@incollection{AST_2003__286__231_0, author = {Bunimovich, Leonid A.}, title = {Walks in rigid environments: symmetry and dynamics}, booktitle = {Geometric methods in dynamics (I) : Volume in honor of Jacob Palis}, editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe}, series = {Ast\'erisque}, pages = {231--248}, publisher = {Soci\'et\'e math\'ematique de France}, number = {286}, year = {2003}, mrnumber = {2052304}, zbl = {1046.37002}, language = {en}, url = {http://www.numdam.org/item/AST_2003__286__231_0/} }
TY - CHAP AU - Bunimovich, Leonid A. TI - Walks in rigid environments: symmetry and dynamics BT - Geometric methods in dynamics (I) : Volume in honor of Jacob Palis AU - Collectif ED - de Melo, Wellington ED - Viana, Marcelo ED - Yoccoz, Jean-Christophe T3 - Astérisque PY - 2003 SP - 231 EP - 248 IS - 286 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2003__286__231_0/ LA - en ID - AST_2003__286__231_0 ER -
%0 Book Section %A Bunimovich, Leonid A. %T Walks in rigid environments: symmetry and dynamics %B Geometric methods in dynamics (I) : Volume in honor of Jacob Palis %A Collectif %E de Melo, Wellington %E Viana, Marcelo %E Yoccoz, Jean-Christophe %S Astérisque %D 2003 %P 231-248 %N 286 %I Société mathématique de France %U http://www.numdam.org/item/AST_2003__286__231_0/ %G en %F AST_2003__286__231_0
Bunimovich, Leonid A. Walks in rigid environments: symmetry and dynamics, dans Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), pp. 231-248. http://www.numdam.org/item/AST_2003__286__231_0/
[1] Network Flows. Prentice Hall, NY, 1993. | MR | Zbl
, , .[2] Controlling production lines. In Handbook of Chaos Control, H. Schuster, editor, Wiley-VCH, Berlin, 1999. | Zbl
.[3] Walks in rigid environments. Physica A 279, 169-179, 2000. | DOI | MR
.[4] Recurrence properties of Lorentz lattice gas cellular automata. J. Statist. Phys., 67, 289-302, 1992. | DOI | MR | Zbl
and .[5] Topological properties of flipping Lorentz lattice gases. J. Statist. Phys., 72, 297-307, 1993. | DOI | MR | Zbl
and .[6] Billiards and other hyperbolic systems. In Dynamical Systems, Ergodic Theory and Applications, Ya.G. Sinai, editor, Springer, Berlin, 2000. pp. 192-233. | Zbl
.[7] Complexity of cellular automata models. In Physics of Complexity, S. Ciliberto, T. Dauxois and M. Dros, eds., Editions Frontiers, Lyon, 1995. pp. 111-136.
.[8] New types of diffusion in lattice gas cellular automata. In Microscopic Simulation of Complex Hydrodynamic Phenomena, M. Marechal and B.L. Holian, eds., Plenum, NY, 1992. | DOI
.[9] Cellular Automata. Kluwer, Dordrecht, 1999. | DOI | MR | Zbl
, .[10] Dynamics of Complex Interacting Systems, E. Goles and S. Martinez, eds., Kluwer, Dordrecht, 1996. | MR
[11] Complexity of Langton's ant. Discrete Appl. Math., 117, 41-50, 2002. | DOI | MR | Zbl
, and .[12] General physical systems and the emergence of physical structures from information theory. Int. J. Gen. Syst, 27, 1-379, 1998. | DOI | Zbl
[13] Organization and propagation in deterministic Lorentz gases. J. Statist. Phys., 97, 375-401, 1999. | DOI | MR
, , and .[14] The quadratic family as a qualitatively solvable model of chaos. Notices of AMS, 47, 1042-1052, 2000. | MR | Zbl
.[15] Directionally reinforced random walks. Adv. in Math., 117, 239-252, 1996. | DOI | MR | Zbl
, and .[16] On the wonderful world of random walks. In Studies in Statistical Mechanics XI, E.W. Montroll and J.L. Lebowitz, eds. North-Holland Phys. Publ., Amsterdam, 1984. | MR | Zbl
and .[17] Phase transition in reinforced random walk and on trees. Ann. Probab., 16, 1229-1241, 1995. | DOI | MR | Zbl
.[18] Deterministic lattice gas models. Phys. Lett. A., 133, 415-418, 1988. | DOI | MR
and ,