@incollection{AST_2003__286__223_0, author = {Broer, Henk}, title = {Coupled {Hopf-bifurcations:} {Persistent} examples of $n$-quasiperiodicity determined by families of 3-jets}, booktitle = {Geometric methods in dynamics (I) : Volume in honor of Jacob Palis}, editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe}, series = {Ast\'erisque}, pages = {223--229}, publisher = {Soci\'et\'e math\'ematique de France}, number = {286}, year = {2003}, mrnumber = {2052303}, zbl = {1039.37030}, language = {en}, url = {http://www.numdam.org/item/AST_2003__286__223_0/} }
TY - CHAP AU - Broer, Henk TI - Coupled Hopf-bifurcations: Persistent examples of $n$-quasiperiodicity determined by families of 3-jets BT - Geometric methods in dynamics (I) : Volume in honor of Jacob Palis AU - Collectif ED - de Melo, Wellington ED - Viana, Marcelo ED - Yoccoz, Jean-Christophe T3 - Astérisque PY - 2003 SP - 223 EP - 229 IS - 286 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2003__286__223_0/ LA - en ID - AST_2003__286__223_0 ER -
%0 Book Section %A Broer, Henk %T Coupled Hopf-bifurcations: Persistent examples of $n$-quasiperiodicity determined by families of 3-jets %B Geometric methods in dynamics (I) : Volume in honor of Jacob Palis %A Collectif %E de Melo, Wellington %E Viana, Marcelo %E Yoccoz, Jean-Christophe %S Astérisque %D 2003 %P 223-229 %N 286 %I Société mathématique de France %U http://www.numdam.org/item/AST_2003__286__223_0/ %G en %F AST_2003__286__223_0
Broer, Henk. Coupled Hopf-bifurcations: Persistent examples of $n$-quasiperiodicity determined by families of 3-jets, dans Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), pp. 223-229. http://www.numdam.org/item/AST_2003__286__223_0/
[1] Three coupled oscillators: Mode-locking, global bifurcation and toroidal chaos, Physica D, (1991), 387-475. | DOI | MR | Zbl
, , and ,[2] On a quasi-periodic Hopf bifurcation, Ann. Institut Henri Poincaré, Analyse non linéaire, 4, no.2 (1987), 115-168. | DOI | EuDML | Numdam | MR | Zbl
& ,[3] Towards a Quasiperiodic Bifurcation Theory, Mem. AMS, 83(421) (1990), 83-175. | Zbl
, and ,[4] Formal normal forms for vector fields and some consequences for bifurcations in the volume preserving case. In: D. Rand and L.S. Young (eds.), Dynamical Systems and Turbulence, Warwick 1980 LNM 898 (1981), 75-89, Springer-Verlag. | MR | Zbl
,[5] KAM-Theory: Multi-Periodicity in conservative and dissipative systems, Nieuw Arch. Wish. 14(1), (1996), 1-15. | MR | Zbl
,[6] Unfoldings of Quasi-Periodic Tori, Mem. AMS, 83(421) (1990), 1-82. | Zbl
, and ,[7] Quasi-periodic tori in families of dynamical systems: order amidst chaos, LNM 1645, Springer Verlag 1996. | Zbl
, and ,[8] Mixed spectrum and rotational symmetry, Arch. Rational Mech. An. 124 (1993), 13-42. | DOI | MR | Zbl
& ,[9] Integrable and non-integrable deformations of the skew Hopf bifurcation, Reg. and Chaot. Dyn. 4 (1999), 17-43. | DOI | MR | Zbl
, and ,[10] Quasi-periodic stability of subfamilies of an unfolded skew-Hopf bifurcation, Arch. Rational Mech. An. 152 (2000), 283-326. | DOI | MR | Zbl
and ,[11] Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press 1994. | MR | Zbl
, and ,[12] Complicated dynamics of scalar reaction diffusion equations with a nonlocal term, Proc. Roy. Soc. Edinburgh Sect. A, (Mathematical and Physical Sciences) 115(1-2) (1990), 167-192. | DOI | MR | Zbl
and ,[13] Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Appl. Math. Sciences 42, Springer Verlag 1983. | DOI | MR | Zbl
and ,[14] Invariant Manifolds, LNM 583, Springer Verlag 1977. | MR | Zbl
, and ,[15] A mathematical example displaying features of turbulence. Commun. Appl. Math. 1 (1948), 303-322. | DOI | MR | Zbl
,[16] On the Normal Behaviour of Partially Elliptic Lower-Dimensional Tori of Hamiltonian Systems, Nonlinearity 10 (1997), 783-822. | DOI | MR | Zbl
and ,[17] Convergent series expansions for quasi-periodic motions, Math. Ann. 169 (1967), 136-176. | DOI | EuDML | MR | Zbl
,[18] Occurrence of strange Axiom attractors near quasiperiodic flows on , Commun. Math. Phys. 64 (1978), 35-40. | DOI | MR | Zbl
, and ,[19] Stable periodic solutions of a spatially homogeneous nonlocal reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, (Mathematical and Physical Sciences) 126(4) (1996), 867-884. | DOI | MR | Zbl
and ,[20] On the nature of turbulence, Commun. Math. Phys. 20 (1971), 167-192; | DOI | MR | Zbl
and ,On the nature of turbulence, Commun. Math. Phys. 23 (1971), 343-4. | DOI | Numdam | MR | Zbl
and ,[21] Perturbations of translations in the two-dimensional torus: the case near resonance, Proceedings VI CEDYA, Universidad de Zaragoza, 1984.
,[22] Singularities of Vector Fields, Commun. Math. Phys. 20, 1970, 167-192, | Zbl
,Singularities of Vector Fields, Commun. Math. Phys. 23, (1971), 343-344. | Zbl
,Singularities of Vector Fields, Publ. I.H.E.S. 43 (1974), 47-100. | DOI | EuDML | Numdam | MR | Zbl
,[23] Resonances in skew and reducible quasi-periodic Hopf bifurcations, Nonlinearity 13 (2000), 377-396. | DOI | MR | Zbl
and ,[24] Centre Manifolds, Normal Forms and Elementary Bifurcations, Dynamics Reported 2 (1989), 89-170. | DOI | MR | Zbl
,[25] On the skew Hopf bifurcation. PhD thesis, University of Groningen, 1998. | Zbl
,[26] Bifurcation of a certain family of planar vector fields tangent to axes, Journ. Diff. Eqns. 67 (1987), 1-55. | DOI | MR | Zbl
,