On the scaling structure for period doubling
Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), pp. 167-186.
@incollection{AST_2003__286__167_0,
     author = {Birkhoff, Garrett and Martens, Marco and Tresser, Charles},
     title = {On the scaling structure for period doubling},
     booktitle = {Geometric methods in dynamics (I) : Volume in honor of Jacob Palis},
     editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe},
     series = {Ast\'erisque},
     pages = {167--186},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {286},
     year = {2003},
     mrnumber = {2052301},
     zbl = {1156.37310},
     language = {en},
     url = {http://www.numdam.org/item/AST_2003__286__167_0/}
}
TY  - CHAP
AU  - Birkhoff, Garrett
AU  - Martens, Marco
AU  - Tresser, Charles
TI  - On the scaling structure for period doubling
BT  - Geometric methods in dynamics (I) : Volume in honor of Jacob Palis
AU  - Collectif
ED  - de Melo, Wellington
ED  - Viana, Marcelo
ED  - Yoccoz, Jean-Christophe
T3  - Astérisque
PY  - 2003
SP  - 167
EP  - 186
IS  - 286
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2003__286__167_0/
LA  - en
ID  - AST_2003__286__167_0
ER  - 
%0 Book Section
%A Birkhoff, Garrett
%A Martens, Marco
%A Tresser, Charles
%T On the scaling structure for period doubling
%B Geometric methods in dynamics (I) : Volume in honor of Jacob Palis
%A Collectif
%E de Melo, Wellington
%E Viana, Marcelo
%E Yoccoz, Jean-Christophe
%S Astérisque
%D 2003
%P 167-186
%N 286
%I Société mathématique de France
%U http://www.numdam.org/item/AST_2003__286__167_0/
%G en
%F AST_2003__286__167_0
Birkhoff, Garrett; Martens, Marco; Tresser, Charles. On the scaling structure for period doubling, dans Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), pp. 167-186. http://www.numdam.org/item/AST_2003__286__167_0/

[AMM] A. Avila, M. Martens, W. De Melo, On the dynamics of the renormalization operator, Global Analysis of Dynamical Systems, (Festschrift dedicated to Floris Takens for his 60th birthday), W. Broer, B. Krauskopf, and G. Vegter Eds. IOP Publishing Ltd 2001, 449-461. | MR | Zbl

[CT] P. Coullet, C. Tresser, Itérations d'endomorphismes et groupe de renormalisation, J. Phy. C5 (1978), 25-28. | MR | Zbl

[E1] H. Epstein, New proofs of the existence of the Feigenbaum functions, Commun. Math.Phys. 106 395-426 (1986). | DOI | MR | Zbl

[E2] H. Epstein, Fixed points of composition operators II, Nonlinearity 2 305-310 (1989). | DOI | MR | Zbl

[EL] H. Epstein, O. E. Lanford, personal communications.

[F] M. J. Feigenbaum, The transition to aperiodic behavior in turbulent systems, Commun. Math. Phys. 77 (1980), 65-86. | DOI | MR | Zbl

[GT] J. M. Gambaudo, C. Tresser, Self-similar constructions in smooth dynamics: Rigidity, Smoothness, and Dimension, Commun. Math. Phys. 150 (1992), 45-58. | DOI | MR | Zbl

[KSV] K. M. Khanin, Ya. Sinai, E. B. Vul, Feigenbaum universality and thermodynamic formalism, Uspekhi Mat. Nauk 39 (1984) 3-37. | MR | Zbl

[La] O. E. Lanford Iii, A computer assisted proof of the Feigenbaum conjecture, Bull. Amer. Math. Soc. (N.S.) 6 (1984), 427-434. | DOI | MR | Zbl

[Ly] M. Lyubich, Feigenbaum-Coullet-Tresser Universality and Milnor's Hairriness Conjecture, Ann. of Math. 149 (1999), 319-420. | DOI | EuDML | MR | Zbl

[Ma1] M. Martens, Distortion Results and Invariant Cantor Sets of Unimodal Maps, Erg. Th. & Dyn. Sys. 14 (1994), 331-349. | DOI | MR | Zbl

[Ma2] M. Martens, The Periodic Points of Renormalization, Ann. of Math. 147 (1998), 543-584. | DOI | MR | Zbl

[dMvS] W. De Melo, S. Van Strien, One-dimensional Dynamics, (Springer-Verlag, Berlin, 1993). | MR | Zbl

[Mc] C. Mcmullen, Complex Dynamics and Renormalization, Ann. of Math., Studies 135, (Princeton University Press, Princeton, 1994). | MR | Zbl

[R] D. A. Rand, Global phase space universality, smooth conjugacy and renormalization: I. The C 1+ case, Nonlinearity 1 (1988), 181-202. | DOI | MR | Zbl

[S1] D. Sullivan, Differentiable structure on fractal like sets, determined by intrinsic scaling functions on dual Cantor sets, The mathematical heritage of Hermann Weyl (Durham, NC, 1987), Proc. Sympos. in Pure Math. 48, 15-23. (Amer. Math. Soc, Providence, RI, 1988). | DOI | MR | Zbl

[S2] D. Sullivan, Bounds, Quadratic Differentials, and Renormalization Conjectures, in A.M.S. Centennial Publication Vol 2 Mathematics into the Twenty-first Century (Am. Math. Soc., Providence, RI, 1992). | MR | Zbl

[T] C. Tresser, Fine structure of universal Cantor sets, in Instabilities and Nonequilibrium Structures III, E. Tirapegui and W. Zeller Eds., (Kluwer, Dordrecht-Boston-London, 1991). | MR