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SQUARE ROOT PROBLEM 
FOR DIVERGENCE OPERATORS 

AND RELATED TOPICS 

Pascal Auscher, Philippe Tchamitchian 

Abstract. — We present in this work recent progress on the square root problem 
of Kato for differential operators in divergence form on R n . We discuss topics on 
functional calculus, heat and resolvent kernel estimates, square function estimates 
and Carleson measure estimates for square roots. In the first chapter, we show in a 
quantitative way how the theorems of Aronson-Nash and of De Giorgi are equivalent. 
In the central chapters, we take advantage of recent development in functional calculus 
and in harmonic analysis to propose a new point of view on Kato's problem which 
allows us to unify previous results and extend them. In the last chapter we study the 
associated Riesz transforms, their relation to Calderón-Zygmund operators and their 
behavior on L p -spaces. 

Résumé (Problème de la racine carrée pour les opérateurs sous forme divergence et 
sujets connexes). — Ce travail a pour thème principal le problème de Kato concer­
nant la racine carrée des opérateurs différentiels elliptiques sous forme divergence dans 
R n . Pour mener à bien cette étude, nous nous intéressons à des questions relatives au 
calcul fonctionnel, aux estimations de noyaux, aux fonctionnelles quadratiques et aux 
mesures de Carleson associées aux racines carrées. Dans le premier chapitre, nous 
montrons en un sens précis comment les théorèmes d'Aronson-Nash et de De Giorgi 
sont équivalents. Dans les deux chapitres centraux, nous tirons parti de développe­
ments récents sur le calcul fonctionnel et en analyse harmonique pour proposer un 
nouveau point de vue sur le problème de Kato qui permet d'unifier les résultats 
antérieurs et de les généraliser. Enfin, dans le dernier chapitre, nous étudions les 
transformées de Riesz associées, leur relation aux opérateurs de Calderón-Zygmund 
et leur comportement sur les espaces Lp. 
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INTRODUCTION 

The main goal of this memoir is the study of square roots of divergence form 
differential operators L = — div ( A V ) on Rn, n > 2, where A(x) is a matrix with 
complex-valued bounded entries and satisfying a uniform ellipticity condition. This 
operator is defined using the theory of maximal accretive operators on L2(Rn) via 
the associated variational form on the Sobolev space i71(Rn). We denote by L1/2 the 
square root of L. 

We are interested in the following questions. 

Questioni. — Does the domain of L1/2 agree with i 71 (Rn)? 

When L is a selfadjoint operator or has smooth coefficients (e .g. , Lipschitz), this 
is true. However, the answer is not known in general. 

Question 2. — If AQ is such that the domain of L^j^ is H1(RN), where LQ = 
— d i v ( A 0 V ) , is the map A L1/2, valued in B(H1(RN),L2(Rn)), complex analytic 
at A0? 

Classical complex function theory tells us that analyticity of a Taylor expansion 
follows from boundedness in complex balls. This is the same principle that partly 
justifies the use of complex-valued coefficients here. 

Question 3. — If L is such that the domain of L1/2 agrees with i J1(Rn), what can 
we say about Lp-boundedness, p ^ 2, of the Riesz transforms associated to L, namely 
V L - 1 / 2 ? More generally, how do H L 1 / 2 / ^ and | |V / | |P compare? 

In this work we bring new answers to the first two questions and, under a technical 
hypothesis that the kernel of the semigroup generated by — L has Gaussian upper 
bounds and regularity, we completely elucidate the third one. Some results were 
announced in [15]. 



2 INTRODUCTION 

Questions 1 and 2 were raised by T . Kato in the 60's. They were motivated by 
perturbation theory for some hyperbolic partial differential equations (see [46],[56]). 
They turned out to be profound by their connections to other topics. 

These questions have been studied in the abstract Hilbert space framework for a 
long time, until counterexamples (which are not differential operators) were found by 
Mcintosh [54, 55]. 

As mentioned by Journe [45], Mcintosh observed that his results are related to 
counterexamples for the commutator inequality 

| | T | 5 | - | 5 | T | | < C | | T S - S T | | 

for arbitrary selfadjoint operators. In the case where S = —id/dx and T is multiplica­
tion by a Lipschitz function on M, however, it becomes the celebrated Calderon first 
commutator inequality, proved to be true by deep techniques of harmonic analysis 
[17]. 

The relation between question 1 and Calderon's work opened the door to new 
developments. This crystallized in the collaboration between Mcintosh, and Coifman 
and Meyer who, at this time, were working on Calderon's conjecture concerning the 
Cauchy integral on Lipschitz curves. The multilinear analysis which was developed 
by these authors brought positive answers to both Calderon's conjecture and Kato's 
first question in dimension 1 [20]. 

Multilinear analysis consists in expanding in a formal Taylor series operator-valued 
functionals that depend non-linearly on their argument in a suitable Banach space 
(called the space of holomorphy) and, then, in controlling each term individually 
together with norm growth estimates in order to obtain a radius of convergence. See 
[21] for an overview. Here A —>• L1/2 is expanded in the variable A — I or A~x — I 
in L ° ° . In the case of the Cauchy integral the variable is related to the derivative 
of a parametrization. Harmonic analysis comes into play when proving boundedness 
by making use of Littlewood-Paley-Stein quadratic functionals, the control of which 
requiring Carleson measures. 

This breakthrough led to important results in real harmonic analysis, and the T l -
theorem of David and Journe for Calderon-Zygmund singular integrals is probably 
one of the best examples [26]. 

The square root problem in dimension n > 2 was also studied by the above multi­
linear expansions. It was shown in [19] and [35] that questions 1 and 2 have positive 
answers for matrices satisfying ||A-1 — I\\oo < e(n) for some small e(n). The best 
known value of this constant is given in [45] by refinements of the method. On the 
other hand, it is shown in [57] that the answer to question 1 is in the affirmative 
when the matrix entries are pointwise multipliers of a Sobolev space with positive 
regularity index. 

ASTÉRISQUE 249 



INTRODUCTION 3 

Recent progress in operator theory and in harmonic analysis allowed us to develop a 
different approach which we built in 4 steps, each one corresponding to Preliminaries, 
Chapters 1, 2 and 3 of this work. 

1. The equivalence between the coincidence of the domain of L1/2 with ii1(IRT1) 
and the boundedness of some quadratic functionals: this uses the works of Yagi 
[81] and Mcintosh [58] on functional calculus, and interpolation theory [8]. 

2. Precise estimates for operator kernels occuring in these quadratic functionals: 
this led us to study the semigroup and resolvent kernels of L when it has complex 
coefficients. We show that the well-known estimates of Aronson and Nash ([4], 
[66]), valid in the case of real coefficients, are not always true [7]. We give 
sufficient conditions for such estimates to hold, based on [5]. 

3. The elaboration of an adapted Tl- theorem: by this we mean a criterion which 
relates the boundedness of a class of quadratic functionals to a Carleson measure 
estimate. The model case is a result by Christ and Journé [18], but which is not 
directly applicable because we are dealing with "rough" kernels. We overcome 
this difficulty by an adapted smoothing technique (which uses the classical Riesz 
transforms). 

4. The last step sheds light on relations between the study of L1/2 and the prop­
erties of weak solutions to the inhomogeneous equation Lu = / with nice / . 

We cover and extend this way all the aforementioned results concerning questions 
1 and 2. For example, we show that question 2 has a positive answer when AQ belongs 
to a class of matrices enjoying a very mild regularity condition (weaker than the one 
imposed by Mcintosh in [57]), and that the space of holomorphy for A —> L1/2 near 
AQ is BMO instead of L°° (this is in spirit with commutators estimates between 
BMO functions and Calderón-Zygmund operators). Still, we do not fully answer 
these questions. 

Let us come to a discussion on question 3, which is treated in Chapter 4, and begin 
with its relation to boundary value problems. 

Consider the elliptic operator M = d2/dt2 - L on R++1 = ( 0 , o o ) x Rn. The 
Dirichlet problem Mu = 0 with data UQ at t = 0 (and data 0 at oo) is formally solved 
by ut(x) = Ptf(x), where Pt = e~tIjl/2 is the Poisson semigroup associated to L. 
The assumption made in Chapter 4 implies that the kernel of this operator satisfies 
natural size estimates. Hence, for all 1 < p < oo, the Dirichlet problem with data in 
Lp has a solution with \\ut\\p < c\\uo\\p uniformly for all t > 0, and ut converges to UQ 
a.e. and in Lp(M.n) as t - » 0 (weak star convergence only if p = o o ) . 

Fix 1 < p < oo. Consider the Neumann problem with data v0 G Lp(Rn): 

Mu = 0 on M"*1, 

lim 
s 0 

dut 
dt = v0, 
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4 INTRODUCTION 

where the limit occurs in Lp(Rn) . An inequality of the type | |V / | |P < c H L 1 / 2 / ^ 

insures that the formal solution ut = — e~tZ/1/2L_1/2vo satisfies 

sup 
t > 0 

dut 

at p + Vxi¿t||p < c\\v0\\p. 

In the same vein, consider for any UQ G W1,p(Rn) the regularity problem with data 

u0: 

Mu = 0 on R ^ + \ , 

lim 
t 0 

ui = u0 

where the limit occurs in Lp(Rn). Then, a comparison HL1/2 /^ ~ | |V / | |P insures 

that the solution ut = e~tIjl/2uo satisfies 

sup 
t>o 

dut 

dt v + Vxut\\p < c\\Vu0\\p. 

This type of problems (formulated from the point of view of non-tangential limits 

at the boundary) have been recently studied by Kenig and Pipher for the class of real 

symmetric operators on the unit ball of Rn+1 [51]. They prove that the regularity 

and Neumann problems are solvable for p G (1 ,2 + e) whenever they are solvable for 

p = 2, and that this range is optimal. 

The study of Riesz transforms on Lp is also of interest when L is the Laplace-

Beltrami operator on a Riemannian manifold because it is related to geometry. In this 

case, the L2 theory is granted from selfadjointness. Under quite general assumptions 

on the manifold the inequality | |V / | |P < cHL1/2/!^ is valid when 1 < p < 2 (the 

reverse inequality holding in the dual range) and this is sharp. See [24] and the 

references therein. 

In our particular situation, less general than the one in [51] if we restrict ourselves 

to real symmetric operators (but we allow complex coefficients), or not linked to any 

kind of geometry, we obtain that || V / | | p < c l lL1/2 / !^ holds for p G (1 ,2-he) , while the 

converse holds for all p G (1, o o ) , provided that we have | | V / | | 2 ~ | | I / 1 / /2 / | | 2 and that 

we make assumptions on the semigroup kernel for L. This is optimal by an example 

of Kenig. The methods rely on Calderón-Zygmund theory, on the gradient estimates 

for the semigroup kernel established in Chapter 1, and on smoothing techniques for 

"rough" operators as used in Chapter 2. 

To conclude, let us indicate that the square root problem can be studied for oper­

ators defined on a domain. In the case of a Lipschitz domain, assuming Dirichlet or 

Neumann boundary condition, we are able to obtain similar results on the L2 and Lp 

theories. This work will be presented in a subsequent paper. 

Reading help. — In this memoir each chapter focuses on a different topic. It has its 

own introduction where a summary of ideas and results is presented. For the sake of 

fluidity, but at the expense of being repetitive, we have made the different chapters 

as much independent as possible. One exception though, Chapter 3, the corner stone 
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INTRODUCTION 5 

of our work, heavily depends on Chapter 2. Developments on functional calculus are 
in Preliminaries; on kernel estimates in Chapter 1; on square functions and Carleson 
measures in Chapter 2; on positive answers to the square root problem in Chapter 3; 
and on Riesz transforms and singular integrals on Chapter 4. The four appendices 
contain further results or technical proofs. 

The formulae are labelled by numbers that are reset to 0 at the beginning of each 
chapter. The same thing holds for definitions, lemmas, propositions, corollaries and 
theorems, all taken in the same group. We refer to a formula or a result from the 
same chapter by its label only. As usual, we use the floating constant principle that 
the same symbol c, C etc change values from line to line. 

Acknowledgements. — This work is the fruit of several years of research. We have 
had the privilege of many conversations with several people and/or collaborators on 
the topics of this work. We wish to thank T. Coulhon, X . T . Duong, G. David, 
E.B. Davies, L. Escauriaza, E. Fabes, S. Hofmann, N. Lerner, C. Li, G. Metivier, 
A. Nahmod, J. Pipher and N. Trudinger. We are grateful to C. Kenig for letting us 
include a result of his. 

Special thanks go to A. Mcintosh from whom we learned what we know on func­
tional calculus (any mistake remains of course our responsibility) and whose influence 
can be found at many places in this work. He also suggested several improvements in 
our presentation and provided us with historical references. 

We wish to thank Brown University for hospitality and support for both of us. Sup­
port from several other institutions during completion of this work is also gratefully 
acknowledged: the University of Rennes I and the CNRS, the Australian National 
University at Canberra, the ICMS at Edinburgh and Macquarie University in Syd­

ney. 
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PRELIMINARIES 

The operators considered in this work are differential operators built using the 

theory of maximal accretive operators. Although they are not necessarily selfadjoint, 

such operators have a holomorphic functional calculus which coincides with the Borel 

functional calculus in case of selfadjointness. This preliminary chapter is devoted to 

introduce basic material on operator theory in order to prepare the grounds for our 

study of square roots. For further considerations consult, e.g., [48], [77], [81], [58], 

[1] or [8]. The results of Section 0.7 seem new in this generality. 

0.1 . Maximal accretive operators and their functional calculus 

Let H be a Hilbert space with inner product ( , ) and norm || ||. All operators are 

assumed to be linear. 

A maximal accretive operator on H is an operator L on H with the following 

properties: 

(i) its domain T>(L) is dense in H; 

(ii) Re (Lu, u) > 0 for all u G £>(L); 

(iii) L + À is onto for any À G C with Re À > 0. 

Under these conditions, (L + À) 1 is a bounded operator with 

| | ( L + A ) _ 1 m | | < 
I M I 

Re A 
(1) 

Dénote by argz the argument in (—7r,7r] of z G C and by Tu the open sector 

{z G C \ { 0 } ; | arg* | < / / } for / / G [0 , t t ) . 

Let u < 7r /2 . An o;-accretive operator on H is an operator, L, such that 

(iv) L H- 1 is invertible on H; 

(v) | arg (Lu, u)\ < LJ for ail u G V(L). 

Under thèse conditions, one has 

| | (L + A ) _ 1 u | | < INI 
d i s t C - A . T J ' 

A G Tn—U. (2) 
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It is easy to show that an operator is 7r/2-accretive if and only if it is maximal 

accretive. Also, an u;-accretive operator is bounded if and only if its domain is closec 

in H. Moreover, a well-known theorem (see [48], Theorem 1.24 of Chapter IX) asserts 

that, given UJ < 7r /2 and an operator L, then L is u;-accretive if and only if — L is the 

generator of a contraction semigroup on H that is holomorphic in TN/2-UJ. Denoting 

this semigroup by e~zL, we have 

\\e-zLu\\ < ||u||, | a r g z | < 
7T 

2 
— UJ. (3) 

Consider a one-one o;-accretive operator L on H for some UJ < IT/2 (we exclude 

the case UJ = TT/2 to simplify the presentation). We list some of the important facts 

relative to its functional calculus. 

For D a domain in C, call H°°{D) the algebra of bounded holomorphic functions 

/: D -+ C and | | / | U = sup{|/(C)| ; < € £ } • 

a) L has a bounded holomorphic functional calculus. By this we mean that for all 

fx G (UJ, 7r) there is a linear mapping hµ from i J ° ° ( r M ) to B(H), the space of bounded 

operators on H, with the following properties: 

1. I I M / ) l l < c J / | | o o ; 

2. ft„(/) = (L + A)"1 whenever / ( C ) = (C + A ) " 1 ; 

3. Ku tf)hIA{g)=hlltfg)\ 

4. If fn is a uniformly bounded sequence in H00^^) that converges to / G H°°(r^) 

uniformly on compact subsets of Tu as n tends to oo, then h^(fn) converges to 

hp(f) strongly. 

Because of property 2., the functional calculi defined on different sectors are consistent: 

h^f) — hu(f) whenever / G H00^^) and UJ < fi < v < TT. Hence, as is customary, 

we set f(L) = hfl(f) whenever it makes sense. 

An important example is the exponential function f(Q = e~z^ which belongs to 

H00^^) when | a rgz | < n/2 — fi. In particular, it follows from the properties of the 

functional calculus that f(L) agrees with e~zL. 

Also, if ¡1 G (UJ, TT) and ip is a holomorphic function in such that 

W O I < c i c r a + icir2s 

for some c, s > 0, then ift(L) can be computed using the Cauchy formula 

V>(L) = 
1 

2-KI 7 
( C - L ) - V ( O d C , 

where the path 7 is made of two rays re±l9 ,r > 0 and UJ < 6 < u, described counter­

clockwise. 

b) L satisfies quadratic estimates. Let ip be as above and not identically 0. Set 

i/>t(Q = ij>(tQ. Then, there exists c = c(ip) > 0 such that ([81, 58]) 

cIMI < 

'OO 

0 
\ \ M L ) u f L 

dt 

t 

1/2 

< c-l\\u\\, u £ H. (4) 
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0.2. MAXIMAL ACCRETIVE OPERATORS AND FORMS 9 

Particular choices for ip are e - ^ 1 / 2 or (1 + C)~1C1^2 where C1/2 is the principal 

determination of the square root of £. The first choice relates the quadratic functional 

to the parabolic operator d/dt + L\ the second choice to the elliptic operator 1 + L. 

Note that because of the homogeneity of the measure dt/t, t can be changed to ta 

for any a > 0 without affecting the equivalence. 

c) The functional calculus can be extended to more general holomorphic functions 

so as to include fractional powers of L. In particular, L1/2 is the unique maximal 

accretive operator on H such that (L1/2)2 = L. The operator L1/2 is called the 

maximal accretive square root of L ([48], p . 281). It is u;/2-accretive. To compute 

this operator, we use two classical formulae: 

L1/2u = 2 

7T 

oo 

0 

(1 + t2L)-xLudtdt, u e T>(L), (5) 

L1/2u = 
2 

vu 

'OO 

0 
e~* LLudti u e DV(L). [ O l 

Both integrals converge normally in H since 

IKl + ^ ^ L t t l l + He - '^Lul l <c inf ( | |Lu | | , r -2 | |u | | ) (7) 

when u G T>(L). The last inequality follows from a fact we frequently use. If 

/ ( C ) , C / K ) Gff°°(rM), then 

f(L)Lu - Lf(L)u = (C/ ) (£)« , u e V{L). (8) 

0.2. Maximal accretive operators and forms 

We turn to a systematic construction of maximal accretive operators via sesquilin-

ear forms and establish abstract resolvent and semigroup estimates. 

The first result is the classical representation theorem on regularly accretive forms 

which we formulate without proof in a slightly less general way that is more practical 

for our purpose. See [48], Chapter VI . 

Proposition 1. — Let H0 and Hi be two Hilbert spaces. Let D : H0 —» Hi be a 

densely defined closed operator with domain V and let A : Hi —> Hi be a bounded 

operator such that 

Re(ADu,Du)>1 > sS\\Du\\l, u E V (9) 

for some S > 0. Then there is a unique maximal accretive operator L with domain 

contained in V such that 

(Lu,v)0 = (ADu,Dv)1, u e T>(L), v e V . (10) 

Furthermore, V(L) is a dense subspace of V, 

V(L) = { u e V ; ADu e V(D*) } , 
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10 PRELIMINARIES 

and L is of type u < n/2 where 

UJ = sup{ | 3ig(Au,u)i\; u G Hi}. 

In addition, L is one-one if D is one-one. 

We have denoted by (,)k and || ||& the inner product and the associated norm in 

Hk. 

Notation. — From now on, we consistently use the notation L = D*AD to refer to 

operators built as above. 

Remarks 

1. If L = D*AD, then one can show that L* is also maximal accretive and L* = 

D*A*D. 

2. The inequality (9) is weaker than 

Re(Av ,v )11 > ô\\V\\L v G Hu 

as 1Z(D), the closure of the range of D, may be a proper subspace of H±. In 

other words, A may not be invertible on H\. 

Here are some additional resolvent and semigroup estimates. 

Proposition!. — Let Ho, Hi, D, A, L and UJ be as in the Proposition 1. Let ¡1 G 

(o;,7r/2), À G Tn-^ and z G r^-^- Then we have the following inequalities: 

\\D(L + A)-1 u|| 1 < c|M|o 
||a||1/2 

||D(L + A) - 1 D*ù||0 < cIMIi 
IAIV2 

||D (L + A) - 1 D*U||1 < c|M|i , 

and 

\\Le-*Lu\\0 = 
d 

dz 
e~zLu 

o 
< 

c||«||o 

\z\ 

|| De - zLu || 1 < 
c\\u\\o 

|z|V2 

\\e-*LD*u\\0 < c\\uh 
Izl1/2 

\\De-*LD*u\\i < 
c||«||i 

|z| 

for u in the appropriate space, where c depends only on S, ||A||, w, µ. 
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Proof. — We give parts of the argument, beginning with the estimates for the semi­

group. The estimate for the derivative follows from the Cauchy contour formula 

d e-zL = 
dz 

1 

2ni \C-z\=e\z\ 

e-Cl dC 
(C- z)² 

for e > 0 small enough, and the integral does not depend on e. (The choice e = 
sin(/x — cu) 

2 
insures that {(; \( — z\ < e\z\} is contained in Tu/2-w. 

Next, by holomorphy, we have 

-Le~zLu = 
d 
dz 

e~zLu, u G H0. 

Hence, we have just shown that Le zL is bounded on Ho with norm bounded by 

Cn/\z\. Using this, and (9) and (10), we have 

\\De-zLu\\\21 < (T1 ReRe(ADe-zLu ,De~zLu)1 

= (T1 ReRe{Le-zLu ,e - zLu)0 

< 
Cuö-1 

|z| 
Ml20 

The inequality for e~zLD* now follows by duality on applying the above with L* 

replacing L. Finally, by using the semigroup property we obtain De~zLD*uu = 

£>e-zL/2e-zL/2D*u^ when u e £>(£>*) and the desired estimate for De~zLD* follows. 

Let us turn to the last estimate for the resolvent. Let u G V(D*) and set v = 

(L + A)-1Z}*u. Then v G V(D) and 

(ADv, Dv)1 +\(v, v)0 = (D*u, v)0 = (u ^Dv)^ 

Since | arg (ADv, Dv}1 \ < u and | arg A | < 7 r — fi < TT — u, we can choose 0 G R such 

that 

Re [e^iADv. Dv)^ > 0 and Re [eie\] = 0. 

In such a case 

R e ^ i A D v ^ , Dv)^ > c\\Dv\\\21 , c = c ( / x , c j , J, \\A\\) > 0. 

Hence 

c H I M I ? < R e [eie((ADv, Dv)l + X{v, v) 0)] < | | w | | i | | ^ | | i 

which yields ||Dv||1 < c-1||ifc||i as desired. We leave the other estimates to the readei 

Remark. — Let us first recall a classical construction. Equip V, the domain of D, 

with the norm (||£>u||i + |Mlo)1/2 which makes V a Hilbert space. Then D: V -> Hx 

has an adjoint D%: Hi —> V'. Since the inclusion V C HQ is dense, D$ is an extension 

of D* (defined as the adjoint of the unbounded operator D). Making the confusion of 

notations, the Riesz representation theorem shows that V' is the set of vectors of the 

form u = u0 + D*ui, Ui G Hi, and its norm is defined by \\u\\ = inf(||t/o|lo + ll^illi)1^2 

where the infimum is taken over all representations of u. This makes HQ a subspace 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1998 



12 PRELIMINARIES 

of V and the inclusion is dense. With this formalism, the estimates above, together 

with (2) and (3) , mean that (L + A)-1 and e~zL have bounded extensions from V to 

V. In particular, the identity 

(/ + V)~xLu = u - (I + L)"" V u G £>(L), 

extends to V. 

0.3. The square root problem from an abstract point of view 

The square root problem for an operator L — D*AD, as defined in Proposition 1, 

is the following problem posed by Kato in [47] (see [60]): prove that V{LX^2) = V(D) 

with either the equivalence 

H L ^ u l l + I M I - I I D u l l + IMI ( H ) 

or the stronger equivalence 

\\L^u\\ ~ \\Du\\. (12) 

Note that since V(L) is dense in V{D), it suffices to establish these equivalences a 

priori for u G T>(L). For simplicity, we have dropped the subscripts 0 and 1 in the 

notation for the norms. 

If A is selfadjoint on Hi then L is selfadjoint on H0 and (12) follows from the 

representation formula 

WL^fW^ = iAD, Df), f e V(L). 

When A is no longer selfadjoint, (12) is not automatically true. 

From the point of view of operator theory, the square root problem is an interpola­

tion problem. Let us quote a result of J.L. Lions in this particular setting [52]. More 

can be found in [8] and the references therein. 

Proposition3. — Let L = D* AD be as in Proposition 1. 

(i) ^ ( L 1 / 2 ) is the complex interpolation space midway between V{L) and HQ. 

(ii) V(D) C ViL1/2) with H L ^ H < c\\Du\\ if and only if V^L*)1/2) C V(D) with 

\\Du\\<c\\(L*y/2u\\1/2u. 

(iii) WL1/2^ ~ \\Du\\ if and only if ||L1/2u|| < c||£>ix|| and IKL*)1/2^ < c\\Du\\. 

When the identification of the domain of L is possible this is a powerful tool. See 

[42, 12], where square root problems are tackled using this interpolation result. 

Another tool is the use of the quadratic estimates (4) . To this end, let us describe 

another representation of the operators built in Proposition 1. 

Lemma 4. — Any maximal accretive operator of the form D*AD on a Hilbert space 

Ho can be written in the form SBS, where S is a positive selfadjoint operator on Ho 

and B is a bounded invertible UJ-accretive operator on HQ for some LJ < TT/2. 
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Proof. — By the polar representation, one can write D = US, where S = (D*D)1/2 

has same domain as D (this is S = (D* AD)1/2 with A = I) and U: HQ -> Hi is a 

partial isometry. Set B = U*AU on K(S), and B = I on U(S)1- if K(S) # H0. The 

hypotheses on A easily imply that B is bounded, invertible on HQ and o;-accretive 

for some UJ < 7r /2 . Furthermore, the representation L = SBS holds in the sense of 

unbounded operators on Ho. • 

Proposition 5. — Let S be a one-one self adjoint operator in Ho and B be a bounded 

invertible UJ-accretive operator in Ho for some UJ < TT/2. Let T = SBS be the associ­

ated maximal accretive operator. Then the following inequalities are equivalent. 

lirV^H < c\\Su\\, u g T>(T). (13) 

•OO 

0 
e-t2TtSBu\\2 

dt 

t 

1/2 

< c | M | , u e H0. (14) 

oo 

0 
\\(l + t2T) - 1tHSBu\\2 

dt 

t 

1/2 

< c | N | , u g H0. (15) 

Remark. — Note that S is not necessarily positive. Also, the injectivity hypothesis 

is unnecessary but will be satisfied in our applications. 

Proof. — We only show that (13) and (15) are equivalent, the argument for the 

equivalence between (13) and (14) being analogous. Let ip(C) = (1 + C2)_1C- Then 

^ ( T 1 / 2 ) = (1 + t2T)- HT1/2 and MT1/2) Tx/2u = (1 + t2T)~H Tu for u G V(T) by 

(8) applied to T1/2. Hence, using the quadratic inequality (4) we have 

\\T1/2u\\ ~ 
OO 

0 
Kl + t2T)TyHSBSuW2 

dt 

t 

1/2 

That (15) implies (13) is then immediate. For the converse, we obtain (15) on the 

range of S. Observe that since S is one-one and selfadjoint, it has dense range. We 

conclude the proof by a density argument and (15) holds on HQ. • 

As we shall see, this proposition is one key of our approach to the square root 

problem for differential operators. Still, more work is needed and we have to take into 

account the concrete nature of differential operators. Indeed, in its full generality, 

Kato's conjecture has been disproved by Mcintosh [54], and this sheds light on the 

limitations of abstract methods from operator theory to solve the problem. 

Theorem 6. — There exists a Hilbert space and a maximal accretive operator L built 

as in Proposition 1 for which T)(L1/2) / V(D). 

Proof. — We adapt the construction of Mcintosh. On H = £2(Z), define an un­

bounded selfadjoint operator D by Dej — 2jej and a bounded operator B by Bej — 

S n G Z anej+n, where (ej) is the natural hilbertian basis of H and (an) is a sequence of 

complex numbers such that a(6) = Ylanein9 satisfies | | a | |oo = 1. Clearly, the operator 
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14 PRELIMINARIES 

B has norm equal to \\B\\ — ||a||oo = 1- For z G C with \z\ < 1, Az = Id + zB satisfies 

(9) so that Lz = DAZD is maximal accretive by Proposition 1. Let RZ = (Lz)1/2. 

Assume that \\Rzu\\ < c\\Du\\ for all u G T>(D) and uniformly for \z\ < r < 1. 

As a function of z, RZ is an operator-valued holomorphic function so that RQD'1 is 

bounded on H. Differentiating at z = 0 the equation RZRZ = Lz, we find 

R'0D + D D R Q = D D B D . 

Solving for R'0 one finds that 

R'EJ = V bnej+n , bn = 
an2n 

l + 2n' 

Hence, | | i 2 o ^ M l = \W\\OO with evident notation. Now take an = i/nri, then 

â(6) = -
2 
7T 

n>0 

sin(n^) 

n 

6 

7T 
- i , o < e < 2tt, 

so that ||a|| = 1. But b(0) ~ -1/u In | sin(0/2) I near 0 so that b is not bounded. This 
7T 

is a contradiction, hence H-Rz^ll < c||Z>^|| fails for some z. 

0.4. T h e square root problem for differential operators on Rn 

Our main interest in this work is about some questions for second order elliptic 

operators, including the square root problem. We also introduce higher order elliptic 

operators in divergence form. We have two motivations for doing so. In the one hand, 

most of our results are valid independently of the order of the operators. In the other 

hand, higher order operators will be instrumental in some arguments for the study of 

second order operators. 

We use the classical notation for multiindices a G Nn, a = ( a i , . . . , a n ) , their 

length \a\ = a± + • • • + an, the powers £a = £fx • • Eann, £ G Cn, and the associated 

partial derivatives da = (dXl)ai • • • (dXn)an. 

Let aap G L°° (Rn; C ) , where a and /3 are multiindices of length m G N*. Define a 

sesquilinear form on the Sobolev space Hrn(Mn) by 

I(f, g) = 
R N 

\*\ = \p\=m 

aa/3(x)df3f(x)dag(x) dx. ( 1 6 ) 

Setting V m / = ( d Q / ) W = m and | | V m / | | 2 = ( / £ \daf\2)1'2, we have that J is 

bounded on Hm(Rn) with 

\J(f,9)\<\\ (aae)\ U\ Vmf \\2 \\ Vmg\ \2, ( i t : 

where (aa/j) is matrix-valued. We assume that the Garding inequality 

R e ^ ( / , / ) > < 5 | | V r o / | | i , / e Hm(Rn), (18) 

holds for some Ô > 0. 
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Let H0 = L2(Rn; C) and Hx = L2(Rn; Cp) where p = 
m + n — I 

n - 1 
is the number 

of those multiindices of length m. Setting A: Hi -> Hi by 

(Au,v) = 
rn \a\ = \0\=m 

da/3{X)U/3(x)Va{X) dx, (19) 

the Garding inequality (18) reads 

Re(A D f, Df) > S\\Df\\l 

with D = V m . Hence, Proposition 1 applies: one can define L = D*AD as a maximal 

accretive operator on L2(Rn) . Classically, we write 

L = 

\ot\ = \P\=m 

(-l)^da(aa(3d^) (20) 

and L is a homogeneous elliptic operator of order 2m in divergence form. 

When m = 1, we identify the multiindices of length 1 with the integers in { 1 , . . . , n } . 

We simply write L = — div (AV) where A is the matrix ( a ^ ) and V = V1 is the 

ordinary gradient operator. The Garding inequality is equivalent to 

Re A(x)£ - £ = Re 
l<j, k<n 

ajk(x)EkEj > S|E|22 a.e. £€<Cn, (21) 

which is to say that A + A* >2S a.e. in the sense of selfadjoint operators. 

Let us fix some terminology. Given an integer N > 1, we call A(S) the set of 

all matrix-valued functions A(x) G L°°(Rn, MN(C)) such that \\A\loo < 5"1 and 

A + A* > 28 a.e. in the sense of selfadjoint operators. We denote by A the union of 

all A(5), 6 > 0. We shall say that the matrices in A are accretive. The context will 

make the value of N clear. The case where N — 1 is that of complex-valued functions: 

a function a(x) on Rn is accretive provided Re a(x) > 6 a.e. for some 6 > 0. 

The equivalence above is a specific feature of second order operators. When m > 1 

and L has constant coefficients, an argument via the Fourier transform shows that 

(18) is equivalent to 

Re 

\oc\ = \(3\=m 

aaBEBEa > S|E|2m , £ G Rn, 

which is weaker than imposing the matrix (aa/?) to be accretive. 

When m > 1, the Garding inequality (18) often takes the weaker form 

R e J ( / , / ) > ¿11 V " 7 | | l - CII/H5, / e H m(Rn), (22) 

for some C, S > 0. (See, e.g., [29, 38].) In such a case, Proposition 1 can be used to 

construct L + A as a maximal accretive operator on L2(Rn) for all A > C (see Section 

0.7). 

Let us now formulate Kato 's first conjecture for the square root of differential 

operators: 
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16 PRELIMINARIES 

Conjecture 1. — Let L be given by (20) and assume that (18) holds. Then one has 

that V(LX/2) = HTn(Rn). 

By Proposition 3, it is enough to consider either the (homogeneous) inequality 

l|£1/2/l|2 < c | |Vm/| |2 (K) 

or its local (inhomogeneous) version 

l l ^ 1 / 2 / l | 2 < c ( | | V - / | | 2 + | | / | | 2 ) (K)Zoc 

with their analogs for L * . 

If (18) is replaced by (22), the conjecture becomes V((L + A)1/2) = i J m ( R n ) for 

all (or, equivalently, some) A > C. 

0.5 . T h e square root problem and perturbation theory 

One of the applications of ( K ) or (K)/oc is analytic perturbation theory for partial 

differential equations. 

Let us come back to the general situation of Section 0.3 and consider the following 

question. 

For s G (—1,1), let Ls = D*ASD be the selfadjoint operator associated with D and 

As, where As is selfadjoint with 0 < SI < As < 8~l I uniformly over (—1,1). What 

are the regularity properties of s -> L8 in terms of the regularity of s -» Asl 

Proposition 7. — Assume that s —• As is continuous into the space of bounded 

operators on H\. Then s -» L8 is strongly continuous into the space of bounded 

operators from T>(D) into HQ. 

Proof — Observe that there exists a constant c = c(S) such that for all s the domain 

of L\/2 is V(D) and that if / G T>(D), 

sup 
0 < a < / 3 < o o 

B 

a 

Lse-t2Ls f dt < c\\Df\\. 

Indeed, the first fact follows from the selfadjointness of LS and the second one from 

the functional calculus. It follows from (6) that \\LV2f — L]/2f\\ will converge to 0 

as s tends to 0 provided we can show that, for fixed 0 < a < /3 < oo and / G T)(D), 

(3 

a 
Lse-t2' Ls f dt -

•0 

a 

L 0 e - ' L°f dt -»o , s 0. 

To this end, observe that Lse 1 lja = 
1 

2t 

d 

dt 
[e-t2L°) and integrate by parts in each 

integral. The conclusion follows easily by invoking a result of Kato [48J, p . 504, which 

asserts that e~* Ls converges strongly to e~l L° as s tends to 0. 

Remark. — Let us observe that [48], Chapter VII, contains regularity results of a 

different nature, imposing monotonicity conditions on As. 

ASTÉRISQUE 249 



0.5. THE SQUARE ROOT PROBLEM AND PERTURBATION THEORY 17 

One can ask whether more is true. If s -> A8 is of class Ck, k > 1, into the space 
1 / 2 

of bounded operators on Hi, can we conclude that s —La is strongly or weakly 
Ck? 

Mcintosh proved in [55] that this last question has a negative answer. 
In the specific case of second order differential operators — div( j45V) , the above 

question is still open when n > 2. Our approach to answering this question in the 
affirmative is based on the study of the topological properties of the set 

K = {A e A ; - div ( A V ) satisfies (K) } , 

which is a motivation for using complex coefficients. 

Theorem 8. — Let O C K be open for the Z,°°(Rn, M n ( C ) ) topology. Then the map­
ping A —> (— div (AV))1 /2 is norm analytic from O into the space B(HX (Rn) , L2 (Rn)) 
of bounded operators from H1(Mn) to L2(Rn) . 

Proof. — Pick A0 6 O and M G L°° (Rn , M n ( C ) ) , and consider the holomorphic map 
z —> Az = Ao + zM from a sufficiently small complex ball | ^ | | | M | | o o < e into O. Set 
Lz = — div (AZV). By the remark at the end of Section 0.2, we may write, 

(I + fLz) -1 - (J + ^Lo)-1 - {I + t2LQ)-H div z Mt V (I + t2 Lz) ~1, 

so that iterating this equality into (5) , one finds that LV2 = (— div (Az V))1/2 has a 
formal Taylor series expansion 

Lz1/2 = L01/2 
oo 

3=1 
z Tj- (23) 

On the other hand, the T ' s can be computed by the Cauchy integrals 

Tj = 
11 

2ni \z\=r 
Ll/2 dz 

zj+i 
r l l M H o o < e . (24) 

Hence, by (K) applied to L\/2 uniformly for \z\ = r, | |^-/| |2 < c r -J ' | |V/ | |2 . This 
shows that (23) converges normally in B(HX(Rn), L2(Rn)) when \z\ < r. 

Remark. — The control of the T / s when Ao = Id is precisely the aim of the 
multilinear theory used in [20], [35, 37 , 36], [19], [26], [57], [59], [45], [50]. See also 
[22], [23] for related works. We shall not use multilinear estimates in this work. 

In view of Theorem 8, it is natural to formulate the following conjecture. 

Conjecture 2. — K is open in the L°° topology. 

If we can prove this, then in particular, K will be a neighborhood of any uniformly 
positive definite selfadjoint matrix Ao(x) and the regularity problem posed above will 
be solved. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1998 



18 PRELIMINARIES 

0.6. Connections between second and higher order operators 

Higher order operators are naturally involved, even when dealing with the square 

root problem for second order operators. To explain why, let us state an abstract result 

proved in [8]. A similar statement is used in [61] to prove the first Tfr-Theorem. 

Proposition 9. — Let S : Ho —> HQ be a positive selfadjoint operator with domain 

V(S) and B: Ho —>> H0 be bounded invertible and uj-accretive on H0. Construct 

T = SBS and for r > 0, Tr = SrBSr as in the Proposition 1. Then the square 

root problems for T and Tr are equivalent. More precisely, V{S) C P(TX/2) with 

\\T1/2u\\ < c\\Su\\ if and only ifV(Sr) C £>(Tr1/2) with \\Tr/2u\\ < c\\Sru\\. 

In this statement, u is taken in the appropriate space and the constants do not 

depend on u. 

Remark. — One can drop the positivity assumption on S when r is restricted to 

being a non negative integer. 

This proposition applies to the class of maximal accretive operators D*AD, pro­

vided we use the representation in Lemma 4. 

Proposition 9 allows us to increase the order of operators (while in [61], it was used 

to lower the order). An example is the following important result for us (see Chapter 

2) . Let L — — div (AV) be defined as in Section 0.4, where A e A and, for all k > 1, 

define 

Lk = - A * div (AV)Ak 

by the method of sesquilinear forms. The Gârding inequality for the form associated 

with L clearly implies the corresponding inequality (18) for the form associated with 

Lk, so that Lk is a maximal accretive differential operator on L2(Mn) of order 4k + 2. 

Proposition 10. — Fix k > 1. Then (K) for L is equivalent to (K) for Lk-

Proof — The polar decomposition of V is V = R(—A) x/2, where R is the array of 

Riesz transforms Rj = m 
dxj 

( - A ) " 1 / 2 , j = l , . . . , n . It follows from Lemma 4 that 

L - S B S S with B = R*AR and S = ( - A ) 1 ^ . 

Now, Lk = S2k+1BS2k+1. Applying Proposition 9 yields 

\\L1/2f h < c\\Sf h if and only if \\Ll/2f\\ 2 < c| |52fc+1/l|2. 

To conclude the argument, it remains to observe that 115/112 = I I V / H 2 and that 

| | 5 2 f c + 1 / l l 2 = I | V A * 7 I | 2 - | | V 2 f c + 1 / l l 2 . The last equivalence follows from Plancherel 

theorem for the Fourier transform. 
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0.7. PERTURBATIONS WITH LOWER ORDER TERMS 19 

0.7. Perturbations with lower order terms 

In this section, we consider inhomogeneous elliptic operators of arbitrary order. 

They are obtained by perturbing with lower order terms the homogeneous operators 

defined in Section 0.4. A precise definition is given after we prove an abstract result 

that, as far as the square root problem is concerned, allows us to dispose of these 

terms. In other words, it will be sufficient to study the square root problem for 

homogeneous differential operators. 

Here is the abstract setting. Consider a one-one selfadjoint operator S acting on a 

Hilbert space HQ. Let ra G N* and for 0 < k,£ < m , let BM be a bounded operator 

on H0 s o that Proposition 1 applies to the matrix of operators B = (Bki)o<k,£<m 

acting on Hi = H™+1 and to D = (J, 5 , . . . , 5m)T (where T stands for transpose in 

the sense of vectors) with domain V(Sm). Call L = D*BD the maximal operator 

thus obtained. Expanding L formally yields 

L = 

0<k,l<m 

SkBkiS£. '251 

Set L0 — SrnBrnrnSrn where 2?mm is assumed, in addition, to be bounded and w-

accretive on HQ for some LJ < J . 

One can view L as a perturbation of LQ with lower order terms. The perturbation 

result takes the following form. 

Proposition 11. — The inequality | |L1 /2 / | | < c | | D / | | — | | 5 m / | | + ||f|| is a consequence 

o f \ \ L y 2 f \ \ < c \ \ S ™ m f\\. 

Proof. — We begin with an application of Proposition 5 to LQ. Changing t to tm for 

reasons of homogeneity, and using the invertibility of I?mm, we get 

'OO 

0 
( l + ^2mL0)-^m5mw||2 

dt 

t 

1/2 

< cIMI (26) 

for all u £ HQ. 

Now, in view of the following result which we admit for the moment, we replace 

the resolvent of LQ by the resolvent of L. 

Lemma 12. — There exist to > 0 and CQ > 0 such that for all 0 < t < to and u G HQ, 

II [(1 + t^L) -1 - (1 + ^ L o ) - 1 ] * 7 7 1 ^ ! ! < cö*||u||. 

î Vom (26) and the lemma, we obtain 

•to 

0 

\(l + t2rnL)-1tTnSmu\\2 
dt 

t 

1/2 

<c\\u\\. 
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Next, if k = 0 , . . . , r a — 1, interpolation and the resolvent estimates of Proposition 2 
yield ||(1 + t2rnL)-HkSk u\\ < c\\u\\, hence 

to 

r0 
\{\ + t2rn L)-1trnSku\\2 

dt 

t 

1/2 
< C 

to 

'0 

^2m—2k dt 
t 

1/2 
|u||<c||u||. 

Therefore, writing L = "£SkBk£S£ and using the boundedness of each Bkt, we have 

to 

0 
\\(l + t2 rnL)-H™Lu\\2 

dt 

t 

1/2 
< C 

m 

£=0 
W&uW ~ | | I > « | | . 

Finally, since ||(I + t2mL)tmLu\\ < c*-m||u| | when u G V(L) by (7) , we obtain 

ll^1/2«ll < c 
OO 

0 
| ( l + ^2mL)-^mLu| |2 

dt 
t 

1/2 

< с 
to 

0 
( H - ^ 2 m L ) - ^ m L w | | 2 

dt 
t 

1/2 
-he 

W 

' t 0 

t-2m dt 
t 

1/2 
a 

< c\\Du\\ + c\\u\\. 

Remark. — A slight modification of the proof shows that the hypothesis can be 
replaced by | | I / J / 2 / | | < e ( | | S m / | | + | | / | | ) . A result of this type appears first in [13], 
with the limitation that m = 1 and stated in a weaker form with equivalences instead 
of inequalities. The argument given there, relying on Proposition 3, does not seem to 
generalize. 

It remains to prove Lemma 12. Thanks to the remark at the end of Section 0.2, we 
may compare the resolvents of L and LQ. By the classical Neumann series expansion, 
writing L = LQ — R we obtain, 

{l + t2rnL)~l = 
OO 

¿ = 0 

((1 + t2mL0)-lt2m R) j (l + t2m Lo)'1. 

Hence, 

[((1 + t^L)-1 - (1 + t2mL0)-l}tm Sm = 

OO 

j=1 
Mi, 

wnere 

Mj = ((1 + t2rnLo)-l t2rn R) j {1 + t2mLo)_1tm5m. 

The operator R is the sum of ( m + l)2 — 1 operators SkBktSl with k + £ < 2m, so 

that Mj is the sum of ( m 2 + 2m)J operators of the form 

( l + ^2mL0)~1^m5A;i 
3 

s=l 

BkalatmSl' {1 + t2mL0)-^m5fca+1 (27) 
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where 0 < ks,£8 < m , fcj+i = m and ks + £s < 2m. The resolvent estimates of 

Proposition 2 and interpolation yield 

||**S*(1 + * 2 m L 0 ) ~ < c\\u\\ 

uniformly over 0 < k,£ < m. Therefore, using also that ||Bkl|| < \\B\\, we have if 

t < 1, 

| | (27) | | < ^ H B I K 

3 

8=1 

j.2m—ks —13 

< c(c\\B\\ty, 

which implies that 
oo 

j=1 

\\MJU\\ < c 

oo 

j=1 

(c(m2 + 2m)\\B\\ty\\u\\. 

This series converges when, in addition, c(m2 + 2m)\\B\\tt < 1/2. This ends the proof 

of Lemma 12. 

An inhomogeneous elliptic operator of order 2m in divergence form is defined via 

the method of sesquilinear forms and is formally written as 

L = 

\<*\Aß\<m 

(-l)Wda(aaßdß). (28) 

All coefficients a^p are bounded complex-valued functions. The Gârding inequality 

(18) or (22) is assumed on the homogeneous part, which we denote by Lo, so that th( 

Gârding inequality for L reads 

Re (Lf, f) > S\\Vmf\\22 + C\\f\\22 (29) 

for some C G M and S > 0. Up to changing the 0th order term in L we can make 

C > S in (29), which we do. 

Let us see why L is maximal accretive on L2(Rn) . Once again, this follows on 

applying Proposition 1. With the notation in Section 0.4, one has the following 

representations, which are rigourously justified by systematically going back to the 

corresponding sesquilinear forms. Letting AM be the matrix with entries aap, \a\ = k, 

\/3\ = £, one first obtains 

L = 

o<k,e<m 
(-l)fcVfc • AMVl (30) 

(by convention, V ° = / ) . Regrouping terms, one obtains L = D*AD with A being 

the matrix with matrix-valued entries Akt, and D being the array of higher gradients 

(Vfc )^L0 , which is a closed linear operator with domain Hrn(Mn). 

To apply Proposition 11 to L and Lo, we keep transforming (30), by factoring out 

powers of the Laplacian. Set S = (—A)1/2 and 

Bki = ( - l)*(-A)-*/2V* -AkeV£(-A)-£/2. 
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From Plancherel theorem, (—A)_fc/2Vfc is bounded on L2, hence Bkt is a bounded op­

erator. We obtain a representation in the form (25) for L and a similar one for L0, and 

the properties needed for Proposition 11 to apply are easily verified. Consequently, 

we have 

Corollary 13. — The inequality (K) for LQ implies (K)ioc for L. 

A similar result was proved by Evans under the additional assumption that the 

leading term LQ be selfadjoint and is described in [55] with a completely different 

argument. 

Remarks 

1. It can be observed that the nature of the perturbation to LQ is irrelevant: the 

multiplication by aap entering in the perturbation can be replaced by the action 

of any bounded operator on L2(Rn). 

2. In fact, inequalities (11) and (12) are of the same type. More precisely, the 

inhomogeneous equivalence (11) applied to L corresponds to the homogeneous 

equivalence (12) applied to L + / . Indeed, if L = D * A D , one can write L + / = 

D*AD where Du = (Du, u)T and A is the matrix of operators 

A = 
A 0 

0 / 

Start from the homogeneous equation (12) for L + / , that is | | (L 4- J ) 1 / 2 ^ ~ 

\\Du\\. Now, by functional calculus, | | (L+/)1/2w| | ~ ||L1/2u|| + | M | (observe that 

the function £ —> |(C + 1)(C2 + l ) "1 /2 ! is bounded away from 0 and oo in a conic 

neighborhood of the spectrum of —L1/2, which is contained in | a rg£ | < UJ/2 < 

T T / 4 ) . Since \\Du\\ ~ \\Du\\ + ||u||, we see that (12) rewrites ||L1/2ii|| + ||u|| ~ 

\\Du\\ + \\u\\ which is (11) for L. 

0.8. Change of variables 

We restrict our discussion to second order operators. 

Consider LA = - div ( A V ) where A G A(S) as in Section 0.4. Let ø : Rn -> Rn 

be a bilipschitz change of variables on Rn. Denote by J<j> its jacobian matrix. For 

u,v £ ^(W1n), putting x = (f)(y), we have 

xn 
A(x) Vu (x) • Vv(x) dx = 

xn 
B(y) V {u o (j>)(y) • V ( « o <p)(y) dy, (31) 

where 

B(y) = \det Jo(y)\tJ;\y)A{4>{y))J^(.y)- (32) 

Clearly B G A: consider analogously LB — — div ( # V ) . 

ASTÉRISQUE 249 



0.8. CHANGE OF VARIABLES 23 

Define an isomorphism on L2(Rn) by setting Vu = uocf>. In terms of operators the 

equality (31) means that 

LA = V* LBV 

with the equality of domains. Since V is also an isomorphism on i71(Rn) with 

| |Vu| |2 ~ l |V(Fw) | |2 , the Kato square root problem is invariant under conjugation 

by V: in particular, we have | | L ^ / 2 / | | 2 < c | | V / | | 2 if and only if WOT^ Lb V) 1/2 f\\2 < 

c | | V / | | 2 . Now, a straightforward calculation yields 

V*u(x) = \ det J<j)-i(x)\V-1u{x). 

Hence, 

V-X LBV = mLA, 

where ra denotes the multiplication by m(x) = | det J^-i (x)\ Thus, \ \L j1 /2B f\\2 < 

c | | V / | | 2 if and only if 

| | ( r a L A ) V 2 / | | 2 < c | | V / | | 2 . (33) 

Let us explain the meaning of (TULA) ' > Since ra is a bounded and non-negative 

function with bounded inverse, TTILA is the maximal-accretive operator built on H = 

L2(Wn,dx/ m (x)) via the equality 

(mLAu, v) H = (L Au,v). 

Hence (TULA)1/2 is well-defined on H. Moreover, the study of its domain on H or on 

L2(Rn) is the same, these two spaces being equal with equivalence of norms. As we 

now see, this domain does not depend on ra. 

Lemma 14. — Let L = — div (AV) where A G A(S) and m be a non-negative function 

with ra,ra_1 G L°°(Rn). Then for f G *D(L), 

c1||L1/2f||2 < ||(mL)1/2f||2 < c2 ||L1/2f||2,f||2 (34) 

where c\ and c2 depend only on | | r a | | o o , \\m 1\\00. 

Proof. — From the discussion above and Section 0.1, we can use quadratic functionals 

to compute IKraL)1/2/!!2, when / G T>(L) to obtain 

||(m£,)1/2/||22 ~\\(mL)V*f\\2H2H ~ 
OO 

0 
(1+ t 2 m L ) - 1 t m L f 2 H 2 H 

dt 

t 
OO 

0 
(m'1 +t2L) -HLf \ \22 

dt 

t 
(35) 

To end the proof, it remains to compare (ra 1 + t2L) 1 with (1 + t2L) 1 for each 

t > 0. If g G L2, we have 

Cl||(l + ^2L)-^| |2 < \\(m-1+t2L)-1 g\\2 < c2\\(l + t2L)-1 g\\2 
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with c11 = 1 + \\m 1 — l H o o and c2 = 1 + H m H o o H r a 1 — l | | o o - The first inequality can 
be seen by writing 

( 1 + ^L)"1*? = (m"1 + t2L)~lg - ( 1 + £2L)-1(ra-1 - l X m " 1 + t 2 L ) " ^ 

and using the fact that ( 1 + t2L) 1 is a contraction on L2. The second one is obtained 
similarly. 

Proposition 15. — Let A e A(S) and B be related to A by (32) under a bilipschitz 
change of variables. Then (K) holds for LB if and only if (K) holds for LA- In 
particular, V{L^2) = H^W1) if and only if V{L^2) = H1 (Rn). 

The proof is clear from the above discussion and Lemma 1 4 . Also changing A to 
A* makes B become B*, so that the same argument applies for adjoints. 

Remarks 
1. Let (p be some holomorphic function for which <p(LB) makes sense. If K (x, y) 

denotes the Schwartz kernel of (/?(£#), then the Schwartz kernel of ^(TTILA) = 
V - V № b ) V is 

K { r x 1 (x)x, < T 1 {y))\ det J , - i (y)I = K(o-1 (x), 0-1 (y))m-1 (y). 

Since 0_1 is Lipschitz, estimates such as pointwise upper bounds and Holder 
regularity with exponent between 0 and 1 are the same for the kernels K (x, y) 
and K((j)~1(x), (/)~1(y)). In particular, the property (G) which is defined in 
Chapter 1 will be stable under the change of variables, provided the function 
m~1(y) is considered as a weight. See Chapter 1. 

2 . For any bounded and accretive function m on W1 and any L as above, one 
can make sense of mL using the theory of operators of type uj and prove that 
P f l m L ) 1 / 2 ) = H1(Rn) if and only if V(LXI2) = i f 1 ( R n ) . The argument pre­
sented here breaks down, because ( 3 5 ) is not obviously true as mL is no longer 
maximal accretive. A quite sophisticated argument which is out of the scope 
of this work follows from interpolation results and the (non-trivial) fact that 
m(—A)1/2 has an H00-functional calculus on L2(Rn) . See Section 9 and Theo­
rem 1 0 . 1 in [8] for more details, and also [9] and [1]. 

3 . The statement in Lemma 1 4 and its generalization discussed in the previous 
remark are specific to the concrete nature of the operators. Consider a bounded 
invertible o;-accretive operator M on a Hilbert space H with 0 < uj < 7 r / 2 and 
L = D* AD = SBS as in Proposition 1 and Lemma 4 . Then [8] shows that 
for M as above 2 ) ( ( M L ) ! / 2 ) = V{D) = V(S) if, and only if, MS and BS have 
an H^-functional calculus on H. It also applies to L, in which case M = I. 
But, since S is selfadjoint, S has such a functional calculus. Hence if BS has an 
#°°-funct ional calculus on H but MS does not, then X>((ML)X/2) and V{LXI2) 
do not agree. See [62] for examples of such operators M. 
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0.9. Further comments 

Should one use the representation D*AD or the representation SBS in studying 
the square root problem for differential operators? Recall that the first one comes 
from Proposition 1 and the second one from Lemma 4. 

From the point of view of operator theory, the second one is certainly the easiest to 
work with because S is selfadjoint (its positiviness being a marginal feature) and B is 
bounded and a;-accretive. Also, because of Proposition 5, there is a direct connection 
with square function estimates. 

From the point of view of PDE's and harmonic analysis, the second one seems to 
be the worst because B is an unfriendly operator in dimensions larger than two: a 
pointwise multiplication sandwiched between non invertible Calderon-Zygmund oper­
ators (see Chapter 2) . In the first representation, the action of B is replaced by the 
action of A which is a much nicer operator: a pointwise multiplication. As we see in 
Chapter 2, this representation leads to square function estimates of a different nature. 
However, a drawback of this representation is that D* has a large kernel space, in 
other words the partial isometry U such that D = U(D*D) 1/2 is non invertible (using 
P D E terminology, we would say that the divergence operator has characteristics). 

The conclusion is that both representations have specific features which comple­
ment each other. As we mix techniques from operator theory, PDE's and harmonic 
analysis, our idea is to take advantage of both. 

In one dimension, where D = d/dx, the partial isometry U in the polar decompo­
sition of D is the Hilbert transform, an operator that is invertible. Hence, there is 
only a superficial difference between the two representations. The moral is that any 
representation enjoys the properties of both, which is an indication on why this case 
is favorable. 

To conclude these Preliminaries, let us observe that the representations (5) and (6) 
lead to studying a class of singular integrals that is most efficiently analyzed using 
real variable analysis. This is the content of Chapter 4. Similarly, the quadratic func­
tionals arising from (4) as in Proposition 5 are of Littlewood-Paley-Stein type. Their 
analysis led us to extend the modern theory of quadratic functionals and, in partic­
ular, their connections with Carleson measures. This aspect is studied in Chapter 2. 
Applications towards positive answers to the square root problem are in Chapter 3. To 
make this program work, we need estimates on the distributional kernel of functions 
of L, and especially on the heat kernel, which is the main topic of Chapter 1. 
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CHAPTER 1 

GAUSSIAN ESTIMATES 

1.1. Introduction 

In this chapter, we make a thorough analysis of the heat kernels of the elliptic 
operators introduced in Preliminaries. Our motivation for doing so is that estimates 
on heat kernels are instrumental in studying the square root problem. Nevertheless, 
this chapter has its own interest and can be read independently of the square root 
problem. 

For uniformly elliptic operators of order 2 in divergence form with real measurable 
coefficients, elliptic and parabolic regularity theories are well understood. Elliptic 
theory relies on the fundamental work of De Giorgi [31], and on that of Morrey 
[64]. Parabolic regularity was done by Nash [66]; in addition, Moser established 
Harnack inequalities [65]. The link with Gaussian estimates of heat kernels was done 
by Aronson [4], while Fabes and Stroock [34] proved that pursuing further ideas of 
Nash already leads to Gaussian upper and lower bounds and to Harnack inequalities. 

It is impossible for us to draw a complete list of the consequences that these results 
had in many fields in analysis. Let us just mention a few. The elliptic theory is related 
to questions in the calculus of variations and in non-linear elliptic equations [38], 
[40]. It also has strong connection with harmonic analysis via the study of harmonic 
measure (see, e.g., [49] for a general overview). Parabolic theory and semigroup 
techniques are important toward spectral theory on manifolds, the study of geometry 
on groups and manifolds, the study of Markov processes and random walks on graphs. 
See [28, 67 , 68 , 80] for updates until the end of the 80's, though these topics are 
evolving quite rapidly. 

It is a natural question (and, for us, an important one towards the study of the 
square root problem) to wonder what properties such as the Gaussian decay and the 
regularity properties of heat kernels remain valid in the case of complex coefficients. It 
turns out that these two properties may fail, as well as the maximum principle [7]. To 
obtain positive results, we cannot then rely on the techniques found in [28, 67 , 80]. 
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We use instead a quantitative formulation of the general principle that parabolic and 

elliptic theories be strongly related, following [5]. 

There are multiple consequences of Gaussian decay and regularity properties for 

heat kernels of operators with complex coefficients. Among them are estimates on 

their spatial derivatives which are essential in many aspects of our study of the square 

root problem. Let us also mention a new analytic pertubation result for heat kernels 

of operators with real coefficients. 

Section 0.6 of Preliminaries shows that in the study of the square root problem, 

we can replace — div (AV) by a higher order elliptic operator. This is of particular 

interest when the heat kernel for — div (AV) does not have good properties. For this 

reason, we also study decay and regularity properties for heat kernels of complex 

elliptic operators of order 2m, m > 1. We prove that decay and regularity hold when 

2m > n (the case 2m > n is also treated in [29]). 

1.2. Gaussian estimates for second order operators 

For a measurable function A : Rn —> M n ( C ) , set 

\\A\|b : = s u p { | ¿ ( a O í -fj\, x € Rn, í . f j € C " , |£| = \r,\ = 1 } . 

Recall that for 5 > 0, A(S) denotes the class of uniformly elliptic matrices with 

ellipticity constant 6, that is 

IIAIloo < J"1 and Re A(x)E.E > S|E|2 , a.e., f G<Cn, 

and that A is the union of all A(S), S > 0. Next, define S as the union of all £(S), 

the latter being the class of maximal accretive operators L — — div (AV) on L2(Rn) 

for some A G A(5), given by 

(Lf, g) = AVf . Vg, f E D(L), g E H1 (Rn) 
(1) 

and constructed as in Section 0.4 of Preliminaries. 

For convenience, let us summarize some properties of L in this specific situation. 

Recall that r/i = { z ^ C * ; | a rgz | < ¡i) and set dT^ the boundary of T^. 

(i) V(L) is a dense subspace in i f 1 ( R n ) and L2(Rn) for the respective topologies. 

(ii) L is one-one and o;-accretive with u = sup{ | arg A(x)£ - £ | ; : r e R n , £ € C n } < 

7r /2 and, if A G T ^ - ^ , 

| | ( L + A ) - V l l 2 < 
1 

dist (\,dr*-u) 
I I / I I 2 , / g L2(M.n). (2) 

(iii) — L generates a holomorphic contraction semigroup on L2(Rn) : 

\ \ e - z L f h 2 < I I / H 2 , | a r g 2 | < 
7T 

2 
— U). ( 3 ) 

(iv) The resolvent and semigroup satisfy the basic L2 estimates which are stated in 

the next result. 
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Proposition 1. — Let L G £(S) and uj be as above. Fix v G (uj,7t/2). There exists 

c = c(n,S, v) such that for all A G Tn-U, j,k G { 1 , . . . , n } and f G ii/"1^™), 

l À l ^ H ^ L + A ) _ 1 / | | 2 +|A|1/2||(L + X)-1 Dkff||h 

+\\Di (L + A ) - 1 Dkf\\2 < c\\f\\2 (4) 

and for all z ^ 0 with | a rgz | < n/2 - v, j , k G { 1 , . . . , n } and f G ^ ( R n ) , 

d 
dz 

e~zLf 
2 

< c 
e 

l / l 2 (5) 

and 

W'WDje-zL f||2 + \ z n e -z'L Dk f\\2 + |Ä|||£>>c-*iJD*/ ||2 < c||/||2. (6) 

We Ziave set Dj = dd/dxj. 

(v) L* G £(£), and it is associated with the matrix A* (that is £(<$) is stable unde 

taking adjoints). 

(vi) Defining (UXOt.f)(x) = f 
X — XQ 

s 
the operator of dilation by s > 0 and trans­

lation by XQ G Mn, then UXQ8LUXQ,8 G <?(<£) and is associated with the matrix 

A(sx + xo) (that is, £(6) is invariant under translations and dilations). 

If L G £(5), we denote by Kt (x, y) G £>'(R2n) the Schwartz kernel of e~tL. As is 

customary, we use the terminology "heat kernel" when speaking of Kt (x, y). 

Definition 2. — L has the Gaussian property (G) if Kt (x, y) is, for each t > 0, a 

Holder continuous function in x and in y and if there exist constants c, // > 0 and 

/3 > 0 such that for al l* > 0 and x, y, h € Rn, 

\Kt(x,y)\< 
c 

tn/2 
exp 

ß\x - y|\2 

t 
(7) 

\Kt (x, y) - Kt (x + h, y)\ < 
c 

+n/2 
\h\ 

t1/2 + \x - y\ 

u 
exp 

ß\*- V?2 
t 

(8) 

and 

\Kt(x, y + h) - Kt(x, y)\ < c 
tn/2 

\h\ 

t1/2 + |x - y| 

E 

exp 
ß\x - y\2 

t 
(9) 

whenever 2\h\ < t1!2 + \x — y\. 

Definition 3. — L has the local Gaussian property (G)ioc if the same inequalities 

hold for 0 < t < 1. 

Remarks 

1. Observe that the property (G) is preserved under taking adjoints. It is also 

preserved by scaling and translation. Indeed, fix s > 0 and xo € Mn and let 

A G A(S) and Kt(x, y) be the heat kernel of — d iv(^4V) . Then the heat kernel 

of U-]8LUX0,8 is s -n/2Kt/sl/2 
,X — XQ 

s1/2 
V -x0 

s1/2 
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2. Assume that (7) is valid. Then (8) is equivalent to the following: there exist 

constants c and v > 0 such that for all £ > 0, x, y, h G Mn, 

\Kt(x + h,y)- Kt (x, y)\ < 
c 

tn/2 

\h\ 

t12 

v 

(10) 

Inequality (10) is easier to prove but (8) is more useful in pratice. Another way 

of writing (10) is by means of the Cu(R.n) semi-norm: 

\f\c*- = sup 
X,y £Rn , x^y 

i / o * ) - m \ 
\x- y\" 

sup 
x, h # 0 

\f(x + h) - f(x)\ 

h" 
(11) 

Then (10) is equivalent to 

sup 
ye®n 

K t . ( ; y ) \ cv < ct- (n+v)/2. (12) 

3. Assume that L has the property (G)ioc. Using the semigroup property 

e-tLe -sL _ e-(t+a)L 

and the fact that the convolution of two Gaussian functions is again a Gaussian 

function, one sees that the inequalities (7-9) hold for a lH > 0 with c replaced by 

c$(t), where 3>: [0, oo) —> [1, oo) is continuous with $ ( 0 ) = 1 and non decreasing. 

Reciprocally, if (7-9) hold with c replaced by c$(t) with $ as above, then L has 

the property (G)/oc. Typically <£(£) = eat for some a > 0, but it is also possible 

to obtain polynomial growth (see Section 1.4.4). Finally, note that if L has the 

property (G)ioc then for A > 0 large enough, L + A has the property (G) with c 

replaced by ce~at for some a > 0 (see also Theorem 18). 

Of course, (G) holds for constant coefficient elliptic operators, and when the coef­

ficients are smooth the local Gaussian property is obtained by classical means such 

as the point freezing technique of Korn. Here, we seek estimates under minimal 

regularity assumptions. 

The results of Nash and Aronson mentioned in the introduction show the following. 

Theorem 4. — If L = — div ( A V ) G £ (S) where A has real entries then L has the 

Gaussian property (G). 

Unfortunately, in the case of complex entries, Theorem 4 is no longer true. 

Theorem 5. — / / n > 5, there is a complex elliptic L = — div (AV) G 8 for which 

e~tL is not bounded on L°°(IRn) for any t > 0. In particular, L does not have the 

Gaussian property (G). 

We give in Section 1.3 a proof of the failure of (7) in (G) and refer the reader to 

[7] for a complete argument (see also [30] for a simplified argument). 

Still, there are some positive results. In order to state them, we introduce the 

following notation. 
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For a measurable function / defined on Mn and p > 0 , set 

Voo(f, p) = s u p { | / ( x ) - f(y)\ ; \ x - y\ < p} 

and 

w2 (/, P) = sup 
Br , 0<r<p 

1 

Br Br 
\f-mr f\2 

1/2 

where the supremum is taken over all Euclidean balls Br with radius r < p and mrf 

is the mean of / over Br. 

Denote by BUC the space of bounded uniformly continuous functions on W1. 

It is characterized by ||f||oo < oo and limp_+0 ^ o o ( / , p) — 0 . Observe then that 

mfp>0u;oo(f, p) is equivalent to the distance of / to BUC in L°° (Rn). 

The BM O norm of / is | | / | | B M O = supp>0 u>2(/, p)- A particular subspace of BMO 

is defined by ||f||oo < oo and infp>0 u>2(/, p) = 0 : this is L°° (En) Cwmo (see [41] for a 

definition of vmo). More generally, one can show that for / bounded, infp>0 ^;2(/ , p) 

is equivalent to the distance of / to BUC in BMO. 

Theorem 6 — Let L = - div ( A V ) G £(S). 

(i) L has the Gaussian property (G) when n = 1 and n = 2. 

(ii) IfL has the Gaussian property (G) then so does — div ( A ' V ) when \\A—A'Hoo < £ 

/ o r some e = e(n, J) > 0 . 

(iii) There exists an e = e(n,S) > 0 such that if \\A\\BMO < £ then L has the 

Gaussian property (G). 

(iv) There exists an e — e(n,5) > 0 such that if infp>o ^^(A, p) < e then L has the 

Gaussian property (G)ioc-

(v) There exists an e — s(n,$) > 0 such that if infp>o^;2(A, p) < e then L has the 

Gaussian property (G)ioc. 

Part (i) is taken from [10, 11]. Parts (ii) and (iv) are due to one of us [5]. The 

refinement to obtain part (iii) and (v) arose in discussions with L. Escauriaza. 

Let us comment on this theorem. Its proof is in Section 1.4.6. 

Because of (i) and of Theorem 4, the items (ii) to (v) are of interest only when 

n > 3 and the coefficients are complex-valued. For example, in terms of matrices 

(assumed to be in A(S)), the following cases are covered: L°° perturbations of real 

matrices (part (i i)) , L°° pertubations of constant complex matrices (part (ii) or (hi)) , 

BUC and vmo matrices and their BMO pertubations (parts (iv) and (v ) ) . 

Note that (iv) is a consequence of (v) since o;2 < c^oo-

An equivalent formulation of part (ii) is that the set of matrices A G A for which 

— div (^4V) has the Gaussian property is open in L°° (see Section 1.6 for more about 

this). We claim that this cannot be true in BMO. Indeed, consider the operator 

L = — div ( j 4 V ) of the counterexample stated in Theorem 5. By part (ii), if e > 0 is 

small — div (J + eA)V has the Gaussian property ( G ) . But I + eA and eA are equal 

in BMO, which proves the claim. 
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Remark. — If the coefficients have further regularity such as Holder continuity it is 

shown in [10, 11] that not only L has the property (G)/oc but the heat kernel has 

also pointwise gradients in x and y each satisfying equations (7-9) for 0 < t < 1 up to 

a normalizing factor t~xl2. As for the Green's kernel of the elliptic equation Lu = 0, 

uniform continuity is not enough for the gradient of the heat kernel to be bounded 

(see [43]). 

Gradient estimates on heat kernels play an important role in this chapter and in 

the next ones. 

Theorem 7. — Let n > 2. Assume that L G £(S) has the Gaussian property (G). 

Then, there are constants c, a > 0 , 7 7 > 0 depending only on the constants in (G), n 

and 6, such that for all yo,h G Rn, t > 0 and r > 0 with 2\h\ < r +t1/2, we have 

r<\x— yo\< 2r 

Vx Kt (x, y0)\ 2 dx 

1/2 
c 

£ l / 2 + n / 4 

r 
¿ 1 / 2 

( n - 2 ) / 2 
e - a r 2 / t (13) 

and 

r<\x — yo\<2r 

Vx Kt (x, y0 + h)- Vx Kt (x, y0) \2 dx 

1/2 

< 

c 
j l / 2 + n / 4 

h 
i1/2 + r 

V 
r 

¿ 1 / 2 

( n - 2 ) / 2 
e-ar2/t (14) 

Note that the above statement does not contain any regularity estimate in the 

y-variable. For its proof see Section 1.4.7. 

Remark. — In dimension 1, pointwise Gaussian estimates for t 
dKt 
dx 

t 
dKt 

dy 
and 

t2 
d2Kt 

dxdy 
are always valid ([11], Theorem 2.21). 

1.3. A counterexample 

Before going into details, let us give a quick proof of the failure of (7) in (G) [7], 

adapting the argument in [30]. 

By [53], if n > 5 there exists L — — div (^4V) G E(S) for some S > 0 and u weak 

solution on Rn of Lu = 0 with the following properties: 

(a) A is homogeneous of degree 0 and C°° on xn / 0 with a jump across xn = 0 

except at x = 0. 

(b) u(x) = \x\sG(x/ \x\) where s G C with —1/2 < R e s < 0 and G is a Lipschitz 

function on the unit sphere, and u(x) = 0 on the hyperplane xn = 0. 

In particular, u is not Lp-integrable near 0 if p > — Re s/n. 
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Assume that the heat kernel of L satisfies (7) . Since L_1 = J0°° e~tL dt, the Green's 

kernel of L is controlled above by c\x - y\2~n so that L~l maps Lp(Rn) into Lq(Rn) 

whenever 1 < p < n/2 and l/p— 1/q = 2 /n. 

Pick (j) a test function with 0 = 1 in a neighborhood of 0 and set v = ucf>. An 

easy computation gives Lv = — div (AuVcj)) + AVu.Vcj) = f and / is bounded and 

compactly supported (note that AuVcj) is Lipschitz since it is supported away from 

0 and u = 0 where A jumps) . Hence / belongs to all Lp spaces and v G Lp(Rn) for 

large p < oo. Since u = v near 0, we have a contradiction. 

Remark. — The situation regarding the validity of the Gaussian property when n = 3 

or n = 4 is open. 

1.4. The Dirichlet property and the Gaussian property 

This is the main section of this chapter. Roughly speaking, we prove that the 

Gaussian estimates for the semigroup kernel are equivalent to an appropriate growth 

of the Dirichlet integral for solutions of the corresponding elliptic equation. 

1.4.1. Dirichlet integrals and the Dirichlet property. — In what follows, we 

assume n > 2. We begin with a review on the properties of weak solutions. 

Let L — — div (AS/) G £(S) with complex coefficients. Let H be an open bounded 

subset of Rn and u be a weak solution of div (AV) on 0 . This means that u is a 

(complex-valued) function in the Sobolev space H1 (Q) such that for all if G HQ (ft) 

Q 
AVu -V<p = 0. 

Recall that HQ (ft) is the closure in H1 (ft) of CQ°(Q). The Lebesgue measure is omitted 

in the integral. We shall write div (AVu) = 0 on ft. 

The following estimates hold with constants independent of u (see [38]). 

i) Cacciopoli estimate: there exists C = C(n, S) such that, 

BR 
\Vu\2 < 

C 
r2 

&2r 

H 2 , (15) 

whenever B^r C ft. Here and thereafter in this section Br denotes a Euclidean ball 

of radius r. By B\r we mean the ball having the same center as Br and radius equal 

to Xr. Remark that u can be replaced by u — c for any constant c, and in particular 

c = U2r, the mean of u on B<ir-

ii) The gradient estimate of C.B. Morrey: there exist C = C(n, S) and a = 

a(n, 6) > 0 such that, 

BR 
\Vu\2 < Cra\\u\\2Hl{Q) (16) 

whenever B2r C ft. 
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iii) The Lp estimates of N. Meyers: there exists e = e(n, S) > 0 and C = C(n, S) > 0 

such that, if p G [2,2 + e), then u G W1,ploc (il) and 

Br 
\Wu\p 

i/p 
< Crn/p~n/2 

&2r 

IVul2 
1/2 

(17) 

whenever B2r C A. 

The integrals f \Vu\2 are often called Dirichlet integrals. If the exponent a in (16) 

satisfies a > n — 2 then u is locally Holder continuous by a result of Morrey (see 

Lemma 11). This is the case for real equations by the famous regularity theorem of 

De Giorgi [31]. For complex equations, this is also true in dimension 2 by Morrey 

estimate, but it fails in general by the counterexample of [53] described above. Hence, 

it is natural to look at the class of elliptic operators whose solutions have Dirichlet 

integrals with appropriate growth. 

Definition 8. — Let L G £(<$). We say that L has the Dirichlet property (D) if there 

are constants /i G (0 ,1 ) and C depending on L and dimension only such that for any 

ball BR, if Lv = 0 in BR, then for all 0 < p < R 

Bp 
\Vv\2 < C m 

R 

n—2+2)1 

Br 
|VV|2. (18) 

Again BP has same center as BR. The estimate is uniform over the position of 

the center. This formulation of the growth of Dirichlet integral with JBR | V v | 2 on 

the right hand side is invariant under scaling and translation: it will prove useful. In 

particular, one can reformulate the gradient estimate of Morrey in this way, which 

shows that any elliptic L = — div (AV) in R2 has the Dirichlet property ( D ) . 

A reformulation of the above mentioned theorem of De Giorgi is that any real 

operator L € S{6) has the Dirichlet property ( D ) . 

Definition 9. — Let L G S\6). We say that L has the local Dirichlet property (D)/oc 

if the same estimates hold with the restriction that balls have radii less than 1. 

The main result is 

Theorem 10. — Assume that n > 2 and that L G £{S)> Then L has the Gaussian 

property (G) if and only if L and L* have the Dirichlet property (D). Similarly, L 

has the local Gaussian property (G)ioc if and only if L and L* have the local Dirichlet 

property (D)ioc. 

That De Giorgi theorem and the estimates of Aronson-Nash are qualitatively simi­

lar is folk result in PDEs. The interest is in the quantitative equivalence, which holds 

for complex operators. 

There are other regularity conditions that are equivalent to (D) and we shall use 

them in the course of the proof of Theorem 10. The advantage of property (D) over 
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all the other ones, including ( G ) , is that it is easily seen to be stable under various 

perturbations, essentially because of the L2 character of its formulation. 

1.4.2. From the Gaussian property to the Dirichlet property. — Let L = 

- d i v ( A V ) G £(S). We prove the implications (G) =» (H) => (D) for L where the 

intermediate property (H) is related to a weak form of Harnack inequalities and is 

defined as follows. 

We say that L has the property (H) if there are fi G (0 ,1) and a constant C 

depending on L such that for any ball BR, if Lu = 0 on BR, 

sup 
Br/4 

u + Ru sup 
(a;,T/)GBH/4,x^y 

u(x) - u(y) 

x - y u 
<C 

1 

Br BR 

|u|2 
1/2 

(19) 

Assume first that L has the property ( G ) . The argument to prove (H) relies on the 

gradient estimates of Theorem 7. 

Let u G H1 (BR) be a weak solution of Lu = 0 on BR. Let x G Co° (Rn) , supported 

in B3R/ 4 with x = 1 on BR/2- Let v = u\- Since v — u on BR/2 it suffices to show 

that for any tp G CQ>(BR/ /^) and any h G BR /4, 

v(x)ip (x) dx < CR-n/2||Q||1||u||2 (20) 

and 

(v(x + h) — v (x) )ip (x)dx < C | / * r ¿ r " - " / 2 | M | i N | 2 , (21) 

where we extend u by 0 outside of BR. 

Set (v,ip) = J v(p and Tt = e~tL. Observing that T?(p G H1 (Rn) and v G H1^71), 

then 

(v,(p) = (ux, TR2(f)-
R2 

o 
(uX, 

dTt* 

dt 
(p) dt 

= (uX,T*R2ip) + 
R2 

0 
< v ( u x M * v r t v > d * 

First, using (7) 

|<v, T*R2Q>| < ||v||2||T*R2Q||2 < CR-n/2||P||1||v||2. 

Second we compute the inner product: we have 

< V ( u x M * V T t V > = (AVu, V(xT tV)> + ( A V x n , V T t V ) - <¿Vu, V x T t V ) 

= / + / / + / / / . 

The term I vanishes since Lu = 0 and the other terms can be estimated by expanding 

out the integrals. 
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For the term II, we have, 

\II\ < c \Vx{x) \Hx)\ \VxK; (x,y)\ \<p(y)\ dydx, 

where K£ (x, y) is the kernel of Tt*. On the support of the integral, we have R/4 < 

\ x - y\ < R. Thus using (13) for K? (x ,y) and | | V x | | o o < C/R, we have 

\II\ ^ CRR-'Wuh 
c 

1/2+n/4 

R 
¿ 1 / 2 

( n - 2 ) / 2 

e-"R/ t \ \ v \ \ i1 

< CR-^H~1w{R2/ t ) \ \u \ \2M\u| |1 

where w(u) — un 2e Q"2. 

Now, 

\III\ < C IVX(x)I | V u ( x ) I\K*t (X, y)I\<p(y) I dydx. 

Again R/4 < \x — y\ < R on the support of the integral. Using (7) we get 

\III\ < CR -^ R - ^ W^u ht- ^ e - ^ /' Wif Wu 

and by the elliptic Cacciopoli estimate (15), 

\III\ < C R - n / 2 t-' wi Ri/ mu hMMh. 

Since fR20 t 1w(R2/t) dt = Г1ocг¿ 1w(u) du < oo , we obtain that 

R2 

r 
; av (uX), v 7 7 ^ ) ^ < C B - w/2i m | 2| m | i 

as desired and (20) is proved. 

Next to prove (21), we begin with the identity 

(v(x + h) — v(x))(f( x) dx = v(x)(fh( x) dx, 

where (ph(x) = y{x — h) — <p(x), and then, we follow the same representation, re­

placing (p by (fh- To obtain the desired estimate, remark that J K*(xJy)cfh {y) dy = 

f (KZ(x, y + h)- K?(x, y))ip(y) dy and use (9) and (14) instead of (7) and (13) . The 

conclusion readily follows. 

We turn to the proof of (H) => ( D ) . Fix a ball BR with center xo and let v G H1 (BR) 

be a weak solution in BR of div (AS/v) = 0. Let 0 < p < R/S. Using successively 

Cacciopoli inequality (15), (H) applied to v — c, c = V(XQ) (since v is continuous by 
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(H), V(XQ) is well-defined), and Poincaré inequality, we obtain 

Bp 
\Vv\2 < Cp~2 

B2p 

\v(x) — c\2 dx 

< Cp -2pn +2^ R ~2^ R-n 
BR 

\v(x) — c\ dx 

< Cp -2pn +2^ R -2^ R-n R2 
BR 

\Vv\2. 

Thus, we have 

BP 
\Vv\2 < C 

P 
R 

n-2+2n 

BR 
\Vv\2 

when 0 < p < R/S and hence when 0 < p < R as it is obvious when # / 8 < p < R. 

1.4.3. From the Dirichlet property to the Gaussian property. — We turn 

to the main part of the equivalence, which is to establish the estimates in the property 

(G) assuming L and its adjoint to have the property ( D ) . 

We proceed by using elliptic regularity in Morrey-Campanato spaces. Then we get 

estimates on high power of the resolvent of L which we transfer to the semigroup by 

a contour formula. 

Introduce the Morrey-Campanato norms as follows. Full details can be found, e.g., 

in [39]. In order to simplify the exposition we use a different notation. 

For 0 < 7 < n, define the Morrey space M 7 by / G L2OC(RN) and 

I I / I I M , : sup 
B . , 0 < p < ] 

p-1 
Bp 

l/l2 

1/2 

< 0 0 . (22) 

For 0 < 7 < n + 2, define the Campanato space by / G L^oc(Rn) and 

\\f\\M7- = sup 
Bp,0 <p<l 

p-1 
Bp 

\f- mp f\2 

1/2 

< CO, (23) 

where mpf is the mean of / on Bp. The estimates being independent of the center of 

the balls, these (semi-)norms are translation invariant. 

The expression | | / | | M ^ is a semi-norm since | | / | | M 7 = 0 if and only if / is constant. 

Lemma 11. — Let 0 < 7 < n. We have the following embeddings and estimates: 

My Mly with H / I U 7 < 2 | | / | | M „ (24) 

Mly n M ° <—• M1 with | | / | | M , < q | / | | M o + C H / H m j , (25) 

if V / e M 7 then / e M1y+2 with | | / | |MI- ,+2 < C | | V / | | M Ï , (26) 
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if 0 < 77 < 1 , then L°° n C"» = M° n M1n+27? and 

l l / l loo + | / l c n ~ l l / l l j ^ + » n + l l / l lA fO. (27) 

The constants C depend only on ra, 7 . 

(The Holder semi-norm in the last statement has been defined in ( 1 1 ) . ) 

The first two inequalities imply that Ml fl M ° = M 7 with equivalence of norms. 

Inequality (26) is a simple application of Poincaré inequality. Formula (27) means 

that functions in Mly are Holder continuous when n < 7 < n + 2. When 7 = n, the 

Campanato space is apparented to BMO. Let us finally note that the Morrey spaces 

and the Campanato spaces interpolate by the complex method. 

We assume that L — — div ( A V ) G E{6) and L* have the property (D) with con­

stants Co and ¡1: for any i2 > 0 and v G H1 (BR) weak solution of L on BR we 

have 

Bp 
|Vu|2 < Co 

P 
R 

n—2+2/1 

BR 
| V d 2 (28) 

when 0 < p < R, and the same for L*. 

Step 1: regularity theory for inhomogeneous elliptic equations 

Lemma 12. — Assume that 

div(AV u) = / + divp, 

where 

Vu G M 0 , / G M " , 0 G M ^ , 

with 0 < a, /? < n. Then, for any 7 > 0 w;t£/i 

7 < inf ( a + 2, /?) if inf(a + 2,/9) < n - 2 + 2// 

7 < n - 2 + 2/i if inf(a + 2,/?) > n - 2 + 2 ^ , 

V u G M 7 one? / o r a// 0 < p < 1 , 

Bp 
|Vu|2 < Cp7 

B1 
| V U | 2 + C P 7 ( | | / | | M « + N I M / 3 ) 2 , (29) 

C depending only on n, J, a, / ? , / / , Co (Tiere, £/&e 6a//s are concentric). 

In the case inf ( a + 2, /3) > n — 2, this is a theorem due to Morrey [64], for it gives 

u G C11 for some 77 > 0 as Lemma 1 1 shows. The full range of indices in this result 

will be exploited. The proof does not contain any new idea and is mostly taken from 

the proof of Theorem 1 . 1 , Chapter VI of [38]. 

Remark. — The Morrey norms are monotonically increasing with 7 . 

We need a key lemma due to Campanato (see [38]). 
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Lemma 13. — Let $,w: [0,R] —> [0,R] be two non-decreasing functions. Suppose 

that for 0 < p < r < R 

$ ( p ) < a P 

r 

oc 
-f w(r $ ( r ) + br? 

where a, 6, a and /3 are constants with a > 1, b > 0 and a > /3 > 0. Set 

e0: = e0(a, a, /3) = sup{ a_1r7 - r a ; 0 < T < l , a < 7 < / ? } . 

If I — {0 < r < R] w(r) < eo} is not empty, choose Ro < sup I if R £ l or Ro = R 

otherwise. Then for 0 < p < r < Ro, 

$(p) < c m 
r 

B 
$ ( r ) + bp? 

where c depends only on a, a, ¡3 (in fact, one can take c = ( 2 a ) s with s = s(a,f3) > 1). 

We begin the proof of Lemma 1 2 . By Lemma 1 3 , it suffices to prove that there are 

constants a, b with b ~ ( | | / | | M < * + I M I M / 3 ) 2 sucn that for 0 < p < r < 1 

Bp 
\Vu\2 < a p 

r 

n-2+2/i 

Br 
\Vu\2+bry1, ( 3 0 ) 

where 7 1 = inf (a + 2 , ¡3). 

Fix r < 1 and let 0 < p < r. Let v G ̂ ( Br) solve 

div(AV v) = 0 in Br, 

v - u e H10(Br). 

From ellipticity, we have 

Br 
\Vv\2 <c{n,6) 

Br 
\Vu\2. 

Combining this with (28) gives us 

Bp 
|V«|2 < a p 

r 

n-2+2µ 

Br 
I V d 2 + c2 

Br 
\V(u-v)\22. 

Now, w = u — v satisfies 

AVw. Vo = - fd> + g-V4> 

for all <fi € HQ(BT). Taking <fi = w, using ellipticity, Schwarz inequality and the 

hypothesis on / and g we obtain 

Br 
\Vw\2<c3r a/2 \ \f\ \ 2 Ma 

Br 
ы 2 

1/2 
+ c4r B/2\\gfM0 

Br 
\Vw\2 

1/2 

Since, by Poincaré inequality, (JB {w]2)1/2 < c(n)r(f Br |Vw]2)1/2, we obtain after 
simplification 

Br 
\Vw\2 < br11, 
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with b ~ ( H / H M " + I M I M / O 2 and (30) follows. This finishes the proof of Lemma 12. 

Step 2: Regularity for inhomogeneous elliptic operators. — Consider 

L — -dXi(a,ij(x)d Xjj + bi(x)) + Cj(x)dXjj + d(x), (31) 

where a,ij(x), 1 < i, j < n, are the coefficients of A(x) and the other coefficients are 

complex-valued measurable and bounded functions on Rn. Set 

k, = s u p O l o j l l o o , l lcjlloo, Halloo, 1 < j < n). 

Lemma 14. — Assume that Lu = h, where u, Vu G M° and h G M{ D M0 with 

s + 2 < n - 2 + 2/x. Then u G M*+4 and for 0 < 7 < s + 4, 

\\U\\mi < C(||Vti||Mo + \\u\\Mo) + C\\h\\ M1S + C \\h\\Mo, (32) 

where C depends on n, <5, s, /x, Co, k. 

Before proving Lemma 14, let us state an immediate consequence. 

Corollary 15. — Assume that L has the Dirichlet property and that L 1 exists as a 

bounded operator on L2(Rn) . Then, L~l extends to a bounded operator from M ° D M f 

to M° fl Af f for all 0 < s < a < n + 2/x with a - s < 4. 

Proof of Lemma 14. — Using 

L = -div (AV + 6) + c • V + d 

to abbreviate (31), the equation Lu = h becomes 

div(^4Vu) = —h + du + e - Vu — div(òw) = / + divg. 

Let 2 < 7 < s + 2 and apply (29) with a = 7 - 2 and /3 = 7. Then 

HVtillM-r < C | |Vu | |Mo + C\\h\\ Ms + C (\\du\\Mi-* + | | c V u | | M 7 - 2 + | | 6 u | | M T ) 

< C | |Vu | |Mo + C\\h\\ Ms + C«( | |Vt i | |M,-a + \\ u \ \ M i ) 

where we have used | |dix | |Afy-2 < | | d | | o o | M l M - r - 2 etc, and | M | M - / - 2 < | | W | | M ^ -

After simple calculations using Lemma 11, we obtain 

| | V U | | M , < C(||Vti||Mo + ||ti||Mo) + C | |fc||M. + C \\ Vu \\ My-2. 

Therefore, we see by induction that | | V u | | M a + 2 < 0 0 and 

IIVti||M.+* < C ( | | V u H m o + I H I m o ) + C\\h\\M. • 

Next, using (26) for u and (25) for ft, we conclude that 

N I M L * + 4 < C{\\Vu\\ Mo + I N I m o ) + C\\h\\M. + C | | f t | |Mo, 

which yields (32) by the monotonicity of the Morrey norms. 
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Step 3: iteration and operator estimates. — Let UQ G L (Mn) and define uk, k = 

1 ,2 , . . . by 

uk+i = (L + 1) ^ f e . 

Since (L + 1)_1 is bounded on L2(Mn), we may apply Corollary 15 to see that either 

m G M{ for all 0 < s < n + 2/x if n + 2/x < 4 or that wi G M14 if n + 2/i > 4. In the 

former case, we stop, while in the latter we iterate applying successively Corollary 

15. We obtain that there is an integer ko < 1 + n / 4 such that for all r\ G [0,/x), 

uko G M1n+27? and 

IKOIIM"+2» < c f c o + 1 | M | 2 , c = c ( n , j , c 0 , 7 7 , / i ) . (33) 

Note that ||u*||2 < Cfc||u0||2 for all k > 1 with C = C(n,5). Combining this with (27) 

in Lemma 11, and since ko is bounded by 1 4- n / 4 , we obtain 

IKolloo + \uk0\cv < C||ti0||2, C = C(n,(5,Co,n,//). (34) 

In other words, the operator (L + l)~fc° is bounded from L2(Rn) to L°° (Rn) n ( > ( R n ) 

with 

\\(L + îy^uWoo + \(L + l ) - f c " U | ^ < C||tt||2. (35) 

One can do the same thing for L + A and obtain (35) uniformly for A in a strict 

subsector IV- , , of r,_ww (see Section 1.2) and |A| = 1. 

We have observed that (D) is an invariant property under scaling. Since 

Vrl(- div (AV) + \ ) V s = 
1 

s2 
( - div ( A s V ) + s2A), (36) 

where Vsf(x) = / ( f ) and As(x) = A(sx), we see by choosing s = |A| xl2 that 

| A | - n / 4 + * o | | ( £ + ^ - f c o u n ^ < C7| |«l |2, (37) 

| A | - „ / * - , / 2 + * o | ( i + A ) - * o « | é . , < C||tt||2. (38) 

Note that the constant C = C(n, S, Co, 77, /1) does not depend on A. 

Now, we convert these last estimates to the semigroup using the identity 

e~tLu = (ko - 1)! 

2iritk°-1 1 
etx(X + L) -koud\, (39) 

obtained by integrating by parts ko times the Cauchy formula. Here, 7 consists of 

two half-rays j±1 = {X = re±iu, r > R} and of the arc 70 = {A = Reie, \0\ < v}. The 

number v is chosen in (7r /2 ,7r — uj) and R = 1/t. By direct estimates from (37) and 

(38), it is then easy to derive 

||e-tLu || 8 <<?*-"/4IM|2, t > 0, (40) 

\e-tLu \ av < ( 7 i - n / 4 - " / 2 | | w | | 2 , t > 0. (41) 
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Step 4: kernel estimates 

Lemma 16. — If L G 8(6) is such that (40) and (41) hold for L and L* then L has 

the Gaussian property (G). 

Note that we just proved that (D) implies (40) and (41) for L. This and the above 

lemma conclude the proof of Theorem 10. 

It remains to prove this lemma. Let us first recall a standard result. 

Lemma 17. — Let T be a continuous operator from V(Rn) to Z>'(Rn) with distribu­

tional kernel K (x, y). Let 0 < ¡1 < 1. 

(i) T extends to a bounded operator from L1(Rn) to L°° (Rn) if and only if 

sup 
x, y E Rn 

\K (x, y)\ < o o . 

(ii) T extends to a bounded operator from L1(Rn) to CM(Rn) if and only if 

sup 
Y € R N 

K(',y)\ cµ < 00 • 

In each case, the supremum agrees with the operator norm. 

Proof. — Part (i) is well-known. To prove part (ii), define Th with kernel Kh(x,y) = 

\h\-* {K {x + h, y) - K(x,y)). Then 

\Tf\Cµ = supfllTfc/Hoo ; h G Rn, h ^ 0 } . 

It suffices to apply (i) to Th to complete the proof. 

Let us come back to the proof of Lemma 16. We have to prove that the heat kernel 

Kt (x, y) satisfies (7-9) of Definition 2. Let us admit for a moment that (7) holds and 

turn to the proof of (8) . By Remark 2 after Definition 2, we only have to prove that 

for some 77 > 0 , 

sup 
xERn 

Kt (;y) \ Cn < ct-(n+»»2, (42) 

and by Lemma 17, this is equivalent to the boundedness of e~tL from L1(Rn) to 

< > ( R n ) . Now, using (40) and duality we see that e~tLl2 maps L1(Rn) into L2(Rn) . 

We thus obtain the desired boundedness by combining this fact, (41) and the semi­

group formula. 

Next, since the assumptions are stable under taking adjoints we also obtain (9) . 

It remains to prove (7) . By an idea of Davies [28], consider Kfo = e~<i>e~tLe<f> the 

semigroup generated by —e~^LeO where cj> G CQ° is real-valued and eO is the operator 

of multiplication by e^x\ Then, (7) is equivalent to the existence of constants a > 0 

and c such that for all £ > 0 and <\> as above, 

\\Kfou\ U < c r » / V ' a i | | u | | i , with p — I I V 0 I U - (43) 

Indeed, by Lemma 17, (43) means that 

\Kt (x, y)\ < ct -n/2 e-p2 t eH^- Hy) 

ASTÉRISQUE 249 

file:////Kfu/U
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and for t, x, y fixed it suffices to pick (j> with (f>(x) — (f>(y) = —p\x — y\/2 and to optimize 

over p > 0. 

By duality and the semigroup formula, it suffices to prove half of (43), namely the 

boundedness of Kf from 1?(Rn) into L ° ° ( ] R n ) with 

| | ^ l l o c < C ^ / V ^ | | ^ | | 2 , where P = l | V * | | o o . (44) 

Without loss of generality, we may assume that t = 1, the general case following 

by scaling. Fix 4> G C Q ° , real-valued, with | |V0 | |oo = 1 and set Tp = e ' ^ e ^ e p O for 

p G C. Then (Tp) is a complex family of operators. 

For p G C with Re p = 0, (40) and (41) together with (27) in Lemma 11 imply that 

\ \TPU\\M1n+2n < CIMl2- (45) 

On the other hand, it is classical consequence of the Gârding inequality that Tp is 

bounded on L2(E") with for all p £ C 

\\Три\\2 < еa(rep)2 \\и\\ 2 (46) 

for some a > 0 depending only on n and 6. In particular, 

| | r ^ | | M o < 2 e a (Rep)2 ||U|| 2. (47) 

Applying the Stein interpolation theorem (see [75]) to (45) and (47), we find that 
For all rjf < 77, there exists a' > 0 such that for all p G C, 

I | Ï > I I M " + 2 " ' 
<c/ea'(Rep)2 

l«l|3. (48) 

This estimate, (45) and (27) in Lemma 11 imply that Tp maps L2(En) into L ° ° ( M n ) 

and (44) follows. This concludes the proof of Lemma 16. 

Remarks 

1. If L has real coefficients, then (40) and (41) hold as a consequence of the con­

tracting property of the semigroup on L1(Rn) and on L°° (Rn) [28, 80]. Actu­

ally, if L has complex coefficients and enjoys this contracting property, then it 

must have real coefficients [6]. 

2. Assume that L G 8(8) is complex and that the semigroup is uniformly bounded 

on Z / °° (Rn) , that is, the operator norms of e~tL are bounded uniformly by 

a constant that may exceed 1 (Theorem 5 shows that it is not always true). 

Then (40) holds. This can be shown by applying the argument of Theorem 

II.3.2 in [80]. But we do not know how to deduce (41) and the Gaussian decay 

(7) . None of the arguments in the real case seem to work. A proof of this 

fact would mean that the Gaussian property (including regularity estimates) is 

equivalent to uniform boundedness on L1 (M.n) and on L°°(Mn) for the semigroup. 

In particular, this would encompass Nash's theorem. 
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1.4.4. Equivalence of the local properties. — The equivalence between the 

local properties (G)*oc and (D)/oc is proved similarly: the argument in Section 1.4.2 

yields that (G)ioc implies (D)/oc and, for the converse, the argument in Section 1.4.3 

applies with some modifications due to the lack of scale invariance. We wish to briefly 

explain the polynomial behavior of some constants in the large time estimate for the 

heat kernel. 

The starting point is (28) which is satisfied with constants Co and /i only for balls 

of radii less than some given RQ. Let us study the effect of scaling. With the notation 

in (36), the operator — div (As V ) satisfies (28) on the same set of balls with constants 

Co inf ( 1 , 5 N _ 2 + 2 / X ) and ¡1. Now, a careful checking of the argument tells us that the 

constant C in (35) grows polynomially as a function of Co (see Lemma 13). 

Thus, performing the same scaling as in (36) with s = |A|-1/2 yields 

i n f ( l , | A | ) - M | A r " / 4 + * ° | | ( L + A)-*°U|U < C | | u | | 2 , (49) 

inf(l, |A | ) -M|A| -"/4-» /2+*° | (L + \)-k0 u\ 6v < C\\u\\2, (50) 

where M is a non-negative number that depends only on n and ¡1 and which value 

we do not know. 

Now, using (39) again yields estimates comparable to (40) and (41) with a constant 

C that blows up polynomially for large time. Hence the proof of Lemma 16 shows 

that L satisfies (G)/oc with a polynomial behavior for the constant c in (7-9). 

Remark. — As we shall see (D) holds for operators L with uniformly continuous 

coefficients or vmo coefficents. See Remark 3 after Definition 3 for the interest of the 

polynomial growth just described. 

1.4.5. Inhomogeneous operators. — What we just did for L + 1 applies to L = 

- d i v ( A V + b) + c • V + d as defined in (36) provided L_1 exists on 1? (Mn). For 

example, this is the case if L satisfies the Garding inequality 

Re < £ / , / > > W H S + || V / l l i ) . (51) 

Let us state the result and leave the verifications to the reader. 

Theorem 18. — Let L = - div ( A V ) G £(S) on W1 and L = -div (AV + b) + c • V + d 

be such that (51) holds and set k = sup( | |6 | |ooj l lclloo5 Halloo) < o o . Assume that L has 

the property (D)ioc with constants Co and ¡1. Then L has the Gaussian property (G). 

More precisely, its heat kernel Kt (x, y) satisfies for all t > 0, x , y G №.n, 

\Kt(x,y)\ < 
ce~ai 
tn/2 exp 

P \x- y\2 
t 

\Kt (x, y) - Kt(x + h,y)\ < 
ce~at 

f / 2 

\h\ 
№/2 + \x -y\ 

V 

Eaaa 
P\x- y\ 2 

t 
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and 

\Kt(x,y + h) - Kt (x, y)\ < 
ce~at 
tn/2 

\h\ 

¿ 1 / 2 + \X -y\ 

n 
exp 

ß\x- V?2 

t 

whenever 2\h\ < £1/2 + \x - y\. Here, 0 < r\, c = c(n, ö, ö, 77, C0, k,), a = a (n, S) > 0 

and ß — ß (n, ö). 

1.4.6. Stability of (D) and proof of Theorem 6. — Our goal in this section 

is to prove Theorem 6, with the exception of the one dimensional case for which we 

refer the reader to [14] and [11]. 

When n = 2, we already observed that the property (D) , hence the property ( G ) , 

is always satisfied. A different argument is otherwise presented in Section 1.7. 

Thus, only parts (ii), (hi), (iv) and (v) are considered. To prove each of them, by 

Theorem 10 it suffices to prove the analogous statements by replacing systematically 

(G) by (D) (respectively (G)/oc by (D)/oc). Let us observe that some of the techniques 

shown below are well known in the study of regularity properties of the solutions of 

variational problems [39]. In particular, we use Lemma 13 in a crucial way. 

Proof of (ii). — Let A G A(6) such that L = — div (^4V) has the Dirichlet property 

( D ) . Let A' e Abe another matrix-valued function: we have to show that L' has the 

Dirichlet property (D) provided \\A — A ' | | o o is small enough. 

Fix a ball BR. Let u G H1 (BR) be a weak solution of div (A'Vu) = 0 in BR. Let 

0 < p < r < R and define v G H1 (Br) by solving the elliptic problem 

d i v ( ^ V v ) = 0 ini5r , 

v - u e Hl0 {Br). 

(Again all balls have same center.) Prom (D) for L, we have 

Bp 
\Vv\2 < C P 

r 

n—2+2/x 

Br 
| V ^ | 2 , (52) 

hence 

Bp 
|Vu|2 < c0 

P 

r 

n-2+2p 

Bp 
I Vw|2 + ci 

Br 
| V ( u - ^ ) | 2 . 

By definition of u and v, the function w = u — v satisfies 

Br 
AVw • V<p — 

Br 
(A - A')Vu • Vip 

for all ip G i ?o ( i ? r ) . Using if = w and the ellipticity condition for A, we obtain 

Br 

|Vw|2 < S-2||A' - A||2 88 
Br 

|Vu |2 . 

Thus, 

Bp 

\Vu\2 < c2 I P 

r 

n-2+2fj, 
+ || A' - A||2 

Br 
|VU|2. 
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By Lemma 13, for any 0 < v < p we have 

Bp 
\Vu\2 < c3 

P 

r 

n—2+2v 

Br 
IVul2, 

for all 0 < p < r < R provided \\A' — A\\oo is small enough. By taking r = R, we have 

proved that V has the property ( D ) . 

Remark. — We may wonder about the size of the perturbation, especially when the 

dimension is large. Consider A = Id and A' = Id—M. Following the same argument, 

since \Vv\2 is subharmonic, (52) becomes 

Bp 

\Vv\2 < P 

r 

n 

Br 
|Vd2 . 

Setting O(p) = ( / B I V u l 2 ) 1 / 2 , we see that 

Q(p) < p 
r 

n/2 
+ 2 H M I U *(r ) . 

Applying Lemma 13 with a = l,b = 0,a = 
n 
2 

and /3 = n 
2 

— 1 + u where 0 < v < 1, 

we have 

$ ( p ) < c 
P 

r 

(3 
$ ( r ) 

provided 

2 H M I U < e0 = ( 1 - a ) * ' / * 1 - * = / ( « ) , 5 = 
p 

a 
= 1 + 

2 ( 1 - „ ) 

n 

Since / ( s ) is a non-increasing function, the smaller 1/, the larger £0- Further, for fixed 

1/, letting n grow to infinity, £ 0 is asymptotic to 2 ( 1 — v)/en where e is the base of 

the exponential function. In conclusion, this technique allows perturbations of the 

size c/n as n —> 0 0 . The value of c cannot be arbitrary large. This can be seen by 

considering the counterexample in [53] already discussed in Section 1.3. The matrix 

A there is the sum of a real symmetric matrix and of a bounded matrix whose L°° 

norm is asymptotic to c'/n as n —> 0 0 . 

Proof of (iv). — We want to prove that L € £(8) has the local Dirichlet property 

(D)/oc provided the modulus of continuity ^ ^ ( r ) of the matrix A is small for small r. 

Fix a ball BR. Let u G H1(BR) be a weak solution of div (A \7u) = 0 in BR. 

Let 0 < p < r < R. Define v G if1(.Br) by solving the constant coefficients elliptic 

problem 

div (A (x0 Wv) = 0 in Br, 

v - u e H10 (Br), 
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where Xo is the center of BR. By classical regularity theory for constant elliptic 

operators (e.g., [381, Chapter 3, Theorem 2.1), we have 

BP 
\Vv\2 < C 

P 

r 

n 

Br 
|VV|2, 

where C depends only on ellipticity and dimension. Hence 

Bp 

|Vu|2 < c0 
P 

r. 

n 

Br 
\Vu\2 + ci 

Br 

\V(u- v)\2. 

Now, the function w = u — v satisfies 

Br 

A(x0) Vw • Vtp = 
Br 

{A(x0) - A)V u • V<p 

for all (p e HQ(BR). Using <p = w and the ellipticity condition for A, we obtain 

Br 
\V w\ 2 < S-2 uoo ir)2 

Br 

|Vu |2 . 

Thus, 

Bp 

\Vu\ 2 < c2 P 

r 

n 
+ wxx(r)2 

Br 
\Vu\2, 

for all 0 < p < r < R where c2 depends only on dimension and ellipticity. 

Pick p e (0 ,1) and apply Lemma 13 with a = c2, b = 0, a = n and j3 = n — 2 + 2p. 

If RQ is such that u>2yo(Ro) < eo, then we have 

B0 
|Vu|2 < c3 P 

r 

n—2+2/1 

Br 

I V d 2 , 

for all 0 < p < r < Ro. 

Proof of (Hi). — Let L = — div (^4V) € 8(8) and assume that the BMO norm of A 

is small. 

Fix a ball BR. Let u £ H1(BR) be a weak solution of d iv (AVw) = 0 in BR. Let 

0 < p < r < R/2. Start the proof of (iii) as the preceding one, replacing A(XQ) by 

the mean mr A of A on BR. The only change is the derivation of the estimate of 

/ = 
]Br 

(A - mrA) Vu • Vw, 

which we owe to L. Escauriaza. Choose p for which Meyers estimate (17) applies and 

use Holder inequality with exponents 2 ,p and q where 1/2 + 1/p +l/q = 1. Then 

|I| < 
Br 

\A- mr A\q 
I/q 

Br 

Vu\p 

I/P 

Br 

\Vw\2 

1/2 

< Crn(1/p - n/2) 
Br 

\A- mr A\ qyfq 
B2r 

I V d 2 
1/2 

Br 

\Vw\2 

1/2 
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Now, the John-Nirenberg inequality gives us 

r-n/<i 

BR 

\A- mr A\q 
i/<z 

< C(q,n) w2 (a,rà, 

where ^ ( A , r ) is defined just before Theorem 6 and (jj2(A,r) < \\A\\BMO> Working 

out the details, we find that 

bp 
|Vw|2 < c2 

P 

a 

n 

+ \\A\\BMO 
B2r 

|VU|2 

provided 0 < p < r and r < R/2. If0 < r < p < 2r and r < R/2, the above inequality 

is trivially satisfied. Hence, changing 2r to r we obtain 

Bp 

|Vu|2 < c3 
P 

r 

n 

+ WMBMO 
Br 

\Vu\2 (53) 

whenever 0 < p < r < R, and we conclude as usual with Lemma 13 provided | | A | | B M O 

is small enough. 

Proof of (v). — Let L € £(S). We prove that L has the property (D)/oc provided the 

L2-modulus of continuity u)2(A,r) is small for small r. 

The only change from the preceeding argument is in the refinement of (53) where 

| | A | | J 5 M O is replaced by ^ ( A , r ) . Thus we obtain for any p G (0 ,1 ) the existence of 

€o > 0 such that if RQ > 0 satisfies a;2(i^o)2 < £o then 

Bp 

I V d 2 < c4 P 
r 

n—2+2/1 

br 
| V « | 2 

for all 0 < p < r < RQ. This proves that L has the property (D)/oc when inf o;2(£)2 < 

s0. 

Remark. — The proofs of (iv) and (v) combined with the argument that (D)/oc 

implies (G)/oc show that, in this case, the regularity estimates (8) and (9) hold for 

every p G ( 0 , 1 ) . See also Lemma 28 in Chapter 4, where a related result is stated. 

1.4.7. Gradient estimates on the heat kernel. — In this section, we prove the 

gradient estimates of Theorem 7, which were already used in a previous argument. We 

need two intermediate results. The first one is about Gaussian estimates for complex 

time heat kernels. 

Lemma 19. — Assume that n > 2 and that L G £(5) has the Gaussian property (G). 

Then the kernels oft— ee~ tL satisfies (7-9). Moreover, for any 7 < 7r /2 — UJ there are 
dt 

constants c, p > 0 and /3' > 0 depending only on the constants in (G), n, S and 7 

such that for \ arg z \ < 7 

\Kz(x,y)\ <c\z\~ n/ 2 exp 
P'\x-y\ 2 

|z| 
(54) 
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and 

\Kz (x + h,y)- Kz (x, y)\ < c 
\Z\n/2 

\h\ 

\z\V* + \x -y\ 

a 
exp 

P'\x-y\ 2 
z 

(55) 

and 

\Kz(x, y + h)- Kz (x, y)\ < 
c 

| z | " /2 
\h\ 

\z\V* + \x -y\ 

a 
exp 

B' |x - y| 2 

|z| 
(56) 

whenever 2\h\ < \z\x/2 4- \x — y\. We have set Kz (x, y) the distributional kernel of 
e~zL. 

Remark. — In fact, /x is the same as in ( G ) . 

Proof. — Assume that the statement on Kz (x, y) is proved. Then, using Cauchy 

formula applied to the holomorphic function z -> Kz (x, y), we obtain the desired 

estimates for tDDKt(x,y). at 

It remains to prove the statement on Kz (x, y). This is done in [28] when L is 

real and selfadjoint. There is no substantial change but we include an argument for 

completeness. 

First we prove that \Kz (x, y)\ < c\z\~n/2 for | a r g z | < 7 . By Lemma 17, this is 

equivalent to the L1 — L°° boundedness of e~zL. 

For 1 < p < q < 00 , denote by ||T||g)P the operator norm of T from Lp(Rn) into 

Lq(Rn). We deduce from (7) and Lemma 17 that He -^Hoo,! < c*"n/2, | | e - * L | | i , i < c 

and ||e-£Z/||oo,oo < c. Hence, by interpolation 

l|e"tIr||g,p < cpW*-1/p)p, 1 < P < q < o o . 

Write z = t + t + C where t > 0, | argC | < tt/2 — uj and \z\ ~ t ~ \(\. Then using 

l|e-CjL||2,2 < 1 we get 

l | e - z L I U i < l|e-tL||oo,2 | |e-CL||2,2 | |e-tL||2>i < ct~n/2 < cc\z\~^2. 

Next, we prove that \h\~^\Kz (x + h, y) - Kz(x, y)\ < c | z | - ( n + ^ / 2 . Once we have 

proved (54), it will imply (55) (see Remark 2 after Definition 3) . Replacing L by L* 

will also give (56). 

Using Lemma 17 again, this inequality is equivalent to the L1 — Cu boundedness 

of e~zL, its right hand side being the operator norm. We easily deduce from (8) that 

|E-TL/LC, <C*'(N+U)/2|L/LLI 

and 

|e-iZ,/b,<ct-"/2||/||oo. 

Hence, by interpolation, 

\e- tLf\Cu < c * - n / 2 p - " / 2 | | / | | p , 1 < p < 00 . 
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We conclude by taking the same decomposition of e-zL as before, and by using from 
the right to the left the L1 — L2, L2 — I? and L2 - boundedness for each operator 
respectively. 

We now prove the Gaussian decay for Kz(x,y). Fix x ^ y and 0 < j < n/2 — uj. 
Apply the three lines theorem to the holomorphic function 

f(z) = z71'2 exp p2z 
P 

Kz(x,y) 

for z G r7, z 7̂  0, where ¡3 is the same constant as in (7) and p > 0 is to be chosen. 
For argz = 0, i.e., z = t > 0, 

\f(t)\ < c0exp P2t 
P 

P\x-y\2' 
t 

< c0exp(-2p|x - y|). 

For | argz | < 7, f(z) is continuous and 

l / ( * ) | < c 1 . 

Thus for 6 G (0,7) and argz = ±0, 

\f{z)\ < c«c\-a exp {-2ap\x-y\), a = 1 - 1*1 
7 

Hence, 

\Kz(x,y)\ < max(c0,ci)|̂ | n/2exp -2ap\x - y\ 
p2\z\ COS0 

p 

Optimizing over p > 0 yields a bound of the form c\z\~n^2 exp(—/3'\x — y\2/\z\) that 
is uniform in every subsector of T7. Since 7 was chosen arbitrarily in (0,7r/2 — uj), we 
have established (54). The proof is complete. • 

The next result is a general inequality which is the parabolic analog of (15). 

Lemma 20 (Parabolic Cacciopoli inequality). — Let n > 2 and let L G £(S). For 
f G L2(Wn), let ut = e~tLf. Then, for all <p G CS(Rn), 

Ht^VVtitlli < c{n,ô){\\t^2utV^\\2 + \\uM\2\\t dut 
dt 

y||2). (57) 

Proof. — Since ut satisfies the parabolic equation dut 
dt 

4- Lut = 0, we have 

(AVut,(Vut)ip2) = 
dut 
at 

ut(f2) - 2(A(pVut ,utV(p). (58) 

Set M = \\t1/2ipVut\\2 and observe that M < c||£1/2Vut||2 < 00 since ut G V(L) C 
if1(Rn). Multiplying (58) by t, using Cauchy-Schwarz inequality and ellipticity we 
obtain 

M2 < cM\\t^2UtV^h^c\\ut^\\2\\t dut 
dt 

V>l|2, 

and (57) follows using the elementary inequality 2ab < so? + e 1b2 with a = M, 
2b = c||^/2utV^||2 and e = 1/2. 
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We are now in position to prove Theorem 7. We begin with the proof of (13). To 
this end, we specify the choice of / and tp in the parabolic Cacciopoli inequality. 

Fix 2/0 € Rn and / € Lx(Rn) with support in the ball B(yo,r/A) centered in y0 
and of radius r/4. Then, from estimate (7) and Lemma 19, there exist non negative 
constants c and a such that whenever \x — yo\ > 7r/8, 

M * ) I + t 
duAx) 

dt 
<ct-n/2e-aìx-yoì ||Il/Hi. (59) 

Next, pick (p with tp(x) = 0 if \x - y0\ < 7r/8 or \x - y0\ > 17r/8, ip(x) = 1 if 
r < \x — 2/o| < 2r and such that \\ip\\<x> < 1 and ||V<p||oo < c/r. Then, using (59) on 
the support of (f 

Wutfh + \\t 
dut 

dt 
•PÏÏ2 < cIMloo*-"/4 

r 
t1/2 

n/2 e-ar2/t||f||1 

and 

||*1/2titV^||2 < 
ct1/2 

W 2 
e-ar2/t /I l lUV^Ioor^ 

< 
c 

fn/4 
r 

t1/2 
(n-2)/2 

e -ar2/ ' l l /Hi . 

Inserting these estimates in (57), we easily obtain 

L|t1/2VV«tl|2 < 
c 

jn/4 
r 

t1/2 

(n-2)/2 
e~ar /'ll/lli, 

with appropriate constants c and a > 0. Hence, 

r<|x — yo\<2r an 
t^2WxKt (x,y)f (y)dy 

2 
dx 

1/2 

< 
C 

¿71/4 

r 
t1/2 

(n-2)/2 
e2-ar2/t||f||1 

holds for all / 6 L1(B(yo, r /4)) . Letting / be an approximation of the Dirac mass at 
2/o, we see that Va?i^t(s,2/) exists as a measurable function, and that (13) holds. 

To prove (14), take \h\ < r/2, / and (p as above and apply the parabolic Cacciopoli 
inequality to vt = e~tL(/ — / ( • — h)). Then, rewrite vt as 

vt\x) = 
nv 

(Kt(x,y) - Kt(x,y + h))f(y) dy 

so that one obtains the desired estimates by using (9) instead of (7). We leave the 
remaining details to the reader. 

Remark. — The conclusion of Theorem 7 is valid for the complex time heat kernel 
uniformly in appropriate sectors. Then t is replaced by \z\ in the estimates. 
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1.5. Further consequences o f the Gaussian property 

This section is devoted to establishing some further local and global estimates for 
the heat kernel and the resolvent kernel and also the conservation property (i.e., 
e~tL(l) = 1) under the Gaussian property. Of course, there are corresponding esti­
mates under the local Gaussian property (G)/oc which we do not state. 

It is worth remarking that many of the results stated for the heat kernel have 
counterparts in terms of the resolvent kernel, and vice versa. This is due to the 
Laplace formula 

(L + X)-1 = 
OO 

0 
e-z(L+A) dz (60) 

and the Cauchy formula 

e~zL = 1 

2ni y 
e ^ L + A ) - 1 ^ (61) 

on suitable paths. For the Laplace formula, take a ray re10, r > 0, on which Xel6 has 
non negative real parts. For the Cauchy formula, take the path made of two rays on 
which zA has non positive real part and of an arc of circle, as in (39), Section 1.4.3. 

1.5.1. Green kernel estimates. — A first application of (G) is that the resolvent 
kernel satisfies integrable estimates. For example, denoting by Rt(x,y) the kernel 
of (1 + ¿2L)-1, t > 0, we deduce from the Laplace formula after straightforward 
calculations that 

\Rt(x,v)\ < c 
t2 

\x ~y\ n-2 
e-a\x-y\/t 

for some constants c and a > 0 when n > 3, and the usual modification with a 
logarithmic singularity at x = y applies when n = 2. We could also write Holder type 
estimates. Let us rather state some gradient estimates. These are useful in the next 
chapters. 

Theorem 21. — Assume that L G £(5) on W1, n > 3, has the Gaussian property (G). 
Then we have the following estimates: there are constants c, a > 0,77 > 0 depending 
only on the constants in (G), n and 8, such that for all yo, h G Mn, t > 0 and r > 0 
with 2\h\ <r + t, we have 

r<\x—yo\<2r 
\VxRt (x,y0) \ dx < c 

t 
r 

t 
e-ar/t (62) 

and 

r<\x—yo\<2r 
\VxRt{x,y0 + h) -VxRt(x,y0)\dx < c 

t 

\h\ 

t + r 

V r 
t 

e-ar/t (63] 

The proof of this result follows by combining Theorem 7 and the Laplace formula 
(60). Details are left to the reader. 
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Remarks 
1. When n = 2 these estimates hold too. Starting from (13) gives us V- ̂ | In T- \ + 1̂  

instead of r/t in front of the exponential. However, one can get rid of the 

logarithm by using the stronger estimate (65) below. 
2. There are also L2 estimates instead of L1 estimates, but they blow up as r/t 

tends to 0, which is in agreement with the general fact that the Green kernel of 
a general second order operator is not globally L2. 

3. Estimates (62) and (63) hold for (m + t2L)_1, where m is some non-negative 
bounded function with bounded inverse. Here is a sketch of the argument. By 
rescaling, it is no loss of generality to assume t = 1. Then, by the Laplace 
formula, it is enough to study the heat kernel of L + m. Now, Theorem 18 gives 
estimates on the heat kernel; estimates on its gradient as in Theorem 7 follow 
from the analysis similar to the one of Section 1.4.7. This remark is used in 
Chapter 4, Section 4.7.3. 

1.5.2. Lp estimates. — We Jiave obtained I? estimates for the gradient of heat 
kernels. In fact, there is always a slight improvement and we can get Lp estimates for 
some p > 2. This is the parabolic version of Meyers inequality (17). 

Proposition 22. — Let n > 2 and let L G £(S). Then there exists e — e(n, ô) > 0 
such that for all p with | l /2 - l/p\ < e, e~tL is bounded from Lp(Rn) to WltP(Rn) 
with 

\\etLf\\P + \\ t1/2 ve-tLf\\p<Cp\\f\\p. 

Proof — We claim that L + 1 is invertible from W1,p(Rn) onto W1*p(Wl) for p 
in a neighborhood of 2. There are several ways to see this. A direct way is in [11] 
adapting an earlier argument in [16] (this way gives a numerical value of e in terms 
of || A — Id || oo). Another way is to use the following abstract result of Sneiberg [70]. 

Lemma23. — Let Xs, Ys, s G [0,1] be two scales of complex interpolation Banach 
spaces. If T: Xs —> Ys is bounded for each s G [0,1], then the set of s G (0,1) for 
which there exists C > 0 such that ||T/||ys > C||/ | |xs holds for all f G Xs is open. 

Indeed, observe that L + 1 is bounded from W1,p(Rn) into W~1'p(Rn) for all 
1 < p < oo and that, by the L2-estimates (4) of Proposition 1, it is invertible for 
p = 2. 

Therefore, there is a neighborhood of 2 such that L + 1 and its adjoint are one-one 
with closed range from W1,p(Rn) into W~1,p(Rn) for all p in this neighborhood. The 
claim follows easily. 

Next, one can clearly change L + 1 to L + A and using scaling we deduce that 

\\(L + A)"1/ ! ! , + lAI-^HVCL + A)-Vllp < <V||/||P, 
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for any A / 0 inside a closed subsector of Tu-w, and 11/2 — l/p\ < e, e depending 
on the aperture of the chosen subsector. We conclude the proof of Proposition 22 by 
inserting these estimates in the Cauchy formula (61). 

Proposition 24. — Let n > 2 and assume that L G £(S) has the Gaussian property 

(G). Then, there exists e > 0 such that Ve~tL is bounded from L1(En) into Lp(Rn) 

if l< p <2 + e, and for all t > 0 and y0 G W1, 

nv 
VxKt(x,y0)\ pdx 

i/p 
< cf-l/2-(l-l/p)n/2 (64) 

Proof. — Let p with 11/2 — l/p\ < e where e is the same as in Proposition 22. As 
already seen e~tL is L1 - Lp bounded. Thus Ve~2tL = Ve~tLe~tL is also L1 - Lp 
bounded with norm not exceeding c£_1/2-(1_1/p)n/2. Thus 

nf fn 
VxK t(x,y) f(y)dy 

p 
dx 

I/P 
< ct-1/2t- (1-1/p) n /2||f||1 

and we deduce (64) for this range of jp's by letting / approximate the Dirac mass at 

y0. 
If 1 < p < 2 and 11/2 — l/p\ > £, then using Holder inequality and (13) 

RN 
\VxKt(x,y 0)\pdx = 

OO 

j= — oc 2H1/2<\x-y0\<2i + 1t1/2 
VxKt(x,y0)\pdx 

< c 
oo 

j= — oo 

(2i£1/2)n(1~p/2) t-l/2-n/4 2i(n-2)/2 e-(32^ 
V 

<ctap 
oo 

j= — oo 

2JSE-P P*3 

where a = - 1 / 2 - ( l - \/p) n/2 and 5 = n ( l - p/2) + p(n- 2) /2 > 0, so that 
the series converge. Thus (64) holds and the boundedness of Ve~tL from L1(Wn) to 
Lp(Rn) follows. 

Remarks 
1. Note that the last series diverges when n — 2 and p — 2. However, once (64) 

holds for p > 2, Holder inequality and interpolation imply an improvement of 
(13) when n = 2: 

r<|aj—3/o|<2r 
\VxKt(x,y0)\2 dx 

1/2 
< ct-1 r 

^ / 2 
e e-Br2/t (65) 

for some e > 0, /3 > 0 and c > 0. This is the parabolic analog of Morrey estimate 
(16): it is valid in full generality since L has the Gaussian property (G) when 

n = 2. 
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2. By using the Laplace formula (60), one can see that the global Lp estimates for 

VxRt(x,y) (see Theorem 21) hold only for p in the range 1 < p < n/(n — 1), 

with 

rn 
\VxRt(x,y)\pdx 

I/P 

< ct-1t-n (1-1/p) ||f||1. 

1.5.3. The conservation property. — This is the conservation constants by the 

semigroup. Recall that without the property (G), e~tL can be unbounded on L°°(Rn) 

PI -

Proposition 25 (Conservation Property). — Letn > 2. Assume that L G £{S) satisfies 

(7) in the property (G). Then e~tL(l) = 1 for all t > 0. 

The argument in [11], Lemma 5.8, applies here. We present a different one. 

Proof. — Define 

bt(x) = e-tL(l)(x) = 

rn 
Kt(x,y) dy. 

From (G) and Lemma 19, bt(x) and its partial derivative 

dbt 

dt 
Or) 

rn 

dKt {x,y) 

dt 
dy 

are bounded functions for each t > 0. 

Let x,<P € Co(Rn) with x supported in 5 ( 0 , 2 ) and \ = 1 on 5 ( 0 , 1 ) (the balls 

centered at 0 and with radii 2 and 1 respectively). Set Xr(x) = x(x/r) f°r r > 0. 

Then, using (7) and the dominated convergence theorem we have 

d 

dt 
(bt, y) 

,dbt 

dt 
(p) = lim 

t-d 
< X r , 

de~tL* 
y). 

dt 

To compute this limit, we use the parabolic equation to write 

(Xe 
de~tL* 

dt 
<p) = - A(x)V (xr)(x)VxK*(x,y) (p(y)dydx 

Let ro be such that the support of ip is contained in 5 ( 0 , ro) and choose r > 2ro-

Then r / 2 < \x — y\ < 5 r /2 on the domain of integration. Using (13) for the kernel 

of e~tL* it is easy to see that, for fixed t > 0, the double integral is o ( l ) as r tends 

to oo. We have obtained that -jt{bt,ip) = 0, which means that bt is a distribution 

independent of t. Denoting by b this distribution, it remains to show that 6 = 1 . 

Let tp as above. Then 

|(6 - 1,tp)\ = \{bt - l,<p)\ = I Vw(l,e-tL'<p - tp)\ < lim H e - ^ V - <p\\x. 
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Now, for 7*0 as above, 

l | e - t L V - ^ | | i < 
£(0,2R0) 

\e-tL*<p-<f\ 

-he 
|AÎ|>2R0 \y\<ro 

U-n/2-P\x-y\2/t/n(.A\ . _ 

< cn(2r0)n/2 |||e-tL* y - y|2 + cn,be -br0/t ||t||2, 

which tends to 0 with t since \\e tL* — (p\\2 tends to 0 by right continuity at 0 of the 
semigroup. Therefore 6 = 1 . 

Remark. — This proposition holds under the weaker assumption that e tL* extends 
to a C°-semigroup on Lx(Rn) [6]. 

1.6. Analytic perturbation 

The purpose of this section is to present an analytic perturbation result for heat 
kernels as a corollary of (ii) in Theorem 6. Let us begin by indicating that the usual 
ways of doing perturbation theory are inappropriate. 

The usual perturbation theory of semigroup can be attempted via the Duhamel 
formula 

e-tV _ e-tL = 
t 

u 

e~sL' div M V e ^ - ^ d s , 

where L = — div (AV), U = — div A'V and M = A — A. By the semigroup estimate, 
(6) of Proposition 1, we see that the operator in the right hand side is bounded on 
L2(Rn) with a norm controlled by 

c 
t 

'o 
(t-s)-1/2 s - 1/2 ds ||M|| = cu ||M|| r. 

Iterating the Duhamel formula we get a second term of the form 

0<r<s<t 
e~rL' div MVe(r"s)L div MVe{s~t)L dsdr. 

Using again (6) in Proposition 1, an estimate for the norm is 

0<r<s<t 
r - l / 2 ( S _ r\-lU _ 5)-l/2 DSDR = ^ 

Hence the Duhamel formula is of limited interest for this kind of perturbation. 
Another way is to iterate the resolvent formula 

(A + L')"1 " (A + L)'1 = (A + L)~\L - L'){\ + Z/)-1 

in the Cauchy formula (61), so that 

e-tL' = e~tL 
oo 

*=1 
Zt,k(M,...,M), (66) 
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where 

Zt,k(M,...,M) = 
1 

2ni 7 

etxTx >k(M,...,M)dX 

and 

TXfk(Mi,-.., Affc) = ( A + L)"1 div M i V(A + L)"1 • • • div MfcV(A + L)"1 

Using the resolvent estimates (4) of Proposition 1, one sees that 

\\Zt,k{Mu..., Mk)f\\2 < c^HMxHoo • • • | | M f c | U | / | | 2 

for some c > 0. Further, Zt^(M\, • • , M i ) is fc-linear as a function of ( M i , . . . , M&). 

In other words, we have shown that the mapping A e*dlv(AV) is analytic from 

A to the space of bounded operators on L2(Rn). 

But this is about all we can get from such a representation in this generality. For 

example, when A and A! are real-valued, we know that L and V have the property 

( G ) , but (66) fails to provide an estimate of the form - AW^t^^e'^-^ I1 for 

the kernel of e~tL' - e~tL. 

This drawback is taken care of thanks to (ii) in Theorem 6. Indeed this implies 

that the semigroup kernel depends analytically on the coefficients for the topologies 

described below. 

For a > 0 and ¡1 € ( 0 , 1 ) , let /Ca,M be the Banach space of complex-valued functions 

Pt(x,y) denned on E = (0, oo) x Rn x Rn such that 

Na(p): = sup 
t,x,y)eE 

pt(x,y)\tn/2 exp 
a\x - y\2 

t 
< oo 

and 

N'Jp): = sup 
(t,x,y)eE 

sup 
h=0 

W 2 

1*1" 
(\Pt(x,y) -pt(x + h,y)\ + \pt(x,y + h) -pt(x,y)\) < oo . 

Define a subclass in L°°(Rn; Mn(C)) by 

G = {A G A ; — div (^4V) has the Gaussian property ( G ) } . 

By Theorems 6 and 4, Q is an open subset of L°°(Rn; Mn(C)) and a neighborhood of 

the class of real symmetric elliptic matrices. 

For A G A, denote by KA: (t, x, y) -> K^(x, y) the heat kernel of L — — div (^4V). 

With the notations above we have 

Theorem 26. — For each A0 G Q, there are constants a > 0 and fi G (0 ,1) 

such that KA° G /Ca,M and that A —> KA is analytic from a neighborhood of A in 

L°°(Rn; Mn(C)) into /Ca,M. In particular, there are constants c > 0, e > 0 and a > 0, 

depending on AQ such that for all A G L°°(Rn; Mn(C)) with \\A — Ao||oo < £ then 

AeG and 

\KtA(x,y)-KtA°(x,y)\ < c\\A- POLICE *"n/2 exp 
a\x-yr 

t 
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Proof. — Let M G L°°(Rn;Mn(C)) with norm 1 and set f(z) = KA* where Az = 
Ao + zM, z G C. By (ii) of Theorem 6, / is bounded from a neighborhood of 0 into 
£a,/i for some a > 0 and /2 > 0. We have to show that / is analytic at 0. By (66), 
we obtain an expansion 

KtA>(x,y)=K?(x,y) + 
OO 

k=l 
zkZt, k{M,..., M)(x,y), 

where Zt,k{M,..., M)(x, y), the kernel of Z*5fc(M,... ? M ) , can be computed by the 
Cauchy formulae. The boundedness of / and the Cauchy estimates imply that this 
series converges in JCa^ for \z\ small enough. Hence, / is analytic at 0. • 

1.7. Higher order elliptic operators 

In this section, we consider elliptic homogeneous operators of any order 2m, m > 1, 
as defined in Section 0.4 of Preliminaries by 

L = ( - l ) m 

M = \0\=m 

da(aaf3d^) (67) 

where aap G I/°°(IRn; C) , and where we assume the Gàrding inequality 

Re < £ / , / > > ¿11^711!, (68) 

for some S > 0 independent of / G D(L). Recall that Vm denotes the array of all 
partial derivatives of order m. 

As for second order operators, one can define the property (G) for L. The usual 
Gaussian function is replaced by Gm,a{u) = e~au2m/(2m-1). 

Definition 27. — L has the Gaussian property (G) if for each t > 0, the heat kernel 
Kt(x,y) is a Holder continuous function in each x and y and if there exist constants 
c, // > 0 and a > 0 such that for alH > 0 and x, y, h G Kn, 

|K t (x ,y ) |< c 
£n/2ra 

Gm,a 1̂  — 2/1 
¿1/2"» 

(69) 

|Hrt(x,y)-/irt(x + fc,y)| < c 
£n/2m 

1*1 
£l/2m + |x - y| 

µ 
Gm,a |a? — 2/1 

t1/2m 
(70) 

and 

| j M ^ ! / + A ) - # t ( s , y ) | < 
c 

-f-n/2m 
\h\ 

Kt1/2m-\-\x-y\j 

µ 
Gm,a 

la? — I/I 
t1/2M 

(71) 

whenever 2|h| < t1/2™ + \x- y\. 

It seems possible to prove a result similar to Theorem 10. We refer the reader to 
the forthcoming thesis of Qafsaoui. Here we only prove that (G) holds when 2m > n 
and we also state and prove gradient estimates on Kt(x,y) whenever (G) holds. 
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Proposition 28. — Any operator L as above has the Gaussian property (G) when 
2m > n. In particular the constants c,a > 0,/x > 0 depend only on m,n,<5 and 
||aa/?||oo-

Remarks 
1. Note that this covers the case m = 1 and n < 2, which is part (i) of Theorem 6. 
2. When 2m > n this theorem is proved in [29]; the argument here is similar. When 

2m = n the argument follows that of Theorem 3.5 in [11]. When 2m < n, 
the property (G) may fail. Section 1.3 gives a counterexample and further 
counterexamples are presented in [30]. 

Proof. — We first deal with the case 2m > n. By the final remark in Section 0.2 
of Preliminaries, L + 1 is invertible from i/m(Rn) onto its dual iJ"m(Rn). Since 
m > n/2, the Sobolev embedding theorem gives us 

Hm(Rri) C L°°(Rn) D C"(Rn) 

for all /i G (0,inf(l,m — n/2)). Therefore, (L + 1) 1 extends to a bounded operator 
from L2(Rn) into L°°(Rn) n C"(Rn). 

Next, L + 1 can be replaced by L + A for A chosen in an appropriate sector: the 
same argument applies when |A| = 1 and the general situation follows by a rescaling 
argument. Doing this, we see that for all v in some interval (7r/2,7r — UJ) there is a 
constant C depending only on m,n, v, 6, Ha l loo , such that 

l A I - V ^ I K L + A)"1«!!«, <C\\u\\2 (72) 
|A|-N/4m-^/2m+L|(L + < C||M||2 (73) 

whenever A € r „ , A ̂  0. 
Integrating these inequalities in the Cauchy formula (61), we obtain 

lle-^ulloo < Ct—/4™||u||2, t > 0 , (74) 

\e~tLu\c» < Ct-n/4m-»/2m\\u\\2, t>0. (75) 

Then, we finish the argument by an extension of Lemma 16, referring to [29] for 
the necessary changes in the exponential perturbation technique for higher order 
operators. 

Now, we turn to the case where 2m = n. This is the critical case for the Sobolev 
embeddings and the embedding of Hrn(Mn) into L°°(Rn) fails. To get around this 
difficulty we use Lemma 23. Since L + 1 is bounded from VTm^(Rn) into Vr~m'p(Rn) 
for all p G (1, oo) and invertible when p = 2 for Wm>2(Rn) = Hm(Rn), it is invertible 
from VTm'p(Rn) onto Vr~m'p(Rn) for p in a neighborhood of 2. Fix p > 2 in such 
a neighborhood so that the Sobolev embedding L2 (Rn) C W-m>p(Rn) holds and 
observe that m - n/p > 0. Then (L + l)"1 maps L2(Rn) into VTm'p(Rn) which 
embeds into L°°(Rn) n C»(Rn) for all p G (0,inf(l,m - n/p)). From now on, the 
argument is identical to the previous one, and is left to the reader. 
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Our next task is to obtain gradient estimates analogous to the ones in Theorem 7. 

Theorem 29. — Let n > 2 and m > 1 and assume that L given by (67) satisfies (68) 

and has the property (G). Then, there are constants c,e > 0 ,a > 0,77 > 0 depending 

only on the constants in (G), n,m, S and H a l l o o , such that for all yo,h G W1, t > 0 

and r > 0 with 2\h\ < r + txl2rn , we have 

r<\x — y0\<2r 
\V™ Kt{x,y0)\2 dx 

1/2 
C 

£l/2+n/4m 
r 

tl/2m 
e 

Gm,a 
r 

tl/2m 
(76) 

and 

r<\x—yo\<2r 
\V™Kt{x,yQ + h)- V™Kt(x,y0)\2 dx 

1/2 
.......< 

C 

£l/2+n/4m 

\h\ 

tl/2m + r 

n 
r 

tl/2m 

e 
Gmya 

r 
tl/2m 

(77) 

The proof of this result is an adaptation of the one for second order operators. We 

begin with the proof of (76). By limiting arguments, it clearly suffices to show the 

following lemma. 

Lemma 30. — Under the assumptions of Theorem 29, there are constants c, e > 0, 

a > 0, such that for all f G Lx(Rn) supported in the ball centered at yo of radius r/4, 

r<\x — y0\<2r 
\Vme-tL f\2 dx 

1/2 
< 

c 
£l/2+n/4m 

r 
tl/2m 

e 
Gm,a 

r 
tl/2m ll/lli . (78) 

The main ingredients are a Cacciopoli inequality in the spirit of the one in Lemma 

20 and some Lp estimates on V m e - t I / generalizing those of Section 1.5.2 to the case 

of higher order operators. 

We begin with the case where r > £1//2m. The first step is to obtain the parabolic 

Cacciopoli inequality. It takes the following form: if ut = e~tLf, f G L2(Rn), then 

for all real valued ip G C^(Rn), 

| | * 1 / 2 V m ( u t ^ ) | | l < c M 2 I I * 
dut 

dt 
PII2 + 

\oc\ = \(3\=m 
*IKa/?Hl (79) 

c = c(ô, H a l l o o , ? ! , ™ ) , where 

Vt^ = d^ut da{Wtip2) - d*(ut if) da(Wtip). 

Indeed, since ut satisfies the parabolic equation 
dut 

dt 
•f Lut = 0, we have 

dut 

dt 
uty2) -

M = \P\=m 

(aaPd^ut, da(ut^2)). 
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Therefore, 

\a\ = \ß\=m 

(aaßdß(ut(p), da(ut(p)) = 
dut 

dt 
•<P,ut<P) -

\a\ = \ß\=m Rn 
actßVt,<xß, 

and (79) follows from the Garding inequality (68) and the Cauchy-Schwarz inequality. 
Now, assume that (G) holds. Fix yo G Mn and / G L1(Wn) with support in the ball 

centered at yo and of radius r/4. By adapting Lemma 19, one sees that t—Kt(x,y) 

also satisfies (69). Thus, there exist non negative constants c and a such that when 

\x — 2/o| > r/2, we have, 

M * ) l + t-
9ut(x) 

dt 

c 
-f-n/2m 

Gm,a 
\x - ya\ 
tl/2m ll/lll. (80) 

Next, pick (p with support defined by c§r < \x — yo\ < 2r/co for some Co < 1 such 
that 1 — Co is small and ip(x) = 1 if r < \x — yo\ < 2r and such that ||9a<p||oo < cr~lal 
for all multiindex a with \a\ < m. Then, using (80) on the support of (p, we have 

||utY||2 + || dut 
dt 

y||2 < c 
^n/4m 

r 
tl/2m 

n/2 
Gm,a 

r 

tl/2m ll/lll, (81) 

which yields the correct estimate for the first term in the right hand side of (79). 
It remains to estimate £||^a/3||i. By the Leibniz rule, we have 

Vt.aß = dßUt 

7<a 

a 

7 
d^{Wtip)da-^ip-da{Wt<p) 

y'<ß 

ß 
y' 

ay' ut ab-y' y, (82) 

where 7 < a means that 7^ < a* for all 1 < i < n. Observe that the 7 = a and 
7 ' = /3 terms cancel, hence both sums restrict to multiindices of length at most m — 1. 
Cancellation is no longer used and we estimate each term separately. 

Lemma 31. — Assume that f and (p are functions with the properties specified above. 
For \/3\ = m, I7I < ra — 1 and r > txl2rn , we have 

l l # W ) | | 2 < CT"1/2-"/4"1 U/H! (83) 

and 

\\d1{ut <p)\\2 < ct-|Tl/2m-n/4m T 
tl/2m ll/lll, (84) 

for some a > 0 and c > 0. 

Assume that this lemma holds. Consider d^]ut d1(ûï<£>) d^1'(p which is a generic 
term in (82). Introduce a smooth function <\> with the same properties as (p and <f> = 1 
on the support of ip so that d^ut = d^(ut<f>) on the support of </?. By Lemma 31 one 
obtains 

t\\dßutff'(u;tp)d0'-M\i r 

tl/2m 

-m+|7| 
t-n/2mG/ïm,a 

R 

tl/2m ll/lll-
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This gives us an estimate of vt,(3 and (78) follows in this case. The argument is 
complete provided we prove Lemma 31. 

To this end, write Vm,?i£ = Vrne~tL/2ut/2 so that by Proposition 2 of Preliminaries 
and (69) we obtain 

^ H v ^ l b ^ c i K ^ i b ^ c * - " / 4 - ! ! / ! ! ! 

Using the interpolation inequality 

Wgh < liv^||2^/m||^||^-|7l/m (85) 

valid for all g G #m(Rn), we find that 

\\d^ut\\2 <c*-^l/2m-n/2m||/ | |i 

for all multiindices 7 with I7I < m — 1. Now, writing the Leibniz rule, using thes* 

estimates, the properties of tp and r > ^1/2m, it is easy to obtain (83). 

To see (84), apply the interpolation inequality (85) to g = ut<p, and use (83) anc 

(81) for ||wt^||2 to obtain 

ll<97K^)||2 < ct-'7'/2m-n/4m Gm,a 
r 

tl/2m J 

(m-\j\)/m 
ll/lli-

The conclusion follows by noticing that = Gm,ab for all a, b > 0. 
Let us come back to the proof of Lemma 30. 
It remains to study the case r < t1/2™. Curiously, the Cacciopoli inequality is 

useless and we rely instead on some Lp estimates. First, we have observed that 
^/2||Vmut||2 < c*-n/4m||/||i. Thus, by Holder inequality, 

r<\x — yo\<2r 
\Vrne-tLf\dx< c 

t1/2 
r 

tl/2m 

n/2 
ll/lli- (86) 

Now, completely analogous arguments to those in Section 1.5.2 show that there exists 
an e > 0 such that, if p G [1,2 + e), Vme"tL is bounded from L1^71) into Lp(Rn) 

with 

||Vme-tL/||p < c*-l/2-(l-l/pW2m IIJIÎ  (87) 

It is now easy to obtain (78) by interpolating (86) and (87) with a given p > 2. 

Lemma 30 is thus proved, and hence (76). 

To prove (77) it suffices to establish 

r<\x—yo\<2r 
|Vme-tL/h|2dx 

1/2 
< c£-l/2-n/4ra 

\h\ 

r 

n r 

tl/2m 

£ 
\ / 1 (88) 

for all / G L1(Rn) supported in the ball centered at y0 of radius r/4 and all h with 

2\h\ < r < t1!2™ and where fh(x) = f(x - h) - f(x). Indeed, (88) implies (77) in the 

case r < txl2rn by a limiting argument and the Gaussian decay in the case r > txl2rn 

comes from (76). 
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The proof of (88) basically uses the same method as above. From the Lp estimate 

(87) we have 
| |VmC-tLM|p < Ct-l/2-(l-l/p)n/2m i i j i^ 

while the L1 estimate (86) becomes 

r<\x — yo\<2r 
\Vme-tLfh\dx< c 

t1/2 

h 

r 

£ 
r 

£l/2m 

n/2 
ll/lli 

by using (71) and 

e~tLh(x) = 
rn 

(Kt(x,y + h) - Kt(x,y))f(y) dy. 

Interpolation finishes the argument. 

Remarks 

1. One can write down Lp estimates for the higher gradient of the resolvent kernel 

similar to the L2 estimates in Theorem 29. The range of p's depends on n and 

m. 

2. The Lp estimates generalizing the ones in Section 1.5.2 are valid: we used them 

in the argument. 

3. The conservation property for e~tL holds when L has the property ( G ) . The 

proof is an adaptation of that of Proposition 25. 

4. Lower order terms can be added to L; if the leading part has order 2m > n 

then local Gaussian estimates are valid. The proof is the same as the one of 

Proposition 28. 

5. Let L = (—l)m-—a(x)-— in L2(E) assumed to be maximal accretive. When 
v 7 dxm v Jdx™ v J 

m = 1, then (G) holds and pointwise estimates exist for the first derivatives 
of the heat kernel (see [14], and [11] where lower order terms are added). If 

m > 2, that (G) holds is in Proposition 28. Also it is possible to show with a 

suitable generalization of Lemma 1.4 in [14] that all x (or y) derivatives up to 

order m of the heat kernel have pointwise Gaussian decay as in (69) with the 

natural scaling in terms of t. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1998 





CHAPTER 2 

QUADRATIC FUNCTIONALS, CARLESON MEASURES 
AND SQUARE ROOTS OF DIFFERENTIAL 

OPERATORS 

2.1. Introduction 

We know from Preliminaries that we can study the square root problem for dif­
ferential operators by considering some quadratic functionals. A classical theorem 
in harmonic analysis, using the paraproducts of Coifman, Meyer and Bony, roughly 
asserts that the boundedness of a quadratic functional amounts to the control of a 
Carleson measure. However, the hypotheses that are needed to apply this result are 
not fulfilled in our case as we deal with more singular operators. The purpose of this 
chapter is to make the conclusion of this theorem valid and to prepare the ground for 
the next chapter in which we control the Carleson measures that appear in the case 
of square roots of differential operators. 

To make the discussion accessible to non-experts of square function estimates, Sec­
tion 2.2 presents a review on the known theory of quadratic functionals. For example, 
we show that the one-dimensional square root problem falls under its scope. In Sec­
tion 2.3, an extension of this theory is given by modifying and somehow weakening 
the hypotheses for which it works. This applies to square roots of elliptic operators 
with a special structure. The counterexamples of Section 2.4 show that further con­
siderations are needed in order to treat general square roots: this is the content of 
Section 2.5. Section 2.6 contains miscellaneous material such as the modifications to 
handle inhomogeneous elliptic operators and localization techniques. 

2.2. Classical quadratic functionals 

2 .2 .1 . A review. — We begin with some notations. We denote by |T |2 ,2 the norm 
of an operator that is bounded on L2(Rn) . Consider a family of linear operators 
Ut: L2(Rn) —> L2(Rn) that is uniformly bounded and that depends measurably on 
t € (0, oo) (in what follows, measurability is always satisfied in applications and thus 
assumed throughout without mention). The quadratic functionals of our study have 
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the form 
•oo 

0 
WtfWl 

dt 
t 

Definition 1. — We denote by \Ut\s the smallest constant C such thai 

oo 

0 
WtfWl 

dt 
t 

1/2 
< C | | / l l 2 , (1) 

and we say that the family (Ut)t>o is bounded whenever \Ut\s < °o. 

If i f = L2(R+;L2(Rn),dt/t) is equipped with the norm (/0°° \\ft\\ldt/t)1/2, this 
boundedness property says nothing but the continuity of the operator / —• (Utf)t>o 
acting from L2(Rn) into H. 

Quadratic inequalities such as (1) arose in the work of Littlewood and Paley (see 
[82]). These inequalities have played an important role in the development of har­
monic analysis. See, e.g., the works by Stein [72, 73]. 

The classical situation is when Ut is a convolution operator with symbol $(t£) for 
some function ip, in which case, by Plancherel theorem, we have 

\Ut\s = sup 
zzen 

oo 

0 
J>№\2 dt 

t 

1/2 
(2) 

This supremum is finite when, for example, \ip(0\ < c|£|s(l +1£|)-25 for some c, s > 0. 
The holomorphic functional calculus that has been described in Preliminaries, Sec­

tion 0.1, is an extension of this situation. 
In the absence of a FUNCTIONAL CALCULUS or when the FOURIER TRANSFORM is not AVAIL­

able, these inequalities can be handled by making size and regularity assumptions on 
the kernels of Ut. Let us describe a typical set of assumptions taken from [18]. 

Definition 2. — Let (Ut)t>o be a family of operators acting on L2(Rn). We say 
that it is an e-family when the operators are uniformly bounded on L2(Rn) and their 
kernels are measurable functions with the estimates 

\Ut(x,y)\ < CQ 
t£ 

(\x-y\ + t)n+e' 
(3) 

\VyUt(x,y)\ <co 
te 

(\x - y\ + £)"+!+£ 
(4) 

uniformly in t > 0, x, y, for some e > 0. 

Note that (3) implies that Ut extends to a bounded operator on Lp(Rn) by 

Utf(x) = 
rn 

Ut(x,y)f (y)dy. 

No regularity in the x-variable is assumed. The aim here is to state a kind of 
T ( l ) theorem relating the boundedness of quadratic functionals and Carleson measure 
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estimates. We first recall some basic results. The first one is a consequence of a 

variation on the Cotlar-Knapp-Stein lemma. See [74]. 

Lemma 3 (Almost orthogonality). — Let (Ut)t>o be an e-family. IfUtl = 0, that is 

J Ut(x,y) dy = 0 a.e. for all t > 0, then (Ut)t>o is bounded and one has 

\Ut\s < c(n,e)co, (5) 

where the constant CQ appears in (3-4)-

Proof — We give a sketchy argument. Since we have 

CO 

0 
WtfWl 

dt 

t 

CO 

r0 
(u;utf,f) 

dt 

t 

it is enough to estimate the norm on L2(Rn) of the selfadjoint operator 

V = 
i/s 

0 
u;ut 

dt 

t 

for fixed S > 0 with a bound that is independent of S > 0. By the spectral radius 

theorem, we have that \V\2,2 = lim I V ^ I ^ " when N oo. Now, for N > 1, we write 

yN = .1/6 

S 

.1/6 

'6 
Kutlut*2ut2-.-ut*NutN 

dti - - • dtjsf 

tl'—tN 

so that 

\VN\*a < 
i/6 

6 

i/6 

6 
1 ^ 1 2 , 2 1 ^ ^ 1 2 , 2 • • • |C^_lC£J2l2|CU3,2 

dti • • • dtjsr 

ti • • • in 

The hypotheses on Ut(x, y) enter at this point and, using Utl = 0 and the inequalities 

(3) and (4) , one shows as in [27] that \UtiU;. |2j2 < Ch(U/tj), where h(t) = i n f ^ , * " 1 ) . 

Using this and the uniform L?-boundedness of Ut one has that 

\VN\2,2 < C 
1/6 

6 

1/6 

6 
cN-xh 

t1 

t2 
h 

ÌN-1 
tN 

dti - • • dtjsf 

t1 ···tN 
< 2 ^ 1 In«51. 

Here C depends on Co in (3-4), n and £, but not on S. Taking iVth root and letting 

N —> oo yields \V\2j2 < C as desired. 

The second important result is the following localization using the notion of a 

Carleson measure. 

Definition 4. — A Carleson measure on W1 x M+ is a positive Radon measure dp(x, t) 

on Rn x R + such that 

sup 
1 

Q Q 

l(Q) 

o 
dp(x, t) < oo. (6) 

The supremum is taken over the collection Q of all cubes Q C Rn with sides parallel 

to the axes, £(Q) and \Q\ denoting respectively the sidelength and the volume of such 

cubes. The quantity in (6) is denoted by \dp\c. 
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Definition 5. — A Carleson function is a measurable function b(x, i) = bt(x), (#, t) G 
Rn x R + , such that dp(x,t) = \b(x,t)\2dxdt/t is a Carleson measure. We set \bt\c = 
V|du|c. 

Lemma 6 (Localization). — Let (Ut)t>o be a bounded family whose kernels satisfy 
(3). Then, for all f G L ° ° ( R n ) , Utf is a Carleson function and 

\Utf\c<c\Ut\s\\f\\ ao+CCo\\f\\oo, (7) 

where CQ is the constant in (3) and c = c(n,e). In particular, \Utl\c < oo. 

We do not include a proof as it is similar to that of Lemma 15 later on. 
That \Utl\c < oo is also sufficient for the boundedness of ^-families follows from 

the Carleson inequality which we now recall. 
For a function ip G C o ° ( R n ) , supported in the unit ball, and t > 0, set (ft(x) — 

t~n(p(x/t). Define the convolution operator Pt by Ptf = f * ipt> Then the maximal 
operator defined by 

P*f(x) = sup 
{(y,t);|aj-i,|<t} 

\P t№\ 

is bounded on L2 (Rn) as a consequence of the L2 boundedness of the Hardy-Littlewood 
maximal operator, see [71]. Carleson inequality asserts that 

rn 

oo 

0 
\Ptf(x)\2dp(x,t) <c(n)\dp\c 

rn 
\P*f(x)\ 2dx, f G L2 (Rn) , 

(see [74]) so that 

rn 

oo 

0 
Ptf(x)\2dp(x,t) < c(n,v?) \dfjt\c 

rn 
f(x )|2 dx, f 6 L2(WLn). (8) 

In terms of quadratic inequalities, this gives the following result. 

Lemma 7. — Define Pt as above. Let bt be a Carleson function with supt>0 ||&t||oo < 
oo and let Mt be the pointwise multiplication operator by bt. Then (MtPt)t>o is a 
bounded e-family for any e > 0 and 

\MtPt\s <c{n,<p)\bt\e. ( 9 ) 

Operator families such as the ones of Lemma 3 or of Lemma 7 are the basic building 
blocks of e-families. More precisely, we have 

Lemma 8. — Let (Ut)t>o be an e-family. Let Ptf = / *<Pt, V being defined as above 
with, in addition, f <p = 1. Then 

Ut = MtPt + Qtj (10) 

where Mt is pointwise multiplication by Utl and {Qt)t>o is an e-family with Qtl = 0. 

Proof. — It is clear that the equality Qt — Ut — MtPt defines an e-family. Moreover, 
Qt\ = 0 follows from Ptl = 1 and the definition of Mt. 
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As a consequence of this chain of results is the following Tl-theorem for Carleson 

measures as stated by Christ and Journe [18]. 

Theorem 9. — Let (Ut)t>o be an e-family. 

(i) (Ut)t>o is bounded if and only if Utl is a Carleson function. 

(ii) Moreover, when \Utl\c < oo, one has 

|«/t/|c < |C/tl|e||/||oo H-CCdll/Hoo, / e L ° ° ( R n ) , (H) 

where c = c(n,e) and CQ is the constant in (3-4)-

A major point is the precise value of the constant, namely 1, in front of \Utl\c in 

(11). This is observed and used efficiently in [18] toward polynomial growth in norm 

estimates for multilinear expansions, including the one used for the one dimensional 

square root problem. We shall exploit later this value in a different way. 

Proof. — The equivalence in (i) follows readily from the previous lemmas. The proof 

of (11) exploits a fact that has not been used so far: Pt is contractive on L°°(Rn) 

provided we choose <p > 0, which we may. This fact yields 

\(Utl)(Ptf)\c < II/tllcH/Hco. 

This and (10) yields 

\Utf\c < \(Utl)(Ptf)\c + \Qtf\e < |^l|c| |/ | |oc + \Qtf\c 

and we conclude using \Qtf\c < c| l/l loo by Lemma 6 and Lemma 3. 

Remark. — All of the above goes through if (4) is replaced by the weaker Holder 

continuity estimate 

\Ut(x,y')-Ut(x,y)\ <c0 
t£ 

(\x-y\ + t)n+e 
W-y\ 

\x-y\ + t_ 

e 

See [18]. 

2.2 .2 . Application to the one dimensional square root problem. — Even 

though we are mostly concerned with the higher dimensional case, it is of interest to 

present a simple argument for the case n = 1. Here, L = — — (a—), where a(x) is a 
ax ax 

bounded and accretive function on R. It is always possible to normalize a(x) so that 

a-1 = 1 — m where HraHoo < 1 (see Appendix C ) . 

By Proposition 5 of Preliminaries, establishing 

|£1/2/H2 < ell 
df |2, 
dx 

which was first proved in [20], amounts to proving that \Ut\s < oo, where 

Utf = I-t2 
d 

dx 
G 

d 

dx 

- l 
t 

d 

dx ( « / ) • 
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That (Ut)t>o is an ^-family is proved in [14] (there, an exponential decay is ob­
tained). By Theorem 9, we are reduced to estimating |{7tl|c: this is done using (11). 

The key observation is the cancellation property UtoT1 = 0 which implies Utl — 
Utm. Thus, by (11) 

Italic = \Utm\c < ||m||oo|t/tl|c + ccd||m||oo, 

and solving for \Utl\c gives us 

|t^l|e < 
ccollmlloo 
1 - I H I o c 

< oo (12) 

since ||ra||oo < 1. 
To finish the proof, we have to justify the use of (11). Indeed, it requires the a 

priori knowledge that \Utl\c be finite, which is to be proved. To overcome this vicious 
circle, we use truncations. As this trick is needed at various places without mention, 
we describe it in detail here. 

Let x be any non-negative measurable function with compact support in (0, oo) and 
such that Hxlloo < 1- If (Ut)t>o is any e-family, then the truncated family (x(t) Ut)t>o 
is also an s-family, with the same constant CQ. 

Because of the support assumption, there is a constant c = c(x) > 0 such that 
\x(t)Ut\s < csup|£/t|2,2 < oo. Hence, \x(t)Utl\c < oo by Theorem 9. As the 
truncation by x does not affect the cancellation property, the same argument as 
above applies and we have 

\x(t)uti\c< ccollmlloo 
1 - IMIoo 

— C\ < oo. 

This means that for a given cube Q € Q, 

1 

Q Q 

l(Q) 

0 
\X(t) (Utl)(x)\2 

dtdx 
t 

<cl 

Fix Q and for k > 1, let x — 1 on and 0 elsewhere. By letting k tend to oo, 
the monotone convergence theorem of Beppo Levi yields 

1 

Q Q 

l(Q) 

o 
(^l)(x)|2 

dtdx 

t 
<cl 

Taking the supremum over all cubes gives the desired inequality and the proof of (12) 

is finished. 

2.2.3. Quadratic functionals of weakly regular families. — Our goal in this 
chapter is to generalize Theorem 9 to the class of quadratic functionals arising from 
the square root problem in higher dimensions. As a first step, we study a weakened 
version of this result. 

Before going into statements, it is worth taking a closer look at the decomposition 
(10) in Lemma 8 to show when the different hypotheses are used. This argument 
borrows ideas from [69] and [21]. 
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To avoid unnecessary technicalities, we consider a model case where Ut(x,y) is 

supported in \x — y\ <t and satisfies 

\Ut(x,y)\ <t~n and \VyUt(x,y)\ < t - n - ! . (13) 

Denoting by Mt the operator of multiplication by Utl, one can write (with the 

notation of Lemma 8) 

Ut = MtPt + (Ut - Mt)Pt + Ut(I - Pt). (14) 

In other words, the operator Qt in (10) is broken up in two parts, (Ut — Mt)Pt and 

Ut(I — Pt)- That these operators send 1 to 0 is obvious and each part eventually has 

the same property as Qt. The interesting point we want to make concerns the kernel 

analysis of each part. 

The kernel of (Ut - Mt)Pt is 

K¡(x,y) = Ut(x, z) ((ft(z - y) - (ft(x - y)) dz, (15) 

This kernel is supported in \x — y\ < 2t where, up to a numerical constant, it satisfies 

(13). Here, Ut (x, z) is used as an averaging integrable function and only a size estimate 

is needed. 

The kernel of Ut(I - Pt) is 

K2t(x,y) = (Ut(x,z) - Ut(x,y))(ft(z - y)dz. (16) 

Since (p is supported in the unit ball, this kernel also has support in \x — y\ < 2t where, 

up to a numerical constant, it satisfies (13). This is a consequence of the mean value 

theorem and this indicates the importance of regularity assumptions in the y-variable 

on Ut(x,y) for this term. 

We are now ready for introducing the notation for the next result. 

Definition 10. — Let (Ut)t>o be a family of operators acting on L2(M.n). We say that 

it is a weakly regular family (with constant CQ) when the operators Ut are uniformly 

bounded on L2(M.n) with |C/t (2,2 < Co and when there are constants e > 0 and s > 0 

such that: 

(i) the kernels Ut(x,y) are measurable functions with the estimate 

fr<\x — y <2r 
\Ut(x,y)\dy < coinf 

r 
t 

e t 

. r 

n-\-£-
(17) 

uniformly in t > 0, r > 0 and 1 E R " ; 

(ii) [ / ( ( - A ) * / 2 is bounded on L2(En) with 

| | t / t ( - A r / 2 / | | 2 < c o i - l / | | 2 , t>0. (18) 

Remarks 

1. Condition (ii) is a smoothing condition for Ut- It means that Ut maps the 

homogeneous Sobolev space i f _ s ( R n ) into L2(Rn). 
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2. It is easy to see that e-families are weakly regular families provided e > n. 
Clearly, (3) implies (17) and this is where e > n is needed. That (4) implies 
(18) with s = 1 goes as follows. The decay estimate in (4) implies that Utd/dxj 
is bounded on L2(Rn) by interpolation, and its norm does not exceed ct~x. 
Using that 

( _ A ) l / V = -
n 

3=1 

d(Rjf) 
dxj 

where Rj is the jth Riesz transform, we obtain 

| |CM-A)1/2/ l |2 < 
n 

3=1 
\\Ut 

d(Rjf) 
dxj 

|2 < ct'1 
n 

3 = 1 
WRjfh ^ ct-'Wfh 

from the boundedness of the Riesz transforms. 
3. One can also prove that the Holder estimate stated in the remark concluding 

Section 2.2.1 is stronger than (18). The proof proceeds by duality and one uses 
the semi-norm 

\ № - f(y)\2 
\x — y\n+2s 

dxdy 
1/2 

as an equivalent semi-norm on Hs(M.n) for 0 < s < 1. 

As we shall see, (17) is only a technical refinement of (3) . But, the use of (18) 
leads to a different analysis of the term Ut(I — Pt)> Still the statement of Theorem 9 
goes through. 

Theorem 11. — Let (Ut)t>o be a weakly regular family with constant CQ. 

(i) (Ut)t>o is bounded if and only if Utl is a Carleson function. 
(ii) When \Utl\c < oo, one has 

\Utf\c < |Ctl|c||/||oo + c c o l l / I U , / € L°°(R"), (19) 

where c = c (n , e, s). 

We begin the proof with a series of lemmas. 

Lemma 12. — Assume that Ut(x,y) satisfies (17). Then JRn \Ut(x,y)\dy < c(n,e)c0 
uniformly over x G W1 and t > 0. In particular, Ut extends to a bounded operator on 
L ° ° ( R n ) with norm bounded by c(n,e)c0 and Utf(x) = JRn Ut(x,y)f(y)dy a.e. when 
f e L ° ° ( R n ) . 
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Proof. — It suffices to prove the integral estimate and the rest of the statement 

follows from standard arguments. By (17), 

rn 
\Ut(x,y)\dy< 

+g 

j= — oo 2H<\x-y\<2i + 1t 
\Ut(x,y)\dy 

< 
+oo 

j=-oo 

c o i n f ( 2 ^ , 2 - ^ + ^ ) - c ( n , £ ) c o , 

which finishes the proof. 

Lemma 13. — Assume that Ut{x,y) satisfies (17) and that if G L°° has support in 

the unit ball. Then 

rn 
Ut(x,z)(pt(z - y) dz < c||y|| gf c0 t£ 

{\X - y\ + t) n+e 

Proof. — Without loss of generality one can take t = 1 after rescaling and assume 

also that |M|oo — 1- Galling K{x,y) the integral, we have 

\K(x,y)\ < \U\(x,z)\ dz < c(n,e)co 

by Lemma 12. This is enough if \x — y\ < 4, while if \x — y\ > 4 then S\x — y\/4 < 

\x — z\ < 5\x — 2/|/4 on the support of the integral and, by (17), 

\K(x,y)\ < co 
4 

3 b - 3 / 1 

n+e 

This ends the proof. 

Remark. — This is the only place where the term (t/r)n+£ is used in (17), while a 

term (t/r)£ is enough elsewhere. 

Corollary 14. — Assume that Ut{x,y) satisfies (17). Let Mt be the pointwise 

multiplication operator by Utl and let Pt be a convolution operator with (pt, where 

cp G Co°(Mn) has support in the unit ball. Then {MtPt)t>o o,nd (UtPt)t>o are e-

families and {{Mt — Ut)Pt)t>o is bounded when, in addition, f (p = 1. 

Proof. — The kernel of MtPt is {Utl){x)(pt{x — y), so that estimates (3-4) are imme­

diate. 

The kernel of UtPt is given by the integral in Lemma 13, and (3) follows from 

Lemma 13. The inequality (4) is obtained similarly on replacing y>t by its gradient. 

That {{Mt — Ut)Pt)t>o is bounded follows on applying Theorem 9 since 

{Mt-Ut){Ptl) = 0 

when f ip = 1. The proof is complete. 

The next result is a generalization of Lemma 6, where, for subsequent use, we 

obtain an explicit constant. 
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Lemma 15. — Assume that (Ut)t>o is a bounded family of operators that satisfies 

I 1 2 , 2 < Co and (17). Then for all Q G Q, one has 

1 

101 Q 

l(Q) 

0 
\Utf\2 

dxdt 

t 

1/2 

< \Ut\s 
1 

101 Q 
/I2 

1/2 
+ c(n, E)CQ sup 

Rn/Q 
/1 (20) 

In particular, for all f G L°°(Wn), one has 

\Utf\c <(\Ut\s + c(n,e)c0)\\f \\oo. (21) 

Proof. — It is clear that (21) follows from (20). 

To prove (20), write / = / i + /2 , where /1 = / on the cube Q and /1 = 0 elsewhere. 

On the one hand, 

Q 

l(Q) 

0 
\Utfi(x)\2 

dxdt 

t 
< 

Rn 

00 

0 
Uth(x)\2 

dxdt 

t 
< \Ut\% 

Q 
f(x)\2dx, 

and this gives us the first term in the right hand side of (20). 

On the other hand, it remains to prove 

Q 

l(Q) 

0 
WtÎ2{x)\2 

dxdt 

t <^0ll/2||2ool0|. 

For fixed t > 0, decompose further /2 as /2 = /3 + /4 , where /3(2/) = /2(2/) if d(y) < t 

and /3(2/) = 0 otherwise. We have denoted by d(y) the distance of y to the boundary 

of Q in the norm \y\oo = max{ \yi\, 1 < i < n } . 

First, using |C/"t|2,2 < Co we have, 

Q 

\Utfs(x)\2 dx < c20 l/sl2 

< 4\\h\\lo\iv ^ n ld(y) < t}\ 

^ c c M l i i Q r - H . 

Integrating this inequality against dt/t over [0,£(Q)] gives us the desired control for 

this term. 

Next, for x G Q and y in the support of /4 we have 

\x-y\oo > t + 
' ( 0 ) 

2 
- \X - Xq\OO = r(t,x) = r, 

where xq is the center of Q. Thus, by splitting the range of integration into the 

dyadic annuli defined by 2jr <\x- y\oo < 2J+1r, j = 0 , 1 , . . . and using (17) we have 

rn 
Ut(x,y)f4(y)\dy < c(n)c0 

00 

j=0 

t 

2h 

n-\-£ 
I/4H00 = CCQ 

t 

r 

n+e 
/2 oo-

Now, by making the change of variables u = (£(Q)/2 — \x — XQ\oo)/t we have 

HQ) 

0 

t 

r(t,x) 

2n+2£ dt 

t 
< c(n,e) I In (1 -

2\x - XQ\oo 

*(Q) 
+ 1 
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Hence, 

Q' 

m(Q) 

o 
(Uth){x)? 

dxdt 

t 
< cc0 ||f2||2 f 

Q 
| l n ( l -

2|x - XQ|OO> 

m (Q) + i dx. 

By scaling, it is easily seen that the last integral is bounded above by c(n)|<9| and 

this ends the argument. 

We conclude this series of preparatory lemmas with the following result. 

Lemma 16. — Assume that Ut satisfies (18) for some s > 0. Let Pt be a convolution 

operator by t~nip(x/t) for some smooth function ip G L1(Mn) with f ip = 1. Then 

\Ut(I-Pt)\s < coc(n,s,ip), (22) 

where 

c(n, s, ip) = sup 
eERn 

oo 

0 

l - m ) | 2 
|tE|2s 

dt 

t 

1/2 

Proof. — Write 

Ut(I-Pt) = Ut(-1?A)*/2Qt 

where 

Qt = (-t2A)-s/2(I-Pt). 

This operator is a convolution operator with symbol \t£\ s(l — <p(t£)), so that \Qt\s = 

c(n,s,(p) by (2) . 

We conclude the proof of Lemma 16 on applying the following remark to Lt = 

Ut(—£2A)*/2, Mt = Qt and N = I, whose proof is left to the reader. 

Lemma 17. — For operators Lt, Mt and N, assumed to be uniformly bounded on 

L2(Wl), one has 

\LtMtN\s < sup 
*>0 

Lt\2,2 Mt\s\N\2i2- (23) 

We now turn to the proof of Theorem 11, first establishing the equivalence between 

the boundedness of (Ut)t>o and the Carleson measure estimate for Utl. 

If \Ut\s is finite then, by Lemma 15, Utl is a Carleson function. 

Conversely, choose ip G CQ°(MTI) with support in the unit ball and such that \<p(£) — 

1| < for |£| < 1. Again, Pt denotes the convolution operator with (pt(x) = 

t~n(p(x/t). Write as before, with Mt being multiplication by {/¿1, 

Ut = MtPt + (Ut - Mt)Pt + Ut(I - Pt). (24) 

We have to prove that each term in the right hand side defines a bounded family. 

For the first one, apply the Carleson estimate of Lemma 7 to obtain 

\MtPt\s < c\Utl\c. 

For the second one, notice that f cp = 0(0) = 1 and apply Corollary 14. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1998 

file:///Qt/s
file:///Ut/s


76 CHAPTER 2. QUADRATIC FUNCTIONALS 

For the last one, observe that the constant c(n, s, </?) in ( 2 2 ) of Lemma 1 6 is finite 
with our choice of ip. 

It remains to prove ( 1 9 ) . Assume that Utl is a Carleson function. The starting 
point is again equality ( 2 4 ) which gives 

\utf\c < \MtPtf\c + № - Mt)Ptf\c + \ut(i - P * ) / | C 

It follows from what we just established and Lemma 1 5 that 

№ - Mt)Ptf\c + \Ut(I - Pt)f\c < CCOLL/Hoo. 

With our choice of (p, Pt may not be contractive on L ° ° , so we introduce an L°°-
contractive operator Pt of convolution with (fit(x) = t~n(l)(x/t), with (j) smooth, sup­
ported in the unit ball, <j> > 0 , J (/) = 1. Then as in the proof of ( 1 1 ) in Theo­
rem 9 , \MtPtf\c < |^l |c | | / | |oo- The error term can be handled as follows: since 
| | 2 , 2 = ||£^l||oo is uniformly bounded by ccq by Lemma 1 2 , we have 

\Mt(Pt - Pt)f\c < CCo\(Pt ~ Pt)f\c < ^oil /Hoc, 

where in the last inequality we used the fact that Pt — Pt defines a bounded family 

of convolution type since (Pt — Pt)l = 0 . This completes the proof of Theorem 1 1 . 

Remark. — Let us quickly discuss the vector-valued extension of this theory. We 

restrict ourselves to the case where Ut are operators acting from L2(Rn;Cp) into 

L2(Rn;C9) , where p , q are two non-negative integers. Here, Cp and Cq are equipped 

with their natural Hilbert space structure. In the formula f Ut(x,y)f(y) dy, Ut(x,y) 

takes values in B(Cp,Cq), the space of linear operators from Cp into Cq, equipped 

with the induced norm. On the canonical orthonormal bases of Cp and C9, Ut(x,y) 

becomes a q x p complex matrix with entries Ut£(x,y). Then, (Utl)(x) should be 

understood as the matrix with entries J Uki(x,y) dy and | (C/t l )(#) | as its operator 

norm. With these precautions, all the results above extend straightforwardly. In the 

arguments, Pt or ( — A ) 1 / 2 are scalar operators, which means they act componentwise 

on vector-valued functions. 

2.2 .4 . Square roots of operators with special structures. — There is a class 

of differential operators to which the theorem on quadratic functionals of weakly reg­

ular families may be applied. An example is A(a(x)A). Such operators enjoy more 

regularity properties than the general differential operators as presented in Prelimi­

naries. 

Fix a real m > 0 . Let a(x), x E Mn, be a complex-valued accretive function. Let 

cr(£) be a real-valued homogeneous polynomial of degree m that does not vanish on 

the unit sphere. Let cr(D) be the self-adjoint differential operator on L2(Rn) with 

symbol <J(£). Observe that \\a(D)f\\2 - | | ( - A ) M / 2 / | | 2 . 
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Define L = a(D)(a(x)a(D)), the associated maximal-accretive differential operator 

of order 2m associated with multiplication by a(x) and <J(D) as in Proposition 1 of 

Preliminaries. 

Theorem 18. — With the notation above, 

WL^fh ~ | | ( - A ) m / 2 / | | 2 . (25) 

This result is not new since it can be deduced from multilinear estimates similar 

to the ones in [20] as in [59], but it is a good illustration of the method of quadratic 

functionals that we have just developed. 

Proof. — By Proposition 10 of Preliminaries, we may assume that m > n/2. Indeed, 

(25) is equivalent to 

\\{(*(Dy(a(x)a(Dy)}1/2fh ~ | | ( - A ) - / 2 / l | 2 

for any integer r > 0 and c (£ ) r is a homogeneous polynomial of degree rar. 

We show that HL1/2 /^ < c | | ( - A ) m / 2 / | | 2 . The argument for obtaining this in­

equality with L* replacing L is similar and we conclude using Proposition 3 of Pre­

liminaries. 

By Proposition 5 of Preliminaries the above inequality is equivalent to the quadratic 

estimate 

»oo 

0 
\{l + t2mL)-Hma(D)(af)\\l 

dt 

t 

1/2 
< c||/||a> (26) 

which we obtain by applying Theorem 11 to the operator family defined by Utf = 

(1 + t2mL)-1t7na(D)(af). Indeed, the estimate (18) holds for s = m by the global 

L2-estimates (Proposition 2 of Preliminaries) and, since ra > n / 2 , it follows from 

Theorem 29 in Chapter 1 that the kernel of Ut satisfies (17). Thus, (26) holds if 

and only if Utl is a Carleson function. The latter is proved following the argument 

presented for 
d 

dx 
a{x) 

d 

dx 
in dimension 1 since the cancellation property Ut a 1 = 0 

holds here too . 

2.3. Counterexamples 

We do not claim that the conditions on weakly regular families are the weakest ones 

for the conclusion of Theorem 11 to hold. However, one cannot drop the regularity 

assumption (18). Here is a counterexample in L2(R) where the size condition (17) is 

satisfied, yet the conclusion of Theorem 11 fails. 

Consider operators Ut given by their kernels 

Ut(x,y) = 
oo 

fc=-oo 

a>jk{y) hjk{x), 
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when 2~j < t < 2~j+1, the functions hjk(x) = 2j/2h(2jx - k), j,k G Z , generating 

the Haar system, and the functions ajk(y) being of the form 2^2a(2jy — k) where a 

is some square integrable function with support in [0,1] and / J " a = 0. 

These assumptions imply that for all t > 0, 

r<\x — y\<2r 
\Ut{x,y)\dy <2\\a\\2^rjt Xr<t 

and Utl = 0. Observing that 

'OO 

0 
WtfWl 

m 

t 
= ln2 

jk 

(f,ajk)\2, (27) 

it remains to choose a so that the last sum is infinite for some / G L2(R) . 

Let (an) and ( /n) be two non negative sequences in £2(N) and set 

a(x) = 

n>0 

ane2iu2vx X[0,1] (x) 

and 

/ ( * ) = 
n>0 

f JlinT-x 
X[O,I]0&). 

Restricting the summation in (27) to j > 0 and 0 < k < 2J, we find after an 

explicit calculation that 

(f,ajk) = 

n>0 

anfj + n2-j/2 + 

rz>0 0<rrx<i; 
&nfrn 

e(2k+l)iw2m-j 

TT(2™ - 2 N + J ) 
sin(7r2m-i)2i/2. 

Calling and rfyfc respectively the series above, we have 

\djk\<2 

n>0 0<m<j 

a n / m 2 - n ^ ' 2 m ^ ' 2 ^ 2 , 

hence, with the above restriction on j and A:, 

j,k 

|djk|2 < 4 

i>c n>0 0<m<j 

an /m2"n2m^ ' 
2 

< 
16 

3 
j>0 n>0 0<ra<j 

a2 f2 2m-j 

16 

3 
n>0 

a2 
n m>0 

f2 
J m 

16 

3 
a|l!ll/ll22. 

Thus, (27) is infinite as soon as S J > 0 lcj |22J diverges. Choosing an = (n + 1)_Q!, 

1/2 < a < 1, and /n = (n + l )_ /? , 1/2 < /3 < 3 /2 — a, gives us the desired conclusion. 

It turns out that the smoothing property (18) may fail for the operator families 

arising from the square root problem. 
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Proposition 19. — For each n > 2 there is a real symmetric elliptic operator L = 
— d i v ( A V ) on Rn such that, if 0t = e~l Ltd\vA, then 9t(—A)s/2 is unbounded on 
L2 (Rn) for anyt>0 and s G ( 0 , 1 ) . 

Proof. — The idea is based on the fact that weak solutions of Lu = 0 do not satisfy 
AVu G Us>oHfoc in general. The first step of the construction is the reduction to 
weak solutions. 

Since the norm on the homogeneous Sobolev space Hs(Rn) is given by = 
| | (—A)s /2 / | | 2 , by duality the conclusion of the proposition is that AtVe~t2L is not 
bounded from L2(Rn) into Hs(Rn). 

We argue by contradiction. Assume that L is such that there exists T > 0 such 
that ATVe~T2L is bounded from L2(Rn) into Hs(Rn). If, in addition, the coefficients 
of L are homogeneous of degree 0, then L is invariant under dilation on Rn and this 
implies that for all t > 0, AtVe~t2L is bounded from L2(Rn) into Hs(Rn) with 

\\AtVe-*L\\A. < c * - | | / | | 2 . 

Furthermore, since e *2jL is bounded from H 1(Rn) into L2(Rn) (see Chapter 1) with 
norm bounded by csup( t_1 ,1 ) , we obtain using the semigroup property that 

\\АЮе-*ь\\й. < c t - s u p í í " 1 , ! ) ! ! / ! ^ - ! . 

Since s < 1, this estimate can be used in the Laplace transform formula (60) of 
Chapter 1 to obtain that 

p v u + L ) - 1 / ! ! * . < < № - i . 

Now, let u be any weak solution of L on an open set Q, and v = \u where x is a test 
function on Q. Since 

(1 + L)v = v - AVu • V% - div {uAVX) G # - 1 ( R n ) , 

we have that AVv G Hs(Rn). Also, Vv G L2 (Rn), so that AVv G Hs(Rn), hence 
AVu G Hioc(Rn). It remains to construct a counterexample to this last fact. 

Let F : R2 —> R2 be a bilipschitz homeomorphism that is homogeneous of degree 
1 and orientation preserving. Such a map is easily built from its restriction to the 
unit sphere: in polar coordinates, any map et$ e%b^e\ where b is a non-decreasing 
bijection on [0,27r] that is Lipschitz with b' and 1/b' bounded, gives us such an F. In 
particular, b can be chosen so that V F ^ Uo<s<i#/OC(R2). 

To see this, observe that V F G iffoc(R2) would imply 

K K 

\VF(x) - VF(y)\> 
\X — Y\2+2S 

dxdy < oo 

for any compact set K of R2 . Choosing K defined by 1/2 < r < 3 /2 in polar 
coordinates, an elementary computation would yield to 

[0,2tt] [0,2tt] 

\b'(0) - b'(6')\2 

|0_0>| l+2s 
dOdO' < oo, 
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which, together with V G L°°([0,27r]) would mean that b' G H*([0,2ir]). Hence it 

suffices to have b' Uo<s<iliP([0,27r]). 

Next, the jacobian matrix of F, Jp, and its inverse are bounded so that L = 

- div ( A V ) G £(S) for some 6 > 0, where A = | det JF|* J^1 J^1 . Denoting by F i , F2 

the coordinate functions of F , it is easy to see that LF\ = 0 in the weak sense and 

that AVFi = (0F2/dx2, —dF2/dxi). We have obtained the desired conclusion when 

n = 2. 

For dimensions n > 3, it suffices to add to the above operator acting on the first 

two variables the Laplacian in the other n — 2 variables. 

2.4. Quadratic functionals of irregular families 

A consequence of Proposition 19 is that in dimension n > 2, the quadratic func­

tionals arising from the square root problem for divergence form operators do not fall 

under the scope of Theorem 11. 

The counterexample presented in Section 2.3, which is not related to a differential 

equation, suggests that there is no abstract result to handle \0t\s unless we make use 

of the differential character of 0t = e_t Ltdiv A. 

There are two features expressing this character. The first one is a special form 

of regularity, namely that 0t is smoothing of order 1 only when acting on gradient 

vector fields. 

Lemma 20. — With the notation above, 

|0*V|2,2 <ct~\ 

Proof. — Since 

9tVf = -e~t2LtLf = -tLe~t2Lf, f e Z>(L), 

the estimate follows from the uniform boundedness of t2Le on L2(Mn). 

The second one is what we call the structure of 0t and is a consequence of ellipticity; 

this structural feature tells us that the study of 8t can be restricted to gradient vector 

fields. Unfortunately, this is at some expense as far as the control of constants is 

concerned. 

Let us come to precise statements, formulated in such a way that they apply also 

to various situations, including higher order operators (and even systems, see Section 

2.6.1). 

Consider Vt: L2(Rn;Cp) -> L2(En;C9) , t > 0, a family of uniformly bounded op­

erators with |Vi|2,2 < Co- Here, p, q are two non-negative integers and Cp,Cq are 

equipped with their respective Hilbert space structure. We make the following as­

sumptions. 
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(i) Size condition: there exists e > 0 such that the distributional kernels Vt(x,y) of 

Vt, taking values in ^ ( O ' j C 9 ) , are locally integrable and satisfy 

r<|aî—y|<2r 
\Vt(x,y)\dy < co'mî 

r 

t 

£ t 

r 

n+£ 
(28) 

uniformly in t > 0, r > 0 and x G Rn. 

(ii) Partial regularity condition: there exist a bounded convolution operator, II, on 

L2(Rn; Cp) and a constant * > 0 such that 

| | V t n ( - A ) ' / 2 / l | a < c t o * - | | / l | 2 , t > 0. (29) 

(iii) Structural condition: Vt factors through VtTi in the sense that there exists a 

bounded operator X on L2(Rn; C) such that 

vt = vtnx. (30) 

The operator II can be represented by a p x p matrix with entries being scalar con­

volution operators. In applications, they will be Calderôn-Zygmund singular integral 

operators of convolution type acting on L2(Mn). See [71] or [63] for definitions. 

Under the size condition, the vector-valued version of Lemma 12 shows that Vt maps 

bounded vector-valued functions to bounded vector-valued functions. In particular, 

note that for each t > 0 and x G Rn, (Vtf)(x) belongs to Cg, while (Vtl)(x) belongs 

to B(CP; Cq) (see a prior remark in Section 2.2.3), so that their norms should be taken 

in the respective spaces. 

Theorem 21. — With the assumptions above, we have 

(i) (Vt)t>o is a bounded family if and only ifVtl is a Carleson function. 

(ii) When \Vtl\c < oo , one has 

| H / | c < C l | V í l | c | | / | U + C 2 C o | | / | U , / G L°°(Rn;Cp), (31) 

where ex = c|n|2,2|-Xl2,2 and c2 = c(n, |ÏI |2,2,1^2,2, s). 

Proof. — By the remark at the end of Section 2.2.3, the Cp-valued version of (21) 

holds, hence for some constant c, 

\Vtl\c < c\Vt\s+cco < oo 

and this uses only the size condition (28) and the uniform L2-boundedness of Vt. 

Thus, \Vt\s < oo implies |VJ1|C < oo. 

We turn to the converse implication. First, the structural condition and (23) 

implies that 

\Vt\s < \VtU\s\X\2y2. (32) 

Next, mimicking the proof of Theorem 11, we have 

VtU = MtPtU + (Vt - Mt)PtU + Vt(I- Pt)U, (33) 
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where Pt acts componentwise on L2(Mn;Cp) and is appropriately chosen, and where 
Mt is the pointwise multiplication by the matrix (Vtl)(x). 

Using (28), the first two operators in the right hand side of (33) are analyzed as in 
the proof of Theorem 11 and II plays no other role than being bounded. Thus, 

\MtPtU\s < c|II|2,2|Vil|c and \(Vt - Mt)PtU\s < c0c(n,ER)|n|2f2. 

In the last term, we cannot control Vt{I — Pt) since the operators Vt do not satisfy 
(18). This is where II plays its best role. We have Vt(I - Pt)n = VtIi(I - Pt) since 
both I — Pt and II are convolution operators. Applying now Lemma 16 to Ut = VtU 
gives us 

\Vt(I-Pt)U\s <coc(n,s). 

Thus, we have shown that 

|Vin |5 < C|n|2,2|T/tl|c + c0c(n,s,S), (34) 

and together with (32) we obtain 

\Vt\s <C\n\2t2\X\2t2\Vtl\c + coc(n,e,s). (35) 

We turn to proving (31). Let / G L°°(Rn;Cp) with norm 1. Then, by Lemma 15 
and (35), we obtain, 

\Vtf\c < \Vt\s + cc0 < C|n|2,2|X|2,2|ytl|c + ceo, 

which is (31) and the proof of Theorem 21 is finished. 

Remark. — We do not know whether c\ = 1 in (31) (compare with (19)). For 
application to the square root problem, a good description of c\ is desirable towards 
the best perturbative results. This involves optimizing the various inequalities used 
in the course of the proof. We postpone this matter until Appendix C. 

2.5 . T h e heart of the matter 

In Section 2.2, we have treated square roots of differential operators that enjoy a 
special structure. Let us now consider the general case. 

With the notation of Preliminaries, we are given a homogeneous differential oper­
ator of order 2ra in Rn, n > 2, 

L = (-1)тда (aa0 &) (36) 

assumed to satisfy the Gârding inequality (18) in Preliminaries, that is 

Re 
Rn 

da/3 ab fdd°f > d|| v m f \ \ l 2 . 

To simplify the exposition, we use the summation convention for repeated indices. 
Here, lai = |/?| = ra. Recall that V m / is the array of all mth order partial derivatives 

of / , valued in Cp, p = 
m + n — 1 

n - 1 
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2 .5 .1 . Characterizations of ( K ) in terms of quadratic functionals. — The 

next result turns out to be more useful for our purpose than Proposition 5 of Prelim­

inaries. 

Theorem 22. — Assume that L is given by (36). Then, the following are equivalent. 

(i) l |£1/2/l|2 < C I I W H 2 ; 

(ii) (/0°° \\e-^mHmda{aa0F0)\\l dt/t) < c\\F\\2; 

(Hi) (/0°° ||(1 + t^L)-H^{aa0Fp)\\ldtlt)1'2 < c\\F\\2. 

Here, F = (Fp) € L 2 ( R " ; C P ) . 

Proof. — We only consider the equivalence between (i) and (ii) as the argument for 

the equivalence between (i) and (iii) is the same. 

Defining 0t: L2(Rn; C?) -> L 2 ( R " ) by 

etF = e-t2mLtmda(aapFf3), F = (Fp) € L 2 ( R " ; C P ) , (37) 

then (ii) means that \0t\s < 0°• 

Let A be the operator of multiplication by (aap) on L2(Mn;Cp). 

As in Preliminaries, we begin with the polar decomposition of V m . To simplify the 

notation, write D = V m . Then D = RS, where S is the one-one positive selfadjoint 

operator on L2(Rn) given by 

S = 

\ot\=m 

( - l ) m ( ^ ) 2 
1/2 

and R is the partial isometry defined by R = DS x. Define next, B = R*AR. We 

have L = D*AD = SBS. 

The operator B is bounded and it follows from the Gârding inequality that 

Re (BSf, Sf}> * | | 5 / | | i , / G V(S). 

Since S has a dense range in L2(Mn), this implies that B is invertible and u;-accretive 

on L2(M.n) for some UJ < TT/2. By Proposition 5 of Preliminaries, assertion (i) is, 

therefore, equivalent to 

00 

'0 
\e-t2mLtmSBf \\l 

dt 

t 

1/2 
< c||/||2, / € L 2 ( R " ) , (38) 

where we have changed t to t™ for convenience. 

Next, observe that 

OtRf = e-t2mLtmSBf. 

We conclude that (38) holds if and only if |otII|s < 00, where II = RR* is the 

orthogonal projector onto the range of R. 

The next result shows that I^IIls ~ \0t\s, which ends the proof of Theorem 22. • 
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Lemma 23. — We have 6t = OtUX, w/iere X = UiUAU^UA. Hence, 

\0tU\s < \0t\s < I K a a r f l U r 1 ! ^ . (39) 

Proo/. — Let us first explain the meaning of X. We have UAH = RBR*, hence UAU 
is invertible on the range of П, and it is not hard to see that the norm of its inverse is 
controlled by the inverse of the ellipticity constant S in the Garding inequality. Thus, 
X is a well-defined and bounded operator on L2(Rn;Cp) and 

\x\2,2 < WMWooS-1. 

Note that, П being a projection, IIAIIX = UAX = UA. Since R* = R*U, we have 

R*AUX = R*UAUX = R*UA = R*A 

Hence, 

OtUX = e-t2rnLtrnSR"AJlX = e~t2mLtrnSR* A = 6t. 

We have shown that 6t factors through X, and this implies \0t\s < |-X"|2,2|^*N|«s-
Moreover |^TN|«s < \&t\s since N has norm 1. The lemma is proved. 

2 .5 .2 . Characterizations of ( K ) in terms of Carleson measures. — In the 
next result, we assume that L has the property (G) defined in Chapter 1. Recall that 
this means that the heat kernel for L has a Gaussian decay (together with Holder 
estimates which are not used here). 

Let us check the hypotheses of Theorem 21 when Vt = 0t defined by (37). 
The vector-valued kernel of 9t is —trnaap(y)(dy)olKt2m(x,y) where Kt(x,y) is the 

heat kernel for L. Thus, the size condition (28) is a consequence of Theorem 29 in 
Chapter 1. 

Next, the partial regularity condition (29) is obtained as in Lemma 20 for second 
order operators. First, one sees via the Fourier transform that II is a Calderôn-
Zygmund singular integral operator of convolution type in L2(Rn;Cp) . Then, using 
the notation introduced in the proof of Theorem 22, we write for / € T>(L), 

6tUSf = e-t2mLtrnda(aaPd(3f) = {-l)rne-t2mLtrnLf = (-l)rntTnLe-t2mL f, 

and the uniform boundedness of t2rnLe t2mLf on L2(Rn) gives us 

L | 0 . N S / | | 2 < C R - M | | / | | 2 . 

Hence, 

| | 0 Е П ( - Д Г / 2 / | | 2 = | | ^ П 5 5 - 1 ( - Д ) г о / 2 / | | 2 

< C I - " l | | 5 - 1 ( - A ) m / 2 / | | 2 ~ R - M | | / | | 2 , 

where the last equivalence is obtained from the Plancherel theorem. 
Lastly, the structural condition has already been checked in Lemma 23. Thus, 

combining Theorem 21 and Theorem 22, we have obtained 
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Theorem 24. — Assume that L given by (36) -has the Gaussian property (G). Then, 

the following assertions are equivalent. 

(i) l |£1/2/l|2 < C | | V " 7 | | 2 ; 
(ii) For \0\ = m, |e_t Ltrn{dotaold){x)\2dxdt/t are Carleson measures on Rn x R + ; 

(iii) For = m, |(1 + t2™L)~1t™(daa0i(3){x)\2dxdt/t, are Carleson measures on 

Rn x R + . 

Again, the argument with (1 + £2mL)_1 replacing e~t2mL is completely similar and 

is omitted. 

In the general case where the property (G) is not fulfilled, we have the following 

characterizations, which we only write for operators of order 2. 

Theorem 25. — Assume that L = — div ( A V ) is maximal accretive on L2(Rn) . Set 

Lk = — Afc div (AV)Ak, with k integer such that 4k + 2 > n. Then, the following 

assertions are equivalent. 

(i) \\L^f\\2 < C | | V / | | 2 ; 

(ii) \e~l Lkt2k+1(Ak div A)(x)\2dxdt/t is a Carleson measure on Rn x R + : 

(iii) |(1 + £4fe+2Lfc)-1£2fc+1(A* div A)(x)\2dxdt/t is a Carleson measure on Rn x R + . 

Proof. — By Proposition 10 of Preliminaries, (i) for L is equivalent to (i) in Theorem 

24 for Lfc. By Proposition 28 of Chapter 1, Lk has the property (G) since k is large 

enough. The proof is complete by applying Theorem 24. 

Remarks 

1. It looks as though checking (ii) or (iii) in Theorem 25 is more difficult because 

we are dealing with a higher order operator instead of a second order operator. 

But this is only superficial: the conditions we can produce to verify (ii) or (iii) 

do not depend on k but only on the structure of A. 

2. We have stated these results using the heat semigroup and the resolvent for L 

by simplicity and for their connections with parabolic and elliptic equations. 

However, one can use more general functions of L of the form <p(t2rnL). 

3. Assume that L is of order 2 in Theorem 24. An examination of the argument 

shows that one can replace in the proof the resolvent by (m_1 +t2L)~1, where m 

is any bounded and accretive function on Rn, since the kernel estimates are not 

affected by the choice of m (see Chapter 1, Section 2.5.1). Using the discussion 

in Section 0.8 of Preliminaries, this shows that Theorem 24 applies to mL. 

Since the space of Carleson functions on Rn x R + is invariant under bilipschitz 

transformations in Rn, this also proves that the statement of Theorem 24 for 

second order operators is invariant under a bilipschitz change of variables. 
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2.6. Miscellaneous results 

2 .6 .1 . The inequality (K)/oc. — So far we have only considered equivalent for­

mulations of the inequality (K), namely HL1/2 /^ < C| |Vm/ | |2 , where L is as in (36). 

We indicate in this section how to deal with its local version: 

\\L1/2fh<C(\\Vmf\\2 + \\f\\2). (K)*oc 

As explained in Section 0.7 of Preliminaries, functional calculus shows that (K)/oc 

is a consequence of 

\\(L + \)1/2f\\2<C(\\((-&)m + V1/2fh (40) 

for any À > 0. Recall that this is obtained by factoring L + A as D*ÀD, where 

Df = (Vm/ , / ) and A is the operator of multiplication by the matrix 

aaB 

0 

0 

B 

If L has the local Gaussian property (G)zoc and if A is large enough, L + A has 

the property (G), with in addition, an extra factor e~at m for some a > 0 in the 

estimates. This is where the choice of A is made. Therefore, the same results on 

quadratic functionals apply and (40) is equivalent to 

e-t2m(L+q) tm (aa aaN) (x), 
| 0 | = m, and e-t2m( L+q) (tm A1/2) (x), 

being Carleson functions on Rn x R+. As we have the bound 

e~t^(L+X)itmxl/2){x)ì < cín.e-«ta™) 

the Carleson measure estimate is readily seen. Now, the first function can be written 

e-at mg(x, t) for some a > 0 and the following simple lemma applies. 

Lemma 26. — Let f: E+ -> E+ be bounded and such that f(t) dt/t is finite for 

all r > 0. Let g(x,t) be a bounded function defined on Rn x R+. Then f(t)g(x,t) is 

a Carleson function if 

inf 
p>0 

sup 
QeQ-AQ)<P 

1 

Q Q 

l(Q) 

0 
0 ( M ) | 2 

dxdt 

t 
< oo. (41) 

Calling local Carleson functions the functions g(x,t) satisfying (41), we have ob ­

tained the local version of Theorem 24. 

Theorem 27. — Assume that L given by (36) has the local Gaussian property (G)ioc. 

If (e_t mLtrndaaap)(x) are local Carleson functions for all \/3\ = m, then (K)\oc is 

valid. 

Remarks 

1. Of course the analogous statement holds with the resolvent replacing the semi­

group. 
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2. Note that the above theorems on quadratic functionals also have local analogs 
in which the variable t is restricted to bounded intervals ( 0 , T ] . Alternately the 
measure ^ may be multiplied by any non-negative bounded function of t. We 
leave to the reader the care of stating them. 

3. Theorem 27 remains valid if L is perturbed with lower order terms as in Section 
0.7 of Preliminaries. This can be seen either by combining Theorem 27 for the 
leading part and Proposition 11 of Preliminaries or by adapting mutatis mutan­
dis the arguments on quadratic functionals of this chapter. This, in particular, 
is useful if L + A is maximal-accretive for Re A large enough, which is the case 
when L satisfies the Garding inequality 

Re{Lf,f) > ô\\Vmf\\22-c\\f\\l 

for some Ô > 0 and c > 0. 

If L does not have the local Gaussian property, then we use Proposition 9 of 
Preliminaries and change L + A to (—A + l)fc(L + A)(—A + l)k for some k. Expanding 
terms one finds 

( - A ) f c L ( - A ) f c + A + perturbations 

and these perturbations can be disposed of by adapting Proposition 11 in Preliminar­
ies. We find that (40) is equivalent to 

\\((—A)kL(-A)k + A ) 1 / 2 / ! ^ < C( | | ( ( -A)m+2fe + A)1/2/ | |2 . (42) 

If k is large enough then (—A)kL(—A)h has the property (G) and Theorem 27 ap­
plies to this operator. Specializing to second order operators, we have obtained the 
following result. 

Theorem 28. — Let L = — div(AV), k be an integer with 4k + 2 > n and set 
Lk = (-A)kL(-A)k. If e-t4k+*Ln2k+1(Ak div A)(x) is a local Carleson function 
then (K)ioc is valid. 

Remark. — The results presented in this section extend to elliptic systems satisfying 
a bona fide Garding inequality. The reader can consult [38] for a presentation of the 
theory of elliptic systems. The extra work needed here is purely algebraic. 

2.6.2. Localization principles. — When reformulating Theorem 21 for differen­
tial operators, one can obtain local statements. The main observation is the following 
lemma that comes after reexamination of (33) and its use. 

Lemma 29. — Let L be as in (36) and assume that it has the property (G). Let 0t 
be defined by (37). There is a constant c such that for f e Hrn(Wn) one has 

(0tVmf)(x) = (0tl)(x) • ( P t V m / ) ( x ) + bt(x) 
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with 
'OO 

0 rn 
IM*)I2 

dxdt 
t 

< c | | V " 7 | | i , . (43) 

Corollary 30. — With the assumptions above, let QQ G Q be a cube such that 

sup 
1 

Q\ 

l(Q) 

o Q 
№D(x)\2 

dxdt 
t 

< oo, 

where the supremum is taken over all cubes Q C <2o- Then, for all f € Hrn(Mn) with 
support contained in \Qo, we have 

\\L1/2fh < C\\Vmf\\2. 

Proof. — We have to estimate f£°fRn \(9tVmf)(x)\2dxdt/t. By the previous lemma, 

we are reduced to control f£°fRn 1(0*1)0*0 • (PtVmf)(x)\2dxdt/t. The integration over 

x G Qo and t < £(Qo) can be controlled by the hypothesis on (0tl)(x) and Carleson 

inequality. The integration over the remaining part is taken care of using the support 

condition on V m / and straightforward estimates on PtVm/. 

In order to use this result efficiently, we note the following lemma. 

Lemma 31. — Let LQ and L\ be as in Lemma 29, such that their coefficients agree 

on an open set Q. Then, there exists c > 0 such that for all cube Q G Q with 2Q C Q, 

we have 

Q 
\9\F - 9°tF\2 < C 

t 

l(Q) 
\\F\\l F G L2(Mn;Cp) , Supp (F) C ft, (44) 

and 

Q 
\6\F - 0°F\2 < C 

t 

l(Q) \\F\\lo\Q\, F e L°°(mn;Cp). (45) 

Proof. — We have used the evident notation that 6\ corresponds to Lf, where we 

replace the heat semigroup by the resolvent for convenience. 

Let us prove (44) first. Since the coefficients of Li agree on ft, ut — 0\F — O^F is 

a weak solution of the equation 

ut <i) + t2rn aa(3 dput da(j) = 0 

for all 4> £ HQ1(QI). Using (j) — ut (p2 where <p is a smooth test function equal to 1 on 

Q, supported in 2Q and scaled to the cube Q, we obtain 

\utW2 + t2m aa0 d^iutip) da(Wt<p) = t2m aa0 vt,ap 

where 

I W = -Vin da(aïipz) + dP{unp) da{wttp). 
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Hence, by the Garding inequality, 

Q 
\ut\2 < M V < et2™ \vt,ap\. 

Calculating using Leibniz formula, we see that the terms d^ut daul (p2 cancel. 

For the other terms, since ||d7ut||2 < c£~l7l||F||2 by the basic L2 estimates and using 

size estimates on the derivatives of </?, we obtain that t2rn f \vt,ap\ < ct/t(Q). 

To prove (45), we localize F as Fi + F2 where F\ = 0 outside of 2Q. Then we use 

(44) for Fi and the method of Lemma 15 for F2 where the difference plays no role 

in 6\F2 — 0^F2. This lemma applies since the kernels of 0\ satisfy estimates (76) of 

Chapter 1. This finishes the proof. 

Theorem 32 (Localization principle for square roots). — Let LQ and L\ be given by 

(36). Assume that they both have the property (G) and that their coefficients agree on 

an open set ft. If (K) holds for LQ then for all f G HTN(MN) with support contained 

in a fixed compact subset of ft, we have 

\\LY2f\\2 < C\\Vmf\\2. 

The proof goes as follows. If (K) holds for L0, then 0$1 is a Carleson function. Using 

Lemma 31, we obtain that 0\\ satisfy the hypothesis of Corollary 30 for every cube 

Qo such that 2Qo C ft. The conclusion follows by using a Whitney decomposition on 

ft (see [71]). 

Remark. — It is not clear whether one can drop the hypothesis on Gaussian estimates 

in this result. 
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CHAPTER 3 

POSITIVE ANSWERS TO THE SQUARE ROOT 
PROBLEM 

3.1. Introduction 

In this chapter, we present some positive answers to the square root problem, that 
is, situations where the inequalities (K) or (K)/oc are valid. As we rely on the criteria 
and methods developed in Chapter 2, it cannot be read independently. For simplicity, 
we restrict our discussion to second order operators but it will be clear that many 
analogous results hold for higher order operators. 

The most original part of this chapter is the introduction and the study of a class, 
denoted by S (resp. S/oc), of complex-valued matrices for which the inequality (K) 
(resp. (K)/oc) is valid. The main property of S and S/oc, aside from leading to 
inequality (K) or (K)ioc, is to be open in the L°° topology. Thus, we generalize 
the results in [19] and [35, 3 7 , 36] , namely that (K) holds for perturbations of the 
identity or of constant elliptic matrices Ao, to the case where Ao belongs to S or to 
S/oc. It is even possible to estimate how small the size of the perturbation may be: 
we do it in Appendix C when Ao = Id and essentially find the same result as Journe 
[45]. 

We also obtain Tb type results for a subclass of S which is characterized by a 
differential structure condition on its elements. For example, several well understood 
classes of matrices in homogenization theory, for which the homogenized matrix can be 
computed to some extent (see [44]) (though we do not require periodicity in our case) 
enter this class - we do not understand satisfactorily this coincidence. An example 
is the class of elliptic matrices depending on one variable, which are used to model 
stratified media. 

The class S/oc contains matrices enjoying very mild smoothness properties. To 
this end, we introduce the notion of absolutely bounded mean oscillation (ABMO), 
which is the analog, in the sense of BMO, of absolute continuity. It encompasses 
regularity conditions such as uniform continuity, vanishing mean oscillation, or local 
uniform differentiability in some Sobolev space with positive regularity index. In 
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Appendix A, we give a few characterizations of this notion, including its Littlewood-

Paley description, various examples and counterexamples. A surprising result is then 

that the map A —>• L1/2 (see question 2 in the Introduction) is analytic at any AQ £ 

ABMO for the BMO topology. 

Let us stress the fact that no exhaustive description of S or S/oc is available at the 

present time. In particular, whether real and symmetric elliptic matrices belong to S 

is an open question. 

This led us to revisit the selfadjoint case. Indeed, when L* = L, the inequality 

(K)ioc is true, hence the Carleson estimates described in Chapter 2, Theorems 24 (in 

the real case) and 25 (in the general complex case) must hold. We find nevertheless 

interesting to give a direct proof of these estimates. Though it is much longer than 

the abstract one, it has two advantages: it is constructive and it sheds light on the 

connection with the moments of Nash. 

3 .2 . T h e class S and the inequality ( K ) 

If F = ( F i , . . . , Fn) is some Cn-valued function defined on a domain of Rn, denote 

by V F the matrix whose column vectors are V F i , . . . , VFn . 

In the sequel ip is a function in Co°(Rn) with support in the ball B(0,1) and 

f (p = 1. As in Chapter 2, it is associated to an approximation of the identity 

(Pt)t>o and it is understood that Pt acts componentwise on vector-valued functions. 

Choosing cp non negative makes Pt a positivity preserving contraction on L ° ° , but it 

is not necessary. We use the notation of Chapter 2. 

Before we introduce the class S, it is worthwhile giving a heuristic (and incorrect) 

argument ignoring constants, localizations, etc. As before we set Ot = e~l Lt div A. 

Let Q be a cube and / € ^ ( R " ) with support in Q and | | V / | | | ~ Starting 

from Lemma 29 of Chapter 2, we have 

l(Q) 

o 3 

\(eti){x)pt(vf)(x)\2 
dxdt 

t 

HQ) 

o Q 
| ( e -*2L*(d iv^V / )0r ) |2 

dxdt 

t 
+ c|Q| 

l(Q) 

o Q 
\t(diw A Vf)(x)\2 

dxdt 

t 
+ c|Q|. 

Thus, if one also has || div A V / | | 2 ~ \Q\/£(Q)2 and, in the spirit of [69], a control 

DF the Carleson norm of 0tl by expressions of the form 

l(Q) 

o Q 
\(Otl)(x)Pt(Vf)(x)\2 

dxdt 

t 

then one can conclude that this Carleson norm is finite. This is the reason for the 

next definition. 
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Definition 1. — Let A G A. We say that A G S when there exist constants C > 0, 
a > 0, fi > 1, and, for each cube Q G Q, a function F Q : /i<2 —• Cn fulfilling the 
following requirements. 

(i) FQ 6 H^fiQ) and / ^ Q |VFQ|2 < C\Q\. 
(ii) div(AVFc3) e L2(nQ) and 

sdqd 
|div(AVFQ)|2 < C 101 

HQ)2 
Here, the divergence is taken in the sense of distributions on /JLQ. 

(hi) For every family (jt)t>o in L°°(Rn x R+;Cn), one has 

sup 
QeQ 

1 
sd 

qsdq 

Jo sd 
\7t(x)Pt(VFQ)(x)\2 

dxdt 
t 

dKt(x,y)dKt(x,y) 

where it is understood that VFQ = 0 outside iiQ. 
Here, jiQ is the cube with the same center as Q, dilated by a factor //. 

Definition 2. — We say that A G Sioc when the above conditions hold for cubes 
Q G Qo) where Qo denotes the class of cubes in Q with l(Q) < 1. 

Remark. — Note that if the family (FQ) satisfies the above conditions, so does 
(FQ+CQ) where CQ are constants. This means that, in addition, we may assume that 
FQ have mean value 0. 

Remark. — The following conditions are equivalent to the ones in Definition 1. 
There exist constants C > 0, a > 0, p > 2, and, for each cube Q G Q, a function 

FQ : Q —• Cn fulfilling; the followine; requirements. 

( i ) ' FQ G W^{Q) and 
1 

IQI 'Q 
\VFQ\P 

q<ds 
<c. 

(i i) ' d iv (^VFQ) e L2(Q) and 

Q 
\div(AVFQ)\2 <C IQI 

qsddqsd 

(iii)' For every family (jt)t>o in L°°(Rn x R+;Cn), one has 

sup 
QeQ 

1 

Q /0 

qsd 

qsd 
|7,(x)Ft(VFg)(o:)|2 

dxdt 
t ^ W * - ^ l l 7 * l | 2 o o , 

where it is understood that VFQ = 0 outside of Q. 
That (i-iii) imply (i-iii)' follows from Meyers estimate ( 1 7 ) of Chapter 1. The 

converse is straightforward. 

The main results of this section are the following ones. 

Theorem 3. — The inequality (K) (resp. (K)ioc) holds if A G S (resp. Sioc) 

Theorem 4. — The class S (resp. Sioc) is open in L°°(Rn, Afn(C)). 
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As a consequence, we have 

Corollary 5. — For any AQ G S, there exists 6(AQ,U) > 0 such that (K) holds for 
L = — div (AV) whenever \\A — 4̂Q||OO < S(AQ^U). 

By taking FQ(X) — x, one sees that any constant elliptic matrix AQ belongs to S, 
so that Corollary 5 extends results in [19] and [35, 37, 36]. 

Proof of Theorem 3. — Choose once for all an integer k > (n — 2)/4 and set 

0W =e-t4k+2Lkt2k+lAkdiyA 

and 
(0{tk)l)(x) = e-t*k+2Lkt2k+i{Ak diyA){x)j 

the latter being a Cn-valued function. Applying Theorem 25 of Chapter 2, it is enough 
to show that ( 0 ^ 1 ) (x) is a Carleson function. Observe that it is uniformly bounded. 
From (iii) in the definition of the class 5, we are reduced to proving that there is a 
constant C such that for all cubes Q G Q, 

ai(Q) < C\Q\, 

where 

ai(Q) = 
ri(Q) 

JO 'Q 
\(eikh)(x)(ptVFQ)(x)\2 

dxdt 

t 

Fix Q G Q. Recall that VFQ is only defined on uQ, where a > 1, so that a local­
ization argument is necessary. Let XQ be a Co°(Rn) function supported in sqdd 

3 
qsd 

With Xg = 1 On qsdsdd 
3 )Q and HVXQIIOO < c{n^)i{Q)-\ 

For x G Q and t < qsds 
3 

£(<2), we have 

(PtVFQ)(x) = ( P t V ( x g F g ) ) ( x ) . 

Hence, 

ai(Q) = 
sd 

qddqddq 

sd 
\(0[kh)(x)(PtV(XQFQ))(x)\2 

dxdt 

t 

+ 
dqs 

qdqdqsd JQDQ 
\{e\kh){x)(ptVFQ){x)\2 

dxdt 

t 
: I ) 

Using the uniform L2-boundedness of Pt, one has 

qsd 

dKt(x,y) cxc 

dKt(x,y)dKt(x,y)dKt(x,y) dxdt 

t 
<c||tft(fc)l||Lln« 

3 

/ / - 1 
|VFg|2. 

Applying Lemma 29 of Chapter 2 with f = XQ FQ to the other term in the right hand 
side of (1), we obtain 

aAQ) < 2a2(Q) + c |VFg|2 (2) 
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where 

a2(Q) = 
sfdf 

o E 
l (0 t ( *V (xoFo)) (z) |2 

dxdt 
t 

To control a2(<2), we compute 0^V(XQFQ)- For x G Q, we have 

(0t(fc)V(XQFQ))Or) = №(fc)((VXQ)F0))(x) 
dKt(x,y)dKt(x,y)dKt(x,y)dKt(x,y)dKt(x,y) (3) 

For the first term in the right hand side of (3), we use the following variant of Lemma 
15 in Chapter 2. 

Lemma 6— Let ¡1 > A > 1, Q G Q and f G L2(Rn;Cn) supported in fiQ \ XQ. 
Then 

sd 

o JQ 
\{0[k) f){x)\2 

dxdt 
t 

< c l/l2, (4) 

where C depends only on n, Ô, À, ¡1. 

To prove this lemma write 

(0*(fc)/)(*) = 0{tkHx,y)f(y)dy 

and observe that when x G Q and y G Supp / then \x — y\ ~ £(Q). Hence, by the 
Cauchy-Schwarz inequality and estimate (76) in Chapter 1 (where the roles of x and 
y are reversed and trl2rn is changed to £), 

mh)f)(x)\2 < 
\x-y\~£(Q) 

\e[k\x,y)\2 dy \f(y)\2dy 

< c 
1 
tn w 

t(Q) 
t 

\f(y)\2dy, 

where w(u) = u2e exp { — au^k+2^^k+1^} with some a,e > 0. A straightforward 
computation then gives us (4) and the proof of Lemma 6 is finished. 

Applying this lemma with / = ( V X Q ) F Q , we have 

qsdsqd 

od sd 
№ikH(VXQ)FQMx)\* 

dxdt 
t 

< c \VXQ(y)\2\FQ(y)\2 dy. (5) 

For the other term in (3), observe that the operators e t4fc+2£fc£2fcAfc are uniformly 
bounded on L2(Rn). Hence. 

qsdq 

/o Q 
\(e(tk\(VFQ)xQ))(x)\2 

dxdt 

t 
< c 

rt(Q) 
t2\div(AXQVFQ)(x)\2 

dxdt 

t 

< C£(Q)2 \div(AXQVFQ)(x)\2dx. (6) 
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Combining (2), (3), (5) and (6), we obtain 

ai(Q) <C |VFQ|2 + C \v(XQ)\2\FQ\2 + ce(Q)2 |div (AXQVFQ)\2. 

Now, we use the hypotheses on FQ and XQ together with the remark that FQ can 
be chosen to have mean value 0. On the one hand, (i) and Poincaré inequality imply 
that 

|VFQ|2 + MXQ)\2\FQ\2<C\Q\. 

On the other hand, since div (AXQVFQ) = xgdiv (AVFQ) + A V X Q - V F Q , we deduce 
from (i) and (ii) that div (AXQVFQ) € L2(RN) with 

|div(AXQVFQ)|2 < C\Q\ 
m2' 

Hence, we have proved that 
ai(Q) < C\Q\, 

where the constant C does not depend on Q. This concludes the argument. • 

Remark. — A slight twist in the last part of the proof shows that condition (ii) in 
the definition of S can be weakened to the following: 

(ii) ' For some 0 < s < 1, that does not depend on Q, div (AVFQ) G H8~1(Q) with 

\\div(AVFQ)\\Hs-i(Q) < C 
,\Q\1/2 
qsdqd 

Proof of Theorem 4. — Let A G S and M G L ° ° ( R N , Mn(C)). We have to show that 
A 4- M G 5 provided | |M| | oo is small enough. 

Let Q G Q and FQ satisfying the conditions required by Definition 1 for A. If HMHoo 
is small, then Lax-Milgram lemma tells us that — div (A + M) V is an isomorphism 
from HQ{IIQ) onto i7_1(/iQ), hence there is a unique vector-valued function HQ G 
iJ,J(/i<2;Cn) such that 

- div ((A + MWHn) = div ( M V F Q ) , 

and /mQ \VHQ\2 < cMWMWiof^ | V F Q | 2 . Setting GQ = FQ + HQ, we thus have 
^ g | V G Q | 2 < c | Q | a n d 

- div (A + M)VGQ = - div AVFQ G L 2 ( R N ) , 

so that GQ satisfies (i) and (ii) with respect to A + M. 
It remains to show that (iii) also holds: this forces a further size condition on M. 

Extend VHQ and V G Q to be 0 outside of jiQ. Carleson inequality implies 

qdqs 

Jo 'Q 
\lt{x){PtVHQ){x)\* 

dxdt 
t < C\it\2c I v ^ Q I 2 < q ^ l ' I I M H ^ i Q i . 
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Hence by definition of GQ, 

1 

101 o 

sqd 

' Q 
\lt(x)(PtVGQ)(x)\2 

dxdt 
t 

> 
1 

2 IQI sdd 

rHQ) 

qd 

\7t(x)(PtS7FQ)(x)f 
dxdt 

t 
-Cht\2c\\M\\l 

> 
fa 

,2 
- C | | M | | L , lull dKt(x,y) 

We obtain (iii) by imposing | |M H ,̂ < a/(AC) and this ends the proof of Theorem 
4. 

Remark. — We see in this perturbation argument the role of the arbitrariness of the 
functions 7t in Definition 1. 

3.3. Applications 

3.3.1. Structure conditions: Tfc-type results. — The T6-Theorem provides 
boundedness for operators annihilating bounded invertible and accretive functions. 
See [61] and [27]. In the setting of square roots, there is again a dichotomy between 
one and several dimensions. 

In one dimension, we have taken advantage of the cancellation condition Ota"1 = 0 
(see Chapter 2, Section 2.2.2). However, a closer look shows that a plays a more 
subtle role than just being bounded invertible and accretive: its inverse is also the 
derivative of a Lipschitz function. We make use of this observation by claiming that 
a is in the class S. Indeed, the function f(x) = fQx a~1(y)dy has a bounded and 
accretive derivative and D*aDf = 0. Thus, for each cube Q € Q, the function 
ÍQ — f on satisfies (i) and (ii) of Definition 1, while (iii) comes from the inequality 
Re Pt(Df)(x) > a > 0 a.e. for some a > 0 provided P¿ is positivity preserving, which 

we may impose. This, therefore, gives another proof of the one dimensional square 
root problem on applying Theorem 3. 

In higher dimensions, we also have 6t A~x = 0, but A~x need not be the gradient of 
some Lipschitz (or even less regular) function. A Tfr-type result in our context must, 
therefore, include a structure condition of a differential nature. We come to this now. 

The following definition is taken from [27]. 

Definition 7. — A locally integrable matrix-valued function M is said to be pseudo-
accretive when there exist a > 0 and a compactly supported approximation of the 
identity (Pt)t>o such that (PtM)(x) is almost everywhere invertible for every t > 0 
with IKPtM)-1!!^ < l/a. 

Example 1. — Accretiyity implies pseudo-accretivity. 
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Example 2. — A triangular matrix-valued function whose diagonal entries are ac­
cretive functions or even pseudo-accretive in the sense of G. David [25], is pseudo-
accretive. 

Definition 8. — A bounded and accretive matrix M is said to satisfy the structure 
condition (SC) when there exists a Lipschitz function F: R n —> Cn such that ( i ) V F 
is pseudo-accretive, and (ii) div (AVF) = 0 in the sense of distributions. 

Remarks 
1. If A - 1 = V F for such an F , then A satisfies (SC) . See below for an example. 
2. We could clearly make this condition more local by replacing F by a family 

(FQ) of functions defined on cubes, and what follows would remain true. We 
shall leave the details to the reader. 

Theorem 9 (Tb-type result). — If A satisfies (SC) then (K) holds for the square root 
ofL = - div ( , 4 V ) . 

Proof. — Just observe that matrices satisfying the structure condition form a subclass 
of S, the argument being the same as the one presented for the one dimensional case. 
Thus, Theorem 9 follows from Theorem 3. • 

Let us describe some examples of matrices satisfying the structure condition. The 
first two are commonly used in homogenization theory [44]. 

In the solenoidal case, i.e., if div A = 0, the choice F(x) = x shows that A satisfies 
( S C ) . 

The irrotational case is when A 1 = V F for some Lipschitz F. For example, take 
A diagonal of the form 

A(x) = 

/ a i (a?i) 0 

0 a2(x2) 

0 0 
0 

Q>n (&n) 

where the functions aj are bounded and accretive on R. 

Remark. — That ( K ) holds for such an example may also be seen using the one 
dimensional result and functional calculi of commuting operators (personal commu­
nication of A . Mcintosh and E. Franks). 

A further example of a matrix satisfying (SC) is 

A(x) = 

fk(x) 

0 

0 

0 

k(x) 

0 

0 
0 

k(x)j 
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where k(x) = a\(x\)a2{x2)... an(xn). It is not of either of the above types. 

The next example arises in the study of stratified media. 

Proposition 10. — If A is a bounded and accretive matrix on R n that depends only 
on one coordinate variable, then A satisfies (SC). 

Proof. — Assume that A depends on, say, the first variable and write A{x\) for 
simplicity. We look for F as in Definition 8 starting from the ansatz 

Fi (x) = fx (xi ) and Fj (x) = Xj + fj (xi 2 < j < n. 

Calling ajk the entries of A, then an must be a bounded and accretive function. 
Elementary calculations show that the choice 

dKt(x,y) 1 
an 

and (x,y) aXj 
an 

gives us div (AVF) = 0 . It is easy to see that V F is upper triangular so that it is 
pseudo-accretive (see example 2) . • 

Combining Theorems 3, 4 and this proposition, we obtain the following result. 

Proposition 11. — For every matrix AQ G A(S) that depends on one coordinate 
variable only, there exists e > 0 such that (K) and (K*) hold for L = — div (AV) 
when \\A - A ) | | o o < s. 

Here ( K * ) is the inequality corresponding to ( K ) for L*. We obtain it in the 
conclusion because the assumptions are stable under taking adjoints. 

Let us study three amusing examples in dimension two. 

Example 3. — It is easy to show that a matrix-valued function B{x) in R 2 satisfies 
B = VF and B* = VG for some Lipschitz functions F and G if and only if 

B{x) = Hu{x) + 
0 

dKt( 0, 

where b € R, u is a C 1 , 1 complex-valued function on R 2 , and Hu is its Hessian. As 
a consequence, if u is strictly convex with positive definite Hessian and 6 = 0, then 
A0 = (Hu)-1 satisfies (SC) and, therefore, L = — d i v ( A V ) will satisfy ( K ) and ( K * ) 
for any A with \\A— (Hu)-1]^ small enough. 

Example 4. — Similarly, a bounded matrix-valued function satisfies div A = 0 and 
div A* = 0 on R 2 if and only if 

A(x) = 

d2v 
dx2dx2 

32v  
< dx\dx 

s 
d2v 

dx\dx2 
o 2 _ 

дx^ dx 

+ 
' 0 
\-b 

b\ 
0 
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100 CHAPTER 3. POSITIVE ANSWERS TO THE SQUARE ROOT PROBLEM 

where 6 G R and v is a C1'1 complex-valued function on R 2 . Hence, we see that such 
matrices with 6 = 0 and v strictly convex with positive definite Hessian satisfy (SC): 
just take F(x) = x. 

Example 5. — Assume that A e A and that detA is constant on R 2 . Then a 
straightforward computation shows that 

A'1 = V F if and only if div (*A) = 0. 

(This explains, in part, the similarity between the preceding examples.) Hence, for 
elements of A with div A = 0 and detA constant and their L°° perturbations, (K) 
and (K*) hold simultaneously for L — — div (AV). 

3.3.2. Functions of absolutely bounded mean oscillations. — Let us begin 
by introducing a new function space. We say that two cubes do not overlap when 
their intersection is a null set for the Lebesgue measure. 

Definition 12. — A locally square integrable (scalar- or vector-valued) function / 
is of absolutely bounded mean oscillation whenever / G BMO and, for each e > 0, 
there exists rj > 0 such that for all Q G Qo and any finite family Qi, i G / , of non 
overlapping cubes in Qo with Qi C Q and i{Qi) < r]£(Q), we have 

iei JQi 
\f-mQtf\2<e\Q\. ( 7 ) 

Here, rriQif is the mean value of / over Qi. The space of such functions is denoted 
by ABMO. 

Note that one could make this definition scale invariant by replacing the class of 
cubes Qo by Q. Doing this imposes some behavior at infinity on / and this is not 
desirable for the application we have in mind. 

Proposition 13. — If AG An ABMO then A G Sioc. 

From this and Theorems 3 and 4, we obtain the following result (where (K*)/oc is 
the inequality corresponding to (K)/oc for L * ) . 

Proposition 14. — If AQ E AD ABMO then, for some e > Q, (K)ioc and (K*)ioc are 
valid for any L-— div (AV) provided \\A — Ao||oo < s. 

See the next section for a stronger result (Theorem 18). 
Before going into the proof of Proposition 13, we give a few characterizations of 

ABMO functions and some examples, postponing most proofs to Appendix A. 

Proposition 15. — For f G BMO, the following assertions are equivalent. 

(i) / G ABMO. 
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(ii) For all e > 0, there exists n > 0 such that for all cubes Q € Qo, 

>Q 
\f - Pve(Q)(f)\2 <e\Q\, 

(iii) 

where (Pt)t>o is an approximation of the identity as usual. 
For all s > 0, there exist c > 0 and, for each cube Q e Qo, two functions 
bq € L2(Q), hQ e H^Q) with 

(8) 

f(x) - mQf - bQ(x) +hQ(x), x e Q, 

\bo\2 < e\Q\ and 
sd 

| V M 2 < 
c|QI 
KQ)2 

Example 1. — The spaces BUC and vmo are contained in ABMO. 
Indeed, since BUC C vmo (see Chapter 1), it suffices to prove the inclusion vmo C 

ABMO. If / e vmo and s > 0 then fQ \ f - mQf\2 < e\Q\ for £(Q) small enough. 
Hence (iii) in Proposition 15 holds with hQ = 0. 

Example 2. — If / € L ° ° ( R N ) is such that, for some c > 0 and s G (0,1), flQ G 

Hs(Rn) with 

H/lQ||iJ*(RN) <C 
\Q\1/2 

qdqdqd 
V Q G QO 

then / G ABMO. 
To see this, use the classical observation that, given any R > 0, any function 

g G H8(Rn) can be written as g = b + h where b G L 2 ( R N ) with ||6||2 < CR~S and 
h G iJ^R71) with ||Vft||2 < CR}~S, and where C is proportional to | M | / P ( r « ) . Given 
s > 0, apply this to g = /1Q with R = ( ^ ( Q ) ) - 1 to obtain (iii) in Proposition 15 
and the proof is finished. 

For s G (0,1/2), charateristic functions of cubes belong to f P ( R N ) , hence point-
wise multipliers of Hs(Rn) satisfy the above condition. Examples are characteristic 
functions of Lipschitz domains (see [76]). The square root problem with coefficients 
being pointwise iiP-multipliers was first solved by Mcintosh [57]. 

The characteristic function of a cube is not in vmo. Hence, the inclusion vmo C 
ABMO is strict. 

Example 3. — An integral regularity condition. If / G BMO is such that 

sup 
QeQo 

1 

\Q\ \h\<t(Q) Q 

\f(x + h)-f(x)\2 

\h\" 
dxdh < oo, 

then / G ABMO. The proof is done in Appendix A. 

Example 4. — Any continuous function away from the origin that is homogeneous of 
degree 0 belongs to ABMO. 
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Example 5. — Characteristic functions of domains whose boundaries possess a mild 
regularity are in ABMO. Here is a precise condition. 

Assume that ft is an open set such that there exists a non decreasing function 
d: [0,1] R verifying 

(a) lim d(s) = 0, 

(b) for any cube Q G Qo, 

min \{x G ft H Q ; d(x, cft) 
\{x G cftnQ; d(x,Q) 

<st(Q)}\; 
<si(Q)}\ 

<d(s)\Q\, 

where \E\ denotes the Lebesgue measure of E. 

Then In € ABMO. 

Examples of such domains are Lipschitz domains for which d(s) ~ s and domains 
with fractal boundaries such as snowflakes for which d(s) = 0(sa) for some a > 0. 

The argument is as follows. Let / = 1Q, Q G QO, and (Qi) EI be a family of non 
overlapping subcubes of Q as in the definition of ABMO. Set 

c = 
1 

\Q\ SD 
SD 
SD 

\f-mQif\2. 

A direct computation gives 

c = 
QSDQ 

K&nni \QjH cn\ \Qj\ 

Qi Qi Q 

Hi(Qi) < 
QDSD 

QSD 
, using that the cubes Qi do not overlap, we have 

c < 

dKt(x,y) 

|Q*nfl|\Qi\ 

\Qi\ \Q\ 

< 
\{x&nr\Q;d(x,cQ) < rit(Q)}\ 

\Q\ 

and symmetrically 

c < 
\{xe c f t n Q ; d ( a : , f t ) <n£(Q)}\ 

dsff 

Hence c < d{rf) by (b) and the conclusion that 1^ G ABMO follows from (a). 

Example 6. — The characteristic function of the set Un>i l 
[2n+l)a 

1 
(2n)<* , where 

a > 0, does not belong to ABMO. This fact is related to oscillations, since this 
function alternates the values 0 and 1. A similar example of a bounded function that 
does not belong to ABMO is sin( l sfsff for any a > 0. The verifications of these 

assertions are in Appendix A. 
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Proof of Proposition 13. — Let A belong to A D ABMO. We have to verify the 

required properties in the definition of Sioc> 

Let Q £ Qo and e > 0. By (ii) in Proposition 15, there exists rj > 0 which does 

not depend on Q such that 

J2Q 

(Pr,l(Q)(A) (A)\2 <e\Q\. (9) 

Observe that, with F(x) = x, by letting the divergence fall on Pt, we have 

div ( i V ( Q ) 0 4 ) V F ) = d i v ( P „ , ( Q ) ( A ) ) € L2(2Q) 

and 

I2Q 

\àiv{Pnt(Q){A) V F ) I2 < c\Q\ 
t(Q)2 

where C depends only on r¡, n, and ||>l||oo- W e now construct FQ by solving 

- div (AV. FQ) = - div (Pr,l(Q)(A) V F ) , on 2 Q , 

FQ - F e Hi ( 2 Q ) . 

Clearly (i i) in Definition 1 is satisfied by FQ and ( i ) comes from ellipticity. To see 

that (iii) holds, it suffices to control 

sqdq 1 

\Q\ 

rUQ) 

Jo JQ 
\lt{x)Pt{VF -VFQ) sdqsd 

dxdt 

t 

from above by C|7t|;?£ and to choose e > 0 appropriately (recall that V F and VFQ 

are 0 outside of 2Q). Again, we have by Carleson inequality, 

I < C\lt\2c 
1 

1 0 1 J2Q 
| V F - V F Q | 2 C\lt\2c 

1 

1 0 1 2Q 
(Pv£{Q) [A) - A)VF\2 

where the last inequality comes from the Lax-Milgram lemma which guarantees the 

existence of F Q . Using (9) ends the proof. • 

3.3.3. Perturbations in the BMO topology. — As we saw, S and Sioc are open 

in the L°° topology. Some subclasses are also open in the BMO topology. This shows 

that the space of holomorphy of the map A —> L1/2 can be taken as BMO when it is 

restricted to these subclasses. Here is the first one. 

Proposition 16. — Let AQ € A be such that div AQ is locally square integrable with 

the estimates 

Q 
I div A ) I2 

C\Q\ 

m2 
(10) 

for all Q £ Q. Then the class S is a neighborhood of AQ in the BMO topology. 
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Proof. — Let A0 satisfy (10). It clearly belongs to S. Let A E A such that \\A — 
AQ\\BMO < £• We must show that if e > 0 is small enough, then A e S. 

Fix a cube Q G Q and define FQ on 2Q by solving div (AVFQ) = div^4o on 2Q 
and FQ(X) - x G HQ(2Q). Clearly, (ii) in Definition 1 is verified. Set F(x) = x. By 
construction, we have on 2Q, 

div (AV(FQ - F)) = div (A0 - A) = div (A0 - A- m2Q(A0 - A)). 

Hence, by ellipticity of A, 

J2Q 
\VFQ - V F | 2 < C 

J2Q 
\Ao-A- m2Q(A0 - A)\2 < C2n\\A0 - A | | ^ 0 | g | . 

In particular, the condition (i) in Definition 1 holds. Condition (iii) is proved as for 
Proposition 13. This ends the argument. • 

Remark. — Again, one can relax the requirement on div AQ and only assume that it 
belongs to HS~1(Q) for some s G (0,1] with the appropriate norm estimate. 

The second subclass is ABMO. 

Proposition 17. — Let AQ G A fl ABMO. Then the class Sioc is a neighborhood of 
AQ in the BMO topology. 

Proof. — The argument is a variant of that of Propositions 13 and 16. Let us sketch 
the main lines. Let A G A. We must show that if \\A — Ao\\BMO is small enough, 
then A G Sioc 

Fix a cube Q G Q and define FQ on 2Q by solving div (AVFQ) = div PT(A0) on 
2Q and FQ(X) — x G HQ(2Q). Here, t = rj£(Q) and n will be chosen later. 

Again, (i) and (ii) are easily checked. 
As in the proof of Proposition 13, it remains to show that J2Q | V F — V F Q | 2 can 

be controlled by e\Q\ for some e > 0 that is not too large. To this end, observe that, 
if F(x) = x, we have 

div (AV(FQ - F)) = div (Pt(A0) - A0) - div (A - A0 - m2Q(A - A0)) 

on 2Q. Hence, 

J2Q 
V F - V F Q | 2 < c 

J2Q 
\Pt(A0) - A0\2 + c 

f2Q 
\A - A0 - m2Q(A - A0)\2 

<QDQ 
2Q 

\Pt(A0) - Atf + c2n\\A - AO\\BMO\Q\-

For all £ > 0, the first integral in the right hand side is controlled by e\Q\/2 upon 
choosing r) small by (ii) in Proposition 15. The conclusion follows readily. • 

We thus obtain the following improvement of Corollary 5 and Proposition 14. 
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Theorem 18 
(i) Let A G A(S). There exists e = s(n,S) > 0 such that (K) and (K*) hold for 

L = — div (AV) when \\A\\BMO < £-
(ii) Let AQ G A(S) D ABMO. There exists e = e(n,5) > 0, such that (K)ioc and 

(K*)ioc hold for any L-— div (AV) with \\A — AQ\\BMO < £• 

3.3.4. Open questions relative to the class 5. — We list three questions. 

Question 1. — Is S stable under bilipichitz change of variables? 

As we have observed in Preliminaries, the Kato square root problem is stable under 
a bilipischitz change of variables. It is not clear that our class S has the same property. 
The difficulty lies in (iii) of Definition 1. This is an indication that the class S may 
be enlarged so that Theorems 3 and 4 still hold. 

Question 2. — Is S stable under taking the adjoint? 

This is likely not to be the case. The subclass (SC) studied in Section 3.3.1 is 
clearly not. 

Question 3. — Does S contains the class of real uniformly positive definite bounded 
matrix-valued functions? 

We know from Preliminaries that the map A (— div (AV))1/2 is analytic on S. 
A positive answer to this question is therefore of importance toward perturbation and 
regularity results. 

3.4. The real symmetric case 

In this section, we assume that A(x) is a real positive definite n x n matrix with 
0 < SI < A(x) < J"1/ a.e.. 

We have already observed that (K) holds for a purely abstract reason. Since L = 
— div (AV) has the property (G), Theorem 24 of Chapter 2 is applicable. Therefore, 
Qtl must be a Carleson function, where we have set 0t — e_t L £div A. Our goal here 
is to obtain directly the Carleson measure estimate. As mentioned above, we do not 
know whether A G 5, so we proceed using integration by parts. We shall see in the 
course of the proof that this method gives a Carleson measure estimate on the first 
order moments of Nash. 

Remark. — The assumption that A(x) be real symmetric can be replaced by A(x) 
selfadjoint. Theorem 25 is used in that case and the strategy developed below should 
be adapted. 
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Let ej denotes the jth vector in the canonical basis of Cn. We have to estimate 
#t(e7), 1 < j < n. On a formal level, 

0t(ej) = e~t2Ltdiv (Aej) = e~t2Ltdiv {AVx5) = 
1 

2 

de~tL{xj) 

dt (11) 

where Xj denotes the jth coordinate function. As this function plays no particular 
role, we set, for any Lipschitz function / : Rn —> C, 

7*0*0 = Kt{x,y) (f(y)-f(x))dy, (12) 

where Kt(x,y) is the kernel of e~tL. We omit the dependence on / to keep the 
notation simple. Let us just note that when f(x) = Xj, this integral is a first order 
moment for the heat kernel, as introduced by Nash [66]. With this notation, we have 

Ot(ej) = tjt2 with f(x) = Xj, (13) 

where g stands for 
dg 
dt 

To justify this equality, recall that for f E T*(L) 

OtVf = -e~t2LtLf = 
1 

' 2 

de't2Lf 

dt 
(14) 

hence, 

Ot(x,y)Vf(y)dy = 
1 
2 

dKt2(x,y) 
dt 

f{y)dy, a.e. (15) 

By density of V(L) in i f x(Rn) and since 0t is L2-bounded, the latter equality extends 
to H1^). 

Now, given a Lipschitz function / , it can be approximated by a sequence of com­
pactly supported Lipschitz functions fk in the sense that \imfk(x) = f(x) and 
limV/fc(x) = Vf(x) as k —> oo for almost all x, with ||V/fe||oo < C||V/||oo uni­
formly. Since (15) holds for each fk, it remains to pass to the limit as k —> oo with 

the dominated convergence theorem using the estimates on 9t(x,y) and 
dKt2 (x,y) 

dt 
proved in Chapter 1. 

Finally, since e tLl = 1, we have 7* = e tLf — f so that 
1 
2 

de-**Lf 
dt 

= t%2 as 

desired. 
We have to show, therefore, that ¿7̂ 2 is a Carleson function. This property does 

not depend on a specific choice of / and we do it for / arbitrary. Also, it is easier to 
use the parabolic homogeneity by changing t2 to t. 

Theorem 19. — With the notation above, t1/2^* is a parabolic Carleson function. 
and 

sup 
QeQ 

1 

IQI sd 

e(Q)' 

to 
\t1/2jt(x)\2 

dxdt 
t 

sdqdKt(x,y) (16) 
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Before proving this, let us derive a consequence for the Nash moments. 

Corollary 20. — The first order moments t~xl2^t o,re "parabolic Carleson functions 
and 

sup 
QeQ 

1 

df Q 'o 

dsfdfs 

ht(x)\2 
dxdt 

t2 
<c\\Vf//28 (17) 

Notice that this is stronger than 

IMIoo^C^HV/Hoo, * > 0 , (18) 

which is a direct consequence of (G). This corollary sheds light on the cancellations 
contained in these moments, thus improving (18) to (17). Observe, for example, that 
these moments vanish whenever f(x) = Xj and A(x) is a constant matrix, since the 
heat kernel is an even convolution kernel in that case. 

Also, (17) is an estimate for the parabolic Cauchy problem 

dut 

dt 
+ Lut = - div (AVf) on Rn x (0, oo) 

with wo = 0 on ^n of which jt is a weak solution. 

Remark. — Instead of using the heat semigroup, we may use the resolvent to define 
6t. Then, we obtain analogous statements about Carleson measure estimates. They 
may also be reformulated in terms of estimates for boundary value elliptic problems. 

Let us first derive Corollary 20. By the Hardy inequality 

a 

/0 
u(t)\2 

dt 

t2 
< 4 

o 
\ù(t)\2dt 

applied to u(t) = 7t(#), we have 

Jo 
l7t(*)|2 

o dt 
t2 

< 4 
/0 

ri2 
l*1/27.(*)|2 dt 

t 

Integrating over Q of sidelength £(Q) = £, we obtain (17) from (16) and Corollary 20 
is proved. 

Remark. — It is also true that (16) is controlled by (17) up to an error term. We 
shall not use this. 

In the proof of Theorem 19 we use the following lemma which holds under more 
general assumption than A(x) being real symmetric. Its proof is postponed until the 
end of this section. 

Lemma 21. — If L — — div(AV) € £ has the property (G) and if f is Lipschitz, 
then 

« IMI.» < c ^ h v / i u 
(ii) llTtlloo < c t - ^ H V / I U , 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1998 
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(üi) sup 
o<t<a(Q)2 sddf 

|VT,|2 < c |Q | | |V/ | | ^ , 

(iv) 
J 20 

|V7t|2 < c*-2|Q|| |V/| |L when 0<t< i(Q)\ 

Proof of Theorem 19. — The inequality (16) holds provided we can show that there 
exists a constant C such that for all cube Q and all e > 0, I£(Q) < C\Q\\\V fW2^, 

where 

Ie(Q) = 
df df 

sfsfsf 
|7t(x)|2 dxdt. 

By homogeneity, we may assume that ||V/||oo = 1- Let us also make the further 
assumption that / has compact support, which makes / G H1(Wn). Then we have 

' jtiß dx — — A(V<yt + V / ) • Vipdx, t > 0, (19) 

for all ip E i f X ( R N ) with compact support. Indeed, since it = 
de~tLf 

dt 
by definition 

of the semigroup, one has 

jtip dx = - AV{e~tLf)- Vißdx= - ACV^t + V / ) • dx. 

Let if e C £ ° ( R N ) , (p > 0, such that <p = 1 on Q and <p = 0 on (2Q)C with \\ip\\oo < 1 
and ||V(p||oo < 10^(Q)-1. By (19) and Fubini theorem, we have 

I£(Q) < Re 
HQ)2 

le* 
jtjtV dtdx 

= - Re 
re2 

HQ)2 
4(V7t + V / ) • V(7t<p) dxdt. 

Note that the use of jt<P as a test function is justified by (ii) and (iv) in Lemma 21. 
The last integrand gives us three terms to which Fubini theorem applies. 

First, we have 

Re AVjt ' ^it<P = 
1 dA V7t • Vjt <P 

2 dt 
since A* = A. Integrating this equality with respect to dt and then to dx, we obtain 
a bound C\Q\ by (iii) in Lemma 21. 

The second term is 

Re^4V7t • Vip it-

Integrating with respect to x, using Cauchy-Schwarz inequality and Lemma 21, we 
obtain a bound 

cr1/2||Vy>||oo|Q| < ct-1/2HiQr'lQl 

Integration with respect to dt yields the desired estimate. 
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The last term is 

Re AS/f • V(7t<p) = 
Ô Re AVf • V(7t¥?) 

dt 
Thus, integration with respect to dt and then with respect to dx gives us again a 
bound c|<3| by use of Lemma 21. 

It remains to remove the assumption that / has compact support. Pick a sequence 
of uniformly Lipschitz functions fk with compact support that converges in all points 
to / as k tends to oo. By the dominated convergence theorem 

dKt(x,y) 
dKt(x,y) 

dt 
(f(y) - f(x)) dy = lim 7t,fc(x), 

k—y oc 

where jt.k(x) = 
fdKt(Xiy) 

dt 
fk(y) — fk(x)) dy. Thus, Fatou lemma gives us 

I£(Q) < liminf 
k—¥oo df dfd 

•£(Q)2 
\jtAx)\2 dxdt < Csup||V/fc||oo|0|, 

fc>0 

and we are finished. • 

Proof of Lemma 21. — Assume without loss of generality that ||V/||oo — 1- First, 
(i) and (ii) follow directly from the Gaussian decay of Kt(x,y) or its time derivative, 
and use of the mean value inequality for / . 

To prove (iii) introduce a function ip with compact support on 6Q such that |M|oo = 
1 and ip = 1 on AQ. Set 

Vt(x) = Kt(x,y) ( f ( y ) ( № - f { x ) ) ( l - < p ( y ) ) d y , 

so that 
jt(x) = [f,e-tL](ip){x)+lit{x), 

where [/, e tL] is the commutator between the multiplication by / and the semigroup. 
We have 

Vxfit(x) = VxKt(x, y) (f(y) - / ( * ) ) ( ! - <p(y)) dy 

- V/Or) Kt(x,y)(l-ip(y))dy. 

Observing that \x — y\ > 2£(Q) for x € 2Q and y in the support of 1 — we have 

|V//t(x) | < 
l\x-y\>2£(Q) 

\VxKt(x,y)\\y-x\dy 

+ 
'\x-y\>2£(Q) 

Kt(x,y)\dy. 

Now, use the condition (G) on Kt(x,y), the estimates in Theorem 7 of Chapter 1 
on VxKt(x,y), and the fact that t < £(Q)2, to obtain (by adapting the argument to 
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estimate Utji in Lemma 15 of Chapter 2) that 

J2Q 
\Vßt{x)\2dx<C\Q\. 

It remains to control the commutator. This is a general fact. 

Lemma 22. — For any L G S(S) and any Lipschitz function f', the operator V [ / , e~tL] 
is continuous on L2(MN) with norm bounded uniformly by c||V/||oo? where c = c(n,S). 

Accepting the truth of this operator bound, we have 

J2Q 
V[f,e-tL]{V)\2|cp||22c\Q\. 

which ends the proof of (iii). 
To finish the proof of Lemma 21, it remains to establish (iv). Thanks to the results 

in Chapter 1 (Lemma 20 and the remark at the end of Section 1.4.7) one could have 
replaced in the proof of (iii) positive times t by complex times z in some appropriate 
sector. Doing this allows us to use complex function theory and (iv) follows easily 
from Cauchy estimates. The details are left to the reader. • 

Proof of Lemma 22. — It suffices to establish a similar bound for the resolvent, namely 

I M / , (L + A)_1]v?||2 < c|A|_1||V/||oo|M|2 (20) 

for —A in any strict subsector of the resolvent set. Indeed, integrating this in the 
Cauchy formula 

e-tL = 
d 

27T2 df 
dsf (L + A)-1 dX, 

used in Chapter 1 (formula (61)) yields the result. 
Now, an explicit computation gives us 

V [ / , (L + A)"1] = V ( L + A)"1 (6 • V + div b)(L + A)"1 

where b,b are bounded Cn-valued functions with ||&||oo + ||&||oo < c||V/||oo. The 
inequality (20) follows on applying the estimates (4) in Proposition 1 of Chapter 
1. 

3.5. A variation on regularity conditions 

We consider the class of matrices A G A such that (̂ 4 — PtA)(x) is a local Carleson 
function (see (41) in Chapter 2), (Pt)t>o being a usual approximation to the identity. 
As we shall see in Appendix A, such functions belong to ABMO in view of the next 
result. 

Proposition 23. — Let f G BMO. Then (f — Ptf){x) is a local Carleson function if, 
and only if, f satisfies the integral regularity condition in Example 3. In particular, 
any of these conditions implies that f G ABMO. 
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Hence, we could invoke Proposition 14 to show that (K)/oc holds for L = — div (AV). 
Here is a direct argument only using quadratic functionals. 

Proof. — We have to show that 
ri 

/o df 
I W ( * ) | 2 dxdt 

t < c\\Vf\\l 

where 0t = e~l Ltdxv A. 
Again, write 0tV = 6tPt^ + #t( l — -Pt)V and the last term is taken care of as in 

the proof of Theorem 21 in Chapter 2. Now, 

OtPtVf = e-t2Ltdiv [(PtA)(PtVf)] + e~t2Ltdiv [(A - PtA)(PtVf)]. 

For the last term, by the uniform L2-boundedness of e t2ht div and Carleson inequal­
ity, we have 

r1 

'o df 
e-t2Ltdiv[(A-PtA)(PtVf)]\2 

dxdt 
t 

<C 
«1 

Jo. JR" 
\(A-PtA) (PtVf)\2 

I dxdt 
t 

<C\A-PtA\2c\ v/lll. 
For the first term, we have 

R N 

e-t2Ltdiv [ ( P t A ) ( P t V / : l ] | dx < 
RN 

| * d i v [ ( P t i 4 ) (P tV/ ) ] | 2<*r . 

By differentiating, we find that 

*div [(PtA)(PtH)] = (Pt akt) (Qht Ht) + ( Q * aki) (№), 

where H = V / , akl are the entries of A and Qk = t 
d 

oxk 
-Pt- lt remains to integrate 

with respect to dt/t. For the term involving (Pt aki) {Q^Hi), we use that \\Pt a^ | | oo < 
11A||oo and the fact that (Qt)t>o is a bounded family, which can be checked using (2) 
in Chapter 2. For the term involving (Q%akt) (PtHt) we use again Carleson inequality 
invoking the fact that Qt aut is a Carleson function when a^t is bounded (Lemma 7 
of Chapter 2) . • 

Remark. — For example pointwise multipliers of Hs(Mn) for some s > 0 have the 
above regularity property. This furnishes another simple proof of a result by Mcintosh 
[57] 
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C H A P T E R 4 

SQUARE ROOTS OF DIFFERENTIAL OPERATORS, 
S I N G U L A R INTEGRALS A N D V THEORY 

4.1. Introduction 

Unless explicit mention all the results presented in this chapter are in dimension 
larger than two and L denotes an operator of the form — div (AV) G £(S), as defined 
in Chapter 1. The number 5 in this condition is referred to as the ellipticity constant 
of A. 

In the previous chapters, we have studied the validity of 

l|£1/2/l|2 < c||V/||2, / 6 V{L), (K) 

under various hypotheses on A. Recall that the conjunction of both (K) and (K*) 
—the similar inequality for L*— implies that the domain of L1/2 is the Sobolev space 
i/2fi/2f 

Our purpose is to investigate the validity of the corresponding Lp estimates when 
1 < p < oo, and of the endpoint estimates when p = 1 or p = oo. By Lp estimates, 
we mean the a priori inequalities 

||£1/2/||P <cp| |V/ | |p, 
| |V/| |P < c'\\L^f\\p. 

(1) 
(2) 

By Proposition 3 of Preliminaries, (K*) is equivalent to (2) for p = 2. 
Toward this aim, we study the link between L1/2 and Calderon-Zygmund operators. 

In spirit of classical Calderon-Zygmund theory, we start from (1) and (2) when p = 2 
and look for extensions to other values of p. 

The motivating example for doing so is the Laplace operator. When L = —A, (2) 
is equivalent to the Lp boundedness of the Riesz transforms: 

Rj — d 
dxj ( -A)"1 /2 , j = l , . . . ,n , 

which are historical examples of Calderon-Zygmund operators in higher dimensions. 
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Hence, a natural question is whether the Riesz transforms associated to L, namely 

the operators 
a 

dxj 
sdfsfsd ire Calderón-Zygmund operators. 

In dimension 1, the authors have shown in [14] that a(x) 
d 

dx 
L 1/2, where L = 

d 
rlnr 

(a(x) 
d 

'dx 
, is a Calderón-Zygmund operator. 

Using homogenization theory, Alexopoulos obtained that the Riesz transforms as­
sociated to L are Calderón-Zygmund operators when A has real-valued Holder con­
tinuous coefficients that are periodic with common period [2]. 

But the proofs cannot generalize: an example shows that the Lp estimate (2) 
may fail for p > 2 in R2 and, hence, the Riesz transforms associated to L are not 
Calderón-Zygmund operators in general. This is due to C. Kenig. In particular, this 
example can be adapted to show the necessity of assuming some regularity condition 
for Alexopoulos' result to hold. 

A partial result concerning (2) has been obtained by David and Journe in [26]: 
using their Tl-Theorem and multilinear estimates, they show that (2) holds when 
1 < p < 2 and \\A — I Woo is small (see also [22] for an exposition). 

One of the main results of this chapter is that, when L has the Gaussian property 
(G) defined in Chapter 1, the Lp estimates but the one excluded by Kenig's example 
are a consequence of the L2 estimates. 

Theorem 1. — Assume that L has the Gaussian property (G) and that (K) and (K*) 
hold. Then, the following a priori inequalities hold for f G V(LXI2) = H1(Mn): 

I|£1/2/IIp <Cpl|V/||P, K p < o o , 

| |V/ | |P < c'ÏÏL1/2^, l < p < 2 + e, 

\\L^2f\\BMO < c\\AVf\\BMO, 

l | £ 1 / 2 / l l W ) - HV/| |Wi(.»). 

Here cp,c'p,c do not depend on /, and e > 0 depends only on L. Moreover, these 
estimates are optimal, in the sense that, for every e > 0, there exists an operator L 
with the required properties such that (2) fails when p>2 + e. 

In this statement, V}{Rn) is the atomic Hardy space, BMO being its dual (see 
[74]). Note also that no regularity assumption is made on A. 

Typical situations where Theorem 1 is valid are: 

(i) A is real symmetric, 
(ii) m i l ^ M O < X where x > 0 depends on n and the ellipticity constant of A, 

(iii) A depends on one variable. 

Parts (i) and (ii) follow by combining results of Chapter 1 and Chapter 3. Part 
(iii) will be considered in Section 4.5. 
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Note that part (ii) covers the case of L°° perturbations of constant (complex) 
elliptic matrices, thus extending the Lp results in [26]. 

As explained in the general introduction, Lp estimates for L1/2 can be reformulated 
in terms of elliptic boundary value problems. Inequality (2) implies a solvability result 
for a Neumann problem with data in Lp. Similarly, inequalities (1) and (2) imply a 
solvability result for a regularity problem with data in an Lp Sobolev space. Thus, 
part (i) should be compared with the main results in [51]. 

A positive solution to the conjecture stated in Section 0.5 of Preliminaries would 
imply the validity of Theorem 1 for perturbations of real symmetric L. 

As observed, the Riesz transforms associated to L are not Calderon-Zygmund op­
erators; yet their kernels satisfy a Hormander condition, and this yields parts of the 
Lp estimates in Theorem 1. Additional estimates are obtained via a non-standard 
factorization of L1/2 which makes Calderon-Zygmund theory fully available. More 
precisely, we have 

Theorem 2. — Assume that L has the property (G) and that (K) holds. Then, there 
is a Calderon-Zygmund operator U such that 

L^2f = UVf, (Pr,l(Q)(A)dfsf 

There are extensions of these results in various directions. 
As was mentioned before, all of this applies when A has coefficients depending on 

one variable. But more is true, namely that the missing Lp estimates are valid in this 
situation. This generalizes the one dimensional results obtained in [14]. 

Going back to the general situation, the replacement of (K) and (K*) by the corre­
sponding local inequalities gives us local Lp estimates with the same ranges of p's as 
in Theorem 1. An application of this combined with resolvent estimates of [3] enables 
us to prove 

Theorem 3. — Let L = — d iv (AV) G £(à), where A has vmo coefficients. Assume 
also that the coefficients are real-valued ifn>3. Then, forp G ( l ,oo) , L1/2 extends 
to a bounded operator from W1,p(Wl) into Lp(M.n) with the estimates 

I |£1/2/HP < C P ( | | V / | | P + | | / | | P ) , 

IIV/llp <^Q\L^f\\p + \\f\\p). 

4.2. Standard factorization of L1/2 and Riesz transforms associated to L 

4.2.1. Generalities. — We start from 

L1/2/ = 2 
sd 

r>oo 

¿0 
e~f LLfdt, f e V(L). (3) 
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Factoring out V / in Lf gives us 

where 

L1/*f = TVf, feV(L), (4) 

T = 
'OO 

' 0 

df 
dt 

t 
(5) 

and 0t : L2(Rn; Cn) L2 (Rn) is given by 

0t = 
d2 

dff 
e-t2LtdivA. (6) 

Here, A stands for multiplication by A(x) on L2(Rn; Cn) (whose elements are arranged 

as column vectors). More explicitely, 

0tF = -
2 

dfd 

n 

k,£=l 

' e~t2Lt 
dxk 

d 
{CLkiFi). 

Note that T* is related to the Riesz transforms associated to L* by the formal relation 

T* =A*VL*~1'2 

(see Section 4.2.2). 

Our first task is to give a precise meaning to the factorization (4) of L1/2. 

Consider the subspace 

N = { F e L2(Rn;Cn) ; d i v A F = 0}, 

where the divergence is taken in the sense of distributions (actually, div AF is a 

distribution in i f_1(RTl) ) . 

Lemma 4 (Hodge decomposition). — N is closed in L2(Rn;Cn) , and the sum 

L2(Rn;Cn) = V i f 1 ( R n ) + N, 

is a topological direct sum. 

Here, iJx(Rn) is the space of distributions (modulo constants) having a square-

integrable gradient, equipped with the inner product f V / • V p . 

Proof. — Let F G L2(Rn; Cn) . By a classical representation theorem (see [48]), there 

is a unique / G i /1 (Rn) such that 

V geH\Rn) 
R N 

AF • V # — 
R N 

AVf - Vg. 

Indeed, the right-hand side defines a coercive sesquilinear form on H1(Rn), while the 

left-hand side defines a conjugate linear functional. Moreover we have, 

H V / l l a < 
1 

6' 
\A\U\F\\2 < 

1 

Ó2 
dsfsfs 

where S is the ellipticity constant of the matrix A(x). 
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In particular, we have 

sds 
A(Vf — F) • V<^ = 0 

for every test function which means that G = F — V / belongs to N. We have 
obtained the required decomposition of F and the accompanying norm estimates. Its 
uniqueness follows by density of C0°°(ln) in i J ^ R " ) . • 

We now define the space E = W(L)+N as the subspace of those F G L2 (Rn; Cn) 
such that F = V / + G, / G £>(L), G € N. Set 

№ = ||/||2 + | |L / | | 2 + | № . 

Thanks to the preceding lemma, || \\E is a norm on E. Since the embeddings 

V{L) ff1^) <-> i J 1 ^ ) 

are dense, £" is a dense subspace of L2(Rn;Cn) . We shall use E as a space of test 

functions. It is not a classical space, and does not contain Co°(Rn) in general. 

Lemma 5. — If F e E, the integral 
»oo 

JO 

etF 
dt 

t 
converges normally in L2(Rn;Cn) . 

Proof. — Let F G E and write F = V / + G, where / G V{L) and G G N. Observe 

that 

0tG = 
2 

dsfs : e - t 2 L f d i v A G = 0, 

(recall from Preliminaries that e 1 L extends to a bounded operator from H 1(Mn) 

into J f ^ R " ) ) so that 

QtF = OtVf = 
2 

sd 
e~t2LtLf. 

Therefore, as in Section 0.1 of Preliminaries we have 
oOO 

^ 0 
H*tF | |2 

dt 

t 
< c 

poo 

to 
mm{t\\Lf\\2it^\\f\\2) 

dt 

t 
= c ( | | L / | | 2 | | / | | 2 ) 1 / 2 . 

We can define the operator T on E by 

TF = 
10 

r»oo 
0tF 

dt 

t 
F e E, 

and by construction 

IVL-1/2/,!2 TVfì f e p(L) (7) 

Now that T is defined, we immediately forget its construction and, following a 

classical procedure, we consider the truncated operators 

qdsd 
s' e 

sd 
sq 

t 

dt 
(8) 
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where 0 < e < 1. They are continuous from L2(Mn;Cn) into L2(Rn) with norm 
bounded by 0(\\ne\). 

Proposition 6. — The following assertions are equivalent. 

i L 1 / ^ 2 < c V / 2, feVL). 
(ii) T extends boundedly from L2(Rn;Cn) to L2(Rn). 

(iii) supe>0 \T£\2,2 < oo. 

Moreover, if the assertions above hold, T is the strong limit of the operators T£ as e 
tends to 0 and the equality (7) holds on all of H1^71). 

Thanks to this proposition, one can do various calculations with the operators T£ 
instead of T. Provided all the estimates hold uniformly in £, they extend to T. 

Proof — Recall that L is cj-accretive for some 0 < uj < tt/2 (see Sections 0.1 and 0.2 
of Preliminaries). Let u < /z < 7r/2. For z G T µdefine 

LL>e(Z) = 
qsds 

2 sdd 

JE 
e"£ ztz 1/2 dt 

t 

Then we have 
SUp SUp \TßE(Z)\ <C^ = (COS//) 1/2, 

0<E<1z£Tß 

and 
lim lb* (z) = 1 
sqd 

uniformly on compact subsets of T^. Hence by H°° functional calculus, if / G T>(L), 

U£(L)L^f\\2<cc^\\L1/2 f\\2, (9) 

and 
l im | |Ve(L)L1/2 / - i1 /2 / l l2=0 . 

Finally notice that 
</>e(L)L1/2 = TeV onV(L). 

Let us now prove that (i) implies (iii). Take F G E and write F = V / + G, where 
/ G V(L) and G G N, so that 

T£F = il>£{L)L1/2f. 

By (9) and (i) , we obtain 

||TeF||2 < cc.WL^fh < c||V/||2 < c||F||2. 

We conclude on using the density of E. 
To prove that (iii) implies (ii) observe that, by Lemma 5, 

lim\\TF-T£F\\2=0, 
E—>0 

whenever F G E. Hence, the hypothesis (iii) implies 

\\TF\\2 < c\\F\\2. 
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Finally, that (ii) implies (i) is a consequence of (7). 

4.2.2. Negative results on Riesz transforms. — Recall that when A is real 
symmetric, L is selfadjoint. Therefore, (K) and (K*) hold so that, by Proposition 6, 
T extends continuously from L2(Rn; Cn) to L2(Rn). The operator T is not in general 
a Calderon-Zygmund operator, because of the following result. 

Theorem 7 (Kenig). — For every a > 0 there is a real symmetric L = — div (AV) in 
L2(R2) such that the inequality 

l | V / | | „ < C||L1/2/||P (10) 

fails when p > 2 + a. 

This means that the Riesz transforms associated to L are not bounded on Lp if p 

is large. 

Corollary 8. — Let L be as in Theorem 7. Then the operator T defined by (5) is not 
bounded on Lp if p < 2 — a ( l + a ) -1 . In particular, it is not a Calderon-Zygmund 
operator. 

Let us first prove the corollary. Since T is bounded on L2, so is T = A 1T*. We 
claim that for / G V(L) 

TL^2f = Vf. (H) 

This claim and Theorem 7 imply that T is not bounded on Lp if p > 2 + a. Hence 
T cannot be bounded on Lp if p' < 2 — a(l + a)""1. 

To prove (11), let / G V(L), and set 

u£ = 2 
qsqd £ 

1/6 
e-t*LtLl/2f . dt 

t 
IVL-1/2/,!2 

Arguing as in the proof of Proposition 6, we have that 

l i m | K - / | | 2 = 0 
E—>0 

lim WL^Us - I}'2f\\2 = 0. 
e—>0 

Also, since L is selfadjoint, 

\\Vue - V/Ha < C H L ^ V - £1/2/l|2, 

hence Vu£ converges to V / in L2. 
Next, let f£ = A^T*. An easy calculation yields f£L1/2f = Vu£. As it follows 

from Proposition 6 that T£ converges weakly to T when e tends to 0, we obtain (11) 
hv takinp* wppi.k limits 
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Now, we turn to the proof of Theorem 7. The starting point is Meyers example 
Jsee [38]). Let 

A(x) = I + 

IVL-1/2/,!2 

IVL-1/2/, 

qddd 
sdqs 
-XiX2 

—XiX2S 
<xsqf 

with x = (xi,x2) G R2 and /9 > — 1. The matrix A{x) is definite positive with 

min(l, (1 + ß)2)I < A(x) < max(l, (1 + ß)2)I, 

for all x ^ 0, so that L = — d iv (AV) is selfadjoint and that (K) and (K*) hold. It 
is an elementary computation to check that Uo(x) = r1+/? cos#, where (r, 6) are polar 
coordinates of x, is a classical solution of L in R2 \ { 0 } and a weak solution in R 2 . 
Moreover \Vuo\ ~ r& near 0 so that Vuo ^ Lvloc if (3p < — 2. 

Fix a > 0 and choose ¡3 e ( - 1 , -2(2 + a)-1]. If £ = 5(0,1) is the unit ball, pick 
ip e C^{B) with ip = 1 on 5(0,1/2), and set w = u0(p. 

By construction, ^ L P ( R 2 ) when p > 2 + a. We next show that Lxl2u € Lp for 
every p > 2 (in addition to being in L2), which proves the theorem. This is done by 
writing 

Ll'2u = L-^Lu, (12) 

and using simple estimates on / = Lu and L 1//2. 
We first compute f and find out that 

IVL-1/2/,!2IVL-1/2/,!2DFDGDH 

which implies that / is C°° with support contained in the annulus defined by 1/2 < 
\x\ < 1. Hence, u € T>(L) and (12) is justified. As a consequence, we have 

IVL-1/2/,!2 2 
qsq 

OO 

/0 
e~*Lfdt. (13) 

By Aronson estimates (Theorem 4 of Chapter 1), there exist c > 0 and 7 > 0 such 
that 

St(x,y) < 
c 
t2 

exp - 7 
qsdfdff 

t2 

where St(x,y) denotes the kernel of e *2l. Using this estimate in (13), together with 
the support condition on / , one finds that 

\L1/2u(x)\ < 
C 

sfdsfsdf 

which gives LP(R2)-integrability if p > 2. 

Remarks 
1. The decay of Lxl2u(x) found here is not optimal. Indeed, observing that J f = 0, 

one can use the Holder estimate on SAx.y) to find that 

\L1,2u{x)\ < 
C 

1 + \x\8 
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for some s > 1. 
2. It is clear from the proof that the failure of LP estimates for Vu is a local 

property near 0. Let B coincide with A on the cube (—2,2)2 and be periodic 
with period 4 in each direction. Then LB — — div (BV) is selfadjoint. Since 
uo is also a weak solution of LB on (—2,2)2, the same argument applies. This 
proves our assertion in the introduction concerning the result in [2]. 

4.2.3. Positive results on Riesz transforms. — Our aim in this section is to 
describe a positive counterpart to Corollary 8. It will be obtained assuming that L 
has the Gaussian property (G) of Chapter 1. For the convenience of the reader, let 
us recall what it means and extract a few consequences proved in Chapter 1. 

Set St = e~l L and denote by St(x,y) its distributional kernel (this means that 
St(x, y) — KT2(x, y) where the notation Kt(x, y) is used in Chapter 1). In this section, 
we assume 

(G) 

3c,77,a>0 V £ > 0 V x, y, h G M71 2\h\ < t + \x - y\ 

\St(x,y)\ < 
c 
tn 

exp 
a\x - y\2 

t2 

\St(x,y)-St(x + h,y)\ 
~ tn 
< c \h\ 

Kt+\x-y\ 

sd 
exp 

a\x - y\2 

t2 

(Gl) 

(G2) 

\St(x,y + h)-St(x,y)\ < c 
sd 

\h\ 
t + \x-y\ 

sd 
exp 

a\x - y\2 
t2 

(G3) 

Under such estimates, we know from Proposition 25 of Chapter 1 that 

Stl = 1, t > 0. (14) 

Denoting by 0t(x,y) the kernel of the operator 0t defined by (6), we have 

0t(x,y) df 
2 

'7T 
A(y)TtVySt(x,y). 

It follows from Theorem 7 of Chapter 1 that there are constants c, ¡3, /x > 0 depending 
only on the constants in (G), the dimension n, and the ellipticity constant of A, such 
that 

V * > 0 V r > 0 V#GMn V heRn with 2\h\ <r + t 

J r<\x — y\<2r 
\0t(x,y)\dy < c fr 

t) 

n-l 
exp 

(3r2 

t2 
(15) 

'r<\x — y\<2r 
\0t(x + h,y)-0t(x,y)\2dy 

v 1/2 
< 

C 

rn/2 
e 

J. 
n-l \h\ 

t,4-r 

er 
exp 

8r2 
/2 

(16) 
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Moreover, 0t cancels each column vector of A 1, viewed as a vector-valued function, 
which we write 

OtiA'1) = 0, t > 0 . (17) 

It is meaningful, since (see Proposition 24 of Chapter 1), 

sd 
\0t{x,y)\dy<C 

uniformly over x G Rn (and t > 0), which implies that 0t extends boundedly from 
Z,°°(Rn;Cn) into L°°(Rn). 

Inequality (16) is a property of regularity with respect to the x variable of the 
kernel of 0¿, and we are going to show that the operator T has a similar property. 
Without knowledge about L2 boundedness of T, its kernel is not defined in the sense 
of distributions as T only operates on E, a space which may not contain smooth test 
functions, unless the matrix A itself is smooth. For the time being, it is enough to 
deal with the kernels of the truncated operators. 

Lemma 9. — Let T£(x,y) be the distributional kernel ofT£. Its restriction off the 
diagonal is a locally integrable function, and we have 

3c>0 V £ G (0,1] V r > 0 V x G Rn V ft G Rn with 2\h\ < r 

r<\x — y\<2r 
\T£(x + h,y)-T£(x,y)\2dy 

1/2 

< c 
rn/2 

VA 
. r 

dsf 
(18) 

Here, ¡i is the same exponent as in (16). 

Proof. — Since 

Te(x,y) = 
dsf 

d 
0t(x,y) 

dt 
t ' 

we obtain from (15) that, if r > 0 and x G Rn, then 

tr<\x-y\<2r 
\T£(x,y)\dy < c 

1/s 

df 

r 

t 

n-1 
exp 

3r2 
t2 

dt 

t 

< cr((n-l)/2)/T<n-1>/2, 

which proves local integrability. The inequality (18) is obtained similarly using (16) 
and Minkowski integral inequality. This finishes the proof. • 

A first consequence of Lemma 9 is that, by Cauchy-Schwarz inequality, we have 

'r<\x-y\<2r 
\T£(x + h,y) -T£(x,y)\dy < c 

h\ 

sr 

sd 
(19) 

Integrating this expression over r in [2|fo|, oo) with respect to the measure dr/r yields 

/2|h|<|a;-y.| 
\Te(x + h,y)-Te(x,y)\dy<c, 

i 
(20) 
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which is the standard Hormander condition. 
Assuming, furthermore, the (uniform in e) boundedness on L2 of Te, it is classical 

that (20) implies its (uniform in e) boundedness on Lp, 2 < p < oo, and from L°° to 
BMO (see [63] or [74]). 

In addition, the stronger inequality (18) combined with the cancellation prop­
erty (17) enables us to prove that the operators TeA are uniformly bounded from 
£MO(Rn;Cn) to BMO(RN). 

Before entering into details, let us summarize these results and write down our first 
Lp estimates. 

Proposition 10. — Assume that L has the property (G) and that (K) and (K*) hold. 
Then, we have the a vriori ineaualities for f G T X L 1 / 2 ) = ^(M71): 

\\L1/2f\\P < cp\\Vf\\p, 2 < p < oo, (21) 

and 

l |V/ | |p < CpllL^/Hp, Kp<2, (22) 

with the endpoint estimates 

WL^/Wbmo < c\\AVf\\BMO 

and 

(23) 

I I v / h ^ c r ^ ^ c I I l 1 / 2 / ! ! ^ ^ ) - (24) 

Remarks 
1. (K*) is not used when proving (21) and (23) and, for a dual reason, (K) is not 

used when proving (22) and (24). 
2. A proof of (21) and (22) that does not make use of the hypotheses (G2-3) 

(regularity in x and y) has been recently found by X.T. Duong and A. Mcintosh 
[32]. In this case, the Hormander condition is replaced by a weaker condition 
which still guarantees weak type 1-1. But the estimates (23) and (24) are unclear 
under this weaker condition. See also the related work [24] in the context of 
Riesz transforms for the Laplace-Beltrami operator on a Riemannian variety. 

Proof. — For 1 < j < n and e G (0,1], set 

WJ9e = 
sd 

rl/e 
qsdqds t 

d 

ox? 

dt 

t 

so that for F G L2(RN; Cn), 

T£F=-
sd 

/71 

n 

j=l. 

IVL-1/2/,!2 

where Gj denotes the jth component of a Cn-valued function G. 
If the inequality (K) holds, then Wjt£ are uniformly bounded on L2(RN) by Propo­

sition 6, and by (19), on Lp, 2 < p < oo, and from L°° to BMO. Moreover we have 
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Wji£(l) = 0 in BMO. The boundedness on BMO of Wjl£ then follows from the next 
lemma (compare with Lemma 2.7 in [27]). 

Lemma 11. — Let K be a bounded operator on L 2 ( R N ) . Assume that its distributional 
kernel K(x, y) is locally square integrable off the diagonal and that, for some cq, ¡jl > 0, 

r<\x — y\<2r 
\K(x + h,y)-K(x,y)\2dy 

1/2 
< CO 

rn/2 
\h\ 

r 

sd 
(25) 

for all r > 0, x,h <E Rn, 2\h\ < r. Assume that K(l) = 0 in BMO. Then K maps 
continuously BMO into itself, with norm bounded by c(cq + | l f |2,2). 

Let us finish the proof of Proposition 10 before proving this lemma. So far, we 
have obtained (23), and (21) follows by interpolation with ( K ) . For the remaining 
estimates, we proceed by duality. If TA* denotes the operator associated to L* and 
A* by (5) and (6), then A V = (TA*)*£1/2. Hence, as soon as (K*) holds, we have 
(22) and (24). • 

To prove Lemma 11, it suffices to establish 

\{Kf,a)\<c\\f\\BMo (26) 

for all atoms a G ?^1(En) and all BMO functions / . By stantard approximation 
arguments, we may take / bounded (as long as we do not use its L°° norm quantita­
tively) . 

Let a be an atom, that is, a is bounded and compactly supported in a ball B, 

with |£|||a||oo < 1 and / „ a = 0. Let / € L°°(Rn) and set f3B = / / , where 
1 ^ 1 J3B 

XB = B(x0, Xr) if B = B(x0,r). We have 

(Kf,a) = (K(f-f3B),a) 

since K(l) = 0 . Proceeding as usual, split / — fss as /i + /2 where /1 = / — /3^ on 
3B and 0 elsewhere. The contribution of /1 is controlled by the L2 boundedness of 
K: 

\{Kfua)\ <\K\2i2\\h\\2\\a\\2 

<3n/2|üT|2,2 
1 

SB J3B 
im2 

\ 1/2 

< 3" /2 |K |2 ,2 | | / | |BMO. 

To estimate the contribution of f2, we first use the oscillation of a to obtain 

(Kf2,a) = 
<x€B y<£3B 

f2(y)[K(x,y) - K(x0,y)]a(x)dydx, 
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and, if we set Ck = {y € Mn; 2kr < \x0-y\ < 2fc+1r}, by (25) and the Cauchy-Schwarz 
inequality, we have 

l(^/2,0>| < 
OO 

sdq 
IxeB Jy€Ck 

I/2(y)I\K{x,y) - K{x0,y)\\a{x)\dydx 

< Cq 
00 

k=l 
sdd 

I/2I2 

1/2 
(2fcr)-n/22-^||a||i. 

Since Ck C 2fc+1J5, the well known inequality 

1 
\2kB J2kB 

\f-hB\2<c{k + l?\\f\\lMO 
D 

yields 

I W 2 , o ) | < ceo 
CO 

fc = l 
> + l)2-fe^ H/IIbmo-

This concludes the proof of Lemma 11, and that of Proposition 10. 

Remark. — The conclusion of Lemma 11 remains valid if the L2 average in (25) is 
replaced by an Lp average for some p > 1. 

4.3. Non standard factorization of L1/2 by a Calderon-Zygmund operator 

To derive more Lp estimates, we take advantage of the following observation. In 
the factorization 

L1'2 = T V , 

only the action of T on the space W(L) is relevant (see Lemma 4), which leaves 
room for modifying T without affecting the product T V . In other words, the above 
factorization is not unique: our point is that among all possible factorizations, there 
is a remarkable one. The next statement is a more precise version of Theorem 2. 

Theorem 12. — Assume that L has the property (G). Then, there is an operator U 
with Calderon-Zvamund kernel such that 

Lx'2f = UVf, f € V(L). (27) 

Furthermore, there is an equivalence between the following assertions. 

(i) l|£1/2/ll2 < c||V/| |2, / € T>(L). 
(ii) U has a bounded extension from L2(En;Cn) to L2(Rn) (this extension being a 

Calderon-Zygmund operator). 
(iii) U{ej) e BMO(Rn) for l<j<n. 

Moreover, when the above assertions hold, (27) extends to all of H1^*1). 
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Here, ej is the jth vector in the canonical basis for Cn. 
The construction of U is done by two different means, both requiring smoothing 

techniques. 
Take a function cp £ Co°(Rn), supported in the unit ball and such that / ip = 1 

and J Xjcp = 0 for j = 1,..., n. If t > 0, set <pt(x) = t~n(p(x/t), and Ptf = f * <pt. As 
in the previous chapters, the action of Pt on vector-valued functions is meant to be 
componentwise. 

Denote also by R: L2(Rn) -> L2(Rn;Cn) the array of Riesz transforms (see the 
introduction of this chapter) given bv 

Rf — (Rifi • • • » Rnf)T-

Its adjoint R* : L2(Rn; Cn) -> L2 (Rn) is given by 

IVL-1/2/,!2IVL-1/2/,!2IVL-1/2/,!2 

We have that RR*V = V and by duality div RR* = div in the sense of distributions 
on Rn. Moreover, RR* is the orthogonal projector on ViJ1(Rn). 

The first definition of U is that of a linear operator from Co°(Rn) into its dual by 

u = v + w, (28) 

where 

V = 
lo 

oo 
9tPt 

dt 
t 

(29) 

and 

W = 
r»oo 

sd 
9t{l-Pt)RR* 

dt 
t 

(30) 

We set Vt = 0tPt and Wt = 0t(I — Pt)RR*. The key result is the following lemma. 

Lemma 13. — The operators Vt and Wt are bounded from L2(Rn;Cn) to L2 (Rn) 
uniformly for t > 0; their kernels Vt(x,y) and Wt(x,y) are continuous functions, and 
there exist constants c, 7,// > 0 depending only on the constants in (G), the dimension 
n, the function ip and the ellipticity constant of A, such that for all t > 0, x, y, h G Rn, 
with \h\ < t, 

\Vt(x,y)\ < 
c 

tn 
exp l\x-v\ 

t2 

\Wt{x,y)\ < 
c 

tn 
1 

\x-y 

t 

v -n-1 (31) 

\Vt(x + Ky)-Vt(x,y)\ < 
c 
tn 

\h\ 

t 

qs 
exp 

l\x ~ y\2 
t2 

\Wt(x + h,y)-Wt(x,y)\ < 
c 
tn 

\h\ 
t 

qs 
1 

la? — 2/1 

t 

\ — n—1 (32) 
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\VyVt(x,y) < 
c 

tn+l exp 
j\x-y\2 

t2 

\VyWt(x,y)\ < 
c 

tn+l 
1 \x~y\ 

f 

-n-2 (33) 

Proof. — The L2 boundedness of Vt and Wt is obvious. 
The estimates for the kernel of Vt are easy. We have 

Vt(x,y) = Ot(x,z)(ft(z-y)dz. 

If \x — y\ < 4t, we have 

|Vt(x,J,)|<i-n|M|oo \Ot(x,z)\dz < ct~n. 

If |a; — y\ > At then 3|# — y\/A < \x — z\ < b\x — y\/A on the support of the integral. 
Using (15) gives us 

\Vt(x,y)\ <ci-n|M|ooexp 
9ß\x-y\2' 

m2 

Hence, (31) for Vt(x,y) follows. The Holder estimate (32) is dealt with similarly by 
applying (16) instead of (15). The ^/-gradient estimate is obtained as (31), replacing 
(ft by V<pt = ^_1(V^)t. 

To derive the estimates on W*, we recall the following identity (see Lemma 20 of 
Chapter 2). 

Lemma 14. — 0tV = 
1 

7T 

dSt 
dt 

where St = e *2jL. 

This means that, while 0t(x, y) has no regularity with respect to y, its ^/-divergence, 
the kernel of — £0*V, satisfies (G) (see Lemma 19 of Chapter 1). 

Applying Lemma 14, and using the fact that Pt and R commute, we obtain 

Wt = 6AI - Pt)RR* = 0tV(-A)-^2(I - Pt)R* = -
1 

sd 
t -

dSi 

dt 
Qu (34) 

where 

Qt = (-£2A)~1/2(1 - Pt)R*. 

This is a bounded convolution operator bounded from L2(Rn;Cn) to L2(Rn) given 

by QtF = Y,Mj)t * Fj where (ißj)t(x) = 
1 
tn 

ißj(x/t and tßj is defined by its Fourier 

transform 

^•(6 = 

IVL-1/2/,!2SDSDD 

\t\2 
Using the moment conditions on <p, standard Littlewood-Paley analysis gives us 

IVL-1/2/,!2 c 
|X | " - ! (1 + N)2 

(35) 
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and 

| V ^ ( x ) | < c 
|X|"(1 + |X|)2 (36) 

By (34), one can represent Wt{x,y) as 

Wt(x,y) = -
t 
/TT 

dSt(x,z) 
dt 

i/>t(z - y)dz. 

Using the estimates (Gl ) and (G2) for tdSt(xyz)/dt and the size estimate (35) just 
obtained for ipj, one easily checks (31) and (32) for Wt(x,y). We skip details. The 
^/-gradient estimate is a little more subtle. 

If h e Mn, we have 

Wt(x,y + h)-Wt(x,y) = 
t 

wxc 
dSAx,z) 

dt 
dSt{x,y) 

dt 
[ipt(z - y - h ) - i/>t(z - y)] dz 

since tp is integrable and J ip = 0. Using (Gl ) and (G2) for tdSt(x,y)/dt and (36), the 
Lebesgue dominated convergence theorem shows that VyWt(x,y) exists everywhere 
and 

VyWt{x,y) = t 
./TT 

\dSt(x,z) 
dt 

dSt{x,y) 
dt 

V(^t)(z-y) dz, 

the integral being absolutely convergent. Hence, \VyWt(x,y)\ is dominated by 

c 
t r2|z-3/|<i+|a;-2/| 

1 
tn 

\z-y\ 
\t+\x-y 

sqd e-a\x-y\yt2 

\Z-y\n{l + \Z-y\/t)2 
dz 

c 
t '2\z-y\>t+\x-y\ 

e-cc\x-z\*/t* +e-«|x-y|2/*2 
tn\z-y\n{\z-y\/ty 

dz 

< c 
IVL-1/2/ 1 + 

x-y\ 
t 

-v e-a\x-y\2/t< + 
c 

tn+l 1 \x-y\ 
t 

-n -2 

This ends the proof of Lemma 13. 

Lemma 15. — We have the following cancellation properties. 

Vt*(l) = 0 

Wt*(l) = 0 and Wt{ej) = 0 , j = 1,...,n. 

(37) 

(38) 

The first two equalities follow from (14), which yields dS*(l)/dt = 0*(1) = 0, while 
the last one is a consequence of Qtitj) = f {^j)t = 0. 

By standard results on singular integrals [26], [63], one deduces from Lemma 13 
and Lemma 15 that V and W are defined as continuous operators from Co°(lRn; Cn) 
into (Co°(Rn))/ by the absolutely convergent integral 

(VF,g) = 
OO 

0 
IVtKg) 

dt 
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and the similar equation for W. Summarizing, we have obtained 

Lemma 16 
(i) V is a weakly bounded singular integral operator, with V * ( l ) = 0. 

(ii) W extends to a Calderon-Zygmund operator, with W*(\) = W(ej) = 0, for 
1 < 3 < n. 

Hence, we deduce from the Tl-Theorem [26] the 

Corollary 17. — The operator U = V + W extends to a bounded operator from 
L2(Rn; Cn) to L2(Rn) if and only if U(ej) e BMO for all l<j<n. 

In order to explain the relation between L1/2 and U let us now give the second 
definition of U. To this end, we use the following lemma. 

Lemma 18. — Let Ut: L2(Rn) L2(Rn), t > 0, be bounded operators whose 
distributional kernels UAx,y) are measurable functions that satisfy 

\Ut(x9y)\ < 
1 
tn 

1 
x-y\ 

t 

-n-1 
(39) 

and 

Ut(x,y) dx = 0. (40) 

Then roc 

lo 
\(Utf,9)\ 

, dt 
t 

<c(n)||/||2(M1/2 + y | i ) . 

Here, \g\1/2 = *vpx^y \g(x)-g(y)\ 
IVL-1/2/,!2 

Proof. — First, using (39), one has 

\{Utf,g)\ = Ut(x, y)f{y)g(x) dydx 

\Ut(x,y)\2dy 
1/2 

Il/ll2|ff(a0|<fc 

< ct-n/2||/||2||fl||i. 
Next, using (40), one has U*(g)(x) = f Ut(y,x)(g(y) — g(x)) dy, which implies 

\u:(g)(x)\ < t~n 1 + 
\x-y\ 

t 

- n - l 
\9(y) - 9{x)\dy. 

Hence, by (39), ||t/t*</|U < ct1'2^,?. Since \\U;g\\i < c\\g\\lt one finds that 

\\u;gh < c*1/4(|ff|i/2||ff||i)1/2 < 2c*1/4(|p|i/2 + ii^ii^ 

and, therefore, 

№f,g)\ = \(f, u;9)\ < ctl'*\\fM\g\u2 + M U ) . 
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The conclusion follows readily. 

Applying this lemma, we see that for F G L2(Rn;Cn), the linear functional 

IVL-1/2/,! poo 

Jo 
(VtF + WtF,g) 

dt 
t 

is continuous on CQ° (Rn) and defines a distribution which we call UF. The application 
U: F -> UF is linear and continuous from L2(Rn;Cn) to (Co°(Rn))'. 

It is clear from their constructions that U and U agree on Co°(Rn; Cn). Thus, if 
Corollary 17 applies the extension of U must be U. So it is no harm not to distinguish 
them from now on. 

With this in hand, one can establish (27). Let / € V{L). If t > 0, using that 
RR*V = V, it is clear that (Vt + Wt)V/ = 0tV/, hence for all e > 0 and g e Q°(Rn), 

rl/e 

sd 
(VtVf + WtVf,g) 

dt 

t 
= (TeVf,g). 

By Lemma 5 and the definition of U, passing to the limit as e tends to 0 proves (27). 
Let us turn to the proof of the equivalence between (i), (ii) and (iii) in Theorem 

12. 
The equivalence between (ii) and (iii) follows from Corollary 17. That (ii) implies 

(i) is obvious. We are left with the implication (i) (iii). 
If (i) holds, then T is L2-bounded. Its kernel is well defined in the sense of distribu­

tions; it is the limit in (Co°(R2n))/ of T£(x,y) and, therefore, satisfies the Hormander 
condition (20). Hence, T maps L°° to BMO. Since U(ej) — T(ej), we have obtained 
U(ej) e BMO, which proves (iii). 

It remains to check that (27) extends to i7x(Rn) when assertion (i) holds. This 
assertion implies that the domain of L1/2 contains if1(Rn). So, for / € H1(Mn), the 
equality T£Vf = ip£{L)L1/2f used in Proposition 6 makes sense. Letting e tend to 
0, the left hand side converges to T V / in L2(Rn) by Proposition 6 while the right 
hand side converges to L1/2/. This proves that (27) holds on i71(Rn) and the proof 
of Theorem 12 is finished. 

Remark. — A consequence of Lemma 18 and of (27) is that, whenever L has the 
Gaussian property (G), L1/2 extends to a continuous linear operator from i71(Rn) 
into £>;(Rn). 

4.4. Further Lp estimates and invertibility of L1/2 

We are now in a position to add new Lp estimates to those given in Proposition 
10. 
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Proposition 19. — Assume that L has the property (G) and that (K) holds. Then, 
we have the a priori inequalities for f G ff1(IRn): 

I|£1/2/IIp < < * , | | v / | | „ 1 < p < OO, (41) 

and 

||L1/2/lkx(B-) < c||V/||w.(B.). (42) 

Proof. — By Theorem 12, the assumptions imply that U is L'2, bounded. By Calderon-
Zygmund theory, it is bounded on Lp for 1 < p < oo. Furthermore, since U*(l) = 0 
it is bounded on W1(RN) . The conclusion of Proposition 19 is now immediate from 
equality (27) on H1^). • 

Remark. — The operator W is always L2 bounded. Indeed, by (34) and Cauchy-
Schwarz inequality, we have 

poo 

Jo 
(Wtf,g)\ 

dt 

t 
< 

1 

sq 

poo 

'0 
WQtfWl 

sd 

sd 

1/2 oc 

s 

IVL-1/2/,!2 
IVL-1/2/,!2 

1/2 

Thus, we have to control quadratic functionals as in Chapter 2. But the one given 
by Qt is bounded thanks to (2) of Chapter 2 and the other one is bounded using 
the maximal accretivity of L* and (4) of Preliminaries. Of course, without further 
assumption and, in particular, the property (G), W may not be a Calderon-Zygmund 

operator. 

At this point, almost all estimates stated in Theorem 1 have been obtained. The 
remaining ones are in the next result. 

Proposition 20. — Assume that L has the property (G) and that (K) and (K*) hold. 
Then, there exists e > 0 such that for | l /2 — l/p\ < e, 

IIV/Hp < C||£1/2/||P, / G H\W>). (43) 

We denote by W1,p(M.n) the homogeneous Sobolev space of the distributions / 
defined modulo constants by | |V/| |P < oo. If p = 2, W^2(Rn) = ^ ( R n ) . 

Proof. — Since (K) and (K*) hold, we have | |V/| |2 ~ | |£1/2/ | |2 and the domain of 
L1/2 is i if1(RN) (Proposition 3 of Preliminaries). By the previous results, we have 
L1/2 = UV on H1^) and U is a Calderon-Zygmund operator. Thus, L1/2 extends 
to a bounded operator from WliP(Rn) into Lp(Rn). The inequality (43) then follows 
on applying Sneiberg's result (Lemma 23 of Chapter 1). • 

We now study invertibility properties of L1/2. 

Theorem 21. — Assume that L has the property (G) and that (K) and (K*) hold. 
Then, L1/2 extends to a continuous operator from W1>p(Rn) to Lp(Rn), 1 < p < oo, 
which is invertible for 1 < p < 2 + s for some e > 0. 
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Proof. — We have already seen that L1/2 extends to a continuous operator from 
W^p(Rn) to Lp(Rn) for 1 < p < oo. 

Furthermore, combining Proposition 10 and Proposition 20, we have for some e > 0, 

I IV/| |p < C\\L^2f\\Pì f G W1,p(Rn) П tf1 (Rn), 1 < p < 2 + e. 

Thus, the extension of L1/2 is one-one from W1>p(Rn) to Lp(Rn) for this range of 
Ü'S. 

To see that it is onto, it now suffices to show that it has dense range. Let g G 
Lp(Rn) fl L2(Rn). Since g G L2(Mn), we have g = L1/2L~1/2g by functional calculus. 
By (22) and (43) we know that ||VL~1/2#||P < c||p||p < oo, and this shows that g is 
in L1/2(W1>p(Rn)). • 

Remarks 
1. Consider the space of tempered distributions modulo constants / such that 

V / G 7i1(Rn), equipped with the semi-norm ||V/| |^i(Rn). This space coincides 
with the Triebel-Lizorkin space Fi'2(Rn) [79]. Since test functions are dense in 
Fi,2(Rn), the same argument as above shows that L1/2 extends to a bounded 
and invertible operator from F^2(Rn) onto 7i1(Rn). 

2. Call (Lx/2)p the extension of L1/2 on W^p(Rn) for 1 < p < 2 + e. There is 
another way of defining this extension. Assume that L has the property (G). 
Then, for 1 < p < oo, the semigroup e~tL extends to a C°-semigroup on Lp(Rn) 
and its infinitesimal generator, which is denoted by — Lp, is an unbounded oper­
ator of type и on Lp(Rn) [77]. Thus one can define its square root on Lp(Rn), 
which we denote by (Lp)1/2 with domain Dp [1]. It is easy to show that Dp is 
the range of the bounded extension on Lp(Rn) of ( / + L)-1/2. Hence, Theorem 
21 implies that Dp = W1^p(Rn) for 1 < p < 2 + e and that (Lp)1/2 = (L1/2^. 
The situation for p large is not settled: neither Dp is known nor can one define 
appropriately an extension of L1/2. See Section 4.7.4 for further information. 

4.5. Coefficients depending on one variable 

If L = -
И 
dx 

(a(x 
d 

dx 
then a(x) 

d 
dx 

L"1/2 is a Calderon-Zygmund operator [14]. 

In particular ||o?//dx||p < CpHL1/2/^ for all p G ( l , oo ) . This Lp inequality, false in 
general for large p's in higher dimensions, is valid in specific situations such as the 
following one. 

Theorem 22. — Let L = — div (^4V) G £(6) on Rn and assume that A depends only 
on one of the coordinate variables. Then, for 1 < v < oo. 

UV/H, ~ l |i1/2/llP, (44) 

and L1/2 extends to an isomorphism from WliP(Rn) to Lp(Rn). 
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Proof. — There is no loss of generality to assume that the entries ak£ of A are func­
tions of x\ where {x\,x2,.. • ,xn) are rectangular coordinates in Rn. Introduce the 
vector fields 

Xx = on(xi) 
d 

dxi 
•f ••• + aln(xi) 

d__ 

oxn 
and, for 2 < k < n, Xk = d/dxk, and set X = (Xu.. .,Xn). Note that Xf = MVf 
where, by the ellipticity of A, M is bounded with bounded inverse. Thus, there exists 
c > 0 such that 

c - M * / l < | V / | < c |X/ | , a.e. (45) 

for all / for which V / exists almost everywhere. 
The result will follow from 

Proposition 23. — Under the assumptions of Theorem 22, the operators XkL 1/2, 
1 < k < n, are Calderón-Zygmund operators. 

Indeed, Calderón-Zygmund theory and (45) imply, for 1 < p < oo, that | |V/| |P < 
c||X/||p < cCpWL1/2f\\p. The reverse inequality is already known from Theorem 1. 
Eventually, the extension of L1/2 to an isomorphism can be done as in the proof of 
Theorem 21. • 

Proof of Proposition 23. — It is interesting to note that among the three operators 
VL-1/2, AVL-1/2 and MVL-1/2 , only the last one is a Calderón-Zygmund operator. 
This is due to some natural algebraic relation on the heat kernel and justify the 
introduction of the vector fields Xk. 

Set Tk = XkL-1/2. We have 

Tk = 
2 

/TT 

oo 

0 
tXke-t2£ 

dt 
t ' 

The key point is that we have good kernel estimates. 

Lemma 24. — Under the assumptions of Theorem 22, for all 1 < k < n, the operators 
tXke~t2L satisfy (Gl-3). 

This lemma is proved in Appendix B. 
It classically implies that the off-diagonal restriction of the kernel of Tk is a 

Calderón-Zygmund kernel [26]. Thus, it remains to show that Tk is bounded on 
L2(Rn). We give two proofs of this fact. 

The first one makes use of Proposition 11 of Chapter 3, which tells us that || V/H2 ~ 
IIL1/2/!^. The L2 boundedness of Tk then follows from (45). 

In the second proof we establish the L2 boundedness of Tk as follows. Assume 
first that 2 < k < n. Since Xk = d/dxk and e_t Ll = 1, it is easy to see that 
Tfcl = Tfc*l = 0. Hence, Tk is bounded by invoking the Tl-Theorem. 
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Next, for the same reasons we have T i l = 0. Observe that b =a-111 is a bounded 
and accretive function on En and, by a simple calculation, that 

T*{b) = 
n 

k=2 

T£(aikb). 

Now, this sum is in BMO because we already know that for k > 2, Tj* extends 
boundedly from L°° to BMO. Hence T?(b) G BMO and the boundedness of Ti 
follows by invoking the Tfr-Theorem [27]. • 

4.6. Local Lp estimates 

In this section, we are interested in the local inequalities corresponding to (1) and 
(2). Namely, for L = — div (AV) G £(S), we consider the a priori inequalities 

l | i 1 /2 / l l P < c p ( | | V / | | p + | | / | |p) , 

I | V / | | p < 4 ( | | L 1 / 2 / I I p + l l / I W -

(46) 

(47) 

The strategy to obtain such inequalities is basically the same as before with some 
modifications that need to be explained. 

Let us begin with a simple observation. 

Lemma 25. — Let L = —div(AV) G £(S) and assume that L has the Gaussian 
property (G). Then, for all p G (l,oo) there is a constant C = C(p,S) > 0 such that 

C-'ML + I)1/2/!!, < \\L^f\\p + \\f\\p < C\\(L + l)^f\\p (48) 

for all f GViL1/2). 

Remark. — The assumption (G)ioc would not suffice to obtain both inequalities. 

Proof. — This lemma relies on the following result. The bounded holomorphic func­
tional calculus for L on L2(M.n) extends to L^IR") for all p € ( l , oo ) . This means 
that for all n > n > u (see Preliminaries), there exists a constant c = c(fi,p) > 0 such 
that for all w e H°°(r,.) 

\\<P(L)f\\P < c\\f\\p, / € L P n L 2 ( R " ) . (49) 

This fact can be proved as in Theorem 6.3 of [11] by showing that y>(L) is a Calderon-
Zygmund operator. An alternative approach is to invoke a general result of Duong 
and Robinson [331. 

Applying twice (49) to (p(z) — (z1/2 + l){z + 1 ) 1I2 and to its inverse readily yields 
(48) and the proof of the lemma is finished. • 
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Set D = (V , Id ) . Since ||Df||p is equivalent to | |V/| |P + \\f\\P, when this lemma 
applies, (46) and (47) become respectively equivalent to 

| |(L+l)V2/||p<Cp||I>/||p, (50) 

\\Df\\p<Cp\\(L + l)1/2f\\P. (51) 

Note that when p = 2, (K)/oc is precisely (50) and (K*)ioc is equivalent to (51) by 
duality. 

Now recall from Chapter 2 that we can factor L + 1 as D*AD where A is the 

multiplication by the matrh fA 
0 

0> 
1 

It is then just a matter of adapting mutatis 

mutandis the methods developed in Sections 4.2, 4.3 and 4.4 of this chapter to the 
new situation. For this we need to assume (G), (K)/oc and (K*)/oc and we obtain that 
(50) holds for all p G (1, oo) and (51) for p G (1,2 4-e) for some e > 0. 

Next, let us assume that, in addition to the preceding hypotheses, for a given 
q G (1, oo), (1 + L)-1 extends to a bounded operator from W_1'*(Rn) into WUq(Rn) 
with the estimate 

H ( i + rr)-1/!!^!.. < c.ii/Hwr-i.,, / e L2(i")nr1'5(Rn). (52) 

We claim that 

l |C/l lg<^ll№+l)1/2/l^ / G H1(Rn)r\Wlìq(Rn). 

Indeed, let / G L2(Rn) n W'1*9 (Rn), where q' is the dual exponent of q. Since 
(L* + 1)"1/2/ = (L* + 1)X/2(L* + l ) " 1 / , by (50) for L* with p = q', one has that 

||(L* + l)-1/2/||,< < c\\D(L* + l)"1/!!*' < cCq\\f\\w-i,< 

using (52) and duality. Hence (L + 1) 1'2 extends continuously from Lq(Rn) into 
W1,q(Rn). Finally, since the domain of (L + l)1/2 is H1^), we obtain the desired 
inequality. 

Summarizing the above discussion, we have obtained the following result. 

Theorem 26. — Assume L = — div (^4V) G S{8) has the property (G) and that (K)ioc 
and (K* hoc hold. Then there is e > 0 such that 

\\L1/2f\\P <cP(\\Vf\\P + \\f\\P).. 1 < p < OO. (53) 

IIV/II, <c'p(\\L^f\\p + \\f\\p), Kp<2 + e (54) 

//, in addition, for a given q G (1, oo), (1 + L) 1 extends to a bounded operator from 

VF_1'9(Rn) into W1'q(Rn), then (54) holds for this value of q. 

Remark. — By combining these estimates appropriately, one sees that the converse 
of the last statement is true if, in addition, (54) also holds for L* with p = q'. 

Let us finish with a statement that encompasses Theorem 3. 
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Corollary 27. — Let L — — div (AV) G £(S), where A has vmo coefficients. As­
sume also that the coefficients are real-valued if n > 3. Then, for p G ( l , oo ) , L1/2 
(resp. (L + l)1/2) extends to a bounded (resp. bounded and invertible) operator from 
WliP(Rn) into (resp. onto) Lp(Rn) with the estimates 

II^1/2/IIP + I I / I I P - | | V / | | P + | | / | | P . 

Remark. — The hypotheses of this statement are selfadjoint, 

Proof. — The hypothesis that A be real if n > 3 ensures the validity of the Gaussian 
estimates on L by the results of Chapter 1. Next, (K)ioc and its adjoint follow from 
Chapter 3. For the resolvent estimate, we quote the following result from [3]. 

Lemma 28. — Assume A G A(S) has vmo coefficients. Then, for all p G ( l ,oo) 

| | ( 1 - div (AV))-1/W1,p<cp\\f\\w-,,P. 

The proof of the corollary is complete provided the invertibility of (L + l)1/2 is 
established, which can be done as in the proof of Theorem 21 and is left to the 
reader. • 

Remark. — Theorem 26 is known under the additional hypothesis that A has Holder 
continuous entries. In this case, further Lp-Sobolev results can be obtained. See [11] 
for statements and proofs. 

4.7. Miscellaneous results 

4.7.1. Perturbation theory. — We have shown in Section 0.5 of Preliminaries a 
strong continuity result for the map A —> (— div (AV))1/2 defined on real symmetric 
elliptic matrices. 

The real variable representation of square roots given by Theorem 2 and the per­
turbation results for heat kernels (Theorem 6, (ii), of Chapter 1) have the following 
consequence for this map. 

Proposition 29. — Letfe H1^) andy G C£°(Mn). Then, the map A -> (Lxl2f,y) 
is analytic on Q. 

Recall that Q is the class defined in Section 1.6 of Chapter 1 of all complex A € A 
for which L = — div (AV) has the Gaussian property (G) and that Q is open in A. It 
follows from Theorem 4 of Chapter 1 that this result applies to real symmetric elliptic 
matrices. Of course, this is a weak analyticity result as L1/2 is considered here as an 
element of the space of bounded linear applications from Hl(M.n) into the space of 
distributions on Rn (see the remark after Lemma 18). One can recover from it the 
strong continuity result mentioned above but it gives no hints so far to whether the 
conjecture formulated in Section 0.5 of Preliminaries holds. 
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The proof of this proposition is similar to that of Theorem 8 of Preliminaries. The 
only difference is in the topology put on square roots. We leave the details to the 
reader. 

4.7.2. Extensions to higher order operators. — If 

L = ( - l ) m 
\a\ = \(3\=m 

IVL-1/2/,!2DSF 

is an elliptic homogeneous differential operators of order 2m with bounded coefficients 
satisfying the Garding inequality 

R e < L / , / ) > < S | | V " 7 H ! 

and for which (K) and (K*) hold (see Preliminaries), the same questions about the Lp 
counterparts may be formulated. It turns out that an entirely similar strategy that 
uses the estimates of Section 1.7 in Chapter 1 gives results similar to Theorems 1 and 
2. More precisely, the statement of these results generalize to such L, where A becomes 
the multiplication with (aa/3) and where Hrn(Wl) and Vm replace respectively H1(Mn) 
and V. 

If the Garding inequality occurs with a factor — C|| / | |2 with a non-negative C in 
the right hand side then the local analogs of these results are valid: they correspond 
to the ones established in Section 4.6 for second order operators. 

One can also develop the Lp theory of square roots for elliptic systems along the 
same lines. 

4.7.3. Lp theory and bilipschitz changes of variables. — Let us go back to 
second order operators. The Lp theory also can be transferred under a bilipschitz 
change of variables. From the discussion in Section 0.8 of Preliminaries, it suffices to 
extend our results to square roots of mL, where L = — div ( A V ) and m is a bounded 
non-negative function with bounded inverse (in fact, all what follows generalizes to 
the case where mis a bounded and accretive function on Rn). 

We claim that the Lp estimates of Theorem 1 and Theorem 2 hold for (mL)1/2 in 
lieu of L1/2. Let us give a hint, leaving details to the reader. We assume that (G) 
holds for L and that \\{rnL)lf2f\\2 ~ | |V/ | |2 . 

First, starting from (5) of Preliminaries we have 

(mL)1/2/ = 
2 
7T 

poo 

JO 
(1 + t2mL)~1mLf dt = 

•oo 

0 
*t(m)(V/) 

dt 
t 

where 0^ = — 
2 

7T 
(m"1 +t2L)-H div A. 

As observed in a remark of Section 1.5.1 in Chapter 1, 6^ has the kernel estimates 
that make the methods of Section 4.3 applicable. We obtain that 

(mL)1/2 = C/V, (55) 
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where U is a Calderón-Zygmund operator, which gives part of the ^^-inequalities. 
For the converse inequalities, the starting point is 

V(mL)"1/2/ sd 2 

7T 

r oo 

0 
VinT1 +#L)-1(mT1f) 

dt 

t 
(56) 

and Lp-estimates for 1 < p < 2 follow from L2-inequalities and Hormander's condition 
on the kernel of V(mL)_1/2m. The improvement from 2 to 2 4- e is obtained as in 
Proposition 20. 

For the limiting cases p = 1 and p = oo, we need to understand the cancellations. 
Observe that 

(m_1 + i2L*)_1(m_1) = 1, t > 0, 

hence (7*(m_1) = 0. This can be used to show that U maps ^ ( R * 1 ) into mH1(Wl), 
the image of ?^1(Rn) under the operator of multiplication by m, and thus 

IKfnL)1/2/!!™«^.-, < C U V / I l * ^ » , . 

The converse inequality also holds using (56). 
Finally, using the same method as the one in Section 4.2 one has 

||(mL)1/2/||BMO(Rn) < c\\AVf\\BM0^y 

4.7.4. Estimates on Morrey spaces and application. — We go back to the 
situation where L = — div (AV) e 8(6). 

Let us define the homogeneous Morrey space M7, 0 < 7 < n, as the space of 
/ G L?CRn) such that 

II/IIm^: =sup P-1 

sd 
l/l2 

1/2 

< OO, (57) 

where the supremum is taken over all Euclidean balls Bp of radius p > 0 (compare 
with Chapter 1). 

It should be noticed that for p > 2, Holder inequality yields the embedding 

Lp(Rn) C M7(Rn) if and only if 7 = n 1 sd 
9 
P 

While Lp estimates for square roots fails when p > 2, we do have substitute estimates 
on Morrey spaces. 

First, a result of M. Taylor asserts that Calderón-Zygmund operators are bounded 
on homogeneous Morrey spaces [78]. Therefore, we have the following result as a 
corollary of Theorem 2. 

Proposition 30. — Assume that L has the property (G) and that (K) holds. Then, 
for all 0 < 7 < n, 

I|£1/2/IIm. < c | | V / | | a , . 

For the converse, we have 
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Proposition 31. — Assume that L has the property (G) and that (K*) holds or, 
equivalently, | |VL~1/2/ | |2 < c||/||2. Then for some 70 G (rc-2,n] and all 0 < 7 < 70, 
we have 

I I V L - ^ / H ^ < C | | / | | ^ . 

A consequence is a better understanding of the Lp domain of L1'2 (see Section 
4.4). 

Corollary 32. — Under the assumptions of Proposition 31, there exists a real po > n 
such that if g e Lp(Rn) and Lxl2g G Lp(Rn) with n < p < p0, then g G C^IR*1) for 
7] = 1 — n/p. 

Proof. — Define p0 by 70 = n(l — 2/p0). If n < p < po, we obtain that 

llfflb, < c||Vfl||A, < c\\L^g\\^ < cUL^gUr, 

where 7 = n(l — 2/p) and 77 = ( 7 + 2 — n)/2. This proves the corollary. 

To prove Proposition 31 we need the following lemma. 

Lemma 33. — If L has the property (G), then the heat kernel Kt(x,y) satisfies 
the following estimate: there exists 70 G (n — 2,n], such that for all 0 < 7 < 70, 
VxKt(x,y) G M7(Rn) and there are non negative constants c, a > 0 such that 

JBp{x0) 
\tVxKt2(x,y)\2dx< c 

tn 
fi 
t 

7 
e-a\x0-y\2/t2 

for all Xq, y G Mn and p, t > 0 provided 2p < \xq — y\ 

Proof. — In the course of the argument done in Chapter 1 that to show (D) implies 
(G), we have seen that, if is large enough and if A belongs to an appropriate sector, 
V(A+L)-fc is bounded from L1(Wn) into M 7 ( l n ) for all 7 G (0,70) for some 70 > n-2. 
Integrating this in the Cauchy formula (61) of Chapter 1 gives the same boundedness 
result for Ve~tL. Taking into account homogeneity with respect to t > 0, this is 
equivalent to an estimate of the form 

qsdqd 
\tVxKt2(x,y)\2 dx < c 

tn 
' p 
sd 

7 

(Note the exponent 7 > n — 2: compare with (13) of Chapter 1.) The Gaussian decay 
now comes by interpolating with (13) in Chapter 1 which changes 7 to an arbitrary 
smaller value. This proves the lemma. • 

Proof of Proposition 31. — Fix 0 < 7 < 7 / < 7 o , / G M7 and a ball BP(xq) centered 
at xq. Write 

/ = /0 + /1 + /2 + • • • , 
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where /0 = / on B0 = B2p(x0) and /0 = 0 elsewhere, and if j > 1, fj = f on 
Bj = B2j+ip(xo) \ B2jp(xo) and fj = 0 elsewhere. The assumption on / implies 
ll/illl < c(p2')7. To Prove (57), it suffices to establish that for all j > 0, 

IBP{X0) 
I V L - 1 / 2 / , ! 2 

1/2 
< cp7/22-^ (58) 

for some /3 > 0 independent of j . 
For j = 0, this follows from the L2-boundedness of VL-1/2. 
Suppose that j > 1. Since VL-1/2 = c /0°° t\/e~l L dt/t, from Minkowski integral 

inequality and Lemma 33 with 7', we deduce that 

'Bp(x0) 
IVL-1/2/,!2 

1/2 

dsfff 
•oo 

s ssd sdqdsd 
IVL-1/2/,!2IVL-1/2/,!2 

, 1/2 

\fj(y)\dy 
dt 
t 

ssqdqd 'OO 

Jo sqd 

C 

tn/2 
9 
t 

<y'/2 
e-a^-^/2t"\fj{y)\dy 

di 

t 

Next, for y e Bj, \x0 — y\ ~ p2J, hence integrating in £ and then using Holder's 
inequality, we obtain a bound 

c ( ^ ) - n / 2 2 - ^ , / 2 

JBj 
\fi(y)\dy<c2-^''2( oVy'2, 

which proves (58) and the proof is finished. 
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APPENDIX A 

THE SPACE ABMO 

This space ABMO has been defined in Chapter 3. We give the proofs of results 
announced there. 

A . l . Proof of Proposition 15 of Chapter 3 

That (ii) implies (iii) is evident. 
Let us prove that (iii) implies ( i) . Let / G BMO. Fix e > 0 and Q G Qo- Take ÒQ 

and HQ as in (iii). Now, let Qi, ile I, be a finite family of nonoverlapping subcubes 
of O with t(O.i) < Tìi(O). Bv Poincaré inequalitv 

df 
\hQ-mQihQ\2 <ci(Qi)2 

JQi 
\VhQ\2 < cV2£(Q)2 

dfs 
IVfcd2. 

On the other hand, 

df 
\bQ - mQibQ\2 < 1 

df 
IM2 

hence 

qsdq sds 
\f-mQif\2<2crì2e(Q)2 

iQ 
| V M 2 + 4 

JQ 
I & Q | 2 < ( 2 C T ? 2 + 4 £ ) | Q | 

by definition of &Q and HQ, and (i) follows readily. 
We now assume that / G ABMO and prove (ii). Fix a cube Q G Qo and normalize 

/ by imposing rriQJ = 0. By scaling there is no loss of generality to assume that 
Q = [0, l)n. Consider the dyadic cubes Qjk, j > 0 and k G Zn, and (Sjf)(x) — rriQjkf 
whenever x G Qjk C Q and Sjf = 0 elsewhere. By assumption, for any s > 0, there 
exists j which is chosen once for all such that 

'Q 
l / - 5 7 / | 2 

QifcCQ ̂ Qjk 
\f-mQjkf\2<e. ( 1 ) 
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We show that for some to > 0 depending only on e and / , fQ \f — Ptf\2 < 50e if 
t < t0. 

To this end, write 

f-ptf = (i- pt)(f - sjf) + (i - pt)(Sjf). 

If Xjk is the characteristic function of the cube Qjk, the function (J — Pt)Xjk is 
bounded uniformly with respect to t and j and has support contained in the set of 
x G l n such that d(x, Qjk) < t (recall that Pt has a kernel supported in \x — y\ <t). 
Hence 

|(/ - Pt)xjk\2 < ct2-*n-V = ct2?\Qjk\. 

If t is small the functions (I — Pt)Xjk have supports with finite overlap. Hence, 

| ( J - P t ) ( 5 , / ) | 2 < c \(I-Pt)(mQjkfXjk)\2 

< ct2j 
k 

\mQiJ\2\Qjk\ 

< ct2j 
k 'Qii. 

l/l2 

< ct2j 
IQ 

l/l2. 

Next, with x being the charateristic function of Q, write 

(i - pt)(f - Sjf) = / - Sjf - pt(x(f - Sjf)) - pt((i - X)f). 

In the last term we have used the fact Sjf = 0 outside of Q. Thus, by (1), the 
L2-boundedness of Pt and localization, we have 

IQ 
\(I-Pt)(f-Sjf)\2 <6e + 3 | P * ( ( l - x ) / ) | 2 < 6 e + 3 

(l+t)Q\Q 
l/l2-

At this point, it is useful to state the following result. 

Lemma 1. — Let f e BMO, Q G Q andO <t < 1. Then, 

Jdist(x,dQ)<U(Q) 
\f(x)-mQf\2dx<ct(\\nt\ + l) \Q\\\f\\2BMO> 

where c depends only on dimension. 

Applying this result and collecting all the estimates, we have 

f-Ptf\2 < 12s + ct&\\f\\2BMO + c(| In 11 + l ) t | | / | | |MO, 

and choosing t small enough gives us (ii). 
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Proof of Lemma 1. — Decompose the set dist(:r, dQ) < t£(Q) as a non-overlapping 
union of 0(£1-n) cubes Qi with sidelength t£(Q) and adjacent to Q. Classical BMO 
inequalities yields for each z, 

JQi 
I/O*) " mQf\2 < c(| In* I + l)\Qi\\\f\\%Mo, 

and, since \Qi\ = £n|Q|, we conclude by summing over all z's. 

A.2. Littlewood-Paley characterization of A B M O 

We take Qt = -t 
dPt 
dt 

Proposition!. — Let f £ BMO. The following statements are equivalent. 

(i) f e ABMO. 
(iv) For any e > 0, there is r\ > 0 such that for all Q G Qo, 

1 

qs 

sqdq 

s sd 
\Qtf(x)\2 

dxdt 

t 
sdq 

(v) There exists a non-increasing weight w : [0,1) —• [0, oo) such that 

lim wit) = oo 

and 

sup 
QeQo 

1 

Q 

»£(Q 

Jo Q 
\Qtfix)\2w 

t 

AQ) 

dxdt 
t 

< oo. 

Remarks 
1. In [15], we took (v) as a definition. We gave no proofs there. 
2. As usual, these characterizations are independent of the choice of Qt. 

Proof. — That (v) implies (iv) is evident. Conversely, assume that (iv) holds. To 
each j > 0, apply (iv) with e = 2~i and call (rjj) the sequence thus obtained. With no 
loss of generality, it can be assumed non-increasing and converging to 0. The desired 
weight in (v) is defined by w(s) = 2J/2 when rjj+i < s < rjj. 

Next, we prove that (iii) of Proposition 15 in Chapter 3 implies (iv). Let e > 0 
and Q G Qo- Construct bsQ and hsQ by (iii) (the fact that 3Q may not be in Qo is 
not a major difficulty and we ignore it). By standard Littlewood-Paley analysis and 
localization, we have 

sqdqd 

<o sd 
\Qth3Q(x)\2 

1 

t2 

dxdt 

t 
< c 

'3Q 
IV/ISQI2, 

hence qdddqd 

'0 JQ 
\Qth3Q(x)\2 

dxdt 

t 
< cn2£(Qy 

J3Q 
|V/>3Q|2<C772|Q| 
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by definition of /13Q. Next, 

é»l(Q) 

/0 sd 
\QthQ(x)\2 

> dxdt 
t 

sqd 
sdqd 

\bsQ\2 <ce\Q\ 

and (iv) follows from / = b3Q + h3Q on 3(5. 
Finally, we prove that (iv) implies (ii) with a modified approximation to the identity 

(Pt)t>o defined by 

I-Pt = 
>t 

JO 
Ql 

ds 
s 

Let Q G Qo and \ be the characteristic function of 2Q. Observe that since Qs has a 
kernel supported by \x — y\ < s, we have 

Q2sf(x) = Qs(xQsf){x), xeQ,s< t(Q). 

Hence, using standard Littlewood-Paley techniques and ( , ) as the inner product on 
L 2 ( R N ) , if t < i(Q), we have 

lQ\f-Ptf\*dx < 
fRn 

sd 

sd 
Qs(xQsf)(x) 

ds 
s 

I2 
dx 

< 
sd 

sd 

ds 

0̂ 
(Q*sQu(xQuf),xQsf) 

ds 
s 

iu 
u 

< c 
f f 
Jo Jo 

inf 
's 
KU 

u 
s 

HxOu/lbllxQ./lh 
ds du 
s и 

qdqsd 
Jo lnn 

\x(x)Qs№\* 
dxds 

s 

where the last inequality follows from Schur lemma. 
Now, let e > 0 and n > 0 given by (iv). Splitting 2Q into 2n cubes with sidelength 

£(Q), we can apply the inequality in (iv) to each of these cubes. Choosing t = rj£(Q) 
in the preceding calculations, we obtain 

f \f-Ptf\2<ce2n\Q\ 
JQ 

which is the desired inequality. Proposition 2 is proved. 

A.3. A subclass of A B M O 

We consider Example 3 of ABMO functions and Proposition 23 of Chapter 3. 
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Proposition 3. — Let f e BMO. Then the following assertions are equivalent 

sup 
QeQo 

1 

\Q\ \h\<i{Q) Q 

\h\<i{Q h)- №\2 
\h\n dxdh < oo. (a) 

sup 
QeQc 

1 

101 o 

wxw 

<w 
\Qtf(x)\2 In 

wxxw 
wt 

dxdt 
t 

< oo. (b) 

sup 
QGQo 

1 

Q\ 

<Q) 

o Q 
\f(x)-Ptf(x)\2 

dxdt 
t 

< oo. (c) 

The condition (b) is clearly a special case of ( v ) in Proposition 2. So it follows 
from this lemma that any / satisfying (a) or (c) is in ABMO. Also, the equivalence 
between (a) and (c) gives us a proof of Proposition 23 in Chapter 3. 

Proof. — We begin with some localisation arguments. Let / € BMO and set, for 
each cube Q, fq(x) = f(x) — mcf when x G Q and fç(x) = 0 otherwise. 

First. (&) is eauivalent to 

sup 
QEQo 

1 

\Q\ l\h\<£(Q) sd 

\fQ{x + h)-fQ{x)\2 

sdqddq 
dxdh < oo. (a ' ) 

Indeed, for each Q, the error terms are controlled by integrals of the form 

c 

\Q\ f\h\<t(Q) I dist(x,dQ)<\h\ 
\f(x)-mQf\2 

, dxdh 

qsdd 

which, by Lemma 1, are bounded by 

c 

\Q\ \h\<l(Q) 

\h\ 

sqds 
-(In 

sdqqd 

ft + i ) K ? l 
dh 

lftl» \\f\\%MO = c\\f\?BMO-

Next, (b) is equivalent to 

sup 
QeQc 

1_ 

Q 

qsd 

Jo sd 
\QtfQ(x)\2 In 

qdsd 

t 

dxdt 

t 
< oo. (b ' ) 

Using the the fact that the kernel of Qt is supported in \x — y\ < t and that Qt is 

uniformly bounded on L2(Wn), the error terms can be shown to be controlled by 

c 

\Q\ 

rUQ) 

sd Jdist(x,dQ)<t 
\f(x)-mQf\2 In 'HQ) 

t 

dxdt 

t 

and again, Lemma 1 gives a bound C | | / | | ^ M O . 

Finallv, bv similar arguments, (c) is equivalent to 

sup 
Q€Qo 

1 

\Q\ 

r*(Q) 

sd sdq 
\fQ(x) - PtfQ(x)\2 

dxdt 

t 
< oo. ( C ) 

It remains to prove that ( a ' ) , (b ' ) and (c ' ) are equivalent conditions. Since, by 

definition of BMO. we have 

sup 
QeQo 

1 

101 sd 
\fQ(x)\2dx<\\f\\2BMO, 
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this follows from the next result and rescaling applied to each / Q . 

Lemma 4. — For f G L2(Rn), set 

* ( / ) = 
df df 

\f(x + h)-f(x)\2 
\h\n dxdh, 

92(f) = 
Jo 

>1 

df 
d | Q t / ( x ) | 2 | l n t | 

dxdt 
t 

e-t4k+2L 
' 0 

1 

c 
\f(z)-Ptf(x)\* 

dxdt 
t 

Then, the quantities qi(f) + ll/lli? * = 1?2,3, are equivalent (in the sense of norms). 

The proof of this lemma consists in observing that each of these quantities is, vis 
Plancherel theorem, equivalent to 

xc 
\№)\2m(0d£, 

where ra(£) is a continuous functions satisfying ra(£) ~ 1 near 0 and ra(£) ~ In |£| 

near oo. 

This concludes the proof of Proposition 3. • 

A . 4 . Further examples 

Example 4 in Section 3.3.2 of Chapter 3. — We consider a function / that is con­

tinuous and homogeneous of degree 0 on Rn \ { 0 } . 

To show that / G ABMO, pick a cube Q G Qo and remark that we may use any of 

the conditions ( i ) to ( v ) on Q since the various implications are local (more precisely, 

the proofs show that any of the conditions from ( i ) to ( v ) valid on Q implies the other 

ones on subcubes of Q). 

If 0 ^ 3Q, we use condition ( i i ) . Observe that since / is homogeneous, we may 

assume by a linear change of variables that £(Q) = 1. In such a case, elementary 

geometry gives us that 2Q C E = { x G Rn; 1/2 < |x| } . Now, for t < £(Q) and x G Q, 

using the support condition on the kernel of Pt, we have 

\f(x) - (Ptf)(x)\ < w(t) = sup{ \f(x) - f(y)\;x,y G E and \x - y\ < t}. 

Hence, 

JQ 
\f(x)-Ptf(x)\2dx < cw(t)% 

and since / is uniformly continuous on E, this tends to 0 with t. 

If 0 G 3<2, we use condition ( i v ) . Again, the observation on homogeneity applies 

and we may assume that £(Q) = 1/4. Then we have that Q is contained in the cube 
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Qo = [—1/2, l /2]n and it suffices to estimate 

sd 

.1 

}Qo 
\Qtf(x)\2w(t) 

dxdt 
st 

for a convenient weight. 
To this end, remark that since / G L°°, 

If 
Jo Jo 

\Qt№\2 
dxdt 

t < c 

by Littlewood-Paley theory. To complete the proof, it suffices to apply the following 

lemma to the function g(t) = 
1 
t 'Qo 

\Qtf(x)\2dx. 

Lemma 5. — For any g G Lx([0,1]), there exists a non-increasing weight w: [0,1] —• 
[0, oo) with lim w(t) — oo and 
1 ' t^o 

Jo 

sd 
\g(t)\w(t)dt < 2 

Jo 

sd 
\g{t)\dt. 

Proof. — Assume \g(t)\ dt = 1 and select a non-increasing sequence tj by 

sd 

sd 
\g{t)\dt = 4T>. 

If lim tj > 0, then g vanishes in a neighborhood of 0 and the existence of w is 
trivial. Otherwise, we define w by setting w(t) = 2J when tj+\ < t < tj. Thus, 
limt_+o w(t) = oo and 

pi 

Jo 
\g(t)\w(t)dt = 

oo 

j=0 
2j 

sd 

qsdsq 
\g{t)\dt< 

OO 

J = 0 

234T3 = 2. 

Example 6 in Section 3.3.2 of Chapter 3. — Let / be the characteristic function of 
the set E defined by 

n > l 

1 
(In. 4-

1 
qsdsd 

where a > 0 is fixed. Let rj > 0 be arbitrary. Choose nQ G N with 
2a 

2n0-l 
sdq 

Chooseq 

dfdsfdf 0, 
1 

(2n0 - 1 ) « 
and In — 

1 
(2n + l ) « 

1 
(2n- 1)«J 

n > nQ. 

We have, if n < n0, 
e-t4k+ 2a 

(2n - 1)«+1 
e-t4k+2L 
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and it is easy to see that 

sd 
1/ - mInf\2dx = cn£(In), 

where 
lim cn = 1. 

n—>-oo Thus, if rii is chosen large enough, we have 
ni 

n=n0 In 
\f -mInf\2dx> 

1 

2 
n=n0 

m 
i(In) > 

1 

4 
dsqd 

This proves that / ^ ABMO. 
For g(x) = sin(x_1/a), we proceed analogously by choosing 

1 = 0, 
1 

(n07r)<* 
and In = 

1 
_((n + 1)TT)0 

1 
(n7r)a 

e-t4k+2L 

Easy calculations show that ming ~2(—l)n/7rasn increases indefinitely so that 

In 
\g - mIng\2dx = cn£(/n), 

with cn ~ C | sin x — 2/TT\2 dx. The conclusion follows as before. 
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APPENDIX B 

COEFFICIENTS DEPENDING ON ONE VARIABLE 

This appendix is concerned with the proof of Lemma 24 in Chapter 4, dealing with 
L G S having coefficients depending only on the first coordinate variable. With the 
notation of this chapter this amounts to showing that the kernel Mt(x,y) of tXe~l L 
satisfies 

|Aft(*,y)| < c 
tn 

exp 
OL\X — y\2 

t2 (1) 

\Mt(x,y) -Mt(x + h,y)\ < 
c 

f 
\h\ 

t + \x-y\ exp 
a\x — v\2 

t2 f (2) 

\Mt(x,y + h) -Mt(x,y)\ < 
c 
tn 

\h\ 
t + \x-y\ 

f 
exp 

a\x-y\2 
t2 (3) 

whenever 2\h\ <t+\x — y\. 
We assume throughout this appendix that L = — div (^4V) where A has entries aui 

that are functions of x±, (x±, x2,..., xn) being the rectangular coordinates in M71 and 
X = (Xi,..., Xn) is the arrow of vector fields 

Xi = on(a;i) d 
dxi H + ain(ai ) 

d 
dxn 

and, for 2 < k < n, Xk = d/dxk-
The proof is long so let us explain the strategy. 
The first step is to show that L has the Gaussian property (G). 
The second step is to obtain boundedness and regularity with respect to both 

variables for Mt(x,y). For the boundedness and regularity with respect to x, we 
show that x - » t\7xXKt2(x,y) = VxMt(x,y), the variables t,y being fixed, is in a 
Morrey space, which implies that Mt{x,y) is bounded and Holder continuous in x. 
The regularity in the y variable is obtained in a similar way. 

The third step consists in obtaining the decay in (1-3) from the Gaussian decay of 
Kt(x,y) and the Holder regularity of Mt(x,y) via an interpolation technique. 
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Remark. — Before going on into the proof, a further simplification can be obtained by 
noticing that the class of operators L considered in this argument is invariant under 
scaling and translations. Thus, it suffices to obtain estimates for t = 1 and y = 0 in 
most cases and the full estimates with the correct dependence in t and y follow by an 
appropriate linear change of variables. For this reason, we do not care in the proof 
about controlling constants. 

Lemma 1. — L has the Gaussian property (G). 

Proof. — By Theorem 10 of Chapter 1, L has the property (G) if L and L* have the 
property (D). Since this class of operators is stable under taking adjoints, we restrict 
our attention to L. 

Let us pick a cube Q = I x J in an open set Q where / is an interval of M and J a 
cube of Rn_1, and u a weak solution of L on fi. 

As the coefficients aki depend only on #i, L and d/dxk commute for 2 < k < 
n. Using only Cacciopoli inequality as in [39], one has that du/dxk G Hloc(Q) 
and L(du/dxk) = 0 for 2 < k < n. Note that only the ellipticity of A is used 
in this argument. By induction, one has that dau G H}oc{Q) for all multiindices 
a = (0, « 2 » • • • > <*n). Using the inequality (Sobolev embeddings in Mn_1) 

sd 
\daip(s,y)\2ds<cn 

sd /R«-l 
|/3|<n-L,/30=0 

\da+ß(p(s,z)\2dzds 

for all (p G Co°(Wn) and all multiindices a with first coordinate 0, and localization 
and density arguments, one obtains 

\\dau(.,y)\\Hloc(I) <c(n,J,a) 
\ß\<n-l,ß0=0 

W+ßu\\HLc(Qy 

Therefore u G C°°(J\ H}oc(I)) and since Hjoc(I) C C^2(I), we have shown that u is 
locally Holder continuous with exponent 1/2. 

Let us show that u satisfies (18) in the definition of (D) with ¡1 = 1/2. Let f& = B± 
be a ball of radius 1 and assume that u G i71(Bi) and Lu = 0. Let 0 < p < 1. If 
p > 1/3, the inequality is obvious, so we assume p < 1/3. From Cacciopoli inequality 
and what we just established, 

dsqs 
|Vu|2 < 

c 

P2 'B2P 
\u - cp\2 < cpn-\ 

where cp is the mean of u on B<2.p. Note that c depends on n and ellipticity and on 
u. The correct dependence in u follows from the uniform boundedness principle as 
follows. 

Let E be the space of all weak solutions u G iJx(5i) of Lu = 0. Then E/C 
equipped with the norm ||tz|| = (fBi IVup)1/2 is a Banach space (it is easy to show 
that the space of all weak solutions is closed in ^(Bi)). Define Tp: E L2(Rn) by 
Tpu(x) = /9~(n-1)/2(VM)(x) for almost all x G Bp and Tpu(x) = 0 otherwise. We have 

ASTÉRISQUE 249 



APPENDIX B. COEFFICIENTS DEPENDING ON ONE VARIABLE 151 

shown that sup0</0<1/3 | |Tptz | |2 < + 0 0 for each u G E. Thus sup0<A><1/3 ||TP|| < + 0 0 . 

Writing out this inequality means precisely that 

sqd 
\Vu\2 < Con-] 

sdq 

sqdqdd (4) 

where the constant C depends only on n and S. 

On balls BR with arbitrary radius, a linear change of variables (which does not 

affect the ellipticity constant) brings us back to the preceding case. • 

Remark. — A further investigation on the equation Lu = 0 shows that, in fact, u is 

locally Lipschitz so that n — 1 in (4) becomes n. We do not need such a refinement 

here. However, see the next remark for an alternate way of seeing this. 

Lemma 2. — If Kt(x,y) denotes the heat kernel of L then for all t > 0 and y £ Rn, 

x 1-» VXKt(x,y) belongs to the Morrey spaces M 7 for all 7 < n — 1. 

Proof. — We start from the equation 

diyx(A(x1)VxKt(x,y)) = 
dKt(x,y) 

dt 

Fix 2 < k < n. Differentiating, we obtain 

(5) 

div*, 
(Pr,l(Q)(A) dKtlx,y) 

dxk 
— div ek 

dKt(x,y) 

dt 
(6) 

where ek is the kth canonical basis vector in Mn. It follows from Lemma 19 of Chapter 

1 and Lemma 1 that x »->• dKt(x,y)/dt is bounded, hence it belongs to all Morrey 

spaces M^ where (3 < n. Using Lemma 12 of Chapter 1, (6) implies have that 

x i-> Vx(dKt(x,y)/dxk) belongs to M 7 for all 7 < n — 1. Since Xk = d/dxk we 

have obtained that VXkKt(x,y) belongs to M1 for 7 < n — 1. It remains to study 
(Pr,l(Q)(A)(Pr,l(Q)(A) 

If t > 2, since dldxt and X\ commute, we have that 

(Pr,l(Q)(A)(Pr,l(Q)(A) 

dx£ 
= Aei V 

dKt(x,y) 

dxe 

belongs to M 7 for 7 < n — 1 by what we have just proved. 

Next, the function x \-t d(XiKt(x,y))/dxi occurs as one term in equation (5) . 

More precisely, we have 

dXxKtfay) 

sdqd 
sd 

dKt(x,y) 

dt 
sd 

k>2,£>l 

d 

dxk 
sqdqssd dKt(x,y) 

dxi 

Commuting d/dxk with the other operators in the sum, we see that the function 

x i-> dXiKt(x, y)jdx\ belongs to M 7 for 7 < n — 1. • 

Lemma 3. — Mt(x,y) is bounded and Holder continuous in both variables (x,y) for 

some exponent in ( 0 ,1 ) . 
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Proof. — We have seen that x »->• VXKt2(x,y) belongs to M7 for 7 < n — 1. By the 
Morrey embeddings (Lemma 11 of Chapter 1 ) and since Mt(x,y) = tXKt2(x,y), this 
implies that x \-> Mt(x,y) is bounded and Holder continuous with exponent 77 < 1/2. 

It remains to obtain the Holder regularity in the y variable for Mt(x,y). The 
argument of Lemma 2 can easily be adapted starting from Kt(x,y + h) — Kt{x,y) 
instead of Kt(x, y) in (5). This shows the boundedness of x *-» Mt(x, y + h) — Mt(x, y). 
Its supremum depends on the Holder bound of the heat kernel, which gives the usual 
growth l/il77. 

Remark. — One can improve the conclusion of Lemma 2 by a bootstrap. Indeed, the 
proof gives that x i-> Kt(x,y) is Lipschitz continuous. Thus, the term in the right 
hand side of (6) is bounded. Starting again the argument shows that x *-> VXKt(x, y) 
belongs to the Morrey spaces M7 for all 7 < n. Hence Mt{x,y) is Holder continuous 
in both variables (x,y) for any exponent in ( 0 , 1 ) . 

Lemma 4. — Let f: Rn —> C and fix 1 < k < n. Assume that df/dxk exists and 
df/dxk e C^iW1) for some n G ( 0 , 1 ) . Assume, furthermore, that \f(x)\ < w(\x\) 
where w is a non-increasing weight on [0, 00). Then 

sqdsqd 

'dxk 
(x)\ < c{n,r1)w{\x\)r''^+1\ (7) 

Proof — We begin with Taylor formula 

fix + hek) = fix) + h 
df 

dxk 
(x)+0(\h\1^) 

for all x 6 M71, h 6 1R and 0(|/i|1+r7) is uniform in x. Choosing h with the sign of Xk 
we have \x + hek\ > \x\, and since w is non-increasing we have \f(x + hek)\ < w;(|x|). 
Thus, for all h with hxu > 0, 

df 
dxk 

(* ) < 
2u;(|:r |) 

\h\ 
qddqdsd 

Optimizing over all possible h gives us (7). 

Lemma5. — Mt(x,y) satisfies (1). 

Proof — The preceding lemma applies to f(x) = Kt(x + y,y) when 2 < k < n and 
t = 1 with w(x) = e~aW and gives a Gaussian decay for df/dxk = Xkf> For the 
remaining term we proceed as follows by adapting Lemma 1.4 in [14]. 

By the fundamental theorem of calculus, for all h £ R with hx\ > 0, 

f(x + hey) = f{x) + h 
r1 

0 

df 
dx. 

(x + thei) dt. (8) 

Using the explicit form of X\, one has 

df 
dx\ 

sd 
1 

an 
X,f-

ai2 
an 

df 

dx2 
sdsqddq 

sqds 

an 

df 

dxn 
(9) 
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Now, we insert (9) into (8) and replace X\f{x + thei) by X\f{x) since 

Xxfix + tha) = Xxf{x) + 0(|fcH 

uniformly in x, t. Invoking the Gaussian bound on / and (7) for 2 < k < n, we obtain 
l 

Jo 
1 

ve-t4k+2L 
-dt Xif{x)\ < 

2w{\x\) 
\h\ 

+ C\h\^ + c(n, ry)«;(|x|)^+1^ 

Since ||an||oo < 1/s and Re an > 8 almost everywhere, the integral involving this 
function is bounded below by 6s. Thus, optimizing over h gives us \Xif(x)\ < 
J_3c(n,77)«;(|x|)77/(7'+1) as desired. 

So far we have obtained (1), and (2-3) without the decay. But Remark 2 after 
Definition 3 of Chapter 1 applies and gives us the desired decay. This completes the 
proof of Lemma 24 in Chapter 4. 
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IMPROVED CONSTANTS 

Journe studied in [45] how far a perturbation of the identity matrix one can take 
to control the multilinear expansions involved in the square root problem. 

Although we do not use multilinear expressions, we can ask whether our methods 
improve Journe's constants. 

In fact, we more or less find the same results, and this indicates that these constants 
may have a geometric meaning. 

In this appendix, we need to care about algebra on matrices and their norms. 
Recall that the space Mn(C) is equipped with the operator norm induced by the 
hermitian structure on Cn. 

Let us begin by recalling a basic fact. 

Lemma 1. — The following assertions are equivalent. 
(i) A e A. 
(ii) There exist X G R and M G L°°(Rn, Afn(C)) with ||Af||oo < 1 such that A(x) = 
X(I-M(x)) a.e.. 
(iii) There exist XeR and M G L°°(3Rn, Mn(C)) with ||M||oo < 1 such that A~x(x) = 
X(I-M(x)) a.e.. 

Define 
Ac0 = sup{ || J - A||oo ; (K) holds for - div (AV) } 

and 
« i = sup{ || J - A'1 \\oo ; (K) holds for - div (AV) } , 

and ask for the values of ko and n\. By Lemma 1, the square root problem will be 
solved for all — div (AV), A G A, if one can show that «o = 1 or « i = 1. This is the 
case when n = 1. 

Theorem 2. — Ifn>2, then 
1 

e-t4k+2L < K0 (1) 
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and 
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1 

y/1 + 4n 
sdqsx (2) 

Journe obtained essentially the same lower bounds for kq and k± , and we give proofs 
based on our approach. He also observed that an abstract nonsense argument shows 
that these numbers must be equal but our proofs do not give equal lower bounds. 

Before we proceed, let us introduce, following Journe, the family of dyadic averages 
defined bv 

Stf(x) = IQr1 
<Q 

f, 

where \Q\ is the dyadic cube of Rn which contains x and with sidelength satisfying 
t < £(Q) < 2t. It is a classical result that the associated maximal operator, 5*, is 
bounded on L2(Rn) with norm equal to 2. Also, the geometrical properties of dyadic 
cubes make the constant in Carleson's inequality equal to 1: 

sds 0 

• oc 
\Stf(x)\2dp(x,t) < \d»\2c 

sdss 
\S*f(x)\2dx, f G L2(Rn). 

Thus, we have 

qs 

fOO 

qs 
\bt(x)Stf(x)\' 

dxdt 

t 
*\bt\2c 

sdsd 
\f(x)\2dx, (3) 

for scalar functions / and bt and it extends to Cn-valued functions where the product 
bt(x)Stf(x) becomes a scalar product. 

The other interesting point concerning the family of operators (St)t>o is that, 
given any approximation to the identity (Pt)t>o as in Chapter 2, then (Pt — St)t>o is 
a bounded family with 

\(Pt-St)\s<c(n,<p). (4) 

The proof of this inequality is merely sketched in [45] and we propose another 
proof at the end of this appendix. 

Proof of Theorem 2. — Let us begin the proof of (2). It consists in optimizing the 
constant ci in Theorem 21 of Chapter 2 in a specific situation. 

We consider Vt: L2(Rn,Cp) - » L2(Rn) such that (Vt)t>o is a bounded family sat­
isfying the size and partial regularity assumptions of the above mentioned theorem. 
Furthermore, we assume that 

Vt = WtUA, (5) 

where A is a bounded and accretive operator on L2(Rn,Cp), which, by the operator-
valued version of Lemma 1, is normalized by 

A'1 = I - M 
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with ||M|| < 1 , | |M|| denoting the operator norm on L2(Rn,Cp). The operator II is 
assumed to be an orthogonal projection in Z/2(Rn,Cp) and Wt is L2-bounded but we 
never use its norm in a quantitative way. 

It is easy to check that (5) with the conditions on II and A implies the structural 
condition with X = UiUAU^UA (see Lemma 23 of Chapter 2). 

Lemma3. — For some constant C we have, for all F G L°°(Rn,Cp), 

|VtF |e < 
2IVÏ1L 

e-t4k+2L 
= ||F||oo + C||F||oo. (6) 

Remark. — Recall that Vtl is the Cn-valued function (Vt e i , . . . , Vt en), while VtF is 
scalar-valued. This remark will be of importance in the proof. 

Proof. — We follow the main steps of the argument of Theorem 21 in Chapter 2. 
The three important inequalities in this proof are: 

|ViFL<( |y t |5+ 011̂ 1100 

\Vt\s<ro\VtU\s, 

and 

\vtu\s <ïi|Vii|c + a 

Combining these inequalities gives us 

\VtF\e < ToTxIVt l lc l lFHoo + CWFIU, (7) 

and our task is to minimize T 0 T 1 . 
Lemma 3 thus follows from the claims that 

T0 < 1 
/1fg-fggfdgg 

(8) 

and that 

T i < 2. (9) 

To estimate To, use A = I + AM, the structural condition (5) on Vt and the fact 
that 11(1 — II) = 0 (since II is a projection) to obtain 

Vt(l - n ) = WtUA(l - n ) = WtUAM(I -U) = VtM(I - U). 

Thus, for F G L2(Rn; Cp), we have 

VtF = VtUF + ^ ( 1 - n ) F = VtU(UF) + VtM(l - U)F 

and taking quadratic norms, we get 

r 
Jo 

\\VtF\\l 
dt 

sd 

1/2 

< |Vjn|5||IIF||2 + IVJÎ HAf ||||(1 - n)F||2. 
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Now, n is an orthogonal projection, hence 11*11 wxI wx linFII wx + 1-n )F 2 2 Optimizing 
the above inequality over all F gives us 

\Vt\s < vtu\ + <sdqqdMW, 
and (8) is proved. 

To control Ti , begin with the inequality 

\VtU\s < I(Vil) Pt\s + C 
which follows from Chapter 2. Now, 

\(Vtl)Pt\s<\(Vtl) St\s + \(Vtl) (Pt-St)| |*<2 |Vt(l)|c + || \Vtl\\oo\Pt - St\s 
by (3) applied to vector-valued functions. Applying (4) finishes the proof of (9) and 
that of Lemma 3. 

As shown in Section 2.5 of Chapter 2, this lemma applies to 

Vt = e[k) = e-t4k+2Lkt2k+lj A** div ,4 

when k is large enough. The equality A = I + AM yields 
e-t4k+2L e-t4k+2L 

where Mj denotes the jth column vector of M. Hence, for all cubes Q, 

1 
\Q 

dfff 

o Q 
mk)eA(x)\2 dxdt 

t < 
4\e[kh MA 2 

oo 
l - I M 2 oo 

+ c, 

for some C > 0. Now, sum over and take the supremum over all cubes to obtain 

e-t4k+2 4n| e k) 
t 

M2IIM|I sd loo 
i-IIMii 2 oo 

+ c, 

and (2) follows readily. 

Remark. — A reexamination of the argument shows that the condition 
4|| HMOOH 2 HS Woo 

1 - M 12 
loo 

< 1 

implies I 0 sd 
t 1 2 c < OO. Since the Hilbert-Schmidt norm on Mn(C) satisfies 

\\M\\HS < Vn||M||, 

this is a stronger result. We leave details to the reader. 

We continue the proof of Theorem 2 and establish (1). To this end, let us introduce 
an estimator which was defined in [15]. For each cube Q and 1 < j < n, define /J,Q 
as the unique solution in HliQ) of 

Q 
AVfj,Q Vip = 

Q 
Asj • Vip, e-t4k+2Lk 
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In other words, 

divAV/i)Q = div Ae j in V'(Q). 

Set 

7(£) = inf 
wds 

sup 
l<j<n 

1 

101 Q 
|V/i,g|2 

1/2 

d 

Writing A = I — M , we have 

Q 
[I-M)VfjiQ ||F||2||G|| 

s 
Mej sdfdsff (10) 

thus 
1 

IQI Q 
IV/,ol2 < 

||F||2||G|| 

( 1 - I I M I U ) 2 

whence 

1{L)< 
l|M||oo 

l-| |M||oo" 
(11) 

Next, by a localization argument analogous to the one made in Chapter 3, one can 
show that, for all cube Q and / i > l , 

||F||2||G|| (o[k)vf^Q) (x) + bt(x), x G Q, 

where £ ( < % I M * ) I 9 q s d q d q dxdt j t < c\Q\, the constant c being independent of Q. Now, 

dssf 

0 Q 
||F||2||G|| dsfsf dxdt 

t 
< \o{th)u\l 

d 
| V / , > Q | 2 , 

where II is the projection on gradient vectors (note that we extended V qsdqd by 0 
outside nQ). A straightforward computation yields, therefore, that 

1 ^ 1 I2 
C 

<W\9\ fc)l|27(L)2+C. 

Summing over all 7 and using (11) shows that |0^1|c < 00 provided 

||F||2||G|| 

1-IIMlloo 
< 1. 

Since this holds for any // > 1, this proves (1). 

Remark. — The right hand side of (10) can be written as 

sd 
Q 

(M - cQ)ej ||F||2|| 

where cq is any constant. Thus, we also have 

||F||2| \\M\\BMO 

1-IIMIIoc . 
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with the definition of the BMO using cubes instead of balls. Finishing the proof as 
before and noticing that M and A agree in BMO we obtain that 

||F||2||G|| ||F||2||G||8 
2Vn 

implies (K) for — div (AV) (note that A is normalized by ||A — IW^ < 1). This refines 
the estimate obtained in Theorem 18 of Chapter 3. 

Proof of (4). — By Theorem 11 of Chapter 2, it is enough to show that (St — Pt)t>o 
is a weakly regular family. The size condition on the kernel is easily verified since 
both St and Pt have bounded kernels supported in a band \x — y\ < ct. The regularity 

estimate 
\\Ut(-Ay/2f\\ I2 < co*-s||/l|2 

is true for Ut = Pt and s > 0 by Plancherel theorem. For Ut = St, it holds for 
0 < s < 1/2. Indeed, for 2--?-1 < t < 2~J and g G Zr(Mn), we have 

[St(-Ay/2fì9) = 

kezn 
( ( _ A ) * / 2 / , 2 " ' x {Vx-k))mQik{g), 

where Qjk are dyadic cubes of sidelength 2 ' and Y is the characteristic function of 
the cube fO, l)n. Hence 

(St(-AY/2f,g) = </, 
dsff 

cjkXs(2Jx - fc)), 

with Cjk = rnQjk (g)2j(n+s> and x , = ( " A ) * / 2 * . Using Plancherel theorem and a 
classical periodization argument (see [63]) we have that 

df dsff 
Cjk Xs(2Jx - k) 

2 
dx < c(n,s)2"nj 

kezn 

ssqdq 

with 
c(n, s) = sup 

sqd sqd 

| y c ^ + 2^7r)l2. 

Since 

||F||2||G|| 
n 

3=1 

1 - e-** 

sdq 

one has that c(n, s) < oo when s < 1/2. In this case, we deduce that 

\(St(-A)^f,g)\ c\\f\\22» 2nj 

kezn 
\mQ,k(g)\2 

1/2 

ct-s\\fh\\g\\2. 
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R E D U C T I O N OF DIMENSION PRINCIPLE 

We have seen that for matrices depending only on one variable, the square root of 
the associated accretive operator behaves as in the one dimensional situation. In fact, 
there is a principle that governs this fact and that we call the reduction of dimension 
principle for square roots. The situation is as follows. 

We are given A G A(S) in Rn and L — — div (AV) on L2(Rn). We assume that A 
depends only on the m first variables # i , . . . ,#m, m < n. We shall put x = (y,z) G 
Rm x Rn"m with y = ( x i , . . . ,xm). 

Now, extract from A the matrix consisting in the first m rows and m columns of 
A and call it B. It is obvious that B G A(S) in Rm. We set M = -div(BV) the 
associated maximal accretive operator on L2(Rm). 

Theorem 1. — With the assumptions above, then 

'urn 
||F||2||G||||F||2 

sd 
\Vf(y)\2dy, f e v(M), ( 1 ) 

is equivalent to 

Rn 
^ ^ / ( x ^ d x ^ c f d s f f 

df 
|V/(x) |2dx, / € V(L). (2) 

The interesting implication is from (1) to (2). For example, when A is real, it suf­
fices that B be symmetric for (2) to be valid. There are inhomogeneous variants of this 
implication. We leave to the reader the care of checking them. If B G ABMO(Mrn) 
this gives (K)ioc for L. 

Proof. — Let us first assume that both L and M have the Gaussian property. Set 

Of = (H-^2L)_4divx A, 

and 
df 
d 

= (I + t2M)'1tàiYyB, 
where we indicate the variables to ease the exposition. 
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We first prove that (1) implies (2). By Theorem 24, (iii), of Chapter 2, we have to 
show that Ofej is a Carleson function in Rn x R+. 

Since A depends only on y, we have for 1 < 3 < n, 

div x(Aej) = 
daij 
sdsd 

+ ••• 4-
ddmj 
sdddd 

= divy(£Fi), 

where akj are the coefficients of A and where Fj(y) G L°°(Rm;Cm) and, B(y) being 
invertible, is completely determined by the equation 

B(y)Fj(y) = ((o>ij(y),>-,amAy))T. 

Note in particular that, when 1 < j < ra, we have Fj(y) = ej, identified with the jth 
basis vector in Cm. 

At this point, we quote the following result whose proof is presented later. 

Proposition 2. — Let n > 1 and L = — div (AV) G E(6) and assumed to satisfy the 
property (G). Fix F G L°°(Rn; Cn) and t > 0. Then (1 + £2L)-11 div F is the unique 
function u G L°°(Rn)nHlr(Rn) such that 

uíx)ó(x) dx +12 A(x)Vu(x) . V(ß(x) dx = -t Fix) • Vô(x) dx (3) 

for all^eC^W1). 

For t fixed, set Uj(x) = (6fej)(x) and Vj(y) = (6fFj)(y). The equations that 
characterize u3 in L°° n #/oc(Rn) and Vj in L°° n if/oc(Rm) enable us to show by an 
easy but lengthy calculation using separation of variables that Uj = ® 1, that is u3-
depends only on y. Hence, given a cube Q in R™ and Q' its projection on Rm, we 
have 

df 

*{Q) 

df 
\(0tej)(x)\2 

dxdt 
t 

= £(Q)n-m 
Q' 

HQ') 

df 

||F||2||G|| 
dydt 

t 

Using our hypothesis on M and applying successively Theorem 24 and Theorem 21 of 
Chapter 2 we obtain that the latter integral is bounded by ci(Q')Tn = ci(Q)rn, where 
c does not depend on Q1. This proves that (1) implies (2) under the assumption that 
both L and M have the Gaussian property. 

The converse implication is dealt with using similar calculations; we skip details. 
The assumption above is removed by raising the order of L and M to a large 

enough order using the familiar technique by now so as to obtain Gaussian estimates. 
Then the statement corresponding to Proposition 2 is valid in this case and the rest 
of the argument is similar. The proof is complete. • 

Remarks 
1. It is not clear at all how to work out an argument of separation of variables 

starting directly from (1). Thus, the reduction to the Carleson functions Ofej 

seems crucial. 
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2. As the argument will show, the only estimate in the property (G) that is used 
in Proposition 2 is the Gaussian decay, not the Holder bounds. 

The rest of this appendix is devoted to proving Proposition 2. It is well-known 
that for a data F 6 L2, the weak solution of (3) coincide with (1 + £2L)_1 tdivF. 
This result is an extension to the case of L°° data. The main difficulty is to show 
that (1 + t2L)~l tdivF belongs to HloC 

We begin with some further local estimates on the semigroup and the resolvent, 
complementing those obtained in Chapter 1. 

Proposition3. — Assume n > 1. Let L in S(6) satisfy the pointwise estimate (7) 
in the property (G). Then e~tL div and (1 + t2V)~x div extend to bounded operators 
from L°°(Rn;Cn) into L°° fl Hloc(Rn) with, for all t > 0 and all compact K C Rn, 
the estimates 

l l e - ^ d i v F I U + H (1 + PL)-1 div *1|oo < c t - M l - F l U (4) 

' K 
|Ve-t2i divF|2 + 

K 
||F||2||G|| divFH < CKi-4-n||F|P . (5) 

Proof. — For n = 1 we refer the reader to [14] and [11]: the pointwise estimates 
obtained in these works imply (4) and (5). For the rest of the argument, we assume 
that n > 2. 

The uniform L°° boundedness for e~* Ltdiv and (1 + t2L)~1t div follows easily 
from the results in Section 1.5.2 of Chapter 1. 

Let us next prove the part of (5) involving the semigroup. By scale invariance, it 
suffices to establish the inequality when t2 = 2. 

By Proposition 24 in Chapter 1, Ve"L* is bounded from L1(Rn) into L2(Rn). 
Hence, e~L div is bounded from L2(Rn) into L°°(Rn), and the similar result holds 
with L replaced by L*. Thus, 

\\e~L d ivFIU + H e~L divF| | oo < c||F||2. (6) 

Let Ti(x,y) and T2(x,y) be the distribution-kernels of e Ldiv and e L' div respec­
tively. Using a duality argument, the gradient estimates of Theorem 7 in Chapter 1 

become 

r<\x-y\<2r 
\Ti(x,y)\ |2 dy < ce~ar , ¿ = 1,2, x E R n , r > 0 , (7) 

for some c, a > 0. 
Cover Rn with balls B(xk, 1/2), k G Zn, of radii 1/2 such that | x f c - x / | ~ | * - * | 

uniformly. Using a partition of unity subordinated to this covering, write F = }2 Fk, 

with SuppF* C B(xk,l) and ||jF*||OO < C l l ^ l l o o , and G = Y,Gt with SuppG* C 
B(x£, 1) and I \GI\\2 < C\\G\\2. We claim that 

dfg 
e'^divFk e~L* divG£ < ce-a\*k-xe\2 \\Fk\\2\\G£\\2. (S) 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1998 



164 APPENDIX D. REDUCTION OF DIMENSION PRINCIPLE 

(Here and in similar inequalities, we do not follow the precise values of the exponent 
a, which, as for other constants, may change from line to line.) 

Admitting this inequality, if G G L2(Rn;Cn) has support in K then the sum 

G = ZGi has a finite number of terms and we have 

dsfd 
Ve~2L div F G d 

dff fd 
e~LdivFk e~L* divGi 

< 
df 

ce-a\xk-xe\ j! F\U\G\\2<c\\ *1loo||G||2, 

where we used \xk — xt\ ~ \k —1\ to bound the series. 
To prove the claim, set d = \xk — xi\ and distinguish two cases. If d < 4, there is 

nothing to prove by the L2 boundedness of e~L div and e~L* div . If d > 4, split the 
domain of integration in three parts: \x — xk\ < d/2, \x — xi\ < d/2 or else. This gives 
us three terms: I, II and III. 

If \x-xk\ < d / 2 , then using support considerations and (7), we have 

\e~L* divGt(x)\ < 
d/A<\x-y\<7d/4: 

\T2(x,y)\\Gdy)\dy 

< 
,d/4<\x-y\<7d/4 

\T2(x,y)\2dy 
1/2 

l l ^ l b 

<ce-ad2||G,||2. 

Also, |e-idivFfc(x) | < c||Ffc||2 by (6). Thus, 

l/l < cdne-ad II ft||2||G/||2, 

which is on the correct order of magnitude. 
The second integral on \x — xi\ < d/2 is handled similarly. 
Next, assume \x — xk\ > d/2 and \x — xi\ > d/2. Then we obtain as before 

\e-LdivFk(x)\ <ce~ad2\ \Fk\\2, \x-xk\ > d/2. 

while 

\e~L* divG£(x) <ce~a4Jd2\ ! |G i | |2 , 

if 2j~xd <\x- xA < 2jd and j G N. By splitting the domain of integration of III on 
the rings 2J-Xd < \x - x£\ < 2^d, j > 0, one sees that 
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\III\ < ce -ad2 

j>0 

(2jd)ne-a4Jd2\ WFkhWGifo 

and the series is bounded above by a numerical constant that is independent of d. 
We have proved one part of (5) and we now turn to the part involving the resolvent. 

Again, by scaling we can assume without loss of generality that t = 1. If we apply 
Laplace formula and use only what we just proved, we obtain a divergent integral. 
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To get around this difficulty, we use the following off diagonal local estimate, which 
follows from (7) by a similar covering argument to the one above and scaling. 

Lemma 4. — Ifn>2 and L e 8(6) satisfies the pointwise Gaussian estimate (7) in 
(G), then we have 

sd 
Ve~tL d i v F G < c 

t 
e-^lt ||F||2||G||2, (9) 

whenever F,G € Zr(Rn; Cn) with d — dist ( Supp F, Supp G ) ||F||2||G 

Continuing the argument, let F £ L°°(Rn; Cn) and k be a compact. For simplicity 
assume that K is the unit ball. Write F = F0 + Fx + F2 + • • • where F0(x) = 
F(x) if |x| < 2 and F0 = 0 elsewhere, Fx(x) = F(x) if 2 < \x\ < 4 and Fx = C 
elsewhere, etc. We claim that ^ ||V(1 H- L)~x divFj\\L*(K) < C||^||oo, which implies 
Il V ( l + L i " 1 div F\\L*(K) < C||F||oo. 

First, 

K 
IVU + L r M i v F o l 3 < C | | F o l l 5 < C 2 » № 

by (4) in Proposition 1 of Chapter 1. Now, for j > 1, Minkowski integral inequality 
and (9) imply 

K 
|V(1 + L)"1 div FA2 

1/2 

< 
»oo 

0 K 
\Ve~sL divFj\2 

1/2 
e 8 ds 

< 
oo 

to 
C 
S 

e-aiil°e-°ds \\Fih 

< ce-**\\Fih 
< ce-aV2Jn/2 \\F\\oo, 

for some a > 0 (break the integral at 5 = 2J). The claim follows readily and the proof 
of Proposition 3 is finished. • 

Proof of Proposition 2. — Without loss of generality, assume t — 1 as it plays no role 
and let u = (1 + L)"1 div F. We have just seen that u G L°° fl Hloc(Rn). Observe 
also that we have the kernel representation 

u(x) = 
sd 

T(x,y)F(y)dy a.e., (10) 

where T(a:, y ) , the kernel of (1 + L) Miv, satisfies 

sup 
qsdd sd 

\T(Xiy)\dy<c. 

We now show that u verifies (3) by an approximation argument. 
Consider a sequence of compactly supported and uniformly bounded smooth func­

tions Fn that converges to F almost everywhere. Define un = (1 + L)"1 divFn . By 
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(10) and dominated convergence, we see that the sequence (un) is bounded and con­
verges to u a.e.. Also, since (Vun) is bounded in I/2oc, up to passing to a subsequence, 
(Vwn) converges weakly to Vu in Lfoc. Finally, since divFn G L2, un G V(L) so that 
the equality (3) holds for un, Fn in place of u, F respectively. It remains to let n tend 
to oo and (3) is proved. 

To prove uniqueness, it suffices to establish that any v G L°° D Hloc(Rn) satisfying 

v(x)S{x) dx + A(x)Vv(x) • V6(x) dx = 0 

for all cj) G CQ (Rn) must be 0. We do it via the classical localization argument. 
Let $ G C£(Rn). Then w = v<& G L°° D H1(Mn) and w satisfies 

w(x)(f>(x) dx + A(x)Vw(x) • V(j)(x) dx = v(x)A(x)V$(x) V(f)(x) dx 

for all </> G C£(Rn). Thus (1 + L)(w) = -div ( 4 ( V $ ) v ) , where this equality lies 
in ^_1(Rn) . Since (1 + L)-1 is bounded from if_1(Rn) onto ifx(Rn), we have 
w = -(l + L)~1 div (AÇV$)v). Now, A ( V $ ) v is bounded, thus 

v(x)$(x) = — T(* , ! /U( i , ) (V*(y ) ) v(y)dy a.e.. 

Next, apply this representation with $n(^) = $(x/n) where $(0) = 1 and let n 
tend to oo. Since (V$n) converges to 0 and since (||V3>n||oo) is bounded, 

T(x, y)A(y)(V$n(y)) v(y) dy 0 

by the dominated convergence theorem and (10). On the other hand, v(x)$n(x) 
converges to v(x). Therefore, v = 0. • 
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