@incollection{AST_2003__286__151_0, author = {Bernard, Patrick and Grotta Ragazzo, Clodoaldo and Santoro Salom\~ao, Pedro A.}, title = {Homoclinic orbits near saddle-center fixed points of {Hamiltonian} systems with two degrees of freedom}, booktitle = {Geometric methods in dynamics (I) : Volume in honor of Jacob Palis}, editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe}, series = {Ast\'erisque}, pages = {151--165}, publisher = {Soci\'et\'e math\'ematique de France}, number = {286}, year = {2003}, mrnumber = {2052300}, zbl = {1044.37044}, language = {en}, url = {http://www.numdam.org/item/AST_2003__286__151_0/} }
TY - CHAP AU - Bernard, Patrick AU - Grotta Ragazzo, Clodoaldo AU - Santoro Salomão, Pedro A. TI - Homoclinic orbits near saddle-center fixed points of Hamiltonian systems with two degrees of freedom BT - Geometric methods in dynamics (I) : Volume in honor of Jacob Palis AU - Collectif ED - de Melo, Wellington ED - Viana, Marcelo ED - Yoccoz, Jean-Christophe T3 - Astérisque PY - 2003 SP - 151 EP - 165 IS - 286 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2003__286__151_0/ LA - en ID - AST_2003__286__151_0 ER -
%0 Book Section %A Bernard, Patrick %A Grotta Ragazzo, Clodoaldo %A Santoro Salomão, Pedro A. %T Homoclinic orbits near saddle-center fixed points of Hamiltonian systems with two degrees of freedom %B Geometric methods in dynamics (I) : Volume in honor of Jacob Palis %A Collectif %E de Melo, Wellington %E Viana, Marcelo %E Yoccoz, Jean-Christophe %S Astérisque %D 2003 %P 151-165 %N 286 %I Société mathématique de France %U http://www.numdam.org/item/AST_2003__286__151_0/ %G en %F AST_2003__286__151_0
Bernard, Patrick; Grotta Ragazzo, Clodoaldo; Santoro Salomão, Pedro A. Homoclinic orbits near saddle-center fixed points of Hamiltonian systems with two degrees of freedom, dans Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), pp. 151-165. http://www.numdam.org/item/AST_2003__286__151_0/
[1] Instability of dynamical systems with several degrees of freedom, Dokl. Akad. Nauk. 156, pp 9-12. | MR | Zbl
, (1964)[2] Homoclinic orbit to a center manifold, to appear in Calc. Var. & P. D. E. | MR | Zbl
,[3] Shooting methods and topological transversality Proc. R. Soc. Edimb., sec A, Math. 125 No6, pp 1137-1155 | DOI | MR | Zbl
, (1999)[4] Twist mappings, linking, analyticity, and periodic solutions which pass close to an unstable periodic solution, Topological dynamics (Sympos., Colorado State Univ., Ft. Collins, Colo., 1967), pp. 129-153. Benjamin, New York. | MR | Zbl
, (1968)[5] On the ultimate behavior of orbits with respect to an unstable critical point I. Oscillating, asymptotic and capture orbits, Journ. Diff. Eqns 5, pp 136-158. | DOI | MR | Zbl
, (1969),[6] Homoclinic phenomena for orbits doubly asymptotic to an invariant three-sphere, Indiana Univ. Math. J. 28, pp 211-240. | DOI | MR | Zbl
, , (1979)[7] Irregular Dynamics and Homoclinic Orbits to Hamiltonian Saddle Centers, Comm. Pure App. Math. L, pp 105-147. | MR | Zbl
, (1997)[8] On the Stability of Double Homoclinic Loops, Comm. Math. Phys. 184, pp 251-272. | DOI | MR | Zbl
, (1997)[9] Hamiltonian systems with loops of a separatrix of saddle center, Selecta Math. Sov. 10, 1991, pp 297-306. | MR | Zbl
, (1991)[10] Periodic and homoclinic orbits in two-parameter unfolding of a Hamiltonian system with a homoclinic orbit to a saddle-center, Intern. Jour. Biff. Chaos 5, pp. 397-408. | DOI | MR | Zbl
, , (1995)[11] Transversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near in the restricted three body problem, Jour. Diff. Eq. 58, pp. 104-156. | DOI | MR | Zbl
, , , (1985)[12] Oscillatory integrals and phenomena beyond all algebraic orders, Lec. Notes in Maths 1741, Springer. | MR | Zbl
, (2000)[13] Topological methods for discrete dynamical systems, GAMM-Mitteilungen, Heft-2, pp. 19-37. | MR | Zbl
, (1990)[14] Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle center, J. Dyn. Diff. Eqns. 4, pp. 95-126. | DOI | MR | Zbl
, , and , (1992)[15] On the generalization of a theorem of A. Liapunoff, Comm. Pure Appl. Math. v. 11, pp. 257-271. | DOI | MR | Zbl
, (1958)[16] Stable and random motions in dynamical systems, Ann. Math. Stud. 77, Princeton University Press. | MR | Zbl
, (1973)[17] Über das Verhalten analytischer Hamiltonscher Differentialgle-ichungen in der Nähe einer Gleichgewichtslösung, Math. Ann. v. 154, pp. 285-300. Princeton University Press. | DOI | EuDML | MR | Zbl
, (1964)[18] Central stable/unstable manifolds and the destruction of tori in the restricted planar Hill problem, Physica D 140, pp 1-32. | DOI | MR | Zbl
, , (2000)