@incollection{AST_1999__258__341_0, author = {Chaimovich, Mark}, title = {New structural approach to integer programming : a survey}, booktitle = {Structure theory of set addition}, editor = {Deshouilliers Jean-Marc and Landreau Bernard and Yudin Alexander A.}, series = {Ast\'erisque}, pages = {341--362}, publisher = {Soci\'et\'e math\'ematique de France}, number = {258}, year = {1999}, mrnumber = {1701209}, zbl = {0987.90060}, language = {en}, url = {http://www.numdam.org/item/AST_1999__258__341_0/} }
TY - CHAP AU - Chaimovich, Mark TI - New structural approach to integer programming : a survey BT - Structure theory of set addition AU - Collectif ED - Deshouilliers Jean-Marc ED - Landreau Bernard ED - Yudin Alexander A. T3 - Astérisque PY - 1999 SP - 341 EP - 362 IS - 258 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_1999__258__341_0/ LA - en ID - AST_1999__258__341_0 ER -
%0 Book Section %A Chaimovich, Mark %T New structural approach to integer programming : a survey %B Structure theory of set addition %A Collectif %E Deshouilliers Jean-Marc %E Landreau Bernard %E Yudin Alexander A. %S Astérisque %D 1999 %P 341-362 %N 258 %I Société mathématique de France %U http://www.numdam.org/item/AST_1999__258__341_0/ %G en %F AST_1999__258__341_0
Chaimovich, Mark. New structural approach to integer programming : a survey, dans Structure theory of set addition, Astérisque, no. 258 (1999), pp. 341-362. http://www.numdam.org/item/AST_1999__258__341_0/
[1] On Sums of Subsets of a Set of Integers, Combinatorica, 8, 1988, 305-314. | DOI | MR | Zbl
and ,[2] An Algorithm for Large Zero-One Knapsack Problems, Operations Research, 28, 1980, 1130-1154. | DOI | MR | Zbl
and ,[3] Analytical Methods in Integer Programming,Moscow, ZEMJ., (Russian), 48 pp., 1980.
and ,[4] An Efficient Algorithm for the Subset-Sum Problem, a manuscript, 1988.
,[5] Subset-Sum Problems with Different Summands : Computation, Discrete Applied Mathematics, 27, 1990, 277-282. | DOI | MR | Zbl
,[6] Solving a Value-Independent Knapsack Problem with the Use of Methods of Additive Number Theory, Congressus Numerantium, 72, 1990, 115-123. | MR | Zbl
,[7] Fast Exact and Approximate Algorithms for -Partition and Scheduling Independent Tasks, Discrete Mathematics, 114, 1993, 87-103. | DOI | MR | Zbl
,[8] On Solving Dense -Dimensional Subset-Sum Problem, Congressus Numerantium, 84, 1992, 41-50. | MR | Zbl
,[9] Analytical Methods of Number Theory in Integer Programming, Ph. D. Thesis, Tel-Aviv University, Israel, 1991.
,[10] Solving Dense Subset-Sum Problem by Using Analytical Number Theory, J. of Complexity, 5, 1989, 271-282. | DOI | MR | Zbl
, and ,[11] On Two Additive Problems,J. Number Theory, 34, 1990, 1-12. | DOI | MR | Zbl
and ,[12] An Analytical Method of Analysis of Linear Boolean Equations, Ann. New York Acad. Sci., 337, 1980, 97-102. | DOI | MR | Zbl
,[13] What is the Structure of if is Small ?, in Lecture Notes in Mathematics, 1240, 1987, 109-134. | MR | Zbl
,[14] On Extremal Additive Problems of Paul Erdős, ARS Combinatoria, 26B, 1988, 93-114. | MR | Zbl
,[15] Subset-Sum Problem with Different Summands, Congressus Numerantium, 70, 1990, 207-215. | MR | Zbl
,[16] On Solvability of a System of Two Boolean Linear Equations, The Proceedings of the Number Theory Conference, New York, 1989. | MR | Zbl
,[17] New Analytical Results in Subset-Sum Problem, Discrete Mathematics, 114, 1993, 205-218. | DOI | MR | Zbl
,[18] An Almost Linear-Time Algorithm for the Dense Subset-Sum Problem, SIAM J. of Computing, 20, 1991, 1157-1189. | DOI | MR | Zbl
and ,[19] Trivial Integer Programs Unsolvable by Branch and Bound, Mathematical Programming, 6, 1974, 105-109. | DOI | MR | Zbl
,[20] On Representation of -Powers by Subset-Sums, Acta Arithmetica, LII, 1989, 353-366. | DOI | EuDML | MR | Zbl
,[21] Algorithms for Scheduling Independent Tasks, J. ACM, 23, 1976, 116-127. | DOI | MR | Zbl
,[22] Finite Addition Theorems II, J. Number Theory, 48, 1994, 197-218. | DOI | MR | Zbl
,