@incollection{AST_2000__264__127_0, author = {Lipshitz, Leonard}, title = {Quasi-affinoid varieties}, booktitle = {Rings of separated power series and quasi-affinoid geometry}, editor = {Lipschitz, L\'eonard and Robinson, Zachary}, series = {Ast\'erisque}, pages = {127--149}, publisher = {Soci\'et\'e math\'ematique de France}, number = {264}, year = {2000}, mrnumber = {1758887}, zbl = {0957.32011}, language = {en}, url = {http://www.numdam.org/item/AST_2000__264__127_0/} }
TY - CHAP AU - Lipshitz, Leonard TI - Quasi-affinoid varieties BT - Rings of separated power series and quasi-affinoid geometry AU - Collectif ED - Lipschitz, Léonard ED - Robinson, Zachary T3 - Astérisque PY - 2000 SP - 127 EP - 149 IS - 264 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2000__264__127_0/ LA - en ID - AST_2000__264__127_0 ER -
%0 Book Section %A Lipshitz, Leonard %T Quasi-affinoid varieties %B Rings of separated power series and quasi-affinoid geometry %A Collectif %E Lipschitz, Léonard %E Robinson, Zachary %S Astérisque %D 2000 %P 127-149 %N 264 %I Société mathématique de France %U http://www.numdam.org/item/AST_2000__264__127_0/ %G en %F AST_2000__264__127_0
Lipshitz, Leonard. Quasi-affinoid varieties, dans Rings of separated power series and quasi-affinoid geometry, Astérisque, no. 264 (2000), pp. 127-149. http://www.numdam.org/item/AST_2000__264__127_0/
[1] Spectral Theory and Analytic Geometry Over Non-Archimedean Fields. Math. Surveys and Monographs, Vol. 33, A.M.S., Providence, 1990. | MR | Zbl
. -[2] Non-Archimedean Analysis. Springer-Verlag, 1984. | DOI | MR | Zbl
, and . -[3] Algebraic Geometry. Springer-Verlag, 1977. | DOI | MR | Zbl
. -[4] Continuous Valuations. Math Zeit., 212 (1993), 455-477. | DOI | EuDML | MR | Zbl
-[5] Rigid subanalytic sets. Amer. J. Math., 115 (1993) 77-108. | DOI | MR | Zbl
. -[6] Rings of separated power series. This volume.
and . -[7] Model completeness and subanalytic sets. This volume.
and . -[8] Commutative Ring Theory. Cambridge University Press, 1989. | MR | Zbl
. -[9] Rigid analytic spaces. Invent. Math., 12, (1971) 257-289 | DOI | EuDML | MR | Zbl
. -