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NON-COMMUTATIVE VECTOR VALUED L,-SPACES
AND COMPLETELY p-SUMMING MAPS

Gilles Pisier

Abstract. — We introduce a non-commutative analog of Banach space valued L,-
spaces in the category of operator spaces. Thus, given a von Neumann algebra M
equipped with a faithful normal semi-finite trace ¢ and an operator space E, we
introduce the space L, (M, ; E), which is an E-valued version of non-commutative L,
and we prove the basic properties one should expect of such an extension (e.g. Fubini,
duality, ...). There are two important restrictions for the theory to be satisfactory:
first M should be injective, secondly E cannot be just a Banach space, it should be
given with an operator space structure and all the stability properties (e.g. duality)
should be formulated in the category of operator spaces.

This leads naturally to a theory of “completely p-summing maps” between oper-
ator spaces, analogous to the Grothendieck-Pietsch-Kwapien theory (i.e. “absolutely
p-summing maps”) for Banach spaces. As an application, we obtain a characteriza-
tion of maps factoring through the operator space version of Hilbert space. More
generally, we study the mappings between operator spaces which factor through a
non-commutative Ly-space (or through an ultraproduct of them) using completely
p-summing maps. In this setting, we also discuss the factorization through subspaces,
or through quotients of subspaces of L,-spaces.

Résumé (Espaces L, non-commutatifs a valeurs vectorielles et applications com-
plétement p-sommantes). — Nous introduisons un analogue non-commutatif de la
notion d’espace L, & valeurs vectorielles dans la catégorie des espaces d’opérateurs.
Plus précisément, étant donnés une algébre de von Neumann M, munie d’une trace
normale semie-finie et fidéle et un espace d’opérateurs E, nous introduisons ’espace
L,(M,¢; E) qui est une version E-valuée d’espaces L, non commutatif et nous prou-
vons les propriétés fondamentales que 1’on est en droit d’attendre d’une telle extension
(e.g. Fubini, dualité...). Il y a deux restrictions importantes pour que cette théorie
tourne bien : d’abord M doit étre injective, ensuite E ne peut pas étre simplement un
espace de Banach, il doit étre muni d’une structure d’espace d’opérateurs et toutes
les propriétés structurelles (e.g. la dualité) doivent étre formulées dans la catégorie
des espaces d’opérateurs.

© Astérisque 247, SMF 1998
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Cela conduit naturellement & une théorie des applications « complétement p-som-
mantes » entre espaces d’opérateurs, analogue 4 la théorie de Grothendieck-Pietsch-
Kwapieri (i.e. les applications absolument p-sommantes) pour les Banach. Comme
application, nous obtenons une caractérisation des applications qui se factorisent par
la version «espace d’opérateurs» de I’espace de Hilbert (= I’espace OH). Plus géné-
ralement, nous étudions les applications entre espaces d’opérateurs qui se factorisent
a travers un espace Lp-non commutatif (ou bien & travers un ultraproduit de tels
espaces) dans le langage des applications complétement p-sommantes. Dans ce cadre,
nous considérons aussi les factorisations (complétement bornées) i travers un sous-
espace (ou un quotient de sous-espace) d’un espace L, non commutatif.
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INTRODUCTION

In standard Lebesgue integration, for any measure space ({2, u) and any Banach space
E, we know how to define the Banach space L,(f,u; E) of E-valued L,-functions
(for 1 < p < o0) using a well known construction attributed to Bochner. When

Q=N (resp. @ = {1,...,n}) equipped with the counting measure px = ) &, then
kEQ
Lp(Q, p; E) is simply the space £,(E) (resp. £;(E)) formed of all the sequences ()

with zj € E such that ) ||zx||% < 0o, equipped with the norm

1/p
1) le,2) = (Z“wk”%)l/P (resp- l(@e)llen 2y = (Z ||fb'k||p) ) :

The case of any discrete measure space is analogous.

The non-commutative analog of ¢, is the Schatten class S, which is defined for
1 < p < oo as the space of all compact operators T on ¢ such that tr|T|P < oo and
is equipped with the norm

ITls, = (bx|T[P)"/?

with which it is a Banach space. We will often denote this simply by ||T||,. For
p = o0, we denote by S, the space of all compact operators on ¢ equipped with the
operator norm.

If H is any Hilbert space (resp. if H = ¢3) we will denote by S,(H) (resp. S}) the
space of all operators T': H — H such that tr|T|? < co and we equip it with the
norm (tr |T|P)Y/?. If p = 00, Soo(H) (resp. ST.) is the space of all compact operators
on H, equipped with the operator norm.

More generally, given a von Neumann algebra M equipped with a faithful normal
semi-finite trace ¢, one can define a non-commutative version of L, which we denote
by L,(M, ). When ¢ is finite, L,(M, ¢) can be described simply as the completion of
M equipped with the norm z — ¢(|z|?)'/?. In the special case M = B(f) equipped
with its classical (infinite but semi-finite) trace z — tr(z), L,(M, ¢) can be identified
with Sp.



2 INTRODUCTION

There is an extensive literature about these spaces, following the pioneering work
of Segal, Dixmier, Kunze and Stinespring in the fifties ([S], [Di], [Ku], [St]). (See
e.g. [N], [FaK], [H2], [Ko], [Te1]-[Te2], [Hi]).

Consider in particular the so-called hyperfinite factor R. This is the infinite tensor
product of M2 (= 2 x 2 matrices) equipped with its normalized trace. This object
is the non-commutative analog of the probability space 2 = {—1,+1}N equipped
with its usual probability P (P is the infinite product of (1/2)d; + (1/2)6—1). When
M = R, the space L,(M,y) appears as the non-commutative analog of L,(f, P),
or equivalently of L,([0,1],dt). In non-commutative integration theory, there seems
to be no analog (as far as we know) of vector valued integration, and while S, and
L,(M, ) appear as the “right” non-commutative counterpart to £, and L, ([0, 1], dt),
there is a priori no analog for £,(F) and L,([0,1],dt; E) when E is a Banach space.
The main goal of the present volume is to fill this gap. We will show that if M is
hyperfinite (=injective by [Co]) and if F is an operator space, i.e. E is given as a
closed subspace of B(H) (for some Hilbert space H), then using complex interpolation
(see below for more on this), we can define in a very natural way the space L,(M, ¢; E)
for 1 < p < co. When (M, ) = (B(f2),tr), we obtain the space S,[E] which is a
non-commutative analog of £,(E). Our theory of these spaces has all the properties
one should expect, such as duality, Fubini’s theorem, injectivity and projectivity with
respect to E, and so on...But the crucial point is that we must always work with
operator spaces and not only Banach spaces. The theory of operator spaces emerged
rather recently (with its specific duality) in the works of Effros-Ruan [ER1]-[ER7] and
Blecher-Paulsen [BP], [B1]-[B3]. In this theory, bounded linear maps are replaced
by completely bounded ones, isomorphisms by complete isomorphisms and isometric
maps by completely isometric ones. In particular, given an operator space E, the
spaces Sp[E] and L,(M, ¢; E) will be constructed not only as Banach spaces but as
operator spaces. Moreover, all identifications will have to be “completely isometric”
(as defined below) rather than just isometric.

For instance, the classical (isometric) duality theorem
£p(E)* = £y (E)

becomes in our theory the completely isometric identity
SplE]" = Sy [E"]

where on both sides the dual is meant in the operator space sense: when FE is an
operator space, the dual Banach space E* can be realized in a specific manner as a
closed subspace of some B(H), this is what we call the dual “in the operator space
sense” (called the standard dual in [BP]); see below for background on this.

In a different direction, let (IV,1) be another hyperfinite von Neumann algebra
equipped with a faithful normal semi-finite trace. We will obtain completely isometric
identities

Lp(M, 05 Lp(N,9)) = Lp(M @ N, X ) = Lp(N,%; Lp(M, ©)).
Actually, the first one holds even if N is not assumed hyperfinite, see (3.6) and (3.6)’.
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INTRODUCTION 3

In addition, the resulting functor E — L,(M, ¢; E) is both injective and projective.
By this we mean that if F C E is a closed subspace (=operator subspace) then the
inclusion L,(M, ¢; F) C Ly(M, ¢; E) is completely isometric and we have a completely
isometric identification

Ly(M,¢; E/F) = Lp(M, ¢; E)[ Ly(M, ; F).

To some extent our theory works in the non-hyperfinite case (see the discussion in
chapter 3) but then the preceding injectivity (resp. projectivity) no longer holds if
p=1 (resp. p = ).

In the case p = 1 our results are essentially contained in the works of Effros-Ruan
[ER2, ERS8] on the operator space version of the projective tensor product, see also
[BP]. Indeed, these authors introduced the operator space version of the projective
tensor product E ®”" F of two operator spaces E, F. Then if X is a non-commutative
L;-space, the E-valued version of X can be defined simply as X " E. (Warning: In
general this is not the Grothendieck projective product of X and E, but its analog
in the category of operator spaces.) The case p = oo is also known: if E is finite
dimensional (for simplicity) and if M is any von Neumann algebra, then the minimal
tensor product M ®uin E is the natural non-commutative analog of Lo (Q, u; E).
What we do in this volume is simply to use the complex interpolation method (an
approach that has already proved very eflicient in the study of non-commutative L-
spaces, cf. [Ko], [Tel]) to define the non-commutative “E-valued” L,-spaces for the
intermediate values, i.e. for 1 < p < oo.

The first part of this volume (chapters 1 to 4) is devoted to the theory of the spaces
L,(M,; E). We first concentrate on the discrete case in chapter 1, then in chapter 2,
we describe the operator space structure of the usual (=commutative) L,-spaces and
its relation to the discrete non-commutative case. We consider the general case in
chapter 3 and the duality in chapter 4.

The second part (chapters 5 to 7) is devoted mainly to “completely p-summing
maps”. These are a natural extension in our new setting of the “absolutely p-summing
maps” studied by Pietsch and Kwapien ([Pi], [Kw1]-[Kw2]), following Grothendieck’s
fundamental work on Banach space tensor products [G].

In the third and final part (chapter 8), we try to illuminate our new theory in the
light, of numerous concrete examples linked with analysis. The main emphasis there is
on Khintchine’s inequalities for the Rademacher functions (which we denote by (e,)),
and numerous variants of them involving Gaussian random variables or their analog
in Voiculescu’s “free” probability theory. If we identify (¢,) with the sequence of
coordinate functions on 2, the classical Khintchine inequalities provide a remarkable
isomorphic embedding

4 C Ly(Q, P),

taking the canonical basis of 2 to (¢,,) (here 0 < p < c0). This is very often used in
analysis through the resulting isomorphic embedding

L,([0,1]; £2) C Ly([0,1] x Q,dt x dP).

SOCIETE MATHEMATIQUE DE FRANCE 1998



4 INTRODUCTION

A great deal of chapter 8 is devoted to non-commutative analogs of the preceding two
embeddings.

We will now describe the contents in more detail chapter by chapter.

In chapter 1, we introduce for any operator space E the space Sp[E] and we con-
struct Sp[E] as an operator space. It turns out that this definition of S,[E] has all the
natural properties of an “E-valued” £,-space. We review its properties in chapter 1.
To some extent, the definition of S,[E] is already implicit in our previous work [P1]
where we introduce and study the complex interpolation method in the category of
operator spaces.

In chapter 2, we describe in detail the meaning of the preceding definitions in the
case of the usual (i.e. commutative) L,-spaces associated to a measure space. We
give several formulae which allow to “compute” the operator space structure of these
spaces as well as of their vector valued versions. These are used repeatedly in the
next chapters.

In chapter 3, we discuss non-commutative vector valued L,-spaces in the case of
a continuous trace. We should emphasize that to have a satisfactory theory we must
assume that the underlying von Neumann algebra M is injective. This is required to
have the non-commutative analog of the fact that if F is a closed subspace of E then
L,(u; F) is a closed subspace of L,(u; E). See Proposition 3.3 in [ER2] for the case
p=1.
Then, given a faithful normal semi-finite trace ¢ and an operator space E, we define
the operator space L,(M,p; E) using interpolation as before. The resulting space
can alternately be viewed as an inductive limit of a family L,(Ma, ¢q; E) associated
to an increasing net of finite dimensional (hence essentially matricial) subalgebras
(M,) equipped with finite traces ¢, which are the restrictions of ¢ to M,. The
spaces L,(Mq, @q; E) can be treated as direct sums of spaces of the kind we study in
chapter 1.

We also discuss briefly the possible extensions of our definitions to non hyperfinite
(i.e. non injective, by [Co]) von Neumann algebras.

In chapter 4, we address the duality problem for vector valued non-commutative L -
spaces. In the Lebesgue-Bochner theory of the spaces L, (€, u; E) (with E Banach), it
is well known that duality poses a problem. The dual of the space L,(f, u; E) is not
in general the space Ly (2, p; E*) (1 < p < 00, 1/p+1/p' = 1), however it is so when
the dual E* possesses the Radon Nikodym property (in short the RNP). See e.g. [DU]
for more on this topic. Naturally, a similar problem arises in our new setting, and
we have to introduce an operator space analog of the RNP, which we call the ORNP.
Now, let E be an operator space. Then assuming that its dual has the ORNP, we
obtain the duality theorem, namely the dual of L,(M,g; E) is completely isometric
to Ly (M, p; E*). Note that the ORNP of an operator space implies the RNP of the
underlying Banach space, but the converse is false. We give a simple example of a
Hilbertian operator space E (i.e. the underlying Banach space is £2) for which the
space La(M, p; E) (and also L,(M, ¢; E) for all p) contains an isomorphic copy of the
Banach space cp, hence fails the classical RNP (see example 4.2). In particular, E
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INTRODUCTION 5

fails the ORNP, although (being Hilbertian) it clearly has the RNP. Concerning the
ORNP, several natural questions remain open. For instance we do not know whether
E has the ORNP iff Ly(M, ¢; E) has the classical RNP, when (M, ¢) is the classical
hyperfinite factor.

As is well known, the RNP for a Banach space E is closely related to the martingale
convergence theorem for bounded E-valued martingales (see [DU]) on a probability
space (€, ). Moreover, the “super-property” associated to the RNP is equivalent
to the validity of certain martingale inequalities in L,(, u; E), and these in turn
are equivalent to the existence of an equivalent uniformly convex norm on E (see
[P7]). Here again it is natural to look for analogous results for operator spaces: we
introduce the notion of uniform OS —convexity, and we prove some basic facts, namely
it implies the ORNP and all non-commutative L,-spaces are uniformly OS—convex
when 1 < p < 00. Note however that many questions remain open. We also introduce
the operator space analog of the UMD property (UMD stands for “unconditional
martingale differences”) in Burkholder’s sense [Bu2|. The recent paper [PX2] allows
to embark in this direction, but very little is known. We list a few natural questions
which we feel should be answered before pursuing further.

In chapter 5, we introduce the notion of “completely p-summing map” v : E — F
between two operator spaces. Our notion coincides with a notion introduced by Effros-
Ruan [ER7] in the particular case p = 1. We say that u: E — F is completely
p-summing if Is, ® u defines a bounded mapping from S, ®min E into Sp[F], and
we denote by 7. (u) the norm of this mapping. We prove a natural analog of the
Pietsch factorization for such maps, extending the case p = 1 treated in [ERT].
This is new already if p = 2, although this case is closely related to the (2,0h)-
summing maps considered in [P1]. This new framework allows us in chapter 6 to
give a characterization of “operators factoring through OH” (in the sense of [P1])
entirely analogous to the Grothendieck-Kwapien [G], [Kw1]-[Kw2]| characterization
of operators factoring through a Hilbert space.

In §7.2, we use completely p-summing maps to characterize the mappings u: E —
F between operator spaces which factor (completely boundedly) through a quotient
of a subspace of an ultraproduct of S,. This is the analog for operator spaces of a
result due to Kwapien [Kw2] in the Banach space setting, which we recall in §7.1. We
also include in §7.1 several basic perturbation arguments relevant to ultraproducts of
operator spaces.

Note that the non-commutative version of the stability of L,-spaces under ultraprod-
ucts is unclear (see however [Gr] for the case p = 1). This leads us to replace the class
of non-commutative Ly-spaces by that of ultraproducts of non-commutative L,-spaces
(based as above on a hyperfinite semi-finite von Neumann algebra) or equivalently by
the class of ultraproducts of Sp.

We show that u: E — F factors as above iff for any c.b. map T : S, = Sp,
the mapping 7' ® u defines a bounded map from S,[E] to S,[F]. Moreover, the
factorization constant of u is equal to the smallest constant C' such that we have
|T®u||<C| T |lco (or equivalently || T @ u ||s< C || T ||cs) for all T as above.

SOCIETE MATHEMATIQUE DE FRANCE 1998



6 INTRODUCTION

We also discuss factorization through an ultraproduct of S, or through one of its
subspaces. The proofs follow the principles of the duality theory for ideals of oper-
ators or tensor products as developed by Kwapieri [Kw2] and Pietsch [Pi] following
Grothendieck’s fundamental work [G]. See [DF] for an exposition. There are however
some specific difficulties which arise, because in general operator spaces lack local re-
flexivity in the sense of ([EH]) or “exactness”, a notion introduced by Kirchberg for
C*-algebras and studied for operator spaces in [P6]. As commented in §7, the above
mentioned difficulties have now been resolved by Marius Junge [Ju], and we briefly
explain how his ideas allow to complete our results at the end of §7.

In §8, we try to illustrate the preceding theory in the light of “concrete” situations.
This is mostly expository, i.e. the results there are essentially known but many facts
are formulated and interpreted in a manner not available elsewhere in print. For in-
stance, we show that, if 1 < p < oo, the closed span in L, of a sequence of standard
independent Gaussian variables is the same operator space (up to complete isomor-
phism) as that spanned in non-commutative L, by a (countable) free semi-circular
family in Voiculescu’s sense (cf. Theorem 8.6.5). Moreover, in both cases the orthog-
onal projection (onto the subspace spanned) is completely bounded on the L,-space
under consideration for all 1 < p < oo (and in the semi-circular case even for p = 1
and p = 00).

In §8.1, we discuss completely bounded Schur multipliers on the Schatten class S,
and closely related questions on Fourier multipliers.

In §8.2, we briefly explain the connection between [; or L; as an operator space
and the natural generators of the (“full”) C*-algebra of the free group with countably
infinitely many (resp. n) generators, denoted by F, (resp. F5).

In §8.3, we turn to the reduced C*-algebra again for the free group F,, and
examine the span of the generators in the associated non-commutative L,-space.

In §8.4, we discuss at length the consequences of F. Lust-Piquard’s “non-commuta-
tive Khintchine inequalities” (¢f. [Lu], [LuP]) for our theory.

In §8.5, we briefly discuss the A(p).p-property for a subset of a discrete (possibly
non-commutative) group, introduced in Asma Harcharras’s recent thesis [Ha]. In
particular, for each even integer k > 4, we describe a sufficient combinatorial property
for the subset to satisfy an analog of the Lust-Piquard inequality for p = 2k.

Finally, in §8.6, after a brief introduction to Voiculescu’s “free” probability theory,
we describe the operator space structure of the span of a free semi-circular (or circular)
family, i.e. the “free” analog of real (or complex) Gaussian random variables.

Note. — The main results of this volume were announced in [P5]. The first six chap-
ters reproduce (in a different ordering) the contents of the preprint which circulated
in the interval, while the last two chapters were added more recently.

Acknowledgement. — I am extremely grateful to C. Le Merdy for a careful reading
of the manuscript which lead to many corrections. I would also like to thank Robin
Campbell for her outstanding typing job.
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CHAPTER 0

BACKGROUND AND NOTATION

Unless explicitly specified otherwise, we only consider complex Banach (or Hilbert)
spaces in this volume. We will denote by H ®2 K the Hilbertian tensor product of two
Hilbert spaces H, K. (Note the identities €5 ® H = £3(H) and £, ®2 H = £y(H).)
We denote by B(H) (resp. B(H, K)) the Banach space of all bounded operators on
H (resp. from H to K). When H is n-dimensional B(H) can be identified with the
space M, of all n x n matrices with complex entries. By an operator space we mean a
closed subspace of B(H) for some Hilbert space H. When E C B(H) is an operator
space, we denote by M,,(E) the space of all n x n matrices with entries in E, equipped
with the norm induced by the space B(£3 ®2 H) (or equivalently B(¢3(H))).

Two basic examples play a fundamental role in the theory: these are the row and
column Hilbert spaces, which are subspaces of B(f). Let e;; be the element of B({2)
corresponding to the matrix with coefficients equal to one at the %, j entry and zero
elsewhere. The “column Hilbert space” C is defined as

C = span{es | ¢ € N}
and the “row Hilbert space” R is defined as
R =span{e;; | j € N}

Both are isometric (as Banach spaces) to £, but they are quite different as operator
spaces. We will also need their finite dimensional versions

Cn =span{e;; | 1<i<n} and R, =span{e;;|1<j<n}.

We denote by E; ® E, the linear tensor product of two vector spaces. If E; C
B(Hy), E2 C B(H,) are operator spaces, we will denote by E; ®min Eo their mini-
mal (or spatial) tensor product equipped with the minimal (or spatial) tensor norm
induced by the space B(H; ®2 Hj).

Let H, K be Hilbert spaces. Let E C B(H) and F' C B(K) be operator spaces.
A map u: E — F is called completely bounded (in short c.b.) if the maps u,, =
In, ®u: My, (E) - M,,(F) are uniformly bounded when m — oo, i.e. if we have
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sup |[um|| < 0. The ¢.b. norm of u is defined as
m>1

llulles = sup ||uml|-
m>1

We denote by cb(E, F) the Banach space of all c.b. maps from E to F equipped with
this norm. It is known (cf. e.g. [DCH] or [Pal], p. 158-159) that we also have

lulles = 115(22) ® vll B(t2)@minE— B(£2)@minF -
We will use this repeatedly in the sequel with no further reference.

We will say that u is completely isometric (resp. completely contractive) or is a
complete isometry (resp. a complete contraction) if the maps u,, are isometries (resp.
of norm < 1) for all m.

We will frequently invoke an abstract characterization of operator spaces due to Ruan
[Ru] (see also [ER3] for a simpler proof) which uses the notion of “matricial structure”.
By a matricial structure on a vector space F we simply mean that for any integer n
we are given a norm on the space M,(E) of all n x n matrices with entries in E. So
in particular for n = 1 we have a norm on E. We will say that it is complete if all
the norms are complete (=Banach). We say that we have an L.,-matricial structure
if these norms satisfy the following

(0.1) I @ Ylln+m = max{||z|n, |lyllm}

(02) llazBlln < lledlllzln]I8ll

for all z € M,(E),y € M,(E) and o, € M,(C). Ruan proved that for any Leo-
matricial structure on a vector space E, there is a Hilbert space H and an embedding
of E into B(H) such that the norm (from the matricial structure) on M,(E) co-
incides with the norm induced by the space M, (B(H)). Clearly if the structure is
complete the subspace of B(H) will be closed. Conversely it is easy to see that every
subspace E of B(H) is equipped with a natural L..-matricial structure by simply
giving to M, (E) the norm induced on it by M,,(B(H)). Thus operator spaces can be
viewed (“abstractly”) as vector spaces equipped with a complete Lo-matricial struc-
ture. Therefore, by an “operator space structure” (in short 0.s.8.) on a vector space,
we will mean a complete Lo,-matricial structure. For instance, this allows to intro-
duce the quotient ([Ru]) and the dual (|[BP], [ER2]) within the category of operator
spaces, as we now recall.

Given an operator space E and a subspace S C E, we equip the quotient space E/S
with the matricial structure obtained by giving to M, (E/S) the norm of the space
M, (E)/Mp(S). It is easy to check that this is an Lo,-matricial structure with which
E/S can (and will always in this volume) be viewed as an operator space.

A completely bounded surjective linear map u: E — F between two operator spaces
is called a “complete metric surjection” if the associated map from E/ker(u) onto F
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is completely isometric (when the quotient E/ker(u) is equipped with the structure
just defined).

We now turn to the dual. In [BP], [ER2], it was proved that cb(E, F') can be equipped
with an operator space structure by giving to M,(cb(E, F)) the norm of the space
cb(E, M,(F)). In particular, this defines an operator space structure on the dual
E* = cb(E,C) so that we have isometrically

M,(E*) = cb(E, M,,).

Then, by construction, we have the following very important fact (cf. [BP], [ER2]):

The tensor product E* ®m;i, F is isometrically embedded into the space cb(E, F) by
the natural embedding. This shows that the minimal tensor product is the analog for
operator spaces of the injective tensor product of Banach spaces.

The usual rules of the Banach space duality remain valid in the category of operator
spaces, for instance the dual of a subspace S C E (resp. of a quotient space E/S)
is the quotient space E*/S* (resp. is the subspace S+ C E*). Also, for any map
u: E — F we have ||u||cs = ||u*]|c- Moreover, the inclusion E C E** is a complete
isometry.

In particular, let A be a C*-algebra. We equip A with its natural o.s.s. (coming
from its Gelfand embedding into B(H)). Then, by the preceding definition, the
successive duals A*, A**, A*** and so on, can now be viewed as operator spaces.
We will refer to these operator space structures on A*, A**, A*** and so on, as the
“natural” ones.

Now assume that A is a von Neumann algebra with predual A,. Then, the inclusion
A, C (A.)** = A* allows to equip the predual A, with the o.s.s. induced by the one
just defined on the dual A*, so we obtain an operator space, denoted by A2%, having
A, as its underlying Banach space. Here a natural question arises: if we now consider
the dual operator space to the one just defined, namely (A2%)*, do we recover the
same operator space structure on A? Fortunately, the answer is affirmative ([B2],
Theorem 2.9): we have (A2°)* = A completely isometrically.

This allows to define an operator space structure on A,, which we will again call the
natural one.

For all these fundamental results due to Blecher, Effros, Paulsen and Ruan, which
we will use freely in the sequel, we refer the reader to [BP], [ER2]|, [B1], [B2].

The notion of direct sum of C*-algebras or of operator spaces is defined in the
obvious way. Let (E;);cs be a family of operator spaces. Assume E; C B(H;). Let
H = ®;crH; be the Hilbertian direct sum. We will denote by ®;crE; the operator
space included in B(H) formed of all operators on H of the form = = @;crz; with
z; € E; and sup;;||zi|| < oo. It is easy to check that ||z]| = sup;¢; ||zi||. More
generally let X € M, (®icrE;) and let (X;);cr be the family naturally associated to
X, with X; € M,,(E;), then it is easy to check that

”xlan(@.‘erEi) = SIGIII) ”xtlan(Ez)
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When the family is reduced to two operator spaces E, F', we should denote the pre-
ceding direct sum by E @ F, but it will be worthwhile, as explained below and in §2,
to denote it by E @ F' to emphasize the specific choice of norm (and o.s.s.) on the
algebraic direct sum.

This notion of direct sum is the natural one when the spaces E; are C*-algebras.
However, in Banach space theory, there are many other possible direct sums. For
instance, given two Banach spaces Ey, F; one defines Ey ®, E; as Ey @ E; equipped
with the norm ||(zo, z1)|| = (||oll%, +|2l|%,)'/?. When Eo, E; are given with an o.s.s.
it is possible to also equip Eo @, E; with a natural o.s.s. (see §2). For the moment,
we will describe this only for p = 1.

Let P be the family of all possible pairs u = (ug,u1) of completely contractive
mappings ug: Eo — B(H,),u1: E1 — B(H,) (H, Hilbert). We define an embedding

J: Ey® Ey — P B(H,) C B (@ Hu)

u€P ueP
by setting J(zo®zx1) = @ [uo(zo) +u1(z1)]- It can be checked that J is an isometric

embedding, and since @ B(H ) is equipped with a natural o.s.s. (as a C*-direct
u€P

sum) we obtain a natural o.s.s. on Eg &, E;.

It is easy to verify that this o.s.s. is characterized by the following universal property:

for any operator space E, for any complete contractions ug: Ey — E and u;: E; —

E, the mapping (zo,z1) — uo(zo) + ui(z1) is a complete contraction from Ey &, Ey

to E.

It is rather easy to check that we have completely isometric identities
(Bo® Ey)* = Eg @1 Ef and (Eo & E1)* = ES @ EY.

We have restricted ourselves to the sum of two spaces, but everything we said extends
to ¢;-direct sums of an arbitrary family (E;);cs of operator spaces. We will denote
by ¢1({E; | i € I}) the resulting space.

Let j;: E; — ¢,({E;}) be the natural completely isometric inclusion map. It is easy
to check that the following property characterizes the operator space ¢1 ({E;}) (given
with the inclusions (j;)), up to complete isometry: for any family (u;);er with u; €
cb(E;, B(H)) such that ||u;||cs < 1 for all 4, there is a unique completely contractive
U: £({E;}) —» B(H) such that Uj; = u; for all 1.

Moreover, we have completely isometrically
®ier B} = (L1({Ei}))"

More generally, if we are given a family of positive “weights” p = (u;)icr, we can form
the Banach space £ (u;{E; | i € I}) (or briefly £1(u; {E;})) of all families z = (z;)
such that 3, ; pil|zi|| < oo, equipped with the norm = — 7,/ pil|z;|. We denote by
P the class of all systems u = (u;);cr with u; € ¢b(E;, B(H,)) such that ||us||cs < ps
for all 4, and we introduce the embedding J: ¢1(u;{E;}) & @uepB(H,) defined by
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J(2) = ®uep[) ;e ui(z:)]- The resulting operator space structure will be referred to
as the natural one on ¢ (u; {E; | i € I}).
Note that we can define the “multiple” of an operator space E by a positive scalar
1. We will denote by p - E the resulting operator space. This is the same space but
equipped with the operator space structure associated to the following sequence of
norms

Va = (ai;) € Mn(E) llalln = pllallm,5)-
The space u - E is trivially completely isometric to E.
It is then easy to check that we have a completely isometric identity

O {E; i€ I}) = b({p:-Ei | i € I}).

The present volume can be viewed as a sequel to [P1]. While [P1] is mainly
devoted to the operator Hilbert space, this paper deals with the “operator L,-spaces”
(and their vector valued versions) which can be defined using interpolation. Let us
briefly recall a few basic facts from [P1] that we will use:

For any index set I, there is a Hilbert space H (separable if I is at most countable)
and an operator space OH (I) included in B(H) such that

(i) OH(I) is isometric to £2(I) as a Banach space,
(i) the canonical identification between OH (I) and OH(I)* (corresponding to the

canonical identification between £3(I) and £2(I)*) is a complete isometry.

Moreover, the space OH(I) is the unique operator space (up to complete isometry)
possessing these properties (i) and (ii). Furthermore we have

(iii) Let (8;)icr be any orthonormal basis of OH(I). Then for any Hilbert space K
and any finite sequence (a;) in B(K) we have

0; i = “ i ®a; .
“Ziet 1®a; B(H®K) Ziela ©a B(K®K)

Following [P1], we will denote by OH the space OH (N) and by OH,, the space OH (I)
corresponding to I = {1,2,...,n}.

1/2

In [P1], we introduced complex interpolation for operator spaces. Let (Eg, E;) be
a compatible couple of Banach spaces in the sense of interpolation theory (cf. [BL],
[Ca]). Assume Ey, E; each equipped with an operator space structure (in the form
of norms on M,,(Ep) and M, (E;) for all n). Let Ey = (Eo, E1)s and E° = (Ey, E;)°.
Then, we can define an operator space structure on Ey (resp. E?) by setting

(03)  Ma(Ep) = (Mn(Eo), Ma(E1))o (vesp. Mn(E°®) = (Mn(Eo), Mn(E1))°).

In [P1] we observed that these norms verify Ruan’s axioms and hence they define an
operator space structure on Ey (resp. EY).

In particular, it is well known that
Zp = (Zoo,ll)a and Sp = (Soo,Sl)a
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12 CHAPTER 0. BACKGROUND AND NOTATION

with 8 = 1/p. Note that S; and ¢; are preduals of von Neumann algebras, hence can
be equipped with their natural operator space structure as described above. Thus,
we can now use (0.3) to equip ¢, and S, with an operator space structure, which we
again call the natural one.

More generally, given a von Neumann algebra M equipped with a normal faithful
semi-finite trace ¢, the predual of M can be viewed as the non-commutative L;-space
associated to the trace o, denoted by L;(p), and we may consider the pair (M, L1 (¢))
as compatible in the sense of interpolation theory. The Banach space L,(yp) is then
usually defined for 1 < p < oo as the interpolation space (M, Li(p))g with § = 1/p.
Using (0.3), here again we may now view the space L,(¢) as an operator space
equipped with an operator space structure which we call the natural one.

We will sometimes invoke the following elementary fact.

Lemma 0.1. — Let (Ao, A1) be a compatible couple of complex Banach spaces. Let
C C Ap be a closed subspace. Assume that there is a net (T,) such that

(i) ”Ta“Ao—>Ao <1, ”Ta”Al—n‘h <1,
(if) Ta(4o) C C
(i) Vz € A1 ||z —Ta(z)||la, = 0. Then (C, A1)e = (Ao, A1)e isometrically for any
0<f<1.

Proof. — Let Ag = (Ao, A1)e for 0 < 6 < 1. Let us denote by || ||¢ the norm in
the space Ag when 0 < § < 1. Note that |[ylls < |lylls~°llyll{ for all y in 4. In
particular, we have ||z — To(z)|le — O for any = in Ay. Applying this to the pair
(C, A1), we find that, for all z in C N A;, we have ||z — T (z)|l(c,4,), — 0 and (by
interpolation) ||Tw(x)|l(c,4,)s < l|Zlle- This implies that, for all z in C N A; we have
llzll(c,41)s < llz]le- Note that the converse inequality is trivial. Hence to conclude, it
suffices to know that C N A4; is dense both in (C, A;)e and in Ag. It is a classical fact
that AgN A; is dense in Ay (see [BL], [Cal), hence |JTa(Ao N A1) is dense in Ag and

a fortiori C' N A; is dense in Ag. On the other hand C N A; is dense in (C, A1)¢ by
the same classical fact. This shows that (C, A1)s = Ap isometrically. O

For example, the preceding statement implies that, for any Radon measure p on
a locally compact space €2, we have isometrically (Co(2), L1(1))o = (Loo(t), L1(12))s
for any 0 < 8 < 1. (Here Cp(?) denotes the Banach space of all complex valued
continuous functions on Q which tend to zero at infinity.) Obviously, if we equip all
the spaces involved with their “natural” operator space structure as described above,
then this equality becomes a completely isometric one.

Let E be an arbitrary operator space. Assume that there is a bounded linear map
v: OH(I) > E
injective and with dense range so that the map

vv*: E* > E
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(here we identify OH(I) and OH(I)*) also is a bounded injective map with dense
range. This injection allows us to consider (E*, E) as a compatible couple of operator
spaces included into E, and to view OH(I) ~ OH (I)* as also included naturally into
E. With these conventions we have

(0.4) OH(I) = (E*,E)1/

completely isometrically. See [Wa] for an extension.

For example, we can view the couple (R, C) as compatible for interpolation using the
transposition z — ‘z as the inclusion map of R into C' (and, of course, we use the
identity to embed C into itself). Then, (0.4) yields (using standard identifications) a
completely isometric identity

(R’ C)1/2 = OH.

We refer to [P1] for more details. Note that some of these results have been extended
to the real interpolation method in [X].

Ultraproducts are a tool often used in the sequel. We refer to [Hei] for background
on ultraproducts of Banach spaces and to [P1] for the operator space case.

We only recall the main definitions below.

Let U be a nontrivial ultrafilter on a set I. Let (F;);c;r be a family of Banach
spaces. We denote by £ the space of all families £ = (z;)i;cr with z; € X; such that
sup;c; ||zi]] < 0o. We equip this space with the norm ||z|| = sup;¢; ||z;||- Let ny C £
be the subspace formed of all families such that limy ||z;|| = 0. The quotient £/ny, is
a Banach space called the ultraproduct of the family (F;);c; with respect to «. We
denote it by H,E[Ei/u.

For every element & in £/ny admitting = € £ as its representative modulo ny, we have
z|| = lim ||z;]|.
léll = lign ]|

Hence, the ultraproduct I, E; /U appears as “the limit” of the spaces (E;);cr along
U.

Now assume that each space E; is equipped with an operator space structure. It is very
easy to extend the notion of ultraproduct to the operator space setting. We simply
equip IL;er X; /U with the matricial structure obtained by giving to M, (IL;crX;/U)
the norm of the space Il;c; M, (X;)/U. It is easy to check that this is a complete
L -matricial structure (=an operator space structure).

We will use as our starting point the operator space version of the projective
tensor product, introduced in [BP], [ER2|. The more explicit description of [ER2]
is as follows.

Consider an element u in the linear tensor product E ® F. Clearly v admits a
representation (actually many such representations) of the form

(0.5) u= Z QikTij ® YreBie

ijke<n
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where n is an integer and where z € M, (E), y € M,(F) and a,3 € M,. Then the
operator space/projective tensor norm ||u||[ggsF is defined as

(0.6) lull e~ r = inf{|lallsp 12|l (&) 1Yl a1 () 1181l 53 }
where the infimum runs over all possible such representations as in (0.5).
We denote by E ®”" F the completion of E ® F with respect to this norm.

More generally, this space can be equipped with the operator space structure cor-
responding to the norm defined (for each n) on M,(E ®" F) as follows: consider
u = (uij) € Mn(E ® F) and assume

u=a-(zQy)-B

where the dot denotes the matrix product, and where z € My(E), y € M, (F) and «
(resp. B) is a matrix of size n x (ém) (resp. (ém) x n). Note that z ® y is considered
here as an element of the space Mym(E ® F'). Then (following [ER2]) we can define

lullae, (Ben F) = nf{||ctllneml|2]| age () 191 01, () 1Bl em,n }-

Then (cf. [ER2]) these norms define an operator space structure in EQ"F. Moreover,
we have (EQ" F)* = cb(E, F*) completely isometrically. We refer the reader to [BP],
[ER2] for more information.

We will use repeatedly the Haagerup tensor product. The Haagerup tensor norm
was introduced by Effros and Kishimoto in [EK], who, in view of its previous use
by Haagerup in [H3], called it this way. They only considered the resulting Banach
spaces, but the operator space structure of the Haagerup tensor product was intro-
duced in [PS], extending the fundamental work of Christensen-Sinclair on multilinear
mappings in the C*-algebra case. We briefly recall the main definitions.

Given an operator space E, we denote by M, ,(E) the space of all matrices with
p lines, ¢ columns and with entries in E. We equip it with the obvious norm (for
instance, by adding zeros, we can turn it into a square matrix of which we take the
norm).

Let E;, E, be operator spaces. Let 1 € My m(E1), T2 € Mm o(E2). We will denote
by z1 © 2 the matrix z in M, 4(E; ® E) defined by

Vi=1,...,pVi=1,...,¢  2(,§) =Y z1(i,k) ® z2(k, )
k=1

Note that M,(E) is of course the same as M, ,(E). Then for any z in M,(E; ® E3)
we define

(0.7) lllln = inf {2115t (B2 122/ o (B2 }
where the infimum runs over all m and possible decompositions of = as a “product”
=1 O T

with
T € Mn,m(El)a T3 € Mm,n(E2)-
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It can be checked that this sequence of norms satisfies the axioms (0.1) and (0.2)
of Ruan’s theorem. Hence after completion we obtain an operator space denoted by
E; ®p, E; and called the Haagerup tensor product.

By an entirely similar process we can define the Haagerup tensor product of an N-
tuple E1, ..., Ex of operator spaces. Once again for any z in M,(E1 ® E2®---® EN)
we define

(0.8) lzlln = inf{||z1l|M, o, (B 1T2] My gy (B2) - NEN My (B
|z=2,0220---OzN}.
Again this satisfies Ruan’s axioms so that we obtain an operator space denoted by
E,®nE;®---Qn EN.

The very definition of the norm (0.8) clearly shows that this tensor product is asso-
ciative, i.e. for instance we have

(E1 ®h F2) ®n E3 = Ey Qp (B2 ®p E3) = E1 ®1 E2 Qn Es.

However, it is important to underline that it is not commutative (i.e. E; ®x F2 can
be very different from Es ®j E1).

It is immediate from the definition that E; ®p E2 enjoys the classical “tensorial”
properties required of a decent tensor product, i.e. for any operator spaces F1, F» and
any c.b. maps u;: E; = F; (i = 1,2) the mapping u; ® uy extends to a c.b. map
from E; ®p, E into Fy ®p F> with ||u; ® ua||cs < ||u1|es||uzl|cs- Moreover, this remains
valid with IV factors instead of 2.

The main properties of the Haagerup tensor product are its “self-duality” and the fact
that, in addition to being associative, it is both injective and projective. We refer the
reader to [PS], [ER4], [BS] for details on all these facts.
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CHAPTER 1

NON-COMMUTATIVE VECTOR VALUED L,-SPACES
(DISCRETE CASE)

Let E be an operator space. We will define the space Sp[E] for 1 < p < oo. We start
with the known cases p = 1 and p = o0o. For p = o0, recall that we denote by S
(resp. Se(K)) the space of all compact operators on ¢, (resp. on K) equipped with
the usual operator norm. Clearly S, (resp. Soo(K)) is an operator space.

When p = 0o, we define Soo[E] = Soo ®min F (resp. Soo[K; E] = Soo(K) Omin E), as
operator spaces.

When p = 1, we define Si[E] (resp. Si[K;E]) as the “ projective operator space
tensor product” of S; (resp. S;(K)) with E, which (following [ER5] ) we will denote
by S; ®" E (resp. S1(K) ®”" E). This notion was introduced in [ER2] and [BP]. In
[ER2] (resp. [B1]), these spaces are denoted by S; ®, FE and S;(K) ®, E (resp. by
S1 ®max F and S1(K) ®max E).

Here S; (resp. Si(K)) is viewed as the dual of So, (resp. Soo(K)) with its dual
operator space structure, as defined in [ER2], equivalently this is the standard dual,

as introduced and studied in [BP], [B2]. In our special case, it is easy to check that
the definition of [ER2] (or that of [BP]) can be rephrased as follows.

Let us denote by M, (E) the space of all matrices (a;;)i,jen with entries in E. Assume
E C B(H). We view M (FE) as a subspace of B(fs ® H) and we equip it with
the induced operator space structure. Consider u € S; ® E as a linear subspace
of Mo(E). Then let (u;;) be the associated element of M (E). We let |||lu]l| =
inf{||al|s,|v|ls..(£)llblls, } where the infimum runs over all the representations of u of
the form

u=(a®Ig)(v)(b® IEg)

with a,b € S; and v € S (E). Then S; ®" E coincides isometrically with the
completion of S; ® E with respect to this norm. This description of the norm in
S1 ®" E (or S; ®, F in the notation of [ER2]) corresponds to the fact, proved in
[ER4], that this space can be identified with the space R ®, E ®j C. In particular,
it is known (see [BS] for more in this direction) that

Mo (E*) = (R®}, E®; C)*
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completely isometrically. We will define S;[E] to be the space S; ®”" E equipped with
the operator space structure corresponding to the identification between R®y E ®;, C
and S; ®" E (= S1 ®, E as defined in [ER2]). By definition, we may write

(1.1) Si[E]~ R®n E®,rC
completely isometrically, so that we have as expected
(L.1)* Moo (E™) = (S1[E])"

completely isometrically.

Similarly, in the case p = oo, it is known (c¢f. [BP]) that M,,(E) = C, ®, E ®; R,
or more generally So ®min F = C ®, E ®p, R so that we can write
(1.2) Swol[E] = C ®, E Q4 R,
completely isometrically.
In particular (1.1) (resp. (1.2)) allows to identify S; (resp. So) with R ®; C (resp.
C ®# R), via the correspondence e;; — e1; ® ej1 (resp. e;; — €;1 @ €1;).
Clearly, we have a contractive injection

S1[E] — Sx|E] C Mo (E).

This allows to consider the pair (So[E], S1[E]) as a compatible couple of operator
spaces, to which we can apply the complex interpolation method, following [P1].
More precisely, we introduce the following definition

(1.3) Sp[E] = (Seol E], S1[E])e
where 6 = 1/p.

By section 2 in [P1], this defines an operator space structure on Sp[E]. Note that
when dim(FE) = 1, we obviously recover the natural structure on S, as defined in the
introduction. We will now exploit (1.1) and (1.2) to derive a similar description of
Sp[E] using the Haagerup tensor product.

Recall that in [P1], the spaces R and C are viewed as a compatible couple (in the
sense of interpolation) by identifying elements in R and C if they define the same
vector in . With this convention, we can interpolate between R and C (see [P1]
section 8). We will denote

R(o) = (R’ 0)0 = (C, R)I—G,

and we set R(0) = R, R(1) = C. (Recall that R°? ~ C, hence this notation is coherent
with the one in the remark before Theorem 3.4 in [P1].) We recall that R* ~ C and
C* =~ R so that we have (by Th. 2.2, p. 23 in [P1], see also p. 83-87 in [P1])

R(0)* ~ (F,b_*)o = (C, R)o ~ (R, C)l_g
and these are all complete isometries. Furthermore we have

Theorem1.1. — Let1 < p < oo and § = 1/p. We have a completely isometric
isomorphism
Sp[E] = R(1 —0) ®, E Qn R(9).
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Proof. — By Th. 2.3, p. 24 in [P1], by (1.1), (1.2) and our definition (1.3) we have
a complete isometry

Sp[E] = R(1 - 6) ®, (E ®1 R,E ®1 C)e
hence by Theorem 2.3 in [P1] again
= R(1-6) ®, (E® (R,C)s)

and since the Haagerup tensor product is associative (¢f. [BP]), we obtain Theo-
rem 1.1. O

Remark. — Clearly the preceding definition (1.3) can be imitated when £, is replaced
by an arbitrary Hilbert space K. In that case we will denote by
SplK; E]

the resulting operator space defined as in (1.3). When K = £5 we will denote by
Sy[E] the corresponding operator space. Note in particular that S2[E] = M,.(E)
a,nd Sp[E] is equal to M,(E) but equipped with a different norm and a different
operator space structure if 1 <p < oo and n > 1.

Corollary 1.2. — Ifu: E — F is a c.b. map between operator spaces, then Is, ® u
extends to a c.b. map u: Sp[E] — Sp[F)] with ||@l|ce = ||u||lce- Moreover, if u is a
complete isometry from E into F then U is a complete isometry of Sp[E] into Sp[F].

Proof. — The first part is clear either by interpolation, or by Theorem 1.1. The
second part follows from the fact that the Haagerup tensor product is injective in the
category of operator spaces (cf. [PS], [BP], [B1]). a

Corollary 1.3. —  Consider = in Sp[E). Assume that = is a block-diagonal matriz
with blocks z,, in Sp[E]. Then we have

llzlls, ez = (3 llwn"‘é,w])l/p-

In particular, if x is a diagonal matriz with entries =, in E we have

llzlls, (£ = (Z II:c,.IlE) e

Moreover, let P: S, — S, be the usual projection onto the diagonal matrices (defined
by P(eij) = e;j if i = j and = 0 otherwise). Then P ® Ig is a complete contraction
on Sy[E].

Proof. — The case p = oo is clear, p = 1 follows by duality and the general case

follows by interpolation. O
Corollary 1.4. — If 1 < po, p1 < o0 and ;1; = lp.%e +p£1 then we have completely
isometrically

(1.4) Spe[E] = (SpolEl, Sp: [E])e-
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More generally, if (Eo, E1) is a compatible couple of operator spaces and if Ey =
(Eo, E1)e (in the sense of section 2 in [P1]) then we have completely isometrically

(1.5) Spo [E9] = (Spo [EO]’SPI [EI])G'

Proof. — The identity (1.4) can be viewed as a consequence of the classical reiteration
theorem (cf. [BL], [Ca]). Note that (1.5) implies (1.4). To check (1.5) we use Th.
1.1, p. 12 in [P1] and Th. 2.3, p. 24 in [P1], together with the associativity of the
Haagerup tensor product (cf. [BP]). Indeed let 8o = 1/po, 61 = 1/p1, by reiteration
we have R(1—0) = (R(1—6p), R(1—61))s and R(8) = (R(6o), R(01))s, hence we can
write by Theorem 1.1

Spe[Es] = R(1 — 0) @ (E¢ ®1 R(0))
hence by Theorem 2.3 in [P1] applied twice

= R(1 - 6) ®h (Eo ®r R(6o), E1 ®r R(61))e
= (R(1 - 6o) ® (Eo ® R(60)), R(1 — 61) ® (E1 ®n R(61)))s

and by Theorem 1.1 again

= (Spo [EO]) Sp [EI])U'
O

We must clarify the identifications that we are using. First the completely isometric
embedding
COrE®LR— Soo ® E C M (E)

is the map J which maps
e1Q®zr®e; to e; Q.

This maps allows to identify C ®, E ®, R with the image of J. Now to interpolate,
we wish to also “identify” R ®, E ®;, C with a subset of M, (E). For that purpose
we use the map

k: Rep E®LC — My (E)
defined by
kler;®r® ejl) =e€;; ®T.
This is compatible with the “identification” of e;; and ej; (resp. e;j; and e;;) needed
to define the interpolation space (R, C)s.

This amounts to the following identification of R(1 —6) ®, E ®5, R(6) with a subset of
My (E): Let (&) be the orthonormal basis of R(1 —8) (corresponding to e;; in C and
e1; in R) and let (n;) be the analogous orthonormal basis of R(6). Then the mapping

Jp,: R(1-6) @, E®y R(6) — My (E)

which maps &;®z®; to e;; ® is the “natural” inclusion mapping used in Theorem 1.1
to identify R(1 — 0) @4 E Q4 R(6) with the subset S,[E] of Mo (E).
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Notation. — For any r in M, (E) and any a in My, let us denote by a-z (resp. z-a)
the matrix product, i.e.

(a-z)i; = Zaikz'kj <resp. (x-a)i = Zzikakj) .
k

k

We also denote a-z-b=a- (z - b) (equivalently = (a-z) - b) if b € M.

We can now “compute” the norm in the space Sy[E], as follows.

Theorem1.5. —  Let 1 < p < oo. Let u € Sp[E] (resp. u € SP[E]) and let
(uij) € Mo(E) (resp. (uij) € M,(E)) be the corresponding matriz with u;; € E.
Then ||ulls,(g) (resp. |lullsz(g)) is equal to

inf{|lalls,, [Vl Moo (&) 1]l 52, }
where the infimum runs over all representations of the form
(uij) =a-v-b
with a,b € Szp and v € Sw[E] C Moo (E) (resp. with a,b € S3, and v € M,(E)).
Proof. — Note that if p = 1, this is essentially the definition we chose for S;[E].
To check the general case, it is easy to reduce to the case when only finitely many

entries (u;;) are nonzero. Then the definition of the Haagerup tensor product and
Theorem 1.1 give that ||u||s, (£ is the infimum of

n n
Za,-@eu ij@éjl
1 1

where the infimum runs over all representations of « of the form

||(”ij)||M,.(E)
R(1-6)®minR

R(0)®mino

n
u= Z a; ® v;; by,

3,j=1
when u is viewed as an element of R(1 — 6) ®min E ®min R(). Then we note that

R(l - 0) ®min R = (R ®min R, c ®min R)1—0
= (C ®min R, R ®min R)0 = S2p

and similarly R(6) ®min C = Sap isometrically.

Indeed, this follows from the definition of R(1 — ) (resp. R(8)), from the fact that R
(resp. C) is an injective operator space and finally from the cases # = 0 and 6§ = 1.
In these cases, we have isometrically R ®min B & Sz and C ®mpin C' & S on one hand,
and C ®min R & S and R ®min C & S on the other (cf. [BP], [ER4]). The general
case 0 < 6 < 1 follows by interpolation. See Remark 2.11, p. 37 in [P1] and Th. 8.4,
p. 83 in [P1] for more details.
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n
Y a; Qe = ||a||s,, where a is the matrix which
1 R(1-6)®@minR

admits a4, ...,a, as its columns. Similarly we have

g
| tioen|, . ,=lbls,

where b is the matrix admitting by, ..., b, as its lines. Finally recalling the correspon-
dence between u and Jp(u), as explained before Theorem 1.5, let a; = ), ai(k)&
and b; =3, b;(£)ne. Then we have

(uij) = Jp (Z ai ®vi; ® bj)

This implies that

=) ai(k)b;(Dere ® vi;
ijke
= Z a; (k)bj (Z)ekieijeﬂ ® v;j
ijke
= (z ai(k)eki> . Zeij ®uij | - Zejtbj(f) .
ik ij it
Hence since a = ) a;i(k)eri, b= e;sb;(£) we obtain the announced result. a
ik 3t

Let us record the following simple facts.

Lemma1l6. — Letl <p< oo.

(i) For all z in Sy[E] and all a,b in M, we have

lla-z-blls, (k) < llallme. lIZlls, (£711b] Mo -

1 1 1
(ii) More generally if a € Saq, b € Szq and if 1= > + 2 <1 then we have

la-z - blis,z) < llalls,,lllls, 2]1bllss,

(iii) Let P, be a sequence of mutually orthogonal projections in My, decomposing the
identity. Let ¢ = 2p/p+ 1 and let x, = P, -z (resp. ©, =z - P,). Then

/ /
(1.6 (S llealZizy) "™ < lolls, i < (Mol gsy) "

Proof. — (i) and (ii) are clear either by interpolation or as a consequence of Theo-
rem 1.5. Similarly the left side of (1.6) can be proved by interpolation after checking
separately the cases p = 1 and p = co. (Alternatively, it is easy to deduce the left
side of (1.6) from Theorem 1.5 and the elementary inequality

1/2p
vaeSy,  (LlaRaliZ,) " < lalls,,

which itself can be checked by interpolation between p =1 and p = 00.)
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Finally, to check the right side of (1.6) we first rewrite it as follows: for any y, in
SplE] let €, = yn- P, (resp. Pn-yn) and £ = Y ,. Note that ||z.l|s, (5] < llunlls,(£)-
Then ||z]|s,5) £ X l1Znllsi (5] < X lUnlls, (£ by the triangle inequality and by a well
known estimate

/ /
lellsier < (X lealtom) < (X lalioim) -

Hence by interpolation applied to the mapping (yn)n — Y. Yn - Pn (resp. Y Pn - yn)
we obtain the right side of (1.6). O

We will need later the following very useful fact.

Lemma 1.7. — Let F by any operator space, n > 1 and let (y;;) € M,(F). Then for
alll<p< oo

(1.7) (ii)lIm. ry = sup{lla- (yi;) - bllsp(F), @b € Bsy }.

Consequently, a map u: E — F is c.b. iff sup, ||[Is» ®u: Sp[E] = Sp[F]|| < oo, and
we have

1.7y llulles = sup iy ® ullsy(z)-s5(F)-

Proof. — Since M,(F)* = ST(F*) we have
(i)l mg. ) = sup{(y, O | 1€llsprre) < 1}
hence by Theorem 1.5
=sup{|(y,a-z-b)| |a,b € Bsy 2z € By, (r+)}-
This yields (note (y,2) = izj(yij,zj'i) hence (y,a-2-b) = (b-y-a, z))

|(ysi)ll a7y = sup{llb- y - allsp(r) | @,b € Bsp }
This yields (1.7) for p = 1. The general case is easy to deduce from Lemma 1.6
(ii), and the fact that any a,b in Bsy can be written a = a"a' and b = ¥'b" with
a,b e BS;‘p, and a",b" € Bgsg . Indeed, using the last identity, we have
(ii)llm ) < sup{llb” -y - a”llss(ry | a”,0" € Bsy },

and the converse inequality follows from Lemma 1.6 (ii). This proves (1.7). The
second assertion is an obvious consequence of (1.7). a

Remark. — Let (Ao, A1) be a compatible couple of complex Banach spaces. It is
well known (c¢f. [BL], [Ca]) that AgN A; is dense in (Ag, A;)e. Hence, it follows from
(1.3) that S1[E] is dense in S,[E], or more generally that |J M,(E) is dense in Sp[E].
n
1 1
Corollary 1.8. — Let1<p < o0, I_’ + F =1. Then

Sp [E]* = Sp’ [E*]

completely isometrically.
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Proof. — We first check this for finite dimensional Sp-spaces. Let R,(#) be the n-
dimensional version of R() (equivalently, let R,,(6) = (Rn,Cr)¢). Then Theorem 1.1
yields
Sy[E] = Rn(1—6) ®x E ®r Ra(6).
Therefore by the self duality of the Haagerup tensor product (cf. [ER4], [B1])
Sy|E]* % Rp(1—0)" ®n E* ®1 Rn(0)"
completely isometrically.

Now the standard identification (S3)* = S, corresponds to the completely isometric
identifications R,(1 — 8)* = R,(6), R.(6)* = R,(1 — 6) and hence (R,(1 — 0) ®
R,(0))* = R,(0) ®n R,(1 — 6). These identifications lead to write

SPE]* = Ra(6) ®h E* ®h Ra(1—0)
completely isometrically, and hence by Theorem 1.1
= Sp[E”].

To complete the proof, it clearly suffices to show that the subspace of S,[E]* formed
by all matrices (&;;);,jen, &; € E* with only finitely many nonzero entries is dense in
Sp[E]*. (Note that this subspace is clearly dense in S,[E*] by the remark preceding
Corollary 1.8.) We will now justify that this is indeed the case.

For any ¢ in Sp[E]* and a,b in M, we denote by a-¢ and £ - b the elements of S,[E]*
defined as usual by

(a-&(x) =&(z-a) and (£-b)(z) =£(b- x).

Moreover we denote a-&-b = (a-£)-b = a-(£-b). Then to conclude it suffices to check
that, if P, is the orthogonal projection onto the span of the first n basis vectors in
£y, for all £ in Sp[E]* we have

P,-§£-P,—>¢ in S,[E]* when n — oo.
By successive approximations, it suffices to show that P, - £ — £ and £ - Pnl—) ¢ in

Sp[E]*. But now by dualizing (1.6) we obtain (note that if ¢ = 1Tp1’ p + 5 =1)

(1.8) I Pr - 5”251:[3]: + (1 - Pn) ‘5”251;[13]* < ”5”‘22[13]"
On the other hand it is easy to see that
1€lls, &1+ = sup IPn - Ells, gy = B |IPn - Ells, m)-

hence by (1.8) || — Pn - €||s,(g)» — 0 and by a similar argument we have ||{ — ¢ -
Pn”Sp[E]“‘ — 0. O

We now turn to an extension of Fubini’s theorem to our setting. Let E be

an operator space. Recall that when K is an arbitrary Hilbert space, we define
Soo[K; E] = Soo(K) ®@min E (viewed as a subspace of B(K) Qmin F) and S1[K; E] =
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S1(K)®" E in the sense of [ER5] or [ER4|. Equivalently, if we denote K. = B(C, K),
K, = B(K*,C) and also (K*), = B(K,C) then we have completely isometrically
S1[K;El = K, ®, E®n (K*). and Soo[K;E] = K.®n E Qn (K*),.
We define the operator space Sy[K; E] as above by setting
SplK; E] = (S| K E], S1[K; E])o
with § = 1/p. Clearly all the preceding results extend without any difficulty to this

setting. Now let H be another Hilbert space. It is known (¢f. [ER4]) that completely
isometrically

H.® K, =(H®: K), and K.®nH.=(K®;H).
and also
(K*)e ®n (H*)e = (K ®2 H)*). and (K*)r @ (H*)r = (K ®2 H)"),
so that we have completely isometrically
S1[H; $1[K; E]] = S1[H &2 K; E]
Soo[H; S| K; E]] = Soo[H ®2 K; E].
This allows in particular to “exchange the order of integration”, i.e. permute the roles

of H and K. This operation induces again a complete isometry on the preceding
spaces. Hence by interpolation, we obtain

Theorem 1.9. — Let1 < p < oco. Let H,K be arbitrary Hilbert spaces and let E be
an operator space. We have completely isometrically

S,[H; S,[K; E]| ~ S,|H ®; K; E] ~ S,|K; S,[H; E]).

Proof. — Using Corollary 1.4, this follows by interpolation from the preceding re-
marks on the cases p =1 and p = oo. O

More generally, we have

Corollary 1.10. —  In the same situation as in Theorem 1.9, if 1 < p < g < o0 we
have a complete contraction

SP[H; Sq(K)] - Sq[K; SP(H)]'

Proof. — This is easy to prbve by interpolation between the cases ¢ = p (given by
Theorem 1.9) and the case ¢ = oo (which itself can be checked by interpolation). It
then suffices to prove that S;[H; Seo(K)] = Seo[K; S1(H)] is a complete contraction.

To see this, simply recall that by [BP], [ER6] the canonical map from the projective
tensor product of two operator spaces into their minimal tensor product is a complete
contraction. O

Remark 1.11. —  In the particular case E = C, our definition (1.3) reduces to
S2 = (S, S1)172- Hence by [P1, Th. 1.1, p. 12], S; is completely isometric to
OH(N x N).
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Remark. — Let E be an operator space and let L, K be Hilbert spaces. Let 1 <p <
0o. Then Lemma 1.6 (i) can clearly be extended as follows. For any u in S,[K, E]
and for any bounded linear operators a: K — L and b: L — K, we have

(1.9) lla-u-blls,iz,g) < llall llulls,x,5) 10l
It will be useful to record here the following two facts.

Lemma 1.12. — Consider orthogonal projections P,: £y — by with P, < P, <--- <
P, < --- with UP,(€3) = 5. Let u be an element of Mo (E) such that sup||P, - u -

Py||s,(g) < 00. Then u € SplE] and P, -u - P, — u in Sy[E]. (Note in particular
that, as we already saw, if V' denotes the subspace of Sp[E] formed of all the matrices
(zij) with only finitely many nonzero entries in E, then V is dense in Sy[E].)

Proof. — Clearly by Lemma, 1.6 (i) we have
|1Pn - w- Palls,(E] < |Prs1 - w- Potalls,[E)

for all n. Assume sup || P, - u - Pp|s (5] = 1. Let € > 0. Choose N such that
(1.10) I1Pn - u- Pyl[g g > 1 €.
Then for all n,m > N we have by (1.10)

1Pn - - Prll3 1y 2 1P - - PrI[E g > 1 — €.
In particular by (1.6) we have for all m >n > N

| Pr - Pn“g’;[E] + |[(Pm — Pn) - u- Pn”?g';[E] <||Pm-u- Pnnzsf,[E]
< ”Pm 'U‘Pm”?;[E] <1
hence by (1.10) ||(Prm — Pn) - u - Pnllr‘;‘;[E] < €% for all n > N. Similarly we find
2 2
for m>n>N ||Pm-u°(Pm—Pn)||S’;[E]Se”.

Hence || P -4+ P — Pn - u - Polls,(g) < 2¢, and P, - u- P, is a Cauchy sequence in
Sp[E], therefore P, - u - P, converges in Sp[E] to a limit which has to be u. O

Lemma 1.13. — Let H be a Hilbert space. Let z;,y; € B(H) (i =1,...,N). Assume

”Zz‘:w, <1 and ”Zy,-y;“l

Then for all  in S1(H)

<1l

> llzizyills, oy < sy amn-
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Proof. — Consider z in the unit ball of S;(H). We can write z = z'z" with «’,z" in
the unit ball of Sy(H). Then, by Cauchy-Schwarz we have

Z llzszyill, = z l|lziz'z"yi|l, < E llziz'll2]lz" yill2
1/2 1/2
< (Clesa't) ™ (3 lle"willy)
1/2
< (tr (z z'*z} z,-:c') tr (z z"yy! a:"*))

< ll'll2llz"|l2-
]

The next result will be quite useful in chapter 5. It expresses the concavity of
a certain functional, which seems closely related (at least if p = 2) to the Wigner-
Yanase-Dyson/Lieb inequalities [L] (See also [PW]).

Lemma 1.14. —  Let H be a Hilbert space. Let p > 1. Consider ay,...,an and
bi,...,bn in Sop(H) with a; > 0, b; > 0. Then for all x in B(H) and for all \; >0
with - A; = 1 we have

P

(1.11) Z/\kllakmbkllg < H (Z Akaip)1/2p r (Z /\kbip)l/2p
p

More generally, for any matriz X = (z;;) in Sp(¢2) ® B(H), with entries z;; in B(H),
we have

Z Ak ”(akl'ij bk)”gr((z@,y)
k

: ” ((Z Ma?) " i (0 Mebi?) lm)

Proof. — The second part is easy to deduce from the first one: we can replace £2 by
£} and then apply (1.11) with I ® ax € S,(¢Y ® H) and I @ by € S,(¢Y ® H) instead
of a; and bg. Therefore it suffices to prove (1.11).

We first assume that a;, b; are all of finite rank so that there is a finite rank orthogonal
projection P on H satisfying Pa; = a;P = a;, Pb; = b;P = b; for all i. Equivalently
we may as well assume that H = (3, that a;, b; are all in S, for some integer n > 1,
and that z is in B(¢3) = M,,. Fix € > 0. Let

s=Y Xa+el and t=) M\bP+el

P

Sp(£2QH)

Clearly (since € > 0 is arbitrary), it suffices to show that

(1.12) VzeM, Y Aillais™/?zt=1/2p,E < ||z||5.
i

This can be checked by interpolation as follows. Let £,(A;Sy) be the space of all
sequences (;)i<N With z; € S equipped with the norm (ZAiIIxng) VP Let wi =
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aZ? and v; = b?P. Consider z € C with 0 < Re(z) < 1. Let p(z) = 1/Re(z). Let
T(Z): S;:(z) — Zp(z) (A; S;:(z))

be the linear operator which maps z to the sequence (pZ/%s~*/2zt=*/2¢7/%);c 5. Ob-
serve that z — T'(2) is an analytic function. We claim that T'(z) is a contraction for
Re(z) = 0 and Re(z) = 1. Indeed, if Re(z) = 0 then p(z) = oo and this is clear.
Moreover, if Re(z) = 1 then p(2) = 1 and Lemma 1.13 implies that T'(z) is a contrac-
tion from S} to ¢1(A; S7'). By the Stein interpolation principle for analytic families
of operators (cf. e.g. §10.3, p. 119 in [Ca]), it follows that T'(z) is a contraction for
all z with 0 < Re z < 1.

In particular if 1 < p < oo and z = 1/p we obtain (1.12) and hence (1.11) at
least in the finite dimensional case. We now extend (1.11) to the general case. We
may clearly assume for notational simplicity that H = f5. Consider a;, b; € Sa, with
a; >0, b; > 0. For any € > 0, we can find (by a simple truncation) a;, 3; Hermitian
of finite rank such that 0 < a; < a3, 0 < B; < b;, a;0; = oya;, b;8; = B;b; and
lla; — aill2p < €, ||bs — Bill2p < €. Let  and A; be fixed as in Lemma 1.14. Since the
map (a,b) — azb is continuous from Sy, x Sy, to S, we have

(1.13) D AillaseBillp = ) Asllaiwbs||5 when € — 0.
By the first part of the proof, we have

(St <[ (Sre) = ()™

But Y Aa?? < Y \ia?? (recall a; and a; commute), hence (c¢f. [Ped], p. 8)
(Z)\ia?”)l/p < (Z/\iaf”)l/p. Similarly (E)\iﬂiz")l/p < (Z/\ibf”)l/p. Hence we

can write (Y )\ia?”)l/2p =u(X /\ia?p)lﬂp and (z/\iﬁf”)lﬂp =(X ,\ibfp)l/zpv for
some u,v with ||u|]| <1, ||v|| < 1. As a consequence we have

= 1/2p y 1/2p 2 1/2p 42 1/2p
(Z xa2?) ™ 2 (T 0s7) (Zra) ™ e ()™

Therefore using (1.13) we conclude that (1.11) holds in the infinite dimensional case.
a

<
p

Remark. — Let X,Y be Banach spaces, let || || be the projective norm and let X®Y
be the projective tensor product. Consider an element u = ' z; ®y; in X @Y. As
is well known, the projective norm || ||» can be written in many equivalent ways, such
as for instance (the infimum being over all possible representation of u)

lulln = inf {3 Il max||y:/| }

or more generally for any 1 < p < o0

|lu|| = inf { (Z ||z,~||P) 1/p (Z “yillp')l/l"} .

It is interesting to observe that a similar formula holds for the operator space version
of the projective tensor product, as follows.
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Proposition 1.15. — Let E, F be operator spaces. Consider u in E ® F of the form
(1.14) u= Y T ®yi

i,j<n
with x € M,,(E), y € M,(F). Then we can write for any 1 < p < oo

llull eerr = inf{||z|sp(zllyllsm, 7 }-

Proof. — Consider u satisfying (1.14) with [|z(|ss(g) < 1, [lylls=, () < 1. Then we can
P
write £ = a-&- 3, y =y~ -6 with a, 3 (resp. 7,0) in the open unit ball of S5, (resp.
S3,) and with & (resp. §) in the open unit ball of My, (E) (resp. Mn(F)). Then by a
simple computation
=Y 2i; ®u;; = 3 ("0Y)erdtg ® Ire(B°6)qs
ij qrs
(where ta is the transposed of a, i.e. (*a)s = aie) hence since
lFavllss < Ifallsg Illsg, <1
and similarly ||3*6||s; < 1, we conclude by (0.6) that ||u||gerr < 1.
Conversely, if ||u]|[egrr < 1, by (0.6) we can find for some n a representation
u= Z alrﬁtq ® grsbqs
4,q,m,5<n

with &,§ and (a¢r), (bgs) in the unit ball respectively of M,(E), M,(F) and S3. If
we now factorize a (resp. b) in the form a = *avy (resp. b = B%8) with o, 3 (resp. v, d)
in the unit ball of S3, (resp. S3,), then we find conversely z,y as in the first part
of the proof with ||z|| sag) < 1, llyll S [F] < 1. By homogeneity, this completes the

proof. O
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CHAPTER 2

THE OPERATOR SPACE STRUCTURE OF THE
COMMUTATIVE L,-SPACES

In this section, we wish to explicitly describe the operator space structure (o.s.s. in
short) of the usual (= commutative) L,-spaces. This is somewhat implicit in the
preceding section 1 (and in [P1]).

Let (92, A, 1) be a measure space. We will denote by L,(u) the Ly-space of complex
valued functions. If X is a complex Banach space, we will denote by L,(u; X) the
L,-space of X-valued functions in Bochner’s sense. It is well known that

Lyp(p) = (Loo(), L1 (1)) and  Lp(p; X) = (Loo(p; X), L (15 X))o

with § = 1/p. This is an isometric identity, i.e. it is only valid in the category of
Banach spaces. We will introduce a specific operator space structure on L,(u) which
we will call the natural operator space structure on Ly ().

Firstly, if A is a C*-algebra, it is clearly equipped with a privileged operator space
structure (associated to any C*-embedding of A into B(H)). We will call this struc-
ture the natural one on A. In particular, if p = oo, this selects an operator space
structure on Lo, (u) which we will call the natural one.

If p = 1, again the choice is clear, the natural structure is defined as the one induced
on L;(u) by the dual space Lo (u)*, equipped with its dual operator space structure.
Explicitly, this means that the norm of M,,(L;(p)) is by definition the norm induced by
cb(Loo (), My,). (Note that M, (Li(u)) can be identified with the o(Loo (1), L1(p))-
continuous linear maps from Lo () to M,.) By a known result (see [B2]), this
yields an operator space structure on L;(u) such that L;(u)* = Loo(p) completely
isometrically. For the general case, we use interpolation. We consider the operator
space structure on L,(x) which corresponds to the structure of (Loo(p), L1(x))s as
defined in [P1]. This means that the norm in M,(L,(x)) is by definition the norm of
the space (M (Loo(12)), Mn(L1(1)))e with § = 1/p.

We will call this structure the natural operator space structure on Ly(p). Similarly,
if E C B(H) is an operator space then Lo, (u; E) embeds isometrically into the C*-
algebra Lo, (u; B(H)), and we will call natural the operator space structure induced by
the natural one on Lo (p; B(H)). If p = 1, by [ER8] we have an isometry L, (u; E) =
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L (p)®" E hence we can equip L; (u; E) with the operator space structure of L; (u) ®"
E. We will call this the natural structure on L;(u; E).

Finally, if 1 < p < oo we again use interpolation and define (following [P1]) the
natural 0.s.s. on Ly(u; E) as the one corresponding to (Loo(p; E), L1(u; E))s with
0 = 1/p. In the particular case where (2,4, u) is N equipped with the counting
measure, the spaces L,(u) and Ly (u; E) are denoted by £, and £,(E). The preceding
definitions apply of course to this case, so that we have defined the natural o.s.s. on
¢, or on {,(E).

Moreover, consider the subspace co(E) C £ (E) of all sequences tending to zero.
We can equip it with the structure induced by the natural one on £, (E). Equivalently
this is the o0.s.s. of the space co ®min E. More generally for any locally compact (resp.
compact) set K, let Co(K) (resp. C(K)) be the C*-algebra of all complex valued
continuous functions on K which tend to zero at infinity. We denote Co(K; E) =
Co(K)®min E (resp. C(K; E) = C(K)®minE) and we equip it with the corresponding
0.s.s. We will say that these 0.s.s. on ¢o(E), Co(K; E) and C(K; E) are the natural
ones. Note that by Lemma 0.1, for any Radon measure y on K, we have (completely
isometrically) (Co(K; E), L1(u; E))s = Lp(p; E) with 6 = 1/p.

The next result allows to “compute” these natural structures more explicitly.

Proposition 2.1. — Let1 <p < oo. Let E be an operator space.

(i) Let a = (aij) € M ® Ly(p; E). We have
(@)l pn (L, (s )) = suP{lle - (a) - Bllsz(L,(u;E)) | @ B € Bsg, }.

(ii) The spaces L,(u;Sp) and Sp[Ly(p)] are completely isometric. More generally,
Ly(p; Sp[E)) and Sp[Ly(p; E)] are completely isometric.

(iii) In particular, Ly(p) is completely isometric to OH(I), where I is the cardinal
of an orthonormal basis of La(u).

Proof

(i) is but an immediate application of Lemma 1.7.

(ii) It clearly suffices to prove this with Sp in the place of S,. Using the isomet-
ric identity Lp(u; Sy) = (L1(p;87), Loo(1;5%))e (8 = 1/p) and using Corol-
lary 1.4, we are reduced by interpolation to the cases p = 1 and p = .
Since these cases are clear by our definitions (for p = 1, see [ERS8]) this shows
that L,(u; Sy) and Sp[Lp(p)] are isometric. The same argument applies for
Ly(u; Sy [E]) and Sp[Ly(p; E)]. Using Lemma 1.7 and (i) we then easily obtain
that this is a complete isometry.

(iii) This follows either from (i) by a direct calculation or by Corollary 2.4 in [P1].

O

Remark. — The proof of (ii) is more transparent if one first proves that for any
compatible couple of operator spaces (Eg, E1) with Eg = (Eo,E;1)s (0 < 8 < 1) one
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has a completely isometric identity

(2.1) Ly(p; Eg) = (Lpo (b3 Eo), Lp, (15 E1 ) )o
1 1-0 6
where 1 < p, pg, p1 < oo (assuming that py, p; are not both infinite), — = -E—+I—)—-
1
Indeed, using (1.5) and (2.1) it is easy to derive (ii) in the preceding statement. To
prove (2.1), one way is to reduce it by elementary approximations to the complete
isometry

(2.2) £o(Eg) = (£po (E0), £p, (En))o-

Then using Corollary 1.3 one can check that, for any operator space E, £,(E) is
completely isometric to the subspace of Sp[E] formed of all the diagonal matrices and
moreover the usual projection onto this subspace is a complete contraction. Then
(2.2) is a simple consequence of (1.5).

Notation. — Let E C L,y(p) be a closed subspace and let X be a Banach space. We
will denote by E®, X the closure of E® X in L,(p; X). If X is an operator space, we
equip E ®, X with the operator space structure induced by the natural o.s. structure
on Ly(u; X). We will again refer to this structure on E ®, X as the natural o.s.s. on
E®,X.

The following is an immediate consequence of Proposition 2.1. (ii).

Corollary 2.2. —  Let E C Ly(p) be a closed subspace. Then E ®, S, = Sp[FE]
completely isometrically. More generally, for any operator space X we have E @,
Sp[X] = Sp[E ®p X] completely isometrically.

Proposition 2.3. — Consider two measure spaces (2, u) and (', 1') and the associated

Ly-spaces Lp(n) and Lp(p'). Let E C Lp(p) and F C Ly(p') be closed subspaces. We

equip E and F with the operator space structures induced by the natural ones on L, (1)

and Ly(p'). Letu: E — F be a linear map. Then u is c.b. iff for each n > 1 the map

u®Isn: E®, Sy = F®,Sy is bounded and we have sg[; llu®Isz|| < 0o. Moreover,
n

(2.3) lulles = sup llu® IszllE, 57+ Fo,sn-
Proof. — By (1.7)’ and Corollary 2.2 we obviously have (2.3). O

For emphasis, we spell out a particular case:

Proposition 2.4. — A linear map u: Ly(p) — Ly(p) is completely bounded (on L,(p)
equipped with its natural o.s.s.) iff the mapping u ® Is, is bounded on Ly(u;S,).
Moreover, we have

l[ullebz, (u),Lpw) = 1t ® I, Ly (uisp)+ Ly (us55) -

Furthermore, u is a complete isometry (resp. isomorphism) iff u® Is, is an isometry
(resp. isomorphism).

SOCIETE MATHEMATIQUE DE FRANCE 1998



34 CHAPTER 2. COMMUTATIVE L,-SPACES

Remark 2.5. — Assume now E C Sy, and F' C S,. Let E ®, X be the closure of
E ® X in Sp[X], when X is an operator space. Then clearly (2.3) remains true with
the same proof. Moreover by Theorem 1.9, Corollary 2.2 also extends with the same
proof.

To illustrate these remarks, let E be the subspace of B({s) ®o, B(f2) which is the
closed linear span of the vectors §; = e;; ® ey, ¢ € N. This space is denoted by RNC
in [P1] and its operator space dual E* is denoted there by R+ C. As Banach spaces
E and E* are clearly isometric to £s.

Now let R, (resp. G,) be the subspace of L,([0,1],dt) spanned by the classical
Rademacher functions (r;) (resp. by a sequence (g;) of i.i.d. standard Gaussian
random variables).

Then R; and G; are each completely isomorphic to E*. This is but a reformulation of
the main result of [LuP]. More generally, when 1 < p < 00, using Lemma 1.7 and the
results of [LuP], one can describe the natural operator space structures of the spaces
Rp and G,. The cases 1 < p < 2 and 2 < p < oo have to be treated separately. See
§8.3 and 8.4 for a detailed presentation of these examples. In particular, this shows
(see §8.4) that the orthogonal projection from Lo onto R is completely bounded
on L, for all 1 < p < oo. Similarly the fact that the Hilbert transform on the
circle is bounded on L,(S,) means that it defines a completely bounded map on L,.
Equivalently, the usual (orthogonal) projection is a c.b. map from L, onto the Hardy
space H? (of the circle) for any 1 < p < co. See §8.1 for more on this.

It will be useful in chapter 5 to introduce the notion of direct sum in the sense of
¢, of a family {E; | ¢ € I} of operator spaces. Let u = {u; | ¢ € I} be a family of
positive numbers and let 1 < p < co. We will denote by £,(u; {E;}) the space of all
families z = (z;)ier with z; € E; such that > p;||z;i||P < 0o, and we equip it with the
norm

1/p
|||l = (Z mllwill”) :

i€l
If p = 0o, we will denote (for convenience) again by £, (u; { E;}) the space of bounded
families = (z;)ier equipped with the norm ||z|| = sup ||z;||-
iel

If p; = 1 for all ¢ in I, we will denote the space €,(u; {E;}) simply by £,({E;}). We
will also consider the subspace co({E;}) C €oo({E:}) formed of all z = (z;)ics such
that ||z;|| — 0 when ¢ — oo in the discrete topology on I. Clearly £ ({E;}), and a
fortiori co({ E;}), are operator spaces in an obvious way: if E; C B(H;) (completely
isometric embedding) then we simply use the block-diagonal isometric embedding

{-({E;}) C B (@ H,-) and we equip £ ({E;}) with the operator space structure
i€l
induced by B (@ Hi). Equivalently, we have isometrically
i€l
Vn>1  Mn(lo({Ei}) = Lo ({Mn(Ei)}).
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When the family {E;} is reduced to two operator spaces E, F, the space £,({E;}) will
be denoted simply by

Eo,F.
When p = oo, the operator space E®, F' reduces to the direct sum denoted previously
by E & F' in chapter 0.

The spaces £,(u; {Ei}) can be equipped with a specific operator space structure,
which we will call again their natural o.s.s., and which we now briefly describe. (This
is entirely analogous to the preceding discussion.)

For p = 1, we use duality: since the dual of ¢ (u; { E;}) is isometric to £ (1; {E; })
we have ¢ (u; {E:}) C £oo(u; {E}})* (isometric embedding) and we equip £; (u; { E;})
with the o.s.s. induced by (£ (it; {EF}))* (the latter space being equipped with its
dual o.s.s.).

For the general case 1 < p < oo we use complex interpolation: we note that
41 (p; {E:}) and £oo(p; { E;}) form a compatible couple of operator spaces continuously
injected into the topological vector space [| E; and we define

i€l
(2.4) b (3 {Ei}) = (boo(ps {Ei}), &1 (p; {Ei}))o

with 8 = 1/p.

We now summarize the main properties of these direct sums for 1 < p < co. We
leave the proofs to the reader. They are all easy adaptations of the corresponding
arguments in section 1.

1 1
(2.5) If » + = =1, we have completely isometrically

p
b (s {E:})" = by (15 {ET}).

(2.6)’ Let F; C E; be a family of closed subspaces of E;. Then £,(p; {F;}) embeds com-
pletely isometrically into £,(u; {E;}). Moreover, £,(u; {E;/F;}) is completely

isometric to £,(p; {E:i})/€p(ps; { Fi})-
(2.6)” If {G; | i € I} is another family of operator spaces and if u;: E; =& G; are c.b.

maps with sup [lui]] < oo, then the direct sum u = @ u; (which maps (z;)ier
€l

to (u,(m,)),g) is c.b. from £p(u; {E;}) to £y(k; {G: }) with [Julles = Sup llwillcs-
(2.7) Let 1 < po,p1 < 00, assume that pg, p; are not both infinite, and let
{(E),E}) |iel}

be a family of compatible couples of interpolation spaces. Then £,, (u; {E?}) and
Cp, (1; {E}}) form a compatible couple in the obvious way. Let EY = (E?, El)q
for 0 < # < 1. Then we have a completely isometric identity

(o (185 {ED D) oy (1 { B }))o = £p(; {EYY)
1-6 6
+ —.
Do yai

where 1 =
b
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(2.8) If {v; | j € J} is another family of positive numbers, let 4 ® v denote the family
{mivj | i € I,j € J}. For each j in J, assume given a family {E? | i € I} of
operator spaces. We have then a completely isometric identity

bV (b (i {E] | i € DY) = (u @ v {B] | (i,5) € I x J}).
(2.9) For any Hilbert space K we have an isometry (actually a complete isometry)

(2.10) Sp[K; (1 {Ei})] = £p(s; {Sp[K; Eil}).
In particular, if K = ¢3, then the isometric identity (2.10) allows to compute
by Lemma, 1.7 the operator space structure of the space £,(u; { E;}).
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CHAPTER 3

NON-COMMUTATIVE VECTOR VALUED L,-SPACES
(CONTINUOUS CASE)

Consider now a von Neumann algebra M equipped with a faithful normal semi-finite
trace ¢. Let M, be the predual of M. It will be convenient to use the notation

Li(p) = M.

Recall (see e.g. [Ta], p. 321) that L;(yp) can be described more concretely as the
completion of the linear space of all elements  in M such that ¢(|z]) < oo with
respect to the norm ||z||; = ¢(|z|).

Let E be an operator space. We define
Li(p;E) = Li(p) " E

where ®” denotes the operator space version of the projective tensor product in the
sense of [ER2] and [BP].

If M is finite and injective, we have by [ER6] a c.b. inclusion
M ®min E — Li(¢; E),

therefore we can consider (M ®min E, L1(p; E)) as a compatible couple. To justify
this, note that by [ER7] a finite algebra M is injective iff the canonical inclusion
v: M — M, = Li(p) is integral in the sense of [ERS6], i.e. v is a point-norm limit
of mappings v;: M — M, which are matricially nuclear in the sense of [ER6], with
matricially nuclear norm majorized by a fixed constant C'. This implies that for any
finite dimensional subspace F' C M, the restriction v|r is matricially nuclear with
matricially nuclear norm < C. Therefore for any ¢t in F ® E C M ® E we have

(v ® IE) )|, (0)9r E < Clitllmin-

In other words, v ® Ir defines a bounded map v from the completion M ®,in E into
L;1(p) ®" E. It is then rather easy (left to the reader) to check that ¥ is one to one.
With some additional effort it can be checked that v is actually c.b.

If M is semi-finite and injective, let J be the set of all finite nonzero projections in
M. For each o in J, let ¢, be the restriction of ¢ to cMo. The map j,: = — oxo
defines a c.b. map from L;i(p) ®" E (resp. M Qmin E) to Li(p,) " E (resp.
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(0 M0) ®min E). Then considering J(z) = (j,(z))scs We obtain continuous injections
of both Ly (¢) ®" E and M ®min E into the topological vector space [] ees(L1(ps) N
E). This allows us to consider (M Qmin E, L1(p) ®" E) as a compatible couple for
interpolation, and we can formulate the following.

Definition 3.1. — Let ¢ be a semi-finite normal faithful trace on an injective von
Neumann algebra M and let E be an operator space. If 1 < p < oo, we define
(3.1) Ly(p; E) = (M ®min E, L1(p; E))o

where 8 = 1/p. If p = oo, we denote L (p; E) = M Qpin E.

We do not attempt to define Loo(yp; E). We will work instead with L2 (¢; E) which
behaves equally well with respect to interpolation.

Note that when dim(E) = 1, we obviously recover the natural structure on L,(y) as
defined in the introduction.

Remark 3.2. — By a standard reasoning, one can prove that the linear tensor
product L,(p) ® E is dense in L,(p; E) for 1 < p < oo. (Recall that Ag N A; is dense
in (Ao, A1)e if 0 < 6 < 1, for any compatible couple (Ag, A1) of Banach spaces.)

We will now show that, if M is hyperfinite, this definition has all the nice properties
developed in section 1 in the discrete case.

Unless specified otherwise, we assume in this section that 1 < p < oo.
First we consider the finite dimensional case.

Lemma 3.3. — Let M be a finite dimensional von Neumann algebra equipped with a
finite faithful trace . Then (as is well known) there is a decomposition of the unit as

a sum I =Y p; where I is a finite set, each p; is a central projection in M, and each
el

algebra p; Mp; (with unit p;) is isomorphic to a matriz algebra My, for some n; > 1.

Let p; = p(p;). Then the space Ly(p; E) is completely isometric to £,(u; {Sp*[E]}).

Proof. — By well known facts, this is true if p = oo and p = 1, hence, by interpolation
using (3.1) and (2.4), it holds for any 1 < p < co. a

Theorem 3.4. — Let M be a hyperfinite von Neumann algebra, i.e. we have M =
UM, (weak-x closure) where M, is a net of finite dimensional *-subalgebras directed
by inclusion. Let ¢ be a faithful, normal semi-finite trace on M. Let @, be its
restriction to M. We assume that @ is finite for all a, so that Mo C Ly(p). Then,
for each a, Ly(pqa; E) can be identified completely isometrically with the subspace
M, ® E C Ly(p; E) and the union (LlJL,,(goa;E) is dense in L,(p; E). Moreover, for

each a, there is a completely contractive projection Qo from Ly,(p; E) onto Ly(pa; E),
so that we have Qn = QoQp whenever a < 3, and for any = in Ly(p; E), Qo(x) tends
to x, when « tends to infinity.
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Proof. — We have simultaneously a natural completely contractive inclusion map
Jou: My — M and J,: Li(pa) = Li(p). On the other hand, we have a normal
projection (actually a “conditional expectation”, see the next remark) P,: M — M,
which is simultaneously a complete contraction from M to M, and from L;(yp) to
L1(¢a), cf. [Ta], p. 332. Therefore, by interpolation we have a diagram

K. «
Lp(pa; E) — Ly(p; E) 22 Lo(¢a; E)

where the maps K, = Jy ® Ig, Qo = P, ® Ig are complete contractions and the
composition Q. K, is the identity on L,(pq; E). In particular, this guarantees that
K, is a completely isometric embedding of L,(¢.; E) into Ly(p; E) and its image is

M, ® E, whence the first assertion. Moreover, it is well known that |J M, is dense
a€A
in Ly(p), hence by Remark 3.2 |J L,(¢q; E) is dense in L,(p; E). It is clear that
A

a€
Q«(7) tends to z for any z in |J Lp(¢a; E), hence for any z in L,(yp; E) by density.
a€A
This concludes the proof. O

Remark. — Let p, be the self-adjoint projection which is the unit element in M,.
When ¢ is infinite, we do not have p, = 1ps in the preceding proof, hence P,: M —
M, cannot preserve the unit. In this case, the projection P, can be written as
P, = P.P! where P)(z) = pazp. and where P, is the usual (=unit preserving)
conditional expectation from p,Mp, onto M, (which both admit p, as their unit).
Although this is a slight abuse, we still refer to P, as a conditional expectation in
this case.

Remark. — In the situation of Theorem 3.4, let C = UM, (norm closure). By
Lemma 0.1, if 1 < p < o0, we can identify completely isometrically L,(p; E) with
(C @min E, L1(p; E))e for 6 = 1/p.

Moreover, again by Lemma 0.1, if F is a von Neumann algebra, and if MQF de-
notes the von Neumann tensor product (which by [ERZ2] can be identified with
the dual of L;(p; E.)), then we can identify completely isometrically L,(yp; E) with
(M®E, L(p; E)) for § = 1/p.

Remark. — Note that for any hyperfinite von Neumann algebra equipped with
a faithful normal semi-finite trace, there is a directed net (My)qea satisfying the
properties of Theorem 3.4. Hence, it is now easy to extend to the hyperfinite case
most of the properties of Sp[E] to the case of Ly(¢p; E).

More explicitly we have, if M is hyperfinite the following properties:

(8.1) If u: E — Fis a c.b. map between operator spaces, then I_(,) ® u extends to
a c.b. map @ from Ly(p; E) into Ly(p; F) with ||%||cs < ||ucs-

(3.2) If u is a complete isometry (resp. a completely isomorphic embedding), then &
also is.

(3.3) If u is surjective and such that the canonical map E/Ker(u) — F is a complete
isometry (resp. a complete isomorphism), then @ is surjective and the associated
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map L,(p; E)/Ker(u) — Ly(p; F) is a complete isometry (resp. a complete
isomorphism).

(3.4) In particular, for any closed subspace S C E, L,(p;S) can be identified (com-
pletely isometrically) with a closed subspace of L,(p; E) and we have

Lp(p; E/S) = Ly(p; E) [ Lp(p; S)

completely isometrically.
1 1-
(3.5) Assume 0 < § < 1,1 < pg, p1 < 0, — = ——0 + i Let (Ep, E;) be a

Po 1
compatible couple of operator spaces and let Eg = (Eg, Ey)g¢. Then there is a
completely isometric identity

(Lpo (‘P; E0)7 Lm (‘P; El))0 = LP(‘P? Eé‘)'

Moreover, when py = 0o and p; < oo, this becomes

(L2, (@3 Eo), Lp, (93 E1))o = Lp(; Ep),

and when py = p; = 00, it becomes

(L% (5 Eo), LY (5 E1))e = L2 (; Ej).

(3.6) Let (IV,v) be another hyperfinite von Neumann algebra with a faithful normal
semi-finite (in short f.n.s.) trace ¢. Then the von Neumann tensor product
M®N admits p®1 as a f.n.s. trace and clearly is hyperfinite. For any operator
space E, we have completely isometric isomorphisms

Ly(p; Ly(¥; E)) = Ly(p ® 95 E) & Lyp(3; Ly(p; E)).

(3.6)’ Let (N,%) be an arbitrary von Neumann algebra with a faithful normal semi-
finite (in short f.n.s.) trace 1. Then, we have a completely isometric identity

Lp(p; Lp(¥)) = Lp(p @ 9).-

To check (3.6)’, recall that L,(¢ ® %) = (Loo(¢ ® %), L1(p ® 1)) with 6 = 1/p.
Furthermore, by a simple application of Lemma 0.1 using the hyperfiniteness of M,
we find L,(¢® %) = (M ®min N, L1 (¢ ®%))s, which can be rewritten as L,(¢ ®¢) =
(Lgo(tp, Eo),Ll(SO; EI)O with Ey = Loo(’l,/)) and E; = Ll(’(/)) Since Ey = Lp(z,b), we
can deduce (3.6)’ from the second part of (3.5).

We will now extend the formulae proved in section 1 to the nondiscrete case. To
some extent, the definition of the vector valued non-commutative L,-spaces makes
sense for a general semi-finite von Neumann algebra M. This corresponds to the
spaces Ap(M,p; E) which we introduce below. However, we will quickly show that
only in the hyperfinite case does this definition have the natural properties to be
expected.

Let M be an arbitrary semi-finite von Neumann algebra with a f.n.s. trace ¢ and
let E be an operator space. Consider y in M ® E. We can write

n
y=zl yi®e; with y;, € M,e; € E.
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Let a,b € Lyp(yp). To shorten the notation we denote simply
a-y=Zayi®ei 'y'b=2yib®ei
(these are elements of La,(¢) ® E) and
a-y-b= Za%b@ei € Ly,(p)®E.
Let us denote by V C L,(p) the subspace
v=Jome

where the union runs over all projections @ in M such that ¢(Q) < oo. Note that
the set of all such projections forms a lattice (by e.g. [Ta], V.1.6) so that this union
is directed by inclusion. Clearly, by the semi-finiteness of ¢, V' is dense in L,(¢p).

Consider an element z in V ® E. Clearly z can be written as £ = a -y - b with
a,beV and y € M ® E. We define

llzlla, (&) = inf{llall L., () 1Bl L2p (o) 1Y ]| M@ minE }
where the infimum runs over all possible such representations.

Lemma 3.5. — For1<p< o, || |[a,E) is a normonV ® E.

Proof. — Consider 1,22 in V ® E. Let € > 0. We can write x; = a1 - y1 - b1,
Ty = ag - Y2 - by with
1/2
(3.7 |Ia1||L2p(<P) = ||b1|IL2p(<P) = ”zIH/\i(E)’ ”a2”L2P(<P) = I|b2||L2p(‘P) = “m2”11\/,,2(E)
and
(3.8) Iyl M@mnE <146, Y2llMem.e <1+e&.
Moreover, we can assume that a;, b1, as, b2 belong to QM Q for some projection @ in
M with ¢(Q) < co. Then we define
a=(a10} +azal +eQ)? b= (blby + biby +Q)'/?
and (for j =1,2)
cj = a‘la]-, dj = bjb_l
where the inverses a~! and b~! are meant in the finite von Neumann algebra QM Q
with unit @. Note that

(39) clc{ + 0203 <I and d;dl + d;dg <l
We have
(3.10) T1+To=0a-Y-b

where Y =c¢; -y1-di+c2-y2-dp. Let c= (3 §) and d = (3;8) in My(M). We
then observe that in M>(M) ® E we have

Y 0 — )] 0
()< 2
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Hence by the characteristic property of operator spaces (see (0.1) and (0.2)) we have

1Y llmin = 1Y || M@minz < llellaea) max{|lysllmin, ly2llmin Hidll g, (ar);

hence by (3.8) and (3.9)
<l+e.

Finally we have by (3.10)
(3.11) llz1 + z2lla,E) < NallLay (o) 1Y llminllbll 2o, (o) -
Moreover by the triangle inequality in L, (y)
llall s (p) = llara} + aza3 + QI3

< (llarafllz, o) + llazadllz, o) + e0(Q)*/7) /2

< (lasliZ,, o) + lla2llZ,, () +e0(@)VP)/?
hence by (3.7)

< (I1lla, (8) + llz2lla,5) +€0(Q)1/7)1/2.
A similar upper bound holds for ||b||1,,(,)- Therefore we deduce from (3.11)

llz1 + z2lla,E) < (L+€)(llzalla, ) + l1z2lla, (m) + £0(Q)'/P)

and since € > 0 is arbitrary, we obtain

llz1 + z2||a, &) < lZ1llA,(B) + 122]lA, (E).

Finally the fact that ||z||s,(g) = 0 = = = 0 follows from the next lemma. O
Lemma 3.6. — For any x in V ® E we have
(3.12) “x”Lp(cp)evi < lzlla, ) < ||$“L,,(<p)§>E

Vv A
where L,(p) @ E (resp. Ly(p) @ E) is the injective (resp. projective) tensor product
in the Banach space sense, corresponding to the smallest (largest) cross norm.

Proof. — Let ¢ =Y ay;b®e; with y; € M ® E, a,b € V. For any £ in the unit ball
of E*, we have clearly

|3 awib gte)

Ly(v) E Ila“LzP(‘p)”b“L%(‘P) ”Z yié(ei) M

< Mallzay o) Bllzay ey | v @ e

Therefore taking the supremum over all £’s, we obtain the left side of (3.12). To
prove the right side, note that if z € V ® E it is easy to check that the norm of z in
L,(9)®E coincides with the projective norm of V ® E i.e. we have

||$||LP(¢)®E = inf {Z “vi“LP(<p)”ei“}
1

M@minE )

ASTERISQUE 247



CHAPTER 3. CONTINUOUS CASE 43

n
where the infimum runs over all representation of the form z = Y v; ®e; with v; € V,

1
e; € E. The rest of the proof is then clear. We leave the details to the reader. O

We can now define the space
AP(M s P5 E )
as the completion of V' ® E for the norm || ||a,(z)- For simplicity, we will sometimes
abbreviate this by A,(¢p; E) or by A,(E). It is rather easy to check that the space
Ap(p; E) satisfies the properties (3.1) and (3.2). However, in general it does not satisfy
(3.3) and (3.4), which implies that in general it cannot satisfy the duality theorem of
the kind proved in the next section in the hyperfinite case.

The next lemma is elementary.
Lemma3.7. — Let (M,) and M be as in Theorem 3.4. Let P,: M — M, be the

conditional expectation (as in the proof of Theorem 3.4). Then for ally in M and all
b in Lop(p) we have

Iy — Pay)bllLs,(0) = 0
when a — 0o along the directed net.

Proof. — Let bg = Pgb. Clearly bg — b in L,(p) when 8 — oo. Fix € > 0 and 3
such that ||b — bg||L,,(») < €. Then by the conditional expectation property we have
fora > g3

(y — Pay)b = (y — Pay)(b — bp) + [ybs — Pa(ybp)]-
Note that P,(ybs) = ybg in Lsp(p) when a — 00, hence

T (g = Pat)bllzay (o) < 2l0llar,
and since £ > 0 is arbitrary, we obtain the announced result. O

Theorem 3.8. — Let 1 < p < oo and let E be any operator space. Then, if M is
hyperfinite, we have an isometric identity

Ap(p; E) = Lyp(p; E).

Proof. — We use the notation of Theorem 3.4. Note that |J M, C V. Using Theo-
rem 3.4, Theorem 1.5 and Lemma 3.3, it is easy to check that for any z in (|J Ms) ®FE
we have
(313) “xllAp(wE) < “z“L,,(cp;E)-
By Lemma 3.6 (and the similar property for L,(y; E)), since | J M,, is dense in L,(¢p),
to conclude it suffices to prove the converse to (3.13), which we now proceed to do.
Assume that z € (|JMa) ® E and ||z(|5,5) < 1,s0that z =a-y-b with a,b eV,
y € M ® E such that

lallzspe) <1 Nbllspe) <1, 1YlIM@miaE < 1.

Let P,: M — M, be the conditional expectation. Let a, = P,a, b, = P,b. Clearly
ao = aand by — bin Lop(p). Let yo = (Po®IEg)y. Finally let £, = a4 Yo bo. Clearly
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by Lemma 3.3 and Theorem 1.5 ||Zal|L,(¢.;E) < 1, hence a fortiori ||ZTa ||z, (pE) < 1
by Theorem 3.4.

We have
T—Ta=(@a—0a) Y b+an (¥ —Ya) b+aa-ya-(b—bs).
Clearly (a—a)-y-b and aq -ya - (b—be) tend to zero in L,(¢)®E, and by Lemma 3.7,
the same is true for aq - (¥ — ya) - b. Therefore ||z — xa“L,(«p)@E — 0 when a — oo.
Clearly we have ||z||L,(y;E) < ||z||Lp(¢)®E for any z in (|JM.) ® E, hence we have
|z — zallz,(p;E) — O when o — oo.
Finally, we conclude that
IZllz,(0:E) < l1TallL,(piE) + Iz — ZallL,(o;E)
hence
1z, (p;E) < 1.
By homogeneity, this proves the converse to (3.13).

Therefore, the completion of (|J M,) ® E under the two norms appearing in (3.13)
can be isometrically identified. O

It will be convenient to record here the following simple consequence of (3.6).

Proposition 3.9. — Let E = OH(I) for some set I. Let (M, ) be as in definition
8.1. Then, for any bounded map v: Lo(p) — La(p), the map v ® Ig extends to a
bounded map on Ly(p; E) with the same norm as v.

Proof. — We may identify (by [P1]) E with £3(I), completely isometrically. Then,
(3.6) gives us an isometric isomorphism
Ly(p; E) = L2({Es,i € I})

where the family appearing on the right is simply defined by E; = L2(yp) for all 4
in I. Using the norm of the space £2({E;,i € I}), the content of Proposition 3.9 is
obvious. O
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CHAPTER 4

DUALITY, NON-COMMUTATIVE RNP AND UNIFORM
CONVEXITY

Before we discuss the duality, we need to introduce martingales in our setting. Let
(M, ) be any finite and hyperfinite von Neumann algebra equipped with a faithful
normal trace ¢ with ¢(1) = 1. Let (M,) be an increasing sequence of von Neumann
subalgebras and let EM»: M — M, denote the conditional expectation operator
(see [Ta], p. 332). Let ¢, = ¢|ar,- We can identify L;(pn) with a closed subspace of
Li(p) and EM~ defines a completely contractive projection from L; () onto Ly (¢n).

Let 1 < p < 0o and let E be an arbitrary operator space. As explained in the proof of
Theorem 3.4, we can identify L,(pn; E) with the closure of L,(¢n) ® E in Ly(p; E).
Moreover, the conditional expectation defines a complete contraction from L,(p; E)
onto Lp(pn; E) which we will still denote by EMn.

Then a sequence (z,,) in L1 (p; E) is called a martingale if, for some sequence (M,)
as above, we have z,, € L1(pn; E) and z, = EM~(z,,4;) for all n = 0,1,....

Let M, be the von Neumann algebra generated by the union of the M,’s. It can
be shown by routine arguments (as in Theorem 3.4) that, for any z in L,(yp; E), the
sequence defined by z,, = EM~(z) is a martingale which converges in norm in L, (y; E)
to EM=(z) when n tends to infinity. Moreover, when = € L,(p; E) (p < 00), then
the convergence holds in L,(p; E).

When M is commutative, so that we are back to the classical probability situation,
it is well known (see e.g. [DU]) that, for any 1 < p < oo, a Banach space E has the
Radon Nikodym property (in short RNP) iff every martingale (z,) which is bounded
in Ly(p; E), actually converges in L,(yp; E).

We will now examine this topic in the non-commutative case. We first turn to the
duality. Let (M,) be a net of finite dimensional *-subalgebras directed by inclusion,

P . Let
p—1
E be an arbitrary operator space. Applying Theorem 3.4 to Ly (p; E*), we find a
completely contractive projection

with the same notation as in Theorem 3.4. Let 1 < p < oo and let p’ =

Qa: Ly (p; E*) — Ly (pa; E*)

associated to the conditional expectation from L;(p) onto L;(¢q)-
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By (2.5) we know that
(4.1) Ly (pa; E*) = Lp(pa; E)*
completely isometrically.

Consider now £ in L, (p; E*). Using (4.1), we regard Q,(§) as an element of
Ly(pa; E)*. Consider now z in |J Lp(pa; E) C Lp(p; E). We have & € Ly(pq; E) for

some o and the value of (Q4(£),z) is independent of the choice of a (since (M,) is
directed by inclusion). Therefore we can unambiguously define (for any such a)

(§,z) = (Qa(§), 7).
We have

1€ o) S N1Qa(ONL,y (wasEn Tl (0asB) S NEllL, (oiB) 1llL, (0 m)

hence by density £ defines a linear form £ in L,(p; E)* with €l Lo(e:B)* < EllL, (piE7)-

Actually by (4.1) we have |[&]|z, (p;5)+ = lI€|L, (p;+) for all € in Ly (9a; E*), hence by
density this remains true for all £ in Ly (p; E*). Moreover, since (4.1) is a complete
isometry, we can now state

Theorem 4.1. — The correspondence £ — E is a completely isometric embedding from
Ly (p; E*) into Ly(p; E)*.

If M is commutative and if E* has the Radon Nikodym property (in short RNP),
then it is well known that L,(p; E)* = Ly (p; E*). See [DU] for more information
on the RNP.

It is natural to wonder whether this identity remains valid in the non-commutative
case. Quite interestingly, it turns out that the answer is no, even in the reflexive case,
actually even in the case when FE is isometrically Hilbertian, as the following example
shows.

Example 4.2. — Consider the operator space E obtained by embedding £5 isomet-
rically into the commutative C*-algebra C(T") with T = B,,. Following [Pa2], we
denote this operator space by min(¢;). Let M be the hyperfinite I1; factor equipped
with its normalized trace 7. The space (M, 7) can be described as an infinite tensor
product of M as follows.

Here M> means the algebra of all 2 x 2 matrices equipped with its normalized trace t.
For each k = 1,2,... we set (Ag,tx) = (M2,t). Then we have (in the von Neumann

sense)
oo

(M,7) = Q(Ak, ta).
k=1
Let M, C M be the subalgebra corresponding to A; ® --- ® A,. By a classical
construction, there is a sequence (V,,) in M with V,, € M, for all n and such that

(4.2) V>0 EM(V,01)=0
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satisfying the canonical anticommutation relations (CAR) as follows: Vi, j = 1,2,...
ViV + VIV = 6i;1

(4.3) { ViVi +V}Vi = 0.

For an explicit construction with the “Pauli spin matrices”, see page 795 in [KR]. As
shown by a simple computation, for any finite sequence (a;) of complex numbers, we
have (see e.g. [BR], p. 15)

1/2
= (Z Iailz) .

(4.4) “ZaiV,«

Let (e;) be the canonical basis of ¢; and let d,, be the element of M ® min({2) defined
by

dn =V, ®ep.
Then for any N and any 2z, in C with |z,| = 1, we have

N
Z Zndn

n=1

(4.5) <1,

MQ®minmin(£2)
and on the other hand

(4.6) ”dn”L1(T;min(lz)) = “Vn“Ll(‘r) >1/2.
To prove (4.5), note that (by definition of min(¢z)) the left side of (4.5) is the same
as || Zf' 2V ® en”v (where || ||v is the norm of the injective Banach space tensor
product M®&¥£,) or equivalently this is the same as the usual norm of the operator
Tn: £2 — M taking (a,) to Zfl 2n0nVy, and by (4.4) we have ||Tn|| < 1. This
proves (4.5).
To verify (4.6), note that (4.3) implies 7(V; Vo +V, V) = 7(I) = 1, hence ||V || L, (A1,r)
=271/2, Then we have

2712 = ”Vn”Lz(T) < (”Vn”Ll(T)||Vn||L°°(r))1/2 < (||Vn||L1(T))1/2,
whence (4.6).
By (4.5) and (4.6), the sequence z, = Zfl d, (with say zo = 0) is bounded in
L,(7;min(¢2)) for all 1 < p < oo (and by (4.2), it is a martingale) but it does not

converge in L,(7;min(¢2)) for any p. Moreover, it is easy to deduce from (4.5) and
(4.6) that for all finite sequences of scalars (a,,) we have for all 1 < p < c©

1
(4.7) Esuplan| < ”Zandn

In particular, we have proved

< .
Lp(rmin(£2)) — sup |a|

Proposition 4.3. —  Let (M, 1) be the hyperfinite I1, factor as above. The Banach
space L,(7;min(¢2)) contains a subspace isomorphic to co for all 1 < p < co. In
particular it is not reflerive.

The preceding fact suggests to study the non-commutative version of the RNP,
which can be introduced as follows.
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Definition 4.4. — Let (M, ) be as above and let (M,) be an increasing sequence of
subalgebras. Let 1 < p < 0o (resp. p = 00). We will say that an operator space E has
the ORN P, with respect to (M,,) if every martingale adapted to (M,) and bounded
in L,(p; E) converges in Ly,(yp; E) (resp. in Li(p; E)). We will say that E has the
ORNP if it has the ORNP, for all 1 < p < c0.

It is probably true that the ORN P, does not depend on p but we have not been
able to verify this at the time of this writing. In another direction, it is probably true
that if E satisfies the ORN P, with respect to the hyperfinite II; factor M and its
natural subalgebras (M,,) as above, then it satisfies the ORN P, in general, but we
did not verify this in detail at this time.

Notation. — Let (M, ) be a hyperfinite finite von Neumann algebra as above with
a normalized faithful normal trace .

In the sequel we will say that such a pair (M, ) is a non-commutative probability
space (in short n.c.p. space).

The trace ¢ defines a linear form L, (¢) — C which extends to a completely contractive
mapping L1 (¢; E) — E. We will denote this mapping again by ¢ so that for any z in
L,(p; E), ¢(z) is an element of E analogous to “the integral of  with respect to ¢”.

Let N C M be a subalgebra. We will denote by EVV the conditional expectation
operator from L;(M, ¢; E) onto Li(N, p|n; E).

There is also a natural non-commutative analog of uniform convexity which we now
describe. We will say that an operator space E is uniformly OS-convex if for each
€ > 0 there is a number §(¢) > 0 with the following property: For any n.c.p. space
(M, ) and for any z in M ®min E with ||Z||min < 1 such that ||z — o(z)||z,(p;E) > €,
we have

llo(@)ll < 1—6(e).

If E = OH(I) for some I, then by Proposition 3.9 we have for all z in Ls(yp; E)
(4.8) le@II? + llz — @@L, (i) < N2l1Zo(05m),
hence OH (I) is uniformly OS-convex. More generally, for any subalgebra N C M, if
E = OH(I) we have (by Proposition 3.9 again) for all = in Ly(p; E)
(4.9) NEN 2|, (pim) + Il — EN||],(pim) < 2113 00:m)
from which it is easy to deduce that E = OH(I) satisfies the ORN P, (see Proposi-
tion 4.5 below for more details).

On the other hand, if E is an arbitrary operator space, and 1 < g < oo we have
for all z in Ly(yp; E)
(410) Sup{”ENwlqu(<p;E)a 2_1”17 - ENx”Lq(<p;E)} S ”z”Lq(go;E)-
In particular, this holds if E = OH(I). By interpolation it follows that if E = OH(I)
and if 1 < ¢ < oo the following inequality holds:

(411) ”ENmHZq((p,E) + ‘sq““” - ENz“Eq(q:;E) < ||37||2q(<p;E)
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where r = max(qg, ¢') and where §, = 22~". In particular, this shows (see Proposition
4.5 below) that OH(I) has the ORNPF, for all 1 < g < oo.

Consider now an operator space of the form E = (Ag, A1)¢ with 0 < § < 1 with 4p
arbitrary and with A; completely isometric to OH(I) for some I. We can “interpolate”
between (4.11) for E = A; and (4.10) with E = Ag. The result is as follows. Let
r = max(2/0,q,q'). Then, for any 1 < g < oo there is a number § = (r,q) > 0 such
that for any = in Ly(p; E) and any N C M we have

(4.12) IEN 2T, (i) + 8lle = BVl (o) < 2L (p1m)-

If (4.12) holds with 7 = ¢ for some § > 0 we will say that E is g-uniformly OS-convex.
Clearly this implies that E is uniformly OS-convex. The preceding discussion shows
in particular that any non-commutative L,-space (equipped with its natural operator
space structure) is uniformly O.S-convex.

It will be useful to record the following simple fact.

Proposition4.5. — Fizx §d > 0,r >0 and 1 < g < co. Let E be an operator space.
Assume that E satisfies (4.12) for any n.c.p. space M and any subalgebra N C M.
Then E has the ORNPF,.

Proof. — We repeat a classical argument. Let (M) be an increasing sequence of
subalgebras and let (z,) be a martingale as in Definition 4.4. Since n = ||Zx||L,(¢;E)
is bounded and nondecreasing it converges to a limit c. Let € > 0. Choose ng such
that ”"’n"L(WE) > ¢" — ¢ for all n > ng. Then we have by (4.12) for all n,m with
n2>m2mng
”xm”;fq(wE) +9llzn — 37m||2q(¢;E) < ”z””;w(wE)
hence
lzn = TmllL,(p;m) < (5/5)1/1‘-

Therefore (z,) converges in Ly(p; E) by the Cauchy criterion. O

By the preceding discussion, we have

Corollary 4.6. — For 1 < p < 00, any non-commutative L,-space (equipped with its
natural operator space structure) has the ORNP, for all 1 < ¢ < oo.

Finally, we can complete the discussion of the duality, in analogy with the commu-
tative case (see [DU]).

Theorem 4.7. —  Let (M, ) be any n.c.p. space. Let E be an operator space. If
E* has the ORNPy with 1 < p < 0o and p' = p/p — 1, then we have a completely
isometric identity

Lyp(p; E)* = Ly (p; E*).

Proof. — We simply repeat the well known argument for the commutative case. Let

(M,) be a directed net of finite dimensional subalgebras of M with union weakly dense

in M. Then any ¢ in L,(¢p; E)* defines by restriction an element &, in Ly (pq; E*) C

Ly (p; E*). Moreover, sup ||{|| Ly(p:E*) < €|z, (p;E)- We claim that the resulting
a
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net (§,) converges in Ly (p; E*). Otherwise there would exist a countable increasing
subnet a, such that (£,,) diverges and this would contradict the assumption that
E* has the ORNP,. Let £ = le €x. Then § € Ly (p; E*). Clearly the element

of L,(p; E)* associated to £ by the proof of Theorem 4.1 coincides with the original
functional £. Hence this proves that the inclusion in Theorem 4.1 is actually surjective.
O

In Banach space valued martingale theory, the notion of U M D-space (UM D stands
for “unconditional martingale differences”) plays an important réle. A Banach space B
is called UMD if, for each 1 < p < o0, there is a constant C such that, any martingale
(fn) in Ly(B) = Ly(2, A, P; B) (on an arbitrary probability space) satisfies

< CllfnllL,(B)-

fO + Ziv en(fn - fn-l)
Ly(B)

Actually, if this holds for some 1 < p < 00, then it holds for all 1 < p < co as above.

See [Bu2] for more information and references on this. This notion was inspired by
the classical work of Burkholder and Gundy for scalar martingales (see [Bul]).

VN Ve, =1

Recently, a non-commutative version of the Burkholder-Gundy inequalities was ob-
tained in [PX2]. The results of [PX2] naturally suggest the following definitions and
a number of related questions.

Definition 4.8. — With the same notation as in Definition 4.4, we will say that an
operator space E is UM D,, with respect to (M) if there is a constant C such that
any martingale (f,) in L,(yp; E), adapted to (M,), satisfies

< C“fN“L,,((p;E)~

fo+ Y0 enlfa— fa1)
Lp(4;:E)

When this holds for every (M, ¢) and every filtration, we will say that E is UM D,,.

(4.13) VN >1 Ve, = +1

By the main result of [PX2], (4.13) holds if E = C or more generally, if F is itself
a non-commutative Ly-space, for example if E = S,,.

However, very few examples are known at this point and a lot needs to be done.
Here are a few natural questions which come to mind (some of them might be quite
eagy):

4.9. Is (4.13) satisfied when E = OH and 1 < p # 2 < 00?
4.10. Same question with E = S, for 1 < ¢ # p < oo?
411. f Eis UMD, for some 1 < p < 00, is it UMD, for all 1 < p < 00?
4.12. If an operator space is UM D,, with respect to the standard filtration appearing
in Example 4.2, is it UM D,?
4.13. A necessary condition for E to be UM D, is that S;[E] be UMD as a Banach
space. Is this condition sufficient?
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COMPLETELY p-SUMMING MAPS

Let 1 < p < oo. Let E, F be operator spaces and let u: E — F be a linear map. We
will say that u is “completely p-summing” if the mapping

U=1 S, ®u
is bounded from S, @min E into S,[F]. We denote by

Tp(¥) = [IUlls,@minE— S, [F]-
We will denote by II(E, F) the space of all completely p-summing maps and we equip
it with the norm =« for which it becomes a Banach space.

To give immediately an example, we will see below in Proposition 5.6 that if a,b
are in Sy, then the map M: B({2) — Sp, defined by M(x) = axb, is completely
p-summing. A fortiori, any restriction of this map also is completely p-summing. We
will see that the resulting mapping is the prototype of a completely p-summing map.

Clearly the class of “completely p-summing maps” is an “ideal” in Pietsch’s sense.
By this we mean that if E,, Fy, E, F are operator spaces if v: Ey -+ E,w: F =+ F;
are c.b. maps and if u: E — F is completely p-summing, then the composition wuv
is completely p-summing and
(5.1) w2 (wuv) < [lwlles 7(w) [folles.

This is clear from the definition and from Corollary 1.2.
Let E, F be operator spaces and let u: E — F be a linear map. Then

(5.2) mp(u) =sup{my(uT) | T: Sp* = E, n>1, |T|s<1}.

Indeed, clearly 73(uT) < m5(u)||T||cs by the ideal property (5.1). Conversely, we have
mp(u) = sup{||(Is; ® u)(6)||sp(F)} where the supremum runs over all n and all § in
the unit ball of S} ®min E. For such a 6 let T': (S;,‘)* — E be the associated linear
map. Then (Is» ® u)(0) = (Isp ® uT)(i) where i € Sp ® (S7)* corresponds to the
identity map on S7. Hence

mp(w) < sup{my(uT) | ||Tles <1},
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which completes the proof of (5.2).

The main result is the following extension of the “Pietsch factorization” for com-
pletely p-summing maps.

Theorem 5.1. — Assume E C B(H). Let u: E — F be a completely p-summing
map (1 < p < 00) and let C = mp(u). Then there is an ultrafilter U over an index set
I and families (aa)acr, (ba)acr in the unit ball of Sap(H) such that for all n and all
(z:5) in M,(E) we have

(5.3) ll(w(zi)snF) < Clilrlnll(aa T bo)lls, ez o)
and
(5.4) l(u(@i))lImacry < Climll(aa 5 ba)llaa (s, m)-

Conversely, if an operator u satisfies (5.4) then it is completely p-summing with
mo(u) < C.

For the proof we will use the following well known fact

Lemma5.2. — Let S be a set and let F C £oo(S) be a convex cone of real valued
functions on S such that

VfeF sup f(s) > 0.
s€S
Then there is a net (\y) of finitely supported probability measures on S such that

VfeF lim/fd)\QZO.

Proof. — We will identify £, (S) with the space C (S) of all continuous functions on
the Stone-Cech compactification S of S. Then in C(S) the set F is disjoint from the
set {p € C(S) | maxy < 0}. Hence by the Hahn-Banach theorem (we separate a

convex set and a convex open set) there is a probability measure A on S such that
A(f) >0 V f e F. Since X is the limit for the topology o(£oo(S)*, £oo(S)) of a net
of finitely supported probability measures on S we obtain the announced result. O

We will also use

Theorem 5.3. — Let E be any operator space, with E C B(H). Consider x = (zij)
in Sp ®min E viewed as an element of Mo (E). Then we have

(5.5) Izlls,@minE = supr{|l(azi;b)ls, e0mm)}

where the supremum runs over all a > 0, b > 0 in the unit ball of Sa,(H).More

generally, let F' be another operator space then for all  in Sp[F] ®min E we have
Izlls, (Fl@mne = suP{ll(Is,(F] ® @) = (Is,(F) ® b)|s,(t.0H;F1}

where the supremum again runs over all a > 0, b > 0 in the unit ball of Sop(H).
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Proof. — It clearly suffices to prove this for E = B(H). Furthermore, taking the
appropriate supremum as usual, it even suffices if we wish to assume E = M,,. Then
the result is an obvious consequence of Lemma 1.7 and Theorem 1.9. Note that,
by the polar factorization of a and b, we can restrict the supremum to Hermitian
non-negative operators. O

Let (Eqa)aer be a family of operator spaces, let & be an ultrafilter on I and let
(Eo)u be the Banach space which is the ultraproduct of (E,) with respect to U
(cf. e.g. [Hei]). In [P1] we observed that (E,)y can be equipped naturally with an
operator space structure by setting M, ((Eo)u) = (Mn(Eq))u. Equivalently, we have
an isometric identity

F ®min (Ea)u = (F ®min Ea)u, valid if F = M,

However, the reader should be warned that this identity fails to be isometric in general,
for instance when F' = OH,, or S} (see [P6]). This explains certain precautions that
we take below. This phenomenon is closely related to the absence of “local reflexivity”
for a general operator space (cf. [EH]).

Lemma 5.4. — Let (Ey)acr be a family of operator spaces and let U be a nontrivial
ultrafilter on I. Let E be the corresponding ultraproduct. Let n > 1 be a fized integer.
Consider a matriz (Z;;) in Mn(E). Let (z%)acr be a representative of %;;, with
zj; € E.. Then we have

@) lsg 5y = lim (25 g
Therefore, we have a completely isometric identity
8718] = (SpEalu-
Proof. — Assume that liLI(n l(z5;)llsz(E.) < 1. Then we can write (z§;) = aa - (¥5}) - ba
with aq, by € S5, and (y5%) € M,(Eq) such that
lim llac ll2pll(43) | po (2a) [1Ballzp < 1.

By homogeneity, we may assume that ||aqll2p = ||ballzp = 1. Let a = li&n Ga, b =
liLr{n bo (these limits exist by the compactness of the unit ball of S3})). Then clearly

(#i;) = a-(9i;)-b where §;; denotes the element of E associated to (%) aer- Therefore
we conclude

@) sp12) < llallzpll(@5)]l ar,, 5y l10ll2p
< lim |5l pta (80) < 1.

Conversely, if ||(:Eij)||S:[§] < 1, we can write (£;;) = a-(§i;)-b with ||lal|sy = [|b]lsy, =
1 and ||(g),~j)||Mn(§) < 1. Let (y5})acr be a representative of g;;.
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Define z{; by the matricial identity (25;) = a- (y5) - b. Then (2f})acr represents ;;.
Hence we have hgln ||z — =]l = 0 for all i,j and we conclude

lim 125 llspie) = lim [1(z8)llsima) < 1
By homogeneity this completes the proof of the first part. The last assertion is then
easy to deduce from Lemma 1.7. O

Proof of Theorem 5.1. — Let S = {(a,b) € Bs,,() X Bs,,(n)l a > 0, b > 0}.
Consider the set F of all functions on S of the form

V@hes  flab) =0 el gem - U@

where (z™) is a finite sequence with 2™ € S, ® E for each m (so that z]} € E).
Observe that by (5.5) and by Corollary 1.3, we have sup f(s) > 0. Hence by

Lemma 5.2 there is an ultrafilter &/ on a set (\,) of ﬁmtely supported probability
measures on S such that

VieF lm / £(8)dAa(s) > 0.

Now consider a finitely supported probability measure A on S, say

N
A= Z Aeb(ay b)
k=1

N
with A > 0, 3" Ax = 1. Then we can write by Lemma 1.14
1
> Mell(@rzisb)ls goem) < 1@ 1em
&

where @ and b are Hermitian, non-negative in the unit ball of S2p(H). Hence applying
this to each A, we obtain nets (aq), (bs) in the unit ball of Sy, (H) for which (5.3)
holds. We can now check (5.4) easily using Lemma 1.7. Indeed, we deduce from (5.3)
and (1.7) Va,b € Bgp,

1U(a- (zi5) - Ollspiry < Clim l(a - (aa@ijba) - )lls, (¢ 0m)
< Clim||(aa2i;ba)ll M. (s, 2
hence by Lemma 1.7 taking the supremum over all a,b in the unit ball of S3, (and
observing U(a - (zi;) - b) = a - (u(z;;)) - b) we obtain (5.4). A
Conversely assume u satisfies (5.4). Lgt Sa = Sp(H) and let §p be the ultraproduct

of (Sa)acr associated to U. Let E, C S, be the closure in §p of the subspace spanned
in §p by the elements of 5‘;, associated to families of the form (aa2by)acr With z in E.
Then by (5.4) there is a (uniquely defined) map u: E, — F with ||u||cs < C which
takes the element of E, associated t0 (aaZba)acr to u(z). (See Remark 5.7 below for
more details.) By Corollary 1.2, we have ||Is; ® | s»(g,]-sz(F) < 1 s0 that using the
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second part of Corollary 1.2 and Lemma 5.4 (and recalling Theorem 1.9), we obtain
(5.3). From (5.3) it is easy to deduce that mg(u) < C. See Remark 5.7 below for more
details on this point. 0O

Corollary 5.5. — Letu: E — F be a completely p-summing map (1 < p < 00) and
let U: Sp ®min E — Sp[F] be the corresponding map. Then

Tl = U = mp (u).
In particular, we have

llulles < mp(w).

Proof. — Since £3 ®4f2 ~ £y, we have amap v: Sp(€5 ®2£2) Omin E — Sp[l3 ®2 La; F
associated to u with ||v|]| = ||U|| = 7g(u). Now let (zi;) € M.(Sp ®min E) with
Z;j € Sp ®min E. We have by Lemma 1.7

(U @iilata (s, 1p) =
sup{lla - (U(zi;)) - bllsp(s,(Fp | @, b € Sy, llallsz, <1, [IBllsz, < 1}
Hence this is
< vl sup{lla - (%) - blls, (3 ®2)®minE }
where the supremum is the same as above. Hence by Theorem 5.3 this is
< vl sup{li(a ® Is, ® a) (i) (b ® Is, ® V) Is, ¢z @st20211) }

where the supremum runs over all a,b, a',b' in the unit ball of S5, and Sa,(H) respec-
tively. By Theorem 5.3 again this is

<@l s, @ min(Ma@minE) = NON(@i5) | M, (S, @emin ) -

Hence we conclude ||[U||cs < ||v|| = ||U|| = mp(u). Since the inequalities ||U]| < [|U]|cb
and ||u||cs < ||U||es are obvious, this concludes the proof. O
Remark. — In [BP], [ER2], a natural operator space structure is defined on the

space cb(E, F'). The preceding corollary allows to equip the space II$(E, F') with the
operator space structure corresponding to cb(Sp Omin E, Sp[F]).

Proposition 5.6. —  Let K be any Hilbert space. Consider a,b in Sop(K) and let
M(a,b): B(K) — Sp(K) be the operator defined by M(a,b)xz = azb for all x in
B(K). Then

(5.6) 1M (a,b)lles < mp(M(a,b)) < llalls,, &) lIbll sy, (k)-
Proof. — By Theorem 5.3 if a,b are in the unit ball of Sy,(K), then M(a,b) is
a contraction from S, ®min B(K) into Sp(¢2 ® K). But by Theorem 1.9, S,(f> ®

K) = Sp[Sp(K)]. Hence we obtain my(M(a,b)) < 1. The inequality (5.6) follows by
Corollary 5.5 and by homogeneity. O
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Remark 5.7. — We vgéll now reinterpret Theorem 5.1 as a factorization theorem. Let
us denote briefly by B the ultraproduct of (Bgy)qer with B, = B(H) for all « in I.
As above, we let S, = (Sa)u where S, = Sp(H) for all ain I. Let M: B — S, be
the operator associated to the family (My)aecr where My: B, — S, is defined by
My (z) = aqzbs. Let i: E — B be the map which takes z € E to the element of
B corresponding to (z4)acr with z, = z for all a. Clearly 7 is a complete isometry.
Let E., = i(E). Similarly let E, = Mi(E) where the closure is in S,. Applying (5.4)
first with n = 1, we can define a map u: Mi(E) — F by setting
u(Mi(z)) = u(z).

By (5.4), u is unambiguously defined and

l@(Mi(z))llr < CliMi(z)llg, forall zinE.

Hence u can be extended to the closure E, of Mi(E) in §p, and this extension- still
denoted by u — satisfies ||a|| < C. Actually, applying (5.4) in general, we find
ll@lles < C.

This gives a factorization diagram as follows:

B M, g
U U
E, —M E,
i1 I u
E —» F

where M: E., — E, is the restriction of M to E,,. We now claim that
(5.7) mp(Mi) < 1.
Equivalently, this claim means that for all n and all (z;;) in S ®min E we have
(5.8) :i)llsy 5,1 < 1@35)ll55 @t
Now by Lemma 5.4 (and Corollary 1.2) we have
l@ii)llsp (2,1 = lim ll(@aziiba)llspis, (o)

but by (5.5) we have

(@azi;ba)llszis, (i) < 1(®ii)llsp@minB ) = (i)l sy @minE
hence we obtain (5.8). This proves our claim (5.7).

We summarize the content of the preceding remark in the next statement.

Corollary 5.8. — Ifu: E — F is a completely p-summing map, then there is a
subspace X of an ultraproduct of spaces of the form S,(H) for which v admits a
factorization u = AB through X with B: E— X, A: X — F such that

l1Allcoll Blles < |l Allesmy(B) < mp(w).
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Proof. — The factorization follows from the preceding discussion. We let X = E,,
B = Mi and A = . Note ||A||s < m9(u). Moreover, by (5.7) and Corollary 5.5, we
have ||Blle < 73(B) < 1. =

In the case E C My (or E = My), we note the following simpler variant of
Theorem 5.1.

Theorem 5.9. — Assume E C My for some integer N > 1. Let F' be an arbitrary
operator space and let u: E — F be completely p-summing with C = mp(u). Then
there are a,b Hermitian non-negative in the unit ball of BS% such that for all n and

for all (z;;) in Sy ® E we have
(5.9) l(u(@i)szir < Cll(aziib)llsp(sy)-

Proof. — By Theorem 1.1, we have (5.3) but since the set S = Bsg; stﬁ is compact,
(aq) and (b,) norm-converge along U to elements a and b in S{,‘{,, so that (5.9) follows.
O
Remark 5.10. — 1In the situation of Theorem 5.9 we have a factorization of u of the
form
M N
M, N — Sp
U U
M T
E ——— E,»F
where the arrows are defined as follows: for any * € My we have Mz = azb, E, coin-

cides with M(E) C S} and finally M is the restriction of M. Then, by Lemma 1.7,
(5.9) implies that @ is c.b. with ||@||s < C.

Note that if E = My, we can replace a,b respectively by (14 ¢)~1(a + ¢I) and
by (1 +¢&)~!(b+ eI) with € > 0 arbitrarily small. We then obtain E, = SY and
llzlles < C(1+€). This is the operator space version of the p-integral factorization of
u.

Remark 5.11. — M. Junge (personal communication) observed that one can develop
a variant of p-summing operator which is intermediate between the Banach space case
and the completely p-summing one of this paper. Junge’s original motivation was to
generalize to any 1 < p < oo the notion of (2, 0h)-summing operator introduced in
[P1]. This idea has interesting applications to the factorization theory. For instance
it yields characterizations of maps which factor through a commutative L,-space,
say Lp(€, ), equipped with the operator space structure defined by interpolation, as
explained in section 2 above.

More generally, let n > 1 be a fized integer. One can then characterize the operators
which factor through an operator space of the form

Ly(Q, 115 87)
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for some measure space (2, ). Note that, since n is fixed, this class of spaces is
stable by ultraproduct. To handle this kind of factorization, Junge observed that the
following notion is the “right” one. (Actually he originally considered only the case
n =1.) Let E, F be operator spaces and let u: E — F be a linear map. Recall that
n > 1is fixed. We will say that u is £,(Sy)-summing if u induces a bounded linear

map U™ from Z,,(.S’;,') Qmin F into pr(Sz','[F]). We denote
(™ (u) = UM

Let C = mp )(u) Then, by the same proof as in Theorem 5.1, it is easy to check that
there are I,aq,by and U as in Theorem 5.1 such that (for the specific integer n) u
satisfies (5. 4) Conversely (again by the same proof) if u satisfies (5.4) with respect

to n then mp )(u) <C.
Equivalently this can be reformulated as a factorization: a map u: E — F'is £,(Sy)-
summing with 7r,(,") (u) < C iff u admits a factorization of the form

E-“E, —* 3 F
with 75(v) <1 and
1@l as, (Ep)— M (F) < C.
When n =1 and p = 2, this notion reduces to the (2, oh)-summing operators and
75 (u) = m2,0n (1)
We refer the reader to a forthcoming paper of M. Junge for more details.

We now compare the notions of completely p-summing and absolutely p-summing.

Proposition 5.12. —  Let (R, ) be any probability space and J: Loo(p) = Lp(p)
be the inclusion map. Let X C Lo.(u) be a subspace, let X, be its closure in Ly(u)
and let j: X — X, be the restriction of J. Then j is completely p-summing and

() < 1.

Proof. — By the preceding results we have contractive inclusions
Loo(1t) ®min Sy = Loo(15.Sy) = Lp(1; Sg) = Sp[Lp(1)]-
It follows that mp(J) < 1 hence a fortiori mp(j) < 1. O

Remark 5.13. — Let E, F be operator spaces. Assume that F' is equipped with the so-
called minimal operator space structure in the sense of [BP], i.e. the structure induced
by any isometric embedding of F into a commutative C*-algebra. Then it is clear
* that for any operator space G and any map v: G — F we have ||v|]| = ||v||ce. Then
if a linear map u: E — F is absolutely p-summing in Pietsch’s original sense [Pi],
it is completely p-summing. (The converse is obviously false in general.) Indeed, by
Pietsch’s factorization theorem [Pi] there are (2, ), S, Sp and ] as in Proposition 5.12

for which there is a factorization of u of the form E—+S —)S 4 F with [|@]] = mp(u)
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and ||| = 1. Clearly ||¢||cs < ||¢]| and ||u]|cs < ||u|| by our assumption on F', hence by
Proposition 5.12 u is completely p-summing and we have

mp(w) < |lilleemy (Dllalles < mp(uw).
If F is an arbitrary operator space, then we can only conclude that u is Z,,(S;)-
summing with w,(,l)(u) < 7mp(u) in the sense of Remark 5.11 above.

The following Lemma will be useful in the sequel.

Lemma5.14. — Let K be an arbitrary Hilbert space. Let 1 < p < oo. Consider
U € Sp(K) ®min E. Let uy: Sp(K)* = E and uz: E* — S,(K) be the associated
linear maps. Then

(i) If uy is completely p-summing, then u € Sp[K; E] and ||ulls,x;5) < 7p(u1)-
(ii) If u € Sp[K; E] then uy is completely p-summing and mg(uz) < ||ulls,k;E)-

Proof. — Using Lemma, 1.12, it is easy to reduce to the case when K is finite dimen-
sional, so that we may assume K = £ and S,(K) = S;. Consider then u € Sy[E].
Let i be the element of S; ® (Sp)* corresponding to the identity map on Sp. We have

l(Isp ® u1)()llsp i) < mp(Ur)llillsp @min(sz)*
hence since (Isp ® u1)(7) can be identified with u, this implies ||lul|sz(g < mp(u1),
whence the first part.
To prove the second part, assume |{u||ss(g] < 1. Then by Theorem 1.5 there are z in
the unit ball of M,(E) a and b in the unit ball of S7, such that u = a - = - b, hence
uy = M(a,b)v where v: E* — M, is the map associated to z in the natural way.

Therefore by (5.1) we have mg(uz) < 7p(M(a,b))||v|]|lcs < 1. This proves the second
part. O

Remark. — For a recent application of the notion of completely p-summing map to
“split inclusions” of (von Neumann) factors, see [Fil]-[Fi2] (more precisely, what is
used there is a notion of completely p-nuclear map).
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CHAPTER 6

OPERATORS FACTORING THROUGH OH

We recall that we say that an operator u: E — F factors through OH if for some
index set I we have a (completely bounded) factorization of u through the operator
Hilbert space OH (I) which is introduced and studied in [P1]. Moreover, we denote
by Yor(u) the infimum of ||al|cs||b]|cs over all I and all factorizations of u of the form
u = ab with c.b. maps b: E - OH(I) and a: OH(I) - F.

Note that by Corollary 2.4 in [P1] we know that if H is isometric to £3(I) then
Sa(H) is completely isometric to OH(I x I). Moreover, since the class of operator
spaces of the form OH () is stable by ultraproduct, by Remark 5.7 we have

Proposition 6.1. —  Every completely 2-summing map u: E — F factors through
OH and satisfies Yon(u) < w3(u). More precisely, assume E C B(H). Then there is
a set J and maps V: B(H) - OH(J) and T: OH(J) = F with 73(V) < 1 and
IT)|lcs < 7§(u) such that

u = T‘/lE.

In particular, u admits an extension v: B(H) — F satisfying n3(v) = n3(u).

Proof. — With the notation of Remark 5.7, let P: §2 — E5 be the orthogonal
projection. Define T': S, = F as T = uP. Since S, is completely isometric to
OH(J) for some J, it is homogeneous in the sense of [P1], so that ||P|| = ||P||cs-
Hence ||T||es < ||@]les < #(u), and we clearly have u = TMi. This settles the first
assertion. Now, let j: B(H) — B be the map which takes z € B(H) to the element
of B corresponding to (Za)aer With 2, = « for all a. Clearly, j is a complete isometry.
Let V: B(H) —» S, be the composition V = Mj. Then, by (5.7) applied in the case
E = B(H), we have 3(V) < 1. Note that jg = i, hence TVjg = TMi = u. Clearly,
we can replace S» by OH(J ) in the factorizations if we wish and we obtain (taking
v = TV) the second part of Proposition 6.1. a

In [P1], we introduced the class of (2,0h)-summing maps as follows. An op-
erator u: E — F is called (2,0h)-summing if there is a constant C such that
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VnV x,...,2, € E we have

(T hutzo?)” <o T eoa

We denote by 72 on(u) the smallest constant C for which this holds. It turns out that
if F = OH this notion and the notion of “completely 2-summing” map coincide:

1/2

Proposition 6.2. — Let u: E — F be a linear map between operator spaces. If u is
completely 2-summing then u is (2, oh)-summing and 72 op(u) < 75(u). Moreover, if
F = OH(I) for some set I then the converse also holds and we have

To,0n(U) = 75 (u).

Proof. — Let x1,...,z, € E. Let z;; = z; if i = j and z;; = 0 if i # j. We have by
Corollary 1.3

(Slu@i2)” = lwE)llssin < @I szomns

1/2
<mw Y= @

hence w3 on(u) < w9(u) and the first assertion follows. Conversely, let us assume
F = OH(I). By Corollary 6.8 in [P1], every (2, oh)-summing map u: E — F admits
a factorization of the form u = @Mi with M, as above and with ||&]| < g on(u).
But now if F = OH(I), since S, is itself completely isometric to OH (J) for some set
J, it follows that for &: S, — F we have |[d]|.s = ||| < ma,0n(1). Hence, we conclude
that u is a completely 2-summing map and we have

5 (w) < [flles 5 (Mi) < 2,0 (w)m3(Mi)

hence by (5.7)

S T2,0h (U)

In particular, we have obviously

Proposition 6.3. — Let I,J be arbitrary sets. Let u: OH(I) = OH(J) be a linear
map. Then the Hilbert-Schmidt norm of u, denoted by ||u||gs satisfies

llullas = 73 (w) = m2,0n(u).

Proposition 6.4. — Let I be any set, let F' be any operator space and letv: OH(I) —
F be a linear map. Then v is a completely 2-summing map iff v admits a factorization
v = AB with B: OH(I) > OH, A: OH — F such that B is Hilbert-Schmidt and
A is c.b. Moreover we have

3 (v) = inf{||Bl|msl|Allcs }

where the infimum runs over all possible factorizations.
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Proof. — First assume that v = AB as above. Then by (5.1)

m3(v) < m3(B)||Alles
hence by Proposition 6.3 we have 73(v) < ||B||us||Al|cs- Conversely, assume that v is
completely 2-summing. Then by Proposition 6.1, v admits a factorization of the form
OH(I )£)§21>F, with ||A||cs < 7§(v) and 7g(B) < 1. But since S, is completely
isometric to OH (J) for some set J, we again have by Proposition 6.3 || B||us = 73(B),

and since a Hilbert-Schmidt map has separable range, we can replace OH(J) by OH
in the factorization. O

Using Propositions 6.2 and 6.4, we can reformulate Theorem 7.7 in [P1] in a fashion
entirely analogous to a result of Kwapien [Kw1] in the Banach space setting.

Theorem 6.5. — Let E, F be operator spaces and let C be a constant. The following
properties of a linear map u: E — F are equivalent:

(i) u € Ton(E, F) and von(u) < C.
(ii) For any completely 2-summing map v: F — OH, the map (vu)* is completely
2-summing and
m3((vu)*) < Cm3(v).
(iif) For any n and any v: F — OH, we have
m3((vu)*) < Cm3(v).
(i#i’) For any n and any v: F — S we have
m3((vu)*) < Cm3(v).
(iv) For any operator space G and any completely 2-summing map v: F — G, the
map (vu)* is completely 2-summing and

m3((vu)*) < Cm3(v).

Proof. — The equivalence of (i) and (ii) is clear from Theorem 7.7 in [P1] and the
preceding Corollaries. (ii) ¢ (iii) is easy, (ii) = (iv) follows from the factorization in
Proposition 6.1 and (iv) = (ii) is trivial.

Finally the equivalence (iii) < (iii)’ is obvious since S} is completely isometric to
OH,. O

Lemma 6.6. — Let X = OH(I) for some set I. Let K be an arbitrary Hilbert space.
Then

So[K; X] = S2(K) ®n X

completely isometrically.
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Proof. — Assume K = {3 for simplicity of notation. By Theorem 1.1 (case § = 1/2)
we have

So[K; X] = OH ®, X ®, OH.
Now if X = OH(I), by Corollary 2.12 in [P1] we have

OH @, X ®, OH ~ OH(N x I x N)
~OH(NxNxI)
hence again by Corollary 2.12 in [P1]
~ OH(N x N) ®, OH(I)
hence

~ Sy ®p X.

Lemma 6.7. — Letu: E — F be a linear map between operator spaces. Then
Yon(u) = sup{Yor(Tu) | T: F - Mp, |T|ls<1, ne€N}

Proof. — Clearly this supremum is at most Yo, (u). To show the equality, let j: F —

B(H) be a completely isometric embedding. Clearly vy,1(u) = Yon(ju). Hence we may

as well assume that F' = B(H). But then there is a family of matrix spaces (My,)ier

and an ultraproduct of (M, )ier which contains B(H) completely isometrically. Let

T;: B(H) — M,, be the corresponding mappings with ||T;||» < 1 so that the associ-

ated operator (T;)y: B(H) — (Mp,)u is a complete isometry. Then we have by the
stability of the class of spaces OH (I) by ultraproduct

Yon(u) < li&n Yon(Tiw).
This yields Lemma 6.7. O

It will be useful to record here the following finite dimensional version of Theo-
rem 5.1.

Theorem 6.8. — Let N > 1. For any operator space F' and any u: My — F there
are a,b in the unit ball of SY such that u admits a factorization as follows

My SN ILLF,
i.e. u=TM where T: SY — F satisfies ||T||cs < 75(u) and where
M(z) = axb.
Conversely, any operator admitting such a factorization satisfies 73(u) < ||T||cs-
Proof. — This follows immediately from Theorem 5.9 and Remark 5.10. O

Theorem 6.9. — Let u: E — F be as in Theorem 6.5. The properties considered in
Theorem 6.5 are equivalent to each of the following
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(v) For any bounded linear map A: Sz — Ss, the operator A ® u extends to a c.b.
map from Sa[E] to Sq[F], with c.b. norm < C||A]|.
(vi) For anyn and any A: S — S7 we have

l1A ® ulles(sp e,z 167 < ClIAIl-
(vii) For any n and any A: S3 — S3 we have

l14 ® ullspE1- sz < ClIAl-
(viii) For any n and any A: S7 — S7 we have

lA ® u*||spre1=sz e+ < ClIAll.

Proof. — (i) = (v): To show this it clearly suffices by Corollary 1.2 to show that, if
X = OH(I) for some set I, then A® Ix defines a complete contraction on Sy[X] when
||A]] € 1. This is an immediate consequence of Lemma 6.6 and of the homogeneity
of S = OH(N x N). (This also follows from Proposition 3.9. Alternate proofs
can be given using Theorem 1.9, or (2.10) for p = 2 and E; one dimensional, and
Corollary 1.2.) Then (v) = (vi) = (vii) are trivial and (vii) = (viii) is easy by
duality using Corollary 1.8. It remains to show (viii) = (i).

By Lemma 6.7, we can assume that F' = M for some N and it suffices to show that
(iii)” holds in that particular case. Let v: F — S7 be such that 7§(v) = 1. We claim
that (iii)’ holds, i.e. that

(6.1) m3((vu)*) < Cr3(v) = C.

To check that, since FF = My we may assume by Theorem 6.8 that v = TM as in
Theorem 6.8 with ||T||c» < 1. Since the presence of T clearly does not affect (6.1) we
may as well assume that v takes values into S)¥ and that v is of the form v(z) = axb
where a,b are in the unit ball of S. In other words (see Theorem 1.5) v: F — S¥
is associated to an element ¥ in SJ'[F*] with |[3]|gy(p+) < 1. Now to check that

(vu)*: SN* — E* satisfies (6.1) note that by definition of the norm 73(-) we have
(6.2) 73 ((vw)*) = sup{||(Isy ® (vu)*)(B)llsp (-1}

where the supremum runs over all n > 0 and all 3 in the unit ball of S§ ®min S5 *.
Clearly such a 8 can be viewed as a linear map B: SY¥ — SI with ||B|| < 1. Then
we have

(Isp ® (wu)")B = (Bou)o
so that by our assumption (viii) we have (we may clearly assume n = N if we wish
by adding zeros)

l(Isy ® (vu)*)Bllsy(e+) < ClIBI 1]l sy pe) < C.

By (6.2) we conclude that (6.1) holds and this completes the proof of (viii) = (i) and
hence of Theorem 6.9. O
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Remark. — The preceding result implies that for all u: E — F we have
(6.3) Yoh () = sup{||A ® ulles(s, (1,527 | 41 S2 = S2 || All < 1}
This allows to equip I'on(E, F)) with a natural operator space structure, by defining
for all (u;;) in Mn(Ton(E, F))
(i), (v on (B, 7))
= sup{||A ® (uij)llco(sa[E),Ma(S2(F]) | At S2 = S2 ||A]| <1}
Equivalently, by (6.3) we can view I',s(E, F) as subspace of @ E4 where I =
Acl
{A: Sz — S2 I ”A” < 1} and EA = Cb(Sg[E],S2[F])

The embedding J: T'op(E, F) - @ E4 is defined by J(u) = (4 ® u)aes- Since the
Ael
spaces F 4 have a natural operator space structure (cf. [BP], [ER2]) the same is true

for @ E4 and a fortiori for the image of [op(E, F) under J.
A€I

Remark 6.10. — We recall that when E, F are Banach spaces, we denote by I'y(E, F')
the space of all operators u: E — F which can be factorized through a Hilbert space,

i.e. there is a Hilbert space H and a factorization of u of the form E-2sH-"+F. We
denote below

lullr (&, 7y = inf{llall ||5]I}
where the infimum runs over all such factorizations.
In [Kw1], Kwapieri proved that we have
l|ullr,2,F) < C
iff for all N and all operators t: £) — £ we have
It ® ulley ()= ey 7y < CIIEI-
We will now prove the operator space analog of his result.
Theorem 6.11. — Let u: E — F be an operator between two operator spaces. Then
the properties considered in Theorems 6.5 and 6.9 are all equivalent to
(ix) For any N and any t: £ — £ we have
It ® ullr, . e (8,05 (7)) < CIIEII-
(x) For any N and any t: £ — £Y we have
It ® ulleser (m),e5 (7)) < ClIEI-

(xi) For any measure space (2, ) and any bounded operator t: Lo(u) — Lo(p) we
have

It ® wlleb(L2(u; B), La(usFy) < CIE-
(xii) For any n, we have

sy ® ullry(syimnspiry < C.
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(xiii)) For any n and any A: S7 — S3 we have
l1A ® ullr,(spim,sz1r)) < ClIAIl-

Proof. — By Proposition 2.1 (iii), £5(OH(I)) and Lo(p; OH(I)) are completely iso-
metric to OH(J) for some set J. Therefore it is easy to show that (i) = (ix), and
(ix) = (x) is obvious. Similarly we have (i) = (xi) and (xi) = (x) is trivial. We will
now show (x) = (xii).

Assume (x). Fix an integer n. By Proposition 2.1 we have a complete isometry
SN (E)] ~ €Y (S?[E]). Hence for all t: £) — £ if (x) holds we have by Corol-
lary 1.2

It ® Isp ® ulley (spEny—sep sz < ClIEI-
Therefore by Kwapien’s result (see Remark 6.10)
15 ® ullry(simr,szien) < C-
This proves (x) = (xii).

Now assume (xii). Then for any £ > 0 we have a factorization through some Hilbert
space H as follows

Is; ®u: SPIE|-+H-3Sp[F]
with [la]| < C(1+¢), |lbll < 1.
Equivalently, we have maps a;;: E — H such that for all z = (z;;) in S7[E] we have

(6.4) utailisgir < |3 ass(ais)

Now consider arbitrary choices of signs €; = £1, €] = +1 and permutations 01, o3 of
{1,...,n}. Replacing (z;;) by

|, < C+olalisym

(€5€5Tas (i) aa(s))

and averaging (6.4) (after squaring it) over €;, €7, 01,02 with respect to the uniform
measure, we obtain

1/2
(6.5) l(u(zi) sy < (515 > IIaij(wu)llz) < C(1+é)ll=llsp(m)-

ijke
Let K = £3°(H). Let a: E — K be the map defined by
1
a(z) = ~(aij(2))ij<n-

Then (6.5) can be rewritten as

1/2
(6.6) l(u(zi)llsgr) < (Z |Ia(xke)llz) < C(1+¢)llzllsp (e
ke
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LetU: SZ — Z;’z be the standard isometry. Then, by (6.6) we have amap 8: K —» F
such that Isp ® u admits a factorization of the following form
Isy ®u: SPE] —Y8% o (k) —L"%% , gn(F],
with [U® || <C(1+¢)and Ut ®M| L1
Then consider any A: S7 — SZ. We have
ARu=U"'®pB)(UAU'® Ik)(U ®a)

hence
A ® ullry(sgimr,sp1rn) < CA+ VAU @ Ikl 2 i)y e22 k)
<C+elAll
Since € > 0 is arbitrary this proves that (xii) = (xiii). Clearly (xiii) = (vii) hence by
Theorem 6.9 we also have (xiii) = (i) and this completes the proof. a

It is well known that Hilbert spaces are characterized among Banach spaces by the
parallelogram inequality:
llz + yll* + |lz — ylI?
2
In other words, given a Banach space F, let

T: 62(E) - £2(E)

Vz,ye E

< Il + llylI*.

be the operator defined by
Tty z—y
T(zy) = —F——,—= ) -
(5:9) ( V2 V2 )
Then FE is isometric to a Hilbert space iff ||T|] < 1.
In the category of operator spaces, we have an analogous result:

Theorem 6.12. — Let E be an operator space. Then ||T||ce < 1 iff there is a set I
such that E is completely isometric to OH (I).

Proof. — If E = OH(I), then the map u = Iy satisfies property (x) in Theorem 6.11
with C = 1. Hence we have ||T||s < 1. To prove the converse, let v: £3 — £2 be the

map taking (z,y) to (%ﬁ[, x\;iy) (rotation by m/4) so that T = v ® Ig. Recall

that, by Proposition 2.1, we have isometrically
SH5(E)] = (S5 [E)).
Hence if ||T||c» < 1, we have (by Corollary 1.2)
sz @ Tllca(siezmmn.sziezen < 1,
therefore
llv ® Isy(mlleg(szimn o3z < 1-

ASTERISQUE 247



CHAPTER 6. OPERATORS FACTORING THROUGH OH 69

But this means that the normed space S7[E] satisfies the parallelogram inequality,
hence that it is isometric to a Hilbert space. It follows that u = Ig satisfies the
property (xii) in Theorem 6.11 with C = 1, whence Yon(Ig) < 1, or equivalently E is
isometric to OH (I) for some set I. a

As an application, we obtain a new approach to the results of section 9 in [P1].

Theorem 6.13. — For any n-dimensional operator space E we have
(6.7) 73(Ig) = n'/2.
Therefore, there is an isomorphism u: E — OH, such that ||ul|c||u™t|cs < v/7, and
if E C B(H) there is a projection P: B(H) — E such that ||P||cs < n'/2.
Proof. — The proof is identical in structure to Kwapieri’s well known argument for
the analogous result in the normed space case (cf. e.g. p.15-17 in [P2]).
By (5.2) we have
m3(Ig) = sup{n3(T) | T: S > E ||T|l <1}

Now since Sj is completely isometric to OH, (cf. Remark 1.11) it follows that any
T: S} - E with ||T||cs < 1factorsas T = Th'T, with Ty: OH, - E, Ty: S5 - OH,
such that ||T1||s < 1, ||T2]|ee < 1. Hence by (5.1) we have

75(Ig) =sup{m3(T) |T: OH, = E ||T|lcs <1}.
By (5.1) again this yields 73(Ig) < 75(Iow, ), and by Proposition 6.3 we get 75 (Iom,, )
=nl/2,
Conversely, by Proposition 6.1 we have a factorization of Ig of the form

E-%0H,~%E with |l < 75(Ip)

and 7§(u) < 1. Indeed, using a suitable orthogonal projection we can factor through
an n-dimensional subspace of E,. Thus & = u~!, hence Ioy, = ui so that we have
by Proposition 6.3

n'’? = n5(Ion,) = m3(ut) < 75 (u)||@lles < 75(IE)-
This concludes the proof of (6.7).
We have, by Corollary 5.5, ||ull < 79(u) < 1 and |[u=!|e = ||llce < +/n. Hence
[lullesllu™]|es < v/n. Moreover, by Proposition 6.1, u admits an extension v: B(H) —
OH,, with 75(v) = 75(u) < 1, hence (by Corollary 5.5) |[v|lcs < 1. Then P = u~ v is
a projection from B(H) onto E with ||P||cs < ||[u™Y||es]|vllcs < V7. O
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CHAPTER 7

COMPLETELY BOUNDED FACTORIZATION
THROUGH L,, S, AND ULTRAPRODUCTS

7.1. Factoring through L,. Perturbations and ultraproducts of operator
spaces

In this chapter, we will extend to the operator space setting, a collection of results
due to Kwapienn [Kw2]|, characterizing the mappings between Banach spaces which
factor through L, or through one of its subspaces or through a subspace of one of its
quotients.

We start by a brief review of this theory. Let 1 < p < oo. We will say that a
Banach space B is an L,-space, if it is isometric to L,(f, X, ) for some measure
space (Q,%,u). We will say that B is an SL,-space (resp. an QL,-space) if B is
isometric to a subspace (resp. a quotient) of an L,-space. Moreover, we will say that
B is an SQL,-space if B is isometric to a subspace of a quotient of an Ly-space.
(Note that a subspace of a quotient is automatically also a quotient of a subspace,
so the QSL,-spaces are the same as the SQL,-spaces and there is no need to iterate
further.) Note that the class of SQL,-spaces seems to appear naturally in analysis
(¢f. [Her]). Perhaps the most striking result in [Kw2] is the following one.

Theorem 7.1.1 (Kw2]). — A Banach space B is isomorphic to an SQL,-space iff
one of the following equivalent properties hold:

(i) Any bounded operator T: £, — £, extends naturally to a bounded operator on
£,(B).

(ii) There is a constant C' such that, for any measure space (Q, X, u), for any bounded
operator T: Lyp(u) — Ly(p), the operator T ® I: Lyp(u; B) — Ly(y; B) is
bounded with norm < C||T||.

(iii) There is a constant C such that, for any n and any T: £y — £y we have

IT ® IBllen(B)—e2(B) < ClIT|lep—en-

Moreover, the smallest constant C appearing in (i) or (iii) is equal to the min-
imal Banach-Mazur distance of B to an SQL,-space.
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Kwapien also characterized more generally the linear mappings u: B; — Bz which
can be factored through an L,-space (or a subspace or a subspace of a quotient of
one). Actually there is a technical difficulty which appears here and we must consider
factorizations going into the bidual of B;. That is to say: we denote by i: By — B3*
the canonical inclusion and we consider all the commuting diagrams below:

B
N
B, —%.B, ‘B
Then we let
YL, (u) = inf{lua|] [[uzll}

where the infimum runs over all factorizations of this form where B is an L,-space. We
will denote by vsr, (u) the infimum when B runs over all SL,-spaces, and by vsqr, (v)
the infimum when B runs over all possible SQ L,-spaces. Note that obviously

Y¥sQL,(w) < vsr, (u) < v, (u).
The basic result in [Kw2] is the following one.
Theorem 7.1.2 (Kw2]). — Let1 <p<oo. Let u: B; — Bs be a continuous linear
map between Banach spaces and let C be a constant. The following are equivalent.
(i) v, (w) <C.
(ii) For any finite dimensional Banach space Y and for any composition B, 3Y 3B,
with vy p'-summing and v p-summing the composition veu1u satisfies

| tr(vaviu)| < Cmpr (vy)mp(v3).

From this result it is easy to derive (by routine arguments) characterizations of
maps factoring through an SL,, or through an SQL,-space. Indeed, if j: By — £oo(I)
is an isometric embedding (I being a suitable set) then ysr,(u) = vr,(ju) and if
q: £1(I) =» B is a metric surjection then ysqr,(u) = 7z, (jug).

The general method, used by Kwapien, is the duality theory for ideals of Banach
space operators developed by Pietsch following Grothendieck’s fundamental work [G]
on tensor products. Roughly the modern viewpoint can be briefly described like this:

Firstly one observes that one can reduce to the case when both B; and B, are finite
dimensional. More precisely, for any u: B; — Bz we have
VL, (w) = sup{yz, (qu|s)}

where the supremum runs over all finite dimensional subspaces S of B; and all finite
dimensional quotient spaces @ of Bs, with ¢: Bs — ) denoting the quotient map.

This first point depends on the fact that for 1 < p < oo, the class of L,-spaces is
stable under ultraproducts. (This point does not seem to have a perfect analog in the
operator space setting, see below.)
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Secondly, when Bj;, B, are both finite dimensional then factorization through L, is
the same as factorization through £, or through £7 for some n. This point is extended
to the operator space setting in Lemma 7.1.5 below. But now the connection with
p-summing operators appears: indeed for instance it is easy to see that if we use the
trace duality

(u,v) = tr(vu)
(where u: B; = By and v: Bz — Bj are linear maps) then the dual norm to vz (u)

coincides with the absolutely summing norm of v, denoted by ; (v). More generally,
as Kwapien showed, if we define (for 1 <p<ocoand 1/p+1/p' =1)

7z, (v) = sup{| tr(vu)| |u: By = By 7y, (u) <1}
then we have (here by convention 7., stands for the operator norm)
(7.L.1) 72, (v) = inf {mp (01)mp (03)}
where the infimum runs over all possible factorizations of v of the form
B,HY % B,

Y being an arbitrary Banach space.

Thus we can describe the dual norm 71*,,, in terms of p-summing operators, and by
the bipolar theorem (recall By, Bs are finite dimensional in the present discussion) we
obtain a new description of vz, by identifying it with (y;_)*. In other words, we can
write

(7.1.2) YL, (w) = sup{| tr(uv)| |v: By =+ By 7, (v) <1}

and this is now a significant result because, by (7.1.1) we have a specific description
of 7j . The preceding identities (7.1.1) and (7.1.2) imply essentially all of Kwapien ’s
results stated above. In the next section, we will follow essentially the same program,
and discuss the difficulties as they appear.

We end this section with several simple facts from the Banach space folklore which
can be easily transferred to the operator space setting. We start by a well known fact
(the proof is the same as for ordinary norms of operators).

Lemma 7.1.3. — Letv: E — F be a complete isomorphism between operator spaces.
Then clearly any map w: E — F with |[v — wlls < |[v™!||5 is again a complete
isomorphism and if we let A = ||[v — w||cs|[v 7|6 we have

o™ llep < o™ fleo(X = A)7F and flw™ = o7 lep < o7 fleo(1 — A) 71

Recall that the cb-distance between two n-dimensional operator spaces F;, Es is
defined as follows

des (B, Ep) = inf{||wl|cs|lw ™ ||es},

where the infimum runs over all possible isomorphisms w: E; — Es.
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Lemma7.1.4. — Fiz0 < e <1. Let E be an operator space. Consider a biorthogonal
system (zi,z) (i =1,2,...,n) with z; € E, z¥ € E* and let y1,...,yn € E be such

that
Dl — il < e
Then there is a complete isomorphism w: E — E such that w(z;) = y; and
lwlles <1+ [lw™lew < (1—€)7"
In particular, if Ey = span(zy,...,%,) and E; = span(yi, ..., Yn), we have
deo(E1, B2) < (1+e)(1—g) L.

Proof. — Recall that any rank one linear map v: E — E satisfies |[v]| = ||v||cs-
Let §: E — E be the map defined by setting 6(z) = Y. z}(z)(y; — z;) for all z in
E. Then [|6]lce < X llzf]l llys — zil| < e. Let w = I + 4. Note that w(z;) = y; for
alli =1,2,...,n, ||w|les <1+ ]|dllcc <1+ ¢ and by the preceding lemma we have
lw™Hles < (1—e)7t O

Lemma 7.1.5. — Consider an operator space E and a family of subspaces E, C E
directed by inclusion and such that UE, = E. Then for any € > 0 and _any finite
dimensional subspace S C E, there exists a and S C E, such that d.y(S, §) <l+e.
Let u: Fy — F5 be a linear map between two operator spaces. Assume that u admits

the following factorization Fy ——%El)Fg with ¢.b. maps a,b such that a is of finite

rank. ~Then for each € > 0 there exists a and a factorization Fy —LEa—LFz with
lalleallblles < (1 + €)llallcollbllct, and @ of finite rank.

Proof. — For the first part let z1,...,z, be a linear basis of S and let =} be the
dual basis extended (by Hahn-Banach) to elements of E*. Fix ¢’ > 0. Choose a large
enough and y1,...,yn € Eq suchthat ||z} ||zi—ys|| < €. Let S = span(y1,...,yn).
Then, by the preceding lemma, there is a complete isomorphism w: E — E with
llw|leollw=|eb < (1+€")(1—€')~! such that w(S) = S C E,. In particular, d.(S, S) <
(1+¢€")(1 —¢")7! so it suffices to adjust &' to obtain the first assertion.

Now consider a factorization Fj i)E—IZ—)Fz and let S = a(F1). Note that S is finite
dimensional by assumption. Applying the preceding to this S, we find @ and a
complete isomorphism w: E — E with ||w||es||lw ™|l < 1 + € such that w(S) C E,.
Thus, if we take @ = wa: F; — E, and b= bwl_Ela, we obtain the announced
factorization. O

Convention. — Whenever we are discussing an ultraproduct [] E;/U of a family
iel
of Banach spaces or operator spaces, it will be convenient to identify abusively a
bounded family (z;);er with z; € E; for all 7 in I with the corresponding equivalence
class modulo I which it determines in [] E;/U. Thus when we speak of (z;):cr as
i€l
an element of [] E;/U, we really are referring to the equivalence class it determines.
iel
This abuse is consistent with one routinely done in standard measure theory.
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Remark 7.1.6. — Let (Ey)qer and (Fy)aer be families with E, = E and F, = F for
all 7 in the index set I equipped with an ultrafilter ¢{. Let E and F be the associated
ultraproducts (= ultrapowers). Let pg: E — E be the canonical (completely isomet-
ric) inclusion and let ¢¥F: F — F** be the canonical (completely contractive) map
obtained by compactness of (Bps«,o(F**, F*)), and defined by 9((zo)) = lizrlna:a.
Then, let T: E — F be a bounded linear map with associated “ultraproduct map”
T: E-»F. Ttisan easy exercise to check that

vrTpg =ipT: E — F**.
More generally, we have
(7.1.3) VT = T*yg.
Note in passing that igT = T**ig.

Let (Eq4)acr be a net of subspaces of E directed by inclusion and such that |J E, =
a€cl

E. We can then still define ¢: |JEy = [[ Eo/U by setting ¢(z) = (pa(z))a where

o
we set po(z) = z if ¢ € E, and = 0 (say) otherwise. By density, ¢ extends to a
(completely isometric) map ¢: E — [| Eo/U. Moreover, we again have a canonical

a€el
complete contraction ¥: [[ En/U — E** defined by ¢((z4)) = liLr{n T (the limit is
a€l
relative to o (E**, E*)).

Remark 7.1.7. —  In particular, if 1 < p < oo, the identity of the space S, fac-
tors (completely contractively) through an ultraproduct of the family {S; | n > 1}.
Conversely, the identity of the space S}’ obviously factors (completely contractively)
through S,.

Remark 7.1.8. — It will be convenient in the sequel to use the fact that an ultra-
product of ultraproducts is again an ultraproduct. Let us briefly recall why this is
true. Let I, I5 be two sets equipped with respective ultrafilters i{; and Us. Then the
set I; x I, can be equipped with a “product ultrafilter” W = Uj x U, defined simply
as follows: W is the collection of all subsets A C I; x Iy with the property that

{i € |{j € L|(i,j) € A} e Ua} € Uh.

Using the fact that an ultrafilter &/ on a set I is characterized as a filter such that,
for any arbitrary subset A C I, either A or its complement I — A must belong to
U, it is easy to verify that W = U; x Us is indeed an ultrafilter when U; and U, are
ultrafilters. Moreover, if we are given a doubly indexed family {E;; | i € I,j € L5}
of Banach spaces (resp. operator spaces), then it is easy to check that we have

I Eire) = ] Es/wv

i€l \jEl2 (i,7)EL xI2

isometrically (resp. completely isometrically).

SOCIETE MATHEMATIQUE DE FRANCE 1998


file:///jel2

76 CHAPTER 7. L,, S, AND ULTRAPRODUCTS

In particular, this, with the preceding remark, implies that, when 1 < p < o0, it is
the same for a map to factorize contractively (resp. completely contractively) through
an ultraproduct of S, or through an ultraproduct of the family {S; | n > 1}.

7.2. Factorization through S,

Let E, F be operator spaces. We will say that a linear map u: E — F factors through
Sp if v admits a factorization of the form

E-%8,-F
with c.b. maps a,b. Given such a map u, we let
s, (w) = inf{||allcs||bllco}
where the infimum runs over all possible factorizations as above.

It is easy to transfer the Banach space arguments to the present setting in order
to check that s, is a norm, with which the space I's, (E, F) is a Banach space.

Actually, we will need to work first with tensor products rather that with I's,.
Consider an element T in the algebraic tensor product E® F. As usual, T' defines a
weak-* continuous finite rank linear operator T: E* — F. We define

vs, (T') = inf{|lal|cs|Ibl|cs }
where the infimum runs over all possible factorizations of T of the form
E*-%50 5 F
with the first map a weak-xcontinuous and n arbitrary.
Equivalently, a simple perturbation argument (see Lemma 7.1.5) shows that this
definition is unchanged if we let the infimum run over all possible factorizations of
the form E*—i)Sp—b>F with a, b of finite rank and a weak-* continuous.

We will denote by E ®s, F' the completion of E ® F' equipped with this norm vg,.
Note that we have equivalently
S:I ®minF }

(7.2.1) vs, (T) = inf { "Z eij ® aij |Z €i; ® by;

where the infimum runs over a;; € E, b;; € F such that T = ) a;; ® b;;. Indeed,
ij
> €ij ® aj (resp. Y e;; ® b;;) can be identified with a weak-* continuous c.b. map
a: E* — S (resp. b: Sp — F).
We will now describe the dual space (E ®s, F)*.

Theorem7.2.1. — Let1 < p < oo. Let p: EQF — C be a linear form. The
following are equivalent

S;,' ®minE

(i) For any T in E ® F, we have the inequality |p(T)| < vs,(T), or equivalently
lloll(pes, F)» < 1.
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(ii) For some operator space G there is a completely p-summing map u: E — G
and a completely p'-summing map v: F — G* with np(u)ny, (v) < 1 such that

Ve EVyeF  o(z®y) = (v(y), u(z)).

Warning. — In the sequel, it will be convenient to make the convention that a
completely co-summing map v: E — F is simply a c¢.b. map and 72 (u) = ||ul|es,
wherever it appears.

Proof. — Once the proof of Theorem 5.1 is understood, this can be proved by a
routine adaptation of the corresponding Banach space result (cf. [Kw2]). Note that,
in the case p = 2, this is closely related to Theorem 6.11 above. We merely sketch
the argument. We will use the elementary identity

1
/PP = P P
(7.2.2) Vz,y >0 y gf(; {pmt + =yt~ }

Assume (i). Assume moreover E C B(H) and F C B(K ). Let S = S x S’ where
S = {(a,b) € Bs,,(x) X Bs,,ay | a > 0,b> 0}

and
S = {(C, d) € BSg,r(K) X BSz,,I(K) | c>0,d> 0}
We will show that there exists families (aa,ba)acr in S, (€a,da)acr in S’ and an
ultrafilter & on the set I such that, for any T = } ai; ® b;; in EQ® F (with n
ij=1
‘arbitrary) we have

(723) o (3 as ®by)| < limll(@aaisba)ls, @em lim l(cabisda)ls, ox)-
Consider a finite sequence
Nm
=Y ol @b inEQF,
ij=1

and consider the associated function f defined on S as follows

-9

+p IZII(aa,,b)Hsp(b@Hﬁp' 1le(cb d)lls,(¢2®K)-

Let F be the cone of all functions of this form.
By (5.5), (7.2.1) and (7.2.2) we have sup f > 0 for any f in F. (Note that £,{S,}
S

can be block-diagonally embedded into S, to take into account the summation over
m.) Hence, by Lemma 5.2, there is an ultrafilter &/ on a set of finitely supported
probability measures (A,) on S such that liLr{n J fdAs > 0 for any f in F. Taking

the images of this probability on the two coordinates of the product S = S x S’ we

f((a,b),(c,d) == o

m
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obtain a net of finitely supported probability measures (A) (resp. (AL)) on S (resp.
S') such that, for any T = ) a;; @ b;; in E® F, we have
ij=1

‘90 (Z ai; ® bz’j)| <p™! lgn/ lI(aai;B)II%, (¢, 0 1) @rala, b)

+7/ 7 lim / 1(ebis)IE , (1, 01 PN (e, d)-

Then arguing as in the proof of Theorem 5.1 we obtain nets (aq, b) in S and (cq,dq)
in S’ such that

[0 (X ais ©b5)| < p7 lim | @aisbe)lE, ()
+ p’—l hlf{n ”(cabijda)“g‘p, (£20K)

Finally, using (7.2.2), we obtain the announced result (7.2.3).

We now use Remark 5.7 for both u and v.
Let S, = (Sa)u where So = Sp(H) for all & and Sy = (S)u where S, = Sy (K)
for all a. As in Remark 5.7, there is a natural map E — S, which takes z € E to

(aazbq)a, and another map F — §p, which takes y € F to (cqyds)o- We denote the
closures of their ranges respectively by E, and Fy. Let us denote respectively by

B,: E+E, and By: F— Fy
the resulting mappings. By Remark 5.7, we know that
7p(B1) £1 and mp(B) < 1.
Then (recalling Lemma 5.4) we deduce from (7.2.3) that V (a;;) € Mn(E), V (bij) €
Mn(F)
724) o (X as ®bs)| < IBL@)lispimn B2 b))y e,
Therefore, ¢ defines a linear mapping w: Fp — (Ep)* such that
p(a®b) = (w(B2(b)),Bi(a)) for a€ E,bEF,
and moreover, by (7.2.4) (recall Lemma 1.7 and Corollary 1.8) we have
llwlles < 1.

Let then G = Ep, u = By and let v: F — E; be defined as the composition wBs.
With these choices, it is now clear that (ii) holds. This shows that (i) = (ii).
Conversely, assume (ii) and consider T = Y a;; ® b;j € E® F. We have (by
i
Corollary 1.8)

(@) =Y (v(bis), u(as;))

ij

< N (Bis)llsm a1l (wlas))llsp 161
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hence by definition of 7g(u) and 7 (v)

< mp ()| (bis)l| 7, @emin P 7 (W)11(035) | 57 @rin

from which we immediately deduce (i) using (7.2.1). O

Remark. — Let 7: E; — E» be a finite rank continuous linear map between operator
spaces and assume F; finite dimensional. Let T' € E} ® E; be the associated tensor.
Then it is easy to check (using Lemma 7.1.5) that

')’S,, (T) = VS, (T)

Corollary 7.2.2. — Let 1 < p < oo. Let Ey, E> be finite dimensional operator spaces.
The following properties of a linear map 7: E; — Ey are equivalent.

(i) For any e > 0, there is an integer n and a factorization of T of the form
E -5 By
with ||al|cs||bllce < 1+ €. (Equivalently, this means that vs, (1) < 1).

(ii) For any operator space Y and for any maps uz: E2 =Y andu;: Y — E; the
composition uyuz: Es — E; satisfies

[tr(uiueT)| < mp (u2)mp (ul).
(iii) Same as (ii) for any finite dimensional space Y.
Proof. — Let T € Ef ® E; be the tensor associated to 7. Clearly, we have vs,(7) =
vs,(T) < 1iff
sup{|e(T)| | ¢ € (Ef ® E2)" |l¢ll(Br@s, B2)+ < 1} < 1.

By Theorem 7.2.1, for any ¢ with ||¢||(g;&s, E,)+ < 1, there are G and maps u: Ef —
G, v: Ey = G* with mp(u)7 (v) < 1 such that

o(T) = tr(tu*v) = tr(u*vT).

Given a pair u, v as above, thenlet Y = G*, us = vandlet u; = u*: G* — E;. It then
becomes clear that (ii) = (i). Conversely given u;,us as in (ii), the preceding theorem
shows that the linear form ¢ defined by (T") = tr(uiusT) satisfies ||¢||(p;es, £2)+ < 1.
Thus, we obtain conversely that (i) = (ii).

Finally, let uy,us be as in (ii). Let Y C Y be the (finite dimensional) range of us.
Then, replacing Y by Y, we easily check that (iii) = (ii) and the converseis trivial. O

Remark 7.2.3. — Let us now assume that 1 < p < oo and there are integers V; and
N, and subspaces G; C My, and G2 C M, such that Fy = G} and E; = G3. Then
the equivalent conditions in Corollary 7.2.2 are also equivalent to

(iv) There is an ultrafilter i on N such that 7 can be factorized as
B -8, Ey
where ||a||cs|[bl|cs < 1, and S, = I1S7/U.

SOCIETE MATHEMATIQUE DE FRANCE 1998



80 CHAPTER 7. L,, S, AND ULTRAPRODUCTS

Indeed (i) = (iv) is obvious. To check the converse, assume (iv). By our special
assumption on E; and E5, we know that

(7.2.5) cb(E1,S,) = Ef ®umin Sp = IIE] ® S™/U.

Indeed, since we assume Ef = G; C My, this follows from the identity My, ®minSp =
INIMN, ®min Sy /U which is the very definition of S,. Similarly, we have
(7.2.5)" cb(Sp, B2) = (5p)* Omin B2 = IS™ @min E2/U.

This can be verified as follows. First we observe that we may assume that E; = My
for some integer N (say N = Ny), since (7.2.5)" is inherited by subspaces of E,. But

then we have S} ®min My = (SN[S,])*. Now by Lemma 5.4, S{V[S,] = IISN[S7]/U
and since S{V[S,] is super-reflexive, it is known (cf. Cor. 7.2 in [Hei]) that the dual
of TIS{V[S7]/U coincides isometrically with the ultraproduct of the duals, i.e. with
I(S{¥[SP])* /U. This gives us
(50)" ®min My = (S [S7])" /U

=OMn(Sy*) /U

= HS:* ®min MN.
This completes the verification of (7.2.5)".

Now using (7.2.5)' and (7.2.5)", the condition (iv) implies the existence of nets (a.)
and (bn) with a,: E1 = Sp, bn: Sy — E such that liLxln Hanlles = |lalleb, liLr{n [|bnllee =

[|b]]lce and such that 7 = librln bnan. Then, by an easy perturbation argument, this

implies (i) in Corollary 7.2.2.

Let us distinguish the case p = co which is of special interest.

Corollary 7.2.4. —  Let ¢ > 0 be a constant. The following properties of a map
7: E; — E, between finite dimensional operator spaces are equivalent.

(i) For any € > 0, there is an integer n and a factorization of T of the form
B -5 M5By with |lallesllblles < c(1+€).
(ii) For any u: E; — E;, we have
[tr(ur)| < enf(u).
(iii) For any u: Ey; — Ep, we have
lutllBr@nes < cmf(u).

Proof. — The preceding statement with p = oo contains the equivalence (i) < (ii)
(with the above convention 72 (-) = || - |lcs). The o.s. projective tensor product
E} ®”" E; is by construction (see [BP] and [ER2]) the dual and predual of the space
cb(E1, Ey). Hence, for any v € Ef ® E; corresponding to an operator v: Ey — E;

we have
lvllEron By = sup{|tr(wv)| | w: Ei = Eq |lwlle < 1}
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Using this, it is easy to show (ii) < (iii). O

It is perhaps worthwhile to reformulate Corollary 7.2.2 as a duality theorem. In
order to do that, we first introduce some more notation.

Notation. — Let u: E2 — E; be a linear map between operator spaces. Assume that
u can be written as factorized through some operator space Y as E;—%Y ~ E; where
uz is completely p’-summing and where the adjoint u} of u; is completely p-summing.
We define

o () = inf{ (uz)7(uf)}
where the infimum runs over all possible such factorizations. Moreover, we will denote
by oy (Ea2, E1) the space of all such mappings u equipped with the norm a, .

Corollary 7.2.5. — Let 1 < p < 00. Let Ey, Ey be two finite dimensional operator
spaces. Then the dual of the space I's,(E1, E2) coincides isometrically with the space
oy (Ea, Ey), with respect to the trace duality

(u, 1) = tr(ur) Vu € ay(Es, E1) V7 €Tls,(Ey,Ey).

When p = oo, the dual of T's_(E1, E2) can be identified isometrically with the space
[15(E2, Ev). (The case p =1 can be treated by transposition from the case p = c0.)

We will now turn to the factorization of operators through quotients of subspaces.
The following notation will be convenient.

Notation. — Given an operator space G we denote by QS(G) the class of all quotients
of a subspace of G, i.e. Z € QS(G) means that there are subspaces Go C G; C G
such that Z = G1/G2. Note that this class coincides with the class of all subspaces of
quotients of G (since G1/G2 C G/G>), so that there is no need to consider the classes
SQ(G) or SQS(G) ...

Theorem 7.2.6. — Let n,m be integers. Let E; be a quotient of ST* and let Ey be
a subspace of Mp(= SZ%). Let 1 < p < oo. The following properties of a linear map
7: E; — E5 are equivalent.

(i) For any € > 0, there is an integer N and Z in QS (S},V ) for which T admits a
factorization of the form E1—2+Z-23Es with ||al|es|[bllcs < 1 +e.
(ii) For any integers n',m' and any linear map v: Sz’,"' - S;,", we have
llve T||s;;»' [E1]—Sr' [E2] <lwlles-
(i) Same as (ii) with m' = m and n' = n.
Proof. — First observe that (i) = (ii) is easy. Indeed, take first 7 = Isy, then the

result follows from the identity SP[SYN] = SN[SP] valid for all n (cf. Corollary 1.10).
By a routine argument, (ii) remains valid if 7 = Iz with Z as in (i). But it is then
easy to show that (ii) holds when 7 is factorized as indicated in (i).
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Thus it suffices to prove (iii) = (i). Assume (iii). Let j: E; C M, be the inclusion
mapping and let ¢: S[* — E; be the quotient map. To show (iii) = (i), it clearly
suffices to prove that (iii) implies ys, (j7¢) < 1. The latter is a consequence of Corol-
lary 7.2.2. Indeed, consider a composition ujugz: M, — ST* formed of uy: M, =Y,
up: Y — ST* with Y finite dimensional, and satisfying

o (un)mg (uf) < 1.

Then, by Theorem 5.9 (applied twice) we can rewrite this composition ujus as follows

M,-25572s5m 2y g
where a = M(a,b), 8 = M(c,d) with a,b,c,d and v satisfying:
(7.2.6) llall2plIbll2pr <1, llcll2plldllzp <1 and lv]les < 1.

It will be useful to consider a: M, — S}, (resp. B: (ST")* = Sp*) as an element of
the unit ball of (Sp[M,])* (resp. S;*[ST*])- (Indeed, note that Sp[M,] = Sy ® M,
and Sp*[ST"] = Sy ® ST* as vector spaces, and for instance 3 can be identified with
c-y-d where y € M,, ® S}, is the tensor associated to the identity map on S}, which
has cb-norm 1, so that ||y||min = 1. Using Theorem 1.5, we find ||,8||5;n[s;n] <1. By
duality, a similar argument applies to «.) But then we have
tr(uiuzjrq) = tr(B*v*ajrq)
= (v®jrq(B),a)
hence
[tr(uiu2iTg)| < llv ® j7allsm(sp1—spma) - 1Bllsmispllell(saia))-
hence by (7.2.6) and assuming (iii) we find
[tr(uiusT)| < |lv ® Tllsm(By~sn(Es) < llVlles < 1.
This shows that j7q satisfies the second condition in Corollary 7.2.2, whence s, (j7q)
< 1, which clearly implies (i). O

Corollary 7.2.7. — Let T: E; — E; be a linear map between arbitrary operator
spaces. Let 1 < p < 0o. The following are equivalent.

(i) There is an ultraproduct G = [] G;/U with G; = S, for all i in I and a

i€l
factorization of T
Ei-5Z-Ey
through a quotient of a subspace of G (i.e. we have Z € QS(G)) such that

llallcollblles < 1.
(i)’ Same as (i) with G; = S for some n; < co.
(ii) For any n and any linear map v: Sy — S we have

lv® Tlisn (1) s2 18] < [10llcs-
(ii)* Same as (ii) with Sy, instead of Sy .

ASTERISQUE 247



7.2. FACTORIZATION THROUGH S, 83

Proof. — The equivalence (ii) < (ii)’ is obvious and (i) < (i)’ follows immediately
from Remark 7.1.8. The implication (i) = (ii) is easy. Indeed, one first proves (ii)
when T' = I, (in that case it follows from the identity Sp[S,] = Sp[Sp]), ¢f. Corollary
1.10), then using Lemma 5.4 one deduces that (ii) is also true when T' = I or when
T = Iz. It is then easy to show that (i) = (ii). We leave the details to the reader.

Thus it remains only to show that (ii) = (i). Assume (ii). We will use the nota-
tion introduced in Remark 7.1.6. Since E; (resp. E;) embeds into B(H) (resp. is
completely isometric to a quotient of S1(H), ¢f. [B2]) for some Hilbert space H,
we can find families of complete contractions ¢;: ST — E; and ji: E; — My,
indexed by some set I equipped with an ultrafilter & such that 7 = []ji/U (resp.
d = [I @:/U) is a complete isometry when restricted to ¢g,(E2) (resp. a complete
i€l
metric surjection when restricted to the inverse image of g, (E1)). By applying The-
orem 7.2.6 to the mappings 7; = j;Tq;: S* = M,; we find factorizations 7; = b;a;

through S, with ||ai||cs||bs]lce < 1+ €;, where ¢; > 0 and ¢; = 0. Let G = [[ Gi/U
iel

with G; = S, for all i. We can then form the completely contractive mappings

a=Jlai/U: TIST*/U—-Gandb: G— [[ My, /U.

i€l iel i€l
This gives us a completely contractive factorization through G for the mapping
71§ = ba.

But then, recalling that 7 and § are respectively a complete isometry and a complete
quotient map when suitably restricted, we obtain by doubly restricting the last fac-
torization that T factors completely contractively through a quotient of a subspace
of G. O

Remark. — At this point, we have reached the limit of what we knew roughly at
the time of the announcement [P5]. Note that, although they were not included in
the privately circulated preprint, the results of this chapter up to now were clear to
me as direct consequences of chapter 5, following the Banach space model treated in
[Kw2].

However, I had serious difficulties to characterize the maps T': E; — Es which factor
through an ultraproduct of S, (when viewed as maps into E3*, as usual). Except
for subspaces of quotients as above, I could not obtain a satisfactory “if and only
if” statement without any “exactness” assumption on E; or E,. This (as well as
being kept busy by other tasks) probably explains why the completion of the present
manuscript was delayed.

Since then however, Marius Junge found a way to resolve all the above mentioned
difficulties and the reader is referred to his habilitationsschrift for more details. After
reading part of the latter thesis, I finally could see what I had been missing, namely
Theorem 7.2.10 below (implicit in Junge’s work) which greatly clarifies the study of
the factorization through ultraproducts, by reducing it to the “exact” case, or more
precisely the case when Ef C My, and E; C My,

It seems convenient for our exposition to introduce the following two definitions.
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Definition 7.2.8. — Let F be an arbitrary operator space and let ip: F — F**
be the canonical inclusion map. By an “injective presentation” of F', we will mean
the following: an ultrafilter 2/ on a set I, a family (F,)aer of finite dimensional
matricial operator spaces F,, C M, (with n, < oo for each a), a family of complete
contractions jo: F — F,, and a complete contraction k: IIF,/U — F** such that
the mapping j: F — IIF,/U associated to the family (j,) satisfies ir = kj, as
expressed by the following commuting diagram.

Now let E be another arbitrary operator space. By a “projective presentation” of
E, we will mean a family (Qg)ger of finite dimensional operator spaces such that
Qg is a quotient of S{” (for some ng < 00) together with a family of complete
contractions gz: Qs — E and a complete contraction 7: E — IIQsz/U such that
the map ¢: IIQg/U — E** associated to (gg) satisfies ig = gr, as expressed by the
following diagram

HQa /U
P
i
E E E**
Remark 7.2.9. — 1t is essential to have each j, (and each ¢,) completely contractive
and not only j and gq.
Theorem 7.2.10. — Every operator space admits both an injective presentation and

a projective one.

To prove this result the following very simple lemma, will be useful.

Lemma 7.2.11. — Any finite dimensional operator space E possesses the following
two properties.

(i) There is a sequence of subspaces E, C M, and completely contractive maps
an: E — E, such that for any nontrivial ultrafilter U on N the mappinga: E —
[1 En/U associated to (a,) is a completely isometric isomorphism.

(ii) There is a sequence (Q.), where, for each n, Q, is a quotient of S} and a
sequence of complete contractions b,: @Q, — E such that the associated map
b: [1@~/U — E is a completely isometric isomorphism.

ASTERISQUE 247



7.2. FACTORIZATION THROUGH S, 85

Proof. — This is entirely elementary, so we merely sketch the argument. As is well
known, since E is separable, we can assume E C B(f2) completely isometrically.
Let then P,: B(f3) — M, be the usual projection (P(e;;) = e;; if 4,j < n and
P(eij) = 0 otherwise), let P,(E) = Ep, and let a,: E — E, be the restriction of
P, to E. Clearly when n is large enough a,, becomes a linear isomorphism and it is
easy to check that a is completely isometric. This yields (i). To prove (ii) we simply
apply (i) to E* and transpose the resulting diagram. (Note that by Lemma 14 in
[P6] we have (] E./U)* =[] E;;/U completely isometrically since the dimension of
E, is essentially constant.) d

Remark. — It should be emphasized that in the preceding lemma the maps
a™': [[Ex/u—E and b7': E-[[Qa./U

cannot in general be written as associated to a sequence of complete contractions
(contrary to their inverses which can). Indeed, if it is the case then we have necessarily
with the notation of [P5] either dsix (E) =1 or dsx(E*) = 1.

Proof of Theorem 7.2.10. — It will be shorter to use the notion of product ultrafilter,
described above in Remark 7.1.8. Let F’ be an arbitrary operator space. We will show
that F' admits an injective presentation. We first use the set I; of all finite dimensional
subspaces of F* directed by inclusion and we let ; be an ultrafilter refining this net.
Then, for any a in I; (so @ C F* with dima < oo, a fortiori a is weak-* closed)
we define G, to be the finite dimensional quotient space of F' such that a = (G,)*,
moreover we denote by co: F — G, the canonical (completely contractive) quotient
map. It is then easy to see that even though G, is not necessarily matricial, the
other requirements of an injective presentation are satisfied. Indeed, we clearly have
a canonical map ¢: F* — [[G%/U; defined as follows: ¢(§) = (pu(€))a where
pall) = £if £ € a and ¢o(£) = 0 (say) otherwise. Note that ¢ is completely
isometric.

Let ¢: F** — [[Go/U, be the completely contractive map taking z'' € F** to
(c2*(z"))o- We have a natural mapping

x: [1Gasth - ([[Ga/w)
defined by: V&= (€)a € [[GL/U
V= (z4) € HG’a/Ul
{x(2),€) = lim(za, {a)-

Let then d: []Go/Ur — F** be defined as d = ¢*x.
We claim that dc = Ip.«. Indeed, for any " in F** and any £ in F* we have

(dex", &) = (p*xcx", &) = (xex", @)
= lim(cy” ("), pal(£))

. lzgrfl(w", caa(£))
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but ¢: G} — F* is the canonical inclusion so when a is large enough we have
&€ € G, = a and ¢,y (&) = & hence we obtain (dcz”,€) = (z",€), which proves that
dc = Ip+«. Thus we have proved that the identity of F** (and a fortiori of course the
inclusion of F into F**) factors completely contractively through an ultraproduct of
finite dimensional spaces (Gq).

Now using Lemma 7.2.11, we can find for each a in I; a sequence G, of finite
dimensional matricial (i.e. each embeddable into My for some N) o.s. and completely

contractive maps @an: Ga — Gan such that do: Go = [] Gan/U: is a completely
neN
isometric isomorphism. Then (see Remark 7.1.8) if welet I = I) x Nand U = U; xUs

where Us is a nontrivial ultrafilter on N, and if we let jon = aqnCo and Fun = Gan
we immediately obtain an injective presentation of F'.

Now let E be an arbitrary operator space. For the projective case, we let J; be the
set of all finite dimensional subspaces of E directed by inclusion and let V; be an
ultrafilter refining this net. For 3 in J;, we denote by Gg C E the subspace of index
B (the purist will write Gg = ). Then, by Remark 7.1.6 the (completely contractive)
inclusions bg: G — E induce a map b: [[Gs/Vi — E**. Moreover, we have a
completely contractive map ¢: E — [[ Gg/V: associated to (¢g) as in the first part
of this proof. Clearly the composition by coincides with ig: E — E**. It remains to
replace Gg by Ggn, as above: using the second part of Lemma 7.2.11 and a product
ultrafilter we immediately obtain a projective presentation of E. O

Theorem 7.2.12 (Junge [Ju]). — LetT: E — F be a linear map between arbitrary
operator spaces and let ip: F — F** be the canonical inclusion. Let 1 < p < 0.
The following are equivalent.
(i) There is an ultraproduct G = [] Ga/U with Go = Sp for all o in I and a
a€l
factorization of ipT
E-5G- P
through G with ||a||cb||b]|cs < 1.
(ii) For any integers Ny, Na, subspaces G C Mp,, G2 C Mn, and completely
contractive maps a1: G} = E, az: F — G, we have

¥s,(a2Ta;) < 1.

Remark. — Note that Corollary 7.2.2 allows to “dualize” a bit further the formulation
of (ii) above.

Proof of Theorem 7.2.12. — Assume (i). Consider a;,as as in (ii). Extend ay to
a¥*: F** - G. Then (i) = (ii) follows from the implication (iv) = (i) in Remark
7.2.3.

Conversely, assume (ii). By Theorem 7.2.10, E admits a projective presentation
(Qp)pes and F admits an injective one (Fy)acs. Then by (ii) we have (using the
notation in Definition 7.2.8)

¥s,(§aTqp) < 1.
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Actually, taking the product set I x J and the product ultrafilter, we can assume for
simplicity of notation that (Qg) and (Fy) are relative to the same set with the same
ultrafilter. Then the mapping

MjaTqe/U: NQu/U — IIF, /U

obviously factors through G = [] Go/U with G, = S, for all a in I, via complete
a€cl
contractions. Let T be this mapping. Then it is easy to check, using (7.1.3), that

kTr = ipT, whence (i). a
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CHAPTER 8

ILLUSTRATIONS IN CONCRETE SITUATIONS

8.1. Completely bounded Fourier and Schur multipliers on L, and S,

In this section, we study the Fourier multipliers which are completely bounded on
L, and the c.b. Schur multipliers on S,. There are very strong anologies between
these two classes of multipliers, although many interesting questions remain open
specifically for the Schur multipliers.

Let 9»: N x N — C be any function. We will say that ¢ is a bounded Schur
multiplier on S, (resp. B(¢2)) if for any = = (z;;) in Sp, the matrix (¥ (4, j)zi;)
represents an element of S, (resp. B(f2)). Here 1 < p < co. We will denote by
My: Sp = Sp (resp. My: B(f2) = B({2)) the corresponding bounded linear map.
When the latter is c.b., we say that 1 is a c.b. Schur multiplier on S, (resp. B(f2)).
Note that by definition

Myei; = 9(i, j)eij.
Note that My is a bounded (resp. c.b.) Schur multiplier on S, iff the same is true

on S, with — + — =1, and we have
i p ¥

IMyllBes,) = IMylla(s,) and [[Mylless,,s,) = IMylless,,s,)-

Moreover, it is easy to check in the case p = oo that the norm (resp. c.b. norm) of My
is the same when acting on Sy, or acting on B(fs). In this case, a characterization is
known, we describe it in Proposition 8.1.11 below.

Let G be a compact Abelian group with normalized Haar measure m. We will
denote by L,(G) the space L,(G,m). Let I' be the dual group formed of all the
continuous characters on G, as usual (¢f. e.g. [Rudl]). We view I' as a discrete
Abelian group. Given a function f in L,(G) (1 < p < 00) we define its Fourier
transform f: T' — C as follows

(8.1.1) Vyel  f(y) = / FOTEm(dt).
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Then, at least say for p = 2, for any f in L,(G) we have a “Fourier series” expansion

F=3 fo
~er
Let X be a Banach space. We denote by L,(G; X) the space L,(G,m; X). Note that,
as usual, by definition the space L,(G) ® X is dense in L,(G; X) when p < oo.

The definition (8.1.1) of the Fourier transform clearly remains valid for any f in
L,(G; X), but this time f takes values in X. The subset of L,(G;X) formed of all

the sums X
F=> for

~v€r
with f: ' — X finitely supported is dense in L,(G; X).
Let A C T be a subset. We denote by L,(G)a (resp. Ly(G; X)a) the subset of
L,(G) (resp. L,(G; X)) formed of all the functions f in L,(G) (resp. L,(G; X)) such

that the support of f is included in A. When p < oo, L,(G)a (resp. L,(G; X)a)
coincides with the closure in L,(G) (resp. L,(G; X)) of the subset of all the functions

f of the form
f=2 =
YEA

where z., € C (resp. z, € X) and A C A is a finite subset of A. Given an arbitrary
function ¢: A — C, we define a multiplier M, on the linear span of A by setting

V f € span(A) Myf = Z e(NF)

YEA

Similarly, for any f in L,(G; X)a with f finitely supported we denote again
Myf =3 o(MFf)r-

YEA

We will say that ¢ defines a bounded multiplier on L,(G)a (resp. on L,(G; X)a) when
the linear map just defined is bounded, and hence uniquely extends by density to a
bounded linear map on L,(G)a (resp. on Ly(G; X)a). Note that if T is the operator
M, acting on L,(G)a, then T ® Ix corresponds to M, acting on L,(G; X)a, but for
simplicity we will abusively denote T and T ® Ix by M,, in this section. There should
be no confusion. When X is an operator space and the resulting map M, on L,(G)a
(resp. on L,(G; X)) is actually completely bounded, then of course we will say that
¢ defines a c.b. multiplier on L,(G)a (resp. on L,(G; X)a). Naturally, when A =T
we will omit the subscript A for all these notions. The next statement spells out the
meaning of complete boundedness for a Fourier multiplier of L,(G)a.

Proposition 8.1.1. — With the above notation, let ¢: A — C be any function and let
¢ > 0 be a constant. The following are equivalent.

(i) The multiplier ¢ is completely bounded on L,(G)r with

|1 Mollct(L,(G)a,Lo(G)a) < C-
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(i) The multiplier ¢ is bounded on Ly(G; Sp)a with ||Myl|B(L,(c;s,)a) < -

(iii) For any n and for any finitely supported family (z,)yca of coefficients with
Ty € Sy we have

Z e(1)zyy <c Z Ty

A €A
€ L,(G;Sp) v L,y(G;Sz)

Proof. — This is a particular case of the above Proposition 2.3. O

Example. — Let G = T, = Z and A = N C Z. Then the space L,(T) can be
identified with the classical Hardy space Hp. It is well known that the orthogonal
projection Ly — Hy is also bounded from L, to Hp if 1 < p < co. Equivalently, the
indicator function of N is a bounded Fourier multiplier on L,(T) for any 1 < p < oo.
It has been known for a long time (¢f. e.g. [Bol], [Bo2],...]) that this particular
multiplier remains bounded from L,(T;S,) into itself (and its norm is O(p) when
p — 00), in other words this multiplier (or equivalently the Hilbert transform) is
completely bounded on L,(T) for any 1 < p < oo (and its c.b.-norm is O(p) when
p — 00). More generally, the Riesz transforms on L,(R"™) (equipped either with the
Lebesgue measure or with the standard Gaussian measure) are completely bounded
when 1 < p < oo (with cb-norms bounded by a constant independent on n). Their
boundedness is a classical result due to Elias Stein (and to P.A. Meyer in the Gaussian
case). The complete boundedness can be seen for instance from the proof in [P13].

Remark. — 1t is well known that a Fourier multiplier ¢ is bounded on L;(G) (or
equivalently on C(Q)) iff there is a complex Radon measure p on G such that ¢ = i
and the norm as a multiplier is equal to the total variation norm of p, ||u||as. Then,
for any Banach space X, ¢ defines a bounded Fourier multiplier on L,(G; X) with
norm < ||p||a for all 1 < p < co. Note that the case p = 2 is trivial: a multiplier ¢ is
bounded on L(G) iff it is bounded and

|1MopllB(Lo(c)) = sup (V)]
~€er
Remark 8.1.2. — 1t follows from the preceding remark that when A =T and p =1, 2
or 0o, boundedness and complete boundedness are equivalent for M, and
if p € {1,2,00} IMollesz,(@).L.(c)) = IMollB(L,(G))-
However, as the next result shows this is no longer valid for other values of p.

Proposition 8.1.3. — Let G be any infinite compact Abelian group with dual group T.
Then, for any 1 < p # 2 < 0o, there is a bounded Fourier multiplier of L,(G) which
is not completely bounded.

The proof will use the following simple observation.
Lemma 8.1.4. — Let1 <p<oo. Let
A={1,7,-..} and A"={y,7,...}
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be two countable subsets of I' and let
A =1‘1._’_1‘" — {7I+7II I ’Y, € A,,’)‘” € A"}.

Then, if ¢ is a c.b. Fourier multiplier of L,(G)a, the function $: NxN — C defined
by

Vi,j €N 8(i,9) = (i + 75

is a c.b. Schur multiplier on S,, with

(8.1.2) IM3zlleb(s,.5,) < N Mplleb(Lo(G)a Lo(G)a)-

Proof. — Let (z;;) be a finitely supported family with z;; € Sp. Let f(t) = X+
)35 = £ @)z Then ’

M,(f)(t) = Z R A AOLACEIE

Now assume that z;; is of the following special form: z;; = a;je;; with a;; € C. We
then have, for any t in G,

b

£ @ s, = |3 assess

5

and

1Mo (N@s, = |3 00k +Aases|
From this it is easy to deduce (by integration in t) that
(8.1.3) IMzlls,—s, < 1Melleo(L,(G)arLy(G)a)-

Now, if we use, instead of the scalar coefficients (;;), matrix coefficients a;; € Sp(H)
and we set

Tij = eij ® aij € Sp(l2 ®2 H),
we obtain by a similar reasoning that (8.1.2) holds. O

We will also use the following well known fact.

Lemma 8.1.5. — The canonical “basis” (ei;) is not an unconditional basis of S, when
n
1< p# 2 < o0o. More precisely, for anyn > 1, there exists an element x = Y z;;e;;
i,j=1
in the unit ball of S, and complez scalars z;; with |z;;| = 1 such that

n
} : 1/2-1
2ijTij€ij = nl / /p|_

i,j=1 Sy
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Proof. — Let U = (U;;) be an n x n unitary matrix such that |U;;| = n=%/2 for any
(i, 7). For instance, we can take the matrix representing the Fourier transform on the
group of n-th roots of unity, i.e.

Upq = n~Y/2 exp(2mipg/n).
Note that if 2{; = U;;n!/? then |2};| = 1 and we have
2

n n n
z,ij,-jeij =n"1/2 Z €;j =n"1/2 Zei =nl/2,
ij=1 s, wi=l s 1
n
On the other hand, since U is unitary, || 3. Ujje;; = nl/?, Thus, if p > 2, we can
i,j=1
Sp

take z;; = n~Y/PU;; and z; = z};, and if 1 < p < 2, we take z;; = n™'/22};U;; and
Zij = Zéj. ]

Remark 8.1.6. — Let G be a compact Abelian group, equipped with its normalized
Haar measure m, and let T be the dual (discrete) group. Consider a subset A C I'.

When 2 < p < 00, a subset A C I is called a A(p)-set if L,(G,m)a = La(G,m)a
with equivalent norms. In other words, there is a constant C such that for any f in
L2(G,m) with Fourier transform supported in A, we have

(fllz <) Nflle < ClIfll2-

When this holds, any bounded function on A extends to a bounded multiplier on
L,(G,m), which vanishes outside A. In particular, the indicator function of A is a
bounded multiplier on L,(G,m).

It is now known that, for any p > 2, there is a A(p)-set which is not “better”, i.e. which
is a A(g)-set for no ¢ > p. This was established by Rudin [Rud2] when p is an even
integer (with explicit examples), and it remained open for a long time for the inter-
mediate values of p until Bourgain [Bo3] settled the general case, by a probabilistic
argument.

A subset A C I is called a Sidon set (¢f. [LoR]) if Loo(G,m)a = £1(A) with equivalent
norms, or equivalently if there exists a positive constant C such that any function f
with Fourier transform f supported in a finite subset of A satisfies

CY @I <lfllso (£ Ifm)).

neA neA

Proof of Proposition 8.1.3. — The idea of this proof goes back to [P12]. By trans-
position, it clearly suffices to treat the case 2 < p < co. We start by the case G = T
(one dimensional torus), and I' = Z. We will apply the preceding lemma to the case
A" ={3% | i € N} and A" = {3%+! | j € N}. We will use the fact that the map
(4,7) — 3% +3%+1 is one to one. Moreover, it is well known that, in the present case,
the set A = A’ + A” is a A(p)-set (in the sense of Remark 8.1.6) for any 2 < p < 0o
(¢f. [LoR], p. 65).
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In particular, let 2 = (z;;) € TN*N be an arbitrary family of unimodular complex
scalars and let ¢, be the Fourier multiplier defined by

2ij if n = 3% + 32%7+1

0 ifn¢gA=A+A".

Since A is a A(p) set, there is a constant ¢, such that, for any z = (z;;) as above we
have

Vnez wz(n)={

1Mo, llB(L,(c)) < Cp-
Note that we have trivially || Mo, |lco(L,(),2,(G)) = M. lleb(L,(G)a,L,p(G)a)- We claim
that

(8.1.4) SUp | My llcb(L,(G)a.Ln(G)a) = O-
Indeed, note that with the notation of Lemma 8.1.4 we have
$:(4,5) = zij.

Hence,, if (8.1.4) failed, there would exist by (8.1.2) a constant c;, such that, for all
z = (2i;), we would have

Mgz, lls,—s, < ¢
but this would contradict Lemma 8.1.5. This contradiction establishes the above
claim (8.1.4). Using (8.1.4) it is easy by routine arguments to complete the proof of
Proposition 8.1.3 with I' = Z. Now, when I is an arbitrary infinite discrete group, it
is well known that it contains an infinite sequence {; | j = 1,2,...} which forms a
Sidon set (as defined in Remark 8.1.6) and is such that the map (¢,5) = 7y2i + y2j+1

is one to one and its range is a A(p)-set for any p < co. The preceding argument can
then be repeated with A’ = {y2; | i > 1} and A" = {y2541 | j > 1}. O

Remark. — Fix an integer N and 1 < p # 2 < 00. Let

A(p, N) = sup{||Myleb(L,(T),L,(T)) }
where the supremum runs over all functions ¢: Z — C with support in [0,1,..., N]

and such that ||My||r,(r)—L,(r) < 1. The preceding argument shows that there is
dp > 0 such that, for all N =1,2,...

Ap,N) > 6,(Log N)'2 75!,
On the other hand it is not difficult to check that there is a constant Cj, such that

A(p, N) < CpN1/2-1/pl, Tt would be interesting to find sharper bounds for A(p, N)
when N — oo.

Remark 8.1.7. — By known results on Sidon sets, the following fact holds: if A is any
Sidon subset in a discrete Abelian group I then any bounded function ¢: A — C can
be extended to a bounded Fourier multiplier on L,(G). Moreover, this holds for any
1 < p < 0o. When p =1 or p = oo this property characterizes Sidon sets (cf. [Rud1],
p. 121). When p = 2, this property is trivially valid for any set A. When 2 < p < o0,
the above property is known to characterize A(p)-sets.

The natural “c.b. version” of this property is the following.
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Definition 8.1.8. — Let 2 < p < oco. A subset A C T of a discrete Abelian group I'
is called a A(p)cs-set if any bounded function ¢: A — C can be extended to a c.b.
Fourier multiplier of L,(G).

This notion is extensively studied in Asma Harcharras’s recent thesis [Ha] to which
we refer the interested reader (see also §8.5 below). Note that when A is a A(p)cs-
set the extension in the preceding definition can always be made by setting ¢ = 0
outside A. Moreover, there are A(p)-sets which are not A(p)cs-sets. Indeed, the set
A={3"+3 |i,j=1,2,...} appearing in the proof of Proposition 8.1.3 is A(p) for
all 2 < p < oo, but, by (8.1.4), it is A(p)c» for none of these values of p. On the other
hand, it is proved in [Ha] that for any even integer p > 2, there are A(p).s-sets which
are not “better”, i.e. which are A(p + €)cp-sets for no € > 0.

The anologous notion for Schur multipliers is the following.

Definition 8.1.9. — Let 2 < p < oco. A subset A C N x N is called a o(p)-set (resp.
o(p)cs-set) if every bounded function ¢: A — C extends to a bounded (resp. c.b.)
Schur multiplier on Sj.

It can be shown (see [Ha]) that if A C N is a A(p)cs-set in Z, then the set
A={(,7) ENxN|i+jeA}

is a o (p)cp-set.

In particular, this (together with the construction of “large” A(p)cp-sets) yields the
following interesting result.

Theorem 8.1.10 ((Ha]). — Let 2 < p < oo and assume that p is an even integer.
Then there are positive constants o, and B, for which the following holds: for any
n > 1, there is a subset A, C {1,...,n}? with |An| > apn'*?/P such that, for any
function ¢¥: N x N — C with support in A,, we have

IMyllcss,,s,) < Bpsup{|9 (i, 5)| | (i, 5) € An}-

Remark. — The preceding result can also be used to show (see [Ha]) that for any
even integer p > 2, there is an idempotent Schur multiplier ¥ (i.e. ¥ (3, j) is equal to
zero or one) which is ¢.b. on S, but is not bounded on S, for any ¢ > p. (All the
preceding statements restricted to even integers > 4 are probably valid for any p > 2,
but this seems out of reach at the moment.)

We now return to Schur multipliers. We first recall the following well known result
due to Haagerup (but, in some form, it is already in Grothendieck’s “Résumé” [G]).

Proposition 8.1.11. — Lety: N x N — C be a function and let ¢ > 0 be a constant.
The following are equivalent:

(i) My is a bounded Schur multiplier on B({2) with norm < c.
(i) My is a c.b. Schur multiplier on B(£2) with c.b. norm < c.
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(ii) There are bounded functions : N — £, andy: N — €5 such that
Vi,j €N ¥(i,J) = (zi,y;) and sup||z;|[suply;|l < c.
i i

Proof. — We refer the reader to e.g. p. 92 in [P9]. O

Remark. — As already observed these properties are also equivalent to the inequality
lMyllB(s:,s:) < € and to Myl B(Seo,50) < €, and moreover we have

(IMyllB(s1,51) = lIMylleb(sy,s,) and [IMyllB(se,50) = IMullco(See,S500)-

The preceding statement shows that for p = 1 and p = oo, all bounded Schur
multipliers on S, are completely bounded. For p = 2, this is trivially also true: indeed
we have clearly

IMyllB(S,,52) = IMyllcs(s,,sz) = sup [4(i, 5)|-
t,]

For 1 < p # 2 < o0, we conjecture that this is no longer true:

Conjecture 8.1.12. — For any 1 < p # 2 < o0, there is a Schur multiplier which is
bounded on S, but not c.b. on S,.

Remark. — Any c.b. map on B(H) is a linear combination of completely positive
maps. This property no longer holds on S,. The class of maps u: S, — S, which
are linear combinations of bounded completely positive maps are called “completely
regular” in [P10] and studied extensively there.

Let us denote by S, (resp. Sg?) the Banach space of all bounded (resp. c.b.) Schur
multipliers on S, equipped with its natural norm. Since we have a nice description of
Sp = Sf,b in the cases p = 1,2, 00, it was natural to wonder whether the general case
could be obtained by interpolation between these particular cases (the question was
raised by V. Peller). Indeed, by routine arguments, we have contractive inclusions

(800,S2)s C Sp and (S, 85%)s C S

when 2 < p < 0o and 1/p = 0/2. So the question arose whether these inclusions were
actually equalities. The negative answer was given (for both cases) in [Ha] using
A(p)cp-sets.

‘We now turn to the Hankelian subspace of S, i.e. the subspace of S, corresponding
to all matrices (z;;) in Sy, such that z;; depends only on i+j. This subspace is spanned
by a natural system {D,} defined as follows

Dn = Z eij.
i+j=n
The next result due to V. Peller is fundamental to study Hankel operators in S,. To
state it, we use the dyadic partition (I,,) of the integers, as follows

Iy={0},[,=12""1,2"[ Vn>L1
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Theorem 8.1.13. — Let 1 < p < oco. There are positive constants ap, 3, such that,
for any finitely supported scalar sequence (z), we have
i/p
(D] 3 e
kel Lp(dt)
1/p
ST < (Tr| e
k>0 kel,

Lp(dt)
More generally, for any finitely supported sequence y with ) € Sp(H) we have

1/p

S e

k€l

ap 22"

Ly(dt;Sp(H))

ZDk®:L‘k 22"

k20 S,(£20H)

1/p

S et

kel,

Lp(dt;Sp(H))

Proof. — We refer the reader to Peller’s papers [Pel] (for the first part) and [Pe2]
(for the second one). O

Remark. — In particular, this theorem characterizes the Hankel matrices (z;;) in
Sp(¢2 ® H) as those such that

PIE

(Note that z;; = o+, if the matrix is assumed Hankelian.)

P
< 0o0.
Lp(dt;Sp(H))

D zone™

k€l

In the language of operator spaces, it has the following striking interpretation.

Corollary 8.1.14. —  For each n > 0, let u, = 2™ and let E, C Ly(T,dt) be the
subspace spanned by the functions {e'**|k € I,}. Let us denote by B, the space
£,(p; {En}). (This space coincides with a “Besov space”.) We equip By = £,(p; {En})
with an operator space structure as defined at the end of §2. For each k > 0, we
denote by @ the element of £,(p; {En}) which has its n-th coordinate equal to the
function e*** when k € I, and to zero otherwise. Then, if 1 < p < oo, the linear
mapping which takes ®y to Dy extends to a complete isomorphism between B, and
the subspace of Sp formed of all the Hankel matrices.

Remark. — Let SH, denote the subspace of S, formed of all the Hankel matrices.
Let p: N x N — C be a function of Hankelian type, i.e. such that (i, ) depends
only on i + j. Let us write 9¥(i,5) = @(i + j). Then, the preceding result has the
following interesting application: the restriction of My, to SH), is c.b. iff the sequence
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{11,¢ | n > 0} is uniformly bounded in the space of c.b. Fourier multipliers of L,(T)
(1<p< o).

To conclude this section, we mention another connection between Fourier multipli-
ers of Hy and Schur multipliers, which was observed in [P9], page 109.

Theorem 8.1.15. — LetG =T, T =Z and A = N so that L;(T)as can be identified
with the Hardy space Hy. Let ¢ > 0 be a constant. The following properties of a
function ¢: N — C are equivalent.

(i) o defines a c.b. Fourier multiplier on Hy with c.b. norm < c.

(ii) The function ¢ (i,j) = (i + j) defines a bounded Schur multiplier on B(f3)
(or equivalently on S;) with norm < c¢ (see Proposition 8.1.11 for a further
description).

8.2. The space L, and the full C*-algebra of the free group

Let (92, A, ) be a measure space. Recall that the natural operator space structure
on L;(p) is defined as the one induced on L, (1) by the dual space Lo, (11)*, equipped
with its dual operator space structure. In particular, in the case 2 = N, we have a
natural o.s.s. on #;. It is not hard to verify that this natural o.s.s. on ¢; also coincides
with the one obtained by considering ¢; as the dual of ¢o. See [B2] for details on all
this.

We can describe the associated norm || ||min 0n K ® ¢; in the following manner: let
(e) be the canonical basis of £;. For any finite sequence (a,) in K (or in B(£2)) we
have

(8'2‘1) ” Z an ® en”B(12)®minl1 = sup{” Z an ® bn”B(Zz)@.-n'mB(lz)}?
where the supremum runs over all sequences (b,,) in the unit ball of B(¢2) (equivalently,
the supremum over all sequences (b,) in the unit ball of K is actually the same).

Indeed, (8.2.1) is easy to check by introducing the linear map u: ¢y — B(¥f2) corre-
sponding to ) a, ® e, and by expressing that || ) an ® en||B(t2)@mints = ||¢llct using
the definition of the ¢.b. norm.

Now, applying the factorization theorem of c.b. maps to this mapping u, we can
easily prove that, for any finite sequence (a,) in K (resp. in B(¥f2)), we have

(8.2.2) D" an ® enllBea)@mints = MLl babL 21D cheall/?),
where the infimum runs over all possible decompositions a, = bnc, in K (resp. B(f2)).

Analogously, we can describe the natural o.s.s. of L;(u) as follows. Let f €
K ® Ly (). We may consider f as a K-valued function on Q2. We have then
1/2 1/2}

629)  Wleonuran =it { | [ syt

/ h(t)" h(t)du(t)
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where the infimum runs over all possible decompositions f = gh as a product of
(measurable, and say square integrable) K-valued functions.

The formula (8.2.2) (resp. (8.2.3)) is the guantum version of the fact that the unit
ball of #; (resp. L1 (1)) coincides with the set of all products of two elements in the unit
ball of £ (resp. L2(1)). They both can be deduced from the fundamental factorization
of c.b. maps. This can also be related to the Haagerup tensor product as follows: if
we denote by La(u). (resp. L2(u)r) the space La(u) equipped with the column (resp.
row) 0.s.s., then (8.2.3) says that the pointwise product map from Ly(u) ® La(u) to
L, (u) extends to a complete metric surjection from Lo (u), ®4 La(g). onto Ly () (the
latter equipped with its natural o.s.s.).

Using Lemma 1.7 (with p = 1 and F = L;(p)), it is easy to prove yet another
formula: for any f € K ® L1 (u) (viewed as a K-valued measurable function), then we
have

(8.2.4) | flc@minL1(x) = suP{lla f bllL,(usy)}

where the supremum runs over all a,b in the unit ball of S,.

We will show that the operator space structure of ¢; (resp. ¢7) described above
is closely related to the unitary generators in the “full” C*-algebra of the free group
with infinitely (resp. n) generators. We first recall some classical notation from
non-commautative Abstract Harmonic Analysis on an arbitrary discrete group I'.

Let 7: ' — B(H) be a unitary representation on I We denote by Cj(T') the
C*-algebra generated by the range of 7. Equivalently, C7(T') is the closed linear span
of m(T).

In particular, this applies to the so-called universal representation of I, a notion which
we now recall. Let (7;);ecr be a family of unitary representations of I, say m;: I' —
B(H;), in which every equivalence class of a cyclic unitary representation of I" has an
equivalent copy. Now one can define the “universal” representation m,: I' —» B(H)
of I by setting

Ty = @jerm; on H= @je]Hj.

Then the associated C*-algebra C; (I') is simply denoted by C*(I') and is called the
C*-algebra of the group I. (Note that this is the closed linear span of {m,(t) | t € I'}.)
It is often called the “full” C*-algebra of I' to distinguish it from the “reduced” one
which is discussed in the next section §8.3.

Let F,, (resp. F,) be the free group with n (resp. countably many) generators, and
let {g1,92,.-.} be the generators. Let m: Fo, — B(H) be a unitary representation
of the free group. We will see that, in several instances, the operator space E(7)
spanned in B(H) by {n(g:) | = 1,2, ...} has interesting properties.

We will illustrate this with the “universal” representation m,: Fo, — B(#), which
generates the “full” C*-algebra C*(F ), as introduced above (see §8.3 for the reduced
case).

We let

E;; =span[m,(g;) | ¢ =1,2,...,n]
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and
E, = span[m,(g:) | i > 1].
It is easy to see that for any finite sequence (a;) in B(f2) we have

[Seonol,, =se{lSaenol,)

min  jeJ
Now since (7;(g:))i>1 runs over all possible choices of families of unitary operators

(when j runs over I), we have
(825) “Z a; ® ﬂu(gi) min = sup { ”E a; ® ’U,,'I min}

where the supremum runs over all sequences (u;) of unitary operators in B(H) and
over all possible Hilbert spaces H. Since the unit ball of B(H) is the closed convex
hull of its unitaries (by the Russo-Dye theorem, p. 4 in [Ped]), it follows that the
supremum over sequences (u;) in the unit ball of B(H) is the same. Actually, the
supremum remains unchanged if we restrict ourselves to H = £; or to H finite dimen-
sional with arbitrary dimension. But then, the formula defining the dual operator
space shows that, if we denote by (e}) the dual basis to the canonical basis of co
(equipped with its natural o0.s.s.), we also have

“Za,@wu(g, = ”Z a; ®

Therefore, the mapping u: ¢ — E, which takes e} to m,(g;) is a complete isometry.
Hence, we have proved:

B(l2)®mmco )

Theorem 8.2.1. — The operator space E, spanned by the generators in C*(F)
is completely isometric to ¢, equipped with its natural operator space structure (or
equivalently its o.s.s. as the dual of cp). Similarly, E? is completely isometric to £7.

Remark. — 1t is easy to check that, in C*(F,), the linear span of the unit and E?
is completely isometric to E**!, via the natural isomorphism (which takes, say, the
unit to m,(g1) and takes m,(g;) to mu(gi+1) for i =1,2,...,n).

The formula (8.2.5) can be viewed as the “quantum” analog of the classical formula

(826) Y(\)€CD [[M)lle = I\l = sup {|Z A 7

The space E, gives us a “concrete realization” of the space ¢; as an operator space.
More generally, for any measure space (2, ), one can describe the natural operator
space structure of L, (€2, ) (induced by Lo (2, u)*) as follows. For all f in L; (Q, ) ®
B(¢3), we have

| z €C, |zi|=1}.

’

| [ 1)@ g)dnto)

B(£2)®minB([2) }

where the supremum runs over all functions ¢ in the unit ball of the space of Lo.-
functions with values in B(¥2).

(8‘2-7) ”f”L1(Q,u)®minB(lz) = sup {
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8.3. The non-commutative L,-space and the reduced C*-algebra of the free
group with n generators

Let T be a discrete group. We denote by
Ar: T'— B(£ (D)),

(sometimes denoted simply by A when the relevant group is clear) the left regular
representation of I, which means that Ar(t) is the unitary operator of left translation
by t on £5(T"). Explicitly, if we denote by (8;):er the canonical basis of £5(I"), we have
Ar(t)ds = 0ss for all ¢,sin T

We denote by C3(I') the C*-algebra generated in B(¢2(T')) by {Ar(t) | t € T} or
equivalently, C}(T') = span{Ar(t) | t € I'}. Clearly, we have a C*-algebra morphism

Q: c*(I) = (D)

which takes m,(t) to Ar(t). By elementary properties of C*-algebras, it is onto and
we have

Ci(T) = C*(T')/ ker(Q).
In general ker(Q) # {0}, but one can show that C3(T') = C*(I) (i.e. ker(Q) = {0})
iff T" is amenable. The free groups are typical examples of non-amenable groups. The
fact that the algebras C;(I") and C*(I") are distinct in this case, is manifestly visible
on the generators. Indeed, when I' = F,, or I' = F, if we let

E} =span[A\(g;) [i=1,...,n]
Ex =span[A(g:) | i 2 1]
we can see that E) is a very different space from its analog in the full C*-algebra,
namely the space E, studied in §8.2. Indeed, as Banach spaces, we have E, ~ {;
and E) = f,. The first isomorphism is elementary (see Theorem 8.2.1 above), while
the second one is due to Leinert [Le]. Using Haagerup’s ideas from [H4|, one can
describe the operator space structure of E), as follows (see [HPZ2] for more details).
Consider the space B(f2)® B(£2), equipped with the norm ||(z®y)|| = max{||z||, ||y||}
In the subspace R&C C B({2)®B(¢2), we consider the vectors §; (i = 1,2,...) defined
by setting
0; = e1; @ eir.
We denote by RN C the closed subspace spanned in R & C by the sequence {4;}.

(This notation is consistent with the notion of “intersection” used in interpolation
theory, provided we view the pair (R, C) as a compatible pair using the transposition
mapping r — 'z as a way to “embed” R into C. This means we let X = C, we use
z — 'z to inject R into X, and the identity map of C to inject C into X.)

Similarly, we will denote by R, N C, the subspace of RN C spanned by {4; | ¢ =
1,2,...,n}. It is easy to verify that, for any Hilbert space H and for any finite
sequence (a;) in B(H) we have

1/2 }

1/2
"E ai®6,~| = max ”E aia;
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Then, we can state (see [HP2]).

Theorem 8.3.1. — The space E) is completely isomorphic to RN C. More precisely,
for any finite sequence (a;) in B(H), we have
<2 ”Z a; ®90;

”Z a; ®96; < “Zai ® A(g:)

so that the mapping u: RN C — E, defined by u(d;) = X(g:) is a complete isomor-
phism satisfying ||ul|., = 2 and ||u‘1||cb = 1. Moreover, the map P: C5(Fs) — E),
defined by PA(t) = A(t) if t is a generator and PA(t) = O otherwise, is a c.b. projec-
tion from CX(Fo) onto Ex with norm ||P||,, < 2. (Similar results hold a fortiori for
E} and R,NC,.)

)

min min min

We now return to an arbitrary group I'. Let us denote by 7t the standard trace
on the von Neumann algebra Mr generated by Ar and defined by m(T") = (T, d)-
Let Ly(mr) denote for 1 < p < oo the associated non-commutative L,-space. The
space Li(mr) is the predual of the von Neumann algebra Mr, which we will also
denote sometimes by Lo, (7). As explained before Lemma 0.1, when 1 < p < co and
0 = 1/p, we will view the space L,(mr) as equipped with its natural o.s.s. for which
the isometric identity L,(mr) = (Loo(7r), L1(71))s becomes completely isometric.

We now turn to the case I' = F, for the rest of this section. We will drop the
index I' and write simply A, 7,...instead of Ap, r,...with I' = F,.
We will denote simply by L,(7) the non-commutative L,-space (1 < p < o0) as-
sociated to I' = F. Note that, by Lemma 0.1 and [H4], we have (completely
isometrically)

Lyp(1) = (Loo(7), L1(7))e = (CX(Feo), L1(7))e
whenever 0 <0 =1/p< 1.

We wish to describe the operator space generated by the free unitary generators
{Agi) |i=1,2,...} in Lp(7).

Let us denote by E, the closed subspace of L,(7) generated by {\(g;) |1 =1,2,...}.
Note that E, = E). We may view E, as an operator space with the o.s.s. induced by
L, (7). Clearly, the orthogonal projection P from Ly(7) to E; is completely contractive
(since, by (0.4), L2(7) can be identified with OH(I) for a suitable set I). On the
other hand, by Theorem 8.3.1, that “same” projection P is completely bounded from
C;(Fx) onto E,. Actually, the proof of Theorem 8.3.1 shows that P extends to
a weak—x continuous projection from L..(7) onto Ey. By transposition, P also
defines a c.b. projection from L;(7) onto E;. Therefore, by interpolation, P defines a
completely bounded projection from L,(7) onto E, for any 1 < p < oo.

It is natural to expect (as our notation suggests) that E, can be identified with
(Ex, E1)e with & = 1/p. However, the complex interpolation functor has a very
important “defect” which is well known to specialists, but is often overlooked by non-
specialists: it is mot injective. By this we mean that, given a compatible Banach
couple (Ag, A1), if we interpolate between two closed subspaces of Ag and A;, we do
not get a closed subspace of the interpolation space (Ao, A1)g. More precisely, if we
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give ourselves a linear subspace & C Ag N A; and if we define So = 3A°, S = gAl,

it is (in general) not true that 5% coincides with (So,S81)e, and the corresponding
norms are not equivalent. A simple and classical counterexample is provided by the
Rademacher functions (see §8.4 below) which span ¢; inside L, and span ¢ inside L,
but nevertheless still span £ (# (¢1,£2)) in the intermediate spaces Ly = (Loo, L1)g
forl<p<oo,0=1/p.

There is however a classical instance where this difficulty disappears, when we have
a linear projection which is simultaneously bounded from Ay to Sp and from A; to
S;. In that case, it is easy to check that we do have (Sp, S1)s =~ 3‘49 with equivalent
norms. We will need the following extension to operator spaces, which is immediate:

Proposition 8.3.2. —  Let (Ao, A1) be a compatible couple of operator spaces. Let
So,S1 be as above. Assume that there is a c.b. linear projection P: Ay — So which
also extends completely boundedly to a projection from A; to S;. Then we have a
completely isomorphic identification

(So,S1)e = S,

and P defines a c.b. projection from Ay to 3’49,

Thus, in contrast with the Rademacher case, the existence of this simultaneous
c.b. projection ensures that the space E, can be identified completely isomorphically
to (Ex, E1)e with @ = 1/p. In addition, E; ~ (E))*. By Theorem 8.3.1, we have
E, ~ RN C and by duality E; ~ (RN C)*. We can describe the operator space
(RN C)* as follows.

Consider the direct sum R @; C (as defined in §0), and its subspace A C R ®; C
defined by
A ={(z,~'z) | = € R}.
We will denote by R + C the quotient space (R &; C)/A. Since R ®; C is equipped
with a natural o.s.s., the space R + C itself is thus equipped with a natural o.s.s. as
a quotient space (see §0). It is easy to see (cf. §0) that

(RNC)* =R+ C completely isometrically.

Thus, E; ~ R+ C. Hence we have (completely isomorphically) E, ~ (RNC, R+ C)y.
We will “compute” the latter space more explicitly in Theorem 8.4.8 below, but let us
state what we just proved.

Corollary 8.3.3. — Let Ly(7) denote the non-commutative L,-space of the free group
and let E, be the closed subspace generated by the free generators {\(g;) | i =1,2,...},
with 1 <p < 0o. Then we have, completely isomorphically (with 6 = 1/p)

(8.3.1) E,~(RNC,R+ C),

where as before, we use the transposition mapping as the continuous injection from R
to C which allows us to view (R, C) as a compatible couple. In addition, the orthogonal
projection from Ly(7) onto E, defines a c.b. projection from Ly(T) onto E, for all
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1 < p < 0. Moreover, the equivalence constants in (8.3.1) as well as ||Pllco(z,(r),E,)
remain bounded when p runs over the whole interval [1, 00].

Remark 8.3.4. — By Cor. 2.4, p. 26 in [P1], we know that (RNC,R+C),/, = OH
completely isometrically. Hence, by the reiteration theorem (cf. [BL], p. 101) we
have

(RNC,R+C)g=(RNC,0OH)y if 0<1/2
and
(RNC,R+C)s = (OH,R+C)z9_1 if 6>1/2

Remark. — In Theorems 8.4.8 and 8.4.10 below, we give a very explicit description
of the operator space structures of (RN C, R + C)g and E,.

8.4. Operator space spanned in L, by standard Gaussian random variables
or by the Rademacher functions

Let (2, A, P) be a probability space. We will say that a real-valued Gaussian random
variable (in short r.v.) + is standard if Ey = 0 and Ey? = 1. We will say that a
complex valued Gaussian r.v. ¥ is Gaussian standard if we can write ¥ = 271/2(y' +
i4") with 4’4" real-valued, independent, standard Gaussian r.v.’s.

Let {y» | n =1,2,...} (resp. {3~ | n = 1,2,...}) be a sequence of real (resp.
complex) valued independent standard Gaussian r.v.’s on (2, A, P). As is well known,
for any finite sequence of real (resp. complex) scalars (@), the r.v. S = Y a;v
(resp. Y @;¥;), has the same distribution as the variable § = (3° |a,~|2)1/ %1 (resp.

(Z | |2)Y/ 2%). In particular, we have for any finite sequence of complex scalars

(8.4.1) I o l,, = Al (3 Ia,-|2)‘/2 .

Let G, be the subspace of L,(f, A, P) generated by {7, | n =1,2,...}. Then, as a
Banach space, G, is isometric to £; for all 1 < p < oo. (To simplify, we will discuss
mostly the complex case in the sequel, although the real case is entirely similar pro-
vided we restrict ourselves to R-linear transformations.) Moreover, for any isometry
U : G, = Gp the sequence {U(¥;) | 4 = 1,2,...} has the same distribution as the
sequence {7; | i = 1,2,...}. If we equip G, with the o.s.s. induced by L,(2, A4, P), it
follows (see Proposition 2.4 and Remark 2.5) that U is a complete isometry from G,
to Gp.

Let {e, | n=1,2,...} be a sequence of independent, identically distributed r.v.’s
on (2, A, P) with +1 values and such that P{e, = +1} = P{e, = —1} = 1/2. The
reader who so wishes can replace {¢, | n = 1,2,...} by the classical Rademacher
functions (r,,) on the Lebesgue interval, this does not make any difference in the
sequel.

Let R, be the subspace generated in L,(f2, 4, P) by the sequence (e5).
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The analog of (8.4.1) for the variables (e,) (or equivalently for the Rademacher
functions) is given by the classical Khintchine inequalities (cf. e.g. [LT1], p. 66 or
[DJT] p. 10), which say that, for 1 < p < oo, there are positive constants A, and B,
such that for any scalar sequence of coefficients (a,,) in £, we have

1/2

(8.4.2) 4, (% |a,,|2)1/ * < | S anen], < Bo (Clan?)

(Note that we have trivially B, = 1if p < 2 and A, = 1if p > 2.) This implies that,
as a Banach space, R, is isomorphic to £2 for any 1 < p < oco. A fortiori R, and G,
are isomorphic Banach spaces if 1 < p < 00.

By Proposition 2.4, we can deduce from the known general results on Gaussian
and Rademacher series in Banach spaces (cf. [MaP], Corollaire 1.3) that the spaces
Gp and R, are completely isomorphic for any 1 < p < oco. Of course, in the case
p =2, G2 and R, are completely isometric to OH since the space L2(2, A4, P) itself
is completely isometric to OH (I), where the cardinal I is its Hilbertian dimension.

We now wish to describe the operator space structure induced by L, on G, (resp.
R,). By Proposition 2.1 (applied with dim(E) = 1), this can be reduced to the
knowledge of the norm

“ Z YnTn

(resp. || an:cn” L,(Q.P;S )) when (z,) is an arbitrary finite sequence of elements of
p\36 150

Sp. In other words, to describe the 0.s.s. of G, (resp. R,) up to complete isomorphism,
it suffices to produce two-sided inequalities analogous to (8.4.1) and (8.4.2) but with
coefficients in S, instead of scalar ones. The non-commutative versions of Khintchine’s
inequalities proved in [Lu] and [LuP]| are exactly what is needed here. The case
1 < p < oo is a remarkable result due to F. Lust-Piquard ([Lu]). The case p =1
comes from the later paper [LuP], which also contains an alternate proof of the other
cases.

Theorem 8.4.1
(1) Assume?2 < p < co. Then there is a constant B, such that for any finite sequence

(zn) in Sp, we have
Sp }
Ly(Q,P;Sp)

(8.4.3) max { H (Z x;xn)
sapoue{ (i), - (2,

< H Z EnTn
(ii) Assume 1 < p < 2. Then there is a positive constant A’ (independent of p) such
that, for any finite sequence (z,) in Sp, we have

(8.44) Al < | enzn

L,(Q2,P;S;p)

1/2

|(Zanet)”

’
Sp

1/2

< i)l

Ly(Q,P;Sp)
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where we have set

el = inf{ (Svin) 7|+ ] (S eet)”

Moreover, similar inequalities are valid with a real or compler Gaussian i.i.d. sequence
(Yn) or (¥n) in the place of (€,). Finally, the same inequalities are valid when S, is
replaced by any non-commutative L, space associated to a semi-finite faithful normal
trace on a von Neumann algebra.

+
SP

Ixn:yn+zn .
Sp

Remark. — The fact that the constant A’ appearing in (8.4.4) can be taken indepen-
dent of 1 < p < 2 is proved in [LuP] (see Cor. IIL.4, p. 254).

Remark. — (Independently observed by Marius Junge in [Ju].) We claim that there
is a numerical constant C such that, for all 2 < p < oo

(8.4.5) B, < Cyp.
Since this is only implicitly contained in [LuP] and it might be of independent interest,
we will give the details explicitly. Let us denote by P,: Ly — Rs the orthogonal

projection. Recall that the K-convexity constant of a Banach space X is defined as
follows

K(X) = ||Py ® Ix||Ly(x)—»La(X)-
By a standard averaging technique, one easily verifies that

1P ® Ix|lL,(x)=L,(x) < K (Lp(X)).
When X =S, then since £,(S,) embeds isometrically into S,, we have
K(Lp(sp)) = K(Sp)-
By duality, it follows from the preceding estimate of || P,®Ix||z,(x)-L,(x) for X = S,
using (8.4.4), that for all 2 < p < oo,
B, < (A) ' K(Lp(Sp)) = (A") 1K (Sp).

By Remark 2.10 in [MaP], the latter constant is dominated by the type 2 constant,
and by [TJ2]| the type 2 constant of S, is equal to the best constant in the classical
(scalar) Khintchine inequalities B, (at least when p is an even integer) which is of
order p'/2 when p — co. Thus we obtain our claim that there is a numerical constant
C such that, for all 2 < p < ©

B, < Cyp.

The following result, essentially due to Mark Rudelson, has applications to the
geometry of convex bodies (cf. [Rn]). A simple proof of it can be given using the
preceding remark.

Proposition 8.4.2. —  There is a numerical constant C such that for any n,m and
any m-tuple of rank one orthogonal projections (Pi,..., Py) in M,, we have
Ve ecm [ 11X ciaiPldP < CIY o PRI og(n+ 1)

1 1
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Proof. — We apply (8.4.3) with p = 2+log(n) and z; = o; P;, so that z;z} = zjz; =
|aj|?P;. Then for any z in M,, we have

llls; < n'/Plizlln, < ellzlla, -

Hence - .
I PP 2 sy < ell Y lay Pillzs2-
1 1
Therefore the result follows from (8.4.3) and (8.4.5). O

Let us now identify G, and R, as operator spaces. We start by the case p = 1 which
is particularly interesting. As mentioned before stating Corollary 8.3.3, we have

(8.4.6) (RNC)* =R+ C completely isometrically.

In particular, R + C is isomorphic to £s as a Banach space. We will denote by (o)
the natural basis of R + C which is biorthogonal to the basis (6;) of At ~ RN C.
Equivalently, if we denote by ¢ : R ®; C — R + C the canonical surjection, then
we have g, = g(e1n ® en1). Similarly, we will denote by R, + C, the quotient
operator space (R, ®1 Cp)/An, with A, = {(z,-'z) | z € R,}. We also can identify
R, + C, with the subspace spanned in R + C by (o1,...,0,). Moreover, we have
(R. NCr)* = R, + C,, completely isometrically.

Now we can reformulate the main result of [LuP] in the language of operator spaces
as follows:

Theorem 8.4.3. — The space Ry (resp. Gi1) is completely isomorphic to R + C, via
the isomorphism which takes €; (resp. 7;) to o;.

Proof. — 1t is easy to verify that the norm [||.|||; appearing in Theorem 8.4.1 is the
dual norm of the natural norm from the space K ®min (RN C). Equivalently, it
coincides with the norm in the space S1[(RN C)*] = S1[R + C]. Therefore, the linear
mapping which takes &; to o; defines an isomorphism from S;[R;] onto S;[R + C].
Thus, the announced result for R, follows from Proposition 2.4 applied with p = 1.
The case of G; is analogous. O

By combining (8.4.6) with Theorem 8.3.1 we obtain a surprising connection be-
tween the standard Gaussian (or +1 valued) independent random variables and the
generators of C}(Fo):

Corollary 8.4.4. —  We have (E))* =~ G; = Ry completely isomorphically. More
precisely, let us denote by (A\«(g:)) the system in (E))* which is biorthogonal to (\(g;)).
Then the mapping u : R1 — (Ex)* (resp. u: Gy — (Ex)*) defined by u(e;) = A(9:)
(resp. u(¥:) = A(9:)) s a complete isomorphism.

More generally, for all 1 < p < 00, let us denote by R|[p] (resp. C[p]) the operator
space generated by the sequence {e1; | j = 1,2,...} (resp. {ea | i=1,2,...}) in the
operator space Sp equipped with its natural o.s.s. defined by interpolation. Here again
we set So = K. Note that R[oo] (resp. C[oo]) obviously coincides with the “row”
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(resp. “column”) space R (resp. C). A moment of thought shows that R[1] ~ R*
and C[1] = C* completely isometrically, therefore we may identify R[1] with C on one
hand, and C[1] with R on the other. Moreover, we obviously have a natural projection
simultaneously completely contractive from S; to R[1] and S to R[oo] (and similarly
for columns). This implies, by Proposition 8.3.2 that if we make the couple (R, C)
into a compatible one (as we did in §0, see [P1] for more on this theme) by using
transposition to inject R into C, then we have completely isometric identifications
(with 8 = 1/p)
R[P] = (Ra 0)9 C[p] = (Ca R)0

In other words, the space R[p| is exactly the same as the space denoted by R(1/p) in
Theorem 1.1.

Now if we use (1.5) we find
(84.7) Sp[R[pl] = (Seo[R], S1[C])s  and  S,[Clp]] = (Sw[C], S1R])e-

If we view Soo[R], (resp. S1[C]) as a space of sequences of elements of S, (resp. S1),

then the norm in Se[R] (resp. S1[C)) is easily seen to be (z;) = ||( szm;)1/2||sw

(resp. (z;) = ||( Z:vjw;)l/ 2” s,)- Therefore, since we have simultaneously contrac-
tive projections (see the discussion before Proposition 8.3.2) onto the corresponding
subspaces of Soo[Soo] and S;[S;] we find that the norm in (S.[R], S1[C])s coincides
with (z;) = ||( ij:c;)lﬂnsp. In other words, for any sequence (z;) in S, we have
by (8.4.7)

(8.4.8) ”Exj @esi g = (Z 2 z;)l/z S
»

Similarly, we have

(8.4.9) ||Z moeal o= (Z x;‘xi)lﬂ .

We denote by R[p]NC|[p] the subspace of R[p]® C[p] formed of all couples of the form
(z,tz). On the other hand, we denote by R[p] + C[p] the operator space which is the
quotient of R[p]®; C[p] modulo the subspace formed of all couples of the form (z, —*z).
Then, by (8.4.8) and (8.4.9), the norm appearing on the left in (8.4.3) is equivalent
to the natural norm of the space Sp[C|[p]] N Sp[R[p]] or equivalently S,[R[p] N C[p]].
Similarly, the norm ||| |||, in Theorem 8.4.1 (case p < 2) is equivalent to the natural
norm of the space Sp[C[p]] + Sp[R[p]] or equivalently S,[R[p] + C[p]]. This allows us
to state:

Theorem 8.4.5. — Let 1 < p < 0o. The space G, (or the space R;) is completely
isomorphic to R[p] + C[p] if p < 2 and to R[p|NCl[p] if p > 2.

Proof. — First observe that the natural norm in the space Sp[R,] is equal to the

norm induced by L,(Q2, A, P;S;), by Corollary 2.2. Then, by (8.4.3), (8.4.4) and the
preceding discussion, the latter norm is equivalent to the natural norm of either the
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space Sp[R[p] N C[p]] if p > 2 or the space Sy[R[p] + C[p]] if p < 2. Whence the
announced complete isomorphisms by Proposition 2.4. O

Remark. — Note that Theorem 8.4.1 is nothing but an extension of Theorem 8.4.5
to the case p = 1.

Remark 8.4.6. — In the Banach space setting, it is well known that the orthogonal
projection Py: Lo — G (resp. Q2: L2 — R3) extends to a bounded linear projection
P,: L, = G, (resp. Qp: L, = R;), provided 1 < p < oo, and this fails if p =1 or
p = oo. (Warning;: it is customary in Harmonic Analysis to consider that P, and P,
are the “same” operator, since they coincide on simple functions.)

In the operator space setting, the situation is analogous: for any 1 < p < 0o, P, (resp.
Qp) is a c.b. projection from L, onto G, (resp. onto R,). This can be seen easily
using Proposition 2.4 and the fact that, when 1 < p < 00, S, is a “K-convex” Banach
space in the sense of [P11]. (See also [TJ1], p. 86 or [DJT], p. 258.)

This can also be viewed as a corollary of Theorem 8.4.5, since the latter result implies
that (Gp)* ~ Gy and (Rp)* ~ Ry (completely isomorphically) when 1 < p,p’ < oo

with ps + 7 = 1. Indeed, the complete boundedness of the natural mapping

(G)" =Ly /Gy = G
is clearly equivalent to the complete boundedness of P,, and similarly for Q.

Notation. — We will denote (albeit abusively) by (J;) the natural basis of both spaces
R[p]NC|[p] and (RNC, R+C)e. This simpler notation should not create any confusion.

Corollary 8.4.7. — Let 2 < p < co. Consider the space Qp = (Rp)*, i.e. we denote
Qp = Lp(N, P)/(Ry)*. Leté; be the equivalence class of €; in Qp. Then the mapping
Ti: R[p|NC[p] = Qp, which takes d; to &;, satisfies

ITillee <C and |IT7 e < 1,

where C is a constent independent of 2 < p < oo.

Proof. — This follows from an essentially trivial dualization of (8.4.4). O

Theorem 8.4.8. — Let 2 < p < 0o and 8 = 1/p. Then the natural identification
induces an isomorphism

T: R[p|NnClp] = (RNC,R+ C)s,

with ||T||ce < C and ||T7Y||ce < 1 where C is a constant independent of 2 < p < oo.
Consequently, for any 1 < p < o0 and § = 1/p we have completely isomorphic
identities (with isomorphy constants bounded independently of p)

(RNC,R+C)s ~R[p|NCIp] ifp>2
(RNC,R+C)g ~R[p]+Clp] if p< 2.
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Proof — Let 2 < p < oo. Let E, = (RN C,R + C)s. We will first prove that
“T—lllcb(Ep,R[p]ﬁC[p]) < 1 or equivalently that

1T Moo, mipy <1 20d T o, o) < 1-

By interpolation, it suffices to prove this for § = 0 and § = 1/2. But the case § =0
is trivial, and 6 = 1/2 follows from Remark 8.3.4.

To prove the converse, we write T' as a composition T' = T>Ty where T; is as in
Corollary 8.4.7 and where T>: Q, — E, is the map taking &; to d;. To conclude it is
enough to show that “T2“cb(Q,,, £,) < 1. Equivalently, it suffices to show that the map

Ts: L,(Q,P)— E‘,, which is the composition of T with the canonical quotient map
from L,(f2, P) onto Q, satisfies

(8.4.10) ”T?’”cb(z,,,,é,,) <1.
But now, note that, for any von Neumann algebra M, we have obviously

1/2 1/2
victo@ P, | [raap| i wna | [ rar] <in)

hence, it is easy to show that (8.4.10) holds for p = co. On the other hand, (8.4.10)
clearly holds also for p = 2 by Remark 8.3.4. Thus, by interpolation, we obtain
(8.4.10) for any 2 < p < oo. This completes the proof since the last assertion can be
obtained by duality. O

Remark. — The preceding statement might be a very particular case of a general
phenomenon (yet to be proved) in complex interpolation theory. See the discussion
in Maligranda’s paper [Ma] about the “real” interpolation between sums and inter-
sections.

Using Corollary 8.3.3, we obtain another striking isomorphism.

Corollary 8.4.9. — Let1 < p < oco. Let E, be as in Corollary 8.3.3. Then the
correspondence €; — A(g;) (resp. ¥ — A(g:)) is a complete isomorphism between the
spaces Ry (resp. Gp) and E, (and here the isomorphism constants remain bounded
when p runs over the interval [1,2]).

Proof. — We just combine Corollary 8.3.3 with the preceding statement. O

Theorem 8.4.10. —  There is a constant C' such that, for any 2 < p < o0, for any
von Neumann algebra N equipped with a standard trace v, and for any finite sequence

(zn) tn Ly(N,1p), we have
”Z Mgn) ® zn ”Lp(rx«p)
L,<N,¢)} '

o

()™

LP(N,"/))
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Proof. — With S, in the place of L,(N,%), this is an immediate consequence of
Theorem 8.4.8 (recalling (8.4.7)). The general case can be proved exactly as above
for Theorem 8.4.8, but taking into account the last assertion in Theorem 8.4.1 (which
follows from Remark 3.6, p. 255 in [LuP]). a

Remark 8.4.11. — Let k > 1 be a fixed integer. Let (€1)n>1, (€2)n>1,. .-, (€¥)n>1 be
independent copies of the original sequence (€,) as above, on a suitable probability
space (2, A, P). Let us denote by ’Rﬁ the subspace of L,(f2, A, P) spanned by the
functions of the form e} €2,...€¥ (n1 > 1,ny > 1,...). Then, modulo a simple
reformulation, the results of the paper [HP2] describe the operator space structure
of the space R for any k = 1,2,... and its dual. (The Gaussian case is similar by
general arguments.)

The paper [HP2] also describes the space E\ ®min - * - ®min Fa (k-times) and proves
that R¥ is completely isomorphic to (Ex ®min *** ®min Ex)*. Here of course the
isomorphism constants depend on k.

Concerning Rﬁ for 1 < p < 00, it is easy to iterate the inequalities appearing in The-
orem 8.4.1 to obtain (after successive integrations) two-sided inequalities describing
the operator space structure of R’;. To describe these iterated inequalities, assume
for simplicity that k£ = 2. Let (z;;) be a matrix with entries in Sp, with only finitely
many of them non-zero. Then both z = (z;;) and the transposed matrix ‘z = (z;;)
can be viewed as elements of S, on the Hilbert space £, ® ¢, ® - -- and we denote the
corresponding norms simply by ||z||s, and |[*z]||s,.

Then after iteration (8.4.3) becomes when 2 < p < 00
1/2 1/2

(8.4.11) maxq llalls,, I*2lls, || | D =i A Do ziss
ij ij

Sp Sp

} : 1.2
< E,-Ej:l,‘ij
ij

Lp (Q»P;SP)

1/2 1/2
< (By)? max ¢ |lzlls,, [I*=lls,, || | Y =55 AN DS misas;
ij j
SP SP

Moreover, the orthogonal projection induces a c.b. projection from L, (2, P) onto Rf,,
forany k =1,2,...,sothat (8.4.11) can be dualized to treat the case 1 < p < 2. We do
not spell out the corresponding inequality. Again, when 2 < p < oo, these inequalities
can be interpreted as describing R;", as completely isomorphic to the intersection
of four operator spaces, as follows. First recall that, for any Hilbert space H, we
denote by H. (resp. H,) the operator space obtained by equipping H with the o.s.s.
of the column (resp. row) Hilbert space. Let us define H.[p] = (H,,H.);/, and
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H.[p| = (He,H;)1/p ~ H,[p'] for 1 < p < o0, with p~' + p'~! = 1. (Also set, by
convention, H,[oco] = H,, H.[oo] = H., H.[1] = H., H.[1] = H,.)

Then (8.4.11) can be interpreted as saying that Rf, is completely isomorphic to the
intersection S, N SPP N (S2)c[p] N (S2)-[p] (the opposite E°P of an operator space E
is defined e.g. in [BP]). Thus we can extend essentially all the preceding discussion
of R, to the spaces R’;. In particular, here is what becomes of Theorem 8.4.8 in the
case k = 2:

Let  =1/p, 1 < p < 0o and let us denote K by S.,. Then the interpolation space
((S2)r N (S2)c NS NS, (S2)r + (S2)c + S1 + S77),
is completely isomorphic to the intersection
(S2): PN (S2)elplN S, NS if p>2
and to the sum
(S2)r[p] + (S2)c[p] + Sp + SF if p<2.

In the case p = 1, the results of [HP2] show that R? is completely isomorphic to the
sum (S2), + (S2)c + S1 + S;7. The case of a general k > 2 can be handled similarly,
and we obtain for p > 2 (resp. p < 2) the intersection (resp. the sum) of a family of
2% operator spaces. We leave the details to the reader (see [HP2] for the cases p = 1
and p = 00).

Remark. — By a well known symmetrization procedure, one can deduce from the
Khintchine inequalities that, for any sequence (Z,)n>1 of independent mean zero
random variables in L, (1 < p < 00), we have (for any n)

1 n 1/2 n n 1/2
54 (Z |Zi|2) <ID-z| <28, (Z |Zi|2)
=1 =1 p =1
P P
Note that the partial sums S, = ) 7' Z; form a very special class of martingales.

These inequalities were extended to the case of general martingales by Burkholder,
Davis and Gundy (see [Bu]).

For a non-commutative version of the Burkholder-Gundy inequalities, with an appli-
cation to Clifford martingales and stochastic integrals, see [PX1}-[PX2].

8.5. Non-commutative A(p)-sets

In this section, we will briefly describe some results from Asma Harcharras’s recent
thesis [Ha]. Let I be an arbitrary discrete group with unit element e. Let M be the
von Neumann algebra generated by the left regular representation Ar, equipped with
its standard trace 7. We denote by L,(mr) the associated (non-commutative) L-
space. A linear map T: L,(1r) — Lp(1r) is called a multiplier if there is a function
@: ' = C such that T(Ar(t)) = @(@)Ar(¢) for all ¢ € I'. In that case, we write
T =T,. We say that ¢: ' = C is a bounded (resp. c.b.) multiplier on Ly(mr) if
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Ty,: Lp(mr) = Lp(7r) is bounded (resp. c.b.). Then in analogy with the commutative
case (cf. Remarks 8.1.6 and 8.1.7), one can introduce the following definitions.

Definition 8.5.1. — Let 2 < p < 0o. A subset A C I" of a discrete group I' is called a
A(p)-set (resp. A(p)cs-set) if every bounded function ¢: A — C can be extended to
a bounded (resp. c.b.) multiplier on L,(mr).

Remark. —  For more information on A(p)-sets, we refer the reader to [Rud2],
[Bon1]-[Bon2| and [LoR] in the Abelian case, and to [Boz1]-[Boz3] for the non-
Abelian one.

Using the results of [TJ2], it is easy to show that a subset A C I is a A(p)-set iff
there is a constant C such that, for any finitely supported function z: A — C, we

have p
> (®Ae(t) <cC (Z lx(t)P) :
Lyp(7r)

teEA

teA

Note that conversely we have, for any A,

[E ], 2 (2 o) " = [E=oxe],,,.,

In particular, this shows that, in the Abelian case, the preceding definition is equiva-
lent to the one given in Remark 8.1.6.

To state the analogous fact for A(p)cs-sets, it will be convenient to denote by
L,(m x tr) the (non-commutative) L,-space associated to the product trace v x tr

on the (von Neumann) tensor product M®B(fz). This space can be equivalently
identified with the space Sp[L,(r)], by (3.6)’.

Proposition 8.5.2. — Let2 < p < co. A subset A C T is a A(p)cy-set iff there is a
constant C such that, for any finitely supported function x: A — S,, we have

(8.5.1) > () @ z(t)

teA

L, (mr xtr)

1/2
(Z z(t)*w(t)>

teA

< C'max ,

1/2
(Z z(t)w(t)*)

teA

Sp Sp

In other words, A(p)cy-sets are exactly the subsets of I' which satisfy the analog of
(8.4.3).

Remark 8.5.3. — Note that the inverse of (8.5.1) holds for any set A with constant
1; in particular, taking A = T, we see that the indicator function of a A(p).s-set is a
c.b. multiplier on L,(m). Equivalently, the orthogonal projection from La(7r) onto
span(Ar(t) |t € A]is c.b. on Ly(mr) (1 < p < 00).
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Remark. — Let Ly(r)a be the closed span in L,(mr) of {Ar(2) | ¢ € A}. For simplicity
of notation, assume A countable and let {¢, | n € N} be an enumeration of A. Then
Proposition 8.5.2 says that A is a A(p)cs-set iff the correspondence Ar_, (gn) — Ar(ts)
extends to a complete isomorphism from the space E, (described in Corollary 8.3.3)
to L,(7r)a- Equivalently, the same is true with (€»)nen and R, in the place of (A(gn))
and E,.

Just as in the classical case of [Rud2], it turns out that there are nice combinatorial
conditions which imply the A(p)cs-property, when p = 2k is an even integer.

Definitions. — Let k > 2 be an integer. A subset A C I is called a B(k)-set if
whenever two k-tuples (s;) and (¢;) in A satisfy

sltl_ls2t;1 e skt,:1 =e

we have necessarily {si1,...,8¢} = {t1,...,tx} with multiplicity (meaning that if an
element is repeated on the left, it is repeated an equal number of times on the right).

Let e(k) = (—1)*¥~!. A subset A C I is called a Z(k)-set if there is a constant C such

that, for any z in T, the number of possibilities to write z = z,z; 23 - - -wi(k), with
z; € A and z; # x; for all ¢ # j, is bounded by C.

In the Abelian case, these notions are classical (especially for k = 2): see [HR], p. 85
for a number theoretical discussion of B(k)-sets (called Bj-sequences in [HR]) and
Zygmund’s paper [Z] for applications to Fourier analysis.

Fix k > 2. It is easy to check that any infinite subset of I' contains a further subset
which is a B(k)-set. Rudin in [Rud2] exhibited rather large subsets of Z which are
B(k)-sets. On the other hand, it is easy to check that if I' = Z®™ ie. T is the
free Abelian group with infinitely many generators denoted by (Z,)nen, then the set
A ={Z, | n € N} is a B(k)-set for all k > 2 (c¢f. [Bonl]-[Bon2]).

Furthermore, in a free (non-Abelian) group, any free subset is easily seen to be a
B(k)-set for all k > 2.

It is easy to give examples of A(p)-sets which are not A(p)-sets, for instance the
proof of Proposition 8.1.3 shows that the set A = {3" + 37 | 4,5 € N} is A(p) for all
p > 2, but A(p)ep for no p > 2. However, the following result holds. It is the main
source of examples of A(p).s-sets.

Theorem 8.5.4. — ([Ha]). Let p = 2k be an even integer > 2. Then, any B(k)-set
is a Z(k)-set, and any Z(k)-set is a A(p)cp-set.

We refer the interested reader to [Ha] for the proof, and for related results. The
computations, which are fairly easy for p = 4, become increasingly complicated as k
grows.

Remark. — The sets A which satisfy the property in Proposition 8.5.2 for p = oo
were studied in [P8], under the name of “L-sets”.
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8.6. Semi-circular systems in Voiculescu’s free probability theory

In this section, we describe the operator space generated in (non-commutative) L,
by the “free” analog of independent Gaussian variables, namely a free semicircular
family.

In his recent and very beautiful theory of “free probability”, Voiculescu discovered
a “free” analog of Gaussian random variables (see [VDN]). This discovery gives a new
insight into a remarkable limit theorem for random matrices, due to Wigner (1955).
In Wigner’s result, a particular probability distribution plays a crucial role, namely
the probability measure on R (actually supported by [—2,2]) defined as follows.

[.LW(dt) = 1[_2,2] AY/ 4 - t2 dt/27'l'

We will call it the standard Wigner distribution. We have
/ tuw (dt) = 0 / 2 (dt) = 1.

In classical probability theory, Gaussian random variables play a prominent roéle.
They usually can be discussed in the framework attached to a family (v;)icr (resp.
(Fi)ier) of independent identically distributed (i.d.d. in short) real (resp. complex)
valued Gaussian variables with mean zero and Ls-norm equal to 1. When (say)
I = {1,2,...,n} the distribution of (v;)ier (resp. (Vi)ier) is invariant under the
orthogonal (resp. unitary) group O(n) (resp. U(n)).

In Voiculescu’s theory, stochastic independence of random variables is replaced by
freeness of C*-random variables. We will review the basic definitions below. After
that, we will introduce a free family (W;);er of C*-random variables, each distributed
according to the standard Wigner distribution. These are called “free semi-circular”
variables. The family (W) is the free analog of (7y;)ier in classical probability; it
satisfies a similar distributional invariance under the orthogonal group. But actually,
since we work mostly with complez coefficients, we will also introduce a free fam-
ily (W;)ier which is the free analog of (7:)icr; their “joint distribution” satisfies an
analogous unitary invariance. Such variables are called “free circular” variables.

We now start reviewing the precise definitions of the basic concepts of “free prob-
ability”, following [VDN].

Definitions. — A C*-probability space is a unital C*-algebra A equipped with a state
© (a state is a positive linear form of norm 1). We will say that an element z of A is a
C*-random variable (in short C*-r.v.). If z is self-adjoint, we will say that it is a real
C*-r.v. By definition, the distribution of a real C*-r.v. z is the probability measure
pz on R such that

VE20 pet) = [ @)
It follows that, for any continuous function f: R — R, we have

(8.6.1) o(f(@) = / F(O)ua(dt),
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Indeed, we can approximate f by a sequence of polynomials uniformly on every com-
pact subset. Hence, in particular for all 0 < p < co

(8.6.2) ollal) = [ ltPue(a)

Moreover, if ¢ is “faithful” on the C*-algebra A, generated by = (meaning that p(y) =
0 for y > 0 implies y = 0) then the support of u, is exactly the spectrum of z, denoted
by o(z). Therefore, we can record here the following fact:

(8.6.3) Let (A, ) and (B,) be two C*-probability spaces with
w and v faithful. Let x € A and y € B be two real C*-r.v.
with the same distribution, i.e. such that p, = p,. Then
we necessarily have ||z|| = |ly|| (where ||z|| is the norm
in A and ||y|| the norm in B).

This property is immediate, since

llzll = sup{|A| | A € o(x)}.
It can also be obtained by letting p tend to infinity in (8.6.2). Note that it suffices
that ¢ (resp. 9) be faithful on the C*-algebra generated by z (resp. y).

A probabilist will legitimately object that this theory is restricted to bounded variables
and that the usual probability distributions (Gaussian, Poisson,. . .) have unbounded
support. But, by a truncation, one can easily extend this viewpoint to the unbounded
real case. Besides, it turns out that the free analog of Gaussian variables happens to
be bounded (see below), although it is not so for the “free” stable distributions (see
[BV]).

Example. — Let w — a(w) € M, be a random n x n-matrix defined on a standard
probability space (2, 4, P). Then the space A = L (9,4, P; M,,) can be viewed as
a C*-probability space once we equip it with the state ¢ defined by

»(a) =/%tr(a(w))dP(w).

Assume moreover that a(w) = a(w)* almost surely. Let (A;(w),...,An(w)) be the
eigenvalues of the matrix a(w). Then the distribution u, of the real C*-r.v. a is

nothing but
1 n
Ha = / '7'1' ZJA.(w)dP(w)
1

Definitions. — Let (An,¢n) be a sequence of C*-probability spaces and let z, € A,
be a sequence of real C*-r.v.’s. We will say that z,, tends to z in distribution if the
distributions p., tend weakly to u,. By a classical criterion, this is equivalent to

VE>0 @n(zF) = o(zF) when n — co.
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More generally, we can define the joint distribution of a family = (z;):es of real
C*-r.v.’s, but it is no longer a measure: we consider the set P(I) of all polynomials
in a family of non-commuting variables (X;);er. First we define

F(Xi, Xiy ... Xi,) = o3, Tiy . . - T4y,)s
then we extend F linearly to a linear form on P(I). We will say that F' is the “joint
distribution” of the family = = (z;):ic1. If we give ourselves for each n such a family
(z7):er with distribution F™, we say that (z7)ier converges in distribution to (z;)ier
if F™ converges pointwise to F.

Let (A, ) be a C*-probability space and let (4;)icr be a family of subalgebras of A.
We say that (A;)icr is free if p(ai1a2...a,) = 0 every time we have a; € A;;,i1 #
12 ;éyé’ln and cp(aj) =0V]

Let (z;)ier be a family of C*-r.v.’s in A. Let A; be the unital algebra (resp. C*-
algebra) generated by z; inside A. We say that the family (z;)icr is free (resp. *-free)
if (A;)ier is free.

We can now reformulate Wigner’s Theorem in Voiculescu’s language. Fix n > 1.
We introduce the random (real symmetric) n X n-matrix

G" = (gij)lsi,jgn
with entries defined as follows: {g;; | ¢ < j} is a collection of independent Gaussian
real-valued r.v.’s with distribution N(0,1/n) (i.e. E(gi;) = 0 and E|g;;|? = 1/n) and
gi; = gji Vi > j. We assume these (classical sense) random variables defined on

a sufficiently rich probability space (for instance the Lebesgue interval). Let A, =
Lo (9, A, P; M,,) and let ¢, be the state defined on A, by setting

Vo e A, onx)= / % r(2(w))dP(w).
Then, Voiculescu’s reformulation of Wigner’s Theorem is:

Theorem 8.6.1. — If we consider G™ as a real C*-r.v. relative to (An,pn), then we
have the weak convergence of probability measures:

uG, = pw  when n — oo.

More generally, Voiculescu showed that if (G?);¢r is a family of independent copies
(in the usual sense) of the random variable G™, then the family (G});er converges in
distribution to a free family (W;);cs of real C*-r.v.’s each with the same distribution
equal to pw.

We will say that a real C*-r.v. z is semi-circular if there exists A > 0 such that the
distribution of Az is equal to pw. If A = 1, if £ admits exactly puw for its distribution,
then we will say that z is semi-circular standard. We have then p(z) = 0, ¢(z?) = 1.
(We should warn the reader that our standard normalization differs from that of
[VDN].)

In Voiculescu’s theory, the analog of an independent family of standard real Gauss-
ian variables is a free family of standard semi-circular C*-r.v.’s. Such a family can be
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realized on the “full” Fock space, as follows. Let H = £2(I). We denote by F(H)(or
simply by F) the “full” Fock space associated to H, that is to say we set Ho = C,
H, = H®" (Hilbertian tensor product) and finally

F = ®n>oHn.

We consider from now on H, as a subspace of F. For every h € H, we denote by
£(h): F — F the operator defined by:

(h)r=hoa.

More precisely, if £ = A1 € Ho = C1, wehave (h)z = Ah and if z = 2, Q22 ®- - -Qz, €
H, we have £(h)z = h® ) @ T2 ® -+ - ® T,,. We will denote by 2 the unit element in
Ho = C1. The C*-algebra B(F) is equipped with the state ¢ defined by

o(T) =<TQ,Q>.

Let (e;)icr be an orthonormal basis of H.

The pair (B(F), ) is an example of a C*-probability space. Moreover, ¢ is tra-
cial on the C*-algebra generated by the operators £(e;) + £(e;)* (i € I),i.e. we have
o(zy) = @(yz) for all z,y in this subalgebra. (Note that p(£(h)*£(h)) = (h,h) and
@(£(h)£(h)*) = 0, so that ¢ is not tracial on the whole of B(F).)
In this subalgebra, let

W, = ﬂ(ei) + Z(ei)*.

Then the family (W;);cr is an example of a free family of standard semi-circular C*-
r.v.’s, or in short a standard semi-circular free family. This family enjoys properties
very much analogous to those of a standard independent Gaussian family (g;):cy.
Indeed, for every family (a;)icr € R with 3" a? = 1 thereal C*-r.v. S = Yicr Wi
admits pw as its distribution. This is analogous to the rotational invariance of the
usual Gaussian distributions. More explicitly, this means that for every continuous
function f: R — R we have

o(£(S)) = / F (&) (dt).

In particular, by (8.6.3), for all finitely supported families of real scalars we have

S i = 2 (z ag)l/z.

i€l el

Thus, the operator space R-linearly generated by (W;);cr is isometric to a real Hilbert
space.

We now pass to the complex case. Let (Z;)ier be a family of (not necessarily
self-adjoint) C*-r.v.’s. We can then consider the distribution F of the family of real
C*-r.v.’s obtained by forming the disjoint union of the family of real parts and that
of imaginary parts of (Z;);cr. We will say that F' is the joint *-distribution of the
family (Z;);er. Of course if the family is reduced to one variable Z, we will say that
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F is the x-distribution of Z. Note that the data of the x-distribution of (Z;);er is
equivalent to that of all possible moments of the form
o(Xiy Xy ... Xi,)
where X; = either Z; or Z} and where 41,1, ...,%, are arbitrary in I.
We now come to the analog of complex Gaussian random variables. Let (W', W") be

— 1
a standard semi-circular free family (with two elements). We set W = 7§(W' +iW").

Every C*-r.v. having the same *-distribution as w (resp. as AW for some A > 0) will
be called “standard circular” (resp. “circular”).

Suppose given a (partitioned) orthonormal basis {e; | ¢ € I}U{f; | i € I} of H. Then,
one can show that W; = £(e;) + £(f;)* is a *-free family of standard circular C*-r.v.’s
(in short a standard circular *-free family).

Now, let (W )icr be any x-free family formed of standard circular variables. Then,
for any ﬁmtely supported family (ci)ier of complex scalars with S lai|?> = 1, the
variable S = E,e I a,W has the same *-distribution as W. As above, we have

(8.6.4) ”Z ;Wi (E |a,~|2)1/2

(one can verify that ||W|| =2).

Let V1 be the operator space spanned by this family {W, |7 e I}. By (8.6.4), Vris
isometrically Hilbertian and (W;);es is an orthonormal basis. Moreover (see [VDN],
p. 56) for any isometric transformation U: Vi — Vy the family (U(W)))ier has the
same *-distribution as (W;);er.

Lemma 8.6.2. — Let (A,p) and (B,v¥) be two C*-probability spaces with ¢ and ¢
faithful. Let (Z;)icr and (Y;)ier be two families of C*-r.v.’s in A and in B respec-
tively, admitting the same joint -distribution. Let Az (resp. By ) be the C*-algebra
generated by (Z;);c1 (resp. (Y:)icr) and let Ez C Az (resp. Ey C By ) be the opera-
tor space spanned by the families. Then the linear mapping U defined by U(Z;) = Y;
extends to a complete isometry from Ez onto Ey and actually to an isometric C*-
representation from Az onto By.

Proof. — Without restricting the generality, we may replace the family (Z;);cy by the
disjoint union of the families(Z;);cs and (Z}):er, and similarly for the family (Y;)ier.
Let then P = Y @,iy..4 Zi, - - Zi, be a polynomial with complex coefficients in the
non-commutative variables (Z;);c;. We set

n(P) = Zahw W Yiy Y
Then, as (Z;) and (Y;) have the same joint *-distribution, P*P and w(P)*n(P) have
the same distribution, hence, by (8.6.3), since ¢ and 1 are faithful, ||P|| = || (P)||. In
particular, 7 extends to an isometric C*-representation from Az onto By. As is well
known, the latter is automatically completely isometric. A fortiori, the restriction U
of m to Ez is completely isometric. 0O
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Actually, it is very easy to identify the operator space Vi (up to complete isomor-
phism) as the next result shows (see [HP2] for some refinements).

Theorem 8.6.3. —  The operator space Vi generated by a standard circular *-free

family (Wi)ie 1 18 isometric to l2(I). Similarly, the closed span of a free semi-circular
family {(W;)icr} is 2-isomorphic to £y(I). Moreover, if (say) I = N, each of these
spaces is completely isomorphic to RN C or equivalently to E).

Proof. — We already saw that V; is Hilbertian.

Let (a;)ier be a finitely supported family in B(H). The identity W; = £(e;) + £(e;)*
together with )" £(e;)¢(e;)* < I yields

“Zai eWi| < ||Za,~ ® £(e;)
1/2

< ” E ala; + “ E a;a;
whence

(8.6.5) ”Z wowl| <2 “Z‘ ;i ® 6;

Conversely, it is easy to check that (W W;) = o(W;W*) = 0if ¢ # j and = 1
otherwise. Hence, letting T' = 3 a; ® W;, we have || Y ala;|| = ||(I ® p)(T*T)|| <
IT)|2,;,, and similarly we have || 3 a;a}|| < ||T]2,;,- It follows that

min-
(8.6.6) ma,x{“Z ala; 1/2 , ”E a;a; 1/2} < ”Z a; @ W;

The inequalities (8.6.5) and (8.6.6) imply that Span(W; | ¢ € I] is 2-isomorphic to
£o(I).

For simplicity, we assume I = N in the rest of the proof. By Theorem 8.3.1, the last
two inequalities imply that the closed span of (W;);cr is completely isomorphic to E)
or equivalently to RN C. Finally, as the variables Wj = (W} + iW}")271/2 appear
as a sequence of “blocks” (normalized in £3) on a standard semi-circular system, the
same inequalities (8.6.5) and (8.6.6) remain valid if we replace (W;);cr by (Wi)ie I
Therefore, we conclude that Vy itself is completely isomorphic to E) or to RN C.
This last point can also be deduced from the concrete realization W; = £(e;) + £(f;)*
already mentioned above for a standard circular x-free system. O

o+ HZ a; ® £(e;)*

min
1/2

min

min min

min

Remark. — 1In a recent preprint (Computing norms of free operators with matrix
coeflicients), Franz Lehner has given an explicit exact formula for the left side of 8.6.5
and several related equalities refining Theorem 8.3.1.

Remark 8.6.4. — Let M be the von Neumann algebra generated by a free semi-
circular family (W;);er. We assume I = N for simplicity. Recall a classical notation:
for any = in M, we define zyp € M, by zp(y) = ¢(yz) for all y in M. Thus we obtain
a continuous injection M — M, which allows us to consider the interpolation spaces
(M,M,)g for 0 < 6 < 1. Let us denote for simplicity Loo(¢) = M, Li(p) = M, and
Ly(p) = (M, M,)s with § =1/p.
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Let us denote by W, the closed linear span of (W;)icr in Ly(p). In analogy with
Corollary 8.3.3, we claim that the orthogonal projection P from L2(¢) onto W, defines
a completely bounded projection from L,(¢) onto W, for any 1 < p < oco. Here again,
the case p = 2 is clear since, by (0.4), L2(¢) is OH(I) for some set I. Therefore, by
interpolation and transposition, it suffices to prove this claim for p = co. The latter
case can be justified as follows: given a Hilbert space H, let us denote by H,. (resp.
H_) the space H equipped with the row (resp. column) operator space structure
associated to B(H*,C) (resp. B(C, H)). It is easy to check that the natural inclusion
map M — Ly(yp) is completely contractive from M to Ly(p)r (resp. La2(p)c). Hence,
(recall that W; is normalized in L2(p)) P induces a completely contractive mapping
T: M — RNC defined by

VeeM T(x)=)Y & paWy).

Let V: RN C — M be the mapping defined by V(§;) = W;. By (8.6.5), the
composition VI': M — M satisfies ||[VT||cs < ||[V|lee < 2. Moreover, VT is the
adjoint of an operator on M, and VT “coincides” with P on the x-algebra generated
by (Wi)ici. Therefore, VT is a completely bounded projection from M onto W,
which naturally “extends” P. By transposition, we obtain a c.b. projection from L, ()
onto W, and by interpolation from L,(p) onto W, for all 1 < p < oo. This establishes
the above claim.

Therefore, exactly as in Corollary 8.3.3, we conclude that W; ~ W3 and W, ~
(Waoo; W1)e (completely isomorphically) with § = 1/p. But by Theorem 8.6.3 we
already know that W,, ~ RN C, hence by duality W) ~ R+ C and consequently, by
Theorem 8.4.8, we obtain again (with equivalence constants bounded independently
of p)

W, ~R[p|+C[p] if p<2 and W, ~R[p|NC[p] if p>2.
Moreover, Theorem 8.4.10 remains valid with (W;) in the place of (A(g;)). The case
of circular variables can be treated by the same argument, thus, to recapitulate, we
can state

Theorem 8.6.5. — For simplicity let I = N. Let (W;);cr (resp. (Wi)iGI ) be a standard
free semi-circular (resp. x-free circular) family. For 1 < p < oo, let W, (resp. Wp )
be the closed span of (W;):cr (resp. (Wi)i€1) in Ly(p). Then, for any p < oo, W,
and )7\7,, are completely isomorphic to the Gaussian subspace G, (or to the space R,)
considered in §8.4. The correspondences W; — +;, Wi — ¥; (and also W; — f/lv/', ) or
Wi — €; all define complete isomorphisms between the corresponding L,-subspaces.
Moreover, the orthogonal projection defines a c.b. projection from L,(p) onto W, (or
onto Wp ) for any 1 < p < o0, with cb-norm bounded independently of 1 < p < co.

We refer to [VDN] for a description of the various forms of Voiculescu’s central
limit theorem which is a generalization of Theorem 8.6.1. On the other hand, the
reader will find in [Sk] a description of the applications of Voiculescu’s theory to von
Neumann algebras.

SOCIETE MATHEMATIQUE DE FRANCE 1998






[BL]
[B1]
(B2]

[B3]

[BP]
[BS]

[Bo1]

[Bo2]

[Bo3]

[Bon1]

[Bon2]

BIBLIOGRAPHY

J. Bergh and J. Lofstrom. Interpolation spaces. An introduction. Springer
Verlag, New York. 1976.

D. Blecher. Tensor products of operator spaces II. Canadian J. Math. 44 (1992)
75-90.

. The standard dual of an operator space. Pacific J. Math. 153
(1992) 15-30.

. Generalizing Grothendieck’s program. in “Function spaces”,
Edited by K. Jarosz, Lecture Notes in Pure and Applied Math. vol.136, Marcel
Dekker, 1992.

D. Blecher and V. Paulsen. Tensor products of operator spaces. J. Funct. Anal.
99 (1991) 262-292.

D. Blecher and R. Smith. The dual of the Haagerup tensor product. Journal
London Math. Soc. 45 (1992) 126-144.

J. Bourgain, Vector valued singular integrals and the H'-BMO duality, Proba-
bility theory and harmonic analysis (Chao-Woyczynski, ed.), pp. 1-19; Dekker,
New York, 1986.

. Some remarks on Banach spaces in which martingale differences
are unconditional, Arkiv fér Math. 21 (1983) 163-168.

. Bounded orthogonal systems and the A(p)-set problem. Acta
Math. 162 (1989) 227-245.

A. Bonami. Ensembles A(p) dans le dual de D*°. Ann. Inst. Fourier, Grenoble,
18 (1968) 193-204.

. Etude des coefficients de Fourier des fonctions de LP(G). Ann.
Inst. Fourier, Grenoble, 20 (1970) 335-402.



124

[Boz1]

[Boz2]

[Boz3]

[BR]

[Bul]

[Bu2]

[BV]

[Cal

[Col

[DF]

[DU]

[Di]

[DCH]

[DJIT]

[E]

[EE]

BIBLIOGRAPHY

M. Bozejko. The existence of A(p) sets in discrete noncommutative groups.
Bolletino U.M.I. 11 (1973) 198-199.

. A remark to my paper (The existence of A(p) sets in discrete
noncommutative groups). Bolletino U.M.I. 8 (1975) 579-582.

. On A(p) sets with minimal constant in discrete noncommutative
groups. Proc. Amer. Math. Soc. 51 (1975) 407-412.

O. Bratelli and D. Robinson. Operator algebras and quantum statistical me-
chanics II. Springer Verlag, New-York, 1981.

D. Burkholder. Distribution function inequalities for martingales. Ann. Prob.
1 (1973) 19-42.

. A geometrical characterization of Banach spaces in which martin-
gale difference sequences are unconditional, Ann. Probab. 9 (1981) 997-1011.

H. Bercovici and D. Voiculescu. Free convolution of measures with unbounded
support. Indiana Univ. Math. J. 42 (1993) 733-773.

A. Calderén. Intermediate spaces and interpolation, the complex method. Stu-
dia Math. 24 (1964) 113-190.

A. Connes. Classification of injective factors, Cases II;, [ 1,111, A # 1. Ann.
Math. 104 (1976) 73-116.

A. Defant, K. Floret. Tensor norms and operator ideals. North-Holland, Am-
sterdam, 1993.

J. Diestel and J. Uhl. Vector measures. Amer. Math. Soc. Math. Surveys 15,
Providence, 1977.

J. Dixmier. Formes linéaires sur un anneau d’opérateurs. Bull. Soc. Math.
France 81 (1953) 9-39.

J. de Canniére and U. Haagerup. Multipliers of the Fourier algebras of some
simple Lie groups and their discrete subgroups. Amer. J. Math. 107 (1985)
455-500.

J. Diestel, H. Jarchow and A. Tonge. Absolutely summing operators. Cam-
bridge University press, 1995.

E. Effros. Advances in quantized functional analysis. Proceedings International
Congress of Mathematicians, Berkeley 1986, p. 906-916.

E. Effros and R. Exel. On multilinear double commutant theorems. Operator
algebras and applications, Vol. 1, London Math. Soc. Lecture Notes Series 135
(1988) 81-94.

ASTERISQUE 247



(EH]

[EK]

[EKR]
[ER1]
[ER2]
[ER3]
[ER4]

[ER5]

[ER6]
[ER7]
[ERS]
[FaK]
[Fi1]
[Fi2]
[G]
[Gr]

[H1]

BIBLIOGRAPHY 125

E. Effros and U. Haagerup. Lifting problems and local reflexivity for C*-
algebras. Duke Math. J. 52 (1985) 103-128.

E. Effros and A. Kishimoto. Module maps and Hochschild-Johnson cohomol-
ogy. Indiana Univ. Math. J. 36 (1987) 257-276.

E. Effros, J. Kraus and Z.J. Ruan. On two quantized tensor products. Preprint
1992. To appear.

E. Effros and Z.J. Ruan. On matricially normed spaces. Pacific J. Math. 132
(1988) 243-264.

. A new approach to operator spaces. Canadian Math. Bull. 34
(1991) 329-337.

. On the abstract characterization of operator spaces. Proc. Amer.
Math. Soc. 119 (1993) 579-584.

. Self duality for the Haagerup tensor product and Hilbert space
factorization. J. Funct. Anal. 100 (1991) 257-284.

. Recent development in operator spaces. Current Topics in Oper-
ator Algebras. Proceedings of the ICM-90 Satellite Conference held in Nara
(August 1990). World Sci. Publishing, River Edge, N.J., 1991, p. 146-164.

. Mapping spaces and liftings for operator spaces. Proc. London
Math. Soc. 69 (1994) 171-197.

. The Grothendieck-Pietsch and Dvoretzky-Rogers Theorems for
operator spaces. J. Funct. Anal. 122 (1994) 428-450.

. On approximation properties for operator spaces. International
J. Math. 1 (1990) 163-187.

T. Fack and H. Kosaki. Generalized s-numbers of T-measurable operators.
Pacific J. Math. 123 (1986) 269-300.

F. Fidaleo. Operator space structures and the split property. J. Operator The-
ory 31 (1994) 207-218.

. Some operator ideals in non-commutative functional analysis.
Preprint to appear.

A. Grothendieck. Résumé de la théorie métrique des produits tensoriels
topologiques. Boll. Soc. Mat. Sao-Paulo 8 (1956) 1-79.

U. Groh. Uniform ergodic theorems for identity preserving Schwarz maps on
W*-algebras. J. Operator Theory 11 (1984) 395-404.

U. Haagerup. Injectivity and decomposition of completely bounded maps in
“Operator algebras and their connection with Topology and Ergodic Theory”.
Springer Lecture Notes in Math. 1132 (1985) 170-222.

SOCIETE MATHEMATIQUE DE FRANCE 1998



126

[H2]

[H3]
[H4]
[HP1]
[HP2]
[Ha]
[Hei]
[Her]
[Hi
[HR]
[Ju]
[KR]
[Ki]
[Ko]
[Kr]
[Ku]

[Kwi]

BIBLIOGRAPHY

. LP-spaces associated with an arbitrary von Neumann algebra. Al-
gébres d’opérateurs et leurs applications en physique mathématique. (Colloque
CNRS, Marseille, juin 1977) Editions du CNRS, Paris 1979.

. Decomposition of completely bounded maps on operator algebras.

Unpublished manuscript. Sept. 1980.

. An example of a non-nuclear C*-algebra which has the metric
approximation property. Inventiones Math. 50 (1979) 279-293.

U. Haagerup and G. Pisier. Factorization of analytic functions with values in
non-commutative L;-spaces. Canadian Journal of Math. 41 (1989) 882-906.

. Bounded linear operators between C*—algebras. Duke Math. J.
71 (1993) 889-925.

A. Harcharras. Fourier analysis, Schur multipliers on S, and non-commutative
A(p)-sets. Thesis. Université Paris 6. 1997.

S. Heinrich. Ultraproducts in Banach space theory. J. fiir die reine und Angew.
Math. 313 (1980) 72-104.

C. Herz. The theory of p-spaces with an application to convolution operators.
Trans. Amer. math. Soc. 154 (1971) 69-82.

M. Hilsum. Les espaces LP d’une algébre de von Neumann définis par la dérivée
spatiale. J. Funct. Anal. 40 (1981) 151-169.

H. Halberstam and K. Roth. Sequences, volume I. Oxford University Press,
1966.

M. Junge. Factorization theory for spaces of operators. Habilitation thesis.
Kiel university, 1996.

R. Kadison and J. Ringrose. Fundamentals of the theory of operator algebras,
Vol. II, Advanced Theory, Academic Press, New-York 1986.

E. Kirchberg. On subalgebras of the CAR-algebra. J. Funct. Anal. 129 (1995)
35-63.

H. Kosaki. Applications of the complex interpolation method to a von Neu-
mann algebra: non commutative LP-spaces. J. Funct. Anal. 56 (1984) 29-78.

J. Kraus. The slice map problem and approximation properties. J. Funct. Anal.
102 (1991) 116-155.

R. Kunze. L, Fourier transforms on locally compact unimodular groups. Trans.
Amer. Math. Soc. 89 (1958) 519-540.

S. Kwapien. A linear topological characterization of inner product spaces. Stu-
dia Math. 38 (1970) 277-278.

ASTERISQUE 247



[Kw2]
[Le]

(L

(LP]
[LT1]

[LoR]
(L]

[LuP]
[Ma]

[MaP]

[N]
[Pal]
[Pa2]
[PS]
[Ped]
[Pel]

[Pe2]

BIBLIOGRAPHY 127

. On operators factorizable through L,-spaces. Bull. Soc. Math.
France, Mémoire 31-32 (1972) 215-225.

M. Leinert. Faltungsoperatoren auf gewissen diskreten gruppen. Studia Math.
52 (1974) 149-158.

E. Lieb. Convex trace functions and the Wigner-Yanase-Dyson conjecture.
Form convex functions and the WYDL and other inequalities. Advances in
Math. 11 (1973) 267-288.

J. Lindenstrauss and A. Pelczyriski. Absolutely summing operators between
L,-spaces and their applications.

J. Lindenstrauss and L. Tzafriri. Classical Banach spaces. Part I. Springer
Verlag, Berlin Heidelberg 1977.

J. Lopez and K. Ross. Sidon sets. Marcel Dekker. New-York, 1975.

F. Lust-Piquard. Inégalités de Khintchine dans C, (1 < p < o). C.R. Acad.
Sci. Paris 303 (1986), 289-292.

F. Lust-Piquard and G. Pisier. Non-commutative Khintchine and Paley in-
equalities. Ark. for Mat. 29 (1991) 241-260.

L. Maligranda. Interpolation between sum and intersection of Banach spaces.
J. Approx. Theory 47 (1986) 42-53.

B. Maurey and G. Pisier. Séries de variables aléatoires vectorielles indépen-
dantes and propriétés géométriques des espaces de Banach. Studia Math. 58
(1976) 45-90.

E. Nelson. Notes on non-commutative integration. J. Funct. Anal. 15 (1974)
103-116.

V. Paulsen. Completely bounded maps and dilations. Pitman Research Notes
146. Pitman Longman (Wiley) 1986.

. Representation of Function algebras, Abstract operator spaces
and Banach space Geometry. J. Funct. Anal. 109 (1992) 113-129.

V. Paulsen and R. Smith. Multilinear maps and tensor norms on operator
systems. J. Funct. Anal. 73 (1987) 258-276.

G. Pedersen. C*-algebras and their automorphisms groups. Academic Press,
London New-York, 1979.

V. Peller. Hankel operators of class S, and their applications. Math. Sbornik
41 (1982) 443-479.

V. Peller. Vectorial Hankel operators, commutators and related operators of
the Schatten-von Neumann class S,,. Integral Equations and Operator Theory
5 (1982) 244-272.

SOCIETE MATHEMATIQUE DE FRANCE 1998



128

[Pi]

[P1]

[P2]

[P3]

[P4]

[P5]

[P6]

[P7]
(P8]
[P9]
[P10]
[P11]
[P12]

[P13]

[PX1]

[PX2]

BIBLIOGRAPHY

A. Pietsch. Absolut p-summierende Abbildungen in normierten Riumen. Stu-
dia Math. 28 (1967) 333-353.

G. Pisier. The operator Hilbert space OH, complex interpolation and tensor
norms. Memoirs Amer. Math. Soc. vol. 122, 585 (1996) 1-103.

. Factorization of linear operators and the Geometry of Banach
spaces. CBMS (Regional conferences of the A.M.S.) 60, (1986), Reprinted
with corrections 1987.

. Complex interpolation and regular operators between Banach
lattices. Archiv der Math. (Basel) 62 (1994) 261-269.

. Dvoretzky’s theorem for operator spaces and applications. Hous-
ton J. Math. 22 (1996) 399-416.

. Espaces L, non commutatifs & valeurs vectorielles et applications
p-sommantes. C. R. Acad. Sci. Paris, 316 (1993) 1055-1060.

. Exact operator spaces. Colloque sur les algébres d’opérateurs. in
“Recent advances in operator algebras” (Orléans 1992) Astérisque (Soc. Math.
France) 232 (1995) 159-186.

. Martingales with values in uniformly convex spaces. Israel J.
Math. 20 (1975) 326-350.

. Multipliers and lacunary sets in non amenable groups. Amer. J.
Math. 117 (1995) 337-376.

. Similarity problems and completely bounded maps. Springer Lec-
ture Notes 1618 (1995).

. Regular operators between non-commutative L,-spaces. Bull. Sci.
Math. 119 (1995) 95-118.

. Holomorphic semi-groups and the geometry of Banach spaces.
Annals of Math. 115 (1982) 375-392.

. Some results on Banach spaces without local unconditional struc-
ture. Compositio Math. 37 (1978) 3-19.

. Riesz transforms: a simpler analytic proof of P. A. Meyer’s
inequality. Séminaire de Probabilités XXII. Springer Lecture Notes n°1321
(1988).

G. Pisier and Q. Xu. Inégalités de martingales non commutatives. C. R. Acad.
Sci. Paris 323 (1996) 817-822.

. Non-commutative martingale inequalities. Comm. Math. Physics
189 (1997) 667-698.

ASTERISQUE 247



BIBLIOGRAPHY 129

[PW] W. Pusz and S. Woronowicz. Form convex functions and the WYDL and other
inequalities. Letters in Math. Phys. 2 (1978) 505-512.

[RW] A.R. Robertson and S. Wasserman. Completely bounded isomorphisms of in-
jective operator systems. Bull. London Math. Soc. 21 (1989) 285-290.

[Ru] Z. J. Ruan. Subspaces of C*-algebras. J. Funct. Anal. 76 (1988) 217-230.
[Rn] M. Rudelson. Random vectors in isotropic position. Preprint, to appear.
[Rud1l] W. Rudin. Fourier analysis on groups. Interscience, New-York, 1962.

[Rud2] . Trigonometric series with gaps. J. of Math. and Mechanics 9
(1960) 203-228.

[S] I. Segal. A non-commutative extension of abstract integration. Ann. of Math.
57 (1953) 401-457.

[Sk] G. Skandalis. Algébres de von Neumann de groupes libres and probabilités
non commutatives. Séminaire Bourbaki 92/93. Exposé 764. Astérisque, Soc.
Math. France.

[St] ~W. Stinespring. Integration theorems for gages and duality for unimodular
groups. Trans. Amer. Math. Soc. 90 (1959) 15-26.

[Ta] M. Takesaki. Theory of Operator Algebras I. Springer-Verlag New-York 1979.

[Tel] M. Terp. Interpolation spaces between a von Neumann algebra and its predual.
J. Operator Th. 8 (1982) 327-360.

[Te2] . LP-spaces associated with von Neumann algebras. Preprint.
Copenhagen University. June 1981.

[TJ1] N. Tomczak-Jaegermann. Banach-Mazur distances and finite dimensional op-
erator ideals. Pitman, 1988.

[TJ2] N. Tomczak-Jaegermann. The moduli of convexity and smoothness and the
Rademacher averages of trace class Sp. Studia Math. 50 (1974) 163-182.

[VDN] D. Voiculescu, K. Dykema, A. Nica. Free random variables. CRM Monograph
Series, Vol. 1, Amer. Math. Soc., Providence RI.

[W] S. Wasserman. On tensor products of certain group C*-algebras. J. Funct.
Anal. 23 (1976) 239-254.

[Wa] F. Wattbled. Interpolation complexe d’un espace de Banach et de son antidual.
Comptes Rendus Acad. Sci. Paris 321 (1995) 1437-1440.

X] Q. Xu. Interpolation of operator spaces. J. Funct. Anal. 139 (1996) 500-539.

[Z] A. Zygmund. On Fourier coefficients and transforms of functions of two vari-
ables. Studia Math. 50 (1974) 189-201.

SOCIETE MATHEMATIQUE DE FRANCE 1998






INDEX

B(k)-set, 114 Fubini’s theorem, 24
ORNP, 48 full C*-algebra of I, 99
QLp-space, 71 Gaussian, 104

R+C, 103 Haagerup tensor product, 14
RNC, 101 Hankel operators, 96
SLy-space, 71 Hilbert transform, 91
SQLy-space, 71 hyperfinite, 38

U M D-space, 50 injective presentation, 84
A(p)-set, 93, 113 intersection, 101

A(p)co-set, 95, 113 Khintchine’s inequalities, 105
o(p)-set, 95 martingale, 45

o(p)cv-set, 95 minimal (or spatial) tensor product, 7
absolutely p-summing, 58 operator Hilbert space, 11

Burkholder-Gundy inequalities, 50
canonical anticommutation relations, 47
closed subspace, 101

column Hilbert space, 7
combinatorial conditions, 114
complete contraction, 8

complete metric surjection, 8
completely p-summing, 51
completely 2-summing, 62
completely bounded, 7

completely contractive, 8
completely isometric, 8

complex interpolation, 11
conditional expectation, 39

direct sum, 9

factors through, 61

operator space, 7

operator space structure, 8
parallelogram inequality, 68
Pauli spin matrices, 47
Pietsch factorization, 52
predual, 9

product ultrafilter, 75
projective presentation, 84
projective tensor product, 13
Rademacher functions, 104
Radon Nikodym property, 45
reduced C*-algebra, 101
Riesz transforms, 91

row Hilbert space, 7

Schur multipliers, 89

Fock space, 118 semi-circular family, 120
Fourier multipliers, 89 Sidon set, 93

free circular, 115 simultaneously bounded, 103
free group, 99 ultraproducts, 13

free probability, 115 uniformly OS-convex, 48

free semi-circular, 115 Wigner-Yanase-Dyson/Lieb inequalities, 27



