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Séminaire BOURBAKI 
60 e année, 2007-2008, n° 985, p. 131 à 142 

Novembre 2007 

O-MINIMAL STRUCTURES 

by Alex J. WILKIE 

1. INTRODUCTION A N D MOTIVATION 

The notion of an o-minimal expansion of the ordered field of real numbers was 
invented by L. van den Dries [2] as a framework for investigating the model theory 
of the real exponential function exp : R —> R : x —> e x , and thereby settle an old 
problem of Tarski. More on this later, but for the moment it is best motivated as 
being a candidate for Grothendieck's idea of "tame topology" as expounded in his 
Esquisse d'un programme [6]. It seems to me that such a candidate should satisfy (at 
least) the following criteria. 

(A) It should be a framework that is flexible enough to carry out many geometrical 
and topological constructions on real functions and on subsets of real euclidean 
spaces. 

(B) But at the same time it should have built in restrictions so that we are a priori 
guaranteed that pathological phenomena can never arise. In particular, there 
should be a meaningful notion of dimension for all sets under consideration and 
any that can be constructed from these by use of the operations allowed under 
(A). 

(C) One must be able to prove finiteness theorems that are uniform over fibred 
collections. 

None of the standard restrictions on functions that arise in elementary real 
analysis satisfies both (A) and (B). For example, there exists a continuous function 
G : (0,1) —> (0, l ) 2 which is surjective, thereby destroying any hope of a dimension 
theory for a framework that admits all continuous functions. Restricting to the 
smooth (i.e. C°°) environment fares no better. For every closed subset of any 
euclidean space, in particular, the subset graph(G) of R 3 , is the set of zeros of some 
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smooth function. So by the use of a few simple constructions that we would certainly 

wish to allow under (A), we soon arrive at dimension-destroying phenomena. The 

same is even true (though this is harder to prove) if we start from just those smooth 

functions that are everywhere real analytic (i.e. equal the sum of their Taylor series 

on a neighbourhood of every point), although, as we shall see, this class of functions 

is locally well-behaved and as such can serve as a model for the three criteria above. 

Rather than enumerate analytic conditions on sets and functions sufficient to guar­

antee the criteria (A), (B) and (C) however, we shall give one succinct axiom, the 

o-minimality axiom, which implies them. Of course, this is a rather open-ended (and 

currently flourishing) project because of the large number of questions that one can 

ask under (C). One must also provide concrete examples of collections of sets and 

functions that satisfy the axiom and this too is an active area of research. In this talk 

I shall survey both aspects of the theory. 

Our formulation of the o-minimality axiom makes use of definability theory from 

mathematical logic. We begin with a collection 57 of real valued functions of real 

variables (not necessarily all of the same number of arguments). We consider the 

ordered field structure on R augmented by the functions in 57. This gives us a first-

order structure (or model) R57- := (R; + , •, —, <, £7"), and we denote the corresponding 

first-order logical language by 1/(57). We then call the structure R r̂ o-minimal if 

whenever (f>(x) is an L(£7)-formula (with parameters) then the subset of R defined 

by (j)(x) is a finite union of open intervals and points (i.e. it is the union of finitely 

many connected sets). I shall elucidate what is meant by an L(£7)-formula and by 

the subset of R (and, more generally, of R n ) defined by such a formula in the next 

two sections. However, I should emphasize at this stage that such a formula not 

only defines a subset, denoted of R n , but also a subset <j)(&) of & n where 

ffo is any ordered ring augmented by a collection of functions, 57* say, such that 57 

and 57* are in correspondence via a bijection that preserves the number of places 

(arity) of the functions. One can, and should, define the notion o-minimality for such 

structures (J&\ £7*) and it was at (rather more than) this level of generality that the 

true foundations of the subject were laid by Pillay and Steinhorn in [9], shortly after 

van den Dries' work on the real field. Indeed, it turned out that the solution to Tarski's 

problem on the real exponential function (the case 57 = {exp} in the above notation) 

relied heavily on the Pillay-Steinhorn theory of o-minimality for structures based on 

ordered fields other than the reals. This having been said, I shall concentrate in this 

lecture on the real case, alluding only occasionally to the more general situation, and 

leave the reader to adapt the definitions and theorems to the setting of o-minimal 

expansions of arbitrary ordered fields. 
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2. THE SEMI-ALGEBRAIC CASE 

2.1. Formulas and the sets they define 

In this section I shall describe the logical formalism for the case ¿7 = 0, i.e. where 

the structure is just that of the ordered field of real numbers R := (R; <,+, - ,—, 0,1). 

The corresponding language L(0), which we denote from now on by just L, consists 

of formal symbols for variables Xi (for ¿ = 1,2,. . .) together with some formal system 

of notation for polynomials in these variables (with integer coefficients). It must also 

contain a symbol for the ordering and some logical symbols as will be explained in 

(v) and (vi) below. 

The fact that we are concentrating on one particular structure here allows us to 

make several shortcuts in the description of logical concepts. In particular one can, in 

fact, dispense with the formal language and the notion of L-formula altogether and 

simply specify the definable sets by the following inductive procedure: 

(i) For p(Xu ..., Xn) G Z[XU ... Xn], the sets {a G R n : p(a) = 0} and {a G R n : 

p(a) > 0} are both definable subsets of R n ; 

(ii) If A and B are definable subsets of R n then so are A n B, A U B and R n \ A; 

(iii) If A is a definable subset of R n , then 7rn[A] is a definable subset of R n _ 1 , where 

7r n : R n —• R n _ 1 : (xi,..., xn) i—> . . . , # n - i ) is the projection map onto the 

first n-1 coordinates. 

It is, however, very difficult, even in our present limited situation, to do any model 

theory without the notion of L-formula, and almost impossible to give examples. So 

I give the definition. An L-formula is a formal string of symbols that codes the 

inductive construction of a definable set as follows: 

(iv) Expressions of the form p{X\,..., Xn) = 0 and p(Xi,..., Xn) > 0 (for 

p ( X i , . . . , Xn) G Z[-X"i,... Xn\) are L-formulas. These are known as atomic 

L-formulas. If (f) is such a formula then </>(№) denotes the corresponding subset 
of R n as given in (i). We say that </>(№) is the subset of R n defined by the 
L-formula (f>. 

(v) If 0, ip are L-formulas, with </>(R) = A C R n and ^ (R) = B C R n , then the 
expressions (0A-0), (0V^) and -»0 are also L-formulas. Then (0A,0)(R) := AnB, 
((f) V ip)(W) := A U B and -.0(1) := R n \ A. 

(vi) If cf) is an L-formula, with </>(R) = A C R n , then the expression 3Xn<j) is also an 
L-formula and we set 3Xn(f)(W) := 7rn[A] C R n _ 1 . (The symbol "3" is called the 
existential quantifier.) 
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2.2. Examples 

(1) Let a be the expression 3 X 3 ( X f +Xi-X3+X2 = 0). Then a is an L-formula and 

a(R) consists of all pairs (6, c) G R 2 such that the quadratic equation x2 -f bx + c = 0 

has a real solution. (Actually, to be perfectly precise, a is not an L-formula because 

the parentheses should not be there. But I prefer to err on the side of clarity.) 

(2) Let p be the expression 3 X 5 3 X 6 3 X 7 3 X 8 ( ( ( X i • Xb + X2 • X7 - 1 = 

0 A Xx • X6 + X2 • X 8 = 0) A X3 • X6 + X 4 • X 7 = 0) A X3 • X6 + X 4 • X 8 - 1 = 0). 

Then /3 is an L-formula and /3(R) consists of all quadruples (a, 6, c, d) G R 4 such that 

the matrix I , I has an inverse. 
\c d) 

The idea behind the notion of L-formula should now be clear. Let </> be an L-formula 

with 0(R) C R n and let a i , . . . , o n G R n . Then "reading" 0 using the dictionary 

A = "and", V = "or", - 1 = "not", 3X{ = "there exists Xt G R such that" and replacing 

the variables Xi,..., X n by a i , . . . , a n , we arrive at a statement of (mathematical) 

English expressing " (a i , . . . , an) G 0(R)". We therefore often write (j) as </>(Xi,..., X n ) 

to emphasize the fact that it should be read as "the n-tuple (Xi,... ,Xn) has the 

property expressed by </>". 

It is in this way that the formula (j) also defines a subset <j>{fR) of & n for any 

ordered ring 0£. More rigourously, just follow those construction steps 2.1(i)-2.1(iii) 

coded by 0, but replace R everywhere by (the underlying set of the) ring 01 and 

interpret the formal polynomials p(Xi,... ,Xn) in 2.1(i) by using the addition and 

multiplication of the ring 91. The careful reader might now question whether such a 

set (/>(&) is well defined, that is, whether a given formula </> uniquely determines such 

a construction procedure. It does, and the proof of this result (known as the Unique 

Readability Theorem) and of many other syntactic properties of formulas (such as 

the conditions under which variables may be permuted or expressions substituted for 

variables) occupy endless pages in many introductory texts on logic. The student 

encountering such texts for the first time needs to be patient: very little happens for 

a long time. In this lecture I am, of course, neglecting such tiresome details. My aim is 

to convey, as quickly and efficiently as possible, the role played by logical definability 

in the foundations of o-minimality and especially in how the three criteria for a tame 

topology set out in section 1 are justified. So I proceed by presenting more examples. 

They are intended to familiarise the reader with the flexibility of logical definability 

and thereby justify criterion (A) for the class of L-definable sets and functions. 

2.3. More examples (and exercises) 

(1) Fix n > 1. Then the set of ( a i , . . . , a n ) G R n such that the polynomial 

xn 4- a\xn~x + • • • + a n is positive definite, is L-definable. The defining formula is 
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V X n + i ( X £ + 1 + Xx • X%+1 + • • • 4- Xn > 0), where the universal quantifier " V X n + i " is 

an abbreviation for " -G- iX n +i" and therefore may be read as "for all Xn+\ \ Another 

abbreviation that will prove useful in the sequel is the symbol —• (read as "implies"): 

(</> —• tj)) is an abbreviation for (-•</> V V0-

(2) The class of L-definable sets is closed under many standard topological opera­

tions. For example, if S C R n is L-definable then so is 5, the closure of 5 in the ambi­

ent space R n . To see this, let <j> be an L-formula defining the set 5, i.e. S = 0(R). We 

must find an L-formula ^ ( - X i , . . . , Xn) so that ^ (R) = 5. To do this we simply use the 

naive definition of closure: a G S if and only if Ve(e > 0 —• 3y(y G S A | |y -a | | 2 < e). 

To turn this into an L-formula we must perform some of the syntactic operations 

referred to above. We increase the subscripts of all the variables in <j> by n -f 1. 

The result of doing this may be written, by the convention described above, as 

(j){Xn+2,''' i -X^n+i). (So this formula expresses " ( X n + 2 > • • • > X2n+i) £ The re­

quired formula i> is: \/Xn+1(Xn+1 > 0 -> 3 X n + 2 , . . . , 3 X 2 n + 1 ( 0 ( X n + 2 , . . . , X2n+1) A 

{Xi - Xn+2)
2 < Xn+1 A • • • A (Xn — X2n+i)

2 < X n + i ) ) . (For polynomials p,q we 

often prefer to write p < q for q — p > 0.) I leave it to the reader to translate the 

usual definitions of, say, the interior of S and of the boundary of 5 by use of the 

L-dictionary and hence show that these sets are also L-definable. 

(3) We say that a function F : S —» R, where 5 is a non-empty subset of R n , is 

L-definable if its graph { ( x , y) G S x R : F(x) = y} is an L-definable subset of R n + 1 . 

Suppose that S is open in R n . Then by translating the usual e — S definition one sees 

that the set X of points in S at which F is differentiate is an L-definable set and 

that each partial derivative of F is an L-definable function on X. We may repeat this 

process (on F restricted to the interior of X) to see that all partial derivatives of F, 

of all orders, are L-definable functions (on their appropriate domains which, as we 

shall see later, are always non-empty). 

2.4. The o-minimality of R 

So far we have only introduced the parameter-free concept of an L-formula and 

of the sets and functions that they define. Now consider a definable subset, A say, 

of R n + m . For each a G R m let Aa denote the fibre {b G R n : (b,a) G A } . We 

say that the subset Aa of R n is definable with parameters (or, with parameters a if 

we need to be precise). We shall also call the collection { A a : a G R m } a definable 

collection of subsets of R n . It is rather easy to see that if we change, in 2.1(i) and 

2.1(iv), the polynomial ring Z[Xi,..., Xn] to R [ X i , . . . , X n ] , then the resulting class of 

formulas (called L-formulas with parameters) defines exactly those sets definable with 

parameters in the sense described above. We have now made precise the definition 

of o-minimality (for the structure R) stated in section 1: every subset of R definable 

by an L-formula with parameters is a finite union of open intervals and points. The 
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fact that this is indeed the case follows from Tarski's famous quantifier elimination 

theorem [12] (also known as the Tarski-Seidenberg algorithm). 

THEOREM 2.1. — Every L-formula is equivalent (over R) to one containing no oc­

currences of quantifiers. That is, for each n, every definable subset of R n can be 

obtained from sets of type 2.1(i) by applications of the boolean operations 2.1(ii). 

Subsets of R n that can be expressed as boolean combinations of zero-sets and posi-

tivity sets of real polynomials are called semi-algebraic and their study, semi-algebraic 

geometry. The essential point of Tarski's theorem is that the class of all semi-algebraic 

sets is closed under projection maps. The theorem can, in some cases, be seen as a 

manifestation of facts of elementary algebra. For example, the formulas a, /3 of 2.2 

are equivalent to (X% - 4 • X2 > 0 V X\ - 4 • X2 = 0) and ^(Xx • X 3 - X2 • X 4 = 0) 

respectively. To see that the sets of examples 2.3(ii) are semi-algebraic (for semi-

algebraic S) is, however, more challenging. (One should perhaps mention here that 

there exist polynomials p (X) , irreducible ones even, such that the closure of the pos-

itivity set {a G R n : p(a) > 0} of p(X) is definitely not the set {a G R n : p(a) > 0}.) 

However, such considerations are not relevant to our present concerns. Our only inter­

est here in Tarski's theorem is that it implies the o-minimality of the structure R. For 

clearly the zero-set and the positivity set of any univariate, real polynomial are both 

finite unions of open intervals and points, and the class of such sets is closed under 

the boolean operations. Hence all L-definable subsets of R have this form. (Tarski 

himself explicitly observed this consequence of his theorem but he did not pursue it.) 

Van den Dries' key insight was that the most fruitful way to generalize semi-algebraic 

geometry to transcendental analytic situations was not to focus on quantifier elim­

ination theorems (which, he observed, rarely hold), but rather on the o-minimality 

axiom for sets definable by arbitrary formulas. 

3. THE GENERAL CASE 

We return to the situation of section 1: U is some collection of real functions, 

R ^ denotes the structure (R; + , - ,—,<, £7} and L(&) its language. The definition of 

an L(£7)-definable subset of R n follows the same inductive procedure as in the semi-

algebraic case, the only difference being that in 2.1(i) we replace Z[X±,... ,Xn] by 

the compositional closure of the collection of functions { + , - , — , 0 , l , X i , . . . , Xn, ¿7}. 

We proceed similarly for the definition of an L(£7)-formula. (Strictly speaking we 

should introduce a fixed symbol Ff (of specified number of places) for each function 

/ G ¿7 and a system of notation for the compositional closure.) Also, the notion of 

a set being L(^-definable with parameters, and of a definable collection of sets, is 
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just as in 2.4 except that we replace R [ X i , . . . , Xn] by the compositional closure of 

{ + , •, —, R, Xi,..., Xn, £7}, where R is here being regarded as the set of all constant 

functions. We have thus made precise the formulation of the o-minimality axiom 

given in section 1. The claim of this talk is that if £7 is such that R r̂ is o-minimal, 

then the collection of L(£7)-definable sets and functions (with or without parameters) 

satisfies the three criteria for a framework for tame topology. 

Regarding (A), let us just observe for the moment that examples 2.3(2) and (3) ap­

ply with "L(£7)-definable" in place of "L-definable": one simply constructs the formula 

for, say, S out of one for S. In the next section I shall present more of the general 

theory of o-minimality as justification for the claim above, but first let me present 

one of the most important examples of an o-minimal structure. It was (re)discovered 

in this context by van den Dries [3] as a consequence of a theorem of Gabrielov [5]. 

3.1. The globally subanalytic sets 

We consider the collection £7 a n of all those functions / : [—1,1]n —• R (for all 

n > 1) that are the restrictions to [—1,1]71 of a real analytic function with domain 

some open subset U C R n with [—1, l ] n C U. The structure R&an is usually denoted 

just R a n . (Strictly speaking the functions should be total in order to fit in with our 

previous account, so we set /(a) = 0 if a G R n \ [—1, l ] n . ) Then R a n is o-minimal ([1], 

[5]). The L(67an)-definable sets are closely related to the much studied and widely 

used subanalytic sets. In fact the bounded L(S r

a n)-definable sets are precisely the 

bounded subanalytic sets. However, the set of integers, for example, is a subanalytic 

(in fact, semi-analytic) subset of R which is obviously not definable in any o-minimal 

structure. The precise characterization is this: a subset A of R n is L(£7an)-definable if 

and only if 9 [A] is a subanalytic subset of R n for some semi-algebraic homeomorphism 

9 : R n ( - l , l ) n . 

Thus o-minimality is a common generalization of both semi-algebraic and sub-

analytic geometry and, indeed, most of the topological and geometrical finiteness 

theorems that were originally established separately have now been proved for 

o-minimal structures in general. I shall now discuss such theorems and then present 

more examples of o-minimal structures in section 5. 

4. SOME GENERAL THEORY FOR O-MINIMAL STRUCTURES 

Let us fix an o-minimal structure R57- . The proofs of all the results listed below 

may be found in [3]. They exemplify criterion (A) and, especially, criterion (C) for 

tame topology. 
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4.1. Connectivity 

For each n > 1, every L( 57)-definable subset of R n is a finite union of connected 

sets (each of which is also L(57)-definable). For n — 1 this is just the definition of 

o-minimality. In fact, there is also a generalization of ipoints' and 'open intervals' to 

higher dimensions, giving rise to a cylindrical cell-decomposition theorem for £(57)-

definable subsets of R n . This in turn implies a uniformity, as required for criterion 

(C), in fibred collections: if is a definable collection of subsets of R n , then there 

exists a positive integer N such that each set in <fi is the union of at most N connected 

sets. 

4.2. Dimension 

Indeed, for each p > 1, any L(57)-definable subset A of R n is a finite union of 

connected Cp submanifolds of R n and this leads to a well behaved notion dim(A), 

the dimension of A. Once more, there is a uniform bound on the number of such 

submanifolds required for sets in a definable collection. Further, the (integer valued) 

function a i—• dim(j4 a) is L( 57)-definable, whenever {Aa : a G R m } is a definable 

collection of subsets of R n . 

4.3. Differentiability 

Let / : U —> R be an L(57)-definable function, where U is a non-empty, open subset 

of R n . Then for each p > 1, there exists an L(£7)-definable, open set V Q U with 

dim(C7 \ V) < n such that f\V is of class (cf. 2.3(3)). In all known o-minimal 

structures we may even take p = oo here, but this seems unlikely to be true in 

general ^ \ 

4.4. Homeomorphism types 

Let := {Aa : a G R m } be a definable collection of subsets of R n . Then there 

exists a finite subset A of R m such that every set Aa is homeomorphic to some Ac with 

c G A (and the homeomorphisms are themselves also (uniformly) L(5 r)-definable). 

Thus, for example, with 57 = 0 and fixed n,d > 1, we may take <̂  to be the 

collection of all zero sets (or positivity sets) of polynomials in n variables and of total 

degree at most d (so we take m to be the number of monomials of degree at most d in 

n variables). The conclusion is that there exists a positive integer N = N(n,d) such 

that there are at most N homeomorphism types of such sets. 

Added in proof: indeed it is not. A counterexample has been constructed recently by Robin and 

Le Gal. 
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5. M O R E EXAMPLES OF O-MINIMAL STRUCTURES 

5.1. Quasi-analytic classes 

Let M = (Mo, M i , . . . ) be an increasing sequence of real numbers with Mo > 1. For 

n > 1, let SV^M) denote the collection of all C°° functions / : [— 1, l ] n —> E satisfying 

| / ( a ) ( x ) l < c W 'M\a\ for all x G [-1, l ] n and for all multi-indices a G N n , where c> 0 

is a constant that may depend on / , but not on a or x. (For a = (QJI , . . . , an) G N n , 

|a| := ai H f- an and / ( a ) denotes the a'th partial derivative of / with respect to 

X.) 

We now say that the sequence M determines a quasi-analytic class if for all n > 1, 

all / G ^n(M) and all a G [—1, l ] n , either / is identically zero or else there exists 

a G N n such that / ^ ( a ) 0- In other words, the map sending a function in £? n (M) 

to its formal Taylor series at a point a G [—1, l ] n is injective. 

THEOREM 5.1 (Rolin-Speissegger-Wilkie [10]). — Suppose that the sequence M de­

termines a quasi-analytic class and set £7" = | J { / G S? n(M) : n > 1} (with functions 

being set to 0 outside the unit box). Then E^ is o-minimal. 

In the case Mp = p\ each i ? n ( M ) consists of precisely the functions that have 

real analytic continuations to some open set containing the box [—l, l ] n , and then 

Ec^ = E a n . However, there are larger quasianalytic classes. For by a theorem of 

Denjoy and Carleman, M determines a quasianalytic class if and only if the series 

!Cp=o° M

 p diverges, and this can be used in conjunction with theorem 5.1 to construct 

new o-minimal structures. However, such structures are more for theoretical interest 

than practical use in that they can illustrate the limitations of the general theory. For 

example, one can construct a sequence M satisfying the Denjoy-Carleman condition 

such that there exists a function / G <&i(M) which is nowhere analytic. (Every 

example of an o-minimal structure constructed prior to [10] had the property that 

every definable function was piecewise analytic.) Also, there exist two sequences 

M and K, both satisfying the Denjoy-Carleman condition, such that the structure 

^ # i ( M ) u * ? i ( K ) * s n o ^ ° - m i n i m a l - So there is no maximum o-minimal structure. 

5.2. Tarski's problem on the real exponential function 

Tarski asked whether his work on the ordered field of real numbers could be ex­

tended to the structure E { e x p } . (Of course, exp : E —• E is real analytic, but it is 

not definable in the structure E a n because its graph is not globally analytic.) In fact, 

he was interested in questions of effectivity in the sense that his own procedure for 

producing a quantifier-free formula equivalent to a given arbitrary formula of L was 

completely effective. We still do not have any complete answers in this direction for 

the structure E { e x p } , although we do now know enough about the L({exp})-definable 
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sets to reduce the problem to a purely number-theoretic one (see [8]). This arose 
out of the work in my paper [13] where I showed that any L({exp})-definable set 
is a projection of a set definable by a quantifier-free formula. Since Khovanski had 
already shown ([7]) that such sets have only finitely many connected components, we 
also obtain the following result. 

THEOREM 5 . 2 . — The structure R { e x p } is o-minimal. 

Soon after this, van den Dries, Macintyre and Marker ( [ 4 ] ) , by rather different 
methods, managed to add the full exponential function to R a n . That is, they 
showed that the structure is o-minimal (and much more besides), where 
57* := 57 a n U {exp}, and this is probably the most useful tame topology for 
the working mathematician. (See for example [11], where functions of the form 
f(xi,..., xn, l o g # i , . . . , logxn) (where / is globally analytic) arise. Schmid and 
Vilonen must control the behaviour of the zero set, Z say, of such a function near a 
positive coordinate plane, P say. This may be studied by analysing the intersection 
Z f l P o f their closures, which is L(R&*)-definable (cf. the remarks concerning 2 . 3 ( 2 ) 
in section 3 ) , and hence the representations described in 4.1 and 4.2 apply.) 

6. N E W FIBRED COLLECTIONS OF POLYNOMIALS 

In this short final section I present a result (due to Coste and van den Dries, and 
motivated by work of Risler) that concerns a uniformity in certain collections of semi-
algebraic sets but does not seem to be provable by considering the real ordered field R 
alone. Further, unlike the result discussed in 4.4, which may be formulated, and is 
in fact true, for the complex field (just split a complex polynomial into its real and 
imaginary parts and apply the real result to the sum of their squares) this result is 
definitely false there. 

Fix positive integers n, d and consider the collection @n,d of zero sets of polynomials 
in n variables that can be written as the sum of at most d monomials (of any degree). 
The result states that there is a bound I = l(n, d) on the number of homeomorphism 
types of sets in $n,d> (For n = 1 this is a consequence of Descartes' Rule of Signs: 
one may take I = 2d + 1.) 

Now of course, each set in (Pn,d is an L-definable subset of R n . However, it follows 
easily from quantifier elimination that for n > 1, $n4 is not contained in any definable 
collection of subsets of R n relative to the structure R. So the argument of 4.4 seems 
not to apply. The idea of Coste and van den Dries is based on the observation that 
a monomial function becomes a definable function of both the n given variables and 
their exponents if we pass to the structure R{ e X p} -
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To simplify the argument, I consider the collection {ZDQ^ : Z G <^n,d}5 where Q + 

denotes the positive quadrant of Rn, rather than $n,d- We introduce d + 1 n-tuples 

of variables t, . . . , y ^ and a d-tuple of variables u and consider the function 

#(u ,y , t ) := Et=1Ui exp(yW.t ) 

of the d + nd + n variables displayed. (The • denotes scalar product.) 

If P(xi,..., xn) is the sum of d monomials with real coefficients, then we may 

clearly find a G Rd and k G Nnd ( Ç Rnd) such that P(exp(*i), . . . ,exp(t n )) = 

o(a ,k , t ) for all t G Rn. 

But note that {{(exp( t i ) , . . . ,exp( t n )> G Q+:#(u,y, t) = 0}:(u ,y) G Rd+nd} is 

a definable collection of subsets of Rn over the structure M{ e X p}- The result now 

follows as in 4.4 after noting that the exponential map on each coordinate induces a 

homeomorphism from R n to Q+. 
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