@incollection{AST_1995__232__231_0, author = {Vainerman, Leonid}, title = {Hypergroup structures associated with {Gel'fand} pairs of compact quantum groups}, booktitle = {Recent advances in operator algebras - Orl\'eans, 1992}, series = {Ast\'erisque}, pages = {231--242}, publisher = {Soci\'et\'e math\'ematique de France}, number = {232}, year = {1995}, mrnumber = {1372536}, zbl = {0848.43007}, language = {en}, url = {http://www.numdam.org/item/AST_1995__232__231_0/} }
TY - CHAP AU - Vainerman, Leonid TI - Hypergroup structures associated with Gel'fand pairs of compact quantum groups BT - Recent advances in operator algebras - Orléans, 1992 AU - Collectif T3 - Astérisque PY - 1995 SP - 231 EP - 242 IS - 232 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_1995__232__231_0/ LA - en ID - AST_1995__232__231_0 ER -
%0 Book Section %A Vainerman, Leonid %T Hypergroup structures associated with Gel'fand pairs of compact quantum groups %B Recent advances in operator algebras - Orléans, 1992 %A Collectif %S Astérisque %D 1995 %P 231-242 %N 232 %I Société mathématique de France %U http://www.numdam.org/item/AST_1995__232__231_0/ %G en %F AST_1995__232__231_0
Vainerman, Leonid. Hypergroup structures associated with Gel'fand pairs of compact quantum groups, dans Recent advances in operator algebras - Orléans, 1992, Astérisque, no. 232 (1995), pp. 231-242. http://www.numdam.org/item/AST_1995__232__231_0/
[1] Hopf algebras, volume 74 of Cambridge Tracts in Math. Cambridge University Press, 1980. | MR | Zbl
.[2] Enumeration of partitions: the role of Eulerian series and -orthogonal polynomials. In Higher Combinatorics, M. Aigner, ed., pages 3-26, 1977. | DOI | MR | Zbl
and .[3] Some basic hypergeometrical orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc., 319, 1985. | MR | Zbl
and .[4] Unitaires multiplicatifs et dualité pour les produits croisés de -algèbres. Ann. Sci. Ecole Norm. Sup., 4 série, 26 : 425-488, 1993. | DOI | EuDML | Numdam | MR | Zbl
and .[5] Hypercomplex systems with locally compact basis. Selecta Math. Sov., 4 (2) : 151-200, 1985. | Zbl
and .[6] Harmonic analysis in hypercomplex systems. Naukova Dumka, Kiev, 1992. Russian. | MR | Zbl
and .[7] On the Spherical and Zonal Spherical Functions on a Compact Quantum Group. Letters in Math. Phys., 22 : 195-201, 1991. | DOI | MR | Zbl
.[8] Hypergroup structures, associated with a pair of quantum groups . In Methods of functional analysis in problems of mathematical physics, pages 47-69. Inst. Math. Acad. Sci. Ukraine, Kiev, 1992. | MR
and .[9] Quantum homogeneous spaces, duality, and quantum -spheres. Report AM-R9309, Centrum voor Wiskunde en Informatica, Amsterdam, September 1993 (to appear in Geom. Dedicata). | MR | Zbl
and .[10] -algèbres de Kac et algèbres de Kac. Proc. London Math. Soc., 66 : 619-650, 1993. | DOI | MR | Zbl
and .[11] Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques. In Analyse Harmonique, pages 315-446. CIMPA, Nice, 1982. | Zbl
.[12] Gelfand Pair Criteria for Compact Matrix Quantum Groups. Mathematical Institute University of Leiden, Report No. W93-20, 1993 (to appear in Indag. Math. (N.S.)). | MR | Zbl
.[13] Spaces with an abstract convolution of measures. Adv. in Math., 18(1) : 1-101 1975. | DOI | MR | Zbl
.[14] On quantum groups and -special functions, Ph.D. Thesis, Rijksuniversiteit Leiden, 1991.
.[15] Askey-Wilson polynomials and the quantum group: survey and applications. Katholieke Universiteit Leuven, Preprint, 1994. | MR | Zbl
.[16] The Clebsch-Gordan coefficients for the quantum group and -Hahn polynomials. Nederl. Acad. Wetensch. Proc. Ser : A, 92, 1989. | MR | Zbl
and .[17] Orthogonal polynomials in connection with quantum groups. In P. Nevai, editor, Orthogonal Polynomials: Theory and Practice, volume 294, pages 257-292, Norwell, MA, 1990. NATO-ASI Series C, Kluwer. | DOI | MR | Zbl
.[18] The addition formula for little -Legendre polynomials and the quantum group. SIAM J. Math. Anal., 22(1) : 295-301, 1991. | DOI | MR | Zbl
.[19] Positive convolution structures associated with quantum groups. In Probability Measures on Groups, X, pages 249-268. Plenum, 1991. | DOI | MR | Zbl
.[20] Discrete hypergroups associated with compact quantum Gelfand pairs. Applications of hypergroups and related measure algebras, Contemporary Math. (W. Connett, O. Geburer, A. Schwartz, eds.) (to appear). | MR | Zbl
.[21] Askey-Wilson polynomials as zonal spherical functions on the quantum group. SIAM J. Math. Anal., 24(3) : 795-813, 1993. | DOI | MR | Zbl
.[22] Generalized translation operators and some of their applications. Jerusalem, New York, 1964. | MR | Zbl
.[23] Macdonalds symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces. Preprint, 1993 (to appear in Adv. in Math.). | MR | Zbl
.[24] Finite dimensional representations of the quantum group and the zonal spherical functions on . Japanese J. Math. (N.S.) 19 : 31-80, 1993. | DOI | MR | Zbl
, , and .[25] Quantization of Lie groups and Lie algebras. Algebra and Analysis, 1 (1) : 178-206, 1989. English transl. in Leningrad Math. J., v.1, 1990, pp.193-225. | MR | Zbl
, , and .[26] Duality for algebras with involution and generalized shift operators. Journal of Soviet Math., 42 (6) : 52-59, 1988. | DOI
.[27] Harmonic Analysis on Hypercomplex Systems with Compact and Discrete Basis. In Spectral Theory of Operators and Infinite-Dimensional Analysis, pages 19-31. Inst. Math. Acad. Sci. Ukraine, Kiev, 1984. English transl in Selecta Math. Sov., v.10, No.2, 1991, pp. 181-193. | MR | Zbl
.Harmonic Analysis on Hypercomplex Systems with Compact and Discrete Basis. Inst. Math. Acad. Sci. Ukraine, Kiev, 1984. English transl in Selecta Math. Sov., v.10, No.2, 1991, pp. 181-193. | MR | Zbl
.[28] Gel'fand pairs of quantum groups, hypergroups and -special functions. Applications of hypergroups and related measure algebras, Contemporary Math. (W. Connett, O. Geburer, A. Schwartz, eds.) (to appear). | MR | Zbl
.[29] Gel'fand pair associated with the quantum group of motions of the plane and -Bessel functions. Reports of Math. Phys. (to appear). | MR | Zbl
.[30] Hypergroup associated with double cosets of the quantum group . In Applications of the functional analysis methods in math. physics, pages 52-59. | MR | Zbl
and .Hypergroup associated with double cosets of the quantum group . Inst. Math. Acad. Sci. Ukraine, Kiev, 1991. Russian ; to be transl. in Selecta Math. Sov. | MR
and .[31] An algebra of functions on the quantum group . Funktsional. Anal. i Prilozen., 22(3) : 1-14, 1988. English transl. in Funct. Anal. Appl., v.22, 1988, pp.170-181. | Zbl
and .[32] Algebra of functions on quantum group and odd dimensional spheres. Algebra i Analyz, 2(5) : 101-120, 1990. English transl. in Leningrad Math. J., v.2, No.5, 1991, pp.1023-1042. | MR | Zbl
and .[33] Special functions and the theory of group representations, volume 22 of Translations of Math. Monografs. Amer. Math. Soc., 1968. | MR | Zbl
.[34] Compact matrix pseudogroups. Commun. Math. Phys., 111 : 613-665, 1987. | DOI | MR | Zbl
.[35] Twisted group. an example of a non-commutative differential calculus. Publ. RIMS Kyoto Univ., 23 : 117-181, 1987. | DOI | MR | Zbl
.