptZ M, ]

idxid] Wid

A p)
Ry, SpEF M. x Rog, Spip. —— RoreaSptr L.

idxidl/ iid

SPSpty M. x SISptpM, ———> SPTISpti M,
Definition 3.6.11. — Consider the following functors:

f2 T (S) —— S (S)

X———> @z feX

T HE(S) —— ST (S)
X+————> Pezsr X

Proposition 3.6.12. — The functors:

L f2: JHE(S) — S (S)

2. 8% T (S) — HT(S)
are both exact.
Proof. — (1): Theorem 3.3.22(3) implies that all the functors ff are exact. There-
fore f¥ = @gez ff is also an exact functor, since the coproduct of a collection of
distinguished triangles is a distinguished triangle.
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(2): Theorem 3.3.68(3) implies that all the functors s}’ are exact. Therefore s¥ =
eaqezsqz is also an exact functor, since the coproduct of a collection of distinguished

triangles is a distinguished triangle. O

Theorem 3.6.13. — Let X be a ring spectrum in &> (S) and let M be an X -module.

1.

The (—1)-connective cover of X, foX (see Theorem 3.3.22(3)) also has the
structure of a ring spectrum in > (S).

The (q— 1)-connective cover of M, ffM is a module in ME(S) over the (—1)-
connective cover of X, fé:X .

The coproduct of all the connective covers of X, f*X has the structure of a
graded ring spectrum in > (S).

The coproduct of all the connective covers of M, f*M is a graded module in
M (S) over the graded ring fEX.

The zero slice of X, s§ X (see Theorem 3.3.68(3)) also has the structure of a
ring spectrum in JHZ(S).

The q-slice of M, quM is a module in ME(S) over the zero slice of X, s3X.
The coproduct of all the slices of X, s*X has the structure of a graded ring
spectrum in S (S).

The coproduct of all the slices of M, s> M is a graded module in (AWE(S) over
the graded ring s*X.

Proof. — We have that (1) and (5) follow immediately from proposition 3.6.3 and
corollary 3.6.4. On the other hand, (2), (3) and (4) follow directly from Theo-

rem 3.6.9(1). Finally, (6), (7) and (8) follow directly from Theorem 3.6.9(2). O
Theorem 3.6.14. — Let X be an arbitrary symmetric T-spectrum.
1. The (—1)-connective cover of the sphere spectrum, f3'1 has the structure of a

ring spectrum in SH>(S).

The (q — 1)-connective cover of X, f;:X is a module in ME(S) over the (—1)-
connective cover of the sphere spectrum, f3'1.

The coproduct of all the connective covers of the sphere spectrum, f*1 has the
structure of a graded ring spectrum in JH E(S).

The coproduct of all the connective covers of X, f*X is a graded module in
AT (S) over the graded ring fE1.

The zero slice of the sphere spectrum, sg 1 has the structure of a ring spectrum
in SHE(S).

The q-slice of X, s;’:‘X is a module in SH Z:(S) over the zero slice of the sphere
spectrum, s31.

The coproduct of all the slices of the sphere spectrum, s>1 has the structure of
a graded ring spectrum in > (S).
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8. The coproduct of all the slices of X, s*X is a graded module in SH E(S) over
the graded ring s*1.

Proof. — It is clear that the sphere spectrum 1 is a ring spectrum in J#> (S), and
by construction we have that every symmetric T-spectrum X is a module in J# E(S )
over the sphere spectrum.

The result then follows immediately from Theorem 3.6.13. O

Using the slice filtration, it is possible to construct a spectral sequence which is an
analogue of the classical Atiyah-Hirzebruch spectral sequence in algebraic topology.

Definition 3.6.15 (Motivic Atiyah-Hirzebruch Spectral Sequence). — Let X, Y be a pair
of symmetric T-spectra. Then the collection of distinguished triangles in &K E(S) (see
Theorem 3.1.16 and Propositions 3.3.24(3), 3.8.69):

X =, X =,X

Pq Sy 9 sy e 1,0 05
faX sg X 7 feh X

fonX
generates an ezact couple (DY (Y; X), EY'Y(Y; X)), where:
1. DPUY; X) = [V, S5 0 fEX|E |, and
; 0
2. EPY(Y;X) = [V, 25905 XT

The compatibility of the slice filtration with the smash product of symmetric
T-spectra implies that the smash product of symmetric T-spectra induces a pairing
of spectral sequences:

Theorem 3.6.16. — Let X, X', Y, Y’ be in Spt2M,. The smash product of symmetric
T -spectra induces natural external pairings in the motivic Atiyah-Hirzebruch spectral
sequence:
EPY(Y;X)® EP 9 (Y'; X') — EPtP 4t (Y AY; X A X')
(a, B)} a—f
Furthermore, this pairing has the following ezplicit description on the E; terms:
— Given o : Y — IEEX in EPYY;X) and B : Y — Zl}lﬂl’osﬁX’ in
EYT(Y'; X'), a — B is the following composition (see Theorem 3.6.9(2)) in
EPP (Y AV X A XY):

’ /
,0
Y AY' DEFPHareOE (X AX)
+p'+a+a’,0 ;s
anp ]Eg P +a+q Uz

(SEHOsEX) A (SR HT 05 X7) — > TR 0B x) A (s2 X
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Proof. — Using the naturality of the external pairings Uy ;, U, , (see Theorem 3.6.9)
and Theorem 3.6.10, the result follows immediately from the work of Massey [17]

together with [2, Proposition 14.3]. O

Definition 3.6.17. — Consider a cofibrant ring spectrum A with unit in Spt?ﬂ/l*.
L. Let f* denote the following composition of ezact functors between triangulated

categories (see Proposition 3.5.13)

& (A-mod) Ll & (A-mod)

RC;:“M (A-mod)

2. Let sT, denote the following composition of ezact functors between triangulated
categories (see Proposition 3.5.32)

m
S<q

& (A-mod) & (A-mod)

Lq8#(A-mod)

3. Let s3* denote the following composition of ezact functors between triangulated

categories (see Propositions 3.5.18 and 3.5.56)

s™

& (A-mod) ! M (A-mod)

- 5

}'20;1ff M(A-mod) —Cr- S"M(A—mod) W chff M(A-mod)
q a+1

Remark 3.6.18. — Notice that the next two theorems are much stronger than Theo-
rem 3.6.13; since the module structures in the latter are defined just up to homotopy
(i.e. they make sense in JH>(S)), whereas the module structures in Theorems 3.6.19
and 3.6.20 are strict (i.e. they are defined in the model category Spty. M, ).

Theorem 3.6.19. — Let A be a cofibrant ring spectrum with unit in Spt%/’l/t*.
1. If A is cofibrant in RCS”Spt?/(%*, then the functor qu o UR,, (see Theo-
rems 8.8.22 and 3.5.4)

H(Amod) 2E () LT (s
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factors up to a canonical isomorphism through &#(A-mod) (see definition
3.6.17(1)) as follows:

@ (A-mod) " > (s)
m : [ff
Y
@ (A-mod) > ()

i.e. for every A-module M, its (q—1)-connective cover qu(M ) inherits a natural
strict structure of A-module in Spt?ﬂfl,.

2. If A is cofibrant in S°Spt2 M., then the functor s2,0URy, (see Theorems 3.8.45
and 3.5.4)

Ho(Amod) R () 2 i (s)

factors up to a canonical isomorphism through & (A-mod) (see definition
3.6.17(2)) as follows:

o (A-mod) T R (S)

m =
8 | ls«;
Y

M (A-mod) = ™ (S)

i.e. for every A-module M, sgq(M ) inherits a natural strict structure of A-mod-
ule in SptT M, .

3. If A is cofibrant in chffSptqzaﬂ/l*, then the functor sf o UR,, (see Theo-
rems 3.3.68 and 3.5.4)

o (A-mod) 5 pi(5) — = ()

factors up to a canonical isomorphism through J#(A-mod) (see definition
3.6.17(3)) as follows:

i.e. for every A-module M, its g-slice sf(M ) inherits a natural strict structure
of A-module in SptrM,.
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Proof. — (1): By construction (see Theorem 3.3.22) the functor ff is defined as the
following composition

M (S) dHE(S)

Ros M (S)

Since we are assuming that A is cofibrant in chffSptfwﬂ/t* (equivalently Cgf’fz-colocal
in SptZM,), the result follows directly from diagram (69) in Proposition 3.5.15 and
Theorem 3.5.22.

(2): By construction (see Theorem 3.3.45) the functor s q 1s defined as the following
composition

<q

) HT(S)

L<q§ﬂ(2(s)

Since we are assuming that A is cofibrant in SOSptgﬂfl*, the result follows directly
from Theorem 3.5.45 and diagram (78) in Proposition 3.5.34.

(3): By construction (see Theorem 3.3.68) the functor sf is defined as the following
composition

M

AT (S) AHE(S)

| Jes

Ros, M7 (S) —= SI4H™(S) —== Ros, H™(S)

eff
q+1

Since we are assuming that A is cofibrant in RcoffSptgﬂ/l* (equivalently Cgf’fz-colo-
cal in Spt=J,), the result is a consequence of diagram (69) in Proposition 3.5.15,
Theorem 3.5.68, diagram (86) in Proposition 3.5.59 and Theorem 3.5.22. O

Theorem 3.6.20. — Let A be a cofibrant ring spectrum in RCoﬂSpt%ﬂfl* such that the

unit map u : 1 — A is a weak equivalence in SOSptgﬂft*. Consider the following
composition of exact functors between triangulated categories (see Proposition 3.8.18,
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Corollary 3.3.62, Theorem 3.5.58, propositions 3.5.56, 8.5.18 and Theorem 8.5.4)

M (S) M (S)
Rzi TURM
(89) Res ##7(S) M (A-mod)

cft ]c;"

SQME(S) W S1AM# (A-mod) W—.ﬂ_? chffM(A-mOd)

Then u induces a natural isomorphism between sqz (see Theorem 8.8.68) and the
functor defined above in diagram (89), i.e. for every symmetric T-spectrum X, its
q-slice s?(X ) is equipped with a natural strict structure of A-module in SptZM,.

Proof. — The functor sf (see Theorem 3.3.68) is defined as the following composition

b}
3q

HHE(S) )

| Joz

>N ) >N
Res, #7(S) o SIHH*(S) wE Res M7 (S)
By hypothesis A is cofibrant in Rcoff Spt?ﬂfl*, and Lemma 3.4.1 implies that 1 is also
cofibrant in RCo“Spt‘;‘zﬂ/l*. Since the unit map u : 1 — A is assumed to be a weak
equivalence in SOSptlzw/’lfl*, it follows from theorem 3.5.70(4) that the adjunction

(AN —,U,p): SISptE2M, — SIA-mod(M.)

=

¢ is naturally isomorphic to the

is a Quillen equivalence. Therefore the functor s
following composition

ME(S) H*(S)
Ry L /]Cf
chffd;[z: (S) RC;’“ ME(S )

=
C:;: t ] Wq+1

SQME(S) m SqM(A-mOd) U?'ﬂ_l. SQ&[E(S}

Now, Proposition 3.3.61 implies that A is cofibrant in S’OSpt?J%*, therefore using
diagram (86) in Proposition 3.5.59, we get that the functor s,}f becomes naturally
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isomorphic to the following composition

M (S) HHE(S)
Ry [ I C?
Rga #™(S) Res ##7(S)

=
c: L ]UR,,,

SIHHE(S) SI4# (A-mod) W Rga H(A-mod)

)
ANP;—

Finally, since A is cofibrant in RcoffSptr?ﬂ/l* we can apply Theorem 3.5.22 and we get
that sf is naturally isomorphic to the following composition

H(S) H(S)
Ry, l ] UR,
Res M =(S) & (A-mod)

cfl ]C;"

SIME(S) —— SI4# (A-mod) w—;ﬁ Rga i (A-mod)

z
AAPE—

This finishes the proof. O

Lemma 3.6.21. — Let g: X — Y be a map between cofibrant spectra in Spt2M,.

1. The natural map 02X : f2(X) — X (see Proposition 3.3.23) is an isomorphism
in M E(S) if and only if X is cofibrant in chffSptfwﬂ/l,..

2. The induced map f2(g) : f2(X) — f2(Y) is a weak equivalence in Spt7 M, if
and only if g is a weak equivalence in Rc;szSpt%/’l/l*.

3. If X =s2(X) in ME(S), then X is cofibrant in chﬂ_spt'?'m* and X = f2(X)
in H(S).

4. Furthermore, assume that X, Y are both cofibrant in chffSptqzwﬂ/l,. Then g is a

weak equivalence in SISpty M. if and only if the induced map s2(9) : sT(X) —

b}

7 (Y) is a weak equivalence in SptrM..

S

Proof. — (1): Consider the following diagram in Spt>,

oS ReX

X Ry X <— CrRsX

We claim that 62-% is an isomorphism in 4 (S) if and only if CPR=X is a weak
equivalence in Spt%ﬁfl*. In effect, Proposition 3.3.23 implies that the natural map 9?
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is just the counit of the adjunction (see Proposition 3.3.18)
(Cy,Rs, ) : Ros ST (S) — S (S)

and by construction (see definition 3.3.2) R%‘ is always a weak equivalence in Spt%/’lft*;
therefore, 6% is an isomorphism in # % (S) if and only if CPR=X is a weak equiv-
alence in Spt%/’l/l*.

We have that X is cofibrant in Spt7.%, and by construction R¥ is a trivial cofi-
bration in Spt>, (see definition 3.3.2), thus Rz X is also cofibrant in SptEM,. On
the other hand, C’f is a cofibrant replacement functor in RC;z“Spt‘%ﬂ/l* (see definition
3.3.10). Hence, [6, Theorem 3.2.13(2)] and [6, Proposition 3.2.2] imply that C>#=X
is a weak equivalence in Spt%ﬂ/l* if and only if Ry X is cofibrant in ch“Spt%/’%*.

Finally, [6, Proposition 3.2.2] implies that X is cofibrant in ch"Sptqzﬂﬂ/l* if and
only if Ry X is cofibrant in ch“Spt?ﬂ/t*.

(2): By construction, we have that fZ = CZ o Ry (see Theorem 3.3.22). Consider
the following commutative diagram in chffSptr)ﬁﬂ/l*

Y

"
R
ReX 29, poy

C;J,sz,[ WCE,REY

C(?R):;XC;—-Q- C‘)]:Rz;Y

q =g

Proposition 3.3.11 and definition 3.3.10 imply that all the vertical arrows are weak
equivalences in RC:“Spt%ﬂ/l*. Hence, using the two out of three property for weak
equivalences we get that the top row is a weak equivalence in RC:“Spt?m* if and
only if the bottom row is a weak equivalence in chffSptgﬂ/l*.

On the other hand, by construction CqERgX , CEREY are both cofibrant in
ch“Spt;‘:wﬂ/l* (see definition 3.3.10); thus, [6, Theorem 3.2.13(2)] and [6, Proposi-
tion 3.1.5] imply that C;JRE (g) is a weak equivalence in ch“Spt?ﬂ/l* if and only if
CTRx(g) is a weak equivalence in SptEM,.

(3): By (1) above, it suffices to show that X is cofibrant in Rga_ SptrM,. Since we
are assuming that X is cofibrant in SptZ.#, and X = s2(X) in (9), [6, Proposi-
tion 3.2.2] implies that it is enough to check that s (X) is cofibrant in Rc;szSpt»?/(l/l*.

However, by definition s¥ = CF o W2, o CZ o Ry (see Theorem 3.3.68), and by
construction Cf is a cofibrant replacement functor in ch“Spt?m* (see definition
3.3.10). Therefore, sqz(X ) is always cofibrant in RCZHSpt?ﬂ/Z*, as we wanted.

ASTERISQUE 335



3.6. APPLICATIONS 283

(4): By construction, we have that s = CZ oW 2, w1 oC'E o Ry, (see Theorem 3.3.68).
Consider the following commutative dlagram in SptT/’l/l*

g

X Y
RX Ry
Rsx(9)
Rs X RsY
£,Rp X =,RpY
(ot cPRe
CZReX _ CZRpY
C/ Rx(g)
£,cZRp X =,cERyY
a1 W
WZE,CERsX WZE,CERsY
q+lC Rs(9)
C}: Wq+1cEsz CE Wq+1 ZRgY
q q

CEWZE ,CEReX CEWE CERzY

sz (9)
We claim that C(?Rg(g) is a weak equivalence in Squt¥M* if and only if sf(g)
is a weak equivalence in Spt>,. In effect, Corollary 3.3.55 implies that C;:Rz(g)
is a weak equivalence in S9Spt7J, if and only if W2 ,CZRx(g) is a weak equiv-
alence in chﬂSptgﬂ/l*. But C’f is by construction a cofibrant replacement functor
in chffSptgm* (see definition 3.3.10); thus, WX ,CZRx(g) is a weak equivalence
in Rga SptZM, if and only if sf (g9) is a weak equivalence in ch“Spt;,‘zﬂ/l*. Finally,
since s3(X), sy (Y) are always cofibrant in chffSpt;“:ﬂ/l*, we have that [6, Theo-
rem 3.2.13(2)] and [6, Proposition 3.1.5] imply that s7'(g) is a weak equivalence in
RC:“Spt?m* if and only if s(g) is a weak equivalence in SptXM..

Now, the two out of three property for weak equivalences implies that it is enough
to show that the maps sz Ry, CPR=X and CPE=Y are all weak equivalences
in SqutTﬂ/l But S"Spt M, is a right Bousﬁeld localization with respect to
L<q+1SptTﬂ/l*, and similarly L<q+1SptTﬂft* is a left Bousfield localization with
respect to Spt‘;:wﬂ/l*; thus, [6, Proposition 3.1.5] implies that it is enough to check that
R¥, RY, CPF=X and C}>*=Y are weak equivalences in Spt= M, .

By construction the maps R, RY, are trivial cofibrations in Spt>#, (see defini-
tion 3.3.2); hence, they are in particular weak equivalences in Spt%ﬂ/l*, and Ry X,
RsY are both cofibrant in SptZ.M, since we are assuming that X and Y are cofibrant
in Spt¥M,. Now [6, Proposition 3.2.2] implies that RsX and RyY are also cofi-
brant in Rc:“ Spt%/‘lfl*, since by hypothesis X, Y are both cofibrant in RC:“Sptgﬂ/l*.
Therefore, [6, Theorem 3.2.13(2)] and [6, Proposition 3.1.5] imply that Cz#=X and

C’qz’REY are weak equivalences in Spt;‘?/’%*, if and only if they are weak equivalences
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in RCZ“Spt%ﬂ/l*, but this is clear since qu is a cofibrant replacement functor in
Rga SptZM, (see definition 3.3.10). O

The next theorem proves a conjecture of Voevodsky (see [16, Corollary 11.1.3],
[25]).

Theorem 3.6.22. — Let HZ denote the motivic Eilenberg-MacLane spectrum in
Spt= M. (see [16, Example 8.2.2(2)]), and assume that the base scheme is a perfect
field k. Then for every symmetric T-spectrum X in 4# E(k):

— The g-slice of X, quX has a natural structure of HZ-module in Spt?ﬂ/l*, i.e.
st is in a natural way an object in the motivic stable homotopy category of
HZ-modules # (HZ-mod).

Proof. — The work of Voevodsky [26] in the case of a field of characteristic zero,
and Levine [16, Theorem 10.5.1] in general, shows that sj(u) is a weak equivalence
in Spt?ﬂ/t*, where u denotes the unit map v : 1 — HZ for the commutative ring
spectrum HZ in Spt%ﬂfl*.

By Theorem 2.8.17, Proposition 2.8.18 and Lemma 3.4.1, we can assume that
HZ is cofibrant in Spt7,. On the other hand, Lemma 10.4.1 in [16] shows that
sy (HZ) is isomorphic to HZ in #>(S); hence by Lemma 3.6.21(3) we get that HZ
is cofibrant in chffSptgﬂ/l*. Furthermore, Lemma 3.4.1 implies that 1 is also cofibrant
in Rgo Sptz M.

Therefore we can apply lemma 3.6.21(4) to conclude that w : 1 — HZ is a weak
equivalence in SOSptqgﬂ/l*. Thus, the result follows from Theorem 3.6.20. O

The motivic stable model category of HZ-modules has been studied in detail by
Rondigs and Ostveer [22], as a consequence of their work we get that the slices may
be interpreted as motives in the sense of Voevodsky.

Theorem 3.6.23. — Let k be a field of characteristic zero. Then for every symmetric
T-spectrum X in > (k):
— The g-slice of X, st is a big motive (see [24], [22, Section 2.3]) in the sense
of Voevodsky .

Proof. — The work of Réndigs and @stvaer [22] shows in particular that over a field
of characteristic zero, the motivic stable homotopy category # (HZ-mod) of modules
over the motivic Eilenberg-MacLane spectrum HZ is equivalent to Voevodsky’s big
category of motives DMy, where the equivalence preserves the monoidal and trian-
gulated structures (see [22, Theorem 1]).

Therefore, the result is an immediate consequence of Theorem 3.6.22 O
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B.G. property, 36, 39
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replacement, 2, 5
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symmetric T-spectra, 78
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equivalence, 27
object, 27
Compact
object, 13, 40
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99, 134, 175, 229
Connective cover, 109
Cosimplicial
identities, 15
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spectrum, 284
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Evaluation functor, 51, 73
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replacement, 2, 5
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symmetric T-spectra, 80
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symmetric T-spectra, 81
Ken Brown’s lemma, 3
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cofibration simplicial presheaves, 42, 45
T-spectra, 53 stable, 57, 58, 61
symmetric T-spectra, 78 cellularity, 68
fibration connected, 111
symmetric T-spectra, 78 slice, 154
trivial cofibration weight<4, 135
T-spectra, 53 symmetric stable, 81
weak equivalence cellularity, 85
T-spectra, 52 connected, 176
symmetric T-spectra, 78 slice, 205
Lifting property weight<9, 188
left, 2 Motivic spectral sequence
right, 2 Atiyah-Hirzebruch, 276
Local pairing, 276
equivalence, 27 Motivic stable
object, 27 homotopy category, 99, 101
Localization A-modules, 228, 230
Bousfield effective, 102
left, 28, 42, 57, 135, 188, 241 symmetric, 172
right, 28, 111, 154, 176, 205, 230, 253 Object
categories, 7 cofibrant, 2
Loop functor, 49 colocal, 27
fake, 56 compact, 13, 40
Mixed motives, 284 cylinder, 6
Model category, 1 fibrant, 2
cellular, 14 local, 27
cofibrantly generated, 9 path, 6
colocal equivalence, 27 tensor, 32, 50, 70, 87
colocal object, 27 Pairing, 271, 272
left Bousfield localization, 28 Path object, 6
left localization, 26 Presheaf
left proper, 14 simplicial sets, 31
local equivalence, 27 Projective model structure
local object, 27 T-spectra, 52
monoidal, 24 cellularity, 67
proper, 15, 46 symmetric T-spectra, 78
right Bousfield localization, 28 cellularity, 84
right localization, 26 . Quillen adjunction, 5, 234, 242, 246, 254,
right proper, 14, 144, 195, 242 255
simplicial, 18 monoidal, 25
symmetric monoidal, 35, 45, 46, 83, 265 two variables, 24, 93, 238, 260, 266
Monoidal Quillen adjunction, 25 Quillen bifunctor, 24, 220, 225, 234, 255
Motive, 284 Quillen equivalence, 5, 118, 236, 248, 252,
Motivic fibrant 261, 264
simplicial presheaf, 43, 45 Quillen functor
Motivic flasque left, 5
simplicial presheaf, 47 right, 5
Motivic model structure Quillen’s small object argument, 9
A-modules Relative cell complex, 9
connected, 230 presentation, 10
slice, 253 subcomplex, 11
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Retract argument, 3
Shift functor, 51, 65, 66
Shuffle, 69
Simplicial
category, 18, 50, 70, 87
functor
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identities, 16
presheaf, 31, 32, 34, 35, 38
flasque, 38, 39
injective model structure, 33, 35, 36,
39-41
motivic fibrant, 43, 45
motivic flasque, 47
motivic model structure, 42, 45
small, 39
symmetric monoidal structure, 34
set, 15
weak equivalence, 17
Singular functor, 17
Slice, 109
filtration, 103, 132, 187
tower, 109
Small
object, 8
simplicial presheaf, 39
Smash product, 73
Spectral sequence
motivic Atiyah-Hirzebruch, 276
pairing, 276
Spectrum
Eilenberg-MacLane, 284
sphere, 70, 72, 218, 275
Sphere spectrum, 70, 72, 218, 275
Stabilization functor, 57
Stable equivalence
T-spectra, 57
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Stable fibration
T-spectra, 58
symmetric T-spectra, 81
Stable homotopy groups
bigraded, 61
weighted, 62
Stably fibrant
T-spectrum, 58, 59, 68
symmetric T-spectrum, 85
Stably fibrant injective
T-spectrum, 58
symmetric T-spectra, 81
Symmetric T-spectrum, 70, 72
closed symmetric monoidal structure, 73
smash product, 73
Symmetric sequence, 72
product, 72
Symmetrization functor, 79
Tensor object, 32, 50, 70, 87
Transfinite composition, 8
Triangulated category, 99, 119, 144, 162,
173, 180, 195, 209, 229, 231, 242, 254
compactly generated, 101, 175, 230
Trivial
cofibration, 1
fibration, 1
Trivial cofibration
level
T-spectra, 53
Two variables
adjunction, 23
simplicial functor, 87
Weak equivalence, 1
injective
simplicial presheaves, 32, 35
level
T-spectra, 52
symmetric T-spectra, 78
sectionwise, 36
simplicial sets, 32, 35, 36
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