@incollection{AST_2001__272__R1_0, author = {Boileau, Michel and Porti, Joan}, title = {Geometrization of $3$-orbifolds of cyclic type}, booktitle = {Geometrization of $3$-orbifolds of cyclic type}, series = {Ast\'erisque}, pages = {i--208}, publisher = {Soci\'et\'e math\'ematique de France}, number = {272}, year = {2001}, mrnumber = {1844891}, zbl = {0971.57004}, language = {en}, url = {https://www.numdam.org/item/AST_2001__272__R1_0/} }
TY - CHAP AU - Boileau, Michel AU - Porti, Joan TI - Geometrization of $3$-orbifolds of cyclic type BT - Geometrization of $3$-orbifolds of cyclic type AU - Collectif T3 - Astérisque PY - 2001 SP - i EP - 208 IS - 272 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_2001__272__R1_0/ LA - en ID - AST_2001__272__R1_0 ER -
%0 Book Section %A Boileau, Michel %A Porti, Joan %T Geometrization of $3$-orbifolds of cyclic type %B Geometrization of $3$-orbifolds of cyclic type %A Collectif %S Astérisque %D 2001 %P i-208 %N 272 %I Société mathématique de France %U https://www.numdam.org/item/AST_2001__272__R1_0/ %G en %F AST_2001__272__R1_0
Boileau, Michel; Porti, Joan. Geometrization of $3$-orbifolds of cyclic type, dans Geometrization of $3$-orbifolds of cyclic type, Astérisque, no. 272 (2001), pp. i-208. https://www.numdam.org/item/AST_2001__272__R1_0/
[Ah] Finitely generated Kleinian groups, Amer. J. Math. 86, 413-429. | DOI | MR | Zbl
,[AB] Riemann's mapping theorem for variable metrics, Ann. of Math. 72 (1960), 385-404. | DOI | MR | Zbl
, ,[An1] On convex polyhedra in Lobačeskĭi space, Mat. USSR Sbornik 10 (1970), 413-440. | DOI | MR | Zbl
,[An2] On convex polyhedra of finite volume in Lobačeskĭi space, Mat. USSR Sbornik 12 (1971), 255-259. | DOI | MR | Zbl
, , , Lectures on Hyperbolic Geometry, Springer-Verlag, Berlin 1993. |[Boi] Uniformisation en dimension trois, in Séminaire Bourbaki, Exposé No. 855, Astérisque 266 (2000), pp. 137-174. | EuDML | Numdam | MR
,
[BDV] A vanishing theorem for the Gromov volume of
[BLP1] Uniformization of compact orientable
[BLP2] On the geometry of
[BSl] The characteristic tori splitting of irreducible compact three-orbifolds, Math. Ann. 278 (1987), 441-479. | DOI | EuDML | MR | Zbl
, ,[BS2] The classification of Seifert fibred threemanifolds, in "Low Dimensional Topology", (ed. by R. Fenn), London Math. Soc. Lecture Notes Ser. 95 (1985), Cambridge Univ. Press, Cambridge, pp. 19-85. | MR | Zbl
, ,[BS3] Geometric splittings of classical knots and the algebraic knots of Conway, manuscrit.
, ,[Bou] L'équation de la chaleur associée à la courbure de Ricci (d'après R.S. Hamilton), in Séminaire Bourbaki 38ème année, Exposé No. 653, Astérisque 145-146 (1987), pp. 41-56. | Numdam | MR | Zbl
,[Bow] Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995), 229-274. | DOI | MR | Zbl
,[Bre] Introduction to Compact Transformation Groups, Academic Presss, Inc. (1972). | MR | Zbl
,[BrH] Metric Spaces of Non-Positive Curvature, Springer Verlag, Berlin, 1999. | DOI | MR | Zbl
, ,[BrS] On Hausdorff-Gromov convergence and a theorem of Paulin, L'Ens. Math. 40 (1994), 267-289. | MR | Zbl
, ,[Bro] Circle packings and co-compact extensions of Kleinian groups, Invent. Math. 86 (1986), 461-469. | DOI | EuDML | MR | Zbl
,[CEG] Notes on notes of Thurston in "Analytical and Geometric Aspects of Hyperbolic Space" (ed. by D. B. A. Epstein), London Math. Soc. Lecture Notes Ser. 111 (1987), Cambridge Univ. Press, Cambridge, pp. 3-92. | MR | Zbl
, and ,[CG1] On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96 (1972), 413-443. | MR | Zbl
, ,[CGv] Collapsing Riemannian manifolds while keeping their curvature bounded, J. Diff. Geom. 32 (1990), 269-298. | DOI | MR | Zbl
, ,[CHK] Three dimensional Orbifolds and Cone Manifolds, Mathematical Society of Japan Memoirs 5 (2000). | MR | Zbl
, , ,[Cul] Lifting representations to covering groups, Adv. Math. 59 (1986), 64-70. | DOI | MR | Zbl
[CGLS] Dehn surgeries on knots, Ann. of Math. 125 (1987), 237-300. | DOI | MR | Zbl
, , , ,[CS] Varieties of group representations and splittings of S-manifolds, Ann. of Math. 117 (1983), 109-146. | DOI | MR | Zbl
, ,
[DaM] Finite group actions on homotopy
[DD] Groups acting on graphs, Cambridge University Press, Cambridge, 1989. | MR | Zbl
, ,[Dun1] Geometric orbifolds, Rev. Mat. Univ. Comp. Madrid 1 (1988), 67-99. | EuDML | MR | Zbl
,
[Dun2] Hierarchies for
[Dun3] Classification of solvorbifolds in dimension three, in "Braids (Santa Cruz, CA, 1986)", Contemp. Math. 78 (1988), Amer. Math. Soc, pp. 207-216. | MR | Zbl
,
[Dun4] Nonfibreing spherical
[DuM] Volumes of Hyperbolic
[Dunf] Examples of non-trivial roots of unity at ideal points of hyperbolic
[DS] Algebraic torus theorem, Invent. Math. 140 (2000), 605-637. | DOI | MR | Zbl
, ,[Ebe] Lattices in spaces of nonpositive curvature, Ann. of Math. 111 (1980), 435-476. | DOI | MR | Zbl
,[Fed] Geometric Measure Theory, Springer Verlag, Berlin, 1969. | MR | Zbl
,
[Fei] Actions of finite groups on homotopy
[GM] On the character variety of group representations in
[Gard] Teichmüller theory and quadratic differentials. Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1987. | MR | Zbl
,[Garl] A Rigidity Theorem for Discrete Subgroups, Trans. Amer. Math. Soc. 129 (1967), 1-25. | DOI | MR | Zbl
,[Gor] Dehn surgery and satellite knots, Trans. Amer. Math. Soc. 275 (1983), 687-708. | DOI | MR | Zbl
,[GL] Incompressible Surfaces in Branched Coverings, in "The Smith Conjecture" (ed. by H. Bass, J.W. Morgan), Academic Press 1984, (pp. 139-152). | MR | Zbl
and ,[Gro] Volume and bounded cohomology, I. H. E. S. Publ. Math. 56 (1983), 5-99. | EuDML | Numdam | MR | Zbl
,[GLP] Structures métriques pour les variétés riemanniennes, Cedic/Fernand Nathan, Paris 1981. | MR | Zbl
, , ,[GT] Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987), 1-12. | DOI | EuDML | MR | Zbl
, ,[Ha1] Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982), 255-306. | DOI | MR | Zbl
,[Ha2] Four-manifolds with positive curvature operator, J. Diff. Geom. 24 (1986), 153-179. | DOI | MR | Zbl
,
[HRS] Compactifying coverings of closed
[Hei] Normalizers of incompressible surfaces in
[Hem]
[HLM1] On a remarkable polyhedron geometrizing the figure eight knot cone manifolds, J. Math. Sci. Univ. Tokyo 2 (1995), 501-561. | MR | Zbl
, , ,
[HLM2] On the arithmeticity of
[HLM3]
, , , Preprint, in preparation.[HLMW] On universal groups and three-manifolds Invent. Math. 87 (1987), 441-456. | DOI | EuDML | MR | Zbl
, , , ,
[Ho1] Geometric structures on
[Ho2] Degeneration and Regeneration of Hyperbolic Structures on Three-Manifolds, Ph.D. Thesis, Princeton University, 1986.
,[HK] A rigidity theorem for hyperbolic cone manifolds, J. Diff. Geom. 48 (1998), 1-59. | DOI | MR | Zbl
, ,[HMW] Surgeries on the Whitehead link yield geometrically similar manifolds, in "Topology '90 (Columbus, OH, 1990)", Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin 1992 (195-206). | MR | Zbl
, , ,[HT] Eigenvalue estimates and isoperimetric inequalities for cone manifolds, Bull. Australian Math. Soc. 47 (1993), 127-144. | DOI | MR | Zbl
, ,[Iva] Foundations of the theory of bounded cohomology, J. Sov. Math. 37 (1987), 1090-1115. | DOI | Zbl
,
[JR]
[Ja] Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, Amer. Math. Soc, Providence, R.I. 1980. | DOI | MR | Zbl
,
[JS] Seifert fibred spaces in
[Joh] Homotopy equivalences of
[Jon] The structure of closed nonpositively curved Euclidean cone
[Kap] Hyperbolic Manifolds and Discrete Groups: Notes on Thurston's Hyperbolization, Progress in Mathematics 183, Birkhäuser, Basel 2000. | MR | Zbl
,[Kir] Problems in Low-Dimensional Topology, in "Geometric topology (Athens, G A, 1993)" (ed. by W.H. Kazez), AMS/IP Stud. Adv. Math. 2.2, Amer. Math. Soc., Providence, RI 1997 (pp. 35-473). | MR | Zbl
,
[Koj] Deformations of hyperbolic
[KS] Icosahedral group actions on
[Lau] Topologie de la dimension trois - homotopie et isotopie, Astérisque 12 (1974). | Numdam | MR | Zbl
,[Mai] Quasi-isométries, groupes de surfaces et orbifolds fibrées de Seifert, Thèse Université Paul Sabatier (2000).
,[Mar] The geometry of finitely generated Kleinian groups, Ann. of Math. 99 (1974), 383-496. | DOI | MR | Zbl
,[Mas1] On Klein's combination theorem III, in "Advances in the theory of Riemann Surfaces" (ed. by L. Ahlfors et al.), Ann. of Math. Studies 66, Princeton Univ. Press, Princeton NJ 1971 (pp. 297-316). | MR | Zbl
,[Mas2] Kleinian Groups, Springer Verlag, Berlin 1988. | MR | Zbl
,[MT] Hyperbolic manifolds and Kleinian groups, Oxford Math. Monographs, Oxford University Press, New York 1998. | MR | Zbl
, ,
[McCMi] Manifold covers of
[McMl] Iteration on Teichmüller space, Invent. Math. 99 (1990), 425-454. | DOI | EuDML | MR | Zbl
,
[McM2] Renormalization and
[MS] Finite group actions on
[MY1] Topology of three-dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math. 112 (1980), 441-484. | DOI | MR | Zbl
, ,[MY2] The equivariant Dehn's Lemma and Loop Theorem Comment. Math. Helv. 56 (1981), 225-239. | DOI | EuDML | MR | Zbl
, ,
[MY3] Group actions on
[Mon] Classical Tessellations and Three-Manifolds, Springer-Verlag, Berlin 1987. | DOI | MR | Zbl
,[Mor1] On Thurston's uniformization theorem for three-dimensional manifolds, in "The Smith Conjecture" (ed. by H. Bass, J.W. Morgan), Pure and Applied Mathematics 112, Academic Press, Orlando, Fl 1984 (pp. 37-125). | DOI | MR | Zbl
,
[Mor2] Actions de groupes finis sur
[MB] The Smith Conjecture, Pure and Applied Mathematics 112, Academic Press, Orlando, Fl 1984. | DOI | MR | Zbl
, ,[Mos] Strong rigidity of locally symmetric spaces, Ann. of Math. Stud. 78, Princeton University Press, Princeton, NJ 1973. | MR | Zbl
,[Mum1] A remark on Mahler's compactness theorem, Proc. AMS 28 (1971), 289-294. | MR | Zbl
,[Mum2] Algebraic Geometry I: Complex Projective Varieties, Springer Verlag, Berlin 1976. | MR | Zbl
,[Ne] A theorem on periodic transformations of spaces, Quart. Journal 2 (1931), 1-8. | JFM | Zbl
,[OVZ] Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten, Topology 6 (1967), 49-64. | DOI | MR | Zbl
, , ,
[Ot1] Le théorème d'hyperbolisation pour les variétés fibrées de dimension
[Ot2] Thurston's hyperbolization of Haken manifolds, in "Surveys in differential geometry, Vol. III (Cambridge, MA, 1996)", Int. Press, Boston, MA, 1998 (pp. 77-194). | MR | Zbl
,[OP] Le Théorème d'hyperbolization de Thurston, manuscrit.
, ,
[Pau] Topologie des variétés de dimension
[Pe] Convergence of Riemannian manifolds, Compositio. Math. 62 (1987), 3-16. | EuDML | Numdam | MR | Zbl
,[PP] Negatively oriented ideal triangulations and a proof of Thurston's hyperbolic Dehn filling theorem, Expo. Math. 18 (2000), 1-35. | MR | Zbl
, ,[Po1] Torsion de Reidemeister pour les Variétés Hyperboliques, Mem. Amer. Math. Soc. 128 (1997). | MR
,[Po2] Regenerating hyperbolic and spherical cone structures from Euclidean ones, Topology 37 (1998), 365-392. | DOI | MR | Zbl
,[Rag] Discrete Subgroups of Lie Groups, Springer Verlag, Berlin 1972. | MR | Zbl
,[Rat] Foundations of Hyperbolic Manifolds, Springer Verlag, Berlin 1994. | MR | Zbl
,
[Riv] A characterization of ideal polyhedra in hyperbolic
[Sak] Riemannian Geometry, Amer. Math. Soc, Providence RI 1996. | MR | Zbl
,[Sc1] A new proof of the annulus and torus theorems, Amer. J. Math. 102 (1980), 241-277. | DOI | MR | Zbl
,
[Sc2] There are no fake Seifert fibre spaces with infinite
[Sc3] The geometries of
[Sel] On discontinuous groups in higher-dimensional symmetric spaces, in "Contributions to Function Theory" (ed. by K. Chandrasekharan) Tata Inst, of Fund. Research, Mumbay 1960 (147-164). | MR | Zbl
,
[Ser] Arbres, amalgames
[Som] The Gromov invariant of links, Invent. Math. 64 (1981), 445-454. | DOI | EuDML | MR | Zbl
,[SOK] Towards a proof of Thurston's geometrization theorem for orbifolds, RIMS Kôkyûroku 568 (1985), 1-72. | MR
, , ,
[Sta] On fibreing certain
[Sua] Poliedros de Dirichlet de
[Takl] Waldhausen's classification theorem for finitely uniformizable
[Tak2] Partial solutions of the bad orbifold conjecture, Topology and its Appl. 72 (1996), 113-120. | DOI | MR | Zbl
,
[TaY1] The geometric realizations of the decompositions of
[TaY2] Waldhauserís classification theorem for
[To1] Involutions of sufficiently large
[To2] Periodic homeomorphisms of
See also erratum: Trans. Amer. Math. Soc. 243 (1978), 309-310. | MR | Zbl
,
[Thu1] The geometry and topology of
[Thu2] Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381. | DOI | MR | Zbl
,
[Thu3] Hyperbolic Structures on
[Thu4] Hyperbolic Structures on
[Thu5] Hyperbolic Structures on
[Thu6] Three-manifolds with symmetry, Preprint 1982.
,[Thu7] Three-dimensional geometry and topology Vol. 1, Ed. by S. Levy. Princeton University Press, Princeton, NJ 1997. | MR | Zbl
,[Yam] Collapsing and pinching under a lower curvature bound, Ann. of Math. 133 (1991), 317-357. | DOI | MR | Zbl
,
[Wa1] Eine Klasse von
[Wa1] Eine Klasse von
[Wa2] Gruppen mit Zentrum und
[Wa3] On irreducible
[Wei] Remarks on the cohomology of groups, Ann. of Math. 80 (1964), 149-157. | DOI | MR | Zbl
,
[Zh1]
[Zh2] The Moduli Space or Hyperbolic Cone Structures, J. Diff. Geom. 51 (1999), 517-550. | DOI | MR | Zbl
,[Zie] On the homeotopy group of surfaces, Math. Ann. 206 (1973), 1-21. | DOI | EuDML | MR | Zbl
,