Appendice B. Ensembles croisés et algèbre simpliciale
Cohomologie, stabilisation et changement de base, Astérisque, no. 257 (1999), pp. 135-161.
@incollection{AST_1999__257__135_0,
     author = {Breen, Lawrence},
     title = {Appendice {B.} {Ensembles} crois\'es et alg\`ebre simpliciale},
     booktitle = {Cohomologie, stabilisation et changement de base},
     series = {Ast\'erisque},
     pages = {135--161},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {257},
     year = {1999},
     language = {fr},
     url = {http://www.numdam.org/item/AST_1999__257__135_0/}
}
TY  - CHAP
AU  - Breen, Lawrence
TI  - Appendice B. Ensembles croisés et algèbre simpliciale
BT  - Cohomologie, stabilisation et changement de base
AU  - Collectif
T3  - Astérisque
PY  - 1999
SP  - 135
EP  - 161
IS  - 257
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1999__257__135_0/
LA  - fr
ID  - AST_1999__257__135_0
ER  - 
%0 Book Section
%A Breen, Lawrence
%T Appendice B. Ensembles croisés et algèbre simpliciale
%B Cohomologie, stabilisation et changement de base
%A Collectif
%S Astérisque
%D 1999
%P 135-161
%N 257
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1999__257__135_0/
%G fr
%F AST_1999__257__135_0
Breen, Lawrence. Appendice B. Ensembles croisés et algèbre simpliciale, dans Cohomologie, stabilisation et changement de base, Astérisque, no. 257 (1999), pp. 135-161. http://www.numdam.org/item/AST_1999__257__135_0/

[1] M. Artin, B. Mazur, Etale homotopy, Lecture notes in math. 100, Springer-Verlag (1969). | MR | Zbl

[2] J. Baez, M. Neuchl, Higher dimensional algebra I : Braided monoidal 2-categories, Advances in Math. 121, 196-244 (1996). | DOI | MR | Zbl

[3] J. Baez, J. Dolan, Higher dimensional algebra III : n-categories and the algebra of opetopes, Advances in Math. 135, 145-206 (1998). | DOI | MR | Zbl

[4] J. Baez, An introduction to n-categories, paru dans 7th Conference on Category theory and Computer science, (E. Moggi et G. Rosolini eds.) Springer-Verlag (1997). | DOI | MR | Zbl

[5] M. Batanin, Monoidal globular categories as a natural environment for the theory of n-categories, Advances in Math. 136, 39-103 (1998). | DOI | MR | Zbl

[6] M. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J. 72, 217-239 (1993). | DOI | MR | Zbl

[7] M. Borovoi, Abelian Galois cohomology of reductive groups, Memoirs of the A.M.S. 626 (1998). | MR | Zbl

[8] A. K. Bousfield, E. M. Friedlander, Homotopy theory of Γ-spaces, spectra and bisimplicial sets, Lecture notes in math. 658, Springer-Verlag, 80-150 (1978). | MR | Zbl

[9] L. Breen, Bitorseurs et cohomologie non abélienne dans The Grothendieck Festschrift I (P. Cartier et. al, eds.), Progress in math. 86, Birkhaüser (1990). | MR | Zbl

[10] L. Breen, Théorie de Schreier supérieure, Ann. scient. Ec. Norm. Sup. 25, 465-514 (1992). | DOI | EuDML | Numdam | MR | Zbl

[11] L. Breen, Classification of 2-gerbes and 2-stacks, Astérisque 225, Société mathématique de France (1994). | Numdam | MR | Zbl

[12] L. Breen, Braided n-categories and -structures, in Workshop on higher category theory and physics (Evanston 1997), E. Getzler et M. Kapranov eds., Contemporary Math. 230 (1998). | MR | Zbl

[13] K. S. Brown, Abstract homotopy theory and generalized sheaf cohomology, Trans. AMS 186, 419-458 (1973). | DOI | MR | Zbl

[14] R. Brown, From groups to groupoids : a brief survey, Bull. London Math. Soc. 19, 113-134 (1987). | DOI | MR | Zbl

[15] M. Bullejos, P. Carrasco, A. M. Cegarra, Cohomology with coefficients on symmetric cat-groups. An extension of Eilenberg-MacLane's classification theorem, Math. Proc. Cambridge Phil. Soc. 114, 163-189 (1993). | DOI | MR | Zbl

[16] M. Bullejos, A. M. Cegarra, A 3-dimensional non-abelian cohomology of groups with applications to homotopy classification of continuous maps, Canad. J. Math 43, 265-296 (1991). | DOI | MR | Zbl

[17] P. Carrasco, A. M. Cegarra, Group-theoretic algebraic models for homotopy types, J. Pure Applied Algebra 75, 195-235 (1991). | DOI | MR | Zbl

[18] D. Conduché, Modules croisés généralisés de longueur 2, J. Pure Applied Algebra 34, 155-178 (1984). | DOI | MR | Zbl

[19] S. Crans, Generalized centers of braided and sylleptic monoidal 2-categories Macquarie mathematics report 97/217 (1997). | Zbl

[20] B. Day, R. Street, Monoidal bicategories and Hopf algebroids Advances in Math. 129, 99-157 (1997). | DOI | MR | Zbl

[21] P. Deligne, La formule de dualité globale exposé XVIII de Théorie des Topos et Cohomologie Etale des Schémas vol 3 (SGA 4) Lecture notes in math. 305, Springer Verlag (1973). | Zbl

[22] P. Deligne, Le symbole modéré Publ. Math. IHES 73, 147-181 (1991). | DOI | EuDML | Numdam | MR | Zbl

[23] L. Illusie, Complexe cotangent et déformation I, Lecture notes in math.239, Springer-Verlag (1971-1972). | MR | Zbl

L. Illusie, Complexe cotangent et déformation II, Lecture notes in math. 283, Springer-Verlag (1971-1972). | MR | Zbl

[24] R. Gordon, A. J. Power, R. Street, Coherence for tricategories, Memoirs of the A.M.S. 558 (1995). | MR | Zbl

[25] A. Joyal, R. Street, Braided tensor categories, Advances in Math. 102, 20-78 (1993). | DOI | MR | Zbl

[26] M. Kapranov, V. Voevodsky, 2-categories and Zamolodchikov equations, Proc. Symp. Pure Math. 56 (2), 177-259 (1994). | DOI | MR | Zbl

[27] J.-M. Kelley, R. H. Street, Review of the elements of 2-categories, Lecture Notes in Mathematics 420, Springer-Verlag, 75-103 (1974). | MR | Zbl

[28] J.-P. Labesse, Cohomologie, stabilisation et changement de base, ce volume (1999), p. 1-116. | MR

[29] J. P. May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies 11, 1957. | MR

[30] J. S. Milne, Etale cohomology, Princeton Mathematical Series 33, Princeton University Press (1980). | MR | Zbl

[31] I. Moerdijk, J.-A. Svensson, Algebraic classification of equivariant homotopy 2-types I, J. Pure Applied Algebra 89, 187-216 (1993). | DOI | MR | Zbl

[32] J.-P. Serre, Corps locaux, Actualités scientifiques et industrielles 1296, Hermann (1962). | MR | Zbl

[33] J. Stasheff, Homotopy associativity of H-spaces I, Trans. Amer. Math. Soc. 108, 275-292 (1963). | MR | Zbl

[34] Z. Tamsamani, Sur les notions de -catégorie et -groupoïde non stricts via des ensembles multisimpliciaux, preprint alg-geom/9512006. | Zbl

[35] K. Ulbrich, Group cohomology for Picard categories J. Algebra 91, 464-498 (1984). | DOI | MR | Zbl