Bloch's higher Chow groups revisited
K-theory - Strasbourg, 1992, Astérisque, no. 226 (1994), pp. 235-320.
@incollection{AST_1994__226__235_0,
     author = {Levine, Marc},
     title = {Bloch's higher {Chow} groups revisited},
     booktitle = {$K$-theory - Strasbourg, 1992},
     series = {Ast\'erisque},
     pages = {235--320},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {226},
     year = {1994},
     zbl = {0817.19004},
     language = {en},
     url = {http://www.numdam.org/item/AST_1994__226__235_0/}
}
TY  - CHAP
AU  - Levine, Marc
TI  - Bloch's higher Chow groups revisited
BT  - $K$-theory - Strasbourg, 1992
AU  - Collectif
T3  - Astérisque
PY  - 1994
SP  - 235
EP  - 320
IS  - 226
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1994__226__235_0/
LA  - en
ID  - AST_1994__226__235_0
ER  - 
%0 Book Section
%A Levine, Marc
%T Bloch's higher Chow groups revisited
%B $K$-theory - Strasbourg, 1992
%A Collectif
%S Astérisque
%D 1994
%P 235-320
%N 226
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1994__226__235_0/
%G en
%F AST_1994__226__235_0
Levine, Marc. Bloch's higher Chow groups revisited, dans $K$-theory - Strasbourg, 1992, Astérisque, no. 226 (1994), pp. 235-320. http://www.numdam.org/item/AST_1994__226__235_0/

[B] S. Bloch, Algebraic cycles and higher K-theory, Adv. in Math. 61 No 3 (1986) 267-304. | DOI | Zbl

[B2] S. Bloch, Algebraic cycles and the Lie algebra of mixed Tate motives, J. Amer. Math. Soc. 4 (1991) No.4, 771-791. | DOI | Zbl

[B3] S. Bloch, The moving lemma for higher Chow groups, preprint (1993). | Zbl

[F] W. Fulton, Rational equivalence on singular varieties, Publ. Math. IHES 45 (1975) 147-167. | DOI | EuDML | Numdam | Zbl

[G] H. Gillet, Riemann-Roch theorems for higher algebraic K-theory, Adv. in Math. 40 (1981) 203-289. | DOI | Zbl

[GG] H. Gillet and D. Grayson, On the loop space of the 𝒬-construction, Ill. J. Math 31 (1987) 574-597. | Zbl

[Gr1] D. Grayson, Exterior power operations on algebraic K-theory, K-theory 3 (1989) 247-260. | DOI | Zbl

[Gr2] D. Grayson, Adams operations on higher K-theory, K-Theory 6 (1992). no. 2, 97-111. | DOI | Zbl

[Gro] A. Grothendieck et. al., Théorie des intersections et théorème de Riemann-Roch, SGA 6, Springer Lect. Notes Math. 225 (1971). | Zbl

[H] H. Hiller, λ-rings and algebraic K-theory, JPAA 20 (1981) 241-266. | Zbl

[Kl] S. Kleiman, The transversality of a general translate, Comp. Math. 28 (1974) 287-297. | EuDML | Numdam | Zbl

[K] C. Kratzer, λ-structure en K-théorie algébrique, Com. Math. Helv. 55 No. 2 (1980) 233-254. | DOI | EuDML | Zbl

[So] C. Soulé, Opérations en K-théorie algébrique, Can. J. Math. 37 No. 3 (1985) 488-550. | DOI | Zbl

[S] A. A. Suslin, Stability in algebraic K-theory, Springer Lect. Notes Math. 966 (1982) 304-333. | Zbl

[T] R. Thomason and T. Trobaugh, Higher algebraic K theory of schemes and of derived categories, in The Grothendieck Festschrift, vol. 3, Birkäuser (1990) 247-423.

[V] T. Vorst, Localization of the K-theory of polynomial extensions, Math. Ann. 44 (1979) 33-53. | DOI | EuDML | Zbl

[W] C. Weibel, Homotopy algebraic K-theory, in Algebraic K-theory and algebraic number theory, AMS Contemp. Math. 83 (1989) 461-488. | DOI | Zbl