On uniqueness of stationary vacuum black holes
Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon, Astérisque, no. 321 (2008), pp. 195-265.
@incollection{AST_2008__321__195_0,
     author = {Chrusciel, Piotr T. and Costa, Jo\~ao Lopes},
     title = {On uniqueness of stationary vacuum black holes},
     booktitle = {G\'eom\'etrie diff\'erentielle, physique math\'ematique, math\'ematiques et soci\'et\'e (I) : Volume en l'honneur de Jean Pierre Bourguignon},
     editor = {Hijazi Oussama},
     series = {Ast\'erisque},
     pages = {195--265},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {321},
     year = {2008},
     mrnumber = {2521649},
     zbl = {1183.83059},
     language = {en},
     url = {http://www.numdam.org/item/AST_2008__321__195_0/}
}
TY  - CHAP
AU  - Chrusciel, Piotr T.
AU  - Costa, João Lopes
TI  - On uniqueness of stationary vacuum black holes
BT  - Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon
AU  - Collectif
ED  - Hijazi Oussama
T3  - Astérisque
PY  - 2008
SP  - 195
EP  - 265
IS  - 321
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2008__321__195_0/
LA  - en
ID  - AST_2008__321__195_0
ER  - 
%0 Book Section
%A Chrusciel, Piotr T.
%A Costa, João Lopes
%T On uniqueness of stationary vacuum black holes
%B Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon
%A Collectif
%E Hijazi Oussama
%S Astérisque
%D 2008
%P 195-265
%N 321
%I Société mathématique de France
%U http://www.numdam.org/item/AST_2008__321__195_0/
%G en
%F AST_2008__321__195_0
Chrusciel, Piotr T.; Costa, João Lopes. On uniqueness of stationary vacuum black holes, dans Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon, Astérisque, no. 321 (2008), pp. 195-265. http://www.numdam.org/item/AST_2008__321__195_0/

[1] W. Abikoff - "The uniformization theorem", Amer. Math. Monthly 88 (1981), p. 574-592. | DOI | MR | Zbl

[2] M. T. Anderson, P. T. Chruściel & E. Delay - "Non-trivial, static, geodesically complete space-times with a negative cosmological constant. II. n5", in AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA Lect. Math. Theor. Phys., vol. 8, Eur. Math. Soc. Zürich, 2005, p. 165-204. | MR | Zbl

[3] A. F. Beardon - The geometry of discrete groups, Graduate Texts in Math., vol. 91, Springer, 1983. | DOI | MR | Zbl

[4] R. Beig & P. T. Chruściel - "Killing initial data", Class. Quantum Grav. 14 (1996), p. A83-A92, a special issue in honour of Andrzej Trautman on the occasion of his 64th Birthday. | DOI | MR | Zbl

[5] R. Beig & P. T. Chruściel, "Killing vectors in asymptotically flat space-times. I. Asymptotically translational Killing vectors and the rigid positive energy theorem", J. Math. Phys. 37 (1996), p. 1939-1961. | DOI | MR | Zbl

[6] R. Beig & P. T. Chruściel, "The isometry groups of asymptotically flat, asymptotically empty space-times with timelike ADM four-momentum", Comm. Math. Phys. 188 (1997), p. 585-597. | DOI | MR | Zbl

[7] R. Beig & P. T. Chrusciel, "The asymptotics of stationary electro-vacuum metrics in odd spacetime dimensions", Classical Quantum Gravity 24 (2007), p. 867-874. | DOI | MR | Zbl

[8] R. H. Boyer - "Geodesic Killing orbits and bifurcate Killing horizons", Proc. Roy. Soc. London Ser. A 311 (1969), p. 245-252. | DOI | MR | Zbl

[9] R. Budic, J. Isenberg, L. Lindblom & P. B. Yasskin - "On determination of Cauchy surfaces from intrinsic properties", Comm. Math. Phys. 61 (1978), p. 87-95. | DOI | MR | Zbl

[10] G. L. Bunting & A. K. M. Masood-Ul Alam - "Nonexistence of multiple black holes in asymptotically Euclidean static vacuum space-time", Gen. Relativity Gravitation 19 (1987), p. 147-154. | DOI | MR | Zbl

[11] B. Carter - "Killing horizons and orthogonally transitive groups in space-time", J. Mathematical Phys. 10 (1969), p. 70-81. | DOI | MR | Zbl

[12] B. Carter, "Black hole equilibrium states", in Black holes/Les astres occlus (École d'Été Phys. Théor., Les Houches, 1972), Gordon and Breach, 1973, p. 57-214. | MR

[13] B. Carter, "Bunting identity and Mazur identity for nonlinear elliptic systems including the black hole equilibrium problem", Comm. Math. Phys. 99 (1985), p. 563-591. | DOI | MR

[14] U. Christ & J. Lohkamp - "Singular minimal hypersurfaces and scalar curvature", preprint arXiv:math.DG/0609338, 2006.

[15] P. T. Chruściel - "Asymptotic estimates in weighted Hölder spaces for a class of elliptic scale-covariant second order operators", Ann. Fac. Sci. Toulouse Math. 11 (1990), p. 21-37. | DOI | EuDML | Numdam | MR | Zbl

[16] P. T. Chruściel, "Uniqueness of stationary, electro-vacuum black holes revisited", Helv. Phys. Acta 69 (1996), p. 529-552, Journées Relativistes 96, Part II (Ascona, 1996). | MR | Zbl

[17] P. T. Chruściel, "On rigidity of analytic black holes", Comm. Math. Phys. 189 (1997), p. 1-7. | DOI | MR | Zbl

[18] P. T. Chruściel, "The classification of static vacuum spacetimes containing an asymptotically flat spacelike hypersurface with compact interior", Classical Quantum Gravity 16 (1999), p. 661-687, corrigendum in arXiv:gr-qc/9809088. | DOI | MR | Zbl

[19] P. T. Chruściel, "Mass and angular-momentum inequalities for axi-symmetric initial data sets. I. Positivity of mass", Annals Phys. 323 (2008), p. 2566-2590. | DOI | MR | Zbl

[20] P. T. Chruściel, "On higher dimensional black holes with abelian isometry group", in preparation, 2008. | Zbl

[21] P. T. Chruściel & E. Delay - "On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications", Mém. Soc. Math. Fr. (N.S.) 94 (2003). | Numdam | MR | Zbl

[22] P. T. Chruściel, E. Delay, G. J. Galloway & R. Howard - "Regularity of horizons and the area theorem", Ann. Henri Poincaré 2 (2001), p. 109-178. | DOI | MR | Zbl

[23] P. T. Chruściel, G. J. Galloway & D. Solis - "On the topology of Kaluza-Klein black holes", preprint arXiv:0808.3233, 2008.

[24] P. T. Chruściel, Y. Y. Li & G. Weinstein - "Mass and angular-momentum inequalities for axi-symmetric initial data sets. II. Angular momentum", Annals Phys. 323 (2008), p. 2591-2613. | DOI | MR | Zbl

[25] P. T. Chruściel & D. Maerten - "Killing vectors in asymptotically flat space-times. II. Asymptotically translational Killing vectors and the rigid positive energy theorem in higher dimensions", J. Math. Phys. 47 (2006), p. 022502, 10. | DOI | MR | Zbl

[26] P. T. Chruściel, H. S. Reall & P. Tod - "On non-existence of static vacuum black holes with degenerate components of the event horizon", Classical Quantum Gravity 23 (2006), p. 549-554. | DOI | MR | Zbl

[27] P. T. Chruściel & R. M. Wald - "Maximal hypersurfaces in stationary asymptotically flat spacetimes", Comm. Math. Phys. 163 (1994), p. 561-604. | DOI | MR | Zbl

[28] P. T. Chruściel & R. M. Wald, "On the topology of stationary black holes", Classical Quantum Gravity 11 (1994), p. L147-L152. | DOI | MR | Zbl

[29] F . H. Clarke - Optimization and nonsmooth analysis, second ed., Classics in Applied Mathematics, vol. 5, Society for Industrial and Applied Mathematics (SIAM), 1990. | MR | Zbl

[30] H. Cohn - Conformal mapping on Riemann surfaces, Dover Publications Inc., 1980, Reprint of the 1967 edition, Dover Books on Advanced Mathematics. | MR | Zbl

[31] J. Costa - "On black hole uniqueness theorems", Ph.D. Thesis, University of Oxford, in preparation.

[32] S. Dain - "Initial data for stationary spacetimes near spacelike infinity", Classical Quantum Gravity 18 (2001), p. 4329-4338. | DOI | MR | Zbl

[33] S. Dain, "Proof of the angular momentum-mass inequality for axisymmetric black holes", J. Differential Geom. 79 (2008), p. 33-67. | DOI | MR | Zbl

[34] T. Damour & B. Schmidt - "Reliability of perturbation theory in general relativity", J. Math. Phys. 31 (1990), p. 2441-2453. | DOI | MR | Zbl

[35] R. Emparan & H. S. Reall - "Generalized Weyl solutions", Phys. Rev. D 65 (2002), p. 084025. | DOI | MR

[36] F. Ernst - "New formulation of the axially symmetric gravitational field problem", Phys. Rev. 167 (1968), p. 1175-1178. | DOI

[37] J. L. Friedman, K. Schleich & D. M. Witt - "Topological censorship", Phys. Rev. Lett. 71 (1993), p. 1486-1489, | DOI | MR | Zbl

J. L. Friedman, K. Schleich & D. M. Witt - "Topological censorship", erratum Phys. Rev. Lett. 75 (1995) p. 1872. | MR | Zbl

[38] H. Friedrich, I. Rácz & R. M. Wald - "On the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon", Comm. Math. Phys. 204 (1999), p. 691-707. | DOI | MR | Zbl

[39] D. Gabai - "3 lectures on foliations and laminations on 3-manifolds", in Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998), Contemp. Math., vol. 269, Amer. Math. Soc., 2001, p. 87-109. | DOI | MR | Zbl

[40] G. J. Galloway - "Some results on Cauchy surface criteria in Lorentzian geometry", Illinois J. Math. 29 (1985), p. 1-10. | MR | Zbl

[41] G. J. Galloway, "On the topology of the domain of outer communication", Classical Quantum Gravity 12 (1995), p. L99-L101. | DOI | MR | Zbl

[42] G. J. Galloway, "A "finite infinity" version of topological censorship", Classical Quantum Gravity 13 (1996), p. 1471-1478. | DOI | MR | Zbl

[43] G. J. Galloway, "Maximum principles for null hypersurfaces and null splitting theorems", Ann. Henri Poincaré 1 (2000), p. 543-567. | DOI | MR | Zbl

[44] G. J. Galloway, K. Schleich, D. M. Witt & E. Woolgar - "Topological censorship and higher genus black holes", Phys. Rev. D 60 (1999), p. 104039. | DOI | MR

[45] V. Guillemin & A. Pollack - Differential topology, Prentice-Hall Inc., 1974. | MR | Zbl

[46] P. Hajiček - "General theory of vacuum ergospheres", Phys. Rev. D7 (1973), p. 2311-2316.

[47] P. Hájíček - "Three remarks on axisymmetric stationary horizons", Comm. Math. Phys. 36 (1974), p. 305-320. | DOI | MR | Zbl

[48] S. W. Hawking - "Black holes in general relativity", Comm. Math. Phys. 25 (1972), p. 152-166. | DOI | MR

[49] S. W. Hawking & G. F. R. Ellis - The large scale structure of space-time, Cambridge University Press, 1973, Cambridge Monographs on Mathematical Physics, No. 1. | MR | Zbl

[50] J. Hempel - 3-Manifolds, Princeton University Press, 1976, Ann. of Math. Studies, No. 86. | MR | Zbl

[51] M. Heusler - Black hole uniqueness theorems, Cambridge Lecture Notes in Physics, vol. 6, Cambridge University Press, 1996. | MR | Zbl

[52] N. J. Hicks - Notes on differential geometry, Van Nostrand Mathematical Studies, No. 3, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. | MR | Zbl

[53] M. W. Hirsch, S. Smale & R. L. Devaney - Differential equations, dynamical systems, and an introduction to chaos, second ed., Pure and Applied Mathematics (Amsterdam), vol. 60, Elsevier/Academic Press, Amsterdam, 2004. | MR | Zbl

[54] S. Hollands & A. Ishibashi - "On the 'stationary implies axisymmetric' theorem for extremal black holes in higher dimensions", preprint arXiv:0809.2659, 2008. | MR | Zbl

[55] S. Hollands, A. Ishibashi & R. M. Wald - "A higher dimensional stationary rotating black hole must be axisymmetric", Comm. Math. Phys. 271 (2007), p. 699-722. | DOI | MR | Zbl

[56] S. Hollands & S. Yazadjiev - "Uniqueness theorem for 5-dimensional black holes with two axial Killing fields", preprint arXiv:0707.2775, 2007. | MR | Zbl

[57] S. Hollands, "A uniqueness theorem for five-dimensional Einstein-Maxwell black holes", Classical Quantum Gravity 25 (2008), p. 095010. | DOI | MR | Zbl

[58] G. T. Horowitz - "The positive energy theorem and its extensions", in Asymptotic behavior of mass and spacetime geometry (Corvallis, Ore., 1983), Lecture Notes in Phys., vol. 202, Springer, 1984, p. 1-21. | DOI | MR | Zbl

[59] A. Ionescu & S. Klainerman - "On the uniqueness of smooth, stationary black holes in vacuum", preprint arXiv:0711.0040, 2007. | MR | Zbl

[60] J. Isenberg & V. Moncrief - "Symmetries of higher dimensional black holes", Class. Quantum Grav. 25 (2008), p. 195015. | DOI | MR | Zbl

[61] W. Israel - "Event horizons in static vacuum space-times", Phys. Rev. 164 (1967), p. 1776-1779. | DOI

[62] B. S. Kay & R. M. Wald - "Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon", Phys. Rep. 207 (1991), p. 49-136. | DOI | MR | Zbl

[63] S. Kobayashi - "Fixed points of isometries", Nagoya Math. J. 13 (1958), p. 63-68. | DOI | MR | Zbl

[64] S. Kobayashi & K. Nomizu - Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. | MR | Zbl

[65] W. Kundt & M. Trümper - "Orthogonal decomposition of axi-symmetric stationary spacetimes", Z. Physik 192 (1966), p. 419-422. | DOI | MR

[66] J. Lewandowski & T. Pawlowski - "Extremal isolated horizons: a local uniqueness theorem", Classical Quantum Gravity 20 (2003), p. 587-606. | DOI | MR | Zbl

[67] J. Lewandowski & T. Pawlowski, "Quasi-local rotating black holes in higher dimension: geometry", Classical Quantum Gravity 22 (2005), p. 1573-1598. | DOI | MR | Zbl

[68] J. Lewandowski & T. Pawlowski, "Symmetric non-expanding horizons", Classical Quantum Gravity 23 (2006), 6031-6058. | DOI | MR | Zbl

[69] Y. Y. Li & G. Tian - "Regularity of harmonic maps with prescribed singularities", Comm. Math. Phys. 149 (1992), p. 1-30. | DOI | MR | Zbl

[70] J. Lohkamp - "The higher dimensional positive mass theorem. I", preprint arXiv:math.DG/0608795, 2006.

[71] P. Mazur - "Proof of uniqueness of the Kerr-Newman black hole solution", J. Phys. A 15 (1982), p. 3173-3180. | DOI | MR | Zbl

[72] R. Meinel, M. Ansorg, A. Kleinwächter, G. Neugebauer & D. Petroff - Relativistic figures of equilibrium, Cambridge University Press, 2008. | DOI | MR | Zbl

[73] V. Moncrief - "Neighborhoods of Cauchy horizons in cosmological spacetimes with one Killing field", Ann. Physics 141 (1982), p. 83-103. | DOI | MR | Zbl

[74] V. Moncrief & J. Isenberg - "Symmetries of cosmological Cauchy horizons", Comm. Math. Phys. 89 (1983), p. 387-413. | DOI | MR | Zbl

[75] C. B . J. Morrey - Multiple integrals in the calculus of variations, Die Grund. Math. Wiss., Band 130, Springer New York, Inc., New York, 1966. | MR | Zbl

[76] J. R. Munkres - Topology: a first course, Prentice-Hall Inc., 1975. | MR | Zbl

[77] G. Neugebauer & R. Meinel - "Progress in relativistic gravitational theory using the inverse scattering method", J. Math. Phys. 44 (2003), p. 3407-3429. | DOI | MR | Zbl

[78] K. Nomizu - "On local and global existence of Killing vector fields", Ann. of Math. 72 (1960), p. 105-120. | DOI | MR | Zbl

[79] P. Orlik - Seifert manifolds, Lecture Notes in Math., Vol. 291, Springer, 1972. | MR | Zbl

[80] A. Papapetrou - "Champs gravitationnels stationnaires à symmétrie axiale", Ann. Inst. H. Poincaré 4 (1966), p. 83-105. | EuDML

[81] N. Pelavas, N. Neary & K. Lake - "Properties of the instantaneous ergo surface of a Kerr black hole", Classical Quantum Gravity 18 (2001), p. 1319-1331. | DOI | MR | Zbl

[82] I. Rácz & R. M. Wald - "Global extensions of spacetimes describing asymptotic final states of black holes", Classical Quantum Gravity 13 (1996), p. 539-552. | DOI | MR | Zbl

[83] F. Raymond - "Classification of the actions of the circle on 3-manifolds", Trans. Amer. Math. Soc. 131 (1968), p. 51-78. | MR | Zbl

[84] D. Robinson - "Uniqueness of the Kerr black hole", Phys. Rev. Lett. 34 (1975), p. 905-906. | DOI

[85] D. Robinson, "A simple proof of the generalization of Israel's theorem", Gen. Rel. Grav. 8 (1977), p. 695-698. | DOI | Zbl

[86] R. M. Schoen - "Variational theory for the total scalar curvature functional for Riemannian metrics and related topics", in Topics in calculus of variations (Montecatini Terme, 1987), Lecture Notes in Math., vol. 1365, Springer, 1989, p. 120-154. | DOI | MR | Zbl

[87] W. Simon & R. Beig - "The multipole structure of stationary space-times", J. Math. Phys. 24 (1983), p. 1163-1171. | DOI | MR | Zbl

[88] H. Stephani, D. Kramer, M. Maccallum, C. Hoenselaers & E. Herlt - Exact solutions of Einstein's field equations, second ed., Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2003. | MR | Zbl

[89] D. Sudarsky & R. M. Wald - "Extrema of mass, stationarity, and staticity, and solutions to the Einstein-Yang-Mills equations", Phys. Rev. D 46 (1992), p. 1453-1474. | MR

[90] R. M. Wald - General relativity, University of Chicago Press, 1984. | MR | Zbl

[91] G. Weinstein - "On rotating black holes in equilibrium in general relativity", Comm. Pure Appl. Math. 43 (1990), p. 903-948. | DOI | MR | Zbl

[92] G. Weinstein, "On the force between rotating co-axial black holes", Trans. Amer. Math. Soc. 343 (1994), p. 899-906. | MR | Zbl

[93] G. Weinstein, "Harmonic maps with prescribed singularities into Hadamard manifolds", Math. Res. Lett. 3 (1996), p. 835-844. | DOI | MR | Zbl

[94] G. Weinstein, "Harmonic maps with prescribed singularities on unbounded domains", Amer. J. Math. 118 (1996), p. 689-700. | DOI | MR | Zbl

[95] G. Weinstein, "N-black hole stationary and axially symmetric solutions of the Einstein/Maxwell equations", Comm. Partial Differential Equations 21 (1996), p. 1389- 1430. | DOI | MR | Zbl