@incollection{AST_2008__321__139_0, author = {Chen, Xiuxiong and Tang, Yudong}, title = {Test configuration and geodesic rays}, booktitle = {G\'eom\'etrie diff\'erentielle, physique math\'ematique, math\'ematiques et soci\'et\'e (I) : Volume en l'honneur de Jean Pierre Bourguignon}, editor = {Hijazi Oussama}, series = {Ast\'erisque}, pages = {139--167}, publisher = {Soci\'et\'e math\'ematique de France}, number = {321}, year = {2008}, mrnumber = {2521647}, zbl = {1181.53058}, language = {en}, url = {http://www.numdam.org/item/AST_2008__321__139_0/} }
TY - CHAP AU - Chen, Xiuxiong AU - Tang, Yudong TI - Test configuration and geodesic rays BT - Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon AU - Collectif ED - Hijazi Oussama T3 - Astérisque PY - 2008 SP - 139 EP - 167 IS - 321 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2008__321__139_0/ LA - en ID - AST_2008__321__139_0 ER -
%0 Book Section %A Chen, Xiuxiong %A Tang, Yudong %T Test configuration and geodesic rays %B Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon %A Collectif %E Hijazi Oussama %S Astérisque %D 2008 %P 139-167 %N 321 %I Société mathématique de France %U http://www.numdam.org/item/AST_2008__321__139_0/ %G en %F AST_2008__321__139_0
Chen, Xiuxiong; Tang, Yudong. Test configuration and geodesic rays, dans Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon, Astérisque, no. 321 (2008), pp. 139-167. http://www.numdam.org/item/AST_2008__321__139_0/
[1] Kähler geometry of toric varieties and extremal metrics", Internat. J. Math. 9 (1998), p. 641-651. | DOI | MR | Zbl
- "[2] Hamiltonian -forms in Kähler geometry. III. Extremal metrics and stability", Invent. Math. 173 (2008), p. 547-601. | DOI | MR | Zbl
, , & - "[3] Infinite geodesic rays in the space of Kähler potentials", Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003), p. 617-630. | EuDML | Numdam | MR | Zbl
& - "[4] The Dirichlet problem for a complex Monge-Ampère equation", Invent. Math. 37 (1976), p. 1-44. | DOI | EuDML | MR | Zbl
& - "[5] Extremal Kähler metrics", in Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, 1982, p. 259-290. | MR | Zbl
- "[6] Extremal Kähler metrics. II", in Differential geometry and complex analysis, Springer, 1985, p. 95-114. | DOI | MR | Zbl
, "[7] The space of Kähler metrics. II", J. Differential Geom. 61 (2002), p. 173-193. | DOI | MR | Zbl
& - "[8] The space of Kähler metrics", J. Differential Geom. 56 (2000), p. 189-234. | DOI | MR | Zbl
- "[9] Space of Kähler metrics. III — On the lower bound of the Calabi energy and geodesic distance", Invent. math. (2008), DOI: 10.1007/s00222-008-0153-7. | MR | Zbl
, "[10] Geometry of Kähler metrics and foliations by holomorphic discs", Publ. Math. Inst. Hautes Études Sci. 107 (2008), p. 1-107. | DOI | EuDML | Numdam | MR | Zbl
& - "[11] Kähler-Einstein metrics and the generalized Futaki invariant", Invent. Math. 110 (1992), p. 315-335. | DOI | EuDML | MR | Zbl
& - "[12] Symmetric spaces, Kähler geometry and Hamiltonian dynamics", in Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., 1999, p. 13-33. | MR | Zbl
- "[13] Scalar curvature and projective embeddings. I", J. Differential Geom. 59 (2001), p. 479-522. | DOI | MR | Zbl
, "[14] Holomorphic discs and the complex Monge-Ampere equation", J. Symplectic Geom. 1 (2002), p. 171-196. | DOI | MR | Zbl
, "[15] Scalar curvature and stability of toric varieties", J. Differential Geom. 62 (2002), p. 289-349. | DOI | MR | Zbl
, "[16] Lower bounds on the Calabi functional", J. Differential Geom. 70 (2005), p. 453-472. | DOI | MR | Zbl
, "[17] An obstruction to the existence of Einstein Kähler metrics", Invent. Math. 73 (1983), p. 437-443. | DOI | EuDML | MR | Zbl
- "[18] The Dirichlet problem for complex Monge-Ampere equations and regularity of the pluri-complex Green function", Comm. Anal. Geom. 6 (1998), p. 687-703. | DOI | MR | Zbl
- "[19] A remark on extremal Kähler metrics", J. Differential Geom. 21 (1985), p. 73-77. | DOI | MR | Zbl
- "[20] The log term of the Szegö kernel", Duke Math. J. 125 (2004), p. 351-387. | DOI | MR | Zbl
& - "[21] Some symplectic geometry on compact Kähler manifolds. I", Osaka J. Math. 24 (1987), p. 227-252. | MR | Zbl
- "[22] Stability of extremal Kähler manifolds", Osaka J. Math. 41 (2004), p. 563-582. | MR | Zbl
, "[23] Analysis of geometric stability", Int. Math. Res. Not. 48 (2004), p. 2555-2591. | DOI | MR | Zbl
& - "[24] Stability, energy functional, and Kähler-Einstein metrics", Comm. Anal. Geom. 11 (2003), p. 565-597. | DOI | MR | Zbl
& - "[25] The Monge-Ampère operator and geodesies in the space of Kähler potentials", Invent. Math. 166 (2006), p. 125-149. | DOI | MR | Zbl
& , "[26] Test configurations for -stability and geodesic rays", J. Symplectic Geom. 5 (2007), p. 221-247. | DOI | MR | Zbl
& , "[27] On the regularity of geodesic rays associated to test configurations", preprint arXiv:0707.3956.
& , "[28] A study of the Hilbert-Mumford criterion for the stability of projective varieties", J. Algebraic Geom. 16 (2007), p. 201-255. | DOI | MR | Zbl
& - "[29] Complex Monge-Ampère and symplectic manifolds", Amer. J. Math. 114 (1992), p. 495-550. | DOI | MR | Zbl
- "[30] The homogeneous complex Monge-Ampère equation and the infinite-dimensional versions of classic symmetric spaces", in The Gelfand Mathematical Seminars, 1993-1995, Gelfand Math. Sem., Birkhäuser, 1996, p. 225-242. | DOI | MR | Zbl
, "[31] Bergman metrics and geodesics in the space of Kähler metrics on toric varieties", preprint arXiv:0707.3082. | DOI | MR | Zbl
& - "[32] Extremal metrics and -stability", Bull. Lond. Math. Soc. 39 (2007), p. 76-84. | DOI | MR | Zbl
- "[33] On a set of polarized Kähler metrics on algebraic manifolds", J. Differential Geom. 32 (1990), p. 99-130. | DOI | MR | Zbl
- "[34] Kähler-Einstein metrics with positive scalar curvature", Invent. Math. 130 (1997), p. 1-37. | DOI | MR | Zbl
, "[35] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I", Comm. Pure Appl. Math. 31 (1978), p. 339-411. | DOI | MR | Zbl
- "[36] Szegő kernels and a theorem of Tian", Internat. Math. Res. Notices 6 (1998), p. 317-331. | DOI | MR | Zbl
- "[37] A note on the -stability on toric manifolds", preprint arXiv:0706.0505. | Zbl
& - "