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ANALYTIC THEORY FOR THE QUADRATIC
SCATTERING WAVE FRONT SET AND APPLICATION
TO THE SCHRODINGER EQUATION

Luc Robbiano, Claude Zuily

Abstract. — We consider in this work, the microlocal propagation of analytic singu-
larities for the solutions of the Schrodinger equation with variable coefficients. We
introduce, following R. Melrose and J. Wunsch, a R™ compactification and a cotan-
gent compactification. We define by a FBI transform an analytic wave front set on
this cotangent bundle. The main part of this paper is to prove the propagation of
microlocal analytic singularities in this wave front set.

Résumé (Théorie analytique du front d’onde de scattering quadratique et application a
Péquation de Schridinger)

On examine dans ce travail la propagation des singularités analytiques des so-
lutions de I’équation de Schrodinger A coefficients variables. Nous introduisons, en
suivant R. Melrose et J. Wunsch, une compactification de R™ et une compactification
du cotangent. Nous définissons sur ce cotangent un front d’onde analytique par une
transformation de FBI. La majeure partie de cet article est consacrée a la preuve de
la propagation des singularités analytiques microlocales de ce front d’onde.

© Astérisque 283, SMF 2002
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CHAPTER 0

INTRODUCTION

The purpose of this work is to provide a theory for the analytic quadratic scattering
wave front set, here denoted W F,, which in the C'° case has been introduced by
Wunsch [W1] after the work of Melrose [M1], and to apply it to the propagation of
analytic singularities for the linear Schrédinger equation with variable coefficients.

To understand what we are doing here, let us begin by a very simple example.
Let us consider the initial value problem for the constant coefficients Schrédinger
equation,

Ou

9 L Au=0, t>0, €R"
(0.1) Yo T AU TEeRT

Ujg=0 = Uo

Taking ug = é and ug = e‘“”'z, it is an easy exercise to see that a data which is a
distribution with compact support may give rise to a smooth solution (in z) for every
positive ¢, while an analytic data which oscillates at infinity may produce a singular
solution (in z) at some time ¢. This classical fact, which, roughly speaking, asserts
that the smoothness of the solution (in z), for t > 0, is under the control of the
behavior at infinity of the initial data, is known as “propagation with infinite speed”.

It turns out that this fact extends in many directions. It is of microlocal nature,
it can be described geometrically and it holds for non trapping Laplacians which are
flat perturbation (at infinity) of the constant coefficient case.

These extensions have been the subject of many recent works. See Kapitanski-
Safarov [KS], Craig-Kappeler-Strauss [CKS], Craig [C], Shananin [Sh], Robbiano-
Zuily [RZ1, RZ2], Kajitani-Wakabayashi [KW], Okaji [O], Morimoto-Robbiano-
Zuily [MRZ)]. Related works have been done by Doi [D1, D2], Hayashi-Kato [HK],
Hayashi-Saitoh [HS], Kajitani [K], Vasy [V], Vasy-Zworski [VZ] and we refer to the
paper [CKS]| for a more complete bibliography.



2 CHAPTER 0. INTRODUCTION

In all these works we are handling two informations : behavior at infinity (decay,
oscillations. ..) and smoothness. In a recent paper, Wunsch [W1] proposed to em-
bed these two informations in one unique object, which he called the C*° quadratic
scattering (gsc) wave front set, in which the above phenomena of infinite speed propa-
gation would appear as a propagation of singularities result. Here the word quadratic
is used to emphasize that this wave front set takes in account the quadratic oscilla-
tions at infinity. Let us note that a scattering wave front set in the C°° case was
already introduced by Melrose [M1, M2] and that related notions have been recently
considered by Wunsch-Zworski [WZ] (see also Rouleux [R]). Moreover, in the same
paper Wunsch gave a quite complete description of the propagation of singularities
for this C'°° wave front set which will be described later one.

It is worthwhile to mention that some propagation results have been obtained a
long time ago by R. Lascar [L] (see also Boutet de Monvel [B]). In the C case, he
introduced a parabolic wave front set and he proved its propagation. However this
propagation (in z) holds between two points at the same time t ; it is therefore unable
to link the “singularities” of the data to those of the solution for positive time.

The work of Wunsch relies on some geometrical point of view of Melrose. It be-
gins by working on a compact manifold M with boundary 0M, which comes from
a (stereographic) compactification of R™. Roughly speaking this corresponds to set,
for large x, * = w/p, where p > 0 and w € S™~ 1. The boundary M corresponds
then to the infinity of R™. The second step is to define a cotangent bundle. The
natural one, coming from the above compactification would be the one where the
canonical one form is given by o = )\%é + - %’i if (p,y) are local coordinates near
the boundary. However, having in mind that this bundle should hold the singularities
of the quadratic oscillatory data, Wunsch introduced the quadratic scattering (gsc)
cotangent bundle, ¥¢T™* M where the canonical one form is given by a = )\%g + - %g.
Indeed if ug(x) = €¥4%®?) where A is an n X n symmetric real matrix, we have

Up = efg(Aw’w) and the differential of the phase is

1 dp i 0 dqu
d{ = {Aw, = —2(Aw,w)— + —((Aw,w))—=.

Local coordinates, near the boundary, in this gsc cotangent bundle are given by
(p,y, A, u). Now, since only high frequencies are involved in the occurring of singular-
ities, Melrose suggests to make a radial compactification in the fibers, that is to set,

for large A + |p/,
1

7T R
Then we may define the extended gsc cotangent bundle as<T" M in which local coor-
dinates, near the boundary of M, are given by (p,y,o, (\, 7)), where p > 0, o > 0.

Its boundary C is the union of two faces, ¥T,, M = {(p,y,0, (N, &) : p = 0} and
wcS*M = {(p,y,0,(\, i) : 0 = 0}.

A=0o), H=opu.
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CHAPTER 0. INTRODUCTION 3

The gsc wave front set is a subset of C. To define it, in the C°° case, Wunsch uses
Melrose’s theory of pseudo-differential operators on manifolds with corners [M1].
Here, in the analytic case (but also in the C° or Gevrey cases) we use instead the
Sjostrand machinery of FBI transforms. Our analytic gsc wave front set will be defined
through a FBI transform with two scales (h, k), instead of only one scale A = 1/k in
the usual case. More precisely we shall set for u € L2(M),

(0.2) Tu(a,h k) = / / e TR e/ by g (p/ b, y, o, b, k) x(p/ b, y)ulp, y) dpdy .

Here ¢ is a phase, a a symbol and x a cut-off function. (See § 2 for the precise
definitions of phases, symbols and ¥°W Fy,).
The simplest phase is the following

QD(S, Y, Q, h) = (3 - as)aT + (y - ay) . aﬂ + 1,’1.[(3 - as)2 + (y - ay)Z] 3

where a = (as, oy, @, ay) € R x R™™1 x R x R*~1,

Now, if u(t,-) is a solution of (0.1) and tg > 0, the B°WF,(u(to,-)) does not
propagate ; instead we introduce a uniform gsc analytic wave front set W F, (u(to,-))
which will propagate.

In (0.2), the parameter h is used to describe the behavior at infinity (decay, oscil-
lations. . .) while k is used to test the analytic smoothness. However near the corner
{p = 0 = 0} these two informations are mixed. As in the usual case, it is necessary
to define such transforms for a large class of phases. Moreover one should be able to
change phases, symbols and cut-off functions, in particular, to show the invariance
of the ¥°WF, ; to achieve these invariances, in particular to go from one phase to
another, one has to make a careful study of the pseudo-differential operators in the
complex domain, then in the real domain and to pass from the first theory to the
second by some delicates changes of contours. Here the situation is complicated by
the fact that our FBI phases have an imaginary part which goes to zero with A. In
the appendix the reader will find a complete Sjostrand’s theory in the case of two
scales.

Concerning the propagation theorems we consider a Schrédinger equation with a
Laplacian A, with respect to a scattering metric g in the sense of Melrose ; this means
that, near the boundary one can write g = ég- + ;hg, where h is a metric such that
h|aar is positive definite. This includes, of course the flat metric for which h = dw?,
but also the asymptotically flat metrics on R™. In this setting we try to answer the
following question. Let mg be a point in C = QSCT;,MM U 9¢S* M, u be a solution of
the initial value problem for this Schrédinger equation and 7' > 0. On what condition
on ug do we have mg ¢ W F,(u(T,-)) ? The answer, which depends strongly on
the position of mg in C, requires a careful study of the flow of the Laplacian on C.
This can be found in Wunsch [W1] ; however a still more precise description near the
corner {p = 0 = 0} is needed here. The different statements, according to the position

SOCIETE MATHEMATIQUE DE FRANCE 2002



4 CHAPTER 0. INTRODUCTION

of mp in C, will follow from four propagation results : propagation inside ¥°Tj, M,
inside 9°S*M or along the corner (for the uniform ¥®°WF, and fixed t), from the
interior to the corner and finally from the boundary at infinity to the corner. To give
a flavor of the results obtained, let us describe the case of the first situation. Let
0 <t <ts and mg € ¥°T M. Assume that exptHa(mg) (the flow of the Laplacian
at infinity through mo) stays, for ¢ € [t1,t2], inside the interior of 9T, M. Then
exp t1Ha(mg) does not belong to ®°W F,(u(t1,-)) if and only if exptoHa(mo) does
not belong to ®°W Fy (u(t2, -)). Coming back to the above question, this result can be
applied (with t; = 0,t2 = t) when mo = (0, yo, Ao, (o) in the following cases : po # 0
or po =0, Ao > 0 or po =0, Mg <0, t < —1/2)g, because, in the later case, the flow
starting from mg reaches the corner after a finite time ¢t = —1/2).

A complete description of the other cases can be found in § 4.

Let us now describe the method of proofs. The first idea, which comes from Sjos-
trand’s work [Sj], is that the FBI transform can be used, at the same time, to test
the microlocal smoothness and, as a Fourier integral operator, to reduce an oper-
ator to a simpler form. Let us be more precise. We look for a family of phases
¢ = p(0; p/h,y,a, h) and symbols a = a(0; p/h,y, a, h,k) depending on a parameter
@, such that

(0.3) (5% + iA;) (aeih—zk_l“’) =0 (e“e/hk) , €>0,

where Aj is the adjoint of the Laplacian A,.
This leads to the eikonal equation for ¢,

Op 20p Oy
4 - h —,5— | =
(0.4) 69+p(8 5 55 5, 0
and to the transport equations,
+o00
(0.5) Xa;+h*kQaj_1 =b;, if a=Y (Wk)ay,
j=0

where X is a non degenerate real vector field and @ a second order differential oper-
ator.

As soon as we have solved these equations, we see that the corresponding FBI
transform 7 u(6;t, a, h, k) satisfies the real transport equation

ko6 "t
and the propagation theorems follow easily.

The main point of the paper is therefore to solve (0.4) and (0.5). The resolution of
the eikonal equation (0.4) requires the use of the complex symplectic geometry. We
make a careful study of the bicharacteristic flow to span a nice complex Lagrangian
manifold on which the symbol ¢ = 6* + p(sh,y, 752, sn) vanishes. It should be noted

(0.6) (1 4 2) Tu(@;t,a,h,k)z(’)(e‘c/hk), c>0,
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CHAPTER 0. INTRODUCTION 5

that one has to make a global (backward and forward) study of the bicharacteristic
system.

Since the transport equations are linear, they are easily solvable step by step.
However it is not straightforward that the corresponding symbol a = 3 (hvk)a; is
an analytic symbol ; the proof of this fact requires the use of a method of “nested
neighborhood” as described by Sjéstrand [Sj]. In our context these constructions are
to be made either globally on [0, +oo[ or until a time T\ at which all the coefficients
of X in (0.5) blow-up ; this leads to significant complications.

Finally we would like to thank the referee for its careful reading of the paper,
leading to many improvements of the original manuscript.

SOCIETE MATHEMATIQUE DE FRANCE 2002






CHAPTER 1

THE GEOMETRICAL CONTEXT

The content of this section is taken from Melrose [M1]. Here smooth will mean
analytic and all the objects will be smooth. Let M be a smooth compact manifold
with boundary OM. A boundary defining function for M is a smooth function p on
M such that p = 0 and dp # 0 on OM. A scattering metric on M is a smooth
metric g such that, for some choice of boundary defining function p, we have, in a
neighborhood of OM

rala ok

(1.1) St

where h is a smooth symmetric bilinear form on 7™M such that h|sar is a metric.
This class of metrics has been built to include asymptotically flat metrics on the
Euclidian space R™. Indeed let us consider the upper hemisphere of the unit sphere

in R™,

_dp

M =257 ={(to,t') ERxR™: % >0, 3+ |t'|* =1},
with boundary 957 = {(to,t') € M : to = 0}.

The function p(to,t') = to/(1 — t3)1/2, defined in a neighborhood of ST and ex-
tended smoothly to S7, is a boundary defining function for S%. Then, a neighbor-
hood of ST is diffeomorphic to a subset of [0, +o0o[ x S™~! by the map ® : (to,t') —
(p(to,t"),w) where w = t'/|t/|. On the other hand, R™ is diffeomorphic to

" = {(to,t') ER x R™ : tg > 0,3 + [t'|? = 1}

by the stereographic compactification SP : R™ —S%, z — (to = 1/(z),t' = z/(z)),
where (z) = (1 + |2|?)!/2. Thus, by ® o SP, we can identify R™ ~ {z : |z| < 1} with
a subset of ]0,+oo[ x S™~1. It is easy to see that this corresponds to set p = 1/|z],
w = z/|z| for |z| > 1. Since z = w/p, we check easily that, for |z| > 1, we have
dop? 2
(® 0 SP)*(dz?) = p% + %"2—.
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In that follows we shall denote by (p,y) a system of local coordinates in a neigh-
borhood of the boundary. Then the metric h appearing in (1.1) can be written

n—1 n—1
(1.2) h = hoo(p,y)dp® + 2> hoj(p,y)dpdy; + > hij(p,y)dy:dy;
=1 ij=1

where the coefficients are analytic and
(1.3) the matrix (h;;(0,¥y))1<i,j<n—1 is positive definite on M.

Following Wunsch we shall denote by vgs.(M) (gsc means quadratic scattering) the
space of vector fields on M which are, near the boundary, linear combination of p38,
and p? Oy;, 1 < j <n—1. Then ¥°T'M will be the space of smooth section of vqs.(M)
and °T*M its dual. The l—canonical form on ¥°T™M can be written, in local
coordinates near OM, as

dp dy
1.4 a=A—+p —.
(1.4) TR
Then the current point in ¥°T* M near dM will be determined by its coordinates
(P, Y, A, 1)-
‘We shall set
(1.5) BTy M = {m e ®T*M : p=0}.

Now if A2+ |u|? is very large it will be more convenient to introduce new coordinates
by setting
. 1
= e Py
This corresponds to make a radial compactification of the fibers variables and we shall
denote by ¢ T M the radial compactification of ¥°T™* M. Then, near 0 = 0 we shall
take (p,y, o, (X, 7)) as local coordinates of a point of T M.

It follows that 9¢T" M is a manifold with corner and two faces. If we set

(1.6) o A=o0), @=ou, X2+I/7|2=1.

w7 {QSC—T:;MMz {meqSC"J:M:p=0},
BEG*M ={m € ¥*°T M :0 =0},

then

(1.8) C=08%T M =95Tp,, MUIS*M.

ASTERISQUE 283



CHAPTER 2

THE ANALYTIC QSC WAVE FRONT SET

It will be defined as a subset of C, through a FBI transform with two parameters.
Let us describe what will be the phases and the symbols.

2.1. The FBI phases

Let My = (Xo,Z0,2% ko) € R® x R® x R?" x [0, +oo[, with a® = (2%,2) €
R"™ x R".

Definition 2.1. — We shall say that ¢ = ¢(X,a, h) is a FBI phase at My if one can
find a neighborhood V of (Xp,al) in C" x C2", a neighborhood I, of hq in [0, +o00[
such that

(2.1) o(X, o, h) = p2(X, az) + p3(a) +ihp1(X,0), a=(ax,o=),
where

wi, 3 =1,2,3 are holomorphic functions in V'
(2.2) ’

and @9 isreal if (X,az) € R" x R",

Op 0
2. - ==
( 3) BX(XO)a ah'O 0
JOR 2R
o1(Xo0,0%) = T8 (x,,0%) = 0, (L5 1) (x0,0°) is positive

(2.4)

8?Re

definite and ( X Do
b'e

)(Xo, a®) is invertible,

(2.5) i) If ho =0, (Wé‘;g—)(Xo,a%) is invertible,
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ii) if hg # 0, the matrices (%{’E)(Xo,ao, ho) and

8% Re © 82 Reyp
9XO8az O0XOax

(XOa aO, hU)
8?2 Im ¢ 82 Ime
OXOax 8XOBax

are invertible.

Examples 2.2

(i) (X, 0, h) = (X — ax)az + ih(X — ax)? is a FBI phase at (Xg, =9, a®, hp) if
ao = (Xo, Eo)

(ii) More generally let ¢ = (X — ax)az + ihp1(X, a), where ; is holomorphic,
real if (X, a) is real and satisfies ¢1(X,a) = %‘%(X, o) =0if ax = X, p1(X,a) >
c|X — ax|?, for (X,a) in a real neighborhood of (X, (Xo,Z0)). Then ¢ is a FBI
phase at (Xo, Zg, a®, ho) if a® = (Xo,Zo).

2.2. The analytic symbols
Our symbols will be formally of the following form

(2.6) a(X,0,h, k) = a;(X,a,h,k)(hVE)

Jj=0

where the a;’s are holomorphic with respect to (X, &) in a same complex neighborhood
of (Xo,a?), bounded in (k, k) in a same neighborhood of (hg, o¢) in [0, +o00[ x [0, +-00[
and satisfy in these neighborhoods

(2.7) laj(X,a, h k)| < CIF159/2 0 j>0.

Actually we will take finite sums of such a;. The symbol a will be called elliptic at
(Xo, ao, ho, 0’0) if ao(XQ, ao, h(), 0'0) # 0.

2.3. The analytic gsc wave front set W F,

A point mg in C = 8T M is given by mg = (po, Y0, 00, (Mo, Tp)) in local coordi-
nates, where pg > 0, 09 > 0, po-00 =0, yo € R*! and —X?) + |Tp)2 = 1. Let so > 0 be
given and set hg = po/so. We set

= o Fo
— n - = _ —= n
(2.8) Xo = (s0,y0) ER™, Ep (33’ Sg) € R™.

Definition 2.3. — Let u € D'(M) and mo € C. We say that mo ¢ ¥°W Fy(u) if one
can find sp > 0, a® € R?", a neighborhood V,0 of a® in R?", a FBI phase ¢ at
(X0, Z0, %, hg), neighborhoods Vj,,, Vi, of ho, oo in [0, +oo[, positive constants C,
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€0, an analytic symbol a, elliptic at (Xo,a®, ho, 00), a cut-off x € C§° equal to one
near Xg such that

(2.9) |Tu(a, h, k)| = | / / eh IR elo/hwen) o (p/hyy, o by k) x(p/ By y) ulps y) dpdy
< Ce—Eo/hk

for all & in V0, A in Vi, N0, k in V5, N 0.

2.4. The uniform analytic gsc wave front set B F,

Definition 2.4. — Let I be an interval in R, (u(¢; -))ter be a family of distributions on
M and tg € I. Let mg € C (see (1.8)). We shall say that mg ¢ ¥°W F,(u(to, -)) if one
can find sg, a?, ¢, a, Voo, Vi, Voo, C, €0 as in Definition 2.3 and §p > 0 such that

|Tu(t; o, by k)| = ‘// e~ TR e g ) x (- ) ult; p, y) dpdy| < Cemeo/hk

for all a, h, k respectively in Vo, Vi, N0, V,, ~ 0 and all ¢t € I such that |t — ¢o| < do.

2.5. Invariance

An important result in this theory is the following.

Theorem 2.5. — The definitions of ¥**WF, and QSCVI//\E’a are independent of sg, af,
@, a, x which satisfy the conditions in the Definitions 2.1 and 2.3.

The proof of this result is given in the Appendix.

2.6. More general phases

Later on we will be lead to handle FBI transform with more general phases than
those described in Definition 2.1, which may also depend on a parameter v € R%. Let
My = (Xo,Z0,8°) € R* x R™ x R?",

Definition 2.6. — We shall say that ¥ = ¢(X, 3,v, h) is a phase at My if one can find
a neighborhood W of (X, %) € C® x C?", a set U C R? x ]0,+o00[, g0 > 0, Co > 0
such that

(2.10) % is holomorphic in W, for all (v,h) € U and Imvy(X,B3,v,h) >0
if (X,0) € Wr=WnR"xR?™) and (v,h) €U,

(211) WX, B, W] + | g (X, By, ) = S| < <o, i (X,B) €W, (k) €U,

OImy
0X

(2.12) (X, B, v, h)] < eoh, if (X,8) € W, (v,h) €U,

SOCIETE MATHEMATIQUE DE FRANCE 2002



12 CHAPTER 2. THE ANALYTIC QSC WAVE FRONT SET

2
I
%zﬁ(xaﬁ)l/,h)Z_EOhId, if (XwB)erRa (Vah)€U7

[0°y(X, B, m,h)| < Cy, for |a| <3, if (X,B8)e W, (v,h)€U.

(2.13)

Let us set now Xo = (S0, ¥0) where so > 0 and yp € R*™, Zg = (19,70) € RxR"?™1,
2 _

78 = s§78 + 5§ |mol?.
Theorem 2.7. — Let 1) be a phase at (Xo,Zo,0°). Let b be an analytic symbol in a
neighborhood of (Xo,3°). Let us consider the point

mo = (ho,yo, ko/To, (387'0/7’0733770/7‘0)) ecC.

Then, if mg ¢ W Fy(u), one can find x € C§°, x = 1 in a neighborhood of Xo,
positive constants Cy, 89, €9 such that

l // eth T2k Y (s,y,8,1,h) b(s,y, B, v, h) x(s,y)u(sh, y) dsdy| <Gy e—60/hk,
for all (B,v, h,k) such that (v,h) € U and |B — B°| + |h — ho| + |k — ko| < 0.

Remark 2.8

(1) Two parameters h,k appear in (2.9). The parameter k is used to check the
microlocal smoothness of u (in particular at points mg where pg > 0, 09 = 0) whereas
h is used to test the behavior at infinity (decay, oscillations, etc.).

(2) In the case where mo = (0, yo, 00, (Mo, Hp)) With o9 > 0, it is more convenient
to use the coordinates (0, o, Ao, o) Where Ao = Xo/00, to = Hy/00. Let us set Xo =
(s0,yo0), where so > 0, Zo = (Ao/s§, no/s3). Let @ be a FBI phase at (Xo, Zo,a’,0).
Assume that on can find positive constants C, J, €p, an analytic symbol a, a cut-off
x equal to one near Xy such that

(2.9) ’// eth T el veah) o(s gy, o, h) x (s, y) ulhs, y) dsdy| < Ce /",

for all a in a real neighborhood of a® and h € ]0,ex]. Then mg ¢ W F,(u).
The converse is also true (take k = o9 in (2.9)). In other terms we can ignore the
parameter k in (2.9) and fix it to the value 0. This fact is proved in the Appendix
(Corollary A.16).

(3) If mo = (po, ¥0, 0, (R0, o)), We set Xo = (po, %0), Zo = (Mo/pf, Fo/pF) and the
fact that mo ¢ ©°W F,(u) is characterized by the inequality (2.9) where ¢ is a FBI
phase at (Xo,Z0,a%,p0) and h = 1, that is we may ignore the parameter h. This
shows that W F,(u) N (8*M)° coincide with the usual analytic wave front set since
then the transformation appearing in (2.9) is a usual FBI transform in the sense of
Sjostrand [Sj].

(4) In section 1, we have identified R™ \ {z : |2| < 1} with a subset of S%}, thus
with a subset of ]0,4o00[ x S™~!, which corresponds to set z = w/p. Working in
R™, it is more convenient to use the coordinates (p,w) instead of local coordinates.
The one form on ¥¢T*M is then equal to )\%g + - ‘f)—‘;’. Here p has to be taken
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2.6. MORE GENERAL PHASES 13

in an (n — 1)—dimensional subspace. Since the forms p - dw and (¢ — (u - w)w)dw
coincide (because w - dw = 0) it is natural to take u in w. Thus the coordinates of

mo € ascT™ M will be (po,wo, o0, (X(), ﬁo))’ X(2) + Ii(_"Ol2 =1, fig L wo. Let us set

- Xo B
Xo = (s0,wo), Zo= ( 3,—3)
So So

(o) = {a = (e, A, 7, ) € R*™2 . g, wo=1, ¢ wo = 0}.

(2.14)

Claim. — Let u € D'(R™). Then mg ¢ W Fg(u) if and only if one can find so > 0,
a® € (Ily), a FBI phase ¢ at (Xo,Zo,a’ ho), an elliptic symbol a at (Xo,a’, ho, 00)
a cut-off x near Xq, positive constants C, €9 such that

(2.15)  |[Tu(a, h, k)]

. +oo ih=2 k= Yp(p/h,w,a,h) ——~ dp
;l e PAP[Rx, a(p/h,w,a,h,k)x(p/h,w)u(w/p) 1 dw|
0 Sn-1 pr

< Ce—Eo/hk

for a close to a® in (Ilp), (h,k) close to (ho,00) in [0, +oo[2, where
o(s,w, 0, h) = (8 — as)ar + (W — o) - a¢ +3h[(s — as)? + (w — ay,)?].

Indeed, in some local coordinates, (2.15) will coincide with (2.9). Let (01,...,0n—1)
be an orthonormal basis of wy. Writing a,, = wo + 37— e 1 a;0;, ac = Z?;ll b;0; we
see that a,, - a¢ = a - b ; therefore in these coordinates (2.1) is preserved and (2.2) to
(2.5) are satisfied.

Examples 2.9

(1) Let uo be such that €91*lug € L2(R™) for some § > 0. Then %W F,(ug) N
(T M)° = @. Indeed let mo = (0,wo, Ao, o) be a point of (3T, M)°. We
set a® = (so,wo, Ao/s3, po/sE). According to Theorem 2.5 and Remark 2.8 (2), (4),
we can take k = 1, @ = 1 and ¢(X,,h) = (X — ax)azs + ih(X — ax)? (where

= (p/h,w)) in (2.9). In the coordinates (p,w), our assumption on ug reads :
uo(w/p) = p3tie¥/Py(p,w) with v € L2(Ry x S™1). Let x be a C°° cut-off
supported in {|s — so| + |w — wo| < €} with € < 1/2s¢. Then

+o0
T'u,o(a h) / / 1 eth” <P(P/hwah)x(p/h w)e J/Pv(p’w) n+1dw
Sn—

On the support of x we have 3 so < p/h < 50 so —6/p < 25 1 . Since |e*?” ""|
we get [Tug(a, h)| < 'Ce_s"/h, for all a near ap, which means that mo ¢ qscWFa(uo).
(2) Let uo(z) = e2{4%%) where A is a real n x n symmetric matrix. Then

BW Fp(uo) C Ao = {(O,wo, —Awyg - wo, Awy — (Awg -wo)wo), wo € S“_l}.
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14 CHAPTER 2. THE ANALYTIC QSC WAVE FRONT SET

First of all, since ug is analytic, it has no usual analytic wave front set ; by the
Remark 2.8, (3), it has no W F,, in (¥°S*M)°. We show now that

B F, (ug) N (BT 50 M) C Ao.
Here we may use the transformation (2.15) with
k=1, a=1 and ¢=(X —ax)as+ih(X —ax)?.
Let mo = (0, wo, Ao, o) With po L wo but
(Ao, o) # (—Awp - wo, Awp — (Awp - wo)wo)-

We set Xo = (so,wo), Zo = (Ao/s3, pmo/sg) and we take a® = (Xo,E)
(s0,wo, Ao/}, po/s§). Then we have

T 3 -—n +oo ih~=28(s,w,a,h) ds
(2.16) uo(a,h) = h ; . e x(s,w) prs, dw

where
0(s,w,a, h) = 02(s,w, @) + ithb1(s,w, a)

1 Aw - w

0 - ks T - — a
2.17) 2 (s,w,a) = (s — as)ar + (w — aw)ag 5 52

01(s,w,a) = (s — @s)? + (w — a)?

au-wo=1, a¢-wp=0.
We have

(902 Aw - w

(2.18) Bs (s,w,a) = ar + 3
andift € T,,8™ ! i.e. t-w =0 we have

06, t-Aw Aw — (Aw - w)w

/ — . — P— . — . .

(2.18) t- Em t-oyg 2 t-oac—t P

Claim. — One can find t € T,,S™ !, |t| =1, Co > 0, € > 0 such that for all (s,w, @)
in Ry x 8"~ 1 x (Ip) such that |s — so| + |w — wo| + | — ap| < € we have

(2.19) (s w, a)\ \t 092

(s,w, a)l Co.
Otherwise for every t € T,,, S™! one can find sequences (s;), (w;), (a;) converging
to sg, wo, ap such that

06 1 .

’ ’ + |t ’ ’ l ) = 1.
s (85,w; a3)| I (S] wj, &t5) j J
It follows, according to (2.18), (2.18)’ that

Awg - Awo — (Awe -
2\_30_4_ w03w0_0 and ¢ - (#0_ wo — ( C;Jo wo)wo)=0
So So 53 50

but this is in contradiction with our choice of (Ao, o).
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2.6. MORE GENERAL PHASES 15

69 (
- S, w, @)
Now let us fix « close to a® and let us set X = (s,w), V(X) = 60
(t- 32 (s,w, a))t
We introduce the following contour in C”,
(220) T={ZeC":Z=X+ivx1(X)V(X), X = (s,w) €]0,+oo[ x "'}

where v is a small positive constant to be chosen and

Xl(X)=1if|X-—X0|<€1 ,0<X1<1,
Xl(X)—'O if IX Xol 2(—:1

€1 being such that x(X) = 1 on the support of x1 in (2.16). Since 6 given in (2.17)
can be extended as a holomorphic function of (s,w) in C x C™ and since x(X) =1 if
Y is not real, we can apply Stokes formula and deduce that

. Z
(2.21) Tuo(a,h) = A" // ¢ih™20(Z,00h) x(Z)%.
1
X

It follows from Taylor’s formula that, for Z in 3, we have
02(Z, @) = 65(X, @) + ivx1(X) [V (@) I + O 3 (X)IV(X)I?).

On the other hand we have
01(Z,0) = (Z—ax)? = X — axl|?+2ivx1(X)(X — ax) - V(X) =33 (X) V(X))
‘We deduce that for Z in ¥ we have
(2.22) Re(ih™20(Z,a, h)) =

—vh 2 xa (X)IV(XOI? + 2023 (OIIV (X))

—hTHX —ax|®+ 2R XFEOIVX))? = (1) + (2) + (3) + (4).

We have
(1) =—-vh 2x1(X)|V(X)|?
(2.23) [(2)] <Cvh2vx1(X)IV(X)|?
@) =—hX —ax|?

(4] <Cvh 'vxa(X)IV(X)|.
Taking v small, we deduce from (2.22) and (2.23), that
(2.24) Re(ih™20(Z, o, h)) < —%uh‘le(X)HV(X)Hz —h7YX — ax|?.
We fix v and we write ¥ = X; U X5 where
2.={Z €2 || X — Xo|l < &1}
{22={Z€2:51 < || X — Xol|}-
On X; we have x1 =1 and on X5, 0 < x1 < 1.

SOCIETE MATHEMATIQUE DE FRANCE 2002



16 CHAPTER 2. THE ANALYTIC QSC WAVE FRONT SET

On X; we have by (2.19) and (2.24)
(2.25) Re(ih=20(Z, a, b)) < —%ucg h2.

On the other hand on £; we have, || X — ax|| = [|X — Xo|| — |[o% — ax|| = &1, if a
is sufficiently close to a®. It follows from (2.24) that
(2.26) Re(ih=20(Z, o, b)) < —%e% h-t.
We deduce from (2.25), (2.26) and (2.21) that
|Tuo(a, k)| < Cem=o/™

if @ and h are sufficiently close to a® and 0. It follows that (0, wo, Ao, o) ¢ W Fy, (uo)
as claimed.

By the same argument we can prove that up has not “°WE, on the corner p =
o = 0. Indeed, in this case we have to estimate

+oo -2, -1 ds
TU()(a, h, k) = hp " ezh k™" 0(s,w,a,h,k) X('S') w) — dw
0 gn—1 snt
where k
Rel = (s —as)or + (w—ay)oe — @Aw ‘w
Imf = (s — as)® + (w— an)?.
Then

7] 7]
a(ReH) =a,+0O(k), t- %(ReG) =t-ac+ O(k).

If o is close to a® = (so,wo, Ao/, Ho/SE), then |a,| + |oc| # 0, since X§ + |mol?2 = 1.
So, if k is small enough we still have (2.19), and the same proof applies.
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CHAPTER 3

THE LAPLACIAN AND ITS FLOW

3.1. The Laplacian

The Laplacian on M related to the metric g can be written in any system of
coordinates as

n—1
1 .
(3.1) A, = e Z D;(VGg* Dy),
J,k=0

where D; = } 52—, G = det(g;x), (97%) = (g5x) ™"

7 .
i Oz

Since g is a scattering metric, (1.1) and (1.2) show that

1+ p?hoo hok hjk

o ) 90k=?, gik = —5, 1<j,k<n—-1.

goo = >

It is easy to see that, for small p, we have

(G = (%)"H(H +0(p), H = det(hjx(0,y))1<jk<n1

g° =p"+0(°%), ¢®* =0(*), 1<k<n-1
g% = PR (y) + 0(p®), 1<), k<n—1, where

—jk —
L (h‘J ) = (hjk(oa y))lglj,kSn——l .

(3.2) <

Here O(p%) denotes an analytic function on [0, x &M which can be written as
pta(p,y) with a analytic.
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It follows from (3.1) and (3.2) that

( Ay = ﬁ%[(p"’ D) + p* Ao + c(n)p® D, + pR], where
Ao=-L S b, VEHR*(y) Di) and
33 {4  VH = 4 @) D) en
R= Z aaf(p7 y)(pSDp)e(pz Dy)a s aaé(p’ y) = pa(lal’g)?ial(p’ y)’
1<l +£<2
[ (0,2) =1, o(1,1) =0, 0(2,0) =0, o(1,0)=2, o(0,1) = 3.

Let us remark that one can also write
0= (*D,)> +p* Do+ (n)p° D, + pR,

(3.4) R= 3 balo,9)(0* D) (pDy)*, bae(p,y) = p°1* D bae(p,y),
1<al+e<2

9(0,2) =1, 6(1,1) =0, 6(2,0) =0, 6(1,0) =1, 6(0,1) = 2.

3.2. The Hamiltonian

In the pseudo-differential calculus of Melrose [M2], the principal symbol of A, is
a function on T M which can be written as

( 1
a(Ag)(p,y, A p) = p—zp(p,y,)\,u) where

p(p,u, A u) =X+ ||ull® + pr(p,y, A, ) with

(3.5) <
llull? = Z R @ e, v¢-)= 3 aalp,y) Ap”,
3,k=1 ja|+£=2
( aoe(p,y) = paoe(p,y)-

The symplectic two forms on 9T M is w = da where o has been defined in (1.4).
Therefore

dA\Ndp duNdy dp AN dy
= CR 3 T2 -
p p 4
The Hamiltonian Ha of the symbol of Ay is then defined by

(3.6)

1
(3.7) d(;p)(-) = —omega(Ha, ).
An easy computation shows that

Op Op dp  Op dp Op
(38) Ha=pgrop+ 5o 0 + (20— 21~ B p—p)a“u(z n2E —2PY.5,.
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3.3. THE FLOW ON (%¥°Tsp M)° 19

Using (3.5) we see that
(3.9) _
( Ha = Xo + X where

Xo = 2208, +2(X* — [|ull*) Ox + 2(u, 8y} + 4 - By — (By [|l|) O

n—1 .
{ where (a,0) = > F*(y)a s, llall* = (a,a), and
7,k=1

X = 10?8, + p2pdy + 1 pO + qopOy Where p; (resp. g;) are
| polynomials of degree 1 (resp. 2) in A, p with analytic coefficients in (p,y)-

3.3. The flow on (qscTaMM)O

On this set the flow of the Laplacian will be the flow of X since X vanishes on
this set. Let mo = (0, yo, Ao, o) € (qsch mM )O. The flow of X starting from my is
given by the equations

(6(2) = 2M(1) (1), p(0) =0

(3.10) ) s = 2gﬁjk<y<t))uk(t>, ¥(0) =0
Ae) = 200(0) = Ils@)I?), A(©0) = o
LA(t) = 4M0) () ~ By lu()II®,  (0) = puo-

This system has a unique maximal solution defined on [0, 7*[ (and in |T%, 0]).

Case 1: if uo = 0. — By the first equation we have p(t) = 0 for ¢ € [0, T*[ and the
last one shows that u(t) = 0, t € [0,7*[. Then, by the second equation, y(t) = yo,
t € [0, T*[, and the third one can be written A(t) = 2)%(t) ; thus we have \(t) = ﬁ/\o_t
for t € [0,1/2X0[ if Ao > 0 and for ¢t € [0,+o00[ if Ao < 0. Moreover if Ao > 0 we
have lim;_,; /25, A(t) = +00. Summing up, if Ao > 0 we have T* = 1/2X and every
integral curve of X starting from mgo = (0, yo, Ao, 0) reaches the corner p = o =0
at finite time 1/2Xg. If A\g < O then the integral curve is defined for all ¢ in [0, +o00[
and stays in (%T,,M)°. The same discussion applies to the case t € |T.,0]. We

introduce the sets

N ={m=(p,y,\\p): p=p =0}
Nt={meN:A>0}, N ={meN:A<0}.
Case 2 : if po # 0. — In that case the solution of (3.10) exists for all time in R and
the integral curve stays in the interior of qSCT;,MM . Here is a sketch of the proof

of these facts (the details are in [W], section 11). If uo # 0 then u(t) # 0 for all
t in |7y, T*[. We set [(t) = u(t)/||p(t)|| and we parametrize the curve by s where

(3.11)
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20 CHAPTER 3: THE LAPLACIAN AND ITS FLOW

5(t) = 2||p(®)]l, s(0) = 0. The equations (3.10) give

(. dp _ Jp . dx A% — ||y
i —_— = iv _—
O & Tl ™ = Tl
.o d 7 —1 A d
12) (G L=3R’ v) —“—‘=—— Z ay S i
7,k=1
| Giid) —dg’;” =2\

Then we set @ = MA/||u|| and we see that &« = —(1 + o2). The solution of this
equation, such that a(0) = tan6y, 6y € | — m/2,7/2[, is a(s) = tan(fy — s) where
6o — s € | —w/2,7/2[. It follows that A(s) = ||u(s)]| tan(fp — s). Using the equation
(iii) in (3.12), we get

(3.13)

lu(s)l| = A cos® (6o — s)
A(s) = é sin2(fp — s).

Then, using (i), we obtain
(3.14) p(s) = C cos®(fp — s).

Since a(0) = Ao/||po|| = tan 8p, we have 6p = Arc tan A\o/||pol|- On the other hand, by
(3-13), A3/||oll = A sin? 8. Therefore 22” + ||pol| = A. Moreover, $(t) = 2||u(®)| =
2A cos?(6p — s(t)). It follows that s(t) exists for all ¢ € R. This implies that the
solution of (3.12) exists for all ¢ € R and (3.13) shows that |A| + |u| is bounded so the
integral curve stays in the interior of qSCT:.; M.

3.4. The flow on ©°S*M

When |A| + |u| is large, we make the change of variables in the cotangent space,
(p’ Y, A, N) — (p, Yy,0, ()\, ﬁ)) where
_ 1 —
[p(p,y, A, w)]*/2”

In these new coordinates the Hamiltonian Ha is singular at o = 0. However o Hxa is
a smooth vector field and we have

_ Op
~Pax

(3.15)

0,+ 2P o, - ( 8p+p6p)3;+( p ap)an+af(p,y,x,ﬁ)80.

(3.16) o Ha Em on P op Hoax™ oy
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3.5. BEHAVIOR OF THE FLOW FOR LARGE TIME 21

By definition, the flow of the Laplacian on 9¢S* M will be that of 0 Ha. It is therefore
given by the following equations

(P'=Pg§(/’,y,xaﬁ) p(0) = po

—Z () ¥(0) = vo

(3.17) . i=—(ﬁg§+pg§)(~-) X(0) = %o
- _ (-~ Op 0Op _ _

=(F 55 O =F

\('T=0'f(P,y,X,ﬁ) O'(O)ZO

The last equation shows that o(¢) = 0 for all ¢t.

3.5. Behavior of the flow for large time

Definition 3.1. — A maximal integral curve of c Ha on aseT* Af will be called non
trapped backward (resp. forward) if it is defined for all ¢ in ] — 00, 0] (resp. [0, +o0[)
and p(t) — 0 as t — —oo (resp. t — +00).

In (3.11) we have introduced the sets A/, N'. Here we set

(3.18) t={m=p,y0AB):p=F=0=0, A==£1}.

Definition 3.2

(i) Let m € 9T M, m ¢ N'. We shall say that m is non trapped backward (resp.
forward) if the integral curve of o Ha starting from m is non trapped backward (resp.
forward).

(ii) Let m € N, m = (0,yo,00,(£1,0)). We shall say that m is non trapped
backward (resp. forward) if the point (0, yo0,0, (£1,0)) € N does not belong to the
closure of any integral curve of o0 Ha trapped backward (resp. forward).

We shall denote by T_ (resp. T ) the set of points which are trapped backward
(resp. forward).

Proposition 3.3. — Let mg € ¥°S*M ~ (NS UT-). Then
N_oo(mg) =  Jim expto Ha(mg) € N.
(Same result when — and + are exchanged).

Proof. — Here expto Ha denotes the flow of o Ha described in (3.17). Let mo =
(p0, ¥0, 0, (Ao, ) be non trapped backward. We have the following cases.
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22 CHAPTER 3. THE LAPLACIAN AND ITS FLOW

Case 1 : pg = fig = 0. — The first equation in (3.18) shows that p(t) = 0, ¢t € (—00,0].
According to (3.5) we see that the other equations reduce to

n—1
—Jik — . KX ~— —
Ui =2 R WE, X=-20gl* #&=2Xg-23,la>
k=1

Therefore fi(t) = 0, X(t) = 1, y(t) = yo, o(t) = 0, so for all t we have exp to Ha(mg) =
mg € N_ﬁ

Case 2 : po = 0, fig # 0. — Then p(t) = 0 but z(t) # 0 for all ¢ in (—o0,0]. The
above equations show that X is strictly decreasing on (—o0,0]. Since —1 < A(t) < 1,
A(t) has a limit £ when ¢ goes to —oo. It follows that ||Z(t)]|? = 1 — Xz(t) — 122
so X — —2(1 — £2). This implies that £ = ¥1 so |E(t)|| — 0 and X(¢) — +1. On
the other hand we deduce from the above equations that & ||z(t)||2 = 4X(t)||&(¢)]|?,
so if A(t) — —1 when t — —oo we would have ||7i(t)||2 — +oo Therefore \(t) — 1,
lE@)| < Ce’t, 6§ >0, t < 0. It follows from the equation in y that y; € Ll(-—oo,O)
so y;(t) tends to a limit as t — —oo.

Case 3: po # 0. — In that case, mo non trapped backward implies that p(t) — 0
as t — —oo. Moreover, by the first equation in (3.17), we have p(t) # 0 for all ¢.
Now we check easily from (3.17) that %[p(p,y,x, )] = 0 ; since, by ellipticity of
p = A% + ||ul|? + pr we have c(A% + ||p]|?) < p < 1 (A% + ||u||?), it follows that X, 7,
7(p, Yy, A\, ) and their derivatives are uniformly bounded. We have

. op < 5 -
p=pr3zy = 22p + p?r1(p, ¥, A ).

Then, using the Euler relation, we get

op Op or Op
E)Y 2_”6 =X(P+rg5) -2 Pop’

Since p(p,y, A\, ) = 1, we obtain X=23 -2 + pr2(p,y, A\, i) where r; and ry are
bounded. Let us set a(t) = (A(t) — 1)/p(t). Then

&= —-——-(i_—l)i’ p—lz[zp(X — 1A+ 1) — 22p(A — 1) + p?r3]

A=2X-

P>
&= :—2[2p(X —1) + p%r3] = 2a(t) + £(¢)

where f is bounded on (—o0,0]. It follows that « is bounded on (—o0,0], so
[X(t) — 1] < Mp(t). Therefore A(t) — 1 and ||u(t)||2 =1 — A2(¢) — p(t)r(---) — 0 so
lim;—, o expto Ha(mg) € NE. O

Given € > 0 we set

Q= {(p,1) €C X 1 x C* 1 || + [u] <}
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Then one can find €* > 0 such that for all 0 < € < &* and all (p,y, ) in €2 the
problem

(3.19)

p(pyy, A p) =1
Rel <0

has a unique solution A = A\(p, y, u) which depends holomorphically on the parameters.
By extension we shall say that the point m = (p,y,0, (A, 1)) belongs to . if
(p,y, 1) belongs to Q. and A is the corresponding unique solution of (3.19).

Lemma 3.4. — There exists €9 > 0 such that for all m* = (p*,y*,0, (A\*, u*)) in Q,
we have

(a) expto Ha(m*) exists for allt > 0
(b) expto Ha(m*) converges, ast goes to infinity, to a point (0,y,0,(—1,0)) € N<,
(c) y depends holomorphically on (p*,y*,u*) in Q¢, and
(d) y =y* + p* F1(p*, y*, u*) + p* Fa(p*,y*, 1*).
Proof. — Let us introduce the following subset A of |0, +0o[. We shall say that T'€ A
if the system (3.17) with data (p*, y*, A*, u*) has a solution on [0, 7] satisfying
|lo(t)] < 2e0e™%
ly(t) —v*| < &g
IA(®) + 1] < 20
u(®)] < 26072

Our purpose is to show that A =)0, +oo[. Let T* = sup A and assume that T* < +oo.
Let T' < T*. By the first equation of (3.17), our solution on [0, T'] satisfies

(3.20)

p= pgg = 2Xp + p*alp, y) X + pb(p, y) 1,
a,b bounded. Then
p=—2p+2A+1)p+ap’ + pbu = —2p + fi(t).
It follows from (3.20) that |f1(¢)| < C1e2e~*. Since

p(t) __p* —2t+e—2tL ezsfl(s)ds

we get
C

(3.21) lp(t)] < eoe 2t + ZLe2e 2 g §soe"2t
2 2

if C]_ €0 < 1
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Now
9p Op

“Hax T oy
= =20+ 2\ + 1) p 4 a1 p° A + az pp — 9y ||ull® + a3z p> A + as pAp + as pp®
= —2u+ f2(t)

where |f2(t)| < C2e2e . Since |u*| < g0 we get easily, as above,
(3.22) lu(®)| < —506 -2
if Coeg < 1. Let us look to A. We have, since p(p,y, A\, u) =1,
(3.23) A2 — 1= —||ull® — p(apA? + bAu + cpu?).
Now
A2 =1 =A+A=1=A+1[|2—=A+1)] > |A+1](2 —2e0) > |A+ 1]
if g9 < 1/2. It follows from (3.23) and (3.20) that

(3.24) A+1] < Csefe ¥ < gge ™
if C3 €0 < 1
. . n —Jk
Finally, yx = 0p/Opur =23 °;_, R’ (y)uj + par A+ pag - p. Then
t
u(t) — v*| < 0450/ e2ds< Stey.

O 2
so
(3.25) y(®) vl < 5

if Caes’? < 1.
Moreover for t,t' in [0, 7], we have

t/
(3.26) ly(t) — y(t')| < C4e-:o| / e=28 ds].
t

Now it is easy to see that (o(T),y(T),A(T),(T)) have a limit as T goes to T*
and these limits satisfy estimates as (3.21), (3.22), (3.24) and (3.25). Applying the
Cauchy-Lipschitz theorem, we then see that a solution of (3.17) can be found, which
satisfies the estimates (3.20) on [0,7™ + 4] ; this contradicts the definition of 7™ and
proves that T* = +oco. Thus a) is proved and b) follows from (3.20) and (3.26).
Since expto Ha(m*) depends holomorphically on (p*,y*,u*) in Q, and since, by
(3-20), (3.26) the convergence to (0,y,0,(—1,0)) is uniform, the claim c) is proved.
Finally assume in (3.20) that the data p(0) = p* and u(0) = u* are equal to zero.
Then p(t) = w(t) = 0 for all ¢t in [0,+oo[. It follows that y(t) = 0 for all ¢ so
y(t) = y(0) = y*. This proves d). O
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Corollary 3.5. — Let
mo = (0,90,0,(—1,0)), 8" >0 and V ={m":d(m*,N;L(mp)) <5},
where d is Euclidian distance. Let m* € Q., be such that expto Ha(m*) converges,
as t goes to +00, to a point (0,y,0,(—1,0)). Then, if €o is small enough, one can find
0 > 0 such that if |y — yo| < 6 we have m* € V.
Proof. — Let m* = (p*,y*,0,(\*,*)). By the implicit function theorem, keeping
the notations in Lemma 3.4 d), one can find A\§ € C with ReA\j < 0 and y§ € C*!
such that
*, *’ A*, E — 1
3.27) {p(p v o*ﬂ) o
Yo =45 + " F1(p", 45, u*) + 1" F2(p™, y5, 7).
It follows from Lemma 3.4 that m§ = (p*,yg,0, (A5, #*)) belongs to Q, and to
Ni&(mo). Since N\§ = G(p*,ys,n*), where G is holomorphic in Q,, we see that
Im* — m§| < Cly* — y3|- From Lemma 3.4 and (3.27) we deduce that
Im* —mg| < Clyo —yl + C'(Ip"| + |u*]) < Clyo —yl + C'eo < Co + C'go < 6°
if 4 and g¢ are small enough. It follows that m* € V. O

Corollary 3.6. — One can find €9 > 0 and a holomorphic function G in the set
{(p*, 1) : |p*| + || < €0} such that if m* € Qey N Nio(mo), then p* = G(p*,y*).

Proof. — This follows from Lemma 3.4 d) and the implicit function theorem if we
can show that F5(0, yo,0) is invertible. To compute this term, we may take, in (3.17),
p* =0, y* = yo and p* = pye, where u; € C and (e1,...,en—1) is the canonical
basis in C"~!. Then p(t) = O for all t. Let us set u; = z € C, y(t) = yo + 2Y (¢),
(t) = zn(t). Then from (3.17), we get

n—1

e (t) =2 " (o) 20;(t) + O(|2I?) = 2 Vi (t)

A(t) = —2zn(t) + O(|2[*) = 29(?)

since, by (3.23), we have A + 1 = O(|z]?).
It follows that (Y, n) satisfies the system

n—1

Yi() =2 K (o) mi(9) + O(lz]),  ¥i(0) =0

j=1

n(t) = —2n(t) + O(lz]), n(0) = e¢.
To compute F3(0, yo, 0), we have to solve this system with z = 0. We obtain n;(t) =0
if 7 # € and 7,(t) = e~2?*. We deduce that Yi(t) = 2E€k(y0)e_2t, which shows that
limy— oo Yi(t) = B (30). It follows that F5(0,%0,0) = (A" (40))1<k e<n—1 which is
invertible. O
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CHAPTER 4

STATEMENTS OF THE MAIN RESULTS
AND REDUCTIONS

We consider in this section for ug € LZ(R™), a solution u(t) in the space
C°(]0, +oo[, L2(R™)) N C*([0, +oo[, H~2(R™)) of the problem

ou .
{E-l-zAgu-—O

ult=0 = uo

(4.1)

where A, is the Laplacian with respect to a scattering metric g.

4.1. Main results

Our purpose is to answer the following question : given a point mg in C =
QSCT; M U BCS*M and a time T' > 0, on what condition on the data up do we
have mg ¢ BWF, (u(T,-)) ?

The point mo will be described by its coordinates

(i) if oo = 0, m0 = (po, 0,0, (Ro, o)), Ao + [Hol* = 1

(ii) if g > 0, mg = (O,yo,)\o,;l,o) with Ag = Xo/o‘o, Mo = EO/UO'

We shall consider several different cases.

Case 1. — pg =0, 09 > 0 and
(1.i) po #0,T > 0, or
(1.i) go =0, Ao >0, T > 0, or
(1.ii) o =0, Ao <0, T < —1/2X,.

Theorem 4.1. — We have my ¢ ¥°WFy(u(T,-)) if and only if exp(—TXo)(mo) €
SCW F, (uo).

Case 2. — pg =0, 00 >0 and

(2.1) po =0, Ao <0, T = —1/2),.

Let us set m; = exp (2—}‘—6 Xo)(myp). It follows from § 3.3 that m; € N°, that is
my = (0,1,0,(—1,0)). We shall denote by N7 (m,) the set N7L (m1) ~ {m1}, that
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is the set of points in S*M, different from m;, which arrive at time ¢t = +oc at the
point m; by the flow of 0 Ha.

Theorem 4.2
Assume that one can find a neighborhood U of m; = exp (ﬁ Xo) (mo) such that

NIL(m1)NU does not intersect W Fq(uo). Then mo ¢ ¥°WF,(u( —1/2X,-))-

Case 8. — pg =0, 09 > 0 and

(3.4) o =0, Ao <0 and T > —1/2).

As before let us set m; = exp ( ﬁ Xo) (mo) € N€. If m, is not backward trapped
then, by Definition 3.2, all the points of N;;o (m1) (that is the points arriving at
time 4+oco0 at m; by the flow of 0 Ha) are not backward trapped ; therefore the set
N_o(Ni&(my)) is well defined. We shall set

scat(m1) = N_oo(NiL (m1)) C N5

Theorem 4.3

Let m; = exp (2—)1\; Xo) (mo) € N¢. Assume that my is not backward trapped and
that exp [ — (T + %5)] (scat(mq)) NBWEF, (up) = &. Then mg & W F,(u(T,-)).
Case 4. — o9 =0 and (4.i) po > 0, T > 0, or (4.ii) po =0, mo ¢ N, T > 0.

Theorem 4.4
Assume that mg is not backward trapped (then N_(mo) € N5 ). Assume that
exp(—T'X0)(N_oo(mg)) & W F,(uo). Then mo ¢ W Fq(u(T,)).

Case 5. — oo > 0 and
(5.1) po =0, m1 = exp(—TXo)(mo) € N¢, T > 0.

Theorem 4.5 —
Assume that my & W Fy(ug). Then mo = exp(TXo)(m1) ¢ ¥ WF,(u(T,-)).

Remark 4.6. — Theorem 4.4 contains the so called “smoothing effect”. Using Exam-
ples 2.7 (1) and (2), we can recover results which, in this context, are analogue to
those of [RZ1] and [RZ2].

The results described above will follow from several other ones which we state now.

4.2. Propagation inside %T,,, M

Theorem 4.6
Let 0 < 6, < 6* and m € =T M. Assume that exp(6Xo)(m) € (T 5, M)° for
0 € [0.,0*]. Then

exp(0x Xo)(m) ¢ ¥W Fa(u(fs,-)) <= exp(0” Xo)(m) ¢ W Fo(u(6”,-)).
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4.3. Propagation of the uniform wave front set in (¥¢S*M)° or on the
corner

Theorem 4.7. — Let to > 0 be fized. Let 0 < 6, < 6* and m € T M. Assume that
exp(fo Ha)(m) € (3°S* M) (resp. ©¢S*M N¥Tp, M) for 6 € [0,,0*]. Then

exp(8x0 Ha)(m) ¢ W F,(u(to, ")) <= exp(8*o Ha)(m) & ¥°W Fq(u(to, -)).

4.4. Propagation from the interior to the corner

Theorem 4.8. — Let m € N€ and ty > 0. Assume that one can find a neighborhood U
of m in 9°S*M such that NyL (m) does not intersect W Fq(u(to,-)) in U. Then
m & BWF,(u(to,")).

4.5. Propagation from the boundary at infinity to the corner

Theorem 4.9. — Let m € N§. Assume that exp(—T Xo)(m) ¢ ¥°WF,(ug). Then
m ¢ BWF,(u(T,)).

4.6. Proofs of Theorems 4.1 to 4.5

Let us now show how Theorems 4.6 to 4.9 imply the main results.

A. Proof of Theorem 4.1. — According to the description of the flow on
(35T 50, M) in § 3.3, we see that in the cases (1.i), (1.ii) and (1.iii) the bicharac-
teristic stays, for @ € [0,7), inside (9T 5,,M)°. Thus Theorem 4.1 follows from
Theorem 4.6 taking 6, =0, * =T

B. Proof of Theorem 4.2. — Let m; = exp (3> Xo)(mo) € N (since Ao < 0).

It follows from Theorem 4.8 (with to = 0) that m; ¢ qscﬂf/\ﬁ'a(uo). Then one can find
e € ]0,—1/2X¢[ such that exp(eXo)(m1) ¢ ¥W F,(u(e,-)). Applying Theorem 4.6
with 0, =€, 8* = —1/2)Xo we get exp (— ﬁXo)(ml) =mo ¢ S WEF,(u(—1/2X,")).

C. Proof of Theorem 4.3. — Assume that
exp[— (T + ﬁ) Xo](scat(mi)) N EW Fo(uo) = 2.

Let m € scat(m;). Then m € N§. We apply Theorem 4.9 with T + ﬁ instead
of T. Tt follows that m ¢ %W F, (u(T + 53%;,-))- Then a small neighborhood of m
in ¥°S*M does not intersect this set. We apply Theorem 4.7. We deduce that all
the bicharacteristic issued from m does not intersect qSCVI/;_ﬁ’a (u (T + ﬁ, )) Using
this argument for all points in scat(m;), we see that one can find a neighborhood U
of my in S*M such that N7L (m1) does not intersect W F, (u(T + 3507)) inU. It
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q!CStM

my € N©
Mo

mg

exp(—TXo)(mo)

Ty M 9Ty M

Theorem 4.1 Theorem 4.5 Theorem 4.2

Scat(m;) = K C N§ @S M

mo

N_o(mo)
e Ng

> L

exp(~TXo)(K)

mo T=T+
° exp(—TX0)(N_co (m0))
qscT;MM quT;MM
Theorem 4.3 Theorem 4.4

follows from Theorem 4.8, with tg =T + ﬁ > 0, that my ¢ qscﬁa (u(T + ﬁ, ))
Let us introduce my = exp(—TXo)(mo). Then m; = exp ((T + 5x7) Xo)(m2) ¢
WY F, (u(T + ﬁ, -)). Then one can find & > 0 such that

exp(eXo)(m1)
= exp (T + ghs + &) Xo) (mz) € (FTopg M) 1 (W, (u(T + g +2.°)))"
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qsc G* pf

exp(0*cHa)(m)

exp(6* Xo)(m)

exp(0. Xo)(m)
T M Ty M
Theorem 4.6 Theorem 4.7

gscgx pf

mG.N'.f,

exp(—TXo)(m)

@ Ty M " TouM
Theorem 4.8 Theorem 4.9

Applying Theorem 4.6 with 8, = T + ﬁ + e < 0* =T we see that exp(TXo)(mz) =

mo ¢ W F,(u(T,-)).

D. Proof of Theorem 4.4. — Let m; = N_o(mg) € N§. Since
exp(—T'Xo)(m1) ¢ ¥WEF,(uo)

we have, by Theorem 4.9, m; ¢ W Fo(u(T,-)). If mg € qSCW/?I/;’a(u(T, -)) then, by
Theorem 4.7, all the bicharacteristic starting at mg is contained in ®°W F,(u(T,-)).
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Since this set is closed it would follow that
N_(mo) =m; = . lim exp(tXo)(mo) € qscI/I’—/\Fa(u(T, )
——00
which is a contradiction. So mg ¢ ¥WF, (uw(T, -)).-

E. Proof of Theorem 4.5. — The complementary of qscﬁa is an open set; then,
there exists € > 0 such that mo = exp(eXp)(m1) & ¥°*WF,(u(e,-)). We can now
apply Theorem 4.1 with T' — £ to obtain Theorem 4.5.
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PROOF OF THEOREM 4.6

In (9°Tp,, M) we can, according to the Remark 2.8 (2), forget the parameter k
in the FBI transform and use (2.9)". Using (3.4) we see that the adjoint A} of our
Laplacian can be written as

= (02 D,)? + p? Ao + c(n) p® D, + d(n) p?> + pR where

(5.1) R= Y baelps9)(0* D) (0Dy)*, bos(p,y) = 0> %Bo,e(p,y) -
o |al+££2

Let (6o; S0,%0,20) € R x RT x R™ x R?" be a fixed point. Roughly speaking our
goal is to find phases ¢ = ¢(8; p/h,y,a, h), symbols a = a(6; p/h,y, a, h) depending
smoothly on all variables in a real neighborhood of (6o; so, yo, o, 0) such that, at least
formally, we have

(5.2) (—(;;% + iA;) (ae™’?) = O(e~*/"), &> 0.
We shall seek for ¢ and a on the following form

(5.3) ® =2 (6" B,y,a) + ihy (0; %,y,a)
(5.4) a-—Zh]aJ(, =Y, Q, h)

3=20

An easy computation shows that, working with the variable s = p/h, we have

(5.5) (880 + zA*) (ae?*?) = h=2eh 7 (I + IT + IIT + IV).
(2 () 2 e
(5.6) n—1

Iz =3 @Y% = (v,Y).
7,k=1
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— : 8<P2 02
I= —h(£<p1 +2F0(s Y, —— s’ By ))a, where
0 6<,02 ad 6<p2 0

. 25 &2 2

(5.7) L= g5+ 25" 2o 2 ay’ay> and
Fp is real if (s,y) is real and is a polynomial in %, %
\ Os By
(5.8) III = h?(La + Fi(5,y, (0% t)|a|<2,0=1,2) @) -
2 .

(5.9) IV =Y " h** X (sh, 5,9, (0% Pe)|ai<2,=1,2; Os, By) a.

i=1

Here F is analytic in (s,y), polynomial in (0%¢), |a| < 2, £ = 1,2 and Xj is
a homogeneous differential operator of order j whose coefficients are finite sums of
terms of the form b(sh,y)c(s,y)(0% 1) (8° p2)% where |a| < 2, |68] < 2, €1+ £2 < 2
and ¢, b are smooth.

5.1. The first phase equation

Our purpose here is to find 2 such that the term I in (5.6) vanishes. We shall
solve, for (6, s, y) real, the Cauchy problem

(5.10) { s (52) ol

p2lo=0o = (s —as)ar + (y — ay) - oy
where o = (as, ay, ar, ay) € R?™ is a parameter close to ag. If we set
(5.11) w2(0; 8,y, @) = P2(0; 8, y, ar,0p) — Qs 0 — iy 0y
then (5.10) is equivalent to

(5.12) % +s (&pz) ” e ”
P2lo=6, = sar +y - ay

Let us consider the symbol
(5‘13) Z(S, Y, T, 1, 0*) = 6" + q(s, YT, 77)7 q( o ) = 347-2 + 52 ”77”2 .

The equation in (5.12) is equivalent to

0pa Op2 Op2\
(s 5o 5y’ 90 )=o.
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The bicharacteristic of £ starting from (6o, 3, ¥, ar, &) is described by the equations

(0(t) =1 6(0) = 6
s) = 20,90, 7O00) 50 =3
i) = 22(-) y(0) =7
(5.14) { . " o
o* (t) =0 A (0) = —q(37 YT, /’7)
Ht) = ~ 9L (s(0),u(®), (@), n(®)  7(0) = o
i = -52¢) 7(0) = .

We have 6(t) =t + 6o, 6*(t) = 6*(0) and the system in (s,y, 7,n) has, for small [¢|, a
unique solution

(S(t; g) ?7’ Qr, an)a y(t; ga :'7, ar, a’f])a T(t7 g’ ga ar, an)a n(tv ";7 ga Qr, a’r])) .

Let us consider, for fixed (o, ay), the set

(5.15) A= {(0, 5(6 — 60; 3,7, otr, ), ¥(6 — 6033, Y, atry ), 6%(0),
T(a - 00;:;, g’ Qr, a'r)), 77(9 - 90;:5, ’!7’ aT>a'r]))7 (07 ga?j) close to (90’ S0, ’!/0)} .

Then A is a Lagrangian submanifold and, since ¢ is constant on the bicharacteristics,
we have

(5.16) s =0.

Now the map (6,5,y) — (6,s(0 — 60;35,y, ar, o), y(@ — bo; - - -)) has a Jacobian with
determinant equal to one at 8§ = 6. It follows that the projection on the basis
II: A — RxRxR" !, is a local diffeomorphism. Therefore one can find a real
function @2(6; s, y, ar, ay) in a real neighborhood of (o, so, y0) such that

_ 052 0P 0P
(517) A= {(0:57:'/7 50 ’ s ) ay )a (0753 y) close to (0(); S0, yO)}

Then (5.16), (5.17) show that @y solves (5.12). Let us note that

%(0; $,Y, Qr, Op) = 7'(0 — 6o; K1(60 — 005 8, Y, ar, 0yy),

(518) "":2(0 - 90;3,?/, aTaan)a qr, an)
9
79%() — (6 — B0; K1(--), k(- -+ ), 0ry o)
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where
0=260 0=20

(5.19) (0 —60;5,Y,0r,0p) =8 §=K1(0 — 00; 5, y,0r,0p).
y(0 — 00;5,9,0r,a,) =y Y =ka(0—6p;---)

Now the solution @2 in (5.18) is determined up to a constant. We shall take the
constant such that
(5.20) $2(6o; 50, Yo, A7, y) = tr S0 + - Yo -

This determines @2 uniquely. Now we write

1 ~ ~
~ ~ 0p2 0p2
0o; s, Y, Qtr, = 0o; 0, Yo, Otz - - :
©2(00; s, y, o, ) = P2(00; S0, Yo, an)+/0 [(S s0) 5, + (¥ — %) By]

(Bo;ts + (1 —t) so, ty + (1 — t) yo, a7, o) dt.
It follows from (5.20), (5.18), (5.14) that
$2(00; 8, Y, ar, ay) = ar 8o + @y - So + (8 — So)ar + (Y — Yo) - @y = ar s+ ay - M.

This proves that @» satisfies also the initial condition in (5.12). Let us note that o
defined in (5.11) satisfies then (5.10).

5.2. The second phase equation

Our purpose here is to find ¢; such that the term II in (5.7) vanishes. More
precisely, we shall solve, for (6, s,y) real, the Cauchy problem
91 4002 8<p1 Op2 Op1 ) Opa  Opa2
‘C - 2s 2 < 9 _> = —3 F ( ) 9 —)
(5.21) 41T 80 T s By H\SY Bs 0 By
P1lo=, = (5 — @s)® + (y — ay)?
where Fy is real.
Since L is a real vector field with smooth coefficients, the problem (5.21) has a
unique solution ¢ = ¢1(0;s,y,a) near (b, so,yo) Which is a smooth function of its
arguments. Now, since Fy is real, we have

(5 22) { E(Re (Pl) = O) [:(Im <P1) = _F0(37 Y, B(Pz)
' Repilo—, = (s — as)’ + (y — ), Imilg—g, = 0.

Notation 5.1. — Let o = (so,yo,a° ,7) We shall denote by s(¢; ao), y(t; o), etc.
the solution of (5.14) with data (00, so, Y0,02,a9).

Lemma 5.2. — Let us set

A= (01 3(0 - 00;§> :i]’ Qr, 0517), y(e - 90;5, g? a‘l’yan)v a)’
o o o8 o _ 8 )

= or

ax as 8y’ Bax Oa, oy,
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Then
O Repi(d) = G-l + G-
() o (Rep1)(4) = 50— (Rep1)(4) =0, 515 (Repr)(4) > 0 ifa, =5, ay = 7.

Proof. — 1If, instead of working in the (0, s,y) coordinates, we take the (5 S,¥Y) co-
ordinates given by (5.19) (where 6 = ) we see, using (5.14) and (5.18) for 2, that
£ = 8/80. Thus, setting F(8,3,7, @) = Repi(4), we get OF/80 = 0 ; therefore
F(6;3,7,a) = F(80;3,7,a). Since for 6 = 6y, A = (60;3,7,a) and since Re p; satis-
fies (5.22) we get (i). Then (ii) follows easily from (i). O

Let us note that (i) implies, in particular, that

Re 1 (0; s(6 — bo; o), y(8 — bo; o), o) = 0.

5.3. The link between the bicharacteristics of ¢ and the flow of X,
Let ¢ and X be defined in (5.13) and (3.9). Then we have the following lemma.

Lemma 5.3. — Let mo = (0, Yo, Mo, o) €(FTpp, M)° and ag = (80,90, Mo/ 83, 1o/ s3) -
Let (3(0 — 6o; a0), y(0 — 6o; ), T(6 — bo; o), n(6 — bo; ao)) be the bicharacteristic of
q (defined in (5.14)) starting from ag. Let us set

(5.23) A(0—8p) = [s(0—60; 0)]® T(0—60; o), u(60—00) = [s(0—60; 0)]? n(6—60; p) -
Then (0,y(8 — 6o; o), A(6 — 60), 1(6 — 6o)) = exp[(6 — 8o) Xo](mo).

Proof. — It is an easy computation using (5.14) and (3.10). O

5.4. ¢ is a FBI phase

Lemma 5.4. — Let mo = (0, Yo, Mo, 10)€(®*°T 5, M)° and ag = (50, %0, Mo/ 53, 110/53)-
Let us set, according to Notation 5.1 and (5.23),
(@ — 06 0—86
X (0) = (s(0 — 00; 20), y(0 — b0; a0)), Z(0) = (33(0( & 00;06)\{0), 32?9(_ 90;0;0)
Let us set p(0;s,y,a,h) = p2(0;s,y, ) + thp1(0;s,y, ), where g2 and @1 are the
solutions of (5.10) and (5.21). Then, for small |0 — 0y|, ©(0,-) is a FBI phase at
(X(6),2(0), a0,0) (see Definition 2.1).

Proof. — Let us set X = (s,y), a = (ax,a=), ax = (as,0y), az = (&7, a,). By
(5.10) and (5.11) we can write

w2(0; X, ) = p2(0p; X,a) + 2(0; X,az) = (X —ax)az + ¥2(0; X, az).
Now, we deduce from (5.18) and (5.23) that

‘9“’2 Sx (05 X(6), @0) = (7(6 — bo; o), n(6 — bo; a0)) = E(6).
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It follows from Lemma 5.2 that a—g‘i?ﬂ(O;X (6),20) = 0. On the other hand (5.21)
shows that Re ¢1]e=, = (X — ax)?. It follows that
8% Re v, 8% Re

oxz  (Poi X,0) = T 9X Doy

(60; X, @) = 214,

for all (X, ).
Therefore for (6, a) close to (6o, ap), we get
(62 Re ¢

0X?2

8?Re 1
0X dax

Finally, since ¢2(6o; X, ) = (X —ax)asz, we get 3 X 3x 62z (60; X, @) = Id, which implies
that, for @ close to 6o, det 3 X x 522 (0; X(0), @) # 0. This proves our claim. O

(9;X(9),a)) >0

det ~———— (0;X(9),a);£0.

5.5. The transport equations

Here we look for a symbol a such that the terms III and IV in (5.8), (5.9) vanish.
We shall take a of the form

a(0;s,y,0,h) = > a;(0;,y,0) 7, with
(5.24) 2
la; (6; s,y, )| < MI+1j3/2

Setting h? = A~! we see that a = Za; A~7/2. Compared with the symbols used in
Sjostrand [Sj}, these symbols are non classical. However, we follow essentially [Sj].
We shall work in the coordinates (8, 5,7) of Lemma 5.2 where £ = 8/086 and we skip
the ~ for convenience. Coming back to (5.8), (5.9) and setting a = a — 1, we have to
solve the Cauchy problem
(5.25) (;9 +c(8, s, y,a)>a+h 2R3 X1 +h*X2)a=b
alo=6, =0
where X, j = 1,2, are homogeneous differential operators of order j with smooth
coefficients in (s, y, 0, a, h) in a neighborhood of (so, yo, 6o, @0,0) and b is a symbol.
Setting a; = exp (f:o (o, s,y,a)do) a, we are lead to solve (5.25) with ¢ = 0. Here «
is fixed, so we skip it in that follows.

With 7 > 0 small enough and 0 < t < r, we set

(5.26) Q= {(6,s,9):10 — 6| +|s— so| + |ly —yo| <7 —t}.
Given p > 0, we shall say that a € A,, if a =3/, a;(6,s,y) hJ with
(5.27) sup |a;| < fi(a)7/%t79/2, o<t<r,

Q
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(where f;(a) is the best constant for which (5.27) holds) and

(5.28) igfj(a)ﬂ = lall, < +oo.

Let us set ’

(5.29) 851 £(0,5,y, k) = (6 — 6o) /01 F(00+ (1 — )00, 5,y,h)do.
Then the problem (5.25) (with ¢ = 0) is equivalent to

(5.30) (Id+B)a =d, where B=h"29;1(h*X; + h* X,).

We want to show that one can find p > 0 such that || Bl|z(a,,4,) < co < 1, which will
imply that I + B is invertible.

Lemma 5.5. — Let Aj, be the subspace of A, of symbols of the form a = 2j23 ajhi.
One can find a positive constant Cy such that for any p > 0 and a in A, we have

0 Co
Ih=285 " all, < ?l

la”p-

Proof. — We have
h 207 'a=h"2Y hid;la; = h 5 a2 =) hb
j=23 j=21 j=21
where )
b;(6,s,y) = (60— 00)/ aji2(00 + (1 —0)bo,s,y)do.
Now, if (6, s,y) € Q; then ’

lo6 + (1 —0)6o — bo| + |5 — sol + |y — wol
=160 — 0| + |s — so| + |y — yo| + (o — 1)|6 — |
<r—t—(1-0)|6 -6 ;
so (060 + (1 —0)00,5,y) € Qi (1-0)|6—0,|- Therefore

1 .
0
So ,
b;(s,6,9)| < fir2(a)(j +2)2+ Et_m’
Now, for j > 1, we have

U 52 o (e e

Therefore, for (6, s,y) in Q;, we have

0;(8, s,9)| < 6e fir2(a)j?/2t79/2.
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This shows that

(5.31) fi(b) < 6e fir2(a).
It follows that
1B=285  all, = lIBll, = > £3(b)p’ <6eD_ fira(a)p’ < 2uan,, =
i1 izl

Lemma 5.6. — The operator h3 X, + h* X2 maps A, to .A:, and there exists a positive
constant Cy such that for all p in ]0,1[ and all a in A, we have

I(h® X1 + h* X2)all, < C1p°|lall,-

Proof. — Since X, is an homogeneous differential operator of order ¢ (¢ = 1, 2), the
Cauchy formula shows that for ¢/ <t

(5.32) sup [X¢f| < C(t —t')"“sup|f].
1228

&/

Now h2t Xpa = 37,50 h* 4 Xya; = 3.5 0, , W7 Xea; 2. The use of (5.32) shows
that

sup | Xea;—2—¢] < C(t —t')"*sup|a;j_2_¢|
Q. Q,
SOt —t)"* fiae(a)(j — 2 — )3072-0y~30-2-0)

Let us take t/ = 7‘;"—_[ t. Then

sup | X¢a;—2—¢|

t

, —1(j—2—
G—2-0)(J—2-¢ 22 l)t

<
s¢ j—3G-2-0)

G-2-0 TR0 2 i(a).

- (e+2)~¢
)
J
The right hand side of this inequality can be written as

—j - . j 1 g
[241-2/2:5/2 - _J __ r
Ct™/%¢t 37 @+ 2)f i+ fi—2—e(a).

Since 1 < £< 2, Wehavem J—l_{m <land t17%2 <1 (t <7< 1), s0 we get
Sup | Xeaj—2-¢| < C fi—z-e(a) /247772
It follows that f; (k% X,a) < C fj—2—¢(a), so

10 Xeall, = 3 LX) <C Y Jiae(@)p) < CpHY (@)

j=ze+2 j=e+2 Jjz0

which proves the lemma. M
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Using the Lemmas 5.5 and 5.6, we deduce
|Ball, < CoCipllall,, for all a € A, and p €]0,1].

Taking p small enough we get our conclusion.

5.6. Proof of Theorem 4.6 (continued)
Let us set
(5.33) A= {0 € [0.,6"] : exp(6 Xo)(m) ¢ P WF,(u(®,-))}.

If we show that A is open and closed in [f,,6*] then the claim in Theorem 4.6 will
follow.

(i) A is open

Let 8p € A, that is mo = exp(6o Xo)(m) ¢ F°WEF,(u(6p,-)). We set mg =
(0,y0, Ao, o). Since the definition of ¥°WF; is independent of the phase and the
symbol, we may take a = 1 and ¢ = ¢° = ¢J + ihp? where

(5.34)

{ (pg(S, y,a) = (s —as)ar +(y—ay) - ay
‘p(l)(37 Y, a) = (3 - as)Z + (y - ay)zv

and oo = (So, Y0, Ao/53, o/s§). Then one can find a cut-off function x(s,y) equal to
one in a neighborhood of (sg, yo), a neighborhood V,, of ag, strictly positive constants
C, co, €9 such that for all (a, h) in Vb, % |0, cof,

(5.35) |Tou(bo; a, h)| < Ce=co/h
where
(5.36) Tou(fo; o, h) = //e“‘—z"’o(”/h’y’“’h)x(g,y) u(6o; p, y) dpdy.

Let, for |6 — 6y| small enough, ¢(0;s,y,a, h) = p2(0;s,y, o) + thp1(6; s,y, a) be the
phase given by the Lemma 5.4 which, for § = 6y, is equal to ¢° given in (5.34).
Let a(6;s,y, o, h) the analytic symbol constructed in § 5.5, which is equal to one
for 8 = 6. Let x(6;s,y) be a cut-off which is equal to one in a neighborhood of
X(6) = (s(6 — 6o;0), y(6 — Bo; 0)). Let us set

(5.37)

. — ih~2p(0;p/h,y,a,h) P .P lt- o )
Tu(6;t, , h) //e a(ﬁ, o Y h)x(G, h,y) u(t; p, y)dpdy.
It follows from (5.35), (5.36) that
(5.38) [Tu(Bo; 00,0, h)| < Ce™/" | Yae&Vy, Yhe]0,col.
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Then we have

Lemma 5.7. — One can find two smooth functions U and V, €1 > 0, c; > 0 and
neighborhoods Vy,, Va, such that
(5.39) Tu(b;t,a,h) =U(0 —t;a,h) + V(0;t,a, h)

(5.40) [V(6;t,a,h)| < Cre™ /" Y (8,t,a,h) € Vo, x [0,T] X Vo % ]0,c1].
Let us assume this lemma proved ; then, for |6 — 6y| small enough, we can write
TU(H, 0, «, h) = Tu(@o; 00, a, h‘) + W(aa 00, «, h’)

where W satisfies the estimate (5.40) with a larger C;. It follows from (5.38) that
Tu(0;0, a, h) satisfies also the same kind of estimate. Therefore by the Definition 2.3,
we have (0,y(8 — 0o), A\(6 — 0p), u(6 — 6p)) = exp((6 — ) Xo)(mo) & BW F,(u(b;-))
when |6 — 6| is small enough. Since mg = exp(6y Xo)(m) it follows that 8 € A if
0 € Vp,, which proves that A is open.

Proof of Lemma 5.7. — First of all we have |eh "¢| = ¢=h " Rev1(6ip/hy,@) < ] by
Lemma 5.2 (i). Now we take the symbol a = 3. 5/52 a; (6; p/h,y, ) h?, where a;
satisfies (5.24) and ¢ is small enough. Then by (5.5) and the choice of ¢ and a we get

P 5/n2 ; 2
(5.41) .(89+1A*)(ae”’ ¢’)] M(M——h) = Menz LosMV3)  g=do/h

with 8o > 0 if M5 < 1.
It follows from (5.37) that we have,

;oTu(G t,a,h) = //zA (ae’h “’)X( : ,y)u(t ) dpdy

+ // TeaZZ (- ult, p,y) dpdy.

Therefore
TU(0 t,a,h) = // e g )[5% —lAg,x] u(t; p,y)dpdy
// e a(-- ) x(- )il gult; py) dpdy.
Since i Aju = —0u/0t we get

15] 5] -2 o -
(5.42) (55+%)Tu(0;t,a,h)=//e”‘ () g .. )[%_,A ]u(t;p,y)dpdy.

We prove now that the integral in the right hand side of the above inequality satisfies
an estimate like (5.40). Indeed, on the support of [% —14y, X] , we have by definition
of x,

(5.43) <X = X0 < 261
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where X = (s,y) and X (0) = (s(6 — 6o; @), y(0 — 6o; ap)). Moreover

BRe (pl

Re ¢1(6; X, a) = Rep1(0; X(0), ) + —=— (6; X(0), a)(X — X (0))

1 82Re
5 Dok (6 X(6), ) (X — X(8))? + o(IX — X(O)]).
It follows from Lemma 5.2 (ii), that
(5.44) Re (6 X, ) > col| X — X(6)|1%.

Since |eth”*?| = e~hRe¢1 our claim follows from (5.43), (5.44). Then (5.42) implies
(Or + 09)Tu(0,t;a, h) = V(6,t, 0, h) where
{ |V(6,t,a,h)| < Ce /", (8,t,a,h) € Vg, x [0,T] x Vi x 0, co
from which Lemma 5.7 follows. O
(ii) A is closed
Let 6; € A. For every € > 0 there exists 6y € A such that |6p — 61| < . We take e

so small that 6; belongs to the neighborhood of 6y where ©(6;---) a(; - --) have been
constructed. Then, as above we can write

Tu(01,91,a h) T’U,(e(),ao,a{ h) + V(00,61,a h)
where V = O(e™/?). Since 6y € A, we have Tu(f;800,,h) = O(e~%/*) so the
above equality shows that exp[(61 — 6o) Xo](mo) = exp(0, Xo)(m) does not belong to

BW F,(u(61,-)) thus 8; € A and A is closed. The proof of Theorem 4.6 is complete.
O
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CHAPTER 6

PROOF OF THEOREM 4.7

6.1. Propagation in (3¢S*M)°

In this set, qscﬂa coincide with the locally uniform analytic wave front set in-
troduced in [RZ1], Definition 1.1. Moreover Theorem 4.7 is of local nature, thus
independent of the asymptotic behavior of the metric. Therefore Theorem 4.7 in
(35¢S* M )0 will follow from Theorem 6.1 in [RZ1] as soon as we show that the flow of
o Ha described by (3.17) coincide with the bicharacteristic flow of the Laplacian A,
described in (3.4).

The principal symbol of Ay is equal to p(p,y, p?7, pn) where p(p,y, A, u) = A% +
lell? + pr(o,y, A, 1) (see (3.4), (3.5)). Therefore the bicharacteristics of A, are de-
scribed by the equations

(. Jp
p= 0" 735 (p,y, p°1, pm)

g=p2P(.
ou
6.1
oy <T'=[—@—2/)7-3—13—17?—1'3](10yp“’mon)
ap ax Toul'P¥ P
=Py
\ ay )

Then we have the following result.
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Lemma 6.1. — Let mo = (po,¥0,0, (N0, Tig)) € (¥°S*M)°, po > 0. We set 10 =
Xo/P3, mo = To/P3- Let (p(t),y(t), 7(t),n(t)) be the bicharacteristic of A, starting
at (po,Yo,70,M0). Then p(t) # 0 for all t. Let x(t) be the solution of the problem
x(t) = po/p(x(t)), x(0) = 0. Then

(B(®) = p(x(®)), T() = y(x (1)), A(t) = po(Tp*) (X(t)), F(t) = po(pn) (x(t)))
is the flow of o Ha described in (3.17).

The proof of this lemma is a straightforward computation.

6.2. Propagation on the corner

Let m = (0,y0,0, (Mo, %)) be a point of the corner. We take sg > 0 and we set
ao = (S0, %0, Mo/s3, To/s3). Let 8o € R. Here we look for a phase ¢ and a symbol a
such that for some € > 0,

10 * 2k~ 1p(8;0/h,y,0,h) . P — —&/hk
(6.2) A= (k 5 +HiA )[ a(6; E,y,a,h,k)] = O(e~c/k)
for (0, p/h,y, a) in a complex neighborhood of (6o, so, Yo, @) and (h, k) in a neigh-
borhood of (0,0) in |0, +oo[ x ]0, +ool.
Setting s = p/h we see easily that

(6.3) A=eh ke (1 4 1)
where
—o,_o9{0p 6(,0 8cp
— 2 2
(6.4) I=h2k ( +p(sh,y, 5 pad ay))a

= —(£a+z(A ©)a+ih’kA}a) with

(6:5) o ,0 dp 8o\ & B a
o9 20, 200 Op\O  Op, O
R G ay)as+ auC )3y
6.2.1. Resolution of the phase equation
Proposition 6.2. — There exists a holomorphic function ¢ = ¢(0;s,y,a, h) in a com-

plex neighborhood of (6o, so, Yo, o) depending smoothly on h such that

o0 200 00 _
{ae +p(sh,y,s as’say)‘o
Ylo=g, = (X —ax)az +ih(X —ax)2

where X = (s,y), a = (ax,0=), ax = (o, ), oz = (07, ap).
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Proof. — We introduce the symbol ¢ = 8* + p(sh,y, s?7,sn) and for fixed a,h we
consider the bicharacteristic system of ¢ which is given by the equations

(0(t) =1 6(0) = 6
(t) = 5 2 (sh,y, s, sm) s(0) =5
#0) = 5o (--) y(0) =7
©6) Y 4y =0 6*(0) = —p(3h, 7, 37, 57)
#(t) = — [h?m g§+nZZ]( ) 7(0) = F = a, + 2h(F — a,)
i) = ~52() 7(0) = 7 = ay + 260 (G — ).

Here t is complex and (3,7) are taken in a neighborhood of (sg,yo) in C x C™~1.
By the Cauchy-Lipschitz theorem this system has, for small ¢, a unique holomorphic
solution which depends holomorphically on the initial data. Since 0(t) = t + 0y we
can set t + 8y = @ and we consider

(67) A= {(0’ 3(0 —60;5,Y, o, h)a y(e — ;- -- )’ 9*(0)7 T(9 —00;5,7, h),
n(6 = 60;---)), (5,7) mear (so,90)}-

Then A is a Lagrangian manifold on which g vanishes. Moreover we see from the
equations (6.6) that the projection 7 from A to the basis is a local diffeomorphism.
Therefore one can find ¢ = ¢(6; s,y, o, h) such that

A — O ) dp
(68) — {(075’y7 o0 (0a $ Y, Q, h)’ s ()’ ay ())7
(0, s,y) in a neighborhood of (6, so, yo)}.

Since ¢ vanishes on A, the function ¢ solves the equation in Proposition 6.2. However
one can add to ¢ any constant without changing A. We shall take the constant such
that

(6.9) ©(60; 50,Y0, @, h) = (s0 — @s) a7 + (Yo — @) - @y + ih[(s0 — as)® + (Yo — y)?].
Let us show then that ¢ satisfies also the initial condition. We can write
¢(6o; 8, Y, @, k) = (605 S0, Yo, @, h)

1
+/0 [(s—so) (Bo;ts+ (1 —t)so,ty+ (1 —t)yo,a, h) + (y — yo) (00, )]dt.
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It follows from (6.8), (6.7), (6.6) that
1
©(00; 8,y, a, h) = ©(0o; s0, Yo, @, k) + / [(s — s0)(ar + 2ih(ts + (1 — t) so — as))
0
+(y — vo) - (an + 2ih(ty + (1 — t)yo — ay))] dt
©(00; 5,9, ¢, h) = p(00; S0, Yo, @, h) + (s — s0) ar + (¥ — yo) - oy
1
+2ih 3 (5~ 50)? + (5 = 50)(s0 — @) + 5y~ 30)” + (¥ — w0) - (0 — )]
Using (6.9), we deduce that
©(60; 5,y, 0, h) = (5 — as)ar + (y — ay) - an +ih[(s — as)® + (y — ay)?]
which is the initial condition in Proposition 6.2. O
6.2.2. (0, ) is a phase. — Let us show now that ¢©(6; s,y, @, h) is a phase in the
sense of Definition 2.6 at (X (0),Z(0), o, ho = 0) (independent of v) where
X(e) = (3(0 - 00; S0, Yo, @o, 0)7 y(9 - 00; e )) 3
5(9) = (T(o - 00; S0, Yo, (o, 0), 17(0 - 90a Tt ))
We set
(P(ea $Y,a, h) = ¢2(9; $Y, Ol) + ,Lhwl (S, Y, a) + h2 "/)0(57 Y, ¢, h)

and .0 6
9y Op
F(h) =
(h) = p(sh.9,* 52,5 50
Then writing F'(h) = F(0) + hF'(0) + h®> G(h) and using Proposition 6.2, we see that
1o satisfies the equation

(B 22 <

Thus 5 is real if (s, v, a) are real. Moreover by (6.7), (6.8),

Z’ﬁ;(e X(6), 00) = ;(9;3(9_90§"')a9(0—90,"‘),010,0)=E(0).

On the other hand v satisfies the equation

_ 9P (0 . 2002 OY2
{‘Cwl—zsap(ovyﬂs ds y S ay)

Yilo=go = (X — ax)?.

It follows that £ Re®; = 0 and Re;|g—g, = (X — ax)?. Working in the coordinates
(6,3,9) as in Lemma 5.2, the vector field £ becomes 9/96. It follows that

Re¢l (07 3(6 - 00; g’ y7aa 0)7 y(a - 90; e )7a) = (g_ O!s)2 + (ij - ay)2
which shows that Re; > 0 if (s,y, @) are real. Finally,
Re 91 (X (0), a0) = (so — s0)* + (¥o — v0)* =

ASTERISQUE 283



6.2. PROPAGATION ON THE CORNER 49

6.2.3. Resolution of the transport equation. — We look for a symbol a of the
form
a(6;s,y,a,h, k) = Z aj(6;s,y, , h)(hVk)?
j=20
where the a;’s satisfy the following estimates

la;(8; s,y,, )| < MI*153/2,

If, instead of working in the (0, s,y) variables we shift to the new variables (6,5,7),
where s(0 — 00;3,Y,a,h) = s and y(8 — 60;3,y, @, h) = y, the operator L becomes
0/06. Therefore solving the equation /I = 0 in (6.5) is equivalent to solve
0 ~ ~

[3—9 +¢(6;5,7, a)] b+ (hWE)“2((hVE)1 Py) b= 0

b|o=90 =1
where P, is a second order differential operator. Then the same argument as used in
[Sj] or in the proof of Theorem 4.6 ensures the existence of such a symbol.

Now, before giving the proof of Theorem 4.7, we must link the flow of o Ha with

the bicharacteristic of p described in (6.1).

Proposition 6.3. — Let mo = (0,40, 0, (Mo, %)) be a point in the corner. Let so > 0
and set To = Xo/Sg, Mo = Wo/sE- Let (s(t),y(t), 7(t),n(t)) be the bicharacteristic of
the symbol p(0,y, s®7, sn) issued from (so, Yo, To,M0). Then s(t) # 0 for all t. Let x(t)
be the solution of the problem x(t) = so/s(x(t)), x(0) =0. Then

(B(t) = 0,5(2) = y(x()), A(t) = 50(75°)(x(2)), B(t) = s0(sm)(x(t))
18 the flow of o Ha (described in (3.17)) through myg.

Proof. — This is a straightforward computation. O

6.2.4. Proof of Theorem 4.7. — Let us introduce the set
(6.10) A= {0 €[0.,0%] : exp(80 HA)(m) ¢ ¥°W Fa(u(to,"))}.

If we show that A is open and closed in [0«,6*] we are done. A is open because
W Fg(u(to, ) is closed. It remains to prove that A is closed. Let (6,) be a se-
quence in A which converges to some 6y € R. Let us set exp(6po Ha)(m) = mo =
(0, 0,0, (X0, Tig))- Let Vg, be an open neighborhood of 6y in R in which the phase
»(0; s,y, a, h) given by Proposition 6.2 and the symbol solving the transport equations
exist. Let v be the solution of the problem 4(t) = so/s(7(t)), ¥(0) = 0 introduced in
Proposition 6.3. Then one can find #,, such that 50 =60 + v(0n — 0p) € Vi, and we
fix it. Now let us set, for 6 in Vj,,

(6.11)

Tu(it,a,h, k) = [[ 70X a(6; X, 0, ) x(05 Xn) u(ti p,y) dydp
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where X, = (p/h,y) and x(6;-) is a cut-off function localizing at
X(B) = (3(0 - 90; S0, Yo, aO)) y(9 — bo; S0, Yo, aO)) )
S0 >0, ap = (So,yo, X0/38, 170/33)~

Lemma 6.4. — One can find two smooth functions U,V , complex neighborhoods Wy,,
Wao of 6o, ao, positive constants C, €g, 09, 1 such that

[V(6;t,, b, k)| < Cec0/hk
for all (651, @, h, K) in Wy x Jto — Bo,to + b0l x Waq x 10,61(x 10, &1[

(6.12)

Proof. — It is very similar to that of Lemma 5.7 so we only sketch it. It follows from
(6.3), (6.4), (6.5), Proposition 6.2 and from the construction of the symbol that (6.2)
is true. It follows that 7u satisfies
10
(E 55+ at) Tu(6;t,a, h, k)
ih=2 k= Lp(-r 10 ——
= //e Rk >a(-~-)[E%— —@Ag,x](-“)U(t;p,y)dpdy+ Vi
where V; is a smooth function satisfying the estimate in (6.12). Then we use the
properties of the phase ¢ on the support of [% ;% AV X] to achieve the proof. [

It follows from Lemma 6.4 that
(6.13) Tu(fo; t, , b, k) = Tu(Bo;t — k(6o — 6o), @, h, k) + Va

where V;, satisfies the estimate in (6.12).~
Let us check at what point does 7u(fp;---) microlocalize. By (6.7) and (6.8) we
have, with X = (s,y),
8p ~ ~ ~
X (605 s(Bo — 605 S0, Y0, 0, 0), y(6o — bo; - - - ), 0, 0)
= (7(8o — 803 50, Yo, 0,0), 7(6 — Go; -+ +)) -
Since 50 — 0o = v(6,, — 6p), setting § = s oy and using Proposition 6.3 we see that

6, — 60) (X(en —60) T(6n — 60) )
So 33(071 — 00) ’ §2(0n — 90) )
Since 0, € A and p = ﬁg"s;ﬂcp is a phase in the sense of Definition 2.6, it follows
from Definition 2.4 that exp((6, — 6o)o Ha)(mo) = exp(0no Ha)(m) does not belong
to qscI/I/7f~"¢1(7.b(to, -)). Therefore, taking k small enough, the right hand side of (6.13)
is bounded by e~¢0/"* uniformly for t in ]t, — &, %o + 8[. Therefore the left hand side
has the same bound, which proves that 8y € A, so A is closed.

o ,
5 (00 5(6n — 60), T(8r — 00), 0,0) = %
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Let mo = (0,%0,0,(—1,0)) € N°¢. We take sp > 0 and we set ap =
(s0,y0, —1/s3,0). The scheme of the proof is the same as in Theorem 4.7. We
look for a phase ¢ and a symbol a such that (6.2) holds.

In this case we have to study in particular the flow starting from a real point
(3,9, ar, o) on the interval | — T*,0] where —T* looks like 1/2c,3%. The problem
then is that the solution s(@) blows up at § = —T*. This forces us to stay slightly
far from —T™* at a distance K H, see Theorem 7.1 below, where K is a large constant
and H = h + |ay|. Then we will have to control (with respect to K') precisely all the
quantities which may blow up at —T™*. This is a kind of renormalization. In the case
of the flat Laplacian it is easy to see that

S
1—2a,330°
For fixed (¥, o), the map (6,3) — (6, s(6;3, 7, a,,0)) is a diffecomorphism from O; to
O, (see fig. 1, 2).

8(0; s, 'yv ar, O) =

83 S3

0, S0 S0

|
l
1
1
|
|
'
|
'
|
|
|
!
1
I
|
1
1
|
|
|
1
1
!
1
1
1
1
|
"

6 1 1 [
20732 20,3%

Figure 1.
Figure 2.
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7.1. The phase equation
Let us set
I, ={a € R*" : |a — ag| < €4},
(7.1) In={heR:0< h<ep},
H=h+|ay|, if (a,h) € Io x Ij.

Theorem 7.1. — There exist positive constants €q, €h, €5, K, K' such that for (a, h)
in Iy X Iy, if we set

D, = {(01,’51) eR_ xR, : rgl —~50| <egs, 1 =1 -—2(17-3?91 > KH}
and

1 3

_ n—1 .19 _ il _ 1

E= U {(0,s,y)€CxCxC .16 01|<K,Q1,Is Ql‘
(61,51)€D,

1 1

KIQ Iy y]l K/}

(where y, € C™ is a certain point depending on (61,31, Y0, , h) defined in (7.16)),
one can find a function p = @(6;s,y, o, h) holomorphic in (0,s,y) in E depending
smoothly on (o, h) in Iy X I such that

2 Op Oy _
(7.2) { 50+ P(hsv. 5 5F ) 0
Plo=o = (s — as)ar + (y — oy) oy + ih[(s - a3)2 + (y — ay)z] .

Proof. — Let g = 6* +p(hs,y, 752, sn) and let us consider the bicharacteristic system
for q,

(6(t) =1 6(0) =0
5(t) = s° @(hs y, 752, 81) s(0)=75
Jym_sg‘;; ) y(0) =7
T3 =0 6*(0) = —p(h3, 7,75, 57
() = — [h?+2 g§+n§z]( D () =7
0 = -3 ¢-) n(0) =

Then obviously 6(t) = ¢, for all ¢t and 6*(¢) = 6*(0). Therefore we shall take 6 instead
of t as parameter on the bicharacteristic.
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Proposition 7.2. — There exist positive constants €, €s, €y, 00, K, M, such that for
all (a,h) in Iy X Ip, all (61,31) in Dy and all (3,y,7,7) such that

1
(7.3) |5—s0| <es, |5—31| <60Q1, |[T—vo| <&y, |T—a| < = Ql, ln|<;(-Q1,

the system (7.3) has an unique solution defined for Re6 € [91 - %£Q1,0], |Im0@| <
Tl{-Ql, which satisfies

280 ~ M
< _ae 2
2
(rs2)(0) =7 < =, O] < =@
Moreover 1 1 c
— = Z _ 9732 < —=Q;.
OB 275°0 + F where |F)| e Q1

On the other hand the solution (s(6;3,y, 7,7, h), y(6;---), 7(6;---), n(6;---)) is holo-
morphic with respect to (6;3,%,7,7) in the set,

~ ~ ~ 1 - 1
A= ~LJ {Is— s1] < 80Q1, [§ ~yol <&y, IT —ar| < Q1 [7] < 2 Q1,
(0,sl)eD1

Red € [01 - %Ql,o], |Imé| < %Ql}.

Proof. — We begin with the case where 0 is real. The existence of a small T' > 0
for which (7.3) has a solution on [T, 0] satisfying the estimates in the proposition
follows from the Cauchy-Lipschitz theorem. Let —T.(S,y,7,7) be the maximal time
for which this solution exists and satisfies the estimates.

Case 1. — For any data (3,7,7,7), we have —T,(---) < 6; — %Ql. Then the
proposition is proved.

Case 2. — Assume there is a data (3, y, 7, 7) for which one has 0, — % Q1 < —Tu(---)
and let T > 0 be such that —T4(---) < —T. Then on [—T,0] we have a solution of
(7.3) which satisfies the above estimates. It follows that |y(8)|, |7(8) s?(8)[, |n(6)| are
bounded by constants depending only on (so, Yo)-

For any integer p > 2 and any 6 in [—T, 0], we have

0
C(s0,Y0)
4 Pdo <
(7.4 [ tstorar < gl
Since 8 > 6; — 1 it follows that
20, 5% C 1
_ 3 _ 33 T°1 _ = > -
1-2a,870>1—2a;5701 + Ql/(l K)Q1,2Q1

if K is large. Therefore
(7.5) 15(0)] < / |s()I” dor < ,,_1 i p>
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On the other hand, since H = h + |ay| and Q1 > KH, we have

85
3

(7.6) PIs@)] < 22, 1s(6)] - In(@)] <

Now it follows from (7.3) that
0
op
< —\d
@)1 <+ [ |52]do

and it is easy to see that

17}

I-a—z < C(s?|nl® + s h?(7s%) + sh(rs?) s|n| + shs?|n|?),

where C depends only on a bound of the coefficients of p.
Using the fact that 7s? is bounded, the estimate |7(6)| < & Q1 and (7.6), we see
that

ap C'1 2 2 C2 2

=g = == .

|ay| S g is +  Qustnl
It follows from (7.5) that

MO < 1+ 5+ 2@ [ @) ) do.
We can use Gronwall’s inequality and (7.5) to get
1 C3 C4
Ol < Z(1+2) Qex» =

since |7] < %Ql. Taking K so large that (1 + %‘1) eC+/K < 3/2, we deduce that

31
. < 5 7@, =1, 0.
(7.7) @) < 3 %@Qu, 6e[-T.0
Let us now estimate 7s2. From (7.3), we get
d 2y _ 2.2 . 261’ 2 Op
dg(rs)—*rs + 2788 = —hs Bp ) —s“n _6;1,( ).

Since 7 s? is bounded, it follows from (3.5) that

op op
30 | * |50 C )| < Ot n@Ds0)
Using (7.7) and the fact that @, > KH > Kh we see that the right hand side is
bounded by % Q%s3. It follows that

[(7s%)(0) — 73%| < %Qf /90 s%(o)do

which implies, using (7.5), that
1

C/
. 2 _~""2 g__g___ — .
(7.8) (r82)(6) — 7| < 723 < 535 0 € [-T,0]
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Now gy = sgﬁ ; since |sgﬁ- )| < %Ql s2, where C depends only on the data (ag,
the coefficient of p ...), using (7.5) we get,

c 1
(7.9) WO -91< %<5
if M >2C".
Finally, we consider s(f). We have 3(6) = szgf(sh,y,fsz,sn) from which we
deduce that

M
K )

SO _ (2752 + a(sh, y) 12 s%(rs?) + hs?b(sh,y) - ) (6).

s2(6)
It follows that
1 L —2073% -2 /O /0 4 (18®)(z)dzdo +/ [a,h2 s%(1s%) + hs?b- n](a)da
@ @)
Using (7.5) we see that
c Q
12 < =%
We have seen in the proof of (7. 8) that
c Q
I 5(ms)| < 5
so using (7.5) twice, we see that
c Q1

(DI <

Therefore we can write

1 _
Lol om0+ Fe)
(7.10) s(0) 3
cQ
|F(0)] < K21 :
It follows that we can write
(7.10)’ s(0) = 5

1—27330+3F(0)°
Now we have
|1 — 2730 +3F| > 1 — 20,530 — c( + 60)62

1 - 20,330 > (1 - ——) Q.
So we can write ( o
s](1 - %) 1
Is(0)] < T g
1-C(# +d%) 1-—2a,570
Since |s] < so + €5, taking €5, do, small and K large so that
(s0+es)(1— %)
5 < 590
1—-C(% + o) 2
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we get

__3%0 __

1-2a,330°
Now the estimates (7.7) to (7.11) are true for any T < T, so letting T go to T,
we conclude that they are true up to @ = —7,. Then we consider the system (7.3)
with data s(—T%), y(—T%), 7(=T%), n(—T\) and we solve it on [Ty — 4, —T%] by the
Cauchy-Lipschitz theorem. Matching this solution with the previous one, we obtain
a solution of (7.3) on [—T. — 4,0] which satisfies the estimates in Proposition 7.2,
getting a contradiction. This proves the Proposition 7.2 in the case where 8 is real.

Let us consider the case of complex 8. We recall the following well known result.
Let (6o, X0) € R x CV and

Q={(6,X)eCxC":|0—0<a,|X —Xo| <b}.

Let F : Q@ — C¥ be a holomorphic function such that supg [|F(X)|| = M < +oo.
Then the Cauchy problem

(7.11) 1s(8)] < e [-T,0].

{X(é’) = F(0,X(0))

X (6o) = Xo
has a unique holomorphic solution defined in {6 € C : |0 — 6| < p} where
—b
(7.12) p < a(l — exXp (m)) .

Let us fix (61,31) in D; and let us take 6y € [6; — % Q1,0]. We introduce
s(0
1(6) = S5+ 016) = y(6), (6) = T(6)5(60)*, mi(6) = n(6)s(60),
and we consider the system satisfied by
X(8) = (51(6), %1(6), 71.(6), m(9))
which is derived from (7.3). It can be written as X () = F(X(6)). Let us introduce

Q= {(s1,y1,71,m) € C* : |s1 — 1| + |y — y(6o)| + |71 — T(60) 5(60)?|
+|m — s(6o)m (6o)| < 6},
where § depends on the domain on which the coefficients of p extend holomorphically ;
then, using the estimates (7.5) to (7.11) for real 6y, we see that supg ||F(X)| <
Co(1 + s(6p)) < Co(L+4s0) 1Q+143° = M, by (7.5) since @1 < 1. We take a = —I%Ql where K
. s _ s
is so large that GniDall = 2(2n+1)(§§(1+430) > Log 2.

It follows that exp ( — m) < 1 ; so our system has a holomorphic solution
in the set {|6 — 60| < 2} = {|60 — 60| < %£Q1}. Matching these solution for 6y €
[61 — $+,0], we obtain a solution of (7.3) for Ref € [61 — £ Q1,0], |Im8| < L Q; as
claimed. The proof of Proposition 4.2 is complete. ]
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Corollary 7.3. — There exist constants C;, j = 1,...,8, depending only on the data,
such that

as(e) 33(0) as(o) 33(0) Cs
l Q2’ | K2Q1 | Q?’ I KQ2
a%;—‘:"—w(K) 1""“” <o %< |—LQ—

Proof. — For the estimates on s(8) use (7.10), (7.10)’. We obtain
8s()  1+473%0 —322E0)
05  (1-273360+35F ()2

From (7.10) and the Cauchy formula we have 9F(8)/85 = O(1/K?). From the lines
after (7.10)" we get

_ _ c 1
11— 27320 +5F(6) > (1- = —C)Qn > 5 @1,

if 1/K and ¢ are small enough.

Moreover, since 732 = —1 + O(Q1/K), Ref < 0, |Im 8| < Q1/K, we get,
~ F (6
1+473%6 — “’Zaai ) _1 +4|Ref| + O(1/K).
Then the estimates on 9s(6)/93 follow. For the estimates on y(6), we use the equality
y(0) =7+ g(8), g = O(1/K) and the Cauchy formula. O

Let us remark that, in Proposition 7.2, we can take
T=ar+2th(5—as), 7=oay+2ih(y—ay).
Indeed this follows from the estimate

T — ar| =2h|5— as] < 2H(|S— s0| + |80 —as|) <4eH < H< —=Q1,

1
K
if £ < 1/4 and from the analogue for | — ay|.

So we introduce the following notation

(7.13) f(0;58,y,a,h) = F(6;3,7, ar + 2ih(53 — as), o + 2ih(7 — ay), h)
which will be used for f = s,y,7,n. The function f is then defined in the set

A= |J {650 eCxCxC M F-5]<50Qu, [Tl <ey,
(61,51)€D,

Red € [01 - %‘{-Ql,o], |Im ] < %Ql}.

We introduce now, for fixed a, h, the set
(7.15)

A= {(6,5(6;5,5, 0, h), y(65- ), 67(0), £(6: 5, §, @, h), m(; ), (6,5,7) € A}
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Let us consider the set

(116)E= | } {(G,S,y)erCxC"_l:|0—01|<—I$,Q1,
(61,31)€D1
~ 1 s1 1 1
— y(6+: —_ P . — _ . — .
|y ?i( 1»31,?;0,04,’1)! < K’ S 1-2&1—3'?01 < K’ Ql}

Then we have

Proposition 7.4. — Let A be defined by (7.15) and ® be the projection on the basis.
Then if K’ is large enough, we have E C w(A) and, if we set Ay = n~1(E) then the
map 7 : Ay — E is bijective.

Proof

Claim. — For any (0,s,y) in E one can find (0,5,9) in A such that
0 =6
(7.17) s(8;8,y,a,h) = s
y(0;5,7,a,h) = y.
Here a and h are fized in I, Ip,.

We set 5=3; +t and s = ITQ;EL@E +t= % + t. Let us recall that, according to
T 21
(7.10), we have

s
1—-27530 +5F(6)
where 7 = a, + ih(5 — a;) and |F| < % Qs.

Now, if |0 — 61| < 2 Q1, |t] < 6o@1 and |3 — | < £, we have

1—273%0 4+ 35F(0) = Q1 — 6a,52t0, + G(6;t,7, o, h)

where |G| < C(# + 68 + 7z + =E5=) Q.

It follows that the equation s(6;---) = s is equivalent to

51Q1+tQ1 = Q131 — 60,353t01 +tQ1(Q1 — 60, 55861) + (51 + Q1) G.

Now, since Q1 + 60,336, =1+ 4a,3360; = ¢, > 1, this equation is equivalent to

s5(6;5,9,a,h) =

~ 1 ~ 1 ~ ~
(7.18) t= c—th(Q1 —6a,5°t6,) + C—(sl +tQ1)G(6;t,7,a,h) = H(t,7).
1 1
On the other hand, forgetting a and h which are fixed, we can write
~ ~ - Oy . ~
¥(0;3,9) = y(6;5,90) + (¥ — yo) 5y (655, 90) + O(I7 — %ol?)-

Since 0y/9y(6;5,y0) = 1 + O(1/K), we see that the equation y(6;5,7y) = y is equiv-
alent to

(7.19) 7—yo =a(0;3)(y — y(6;3,%0)) + O([7 — vol?).

ASTERISQUE 283



7.1. THE PHASE EQUATION 59

Now
y(6;5,90) = y(61;31,90) + (6 — 91) (‘9* ,y0)+t ( “)s

and we have

S| <o Z-o(k). b-ai<

It follows that (7.19) is equivalent to

(7.20) ¥ —yo =a(8;3)(v — y(01;51,%)) + (9(%) +?O(—I}{-) + O(7 — vol?).

Setting Y = (£/(J — yo)), we see, according to (7.18) and (7.20), that (7.17) can be
written as Y = ®(Y).
Taking |t] < Rl—,Ql, ly — y(61;51,90)| < 1/K' and setting

B={(t7):[t| <60Q1, |7 —yol| <&y}

we see that, if dg is small enough and K’ > K, then ® maps B into itself and satisfies
|®(Y) —@(Y’)| < 6]Y —Y’| with § < 1. Thus the first part of Proposition 7.4 follows
from the fixed point theorem.

Let A; = 7~ !(E) ; we must show that 7w : Ay — FE is injective. We recall that

1 1
50) 7

where | | + | | + | | + | | = (-}{-), and T = a, + 2th(s — a;). Forgetting o, b,
which are fixed, assume that

§(07 s, 17) = §(0! gla ':‘7) ) g(ea s, :U) = 3_/_(0, g,a '!7,) .
It follows, from the above formulas that
(7 -3)(1+20,055(5+7)) +4ih0(5 —3) f(3,5,a) =55 [5F(6;5,9) — 5 F(6;5,7")]

¥-9 =G(6;5,¥) - G6:5,9)
where f(5,5",a) = O(1). Since |1 + 2,635 (5 + §")| is bounded below the above
equations lead to the estimates

F-%<C (h+ =) (F=F1+F-7),

27520+ F(0), y(6) =7+ G(6)

v -7l < —(|8—8|+I.1,7—17|)-
Taking h and 1/K small enough we see that this implies s =3 and y =¥'. O
Proposition 7.5. — For all X in Ay, the map dn : Tax Ay — T\ E is surjective.
Proof. — Let G be the map
(6,3,9) — (0,5(6;5,7,0,h),y(8;---),0%(0),7(6; 5,7, o, ), n(6; - - -))

SOCIETE MATHEMATIQUE DE FRANCE 2002



60 CHAPTER 7. PROOF OF THEOREM 4.8

from the set
A= U {(o,g,g) 5= 511 < 8Q1, ¥ — wol <4,
(01,31)€D1

Red € [, — 6Q1,0], | Im 8| < 6Q1}

to A;. If we show that d(woG) is surjective, then we are done. Now it is easy to see that
s(0) 9s(6)
d(m o G) is surjective if and only if the determinant of the matrix A = (ay(g) ayf”g))

s oy
is different from zero. This will follow from Corollary 7.3. Indeed we have !

o o
5> n-(Gea) #-°0) &=-1+(x)
This implies that

C
QY
Proof of Theorem 7.1. — It follows from Propositions 7.4 and 7.5 that one can find a

smooth function ¢ = ¢(6; s, y, a, k) which, for fixed a, h, is defined on the set E (see
(7.16)) such that

o o0 0
A= {(0,3,’!], 6_5(9;3,3/,&,}&), a_f(ev)’ 8_(,;(0;“.)),(9,8’?/) EE}'

Since A; C A and the symbol ¢* = 6* +p(hs, y, 752, sn) vanishes on A, we have solved
the first equation in (7.2). Obviously ¢ is defined up to a constant and we can choose
it such that ¢(0; so, Yo, @, h) = (so — as) @7 + (Yo — ) @y +h[(so — as)? + (yo — ay)?)-
Then we write

| det A| > O

(P(O $,Y,C, h) <P(0 S0, Yo, &, h)+/ O t8+(1——t)30, ty+(1——t)y0aa h')

Op
'(S - 50) + a_y (0;t3+ (1 - t)SOaty+ (1 _t)yO)aah) : (y _yO)] dt.

Now
Oy -~ .
g(O;W) =71(0;5,9, a, h) = ar + 2th(5 — as)

where s(0; 3,7, a,h) = ts+ (1 —t)so = 5. Using these relations and the same one for
Oy /0y, we find that ¢ satisfies also the initial condition in (7.2). O

Proposition 7.6. — Let (a, h) be fixed in I, x I,. Then the phase given in Theorem 7.1
satisfies, for (0,5,y) in A

90(9; §(9, 5,9, h)v Q(ea T )v «, h') = ('é'— as)a‘r + (g_ ay) T Qq
+ih[(5 — as)® + (§ — ay)?] + 0p(h3, 7, 75°,57)
where T = a, +1h(5 — a;) and N = oy + th(y — ay).
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Proof. — Let us write f(6) instead of f(6;3,¥,a, h). Then
_ 9 0 _ (% 9¢ . .9¢\ .
(1) = 2 1(0:5(0),u(0), s ] = (55 + 552 + 555 (6:5(6),w(6). . ).
Using (7.3) and the definition of ¢, we get

. Op op 2 Op Op 9
— . — = 29(h T .
$ 5 y—TS E)\+sn ] p(hs,y, T8, sn)

Since p is constant on the bicharacteristics and

+9

%9 - 0(0) = ~p(h5, 5,75, 7),
where T = o, +ih(5—a,), 7= - - -, we get (1) = p(h3,y,732%,57). On the other hand

we have
©(0;5,7,0,h) = (5 — as)or + (T — ay) - an + ih[(5 — as)® + (T — ay)?],

which proves our claim. O

7.2. Link between the flow of 0 Hpn and the bicharacteristics

Proposition 7.7. — Let (0,5,7), 8 <0, and (o, h) be fized real points in A and I, X Ip.
(i) We set R? = p(h3,y,a,3%,5ay) > 0. Then the problem
1
x(t) = ==
(7.21) ® Rs(x(t); 3,9, ar,an, h)
x(0) =0

has a unique solution defined on [0, T*] with x(T*) = 0.
(ii) If we set, fort € [0,T™],

p(t) = hs(x(t); 3, ¥, ar, an, h), y(t) = y(x(t); 3, ¥, ar, an, h)
X(0) = & (rH) (X8 5,5, @ g, b, () = 5 (5m)O(2); 53 v, . )
then (p(t),y(t),0, (X(t), 75(t))) = expto Ha (p(0),(0),0, (A(0),7(0)))-
Proof
(i) Let us introduce the following set
A= {T > 0:(7.21) has a solution on [0,T] with (x(£),5,9) € A}.

Then A is an interval which is non empty, by the Cauchy-Lipschitz theorem. Let
T* = supA. Then, on [0,7*[ one has x(t) < 0 (by the definition of A). Since
s(6;8,9,---) > 0 and R > 0 we have x > 0 so lim;_,p+ x(t) = £ < 0 exists. By (7.21)
we have then

1
li () = — 0.
e x(®) Rs(4;5,9, oy, B) >
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Therefore T* < +o0o. We can extend x to [0,7*] by setting x(7T*) = £. If £ < 0,
the equation in (7.21) with x(7™) = ¢ would have a solution on [T*,T* + €| with
(x(t),s,¥) € A with contradicts the maximality of T* ; so x(T™) = 0.

(ii) This claim follows from (7.3) and (3.17) by a simple computation. O

7.3. The transport equation
As before we look for an analytic symbol a such that
1 g,
(7.22) (an +iA} ) (ae™KTIe) = O(e=M), 5> 0.

Working in the (6, 5, y) coordinates instead of (8, s, y) we are lead to solve the transport
equation

(7.23) { (% +c(6;35,y,a) + hsz) a=

a|0=0 =0

where @ is of second order and is a linear combination with bounded coefficients of
92, s%(0) 92, 5(0) 950y, s(0) 35, s(0) dy. To see this, we first note that

9s(0) 5. . 9v(6)

0’5 - 835 s 85 ) ay
9s(0) oy(9)
Oy, = —=0s + -0y .
Y; 3yj 8yj

Now, it follows from (7.10)" that
20) — a(o:5,)52(0)
where a(8) # 0,
0s(0)
0y
where b;(0) = O(Q1/K) (because 8F/8y = O(Q.1/K) by (7.10) and the Cauchy

formula),
Oyx(0) 1 Oyk(6) _
== 0= = = o
95 (K) oY; ik + (K)
Moreover, from the line after (7.10)’, we have |s(8)] < C/Q;. Inverting the system
above and using these informations, we see that

§%0s = a(6;3,9) 95 + B(6;3,7) - Oy

ay = ’)’(0,:;,?7)654— 5(0$ ga/?j) : 8@'
where a, 3, 6 are bounded and v(8) = O(Q1/K). Since |s(8)| < C/Q1, it follows that
the coefficient of 05 coming from s38, is bounded. Then our claim follows from the

fact that, in the coordinates (s,y) the operator Q is given by A} which is described
in (5.1). We shall set A" = h?k and take a = 35,5, A7 a;.

= b;(8) s*(9)
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We shall define our symbol in a subset of A introduced in (7.14). First of all by
the usual trick we can assume that ¢ = 0 in (7.23). Formally, the system (7.23) can
be solved in A since it is a linear problem ; our goal will be, therefore, to show that
this formal resolution leads to an analytic symbol. The equation (7.23) is equivalent
to

(I +B)a=»5b, where
1
B = 69_1)\_162 and agla(o;’g,m = 0/ a(ub;s,y)dy.
0

According to (7.14) let (61,31) € D;. We introduce for t > 0, 0 < t’' < g,

(7.24)

Qe ={(6,’§,§):0>9>01—%+t,l'§—§1| < bot, |y — yol <€y—t’}

where @, =1 — 2a7§?01 and Jg is small enough.
Claim1. — Qu C A (see (7.14)).
Let (6,5,7) € Qv ; let us take ) = 61 + ¢, 51 = s and let us show that (6,51) €
D,. To see this, we write
Q1 =1-20,33(01 +t) = Q1 +2|a |55t > KH.
This shows that Q] > Q1, Q) > KH, Q) > 2|a,|33t. Thus (6,31) € D;. Now

Ql / Qll ~ o~ 60 / ~
0>0>60,——=+t=>06] ——=—, — L —= — .
> 6, i7e + 1T |s — 81| < dot THES Q7 and |y —yo| <e&y

It follows that (60,5,7) € A.
Claim 2. — If (0,3,y) € Quu then, for p € (0,1), (10,3,y) € Q4+ wheret, =1—Ju,

I = |01 — QK%|, J = |01 — %.l] —t. The expresston of t,, follows easily from the definition
of Qe and t, > t, sincet < |91 — QK—ll

Let us remark that J =71 —tand 0>6 > —J.
Now, given p > 0, we shall say that a € A, ifa =35, A77 a; with

(7.25) sup |a;| < fi(a)j ™It~

tt/

where f;(a) is the best constant for which such an estimate holds and

+o00
(7.26) D fi@)p’ = llall, < +o0.
=0

Claim 3. — One can find a positive constant C' such that for all p >0 and a € A,
(7.27) |Ball, < Collall,.
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Proof. — We shall prove (7.27) when B = 8; ' A71s%(9) Ay and B = 9, A\~ 82, the
other terms are easier to handle. In the first case we have

Ba = Z,\—J’-lagl s2(8) Agya;

=20
=0 [0, ) gy (b, = by
i>1 =1

Then
sup|b| |0|/ sup |s®Agaj_1|du, j=1.

Qe t t/
Now, in €,¢, we have 1 — 2a,0(Re3)® > 2|a.|(Re3)3t, > Cot,. It follows from
(7.10) that supg, ,, |s?] < Cit,2.

Let ty < t’ ; then by the Cauchy formula we have
sup |Agaj_1] < C2(t' —to) ™2 sup |aj—1].
tut! tuth

Using (7.25) we get

1
sup [b;] < Cslf| fi—1(a)(G — 1)7~1 (¢ — th)~2 ¢+ / £ .

Since t, = I — Ju, we have
/tﬂld M I;J<E
0

~=

JJ Jg JJ

-

since I —J=tand I > 0.
Let us take ty = /j/(j + 1) t/, for 5 > 0. Then, t' — ¢ >t’/2(j+1),so we get

sup |b;] < Cal| fi—1(a)(G — 1)7~ 14(]+1)2(‘7+ ) Y-z Ly
eer JjJ
Since 9 ) 11
Jj—
V<1 and -1y~ 1(J+1)2(]J; ) 5 <Cof?,

where Cj is an absolute constant we obtain

sup b;| < Ca fj—1(a) 7t ¢77.
It follows that f;(Ba) < C4 fj—1(a), for j > 1, which implies (7.27). In the case where
B =9, \7182, we take tg < t,. Then

sup |02a;_1]| < Cs(t, — to) ™2 sup |aj_1].
Qtut’ Qtot’
¢

If we take tgp = )—._-{_th” then ¢, — to = 77. It follows that

1
suplby| < Colfl fy-1(a)(G = 1Y/ G + 1272 [ 2eotia,

tt/
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We obtain the same estimate as before (since t/~27%2  £2¢~27) and we conclude in
the same way. O

It follows from (7.27) that (I + B) is invertible in A,, if p is small enough. Now
we can take t' = 1¢, and t = Q,/K in the definition of ;. Moreover we take
A~! = h2%k. Since Q1 > KH we have t—! < H~! ; therefore the a;’s satisfy the
estimates |aj| < M7 j9 H=7 on Q4 . The analytic symbols that we shall handle will
be on the form

a= Z (h%k)? a;
Jj<6H/h2k
where ¢ is a small positive constant. Then the size of the first term which has been
neglected is as follows : if jo ~ 6 H/h?k then,

; 1\J .
|(R2k)7° ajy| < (h2ij0ﬁ) PS (M) < e—VH/Bk o o—v/hk

since H > h, where v > 0 if M < 1.

Summing up we have obtained an analytic symbol in a set which is slightly smaller
than A but has the same form. For convenience we shall still call it A. Then, if we
denote by ® the map

(6,5,9) — (6;5(6;3,9, , h), ¥(6; 5,7, a, b))
then the symbol a(8; s,y, a, h) is well defined in E; = ®(A) C E.

7.4. End of the proof of Theorem 4.8

We introduce a cut-off function x = x(h, s, y) supported in E; = ®(A) such that,
with Q = 1 — 2a., (Re3)30,

. ~ ~ €0

=1 if > oKH d|5—a, —ay| < =%

X o i Q and |3 — as| + |¥ — ay] C.K
0oB=0 if Q<iKH  or [§—a+f—ay> =2
XeT= S 3 siTl¥ =%l =2 5K

where € is the constant appearing in the Definition B in the Appendix and Cy < C
are constants (independent of K) which depend only on the data. Then the support
of a derivative of x is contained in the image by ® of the set W; U W5, where

o

_ _ _ €0 1
Wy = fe < [F - —ay| < ==,Q > = :
1 {(97 872’7) CIK |S asl + Iy ayl CZK Q 2KH}

(7.28) 1
w2 ={(60,5,9) : 5 KH < Q <2KH, |5 — a| + 7 — o | <

_fo_
CoKJ'
Let ¢, a be the phase and the amplitude which satisfy (7.22) and u be a solution of

our Schrodinger equation. We set
(7.29)

Tu(8;t,, h, k) = /e"”_z’“_l“"“;”/”’y”"a(é’; %,y,a,h)x(ﬁ; %y) u(t, p,y)dpdy.
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Using (7.22) and the equation satisfied by u, we see easily that

(0o — kO:)Tu(b;t,a,h, k) = F(0;t,a, h, k) + G(0;t,a, h, k)
where
(7.30) |G(6;t,a, h, k)| < Ce ¥/ §>0

for @ in suppx, |t —to| < e, a € I, h € I}, kK > 0 small and F is a finite sum of terms
of the form

(7.31) /eih_2k_1“"(e;"/h’y""’h) a(B; B, y,a, h, k) 52(0; %, y) o(t, p,y)dpdy
where X is a derivative of x of order > 1 and v is a derivative of u of order < 1. Then,
(7.32) suppXx C suppx’ C W1 U W,.
It follows that

% (Tu(6;t — kO, a, h, k)) = F(0;t — k6, , h, k) + O(e%/7F).
We take 6p < O such that x(6o; p/h,y) = 0 and we integrate both sides of the

above equahty from 6 = 6y to & = 0. Since ¢(0; p/h,y,a, h) is a FBI phase at
(s0, o0, (— 1/53,0),0,0), Theorem 4.8 will be proved if we can show that

0
— ik 2k 000/ hy,o0h) o (0- P o N0 P o) w(t — KO-
(7.33)1 /0 [ a(6: 2, ) %(8; 2,y) 0t — k6 p,) dpdydo

=0(e™"*), §>0,

uniformly in ¢ when |t — t9] < € and for @ € I,, h € I, kK > 0 small. Since
supp X C W7 U W> we divide the proof of (7.33) into two cases.

Case 1. — We consider the part of the integral where (0, p/h,y) € W, (this is the
hard case). We set

h= I—}; k=Hk, s=2
(7.34) . h
s
"l)(e’ Svyaa’h) - ﬁw(ea E’y’ay h) .
We obtain

— T iz_zz_ldl(g;sfy’a:h) . S -y . S 1 _ .~
I = h// e a(a, v ah, k)x(e, —H,y) 5(t — k0; hs,y)dsdyd.
If (6,s/H,y) € Wy then one can find (61,31) € D; (see Theorem 7.1) such that
1 s 51 1 1
—_ < — —_—— g _— —
0-0l< 7@ |7 Q1| K Qi

where Q1 = 1 — 2,336, (see (7.14)). Let (0,3,7) € A satisfying ®(0,5,9) =
(6,s/H,y). Then Q1 =1 — 2. (Re3)® Red + O(% + o) Q1. Therefore

_KH+(9( +60)Q1 Q1\2KH+O( +60)Q1
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so, if % + dp is small enough,

1

(7.35) KH<Qi<3KH.
It follows that
s1 - 3
sl |3_EH|+‘ Q|\K’Q +'1| (K’+|sl|)K'

This shows that |s| is small if K is large enough. Our goal is to apply Theorem A.14 in
the Appendix. Therefore we have to show that 1 is a phase satisfying the conditions
of Definition A.4 in the Appendix.

Let us check that Im 1 > 0, when the variables are real. Since ¢ satisfies (7.2) and
p is a real quadratic form in (A, ), we see easily that Im ¢ is the solution of a linear
vector field which is transverse to the hypersurface # = 0. Since Im ¢|g—¢ = 0, the
positivity propagates as long as ¢ exists.

The second point is to check condition 3) and, first of all to find the point &.

Let us recall that, according to Lemma 3.4 and Corollary 3.6, if (p,y,0, (A, u))
is a point such that p + |u| < €0, (p,y) # (0,y0) which satisfies yo = y +
pFi(p,y, 1) + L F2(p,y, 1) and A is the unique negative solution of p(p,y, \, 1) =1,
then (p,y,0, (A, 1)) belongs to +oo('rn0) Moreover p = u(p,y), A = A(p, y).-

We fix (hl, s1,91) in [0, 1[x R4y x R®~! and we consider the following neighborhood
of this point

~ ~ o~ 1 1
(7.36) Vo ={(h5,9) €0, xCxC" i =Tl +|5 - Z|+lw—wml<r}
1
where 7. is to be chosen. We also assume that H= h + |a,| < r. Then we set

AL = /\(51 51,Y1), M1 = /1‘(77'131,3/1) and
(7.37) A
50 = (_1) :U‘l) .

st

Proposition 7.8. — If r is small enough, we have for all (TL, s,y) in 'V,

o
(7.38) Ia—f 658,y

/\1 (9’1//' . M1
) - g’ + ’a_y(e,syy) - g < €o
where ¢ 1is the constant appearing in Definition A.4 in the Appendiz.
Proof. — From the definition of ¢ we have, (see (7.13) and (7.15)),
oY 1 s o 1 o~
'5; (0’ S, y) - —Iﬁz(& S, Y, , h’) ) a_y (Ga S, y) - Eﬂ(aa S, Y, Oy h)

where ®(0;3,y) = (0, s/H,y) that is s(6;3,%,a,h) = s/H and y(0;5,9,0,h) =y
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Lemma 7.9. — Let (3',y') be the solution, which is real, of

R~ — i — 5. U ~ —E:—
(6,8, 7, ar,an, h) = 7 (= 5(6;3,5,, b)), sl ~ =,
y(a;g"y 7a‘r1a171h) '_y(= y( ))

Then
|5 -5 < Ch(I5 — as| + |7 — ayl)
(2) I3
771 < Cqe (15— sl + 17— ay )
(7'7') |g(0; ga :’lja «, h’) - 9(0,51, g,, a‘l’va‘r],h)l g C’E(lg_ aSl + |:’7— ay'),
where g = gz T or +n, g= }%71 or %ﬂ.

Proof. — By the proof of Proposition 7.4 (see (7.17)) for fixed @ the solution (5',%’)
(resp. (3,7)) exists and (6,5",%y’) (resp. (6,5,y)) belongs to A (see (7.14)). This
means that [ — 51| < o Q1, |¥ — yol| < €y, | — 31| < d0Q1, |¥ — yo| < 4. It follows
that |5 — 5| < 200 Q1 and |y — ¥'| < 2¢,.

Now for ¢ in [0, 1] let us set

Mt = t(§7m + (1 - t)(§47 Zi,) = (gta gt)
With the notations of Proposition 7.2 we have

120,330 + 5, F(0; My, a,h) = 1 — 2a,§?0+0(|§—§1| + 5 -]+ %)

It follows then that we have
|1 — 20,330 + 3, F(; My, o, h)| > C1Q1.

Let us set

08 ,, o w ~ 0s(6) Oy;(0) .
= 5= (6; = = 1<j<n,
a a’g (07 37 y) T') 777 h) ) u’] agj y v] 6:5 ) _7 n

D= (29 L U= (), V=)

Yk )1<j,k<n—1
Then Corollary 7.3 shows that,

i G C € psoll
g <l <G tul < gmgrs Il < g D=1+0(5).
Moreover
0s(0) 1 0s(0) 1 oy(0) _ (1 oy®) _ (1
7 _O(_%)’ a7 "O(KQ';’)’ 7 _O(Ql) and = —O(Ql)'
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Using the formula (7.10)" we obtain

9?%s C 8%s C
—_— < — —_— <
8@‘2 (eaMt,a>h) < Q:{, agag(eyMt,a'; h) S KQ%
9%s C 8%y C
- - < — — | <
oz OMuah)| < ga0 |am| S ke
C 8%y C
M < — Y <=,
|a~a~(‘" vl Sgg la@l S K

By the Taylor formula with integral remainder we get

(f/) (6,3,7, 0, h) = (;) (6,3, 7, ctr + 2ih(3 — @), an + 2iR(F — ay), @, h)
E; _— Y;
= (y) (6,5, ar, g, h) + (Y‘,)

Ch, . ~ Ch, ~
|Y11<Q—%(|8—asl+ly—ayl), !Y'léa(ls—aslﬂy—%l)-

where

Let us set B = |5 — 35|+ Q1|9 — ¥’|- Then we have B < C(do + &4) Q1.
Now, using the Taylor formula up to the second order and the above estimates on
the second derivatives of s,y, we get

() wzsan-Qonzan-(:5) G-+ (30)

We deduce from the above computations and the hypotheses in the Lemma 7.9 that,

(g) = (i) (6,5,9,a,h) — ( )(9 7,0, h)
-(35) G75)+ (e * 69

Let us set M = (mjx) = (%vj uk) ; then |mjx| < C/K?2. 1t follows that D — M is
invertible and (D — M)~! = I + O(1/K). Then we have

G—7 =(D— M)~ 1(——Y1V+Y')+O(ZZ)
§—?=EK—EU'(§—§’)+O(Q—j>.

This implies that
B2
Ch(|s—a3|+|y CMyI)'f‘CE

Now B/Q1 < C(do +€y) ; it follows that B < C'h(|5 — as| + |y — ay|) since oo + €y is
small enough, which proves the first part of the lemma, since Q1 > K H and h = h/H.
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Since s(0) = s/H = s(0), with |s| ~ C/K, we have

727(0) = 770)] = S l25(0) ~ 75 (0)] = (1).

Now, by (7.8), (z5?)(0) = 735% + f and (73%)(0) = o, 5" + f where |f|+|f| < C/K2.
It follows that

~ ~ 1
(1) < CKZA(5 — oy + 1§ — ayl) + 51£(6) = £(O)1.
On the other hand,
of 1 of _ 1 of 1 of 1
05 0(K2Q1)’ 8y 0(1{2)’ o O(KQl) and on O(KQI)'
Then using Taylor’s formula and the part (i) of the lemma we obtain

(1) < Ch{|5 — as| + 17 — oy ),

if K2H is bounded, and (ii) follows. The same argument applies to —117 7. O

Let us now prove (7.38). Using the notations of Lemma 7.9, we write

6¢ )\1 1 1 1 1 2 1 2 )\1

—_— i — T —— 0 — ——— 0 —_ e — J— —_— .

9s 58 -z IO~ g )+(32 sg)” t3 (v 31)
N e N

vl s

@ @) 3)
The term (1) is bounded by Chéyeo < %eo, by Lemma, 7.9. Since 752 is bounded, we
have |(2)| < Cr < 3¢&o. Let us look to (3).
In that follows we shall write (5, ) instead of (§',%"). Let us set
( p* = hs(6;5,, ar, ain, )
y =y(b;--)

(7.39) \ 2 = %(732)(9; o)

=5 )0 )

where R = p(h3,7,a, 3%, a,3) # 0.
Let us set m* = (p*,y*,0,(A\*, u*)). It follows from Proposition 7.7 that one can
find T* > 0 such that

expT* o Ha(m™*) = (h's“, 7,0, (%a,’s’Q, %E'a,,)) .
Therefore, if h + |ay| is small enough, Lemma 3.4 shows that
lim expto Ha(m*) = lim exptoHa(hS,y,---)=(0,y,0,(—1,0))
t—+o0 t—+o00 =
where |y —y| < C1 H.
Then Corollary 3.5 shows that d(m*, N7 % (mo)) < C2H. This means that one can
find (pz,yz,O, ()\2,#2)) € N_:;o(mo) such that

lp* = pa| + [y* — ya| + [A" = Ag| + [u* — p2| < C2H.
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It follows that

IX* = A",y + | — plp™, y7)I
A = Ao+ A2 = A", )| + |u* — p2| + |2 — plo*, y")
< 2C2H + Cs(lp2 — p*| + |y2 — y3]) < CuH
because A2 = A(p2, Y2), 2 = u(p2,y2) where A and p are holomorphic functions.
Therefore we have
|A* — A1) + |p* = pa] <A = A(p*, y)|
+ " = p(e™ ¥ + A", ¥*) — A, y1)| + [w(p™, ¥") — (o1, 31)l
S CH+C(lp* —p1] + lv* —w|) <CH.
Now R? =5*aZ +5%a2 + O(h) = 1/s + O(H). Then

|RA* - ﬂ’ + )Ru* - ’-‘l| <CH
S1 S1

which, according to (7.39) proves (7.38) and completes the proof of Proposition 7.8.
O

Let us now check condition 4 in the Definition A.4 in the Appendix.

Lemma 7.10. — One can find a positive constant C' such that for real (6, s,y),
Im g—:(@,s,y,a,h) <éeoh, T=3s or y.

Proof. — We use Lemma 7.9. The observation is that, if s/H and y are real, then
(6,3",y") is real ; this implies that 7(6;5,y’, ar, ay, h) is real. Now

oY 1 1 1
s sy h) = 557(0) = 55 7(0) + 5z (2(6) — 7(9)).
So |Im 0y/8s| < 7= |7(0) — ()| < Chézeo < €0, by Lemma 7.9, since h < 1, taking
Cé2 < 1. The same argument works for Im 8¢ /0y. O

The condition 5) in Definition A.4 follows from the holomorphy of 1, so we are left
with condition 6) which is

(7.40) (Im+")(0,s,y) = —eoh, for real (6,s,y).
Let us recall that we have set
-~ s

.'2(0’ ay’aa h’) - —H_

y(e‘) :gv’ g’ a, h) =
Then, if we set

s (] ds Oy,
=H_~, bj=—2, wn=H =, D=(:=),
e=Hge bi=%g w=Hg D (ayk)
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we have
c’ C C C 1
°H < lal < R 1651 < K2H Il < %3 D=I+O(E)'

Let us recall (see (7.10)) that 1/s(0) = 1/5—27326+ F, where T = o, +2ih(5—a)
and F = O(Q1/K?2). It follows that

9s(0) 144730 +4ihs*0-32% U
05 (1-27336+35F)2 v
From the Cauchy formula, integrating on a ball [§— ¢| = §Q;, we see that
AF(6) Q 1 1,2
=% #5a - Oz)

Now, since 47336 is close to 4., s3 Ref which is non negative, we deduce that
|U| is bounded above and below by strictly positive constants. On the other hand
we can write 275°0 + 5F = Q1 + 0(% + 60) Q1+ O(h). Since h < H < Q1/K
(see (7.1)) we deduce that |V| is bounded above and below by C Q2. Since, by
(7.35), Q1 is equivalent to K H we deduce that H 9s(6)/95 is uniformly equivalent to
H/K?H? = 1/K?H, which is our first claim. For the estimate on b;, we use the fact
that y.(6) = ¥; + G;(6), where G; = O(1/K). By the argument used above we get,

anI<c 1 C 1

95 5

<c

SK ' 5Q, 6 K2H
The other estimates follow also from the expressions of s(6), y(6) and the Cauchy
formula on a ball |y; — ¢| = €. It follows that

% 00, 2%~ 0(), mu =22~ o( k).

We set M = (mji), then (D — M)~! =1d+0O(1/K) and

O _ 10,20 1) _bp a1l
55 =3 (Lt o (D= M)7y) o — (D~ M) o5
(7.41)
9 =(D—M)‘1[—Q— _ 1’2]
Oy 0y a 85l
Let us recall that we have 5
v 1 -
-7 - — . h
8y Hﬂ(e, 8, y7 a? )
and, by (7.3),
, B
() = ~ 5, (hs(®),(2), 75 (1), sn(®)
with 7(0) = 7 = o, + 2ih(§ — ). It follows that, with kh = h/H,
0%y 1 0 Y o\ [0p

a—y2=(D—M)-1(2i'ﬁld+E/60(6—g 55?) a—y(---)]do).
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We claim that, with A = |Res — as| + | Rey — ay|, we have

621/)
(7.42) Im 5 = 2h1d+ 5 O(K+A)
This will be achieved if we prove that
Op h hA
(7.43) Im/ 8 a 83) [By )]do O(K2 )

since (D — M)~! =1d+0O(1/K).

Now p = A% + 3_ h¥*(y) pj k. + pr, where r = p?ro(p,y) A2 + pri(p,y) Ap and it
will be clear from the method that the term pr can be handled in the same manner.
Therefore let us assume that p = A2 4+ f(y) u?. Then 9p/dy = f1(y)p? and

o 0
(7.43) ( aay 1 aas) [g_p (hs(0),y(0),28% 5m)| = 8°n* - aly) - (5% -122)
S o ~ O
r2nwrs(gs - 155) +2h (- 15) =W+ @+ 6)

where f;, j= 1,2 are smooth function which are real if y is real.
We recall that, if f = s,y, 7,7, we have

f(0;5,7,0,h) = f(0:3,9, ar + 2ih(5 — as), oy + 2ih(¥ — ay), h) .

Lemma 7.11. — With the notations of (7.28) and Lemma 7.9, let (0,5,y) € Wa.
Then, for o € [0,0] we have the following estimates.

(1s(0) — 5()] < Ch A3, Iy(o) — (D] < C pors

In(o) = n(B)] < ChA, |s(a)| +|s(E)] < Cuo,

I &)0) — 92®)| < Chuo(1+ =,

KH
F@©) -~ =) <o,
. < 58’3*@(0) - _*'(E)| s C(KZH + K’;?P)’
a%(’yf) ay (E)l <C KhH

0 hA

) - FE| < (hr 25,
0 on

\ B—ij(ﬂ)(a) - 6_37(2)| < Ch.

where ¥ = (0;Re 3, Re¥, ar, o, h), ug(o) = 1/(1 — 2, (Re3)30) and

A =|Res5— as|+ |Rey — ayl.
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Proof. — Since —2a,(Re3)? is positive, we have in W, (see (7.28)),
1-2a,(Re3d)?0 >1—2a,(Red)®0>Q; > %KH.
Thus uo(c) < 2/KH.
Moreover for any z,( such that 2 = Res+ O(H), { = Rey + O(H) we have

1-2720+2F(0;2,(,...) =1 —2a,(Re3)30 + O(H)
since T = a; + 2ih(2 — as) and F = O(H). It follows that

[1-272%0+2F(0;2,¢,...)| = —uo(a)

if K is large enough.

Let us recall the rule of differentiation. By the Cauchy formula applied in the set
(7.3)', each time we differentiate a holomorphic function v with respect to s (resp.
y,7,7) we loose a factor which is O(1/Q1) (resp. O(1), O(K/Q1), O(K/Q1)) with
respect to ¢. Note that @, ~ K H by (7.35). Recall now that,

3
1-27330+35F(0)’
where F = O(H/K) (see (7.10)). By the above rule, we get
OF 1 oF H OF
o(z) 5 =°(%)

s(0;8,y,7,7,h) =

=(’)(i) if =7 or 7,

95 \K2)’ (9_77 “Y\K/)’ oz
O2F o2F
B?ZO(I@H asay (K2) a’gaw (KH)

2
%’yg (K) Byaaf: (K)’ ete.

Using the explicit expression of s(o) given above we obtain the following estimates.
9s(o) 9s(o) H o\ 0s(o) 2y 0s(o) 1,
N = O(u O) oy 0(?“0)7 7 = O(ug), _57,’7_ —O(Euo),

2 2 2
"o = (2w Ty =O(x34): eoe =z ),

e =0(54): Trar =0(54):

where we have used the estimate ug(c) < 1/K H.
Finally let us remark that, according to Lemma 7.9 we have,

|Im3] < ChA, [Imf] < T2, h(iF - oul + 7~ ) < ChA.

Let us now prove the estimates on s in (7.44)

s(o) — s(2) = 5(0;5, ¥, ar +26h(5 — as), oy + 2ih(Y — ay), h)
— s(o;Res,Rey, o, oy, h).
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Thus, the first estimate in (7.44) follows from the Taylor formula and the above
bounds on the derivatives of s.
Consider now (x) = & (s)(0) — %2 (=). We have

(x) = —g%(a;'sv,ﬂ,a,r + 26h(5 — as),...) — g—i(a;Re'sv,Reﬂ,...)

+2’Lha

5= (035,9, 0r + 2ih(5 — ), ... ).

The last term in the right hand side is bounded by hu2. Then
. 0% hA _ O%s hA 1 ,
s 5 = O(gg W) Wiy = O%g 7= 4)
ok 8%s 1, -~ -~
2ih(z —as)%—O(hA~KHuO) z=Tor7n, z*=5ory.
This proves the claimed bound for (x).
Let us consider now (*x) = a%' (s)(o) — g—% (X). We have the term 2i¢h3s/0n which
is O(hu2). Moreover

Im§%=0(hA%u(2)), Imggi@zzo(;_’;%ug) O(I}z{,;l 2)
~ 8%s 1,
h(s—as)gia—?—:o(h‘qfuo)-

This proves the bound for (xx).
For the bounds concerning y(c) and n(c), we use the fact that we have,

~ 1 ~
y(@)=§+0(%), nlo)=7+OH).
Details are left to the reader. O

It follows from these estimates that (see (7.43)’)

H
(1) = real term + O(hHAu% + h?ug) .

Indeed we have, with ¥ = (o; Res,Rey, ar, ay, h)

o o) 0y(o
(1) = (o)1) alylo)) (242 - L Uy,
So we can write
(1) = )P L0 (o (B) - T 2 (®) + R

where the first term in the right hand side is real. Moreover R is a finite sum of R;,
j=1,...,6, which we consider now. We have,

= (£(0) - FENT0) falalo) (B2 - LD Dy,
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By Lemma 7.11 we have |s?(0) —s*(X)| < ChAuj ; moreover n2(0) f2(y(0)) is O(H?),

%y g %y
3 0(1), o= O(E) (see after (7.40)) and %= O(KH)
It follows that LH A
Ry = O(hH? Au}) = O ud)
since up = O(1/K H).

0 0
Ry = (S)(n*(0) — (@) o) (55 ~ 2 52):

We have [s*(Z)] < Cug, |n?(o) — n*(£)] < ChHA. Therefore we get, Ry =
O(hH Aug). Now R = s*(2)n*()[f2(y(0)) — f2(y(X))(---)]. We have

1-2(u(0)) — fwE))| < Clylo) — y(D)| < c%‘f
It follows that hA WH A
R3=O( H2KH) O( K “g)‘

Now
2 _ 9y 2 _h _f_L_Ii 2
Ry = ()7 (S) (D) (o ) g(z)) o(H? 77 ) = 0= ud).
Then 5
Y
By = *(D)n*(D) fou(®) (2 (0) - 1 () 52 (@)
Recall that a = H9s/05 and v = H 9s/dy. It follows that
1 s Os Os
W[ = (o )(6“’( )— a~( )) 8’5(0)(8_@7(0)*8—@](2))]'
The denominator is bounded below by Cu} and from Lemma 7.11, the numerator
can be estimated by

Lo)-Im=

C(—uo (h +I’;;1'{ 2)+u0 —I}—;—ug)gC’%ug.

It follows that
Rs = O(H2 2 h)L = o(hHug)

“K/KH
Finally
dy(o) 9y
Re = s*(2)n*() £(u(D) 2 (0) (55~ - 52 ()
can be estimated by
H; h hA hH? , hHA ,
1 % (g + zom) = O (e v+ T )-

Summing up we get

R=3_R; =o(hHAu3+ %ug)

=1
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Since
° P c if p>2
< -
‘A 'U'O(a')d0'| ~ (KH)p_l 1 p/ b
we obtain
hA h
(7.45) Im / ()do =032+ 25).

The other terms can be handled in the same manner, using the above estimates. This
proves (7.42).
Our next claim is

%Y b,
(7.46) Im B50y; —2h Re L + hO(K +A)
Since > 5
W _ L (ad 4 2h@, - ) + — / o
By, = H(a" + 2ih(y; ay)) + H )y dy; (h§(0),g(a),. ..)do

and, by (7.41),
5= e 5 O(%) m+a(ra@-7) 5

9y
we can write,

0% -~ bj 1 1 8/ (°0p
————asayj = —2zh—a—(1 + 0(?)) + H 5s (/0 —3—y—j(h§(0),y(a), e )da) .
Thus (7.46) will follow from,

0
93’

- g b 1 0

(7.47) Im/ [ 1+ - (D M)~1 )53;—5 — M) ]( (hs(o), - ))
= hO(E +4).
Since b/a = O(1), the estimate of
0
b 1 0 (Op
Im/g (D - M) %(%) do

has been obtained in the proof of the preceding case. On the other hand we have

—(D M)~y = O(K3)

Therefore the main term remaining is

%10
Im/g %@'(%)da

As before, we will assume that p = A2 + f(y) u?, which implies that 8p/0y = f1(y)u?.
So we are left with the estimate of

—Im[/ = f2(y) 5= 32n2d0+/ ~fi(y)s- a~7’ da+/ = fi(y)s®n- -g:dcf]
=1Im ((1) +(2) + (3))-
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Let us look to the first term. By (7.44) we have |f2(y) — f2(y)] < ChA/KH. Tt
follows that

1
(5- )fz(y) | < CKhA- —— H?u2 < ChH AW,

a a(real) K?H
h 1 ChAH
E(f2(g) - f2(y)) 8_’E§222 < CK2H KZHAKZH H2‘U/g = —I{z—ug,
hA

H?u?=ChAHu2,

Oy  By\ 5 o 2
o - ) <onenidy

(y) (3 - )n?| <CK’H hAH?*u3 = ChAH?43,

K2H

fz(y) 2(n 7°)| < CK*H ChHAuZ = ChAH?u2.

K 2H

It follows that R
(1) = real term + ((9/ hHAug(a)da) .

6

Therefore hA

The same estimates and the same method apply to the term (2) and (3). Then (7.46)

follows.

The last step in the proof of (7.40) is the following claim

8%y

Os?

To prove this we shall use (7.34) and Proposition 7.6 which give

by 2~ ~
(7.48) Im =2(Re E) h+ O(KhA).

1 /. _ cy (g~ ~ .~ e~
Y= T ((s —as)ar + (§— ay)an +ih((5 — as)® + (T — ay)?) + Op(hs,y,'rgq,sﬁ))
where T = a, + 2ih(5 — ag), 1 = ay + 2th(7 — ay).
Let us recall that, by (7.41), % = P% + Q%, where
P—l+2(D—M)—1 Q-——é-(D—M)‘l
T a a v T a '

Let us also assume, for simplicity that p = A% + Eﬁjk (y) pj k- Then

%% _ iP(aT + 2ih(5 — a,) + (4ih 78 + 47°3° +§f1(gj)7“7’2)9)

Jds H
+ 57 Q(an + 2h(FT — o) + (3 Lo + ik s@)7)6).
We write
o 1
(7.49) == (PU+QV).

Now we have

:_(1+b(D M)™ly) = (1"‘0( ))
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and

e g _ 1% 4ih3'0 + 473%9 — OF /08 s>

71 32 H’
since s(6) = s/H. On the other hand,
U =7(1+ 4ih3*0 + 473°60) + O(H?).

Since 0F/95 = O(1/K?) we get

ZPU=5G#+R), R=0(H+13).
Moreover, using the Taylor and Cauchy formulas, we see that if R is a holomorphic
function, depending on (6, 3, ¥, T, 77), which is real on the real and bounded by L, then
|ImR| < CLEA.

We can now begin to estimate the second derivative of i. We have

%(%Pu):—— (~A2+R)+ ((2zh3 +2T“)P+P6R+Q )1

1 v
(1 @)

It follows that
Im(1) = (K3hA + K3 (H2 + —1—) —h—A) = O(K3h-hA+ KhA).
K2)H

On the other hand
OR OR

Pos T9%%

and Im P = O(Kh A). Therefore we get
Im(2) = O(K*HhA+ KhA).

- O(KH2 + —Il?)

Then

(7.50) Im 2(iPU) — O(K*HhA+ KhA).
Os\H

Let us look now to the term

5 (79V) = P8~(HQV)+Q6~(HQV)=(1)+(2).

We have QV = O(H) so
o} 1 1~
7@V =0(%) end ImQV=0(zh4).
Since P = O(K2H) and Im P = O(K h A) we get
Im(1) = O(K HhA).

On the other hand,

)
(2) = %E%V+%Q2%—; = (3) + (4).
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The same argument shows that (3) = O(1) so Im(3) = O(h A). Now it is easy to see
that Im(4) = 2(Re b/a)2h + O(h A). Then

81 b\Z~
(7.51) Im BE(EQV) - 2(Re E) h+ O(RA).
It follows from (7.49), (7.50) and (7.51) that if K2H < 1, we have
824 by\2~ ~
(7.52) Im 5 = 2(Re Z) h+ O(K hA)

which proves (7.48).

Now, since by (7.28) A < €9/C2K, where C; is large, taking 1/K < g9, we deduce
from (7.42), (7.46) and (7.52) that (7.40) is satisfied.

Thus we may apply the Theorem A.14 in the Appendix to conclude that the part
of the integral (7.33) where (0,p/h,y) € W2 is O(e~%/"*), with § > 0.

Case 2. — Let us look now to the part of the integral where (0, s,%) belongs to W,
that is

Q=1-2a, Re3%0 >

1 €0 ~ ~ €0
s KH < - Gs - < .
2 ) C]K ls « | + Iy ayl C2K

In this integral, (6, s,y) is real. It follows from Lemma 7.9 ((3', ¥, as, ay) being real)
that

[Im3] < Ch(|Res — as| + |Rey — ayl)
(7.53) O .

| Imy] < Eh(lRes—asl + |Rey — ayl).
Let us set
(7.54) A% = |Red — as]? + |Rey — oy |?.
Then in W7 we have

€0
. = .

(7.55) A 50, K

Lemma 7.12. — In W, we have
1 _ ~
Imyp > —2-h(|Res —as)* + |Re¥ — ay|?).
Proof. — From Proposition 7.6, we have
0(6;5(0),y(0),a,h) = (58— as)ar + (¥ — ay)az + ih\[(E— o)’ + (¥ — ay)zl
RS @
+ 0p (h3,7,73%,37) .
N
(3)

‘We have
Im(2) = hA? — h(Im3)? — h(Imy)?.
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It follows from (7.53) that

(7.56) Im(2) > h A2 — o(f{l—2 hA? + 2 4°).
We have also
(7.57) Im(1) =ImSa, +Imy - .

On the other hand,
p(h3,7,782%,37) = 725* + 325° + h3(h3a(h3,9)(F3%)? + b(-- ) T525T + c(- - - )32 7°),

where 7 = a, + 2ihs — as), 1 = oy + 2th(y — ay).
It is easy to see that

Im725* = 402 Re3® Im5 4 4ha, Re5*(Red — ;) + O(h?A)
(7.58) Im3%%? = O(hH A)
Imh3(h3a(---)(F3%)2 +---) = O(h?A) = O(hH A).
It follows from (7.56) to (7.58) that
(7.59) Imp >Imy-a, + o, [(1 + 40, Re3®) Im3 + 46h Re3(Re3 — as)]
+hA?+ O(—ﬁhAz +h? A%+ hHA).

On the other hand (7.10) shows that

H 1 1 H
= ——=2-273%0+F, |F|I<C-—,
s T @) F TeeHr IFI<Cx
and, since H/s is real, we get
1113]123 2Im73%0 + Im F = 0.

Since |3]? = Re3? + O(h? A%), we obtain
Im3(1 + 4o, Re3%0) + 46h Re5*(Re5 — a,) = Re3? Im F + O(h%A).
Then (7.59) implies that
Imp >hA?+Imy-a, + o, Re3>ImF + O(—hA2 + hHA)
Then, Lemma 7.12 will follow from the following lemma.
Lemma 7.13. — We have
Imy-ay,+a, Re3?ImF = (9( hA+hHA+—hA2)

Indeed, since A > €9/2C1 K, we have O(——g hA+hHA+ + hA2) < %hA2 which
implies that Im ¢ > 1 h A2, as claimed. O
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Proof. — Let us recall that p = \2 + Zﬁjk Wik + pr, with

r=ap)®+bl\u+cpu? and ¢ = s (hs y,78%,8n) = 25%(n) + hs? g,u

where (n) = (3 R R’ 17,;) j=1,..m Lhen

yeeey T

0 4]
4O =72 [ £@@rds - [ hs*(0) 5L (hs(o)+)do =y R,

Denoting by s(0),y(6) the real functions such that
s(0:3,7,ar00) = 2, Y(0,-) =y
(see Lemma 7.9) we can write

0
(7.60) Im = 2Im [ [s*(0)(n(0) — *(@)(n(0)] do

0 or or
+Im/9 h[§_2(a)-a—u(h§(a)---) — 32(0)6_u(h3(a) . )] do=1+11I.
We have

0
1=21m [ [(0) (0(0) - (1)) + (o) (5*() ~ (o) do

Let us introduce the following function

1
. = >0.
(7.61) w®) = T3 Re®ar0 > °
Then, using the Lemma 7.9 and the estimates on 9s(0)/93s, 8s(0)/9y - -- (see Corol-
lary 7.3) we obtain, |s(0) — s(0)| < ChAud. Moreover we have |s(0) + s(8)| < Cuo

and |[(n(0))| < CH. It follows that

0 0
162 | [ @) (6(0) ~ (o) do| <R [ wiio)aor < Sord = T2A.

Now we have n(o) = 7+ G(0), 7(0) = an + G(0o), where G and G are bounded by
CH/K. Let us write for convenience (1) = f(y)n. Then

() — (m = F(y)(n(o) = n(o)) +n(o)(f(y) — f(»)
() — (m) = 2ih f(y(0))(F — ay) + F(Y(0))(G(0) — G(0)) + (o) (f(y(0)) — f(y(o)))-
Since |y(0) — y(0)| < ChA/K H, we see easily that

FW(@)(G(6) ~ Glo)| + In(@)(F (@) — Fw@N < LA

It follows that

(7.63) 2Im / [s%(@) ((n(e) ~ (n(e))) | do = 4h(ReT—ay) / 2<0>d0+0(£fg
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We can apply exactly the same technique to the term /7 and obtain
hA
(7.64) II = o(ﬁ-) .
Then, using (7.60), (7.62), (7.63), (7.64) we obtain
~ —jk 2 hA
(7.65) Imy~an=4h2h (Re)(Rey; — of)of (a)da+(9( )
gk o
Let us look now to the term Im F. According to the computations made before
(7.10), we have

0 r0 )
(7.66) F =4 / / §3(t)thk(y(t))gj(t)gk(t)dtda

+2/ / hs n—+h 28?)(t)dtda+/ hs(a)—-do—([)+(II)+(III).

Let us look to the term (I). Since |s?(t) — s3(t)| < Cls(t) —s(t)|ud < C'"h Aud, we
can replace s3(t) by s%(t) modulo an error which is O(%4). Then we write n(t) =
7+ G(t), n(t) = oy, + G(t) where G and G are bounded by C £. It follows as before
that

0 (0 . ik . N ‘ hA
Im(I) = 16h s3(t)dtdo > K" (Re§)ok(Rel; — of) + O(ﬁ) _
4 o .
J.k

The same computation can be applied to the terms (/1) and (III) and we find finally

(7.67) ImF = 16n K’ (Reﬂ)ak(ReyJ—aJ)/ / S(t)dedo + 02+ 2.

gk
Now we see easily, using (7.10), that, with ug defined in (7.61),

15%(0) ~ (Re3)* u3(0)] < O Z-ud(0),

153(t) — (Re3)u(t)] < Huo(t>

Using (7.4) we see that we can replace, in (7.65) and (7.67) s by (Res)uo modulo an
error which is O(?lﬁ- hA). On the other hand we have

(7.68)

0
[ (@esuo(vyat -
Then we get
7k hA hA2
ImF = ———T %c:h (Re®) o (Re; — aJ)/ ud(t)dt + O(F +hHA+ 7 )
Using (7.65) and (7.68) we conclude that
hA h A2
Re3?a, ImF = —Im7y - oz,,+(9(K2 +hHA+ T)
which is the claim in Lemma 7.13. O
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End of the proof of Theorem 4.8. — By the Lemma 7.11, the part of the integral, in

(7.35), lying in W; is bounded by Ce~%/"%. This proves (7.35) and completes the
proof of Theorem 4.8. O
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CHAPTER 8

PROOF OF THEOREM 4.9

We consider the case mo € N§, mo = (0,%0,0, (1,0)). We proceed as in the proof
of Theorem 4.8, § 7 ; we look for a phase ¢ and a symbol a satisfying the phase and
transport equations.

8.1. Resolution of the phase equation

Let d be a strictly positive integer. We denote by P, the set of polynomials of the
following form

(8.1) (8,4, h, A, 1) = hb(s,y, )X+ D baj(s,y, h)u* N

lel+j<d
a#0

where b and b,; extend to holomorphic functions near (so,%o) and are smooth in h
on [0, +0o[. Then we have

(i) Let r € P4 ; then for all Ko > 0 one can find C(Kp) > 0 such that for all
(8,9, h, A, p) satisfying |s — so| + || + |y — yo| + |A| + |u| < Ko one has
(8.2) r(5, 5o A, )] < C(Eo) A+ )

(ii) If r € P4, Or/0s € Pg, Or/Oy € Pq and Or/OX € Py_1 if d > 2.

Recall that the symbol of A is p(p, y, A, p) = A% + ||u||? + p7 so
(8.3) p(sh,y, s*7,sn) = s* 7% + $%|nl|®> + hs*7(s,y, h, s, ), T € P;.

Proposition 8.1. — Let oo = (S0,Y0,1/53,0). There exzist positive constants €o, €,
€y, Ea, €n and for h in |0,en[ a holomorphic function ¢ = p(6;s,y,a, h) in the set

E={(6,s,y,0) e CxCxC" ! xC*:Ref € (—o0,¢¢),
_ So '< €s
14219l <159

[Im 6| < o, |8

’ ly—yﬂl < &y, Ia_a0| < Ea}
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such that
(8.4)
Oy 20p Opy .
{ a0 +p(sh,y,s Ds ,say) =0 i FE
Plo=o = (s —as)a; + (y — ay) - ay — A(s — 30)2 +ih[(s — 013)2 +(y— ay)2]

where A = (1+ 8)sg*, § small.

Proof. — We introduce the symbol
(8.5) q = 0"+ p(sh,y, s1, sn)

and we study the bicharacteristic system of ¢ when the parameter on the curve is real.
For (3,7, a,h) in C x C*~! x C2™ x ]0, +o00[ such that

1
ar—s—3|+|a,,|<6?,, 0<h<eéey,
o

15— sol <€3, 7 —wol <&y,

we consider the system

(8.6)
(6(t) =1, 9(0) =0
5(t) = 27s* + hs*ri(s,y, h, s°7, 1), s(0)=75
y(t) = 25%(n) + hs?[a(hs, y)(15%) + sb(hs,y) - 0], y(0)=y

S 6*(t) =0, 6*(0) = —p(3h, 7, -)

7'-(t) = - [483T2 + 25”77”2 + Sh’f‘2(S, Y, h’a 327—7 77)],
7(0) =7 = ar — 2A(5 — s0) + 2ih(5 — as)
L n(t) = —323y||77||2 + s2hr3(s, Y, h, 327—’ 77)’ 77(0) = 77 =on + 2ih’(g_ ay)’

where r1 € Py, r2,73 € P2, a,b (and their derivatives) are uniformly bounded and

n—1 n Bﬁjk
—ij
= (XF @), oylnl*= > 5 wnsm-
i=1 k=1
Lemma 8.2. — The system (8.6) has, for €3, €3, €5, €} small enough, a unique global

solution on (—oo,0] which is holomorphic with respect to (3,9, a).

Proof. — First of all we have 6(t) = t and 6*(¢) = 6*(0) which are globally defined on
(—00,0]. Then we introduce the following subset I of [0, +oo[ : T' € I iff the problem
(8.6) has a unique solution on [T, 0], which is holomorphic with respect (3,9, ar, oy)
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and satisfies

O 15 Toem <lOI<10 5
(8.7) (ii) ly(t) — 71 < (lom| + h)!/?
i) [0 — 7| < lan| +h
(iv) |7(t)s2(t) — 752| < |oy| + h where T = o, — 2A(5 — s0).

(We assume |ay,| +h <€ +€9 <1).

The set I is of course an interval which is non empty. Indeed, the Cauchy-Lipschitz
theorem shows that (5.51) has a unique solution on [T, 0] for some small T' > 0 which
is holomorphic with respect to the data. This solution satisfies |s(t) — 3] < C'[t] so (i)
will be satisfied if T and €5, are small enough (with respect to sg) ; now, according
to the equation satisfied by n we have n(t) = 0 if o, and h are equal to zero ; since
71 is smooth with respect to a, and h, we will have |n(t)| < C(|ay| + h) ; then using
the equation satisfied by 7 and (8.2) we get

In(t) — 7l < /tO In(o)ldo < C(lam| + h)? < lag| +h
if €2 and €9 are small enough. On the other hand we can write
ly(t) — ¥yl < /tO |9(0)|do < Ci(lan| + h) + Coh < (lag| + R)V/2.
Finally,
(58) 3 (rs?) = 757 4 2m55 = ~25%nll> + $°hr(s,y, b, $Pry),
with r € P>. Therefore, using (8.2) we get

[7(t)s?(t) — 782 < Ci(lag| + B)? + C2h(h + |ag| + h) < |om| + h.

Let us set T* = sup . If T* = +o00 our lemma is proved ; so assume 7™ < +oo and
let To € I, To < T*. On [—Tp, 0] we have a solution which satisfies (8.7). By (8.8) we
have,

0 0
7 (6)s2(t) — 73| < 2 / 15(0) ¥ lIn(0) | do + R / 15%(0)] [F(5(0), y(@), - - - )| dor.

It follows from (8.7) and (8.2) that one can find a constant C; depending only on the
data such that

0
do
2 ~32 2
rO5°() =7 < Cullal + 0 [ s
therefore
~ 1
(39) [r()5*(®) — 731 < 3 (lg| + ),

if £, and &5 are small enough with respect to the data.
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Now we use the second equation of (8.6). We get

1¢
(8.10) 382((15)) = 2752 4 s®hri(s,y, h, s°1,n), 1 € P;.
Let us set
(8.11) f@t) = (1s%)(t) — 732.
Integrating (8.10) between ¢t and zero we get
1 1 ~ 0 0
(12) 3= -2 2/t F(o)do + h/t 2(0)r1(s(0), y(0), -+ ) dor.

Then we write

0 0 0
(8.13) / f(@)do = [of(0)]¢ — / of(0)do = —tf(t) - / of (0)do.

t

It follows from (8.8) and (8.11)
f'(0) = =25°(0)lIn(0)II” + hs®(a) r(s(a),y(0),---), T € Py

so,
h 2
(8.14) lof'(o)| < C (—}%
Therefore, using (8.13), (8.14), (8.15) and (8.9) we get
1 ~
% — = = 2FF + 2| F(8) + 9(2)

s
2|f(V)] < lag| +h
lg(t)| < Ca(lan] + h)?.
It follows that

(8.15) SO = T @ T 2GR+ H)

A1)+ 191(8)] < Ca(lan| + h).

Now
73% = (o — 2A(5 — 50)) 3
1 ~
= (3_3 + (aT — ;15) —2A(5 — so))(sg +3B—583) =1+ 0(es +€a),
0 0

where O(g) stands for a quantity bounded by Ce where C' depends only on the data.
It follows from (8.15) that

14 g1(t) + 2t|(F32 + f1(t)) = 1 + 2|t| + O(ea + €5 + €1) + |t| O(ea + €1).

Therefore, if €4, €5, €, are small enough we will have
1 So

(8.16) 21+ 2t

< |s(t)] < 2 t € [~To, 0].

S0
1+2]¢’
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Next, using (8.6) we get

1] 0
(t) - 71 < 2 / 152(0)(n(0))|dor + h / 182(@)|a (- ) + (- )| do

0 0
do do
< _ h _
Callon| +h) /_oo At onz T " /_oo 1+ o2

SO
(8.17) ly() =1 < 5 (logl + B2, ¢ € [~To,0).
Finally
7(6) — el
0 Yo 0
< [0 |G v @l @lde + [ hlsE@lirs(so),---)ldo
»J] o
< [Collag|+ B)? + Crh(lan] +1)] [ s

SO
(8.18) In(t) — gl < 3 (lan| + B).

It follows from (8.6) and (8.7) that &, y, 7, 7 are integrable on (—7*,0] therefore
s(t), y(t), 7(¢), n(t) have limits s(—T%*), y(-T%*), 7(-T*), n(—T*) as t — —T*.
Moreover these limits satisfy the estimates (8.9), (8.16), (8.17), (8.18). Then we solve
the system (8.6) with data s(—7T™), y(—T™), 7(=T*), n(—T*) on t = —T™* ; by the
Cauchy Lipschitz theorem, we find a solution on [—T™* — §, —T™*] close to the data ;
matching this solution with the previous one, we get a solution on [—7™* — §, 0] which
will satisfy the estimates (8.7). This contradicts the definition of 7* and proves that
T* = +o0.

We show now that we can complexify the time ¢ and obtain a solution of (8.6) in
the set Ret € (—o00, —¢], |Imt| < . The equations (8.6) show that we can take 6 as
a new variable on the bicharacteristic.

Lemma 8.3. — The system (8.6) in (s(8),y(8),7(6),n(0)) has, for small €3, €, €3,
€%, €9 a unigue holomorphic solution for Re@ € (—oo,—¢g], |Im0| < eg, which is
holomorphic with respect to the data (3,¥, ar, ay).

Proof. — Let us recall the following well known result. Let (6g, Xo) € C x CV and
Q={06,X)eCxC" :|0-6 < a,|X —Xo| <b}. Let F: Q — CN bea
holomorphic function such that supg |F| = M < +oco. Then the Cauchy problem

{ X(8) = F(9,X(6))

(8.19) X(6) = Xo
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has a unique solution, holomorphic in {# € C : |6 — 6| < p} where
—b

(8.20) p< a(l — exp (m)) .

We apply this result to the system (8.6). We take 6y € [0,+o00[ and we call Xy =
(s(60),y(60),7(60),m(o)), the value at & = @y of the solution found in Lemma 8.2.
Here N = 2n. We take b small depending on (so,¥yo) ; then M also depends only on
(s0,y0) ; finally we take b/a = (2n + 1) M Ln2. It follows that the system (8.6) with
data X at § = 6y has a unique holomorphic solution in {|§ € C™ : |§ —6y| < p} where
p depends only on (sg,yo) but is independent of 6. Therefore moving 8y from 0 to
+00, we get a solution of (8.6) in a fixed small complex neighborhood of [0, +oo[. We
can check that this solution satisfies the estimates (8.7) on this set.

Proof of Proposition 8.1. — We introduce for €§, 3, €3, €9, €} small enough the sets
(821) A= {(07 3(0; gv @v, «, h)> y(ev ot )7 0*(0)7 ’T(G; et )7 77(0; Tt ))
Ref €] — 00,e9], |Im 8] < €9, |5 — s0] < €%, |7 — wo| < 62}

where o, ay, h are fixed such that |o, — 1/s3| + |a,| < €2, B € ]0,&)[. We also
introduce the set

(8.22) E= {(0,z,y) €ECxCxC" ! Ree]—o0,6Y,

b le - aml < T - wl <a)
tm 6l < ed, |= — 75| < 75757 v — vl <&}
Let m: A — C x C x C"! be the projection on the basis.

Lemma 8.4. — If €3, €3, € are small (depending on the data (so,yo)) one can find

€z > 0, gy > 0 such that the map 7 : A — E is bijective.

Proof. — We fix (a, h). For fixed 8 and (6, z,y) in E we must find s,y such that
5 sol < &%, [7— w0l < & and

(8.23) { s(6;5, 7,0, h) = 2

Y(6;8,9,0,h) = y.
It follows from (8.15) and (8.7) (ii) that this system is equivalent to
§=2(1—20(ar — 2A(5 — 50))3® + g1(0) + 20| f1(9))
{§= Y+ 92(0;5, 9, ar, o, h).

To solve (8.24) we use the fixed point theorem. For (6, a, h) fixed and (0,2,y) € E
let us consider the map from C x C*~! in itself

z(1—20(cr — 2A(5 — 50))3° + g1(0) + 2|6 f1(6))
y+g200,---).

(8.24)

(8.25) nam:{
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We shall show that F' maps the set
B={(5,9) € CxC" " :[5—s0| <é&s |7 —yo|l <&y}

in itself. Let us denote by Fi(3,%) (resp. F3) the first (resp. the second) component
of F. We have, from (8.7),

(8.26) |F2(3,%) — vol < |y —yol +192(6, - )| < &y + (lom| + R)'/2 < &)+ (ea +£n)'/%.

Now if (0, 2z,y) is in E, we have

So O(ez)
+ ;
1+2|6]  1+|6|

2=
moreover

o, = % + O(eq), 3°=s3+352(3—50) +O((3—50)%), [§—s0|<es.
Let us skip the ~. We have, from (8.25)

(1) = Fi(s,y) — so = (1 5029 + 104(~€|z0)| [(1 - 20(—3% —2A(s — s0) + O(ea))

(83 + 3s2(s — s0) + O(|s — Solz)) +91(0) + 210lf1(0)] — S0-

Using the fact that A = (14 d4)sg* we get

—260
(1) = 20( — 50)(1 —264) + O(e; + €0 + €1 + £2).

It follows from (8.26) and the fact that | =2%| < 1 if Re# < 0, that

IF(S, y) - (SanO)I < gy + (Ea + 5h)l/2 + (1 - 26A)68 + O(EZ + €q +En+ 5?)-

If we take 64 € |0, %[ and &y + (ea + en)V2 + Oe, + €a + €n + €2) < Sacs, then
F(s,y) € B.
‘We show now that F' : B — B satisfies

(8:27)  |F(s,y) = F(s, )| <k(ls—s'[+ly—v']), (s,9), (s,9) € B, k<1.
Since g1, g2, f1 are smooth in s,y and satisfy (8.15), we have,
(1211611 £1(0) ] + 121)195(8; 5,9, - - ) — g5(658", s -+ )| < Clea+€r)*(ly—y'| + s —'l).
Let us estimate

I =—20z[(ar — 2A(s — 50))s> — (ar — 2A(s" — 50))s"™]

= —202(cr + 2A450)(s® — 5"3) + 4402(s* — s').

We have

oy = :9% + O(ea), §°—8%=(s—5)(3s55+ O(s — s0))

SOCIETE MATHEMATIQUE DE FRANCE 2002



92 CHAPTER 8. PROOF OF THEOREM 4.9

and
4 _ M4 <! 2 _ —
st —s (s — s')(4s5 + O(s — s0)), =z 1 +O(esz)1_'_“9|
Then
I_—20( +O(€z))( +2As0 + O(e ))(s—s)(3s + O(s — s0))
1—-20 " 1+16| « 0
O(sz) / 3
4 — - .
+ Ae( 20+1+|0|)(s §')(4s3 + O(s — s0))
—26 1 ) 43
I= T—28° ( +2Aso)3so(s——s)+4A0 (s—s)
+|s—s|(’)(€z+€a+€s).
[ —60 120 160 , ,
I~(1—20 1—29A0+1 eAso)(s )+ |s—8'|O(e, +ea +€5).

Since As§ =1 — 264 we get

2|6| ’
11 < (75371~ 200) + Oes + £ t-en) ) s = o'

Taking €., €q,en and & € |0, 1 [ we get (8.27). The proof of Lemma 8.4 is complete. [
Lemma 8.5. — The map dr : TAA — T\ E is surjective for all X in A.
Proof. — Let G be the map (for fixed a, h)

(0,3,9) — (0,5(6;5,7,,h), y(6;3,5,--- ), 0°(0), 7(6;---), n(6,---))

from the set {Re@ € (—o00,€9[,|Imb| < €4,|5 — 50| < €5,|[7 —y| < €y} to A. If
d(m o G) is surjective then dr is also surjective. Now d(m o G) is surjective if and

8s(8) 9s(9)
only if det ( 35&,2 35892) is non zero. According to (8.7) (ii), this will be the case if
o5 oy

|0s(0)/83] = co > 0. By (8.15) we have s(f) = 5/D where
D =1-20(a, — 2A(5 — s0)) 3% + 91(8) + 2611 (6).

Then
1
D? 0-;(:) 1— 20(—3 + O(eq) + O(es)) (s34 O(es) + (1 +10)) O((ea + £1)Y?)
— So(— 29)( - 353 — 2As§) + (1+10)O(es + €a + (ea +€1)Y?),
D? 25— 1 20— 4As}+ 60+ (1+10)Oes + (e + (€ + 1) /)

ER
=1-14646 + (1+16]) O(es + (ca +1)'/?).

Since Ref € | — 00, g¢] we will have

| ae} co(1 +161) — O(es + (ea +€n)*/?) (1 +16)).
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Corollary 8.6. — There exists ¢ = p(0;s,y,a, h) defined on E, holomorphic with re-
spect to (0, s,y, ), smooth in h such that

A= {(O,S,y, —g%(e;s,y,a,h), Qf(e;---), Z—Z(e;"')), 0,s,y) € E}

Then Proposition 8.1 follows from Corollary 8.6 since g (defined in (8.5)) vanishes
on A.

8.2. Resolution of the transport equation

As before, working in the coordinates (6,5, y) we are led to solve the problem

(8.28) (889 +c(6,s. ;Tﬂ)a—}-zhszza—O

a|9:0 =1
where c is equal to i Ajp in the new coordinates. The solution should exist in the set
{Reb € (—00,0],]| Im0| < €9, |S — so| < €, [T — yo| < €y}. Using the properties of ¢ it
is not difficult to see that

(8.29) e(6;5,9)] < 7 fIHI

Therefore we are in the same situation as in [RZ1] (4.16) and the same construction
can be made showing that (8.28) can be solved in a space of symbols. We refer to
[RZ1] for the details.

Ref € (—00,0], |Im6| < e

8.3. Proof of Theorem 4.9
Let mo = (0, 40,0, (1,0)) € N§. Our assumption is that

1
exp(—TXp)(mo) = (P =0,y0, o = o7 Ho = 0)

does not belong to B°W F, (ug).
Let us introduce the continuous family of FBI transform

(8.30) Tu(8;t,a,h,k)
- th 2k (8 £ ,y,a,h) P P .
//e a(9, h,y,a,h,k)x(& h,y) u(t; p,y)dpdy

where ¢ and a have been constructed in § 8.1, 8.2 and x is a cut-off function equal to

one when
Es

1+2|9|l = '2'1+|0|
As in the proof of Lemma 6.4, we see that

18 @ TR S
(E a0 at)Tu(e b)) = _’//eh KO o(6; - ) [Ag, XI(- - - ) ult, pry) dpdy.

P
’ ly—yo|<§€y
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Using the properties of ¢ on the support of [Ag, x] we deduce, as in Lemma 6.4 that
(8.31) Tu(b;t,a,h, k) =U(kO — t;a,h, k) + V(0;t,a, h, k)

where U,V are continuous in

O ={(6,t,0,h,k):0 € (—0,0], [t — T| < o, |o — x| < €a, h € [0, €x), k € [0,€x]}
and

(8.32) |V(6;t,0,h, k)| < Ce /"% in O©N{h >0,k > 0}.

It follows from (8.31) and (8.32) that

(833) TU(O, t,a, h’a k) = T’U,( - % > 07 a, ha k) + Vl (0; t, a, h1 k)

where V; satisfies (8.32).
Now the phase which appears in the FBI transform (8.30) can be written, according
to § 6.2.2, as

cp(@;%,y,a,h) =cp2(0;%,y,a) +ih<p1(9;%,y,a,h).

It follows that

(1) =z'h,—2k—1<p(— %; g,y,a,h)
=i(hk)_2[k(,02(— %;k-—hp—k,y,a) +i(hk)(p1(— %;k-%,y,a,h)].

Therefore if we set

H=hk, v=(th,k),

t
(834) ¢2(Siy7a7 V) = k‘PZ(— E;ksayaa)7
t

¢1(s$y’a7’/)=¢1(—";;ks’y7a7h’)a

then
_im-2u, (L Ho (L _im-2y( L

(8.35) (1) =¢H [wg(H,y,a,V)+1H¢1(H,y,a,u)] 1H w(H,y,a,u,H).
Lemma 8.7. — Let

~ So

_ __1/2T
so—ﬁ, XO_(San0)7 HO'_( :;30 10)

Then, when v = (t,h, k) tends to vy = (T,0,0), ¥ (p/H,y,o,v) tends (uniformly in
p/Ha Y, a) to 'l/)(p/H, Y, «, VO) and lb s a phase at (XO»E()’ «op, O’ VO)'

Proof. — Let first h go to zero. Since the phase ¢ is smooth in A up to h = 0,
cp( —t/k,ks,y,q, h) tends to cp( - t/k,ks,y,a,O). Let (5,y,a) be given and let us
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denote by s(0), y(6), 7(8), n(#) the solution of (8.6) given by Lemma 8.2. We claim
that

(8.36) @2(8;5(8),¥(6), a) = [*(ar — 24(3 — 50))* + 3%||ay|*] 0
+ (3= as)ar + (T — ay) o — A(S — s0)°.

Indeed we have

o 1(0:5(0),5(0), 2,0)) = (55 +50) 32 + 50) 52 ) (6:5(6),u(6),0) = ().

Now $(6) = 2(734)(0) = 25%(0) - Bcp/as Y = 232(0)<8g0/8y> It follows that

@ =22 4 2p(0,5(0), (2 22) (85 ), (s "’“’)(e ) =-%-
by (8.4). We deduce from (8.6), (8.21) and Corollary 8.6 that

— 55 (6:5(0),4(8),@,0) = =07 (9) = —6%(0) = p(0,5,3°7,37)) = 5'7* + 5% |

where 7 = a; — 2A(3 — so). Then (8.36) follows using (8.4) and the fact that ¢ = @2
if h = 0. It follows that

t t t
keo( = 2i5( = £)ow(— 1) @) = —Ut+kV where
(8.37) U =354 (a, — 24(3 — 0))2 + 32||ay|?,
= (5 —as)ar+ (T — ay) - ay — A(E — s0)2.
Now let (ks,y) be given. The system

s(— %;Zﬁ,ﬂ,a) = ks

(~tiag.a) =
Y k 19 y7 =Y
is equivalent, according to (8.15), to

s

k(1 +g1(8) + 26(78° + f1(2))
We know from (8.23) that this system has a unique solution which is moreover con-
tinuous in k € [0, +oo|. It follows from (8.37), (8.38) that kw2 ( — t/k; ks,y, ) has a
limit when t — T and k — 0. Let us now look to ;. We have seen in § 6.2.2 that

t t _ - t ~ ~
(839) Recpl( - E;S( - E;Sayaa),y( - E’ ) '),CB,O) = (3 - as)2 + (y - ay)2
so the same argument as before works. Concerning the imaginary part of ¢, ; accord-
ing to § 6.2.2, we have

9 [t 01 (6 5(9), y(6), )] = c1<1m $)0;5(0), )

—s(0) ( VY ,sza—g’f,s%) = 0(s%(9)).

(8.38)

=s, T+O(lay|'?) =y.
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Since s2(6) is integrable on (—oo, 0] it follows that

e (— $55( - Eaga) v~ ).

has also a limit when k — 0, t — T'. Let us denote by

¢2(—;;-—ay7a7 VO) + ZH¢1(’%, Y, Q, VO)

this limit. Let

~ So

_ 1/2T
S = 2—]-,_7 XO = (30, y0)7 ‘—'0 - (

It remains to show that v is a phase at (Xo, Zo, @, ho = 0, 1g) in the sense of Defi-
nition 2.6. Conditions (2.10), (2.11), (2.12) are easy satisfied. Let us look to (2.13).

We have o 5
2 ( S0 292 T S0
ds (2T’y°’a°’”°) = Hm k"5 ( %’ sz y"’o“’)

Now

T. _ kSO kSQ
S(-—- E7307y0’00) - k+2T 2T +O(k)

T
y( - E; 30,3107010) = %Yo

(- (- Bvmen)a(- E ) =o(- Frmmr)
2

B s2(—=T/k; s0, Yo, o)
_ (1 + 2T /k)?
= __—sg .
Therefore
32 T (k +2T)? (2T)*> _ 1/2T
2 e = .
M s ( Kk’ 2T’y0’ ) s3 +Ok) — T3 £
It follows that /
02 ( So _1/2T
85 (2_1:{!!0,0107’/0) - gﬁo .
Moreover o0 5 Tk
S0 w2 T kso _
8y(2T’y0’ao’V0) = i 5 ( K’ 2T’y°’a°) 0.
Finally
. T | sg
Rewl( ayﬂaa()’VO) _lll_r'l})ReSOl(_Eykﬁay(haO)
and
Reﬁol( szvyOaaO)zReﬂol( k,s( kaSanOaa(]) y( ")v00)+0(k)
= (s0 — 50)% + (yo — yo)2 + O(k) — O. O
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We can now give the final argument of the proof of Theorem 4.9. It follows
from Lemma 8.7, Theorem 2.7 and the fact that (0,yo,1/2T,0) does not belong
to W F,(u(0,-)) that

lTu(—i—;O,a,h,k)lsCe"s/H, e1>0, H=hk,

forallain V,,, 0 < h < ep, 0 <k <eg and |t —T| < d (since v = (T, h,k) € V).
We use (8.33) to show that

[Tu(0;t,a, h, k)| < C'e™%2/Pk | g5 >0

for the same value of the parameters. Since the phase of the later FBI transform is,
by Proposition 8.1,

0(0;5,y,0,h) = (s — aa)ar + (¥ — og)ay — A(s — 50)* +ih[(s — @s)* + (v — ay)?]

which is a FBI phase in the sense of Deﬁgjtion 2.1, we deduce from Definition 2.4
that the point mg does not belong to ®“°W F'(u(T),-)) which is our claim. O
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APPENDIX

We develop here the Sjéstrand theory of FBI transform in the case of two scales.
This will allow us to define the gsc analytic wave front set. The main difficulty will
be to prove the invariance of this notion under the change of phase, amplitude and
cut-off functions.

A.1l. The phases

Definition A.1. — Let mo = (x0, &0, a°, ho) € R™ x R™ x R?™ x [0, +0o[. We shall say
that ¢ = ¢(x, a, h) is an FBI phase at my if one can find a neighborhood V' of (zg, a®)
in C" x C?”, a neighborhood I, of hg in [0, +oo[ such that, in V' x Ip,,
p(z,a, h) = p2(z, ag) + p3(a) + thp: (@), o=(az, o),
where
(1) ¢4, 5 = 1,2,3, are holomorphic in V,
(2) @2 is real when (z,a¢) € (R® x R*) NV, @3 is real when « is real,

0
(3) 8—2(370,00,’30) = &o,

2
(4) p1(zo,a®) = 0, 81:;:,01 (z0,a%) = 0, (8—;{::2&(:130,040)) is positive definite,
0% Re o . - .
(W(xo,a )) is invertible,
(5)
(a) if ho = 0, the matrix ( ¢ (x ao)) is invertible
0 ) awaa£ 0, &g )

2

(b) if hg # 0, the matrices ( o (zo,a®, ho) and

9290c)
Ox0ag
( 8%Rep 9%2Reqp

Oxdag Ozda 0
8 Im g lem:g) (0, ho)
Ozdag Ozday

are invertible.
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The simplest example of such a phase is given by
o(z,a,h) = (z — az)ae + ih(x — az)?
with a® = (29, &).
Now, if f is a complex function defined on the complex domain, we define

7(2) = 5(/(=) + F@)

F1(2) = 5:(f(2) = TE)-

Definition A.2. — With the notations of Definition A.1, we shall say that ¢ is a pre-
cised FBI phase at mg if it is an FBI phase at mo and moreover, (z,a) € V and
0¢1/0z(z,a) = 0 imply ¢f(z,a) = 0.

(A1)

Then we have the following result.

Proposition A.3. — Let ¢ be an FBI phase at mg = (xo, &0, a%, ko). Then one can find
a precised FBI phase @ at mg such that

@(iﬂw @, h) = (,D(:L', a, h) + g(a7 h‘)

with g(a®, ho) = 0. Moreover if the inequality (2.9) (defining W F,(u)) is true with
@, it is also true, with other constants, with p.

Proof. — Using the hypothesis 4) in Definition A.1 and the implicit function theorem,
we see that there exists a holomorphic function z(a) such that 9¢]/dz(z(a), ) = 0,
with z(a®) = zo and z(«) is real if « is real. Let us set

é(z, a, h) = p(z, a, h) — ihpi(z(), ).
Since @ = @a(z,ae) + p3(a) + ih(p1(z,a) — pi(z(a),a)), we see that @ satisfies
the hypotheses 1) to 5) in Definition A.1. Since 097]/0x = 9y} /0z, the solution of
097 /0x(z,a) = 0 is also z(a) and §f(zx(a), ) = 0.
We introduce now a weaker notion of phase. The reason for that is that, in a
propagation process, even if we begin at the initial time with an FBI phase, after a
while the phase could only be a phase in the following sense.

Definition A.4. — Let mo = (zo,&0,8°) € R® x R® x R?". We shall say that 1 =
¥(zx, B, m, h), defined for (x,3) in a neighborhood W of (zo,3°) in C* x C?™ and for
the parameters (m, k) in a set U C RY x R*, is a phase at my if there exist positive
constants €9, Cp such that

(1) v is holomorphic in W for any (m, h) in U,

(2) Im¢(x, 8,m, h) =0 if (z,8) € Wg = WNR" x R?" and (m,h) € U,

3) |y(x, B, m,h)| + ]%’zﬂ(m,ﬁ,m, h) — &o| < €o, for all (z,8) in W and (m,h) in U,

(4) |28 (g, B, m, h)| < eoh, for all (z,8) € Wr, and (m,h) € U,

(5) |0*Y(z, B,m,h)| < Cy for |a| < 3, (z,8) € W, (m,h) € U,

(6) Im 2% (x, B, m, h) > —eoh 1d if (z,8) € Wg and (m,h) € U.
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For the purpose of the theory, we introduce now the phases of pseudo-differential
operators.

Definition A.5. — Let mo = (o, &0, a0, ho) € R™ x R™ x R?" x [0, 4+00[. We shall say
that
Y= ‘P(xa Y, a, h) = 902(‘77; Y, af) + ih({’l(a’; Y, a)

is a pseudo-differential phase, near myg if

(1) ¢j, 5 = 1,2, are holomorphic on a neighborhood V of py = (2o, Zo,a’) in
C" x C" x C?",

(2) pa is real if (z,y,a¢) € Ve = VN (R™ x R™ x R?").

(3) @2(1‘?771:7‘15) = cp’i(x,:c,a) = 0.

(4) a(pl (z,z,0) = 0 implies ] (z,z,a) =0.

Fo) 82
(5) “’1<po) 0and (% Sa
0

a T
the solution of -ﬁ(w, T, az (T, g ), ag) = 0 with az(zo,0f) = af

L po)) is positive definite. We shall denote by az(z, a¢)
, a% = (al, O‘E)'

(6) g—i(a’o’wﬂ’ao> h) = —g—j(xo,xo, a®, h) = &, for all h in a neighborhood of hy.

Moreover the matrices

9%p1 %y 6 ‘Pl
52 (Po) +2 8:c8 (Po) -5 (Po)

9%p1 9%p1
Oxday (po) + Oyda, (po)

are invertible.
(7) One can find C > 0 such that for every (x,y,a) in Vg

P1(z,y,0) > C(ow — au(z,0¢))? + (02 — o (y, ae))?] .

(8) If ho = 0, the matrix P2

Bydog (zo, xo, aE) is invertible. If ho # 0, the matrices

0%p 0 5ydas (P0) ay—a%(/?o)
((9:1/301 )(Po) and M = (6«1,60:5 —%—(po) %g(Po) )

are invertible.
Then we have,

Proposition A.6. — Let mg = (9, &0,a°, ho) € R™ x R™ x R?" x [0, +o00[. Let § be a
precised FBI phase at mg. Then

go(m,y, «, h) = (:5(1" «a, h) - $2(ya Qg) - 53(0) + ihﬂ(yaa) + h(ﬁi(y’a)

is a pseudo-differential phase at myg.
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Proof. — Let us remark that if (z,y, a) is real then
<P(’1’> Y, «, h) = (Z(SE, a, h) - g(ya «, h) .

We have ()02(‘7:, Y, aﬁ) = {52((1),05) - ‘;52(y’a€) and QOI(CU, yaa) = 61(1'3 a) + éz'i‘(y’ 04) -
9% (y,a). Then, the conditions 1), 2), 3) in Definition A.5, are trivially satisfied.
Condition 4) is also easily satisfied since ¢ is precised. Let us check 5). We set
¥ = @]. Let z(a) be the local solution of the problem

(A.2) g—f(x(a), @) =0, z(a?)=zo.

Since ¢ is precised, we have ¥(z(a), @) = 0. Differentiating with respect to a, we
obtain,

—(a:(a) a) (a) + ;/; (z(a), ) = 0.

Therefore
(A.3) a) =0, z(a®) =x.
Now,
1 _ 5991 0y —
8&1; (pO) 8am (.’L’O,a ) - 07

which is the first part of condition 5). If we differentiate (A.2) and (A.3) with respect
to a; we get,

32¢ -1 9%y
(4.4) 3 oz2 ) OzOay

0%y 8%y ox 0%y %y 0%y
(4.5) 8a2 ~  Ba,0z " dan (aazaw) 8x2) (81‘30!3;
by condition 4) in Definition A.1.
Since

)>>0,

%1 %Y
a2 (po) = 2@(350,0‘0),

the second part of 5) follows.
Let us check now condition 7) since condition 6) follows easily from condition 3),
4) in Definition A.1. We deduce from (A.5) that we can find oz (x, a¢) such that, with

1/)29571":

(A.6) a¢

(:L' og(z,0¢),0¢) =0, az(:co,ag) =al.

By (A.4), the map a; — z(«) is, for any ag, a local diffeomorphism. The inverse
map z~!(z, a¢) satisfies, by (A.2), 8v¢/8ay(x,z7 1 (z, ), a¢) = 0. By uniqueness in
(A.2) we obtain 27 (z, ag) = ay(x,ag). Then

(A7) Y(x, az(z, 0e), ag) = Y(x(az(x, ag), o), az(z, o), a¢) = 0.
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It follows from Taylor’s formula that

b(z,0) = W(a, 0u(, 06), 0E) + S (T, a2, 36), ) (0 — ta(2, %))
+ M(w, a)(ax — az(z, ag))?
= M(z,a)(oz — az(z, a¢))?.
By (A.5) and condition 4) in Definition A.1 we have M(zo, @®) > 0. Therefore, with
¥ = @, we have
(A.8) P(x,a) = Clag — az(z, ag)|?, if (z,a) is real.

Then condition 7) follows from (A.8) since ¢ (z,y, a) = @7 (z, a) + @1 (y, ).
To check condition 8) when ho # 0, we differentiate (A.2) and (A.3) with respect
to ag and a,. We get, with ¥ = @7 = ] (y, a)

2y () () (k)

o 0c¢  \Bay8y/ \ 8y? OyOayg
(A.9) : 5
o= (5esy) (5%) (y50)
da2 da0y/ \ Oy? Oyday /)’
Let us set A = (%) (g—;’f—) ~!. By condition 4) of Definition A.1 this is an invertible

matrix at (zg,a?, ho). We set also

2 2 257 25r
= (aiaﬁg)’ ¢= (ajaﬁx)’ D= (a(z/z;pag)’ E= (afjaix)'

Then the matrix M occurring in condition 8) can be written at pg as

af — (D +ihB B +ihC
~ \ 26hAB 2ihAC

Now, condition 5) of Definition A.1 ensures that the matrix (D E) is invertible.

BC
Since A is invertible it follows that M is uniformly invertible when A > h; > 0. The
invertibility of ( Bydas ) (po) follows from that of (gy—a‘g—) O
The case hy = 0 in 8) is easier since ﬂ‘ﬁ— (z0, To,0f) = %2?(‘”0’ a?) is invertible

by condition 5), Definition A.1.

Remark A.7. — For a general pseudo-differential phase, we still have the correspon-
dence between z(a) and oy (z,a¢). Indeed, by conditions 5), 6) in Definition A.5 we
can solve the problems

b—(p—l(zv,x, oz (z,ae),a¢) =0, ax(xo,ag) =a)
Op1 | Op1 0y —
( B2 + )(a:(a) z(a),a) =0, z(a”)==xg.
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We have @] (z, z, az(x, a¢), a¢) = 0 by condition 4) so

6(,01 a<p1 =
%_ + a_)(:c,a:, az(xa aﬁ)’aﬁ) =0.

The map = — aq(x,a¢) is, by condition 6), a local diffeomorphism so we deduce, as
above, that az(z, a¢) and z(a) are inverse of each other.

A.2. Good contours

Pseudo-differential operators in the complex domain will lead to integrals along
some contours. In this section we define these objects which will be called “good
contours”. Let W an open subset of R?* x R?" and V a subset of RV x ]0, +oo[. Let
f(z,y,2,h) = fa(z,y,h)+h f1(x,y, z, h) be a real function defined for (y, z) in W and
(z,h) in V.

We shall assume that

(A10) 3C>0:|08 ,fi|<C, j=1,2,Y(y,2) €W, V(z,h) eV, V|a| <3

(A11) { For any (z,h) in V, f has a unique critical point in (y, 2)

(denoted (y(z, h), z(x,h))) in W.
(A.12)

The matrix (6( )(:1: y(z, h), z(z, h), h) has signature (n + k,n + k),

, 2)2
¢ Vhy >0, 3Ch, >0:V(z,h) with h > h; we have
0% f -1
\ " [W(J;,y(w, h),z(m,h),h)] ” < Ch, .
(A.13)
¢ a2f
Jhe >0, Co>0:V(z,h) €V, he]l0,hs], b?(m,y(z,h),z(:c,h),h)

52f1

has signature (k, k), 5 (z,y(x, h), z(x, h), k) has signature (n,n) and

“[6—(wvy(w7h>,z(w,h),h)] | <o

”Pﬁ@yQMAzmm]“g%.

\

Let us remark that (A.13) implies (A.12) for small hA.

Definition A.8. — Let f be satisfying (A.10) to (A.13). Let
| PSR (17, Z) — (y(z, Y,Z, h), z(z, Y,Z, h))
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be a map from a neighborhood of (0,0) in R* x R to W C R?* x R??, such that
y(z,0,0,h) = y(x, h), 2(x,0,0,h) = z(x, h). We shall say that I'; 5 is a good contour
for f if there exists a positive constant Cp such that, for every (z,h) in V,

(A14) f(:l?, Y, =z, h) - f(.'L‘, y(xa h’)a Z(SC, h)7 h) < _CO[Iy - y(:c, h)|2 + hlZ - z($7h)|2]

on the contour I'; , (that means for (y, z) = (y(z, Y,Z,h),2(z,Y, Z,h))). We assume
moreover that y(z, Y,Z, h) = y1 (=, Y, h)+hya(z, Y, Z, h) and that for all (z,h) in V,
(A.15) o

la(aY,Z) yj(' o )l + |6?Y,Z)z(m’ Y,Z, h)l < Co, ]al <2

Y\ |2 VANE 1
Dyzv(@,0,0,1) (1) |+ b[Drizs@0.0.m) () [ = Z (v + iz,
A Z Co

Proposition A.9. — LetT'y; 0 and 'y 1.1 be two good contours for f. Then, there exist
for s € [0,1] a smooth family Tz p s a good contours and & > 0 such that for every
(z,h) inV,

(Tx,m,0 ™ far:,h,o) U (Tz,h,1 N fz,h,l) U{0lg,n,s s €[0,1]} C {(,2):
f(.’l:, Y, 2, h) < —0h + f(.’L‘, y(z‘, h)7 Z(‘T’ h)v h)} .

Proof. — To prove this result, we first write f in a set of Morse coordinates. This
leads us to check that the change of coordinates is well defined in a fixed neighborhood
of the critical point, that means independent of (z,h) € V and that the constants are
also uniform.

Lemma A.10. — Let Ag be a 2n x2n matriz which is real, symmetric and has signature
(n,n). Then there exists a matriz Qo such that Ag = *QoD Qo with D = (I(;’ (} )
—4in

and, for all symmetric matriz A, such that |A — Aol < 1/2||45"|, one can find
Q = Q(A) such that

(i) A='QDQ, Q(Ao) = Qo,

(i) 1Q(4) — Q(B)II < || A5 I'/2|A — Bl|, when || Ao — B|| < 1/2||Ag,

(i) QAT < 2/l Ag QA

(iv) 1QAN < [l 4oll/2 +1/2] A5 V2.

Here || - || is the matriz norm related to the Euclidian norm in R?".

Proof. — We write A9 = *OA O, where O is orthogonal and A diagonal ; then we
write A = *KyD K, where K, is the diagonal matrix which entries are the square
roots of the absolute values of the eigenvalues of Ag. We set Qg = KoO. Then
Ao ='QoDQo and [|Qoll* = [|Aoll, [|Q5 " I> = | A5 ||- Now we set Q = Qo + R ; then
R must satisfy

A—Ay='QoDR+'RDQo+'RDR.
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To solve this equation we define, by induction, R;, K; such that

{K0=o, Kjs1=A—Ay—'R;DR;, ;>0

(A.16) 1

Rj=§DtQ51KJ~, j>=0.
It is easily proved that
1 _ .
1K1 — K5Il < Z(”Kj” + K- l) 1A N B — K—all, 5> 1.
We deduce, by induction, from this inequality that, for 7 > 1,

| Kkl < 0<k<j

_
[Eh
1K — Kj-1ll < 1||A Aoll-

It follows that K; — Ko, R; — R and Roo solves our initial equation. Now, if we
denote by K}, R} the solution of (A.16) with B instead of A, we have,

IK; — Kl < |A— Bl + 5 lI —1 = Kjall,

which implies that

K5 — K|l < 2||A— Bl - lA—BJ.

2i—1
Then

/ ]- - ] —
1Q(4) = QB = | Roo — Rill < 511Q0 |1 Koo — Kool < Q0711 - 114 — BII-

Finally
1
QI < 1Qoll + IIRII < Nl Aoll*? + ~IIQ gl < Nl + —=775
° IIA il 2|| A5 |11/2
and
1R = A~ @Dl < A7 - lQll < 2[145 [ - Q1. 0
Proof of Proposition A.9. — We shall consider the case where h is small ; the case h

large follows the same lines and y, z play the same role. We write
(A17) f(xa Y, =, h') = f("rv y(l‘, h)a Z(:]:: h)a h) + (t(y - y(wv h))7 t(z - Z(:L‘, h)))
A1 hBY (y—y(z,h)
h*B hAy) \z — z(z,h) )’
where A;, B, A2 depend on (z,y, 2, h) and satisfy the estimates
32
41 - G2 ]| < x(ly - vt W] + blz = 2@, ),
32
|B— oL mem)]| < (1w — 9z, W)l + 12— =Gz W),
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82
42— Z-Lma)|| < Ca(ly - v, W) + 12— 2(z, B))
where mg n = (z,y(z, h), 2(z, h), h) and C) is a constant which depends only on the
constant C in (A.10).
We wish to apply the Lemma A.10 to A;, so we need that

Ci(ly - y(z, h)| + hlz — 2(z, h)]) < __.
1\lY —yY\r z—z(x 2“(32f(m$h)) 1“

It follows from (A.13) that this will be achieved if

1
2CoC1 -
Under this condition, the Lemma A.10 implies that one can find @ = Q:(z,y, 2, h)
such that

(A.18) ly — y(z, h)| + hlz — z(z, k)| <

= thDl Ql where D1 = Ik 0 .
0 —1I

Since Ay = A'(z,y,h) + hAY(z,y,2,h), it follows from Lemma A.10, (ii), that

Q1 = Q(z,y,h) + hQY(z,y,2,h), with Q) = Q(A}). Moreover ||Q1] and ||Qg*|l
are uniformly bounded by constants which depend only on Cp, C in (A.10), (A.13).
It follows that we have

Ay hB\ _ [*@:10 D, h'Q7'B\ (Q:.0
htBhAy) ~ \ 0 I)\R'BQ7' hA; 01)°
Let us set !*Q7'B = B; and let us look for Q2 such that
I 0 Dy hB\ (ThQ\ (D, ©
htQaI) \htB1 hA2/\O I J \ 0 hA3/)"
This will be achieved if D; Q2 + B = 0 and we find

Az = Az + h(*B1Q2 + 'Q2B1 + 'Q2 D1 Q2).

Then Q2 = —Dy ' B; and ||Q2]| is uniformly bounded. Moreover if h is small enough,
Az will satisfy the hypothesis of Lemma A.10 if

ly — y(z, h)| + |2 — 2(z, h)| < Ca,
where C> depends only on Cp, C, C; in (A.10), (A.13). It follows that one can find

Q@3 such that A3 = thDng with Dy = (-[On ?[ ) Then
—in

htB hA2 - thz Q3 0 th 0 Q3 )

Now we introduce the coordinates
Y = Qi(z,y,2,h)(y — y(z, h)) + hQ2(z,y, 2, h)(z — 2(z, h))
zZ = Q3(x7 Y, =2, h’)(z - Z(:II, h‘)) .
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This is a change of coordinates from U to U , where U contains a fixed ball with center
(y(x, h), 2(z, h)) and U contains a fixed ball with center (0,0). Moreover, there exists
a uniform constant C3 such that

-C,l—]z — 2(z,h)| < |1Z] < C3 |2 — 2(z, b))
3

1
oA [ly — y(z, B)| + hlz — z(z, h)|] < Y|+ h|Z| < C3[ly — y(z, h)| + hlz — 2(z, h)]].
Now, if we write f is the coordinates (X, Z) we get
f(x’K Za h) = f(;v,y(a:,h),z(m,h),h) + Y12 - Y22 + h‘(Z]? - Z22)

where Y = (Y1,Y2) € R* x R¥, Z = (Z1,22) € R™ x R™. So a good contour for f
must satisfy

Y1l? — |Y2l? + h(1Z1? = | Z2?) < —C(IV1 + |Y2|® + h|Z:1|? + Rl Z2]?).
Therefore, on such contour we have
(A.19) [Y1|? + h|Z1|?> < 8(|Y2|? + R|Z2]?), O0<é<1.

The contour, in the coordinates (Y, Z) satisfies the conditions (A.15), since we have
seen that Q1 = Q' (z,y,h) + hQY(z,y, z, h). Let us denote by (Y, Z) the parameters
on the contour and

Y(z,Y,Z,h) =YY (a,Y,h) + hY?(2,Y,Z,h).

It follows from (A.19), using a Taylor expansion of (Y, Z), that there exists a constant
C}4, depending only on fixed constants, such that

G 7 rlSg 2 < s GE T + 452 2)

+C3([Y P + h|Z]? + Y2 Y2 + 13/2|Z)?).

(A.20)

Therefore, if

1
61:2 Y =0, %Z 0,
oY 0z
it follows from (A.15) that
oy 0z
Cs(-- )+| 1Y| +h| 1 \ (|Y|2+h|Z|)

~ ~ ovy 0
Using (A.20) we see that this implies Y = Z = 0. Thus the map 66’ oz; | ¢
£y
R*+m — Rk+7 jg bijective.

It follows that we can solve the system in (Y, Z)
Yy = Y (z,Y,h) + hYE(x,Y, Z, k)
{ Zy = Zo(z,Y, Z,h)
if h and |Y2| + | Z2| are small enough.
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Therefore any good contour can be parametrized by (Y2, Z2). If we have two good
contours parametrized in the Morse coordinates by (Y2, Z2), that means that we have
Tun, = (Y (x,Y2, Z2,h), Z](x,Y2,Z2,h)), j = 0,1, then

fz,h,s = (3},11(37’ )f2,22’h) + (1 - 3)}/10('7’ Y'Z’ZZah)Vngl(' ’ ) + (1 - S)Z?( : ))

is a good contour, since it satisfies (A.19) and it is the family that we looked for. [

A.3. Pseudo-differential operators in the complex domain

We follow here Sjostrand [Sj]. The parameter A will be replaced by h=2k~! and
the weight of the spaces H, will depend on some parameters (including h and k).

Let W be a neighborhood of a point g € C. Let V C R% x Rt x R* be the set of
parameters m, h, k. Let o = ¢(x;m, h, k) be a real function which is C° with respect
to x in W and satisfies 3=, , <, SuPy «w |05 ¢| < C. We shall say that u = u(z;m, h, k)
belongs to H, if

(i) for any (m, h, k) in V,  +— u(zx;m, h, k) is holomorphic in W,

(ii) there exist C > 0, M > 0 such that for any (m,h,k) in V and z in W

u(z; m, b, k)| < C (k)™M ek ™k el@mhk),

To any (m, h,k) in V we associate a function a = a(z,y,&; m, h, k) holomorphic with
respect to (z,y,€) in a neighborhood W of (a:o,azo, % %‘f(wo;m, h, k‘)) and uniformly
bounded. It will be called “analytic symbol”. We consider now

Ph(l'()) = {(yag) € (CN X (CN : I:DO - y‘ <, 5 = %%(1’077”7]1719) +ZR(:UO - y)}

Here R is large enough but 7 is so small that I'y(zg) is contained in the set where a
is holomorphic.
Now, for u € H,, we set

(A.22) Au(z;m, h, k)
h=2k~1
~\2r

N p—27.—1
)" [[ e e tata, gy m by ) ulyim, b k) dyds.
I'n(zo)

Then Awu is holomorphic with respect to x near o and modulo a term which is
uniformly bounded by e~ 47" § > 0, we can integrate, in (A.22), on I';(z) instead
of I'n(zo). Moreover one can see that Au € H,,.
To invert the elliptic symbols, we have to modify slightly the argument of Sjostrand.
We shall say that a(z,&, \;m, h, k) = ijo A da;(z,&;m, h, k) is a formal analytic
symbol if one can find a neighborhood of (zo, o), a set V containing the parameters
(m, h, k) and Cp > 0 such that

(A.23) laj(z,&m, b, k)| < CITH /2, VY (z,6) €W, V(m,h,k)€V.
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We shall set

A=) "\ i aE a; D* =Y A F Ap(z,&m,hk, D) =Y A F A,
=0 k>0 k20
Let to > 0 and, for ¢t € |0, o], Q2 be an open subset of C"V such that

i) Qs Cﬂt, if8<t,

ii) 36 >0:Vs<t, Yz e, B(z,0(t—s8)) CQ C Yy CW.

Let H(L2:) be the space of holomorphic functions on ;, endowed with the sup
norm and F,; = L(H(:), H(S2s)) be the space of bounded linear operator with the
corresponding norm || - ||s¢. Then

1) Ak (S Es,t

2) || Axllst < CRFLER/2(¢ — s)— if s < t.

We set fr = SupPg<s<isi, %”Ak”s ¢ and [lall, = > 450 p k fr. Then a is a formal
analytic symbol iff one can find po > 0 such that ||al|,, < +oc.

To a formal symbol a, we can associate an operator Op(a) obtained by the for-
mula (A.22), where a has been replaced by Z|j|<51§h_2k_l (h2k) aj(z,&m, h, k), with
C> large enough.

Conversely we can associate to the operator defined by (A.22), a formal analytic
symbol given by

1 1 o . 2 -27.-1
UA:ZJW(ag ya)(x7x7€7m7h,k)7 A=h"%k .
The formula (4.4) and the Lemma 4.1 in [Sj] show that if uw € H,,
3C >0, e >0:|(Op(oa) — Au| < Ceh "k eme)

On the other hand if we define, on the set of formal symbols, the composition by

a#b = AN =p 2!

Z 1 1 9%a 8°b
— a! (iA2)lel 9> oz’
the Theorem 4.2 in [Sj] shows that if u € H, one can find C > 0, € > 0 such that
|[Op(a#b) — Op(a) o Op(b)Ju| < Ceh™ k' (v=e),
The Lemmas 1.3 and 1.4 in [Sj] still hold and we can invert the elliptic formal symbols
i.e. those for which |ag(z,§;m, h, k)| = C > 0 for all (z,£) in W and (m, h,k) in V.
If the operator A given by (A.22) is elliptic, which means that,
3C>0:V(2,9,8) €W, V(mhk) €V, la(z,y,&m,h k)| > C

then its associate formal symbol o4 is elliptic and one can find a formal symbol b
such that

Id = Op(ca#b) = Op(ca) o Op(b) = Ao Op(b) in H,.
The equality = in H, means that the difference applied to v € H, is bounded by
Ceh 2k p—e)
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We shall use the Remark 4.3 in [Sj] which we recall. Let ¢ = ¥(z,y,§;m, h, k) be
holomorphic near (xg, o, o) uniformly bounded which satisfies

1;b|:E='y =0,
(A.24) _ ( 92y
~ \9z0¢

) is invertible and ||[M ~!| is uniformly bounded.

Let us set
h—2k1

N 2y
Au(x;m, h, k) = ( ) // eth 7k 11/’(”’y”z"")a(ar:,y,g;m, h,k)u(y; m, h, k)dyd§
r

where a is an analytic symbol near (zo, Y0, &) and I" a contour, which will be described
below, such that A will be an operator on the complex domain. Thanks to (A.24), we
can write ¥(z,y,&; -+ ) = (z—y)- f(z,y,&m, h, k) and the map £ — f(x,y,&m, h, k)
is a local dxﬁ'eomorphlsm on a neighborhood which is independent of (z,y,m, h, k).
Let us denote by g the inverse map £ = g(x,y,0;m,h,k) and let @ be an analytic
symbol. We set

Au(a:;--—):( o e’ *=¥)%(x,y,0; m, h,k)u(y; m, h, k)dy dé
where o
I'= {(y,G) Hle—yl<r, 8= %(330,330,&0;"') +iR(z — y)}.
Then A is an operator on H,, if | (zo,x0,€0;--+) — %%(xo, )| is small enough
Now, if in the integral deﬁmng Au we took T' = g(:r F m,h,k) and if in A we
took @(z,y,0;-+) = a(z,y,9(x,y,0;---), -+ ) Jac(g(z,y,6;---)) then A = A in H,.
Moreover a is elhptlc iff @ is elliptic. O

We would like now to define an operator on the complex domain using a pseudo-
differential phase ¢ = ¢(z,y, o, h) whose definition is given in Definition A.5. Let
a = a(z,y, a; h, k) be an analytic symbol. Here the parameters are (h, k). Formally
this operator will be given by

(A.25) Au(z;a,h,k)

h=2k=1\n  h—1k—1\n/2 P
= e ) ( o ) //Feh K e@wesh) g(p y. a; b, k)u(y; b, k) dy do.

Here ¢ and a are holomorphic near (z¢, zo, @°) and u is holomorphic near zg.

Let us describe the contour I'. Let ¢ = p2(z,y, o) +ihpi(z,y,a). Let az(z,y, o)
be the solution of %g—a‘n—(w,y,ax(x,y,ag),ag) = 0 with ax(wo,:co,ag) = af. We have
az(z,x,0¢) = ag(x,a¢), with the notation of Definition A.5, 5). Let I'y, be the
contour given by o = ag(x,y,a¢) +t, where t € R”, [t| < J, and let us set

171
b(z,y, ag, h, k) = (h 271: )n/2eh_1k_l¢1(m,y,az(w,y,ae)»ae)‘/F e~h kT o1(x,y,0)

a(z,y,a, h, k)do, .
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Since (%—'g(wo,wo, a®)) > 0 (Definition A.5, 5)), we obtain easily, from the Taylor
formula that b is an analytic symbol near (zo, zo, ag). Moreover if a is elliptic then b
is elliptic if hk is small enough (here o plays the role of £). Let us remark that if we
change § in the definition of the contour I',, then we obtain, in b, an error which is
O(e=="""¥7'). This error was not negligible in the case of Sjéstrand [Sj]. However it
has no consequence here according to our definition of ¥°W F,.

Now we want to give a meaning to

—27.-1
(A_26) Au(m; a, h, k) — (h 2k )n // eih—zk_l[‘PZ(z:yvaf)"’ih‘pl(xvyﬂlm(x:yvaf)va{)]

T

b(x, Y, ag; h, k)u(y; h’ k) dyda& .
Let us show now that the phase

¢($, Y, g, h) = 902(-’177 Y, Olg) + ih'(pl(xv Y, 011-(.’17, Y, ag), aE)
satisfies the condition (A.24). First of all, conditions 3) and 4) in Definition A.5 show
that ¢ = 0 if x = y. Assume now that h is small. Then
Py Py
0zdae  Ozdag
and since p2(z, z, a¢) = 0, we have
Pps Py
8x8a5 o ayaag’
so the second condition on 1 follows from 8), Definition A.5. When h > § > 0, we

use instead conditions 5) and 8).
Now we have

+O(h)

o 0 ., 0
B—f(d)o,.’l)o,ag) = —g;(xg,mo,ag) + 'lh%(l‘o,wo,ao)
., 0 Oay
+ 'Lhaffi(wo,:cg,ao) . %(wo,xo,ag)
9

81' (a:O)zO;aO’ h) = 507

by condition 6) Definition A.5. By the discussion made after (A.24), if we set,
f—_— {(yve) : lx_yl <T,9=€0+iR($—y)}

then IV = g(z,y,T) is a good contour, and A in (A.26) is well defined on H, as soon
as % % - §0| is small enough.

Thus we have obtained a contour I in (A.25) where ay € I's,, (y, a¢) € IV and we
show now that this contour is a good contour for f = Re(iy). We shall use the results
of § 2. Our function f is here a function of (z,y, z, h) where y stands for (y, a¢) and
z = a,. With these notation we have f(z,y,z2,h) = fa(z,y) + h fi(z,y, 2), where

f2 = Re(ip2) and f1 = —Reyp; = —¢f.
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We may assume, making a translation, that (ignoring z which is fixed)

9% f1

52 (0,0) invertible.

f2(0) = f1(0,0) =0,
Let z(y) be the solution of

2y, 2) =0, =(0)=0.
Then if 2(y) + ¢ is a good contour for ¢;, which means that on the contour we have

fi(y, 2(y) + 1) — f(y, 2(y)) < —Ct)?
and if we have a good contour in y for f2(y) + h fi(y, 2(y)) which reads

f2(y) + hfi(y, 2(y)) < —Cly/?,

on the contour, then the contour in (y,z), (y,2 = z(y) + t) is a good contour for
f2(y) + h f1(y, 2) since

Fo(y) + h f1(y, 2(y) + t) = fa(y) + R f1(y, 2(y)) + h(f1(y, 2(y) + t) — f1(y, 2(y))
< —Cly|* — Chlt|?

on the contour and conditions (A.15) are satisfied.

A.4. Pseudo-differential operators in the real domain

Let mo = (o, &0,a’, ho) € R™ x R™ x R?" x [0,+o00[ and ¢ a pseudo-differential
phase near mg (Definition A.5). Let V be a neighborhood of o in R??. We set,
following Sjéstrand,

VV ={(z,y,0) e R* xR x R?" : 2 = y, @y = az(x,0¢),0 €V
3
where
o7
’%l(xa y,am(:l:, y,aﬁ)aaﬁ) =0

and ag(z,0¢) = ag(x,x,a¢). Let a be an analytic symbol. Then we set, for x real,

(A.27)
AV u(z; h, k) = / / el e w et (3, y, 0 h, k) X(2, Y, @) uly; b, k) dy dar.
acV
Here x is a cut-off function which localizes in the set where ¢ satisfies the conditions

of Definition A.5, x = 1 near VV and a is an analytic symbol.
Here is an important result in this theory which will be used later on.

Theorem A.11. — Let v be a phase in the sense of Definition A.4, b an analytic sym-
bol, ¢ a pseudo-differential phase, a an analytic symbol and let AV be defined by
(A.27). Then one can find €1 > 0 (depending only on Cy, in Definition A.4, and ¢)
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such that if eg < €1 then there exist 6 > 0, C > 0 such that for all (z,3) in W and
all (m,h) in U, we have

AV (eih_2k—1¢(.,ﬂ,m,h) b(, ﬁ,m, h, k)) — eih-2k—1¢(z,ﬁ,m,h) c(w,ﬁ,m, h, k) +d
where |d| < Ce=%h"'*¥7" ¢ is an analytic symbol and
Cc = e—ih—zk—l‘d)(l‘,ﬁ,m,h)A(eih—2k_1’l/)(-,ﬁ,m,h) b(., ﬁ, m’ h’ k))

where, in the last expression, A acts in the complex domain as an operator on H_ 1r, ¢,

modulo error terms bounded by Ce=%h "*7"

Proof. — The first step is to study the phase 8 = p+1), which occurs in the expression
of AV (eth™*k'¥p).

Lemma A.12. — Let v be a phase in the sense of Definition A.4. Let ¢ be a pseudo-
differential phase (Definition A.5). We set

0(z,y, @, B,m, h) = p(x,y,a, h) + Y(y, B,m, h).
Then for all (x,B) in W, all (m,h) in U there exist y(z, 3,m, h), a(x,3,m,h) such
that

99 % ,

o0
a—y(w,y(x,ﬁ,m,h), a(z,B,m,h),m,h) = 5;;() = E‘Z -)=0.

Moreover (y, o) satisfies the following properties
(i) y(z,B8,m,h) = x.
(ii) az(z,B,m,h) = az(z,0¢(x, 3, m,h)) where o is the real on the real.
(iii) There exist £1 > 0, C > 0 such that, for 0 < g¢ < €1,

| Im ag(z, B, m, h)| < Ceoh, for (z,8) € WNR3",
€1 and C depend only on Cqy (Definition A.4) and ¢.
Proof. — Let us note that in ii) the function a, in the right hand side is the function
which appears in 5) Definition A.5, that is (thanks to 3))

7]
5%(27, Z,az(x,0¢),a¢) =0.

Moreover we have

o Ayt
Tz(m,x,ag) =0, 6%ft;(w,a:,oz) =0
and thanks to 4) Definition A.5, differentiating with respect to a¢, we get
9T

8&5 (m,w,az(x,ag),ag) =0.

It follows that (y(z,a¢) = x, az(x, ag)) is a solution of

¢ ..
ooy

0
)= 5_0%() =0, y(g;o,ag) = xg, am(wo,ag) =a2.

ASTERISQUE 283



A.4. PSEUDO-DIFFERENTIAL OPERATORS IN THE REAL DOMAIN 115

It remains to solve

Z—Z(x, z,az(z,0¢), a¢, B,m,h) =0,

with respect to a¢. Let us denote by aé (z, B, m, h) the solution of
oy
. —_— — h —
(A.28) ” (z,z,0¢) + By (z,B8,m,h) =0

for a¢ in a neighborhood of 2. This equation can be solved since (%%) is invertible.
‘We note that aé is real if (z, ) is real. Now, let us denote by a¢(x, 5, m,h) the
solution in ag (near af) of the equation,

Oy oy _
(A.29) By (z,z, ag(x,a¢), ag, h) + By (z,B8,m,h) =0.
One can solve (A.29) if the matrix
9% L 0% 8%p1\ 1 9%y
dydae zh(ayaaz) ' ( da2 ) ' Bazaag)

is invertible, which is implied by the condition 8) of Definition A.5, since (g g) is

invertible iff A — BC~! D is invertible.
Since aé (z, 8, m, h) is real for (z,3) real, we have
|Tm ] = | Tm(ag — a)] < log — .

To prove that |aé — a¢| < Ceph, we apply the following result.

Lemma A.13. — Let F,G be C? function from RY to RN. Let Xg,nm0 in RN and
assume that F(Xo) = no, G(Xo) = 0. Let us assume that the matrices
9(F + hG)

X (Xo)

OoF
ﬁ (XO) and

are invertible.
Let X (n) be the solution of F(X(n)) =n. Let Y (n, h) be the solution of

(F + hG)(Y (n,h)) =mn,
for n close to ng. Then

[Y'(n, k) — X(n)| < Chln —nol.

First of all, Lemma A.13 implies the claim iii) in Lemma A.12 since it follows from
4), Definition A.4 that |%/;—r - gly| < goh. Moreover let us note that we can solve
(A.28), (A.29) with a right hand side 7, keeping the conclusion of Lemma A.12 if
|n| < €0, with €¢ small.
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Proof of Lemma A.13. — We have

n=F(X(n)=FY@m)+ g—f((Y(ﬂ))(X(n) =Y () +O0(X(n) - Y(@)|).

Moreover

oY () = 22 (X0) + O(ln —ml) and  F(¥(n) =1~ hG(¥(m).

Since |G(Y (n))| < Cln — no| we get

|X(n) =Y (n)| < C(hln —nol + | X (n) — Y (n)|*)

and the lemma follows. O

Proof of Theorem A.11. — Recall that 8 = p + ¢ = 03 + th6;, where 63 = 3 + 1,
01 = 1. We show first that f = — Im 0 satisfies the conditions (A.10) to (A.13). We
have f = fo + hf1 with fo = —Im#6s, f; = —Re#;. The correspondence between
the variables in f and @ is the following : the variable y (resp. z) in f is the variable
(y,a¢) (resp. ag) in 6. The condition (A.10) is obviously satisfied and (A.11) has
been proved in Lemma A.12. Since 6 is holomorphic in (y, @) we are reduced to prove
that some matrices of second derivatives of 6 are invertible with uniformly bounded
inverses since the conditions on the signature will follow from the holomorphy. Let
us begin by (A.13), which is the case of small h. We have
8201 82<p1

2 2
ooz oa?2

and the later is uniformly invertible by conditions 3), 5) in Definition A.5 (since they
are taken at the point (z,z, o, (x, a¢), o, h)). Now we have

azo? s
8292 _ ( oy dydag

—_— = 2 2
a(ya af)z aaaeazy %a;iz
We have
0% p2
_f'(a"’ z, aE) =0
BaE

(condition 3)) and 36—;9% is invertible (condition 8)). If h is small enough, it follows

that a—g’% is invertible with a uniformly bounded inverse.
Let us consider now the case h large. We have

62 7] 62 62
@5 dydae  dydas

2
9% | 8% 2% o
P 2 dag Oy dag dagdoay
(y’a) Py 52 52
g _g¢ g

Oagdy Oazdog da2
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At the point (z,z, az(x, og), ag) we have %‘f’f— = 0. Then

a8 ® e %y 8%y

Oaj Oagday — ih daj daglay

82 o2 B 82 a2
_9 e 1 _592_1_
doazlae  OaZ daz0ag  daZ

Since
9p1 _ Op1 — Op2
Oay Oog Oag

at the critical point, we can prove (as in (A.9)) that

=0

Py Py (62<p1)‘1 8¢

daf — dagdag \ da2 dagdae
Thus we can write
5% a B C
—— = |t*BihDE'DihD | =M.
8(y, a)? ' ;

tC  ih'D thE

Now, by condition 8), the matrix ( is invertible. This is equivalent to

B

ihtD ihE)
(B — CE~!'D) invertible. Combining the second and the third “line”, we see that
M is invertible if (!B — D E~1tC) is invertible, which is the case, since F is sym-
metric. We are going now to change the contour of integration in the integral giving
AV (et ?k¥7'¥p)  in order to integrate on a good contour. Then proposition will follow,
since, by Proposition A.9, we can then change this good contour to the good contour
(Tag,I) given after (A.25), (A.26).

Let xo(z,y,a) € C§° be a cut-off function with suppxo C {x = 1} (where x
appears in the right hand side of (A.27)), xo = 1 in a neighborhood of VV' (see the
beginning of § 4) and xo > 0.

For s € [0, 1], we set

- - 0, ~
Ig:y= y+iscSXO(:c,y,a)g—y(az,y,a,ﬁ,m,h), where y € R".

For each a € V, the contour I'g = R” is modified in a set where x = 1. Therefore in
AV (--) (see (A.27)) by holomorphy, we can integrate on I'; instead of I'y.

Let now x2 € C§°, suppx2 C {xo = 1}, x2 = 1 on a neighborhood of VV and
xz2 = 0.

Let x1 € C$°, suppx1 C {x2 = 1}, x1 = 1 near VV, x1 > 0. For s € [0,1] and
a €V we set,

g=:'7a ye Rn’
(A30) Qe = &5 + 3X2($;:;Jv, &)(aﬁ(xvﬁa m, h) - 02)7 a{ € R",
[o77% =ax+~9X2($,5,&)(0¢z(x,ﬁ,m>h)”‘042), a':l': eRn,
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and we define

y =y +idxo(zx, y,a) (:c y,a, 3, m,h),

O!g = Q{ + ’I:S(SXI(:II, ga a) Ea—g(w,_nga ﬂam’ h)7

‘We have fo =1T';. Let us compute 6 on fs. We have
~ |00 2
0,9, 0 m, h) = (2,3, 6,m, h) + i x0(2, 9, 8)| 5 (23, 8,m, )|

+isd x1(z, y,a) (w Y, a, 3, m, h)| —!—0(52 '6 | + 52622 (;90 |)

If § is small enough we get

2
(A31)Tm 6(a, v, B, B) > T 6(a, . 2, B, h)+3 Xo(@, 5. 8)| 5,y 20 B, )|

) ~ | 08 2
+§SX1("L"y,a),ﬂ(m,gvgyﬂym,h” .
We show now that we can restrict the contour to the set where y; = 1. By
Lemma A.12 we have |Im a¢(z, 3, m, h)| < Coheg. Therefore,
0(z,y,a, 3, m, h) = 6(z,y,Req, B,m, h) + O(eoh),

(where O means uniformly bounded by a constant depending only on C, and ). It
follows that

Ime(x, y;Q’ ﬁ,m)h’) 2 h Re(Pl(x7 y’ Reg, :3’ m,h) + O(th)

since Im 1 > 0 on the real; then, by (A.30) and condition 7) in Definition A.5, we get
on the contour

Imé > Ch[(Rea, — az(w Reo;))? + (Rea, — az(y, Rea,))?]

+3x0(@5,8)| 5 (m v, B,m )| + O(eoh).

Now since x; = 1 on a neighborhood of VV we see that if (z,7, &) € R™ x R® x R?"
belongs to the set {x1 < 1} we have |a; — ag(z,a¢)| + |Gz — az(y, a¢)| = § > 0 with
a uniform §. For this we use that, in the integral (A.27), « is bounded and that, by
Remark A.7, az(x,0¢) = Bz © & = (0B, 0¢). Now

|Rea, — az(z;Reae)| + |Rea, — az(y, Reay)|

= ]a$ - az(xaa§)| + |az - ax(ya a£)| + O(laz(w’ﬂ’ m, h) - ag] + |O‘E(w9 B, m, h) - 042|

> 5+ 0 - zol) > 3
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if |z — zo| is small enough. It follows that Im @ > Cih on this set. This gives an error
term which is @(e~C*»7"*7'). In the set {x1 = 1}, on the boundary of the contour
I's we have & € 8V so, |a — a®| = 6o > 0. Moreover xo(z,y,&) = 1. Now, since &
and ap are real it follows from (A.30) that,

Ima = SXZ(:B; ¥, Q) Im[a(x, B, m, h')] = O(h),
by the Lemma A.12, iii) and ii). Then,

6100 2
Im6 > Chlla, — ox(x, o) ® + |ae — az(y, ae)|?] + 5 —a—y(m,g, )| + O(eoh + h?).

Claim. — Let |a| + |b| + |c| < d1. Then, the problem in (y, ),
az(T, ) =a, +a
oo (Y, ae) = a; +b
g—z(x,g,g,ﬂ,m, h)=c
has a unique solution (y,a) such that,
la —e®| + |y — ol < Cdy

with a positive C which is independent of (8, m,h) and d;. Assume this claim true.
Then if di is such that Cdy = %60 we get

606 2
— 2 4 — 2 + == 3 C, 82
|z (, _ga) | lax (¥, @) — oyl 5 I By (z,y,2,8,m,h)| > Cid;

where C1 depends only on C and 6. It follows then that Im @ > Cah on this set which

. . . —1;—-1
gives an error term which is O(e=C2h" k7).

Therefore we can shift the contour 'y = I'g to I'; N {x1 =1}.

Proof of the claim. — The map

00
F:(y,0) —> (gz — g (2,0¢), 0, — 0z (Y, Qg), 5y (z,9,2,8,m, h))

is a local diffeomorphism.
Indeed we first note that,

daz _ _(62g071’>—1 827

dag da2 da 00y’
dag _ (3PpT\~1r B%p] %]
By _( da2 ) (&caam + Byaaz)’
and
o0 _op
da ~ da’
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It follows that the differential of F' at (zo,a°) is (uniformly in (8, m, h)) invertible if
the matrix

827 8?2 Y1
0 ('92012 aazaag
82 O%pT 8%p7 82 L 0
8o, Oz 90,0z T Da.oy 6a13y 8o2 Bazlaae (%0, z0, ", B,m, h)
o2 o 82 'y
Ay Oydar Oydag

is (uniformly) invertible.
This is equivalent to say that the matrix
i; .M_
M= gczx Baazazag ({L'O, Zo, aO, h)
Jylar Oydog
is (uniformly) invertible, because (
A5 6)).
Now, if hy = 0, since —51 and 6y¢';Pa are invertible and 22 = O(h) we obtain

dyday
that M is (uniformly) invertible if h is small enough. If hy # 0, since g3 does not

e Bz + pa ay) is invertible (see Definition

depend on «a, and ¢} (z,z,a) = 0 we get —gl(xo,xo, a®) = 0. Then,

9?2 8%y

M — %g 6a,6a€

T\ 2% 0%

Oyda, Oydag
which is (uniformly) invertible by Definitions A.5, 8). It remains to show that the later
is a good contour for —Im@. For this we are going to use (A.31) with xo(z,7,a) =
x1(x, ¥y, ) = 1 since suppx1 C {xo = 1}. According to (A.30) with s =1, x2 =1

and to the fact (Lemma A.12) that (z,z, a(z, 8, m, h)) is critical point for 8, we set

(A.32) O(z,y,a,m,h)=0(z,z,a(x, B, m,h),m,h)
+% D?0(z, , oz, B, m, h),m, h) - X2 + O(E®)

where

(4.33) {D% (0,00), X = (72,5 - a?)

BT =y -z + |ae — a2|j +hla, -2, j>0.

Since, by Lemma A.12, Im a(z, 3, m, h) = O(goh), we can replace in D?0, in the above
formula, a(zx, 3, m, h) by Re a(z, 3, m, h) modulo an error which is O(goh|| X ||?). Now
0 = @2 + thpi + 1. Since g9 is real on the real, we have

(A.34) Im [D?p2(z, z, Re a(z, B,m, h)) X?] = 0.
To take care of Re D%¢p; we recall that (Lemma A.12),
O!z(.’l,', 187 m, h’) = a:l:(xa ag(.'l,‘, ﬂ, m, h))

SO
Re az(z, B, m, h) = az(z,Reae(x, B, m, h)) + O(eoh).
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Therefore we can replace in D?p1, Reag(z, 3,m, h) by az(z,Re ag(z, 3,m, h)) mod-
ulo errors which are O(goh E?). So we are left with

(1) = h Re D%y (x, z, az (z, Re ag(z, B, m, h)), Reag(z, B, m, b)) X2.
Now, by conditions 4) and 7), Definition A.5, we have
Repi(z,z, 0 (x,Reae(---)), Reag(---)) =0,
Reyi(z,y,a) >0 if (z,y,a) is real.

Then, that Re D (z,z, az(z,Reae(---)), Reag(---)) = 0. It follows from condi-
tion 7), Definition A.5 and Taylor’s formula that,

h Re i (x, 7, 0z — ad + az(z,Reag(z, B,m,h)), e — ag + Reag(x, 3,m, h))

= (1) + O(E®) > Ch(ds — a2 + az(z,Reae(---)) — ag(z,Reag(---) + & — a))?.
It follows that
(A.35) h Re D%, (x, x, oz, B, m, h) X2 > Ch(dy — a2 + az(z,Reag(z, B,m, h))

—agz(z,Reag(---) + ag — o.'g))2 + O(eoh E? + E®).
Now by condition 6), Definition A.4, we have
(A.36) Im D%y (x, B,m,h) X% > —Ceoh| X|?.
We deduce from (A.31) to (A.36) that
(A.37) Im6(z,y, e, B,m, h) — Imb(z, z, a(z, B,m, h), m, h)
> Ch(az — a2 + oz (z,Re ag(az B,m,h)) — az(z,Reoe(-- ) + ag — of))?

680
2

where X = (¥ — z,& — o).
Let us set p* = (z,z, a(z, 8, m,h), m,h). Recall that this is a critical point for 8,
(Lemma A.12). Then, (A.37) implies

5(10%, .. -
(438) 0@, pmh) > 5 (556N G—2)

00 2
@ e Bm )|+ %@@%mmmﬂ+OWMfmﬁ)

a—ao)l2

%0
Jyoa

20, 820 . o
+ 07T~ D)+ ez )@= ) )

2
+Ch|a, —al — g—Z?(w,Reag(x,ﬂ,m, h))(ae — ag)' + O(E® + eoh E?).

Now, the sum of squares, in the right hand side of (A.38), is equal to |M(p*)Y]|?
where M is the matrix

%0 %6 3%0
8y Byaas Oybay
2 2
M = %6 _o%e
- daedy 305 Oagy

0—\/—( \/—Id
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and Y = (y — z,0¢ — ag, a; — al). Now we have seen that
Oay _ __(62(/?1 )—1 . 62901
Qo oo 0oz Oag

and (see the beginning of the proof of Theorem A.11)

8% . 8y, .. .
5&?(10)=37:g(/0)=1h

> (82<p1)—1 %o
dagdag \ da2 daz0ae

It follows that M can be written as

A B c
M= ('Bih!DE-D ihtD .
0 VChE-'D+Ch1d

Moreover, since 1/ does not depend on ¢, it follows from condition 8), Definition A.5

that, when b is large, the matrix is invertible at p*. Since B is also invertible

B
D E
we see from the second and third “line” of M that M is also uniformly invertible.
When A is small we write,
820 ~ 0 82<p1 ~ 0 82@1 ~
* _ — h * _ h— * _ 0

since %ia%g(p*) = 0. Then
g

8%0 |, . .- o 0%, doy - oy . ~ o
g (¢1)E ~ ) = ih g e (0") (= g (710 B, 1)) @ —0f) + & — o).

By condition 8), Definition A.5, a;Lza“;’(—g(p*) is uniformly invertible since p* is close to
(zo, xo, a®). It follows that

~ 8%y ~ 2 &2%p ~ 020 - 2
|2 < * _ * - * A0
(4.39) [7=af < O[5 LN F-2)| < |50 5 (0" F-2)t5 - (o) (@)
Oa 2
2|~ _ 0 _ z ~ 0

By the same way

8%p _ 2
~ 0,2 * 0
(A.40) |ae —agl” < Cl Bydor (p*)(ae — o)

6290 *\ [~ 0 629 *\ (o~ 82<p *\ [~ 0 2
<C Bydas (p*) (e — ) + ‘ay_z(” Y@ — )+ Byaax(p )@z — o)

+C|y — z|?> + Ch?|a, — o2)%.

2
(A41) hjaz — 2|2 < hlaz, —al — %(:v,ag(- <)) (e — ag) + Chlag — agl2.
Bag
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Using (A.38) to (A.41) we obtain, if ¢ is small enough
According to Definition A.8, this proves that the contour I is good for —Im 6.

Theorem A.14. — Let ¢ be a phase, in the sense of Definition A.4, at (xo,&o,3°) €
R™ x R™ x R™. Let b be an analytic symbol in a nez’ghborhood of (xo,B3%). We set
zo = (s0,y0), where so > 0, & = (70,M0), 7§ = 8§75 + s5lmol*, Co = 7(s370, 530,
ng = (ho,yo,ko/ro,go) and x = (s,y). Then, if no ¢ B*WF,(u), one can find
X € C§°, x =1 in a neighborhood of xo, positive constants C1, 61, p1

(442) | / eI @AM (3, B, m, h) x(x) u(sh, y) dsdy| < Crem /M,
for all (B, h,m, k) such that (m,h) € U, |8 — B° + |h — ho| + |k — ko| < p1.

Proof. — Our assumption implies that there exists a precised FBI phase ¢ (by Propo-
sition A.3, Definition A.2) at (xo,Zo, a’, ho), where Ey = ('ro/'r'o, 770/7"0), an analytic
elliptic symbol a, a cut-off function xp € C§° equal to one in a neighborhood of xg
and positive constants Cp, dp, po such that

(A.43) | // eih—2k—1<p(ar,a,h) a(:c, a, h, k) XO(:c)u(hs, y) dsdyl < Coe—éo/hk ,

for all, o, h,k such that o — a®| + |h — ho| + |k — ko| < p, h > 0, k > 0. Let
= @(z,2,a,h) be the pseudo-differential phase (Definition A.5) constructed in
Proposition A.6. We set, formally,

(A.44) Av(z,h, k) = // eth” kT B @z, 00h) a(z,a, h)v(z, h, k)dzdo

which can be realized either as an operator in the complex domain or as an operator
in the real domain.
Since A is elliptic, there exists an analytic symbol ¢(z, 3, h, k) such that

(A45)  A(ePTRTIHCEMM o B m, b, k)) = b(z, B,m, h, k)eh kW@ smh)

where A acts on H_1yny. Indeed, if B is the inverse of A in H_iny, we have

e'ih_%—l’/’B(e"h_zk_l‘/’b) = ¢, modulo errors which are O(e=%/?*). Let V be a neigh-

borhood of . It follows from (A.45) and Theorem A.11 that

(A.46) AV (e"h_z”“_l‘/’("ﬂvm,h) (-, B, m, b, k)) = b(z, B, m, h, k)eih k™ (@ Bm,h)
+0O(e%/hk),

Let us recall that the function x occurring in the expression of Ay in (A.27) is such
that, for some r9 > 0,

To,

x(z,z,a) =1 if |z—z|+|ag —az(z,ae)| <7
| > 2.

x(x,z,a) =0 if |z—2|+ ]|z — az(z, o)
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Let x1 = x1(2) € C§°(R™) be such that

x1(2) =1 if |z—xo| <10
=0 if |z—x0|2=270.
Let us set
(1) = |az — az(z, )| + |az — az(z, ag)l.
Since the map,  — a.(x, a¢) is invertible for all a¢ near ag, we can find C > 0 such
that for all r; > 0 small enough

lag(z, 0¢) — ag(z,0¢)| <711 = |z — 2| < Cry.
We claim that if (1) < 79/(1 + 2C) then x1(2) = x(z, 2, @) = 1. Indeed, it follows from

this inequality that |a.(z, ag) —az(z, ag)| < 2ro/(1 4 2C) so [z —2z| < 2Cro/(1 + 2C)

therefore
2C To To

1+2C+1+2C

|z — 2| + |az — az(z, a¢)| < =179

which implies that x(z, z,a@) = 1. Moreover
2C To T0

+ 70
1+2C T 1+2C°

1+2C°

|z —zo] < |z — 2| + |z — 20| <

since |z — zo| <

It follows that xi1(z) = 1.

Summing up we have proved that, on the support of x(z, z,a) — x1(2) we have
(1) > r0/(1+2C). We deduce from Definition A.5, 7) that |eih ¥ '¢| < e~Ci/hk
which proves that in the definition of AY we can replace x(z, 2, @) by x1(z) (modulo
controlled errors) if |z — z¢| is small enough. Then

AV'v(a;, h,k) = // eith 2k 3(z,2,0,h) a(z,a, h,k)x1(2)v(z, h,k)dzda + @(e—é/hk) ’
aeV

(where the error term is bounded by sup |v|).
Let us write (A.46), replacing x by x1. We have

(A.47) bz, B,m, h,k)eth "k (@ Bmhk)
= / eih—2k—1<p(m,a,h)a(w, a, h, k) f(a, B, m, h, k)da + O(e—é/hk),
acV
where
fla, B,m,h, k) = f x1(2) eth T kT me2(z.a0) Hiher ()49 (2,8,m,h)] c(z,B8,m,h,k)dz.

It follows from (A.8) that Rey1(2,a) > Clag — az(z,a¢)|? and, since Imy > 0 we
have |f| < Cn(hk)™™ for some N € N. Then, using (A.47) we can write, with

z = (8,9),
(Ad5) [[ 4@ o m Db, 5, m, b, k) (o) 5T ) ddy

— fle, B,m,h,k) - (// eih ™k Bz 00h) a(z,a, h, k) x(x)u(hs,y) dsdy) do

aeV
This proves Theorem A.14. Od
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Corollary A.15. — The definition of ¥*W F, is invariant under a change of phase
satisfying Definition A.1.

Proof. — We have seen in Proposition A.3 that we may assume that the phase is
precised. We can change sg in the definition of ¥°WF,. Indeed, let ¢ be a FBI
phase at (xo,&0,a% ho), To = (S0,%), &0 = (70,7M0) ; let us set &(s,y,a,h) =
¥~2¢(s/v,y,,vh),y > 0. Then & is an FBI phase at (S0, yo, 7o/7>,m0/72, &°, vho).
We see that the change of (h,s) to ('yh, s/ 'y) in the definition of ¥®°W F, gives rise to
the phase ¢ in the integral. The analytic symbol is changed but stays elliptic. Now
let us take two precised FBI phase at the same point o = (S0, y0). Then we see easily
that they satisfy both the Definition A.4 (for instance, condition 2) in Definition A.4
follows from (A.8)), so we may apply the Theorem A.14. O

Corollary A.16. — Let $ be a FBI phase at (zo, &0, a%,0). Let us assume that one can
find positive constants C, &, h1, an analytic symbol a elliptic at (zo,a®, ho), a cut-off
x € C§°, equal to one near xo = (So,¥yo) such that

l/e“‘_z‘ﬁ(s’”"”h) a(s,y,a,h)x(s,y)u(sh,y)dsdy| < Ce ¥/t

for all a in a neighborhood of a® and h € 10, h1[. Let us set

3 2

2 _ 6.2 4 2 — _ So70 — S0

5 = S0Tp + Solmol” >0, To= y Mo = )
To To

where & = (70,m0). Then no = (0,yo,1/70, (To,Mo)) & ©°W Fy(u). In the coordinates
(A, ) this reads (0,yo, 8370, 53m0) & BW Fy(u).

Proof. — We may assume that @ is precised. Let us set ¢ = %(ﬁ when r9 # 0.
Then { is a precised FBI phase at (so, Yo, To/T0,Mo/To, al, O). Let us associate to @,
a pseudodifferential phase ¢ by the formula in Proposition A.6. Finally let us set
¥(z,B8,m,h) = X @(x,B,h). Then ¢ is a phase in the sense of Definition A.4 at the
point (zo, iofo,ao), & = (T0,M0), Zo = (80,%0) and U = B(rg*,d)x]0,6), (m,h) € U.
Let us set

AVv(z, 0, b, k) = // eth TR e(@ize0h) a(z,a,h)x1(z, z,@)v(z, h,k)dzdo.
aeV

We can apply Theorem A.11 as in the proof of Theorem A.14. We get

AV (RTRTHCEMM o, B,m, b k) = alx, B, h) €T RTHEETR 4 O(eH /).

1

In this formula we fix k = ko = r;~ and we obtain, with z = (s, y)

// eh I mTIB@BR) o (g, B, h)ulhs, y) dsdy

= f(a, :6, m, h‘) ( / eih_2$(m,a’h) X(w)a(z, «, h)U(hS, y) dey) da + O(e_é/h) )
acV

with f = O(h~Y).
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Then the result follows if we consider m as the parameter k in the definition of
BSWF,. O

Corollary A.17. — Let mo = (po, Yo, To,Mo) with po > 0. Then mg ¢ WF,(u) (the
usual analytic wave front set) if and only if (po, Yo, 0, (Mo, M) & W F,(u), where

3 PoTo — o

to VARl T R P
Proof. — We note that, in the definition of WF, and ®°W F, we did not take the
same coordinates on T*M. The statement of this corollary takes this difference in
account. Indeed, we have

Tdp+n-dy = (p°1) % + (p*n) - %-
If (po, Y0, 0, (Mo, po)) & B°W F,(u) then if we set h = hg and k~! = ), in our trans-
formation 7, we recover a FBI transform in the sense of Sjostrand. Then we have
(0, Yo, T0,M0) & W Fa(u) with 70 = Xo/p3, no = Ho/PE ; our claim follow since W F,
is conical.
Conversely, let us assume that (po, Yo, 70, 70) € W Fo(u). Let us set, with z = (p, y),

@ = (z — ag) - a¢ + i(z — az)?. Then one can find positive constants C, §, Ao and a
cut-off x € C§°, x(po,yo) = 1 such that

l/ei’\‘;(x"’)x(w)u(a:) d:z:l < Ce™™

for all « in a neighborhood of (po, yo, 70, 70) and A = Ag.
Let us set ¢(z, a, h) = (z — az)ae +ih(z — az)? and let us associate to ¢ a pseudo-
differential phase by Proposition A.6. Finally let us set
- s ) s 2
¥(s,9.8,mh) =m 2 (= = B) B + (W= B) - B + = (= = 8,) + (- 6,)?].
Then 1 satisfies the conditions in Definition A.4 for all ¢ if

|s_pO|+|y—y0|+|:83*pOI+|:By_’y0|+|ﬁr—7'0‘+|,617*770|+|m“‘1|
is small enough. It follows from Theorem A.11 that we have the formula (A.48). Let
us make A = 1 in this formula. The right hand side is O(e~%/*). Now if m plays
the role of A in the left hand side, we recover the expression 7w ; this proves our
claim. O
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