Duality for smooth families in equivariant stable homotopy theory
Astérisque, no. 285 (2003) , 114 p.
@book{AST_2003__285__1_0,
     author = {Hu, Po},
     title = {Duality for smooth families in equivariant stable homotopy theory},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {285},
     year = {2003},
     mrnumber = {2012798},
     zbl = {1029.55011},
     language = {en},
     url = {http://www.numdam.org/item/AST_2003__285__1_0/}
}
TY  - BOOK
AU  - Hu, Po
TI  - Duality for smooth families in equivariant stable homotopy theory
T3  - Astérisque
PY  - 2003
IS  - 285
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2003__285__1_0/
LA  - en
ID  - AST_2003__285__1_0
ER  - 
%0 Book
%A Hu, Po
%T Duality for smooth families in equivariant stable homotopy theory
%S Astérisque
%D 2003
%N 285
%I Société mathématique de France
%U http://www.numdam.org/item/AST_2003__285__1_0/
%G en
%F AST_2003__285__1_0
Hu, Po. Duality for smooth families in equivariant stable homotopy theory. Astérisque, no. 285 (2003), 114 p. http://numdam.org/item/AST_2003__285__1_0/

[1] J. Block & A. Lazarev - Homotopy theory and generalized duality for spectral sheaves, Internat. Math. Res. Notices (1996), no. 20, p. 983-996. | MR | Zbl | DOI

[2] A. Borel & N. Spaltenstein - Sheaf theoretic intersection cohomology, in Intersection cohomology (Bern, 1983), Progress in Math., vol. 50, Birkhäuser, 1984, p. 47-182. | MR | DOI

[3] W. G. Dywer & J. Spalinski - Homotopy theories and model categories, in Handbook of algebraic topology (I.M. James, ed.), Elsevier, 1995, p. 1-56. | Zbl | MR

[4] A. D. Elmendorf, I. Kriz, M. A. Mandell & J. P. May - Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, 1997, with an appendix by M. Cole. | MR | Zbl

[5] P. Hu - S-modules in the category of schemes, Mem. Amer. Math. Soc., vol. 767, American Mathematical Society, 2003. | MR | Zbl

[6] B. Iversen - Cohomology of sheaves, Universitext, Springer-Verlag, 1986. | Zbl | DOI

[7] L. G. Lewis - Open maps, colimits, and a convenient category of fibered spaces, Topology and its applications 19 (1985), p. 75-89. | Zbl | MR | DOI

[8] J. P. M. L. G. Lewis & M. Steinberger - Equivariant stable homotopy theory, Lect. Notes in Math., vol. 1213, Springer-Verlag, 1986. | MR | Zbl

[9] M. A. Mandell & J. P. May - Equivariant orthogonal spectra and S-modules, Mem. Amer. Math. Soc., vol. 159, American Mathematical Society, 2002. | MR | Zbl

[10] M. A. Mandell, J. P. May, S. Schwede & B. Shipley - Model categories of diagram spectra, Proc. London Math. Soc. (3) 82 (2001), no. 2, p. 441-512. | MR | Zbl | DOI

[11] J. P. May - Notes on ex-spaces and towards ex-spectra, Preprint, 2000.

[12] F. Morel & V. Voevodsky - 𝔸 1 -homotopy theory of schemes, Inst. Hautes Etudes Sci. Publ. Math. 90 (1999), p. 45-143. | MR | Zbl | EuDML | Numdam | DOI

[13] R. S. Palais - Local triviality of the restriction map for embeddings, Comment. Math. Helv. 34 (1960), p. 305-312. | MR | Zbl | EuDML | DOI

[14] R. S. Palais, Equivalences of nearby differentiable actions of a compact group, Bull. Amer. Math. Soc. 67 (1961), p. 362-364. | MR | Zbl | DOI