Chaos versus renormalization at quadratic S-unimodal Misiurewicz bifurcations
Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), pp. 257-308.
@incollection{AST_2003__286__257_0,
     author = {Colli, Eduardo and Pinheiro, Vilton},
     title = {Chaos versus renormalization at quadratic $S$-unimodal {Misiurewicz} bifurcations},
     booktitle = {Geometric methods in dynamics (I) : Volume in honor of Jacob Palis},
     editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe},
     series = {Ast\'erisque},
     pages = {257--308},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {286},
     year = {2003},
     mrnumber = {2052306},
     zbl = {1052.37028},
     language = {en},
     url = {http://www.numdam.org/item/AST_2003__286__257_0/}
}
TY  - CHAP
AU  - Colli, Eduardo
AU  - Pinheiro, Vilton
TI  - Chaos versus renormalization at quadratic $S$-unimodal Misiurewicz bifurcations
BT  - Geometric methods in dynamics (I) : Volume in honor of Jacob Palis
AU  - Collectif
ED  - de Melo, Wellington
ED  - Viana, Marcelo
ED  - Yoccoz, Jean-Christophe
T3  - Astérisque
PY  - 2003
SP  - 257
EP  - 308
IS  - 286
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2003__286__257_0/
LA  - en
ID  - AST_2003__286__257_0
ER  - 
%0 Book Section
%A Colli, Eduardo
%A Pinheiro, Vilton
%T Chaos versus renormalization at quadratic $S$-unimodal Misiurewicz bifurcations
%B Geometric methods in dynamics (I) : Volume in honor of Jacob Palis
%A Collectif
%E de Melo, Wellington
%E Viana, Marcelo
%E Yoccoz, Jean-Christophe
%S Astérisque
%D 2003
%P 257-308
%N 286
%I Société mathématique de France
%U http://www.numdam.org/item/AST_2003__286__257_0/
%G en
%F AST_2003__286__257_0
Colli, Eduardo; Pinheiro, Vilton. Chaos versus renormalization at quadratic $S$-unimodal Misiurewicz bifurcations, dans Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), pp. 257-308. http://www.numdam.org/item/AST_2003__286__257_0/

[1] A. Ávila, M. Lyubich, W. De Melo. Regular or stochastic dynamics in real analytic families of unimodal maps. Preprint. | MR | Zbl

[2] E. Colli. A starting condition approach to parameter distortion in generalized renormalization. Qualitative Theory of Dynamical Systems 2 (2001), 221-288. | DOI | MR | Zbl

[3] J. Graczyk, G. Świątek. Generic hyperbolicity in the quadratic family. Ann. of Math. 146 (1997), 1-52. | DOI | MR | Zbl

[4] M. Jakobson. Absolutely continuous invariant measures for one parameter families of one dimensional maps. Comm. Math. Phys. 81 (1981), 39-88. | DOI | MR | Zbl

[5] M. Jakobson. Piecewise smooth maps with absolutely continuous invariant measures and uniformly scaled Markov partitions. Proceedings of Symposia in Pure Mathematics 69 (2001), 825-881. | DOI | MR | Zbl

[6] M. Jakobson, G. Świątek. Metric properties of non-renormalizable S-unimodal maps. Part I: Induced expansion and invariant measures, Ergod. Th. & Dynam. Sys. 14 (1994), 721-755. | DOI | MR | Zbl

[7] M. Lyubich. Combinatorics, geometry and attractors of quasi-quadratic maps. Ann. of Math. 140 (1994), 347-404. | DOI | MR | Zbl

[8] M. Lyubich. Dynamics of quadratic polynomials, I, II. Acta Math. 178 (1997), 185-247, 247-297. | DOI | MR | Zbl

[9] M. Lyubich. Dynamics of quadratic polynomials, III. Parapuzzle and SBR measures. Astérisque 261 (2000), 173-200. | Numdam | MR | Zbl

[10] M. Lyubich. Almost every real quadratic map is either regular or stochastic. Ann. of Math. 156 (2002), no. 1, 1-78. | DOI | MR | Zbl

[11] M. Martens. Distortion results and invariant Cantor sets of unimodal maps. Ergod. Th. & Dynam. Sys. 14 (1994), 331-349. | DOI | MR | Zbl

[12] M. Martens, T. Nowicki. Invariant measures for typical quadratic maps. Astérisque 261 (2000), 239-252. | Numdam | MR | Zbl

[13] W. De Melo, S. Van Strien. One-dimensional dynamics. Springer Verlag, Berlin, Heidelberg, New York, 1993. | MR | Zbl

[14] D. Sands. Misiurewicz maps are rare. Comm. Math. Phys. 197 (1998), 109-129. | DOI | MR | Zbl

[15] D. Singer. Stable orbits and bifurcation of maps of the interval. SIAM J. Appl. Math 35 (1978), 260-267. | DOI | MR | Zbl

[16] Ph. Thieullen, C. Tresser, L. S. Young. Positive Lyapunov exponent for generic one-parameter families of unimodal maps. J. Anal. Math. 64 (1994), 121-172. | DOI | MR | Zbl