@incollection{AST_1999__258__309_0, author = {Herzog, Marcel}, title = {New results on subset multiplication in groups}, booktitle = {Structure theory of set addition}, editor = {Deshouilliers Jean-Marc and Landreau Bernard and Yudin Alexander A.}, series = {Ast\'erisque}, pages = {309--315}, publisher = {Soci\'et\'e math\'ematique de France}, number = {258}, year = {1999}, mrnumber = {1701205}, zbl = {0944.20019}, language = {en}, url = {http://www.numdam.org/item/AST_1999__258__309_0/} }
TY - CHAP AU - Herzog, Marcel TI - New results on subset multiplication in groups BT - Structure theory of set addition AU - Collectif ED - Deshouilliers Jean-Marc ED - Landreau Bernard ED - Yudin Alexander A. T3 - Astérisque PY - 1999 SP - 309 EP - 315 IS - 258 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_1999__258__309_0/ LA - en ID - AST_1999__258__309_0 ER -
%0 Book Section %A Herzog, Marcel %T New results on subset multiplication in groups %B Structure theory of set addition %A Collectif %E Deshouilliers Jean-Marc %E Landreau Bernard %E Yudin Alexander A. %S Astérisque %D 1999 %P 309-315 %N 258 %I Société mathématique de France %U http://www.numdam.org/item/AST_1999__258__309_0/ %G en %F AST_1999__258__309_0
Herzog, Marcel. New results on subset multiplication in groups, dans Structure theory of set addition, Astérisque, no. 258 (1999), pp. 309-315. http://www.numdam.org/item/AST_1999__258__309_0/
[1] Sidon sets in groups and induced subgraphs of Cayley graphs, Europ. J. Combinatorics, 6, 1985, 101-114 | DOI | MR | Zbl
and ,[2] Small squaring and cubing properties for finite groups, Bull. Austral. Math. Soc., 44, 1991, 429-450 | DOI | MR | Zbl
, and ,[3] On medium-size subgroups and bases of finite groups, J. of Combin. Theory, Series A, 57, 1991, 1-14 | DOI | MR | Zbl
and ,[4] A characterization of abelian groups, Proc. Amer. Math. Soc., 117, 1993, no. 3, 627-629. | DOI | MR | Zbl
,[5] On the small squaring and commutativity, Bull. London Math. Soc., 25, 1993, 330-336. | DOI | MR | Zbl
,[6] Combinatorial conditions forcing commutativity of an infinite group, J. of Algebra, 165, 1994, no. 2, 394-400. | DOI | MR | Zbl
,[7] Applying the classification theorem for finite simple groups to minimize pin count in uniform permutation architectures, VLSI algorithms and architectures, J.H. Reif(ed), Springer, 1989, 247-256 | MR | Zbl
, and ,[8] On two and three-element subsets of groups Aeq. Math., 22, 1981, 140-152 | DOI | EuDML | MR | Zbl
,[9] On a combinatorial problem in group theory, Israel J. Math., 82, 1993, no. 1-3, 329-340. | DOI | MR | Zbl
, and ,[10] On deficient products in infinite groups, Rend. Sem. Mat. Univ. Padova, 93, 1995, 1-6. | EuDML | Numdam | MR | Zbl
and ,[11] On deficient squares groups and fully-independent subsets Bull. London Math. Soc., 27, 1995, no. 1, 65-70. | DOI | MR | Zbl
and ,[12] Thin bases for abelian groups, J. Number Theory, 36, 1990, 254-256 | DOI | MR | Zbl
,[13] Thin bases for finite nilpotent groups, J. Number Theory, 41, 1992, 303-313 | DOI | MR | Zbl
,[14] The organization of permutation architectures with bussed interconnections, Proc. 1987 IEEE Conf. On The Foundation Of Comp. Science, IEEE, 1987, 305-315
, and ,[15] Bases and decomposition numbers of finite groups, Arch. Math., 58, 1992, 417-424 | DOI | MR | Zbl
and ,[16] On -bases and -decompositions of the finite solvable and alternating groups, J. Number Theory, 49, 1994, no. 3, 385-391 | DOI | MR | Zbl
and ,[17] Some commutativity criteria, Rend. Sem. Mat. Univ. Padova, 84, 1990, 135-141 | EuDML | Numdam | MR | Zbl
, and ,[18] On large subgroups of finite groups, J. of Algebra, 152, 1992, 434-438 | DOI | MR | Zbl
,[19] The classification of groups with the small-squaring property on -sets, Bull. Austral Math. Soc., 46, 1992, 263-269 | DOI | MR | Zbl
and ,[20] A property equivalent to commutativity for infinite groups Rend. Sem. Mat. Univ. Padova, 87, 1992, 299-301 | EuDML | Numdam | MR | Zbl
,[21] A problem of Paul Erdös on groups, J. Austral. Math. Soc., 21, 1976, 467-472, Selected works of B.H.Neumann and Hanna Neumann, 5, 1003-1008 | DOI | MR | Zbl
,[22] A combinatorial problem in group theory, Private communication. | Zbl
,[23] Anwendung eines Satzes der additiven Zahlentheorie auf eine gruppenthe-oretishe Frage, Math. Z., 42, 1937, 538-542 | DOI | EuDML | JFM | MR
,