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Introduction

Let R be a finite root system with Weyl group W. For any prime p
and any algebraically closed field k of characteristic p consider the connected,
simply connected semisimple algebraic group G over k with root system R.
Denote the Lie algebra of Gy by g;. This is a p-Lie algebra, i.e., it has
an additional structure, the p-th power map X — X[, In this case it is
the ordinary p-th power, if we think of elements of g, as derivations. We
shall consider representations of g; as a p-Lie algebra. This means that the
action of any X[P! on the module is the p-th power of the action of X. The
corresponding module is then called a restricted g —-module. It is a module
for the restricted enveloping algebra UlPl(g,), which is the quotient of the
universal enveloping algebra of g, by the ideal generated by all X? — X (]
with X € g;. The algebra UlPl(g,) has finite dimension equal to p™ where
m = dlm gk'

The representation theory of the UlPl(g,) turns out to have many fea-
tures that are (conjecturally) independent of p. Let us mention first the one
most easily described. Since UlP!(g,) has finite dimension, it is the direct
product of indecomposable algebras, the blocks of UlPl(g,). Each indecom-
posable restricted g,—module M belongs to exactly one of these blocks; it is
the unique block not annihilating M. Denote by Bj the block of the trivial
one dimensional gy—module. Work ([Hu2]) by Humphreys from 1971 showed:
If p is greater than the Coxeter number h of R, then the simple modules be-
longing to By are indexed by the Weyl group W. The Cartan matrix of By
is therefore a (W x W)-matrix. In the cases known at that time (and in the
cases known today) this matrix is independent of p (as long as p > h). So
one might conjecture that this independence should hold in general. (This
conjecture is implicitly contained in Verma’s last conjecture in [Ver] to be
discussed below.) We shall prove:

Theorem 1: There is a Z-algebra B (finitely generated as a Z-module) such
that for all k with char(k) > h the block By 1s Morita equivalent to B Rz k.

(More precisely, we construct a B such that B ®z Z[((h — 1)!)7!] is free

of finite rank over Z[((h — 1)!)7!].) The theorem implies that for p >> 0 the
Cartan matrix above is indeed independent of p. Our methods do not yield
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reasonable bounds. These bounds arise from conditions that certain algebraic
numbers should not have p in their denominators.

The algebra B has also an interpretation in characteristic 0. Take an odd
integer p > 1 (prime to 3 if R has a G, component) and consider the quantized
enveloping algebra U, at a p-th root of unity. Here we take Lusztig’s version
constructed via d1v1d}:ed powers. It contains a finite dimensional analogue u,,
of the restricted enveloping algebra. (This was discovered by Lusztig, cf. [Lu6]
and [Lu7].) Then:

Theorem 2: Ifp > h, then BQz Q(¥/1) is Morita equivalent to the block of

u, containing the trivial one dimensional module.

Let us return to the characteristic p > 0 situation. One of the main tools
of Humphreys in [Hu2] was the use of the analogues of the Verma modules:
Consider the Lie algebra by of a Borel subgroup of G, take a one dimensional
UlPl(b;)-module and induce to UlPl(g, ). Suppose that p > h. Then there are
|W| induced modules (Z,)wew of this type belonging to Byx. Each Z,, has a
unique simple homomorphic image L,,; the L,, with w € W are exactly the
simple modules belonging to B; mentioned above. One of the main results
in [Hu2] is the following: The projective cover @Q,, of L,, has a filtration with
factors of the form Z,, with w' € W; any Z, occurs exactly di(w’,w) times
where di(w', w) is the multiplicity of the simple module L,, as a composition
factor of Z,,. This implies especially that the Cartan matrix of B; is de-
termined by the decomposition matrix, i.e., the matrix of all dy(w’,w), and
we can now replace the previous conjecture on the Cartan matrix by one on
the decomposition matrix (for p > h). And that is indeed part of Verma's
Conjecture V in [Ver]. We can show:

Theorem 3: Let w,w' € W. There is an integer d(w'.w) > 0 such that
di(w',w) = d(w',w) for all k with char(k) > 0.

Again, there is an interpretation in characteristic . The u, have anal-
ogous modules Z,, and L,,, and then d(w', w) is equal to the multiplicity of
Ly in Z,, whenever p > h.

The remaining part of Verma's Conjecture V is concerned with multiplic-
ities for the algebraic group G. (Both parts are in fact closely related, since
Verma’s (proven) Conjecture IV tells us how to express the d(w', w) in terms
of multiplicities for Gx.) At this point we need more notations. Let X be the
group of weights of the root system R. Let W, be the affine Weyl group of R,
i.e., the semidirect product of W and the group of translations by elements
in ZR. Set p equal to the sum of the fundamental weights.

Let T} be a maximal torus in G and set b equal to the Lie algebra of
Ty. We assume that T is contained in the Borel subgroup with Lie algebra
br so that h;, C br. We identify the group of characters of T} with X. To
each dominant weight A € X there correspond a simple module and a Weyl
module with highest weight A. Denote by bg(p, A) the multiplicity of the
simple module with highest weight A\ as a composition factor of the Weyl
module with highest weight jt. The linkage principle (first conjectured by
Verma) states that by (u, A) # 0 implies A € Woep where any w € W acts via
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wep = w(p+ p) — p and any translation by some v € ZR as translation by pv.
(Perhaps we should write wepA for w € W, and XA € X to denote this action.
But it should always be clear what we mean.) The linkage principle together
with the translation principle implies that we know (for p > h) all bg(p, )
if we know all bg(w',w) = bg(w'+0, ws0) with w,w’ € W, such that w.0 and
w's0 are dominant.

The second part of Verma’s Conjecture V says that the bi(w', w) should
be independent of k for all w,w' € W, with w.0 and w'«0 dominant. (This
condition is independent of k if p > h.) Steinberg’s tensor product theorem
shows easily that this conjecture will not work if w's0 is “large” with respect
to p%. So one should modify the conjecture and impose an upper bound on
w'. In [Lul] Lusztig has made a conjecture on the bx(w',w) (or rather for
the inverse matrix) that would imply Verma’s (modified) Conjecture V. Set
W equal to the set of all w € W, with w.0 dominant whenever p > h. Our
results imply:

Theorem 4: For all w,w' € W] there is an integer b(w',w) such that
b(w', w) = bi(w',w) for all k with char(k) > 0.

In characteristic 0 consider an odd integer p and the algebra U, as above.
We have simple modules and Weyl modules for U, indexed by the dominant
weights, and we have analogous multiplicities by (p, A). There is again a linkage
principle involving the action of W, where again the translation by a weight
v € ZR acts as translation by pv. We get now:

Theorem 5: If p > h, then b(w', w) = by(w'+0,ws0) for all w,w' € W .

These two results imply that one gets for char(k) = p > 0 each irre-

ducible Gx—module with “restricted” highest weight by reduction modulo p
from a simple U,-module as conjectured by Lusztig. It also implies that his
conjecture in [Lul] follows for char(k) > 0 from its quantum analogue in
Lud], 8.2.
[ ]Kazhdan and Lusztig have recently shown that there is an equivalence of
categories between certain Up,~modules and certain representations of affine
Kac-Moody Lie algebras. This result was announced in [KL1], proved in the
simply laced case in [KL2] — [KL5], and in general in [Lull]. (Recall that
our p is always prime to the entries in the Cartan matrix.) This equivalence
implies that Lusztig’s conjecture in the quantum case is equivalent to a simi-
lar conjecture in the Kac-Moody case. In the latter case Kashiwara and
Tanisaki have recently announced ([KT]) a proof of the conjecture; an earlier
manuscript by Casian ([Cas]) has not convinced all of its readers.

In order to get our results we work mainly not in the categories of re-
stricted gi—modules or of Gx—modules (or their analogues in characteristic
0), but in the category of g;-Tx-modules and a characteristic 0 analogue. A
gx-Tx—module is a restricted g—module M that is also a Ty—module such that
(obvious) compatibility conditions hold. Giving a representation of Ty on M
is the same as giving a grading M = P, x M, of M by X. The compatibility
conditions say that every root vector E, in g; maps each M, to M,;, and
that every H € b acts on each M, as multiplication by v(H). (We write
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v(H) by abuse of notation. We really mean the differential of v : Ty — k on
the Lie algebra b of Ty.) Note that g;-Tx—modules were called u;-T-modules
in [Ja3] and that they are usually called (G} ), Tx—modules nowadays.

One can define bg-Tx—modules similarly. One associates to each A € X
a one dimensional bi-Tx-module, then an induced g;-Tp—module Zi(\). It
has a simple head Li(A). Denote the multiplicity of Li(\) as a composition
factor of Z(u) by di(p, A). If char(k) > h, then all these multiplicities are
known as soon as we know all d} (w',w) = d} (w'+0, w.0) with w, w' € W,.

Theorem 6: For all w,w' € W, there is an integer d'(w',w) such that
d'(w',w) = di.(w',w) for all k with char(k) > 0.

The d'(w', w) have again an interpretation in characteristic 0. One defines
a suitable category of u,~modules with an X-grading satisfying similar com-
patibility conditions. Then the d'(w', w) are the corresponding multiplicities
in this category whenever p > h.

* *x *

We want to give an idea of how these results are reached. For the sake
of simplicity let us concentrate on the prime characteristic case and just say
that there are analogous results or constructions in the quantum case. Let us
also assume that char(k) = p > h.

In the category of gi-Tr—modules each simple module Li()) has a pro-
jective cover Qx(A). It has a filtration with factors of the form Zi(u) and
each Zp(p) occurs exactly dj(p, A) times. One can therefore translate Theo-
rem 6 into a statement about the characters of the Qx(w.0). In one case this
character is well understood: Take the unique element w, € W that maps
all positive roots into negative roots. One knows that Qx = Qr(wo.0) has a
filtration with factors Zx(w.0), w € W each w occurring once. We have now
for our category the so—called wall crossing functors. If we apply a sequence I
of these wall crossing functors to i, we get a projective module Qg ;. If one
knows for all I and w € W, the multiplicity of Qx(w.0) as a direct summand
of Qx, 1, then one knows all dj(w',w'"). In fact, one can find a finite family J
of these sequences such that the decomposition of the Qx r with I € J alone
determines all multiplicities.

Theorem 7: There is an algebra € over Z (finitely generated as a Z-module)
such that EQzk is isomorphic to the endomorphism ring of the g;-Ty-module
@D1cy Qx,1 for all k. Moreover, we have a decomposition & = D jeyEr,g

such that the isomorphism takes each €1 ;7 @z k to Homg, 1, (Qk,1,Qk,7)-

This theorem (together with some alcove geometry and elementary facts
on idempotents) yields Theorem 6. From that Theorems 3 and 4 follow by
known results. Considered as a UlPl(g;)-module rey @k,1 is a projective
generator for the block Bg. A small modification of the construction of £ from
Theorem 7 yields an algebra B over Z such that B®z k is (for char(k) > 0)
isomorphic to the algebra of all endomorphisms of (P ;5 Qk,r as a gy—module.
Then B satisfies the claim of Theorem 1.
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These indications should convince you that Theorem 7 and its quantum
analogue are really the crucial results. So we should now answer the question:
How does one get a characteristic free approach to these endomorphism alge-
bras? Well, one essential step is not to work just with these g;-Tx—modules,
but also to lift them to suitable local rings. This approach was inspired by
the success of a similar method in [So2] and [So3].

For each commutative algebra A over the symmetric algebra S(h;) we
define a category C4 generalizing the g;-Tx-modules. An object in Cy4 is
an A-module M with a structure as a g—module and with a grading M =
@®.,cx M, by X. Furthermore every root vector Eq € g maps each M, to
M, and E? annihilates M. Finally, every H € b; acts on each M, as
multiplication by H + v(H), or rather by its image under the structural map
S(h) — A. If we take A = k with the augmentation map S(h;) — k where
H — 0 for all H € b, then Ci is just the category of all g;-Tr—modules.
(In our “real” definition in 2.3 we add a finiteness condition and assume
additionally that A is Noetherian.)

The first seven sections of this paper contain the basic theory of the
category C4 and its quantum analogue. We discuss topics such as induction,
projective modules, Ext groups, base change, filtrations, the linkage principle,
blocks, translation functors. All of this is quite parallel to the corresponding
theories for algebraic groups (cf. [Ja6]) and quantum groups (cf. [APW1]). It
should be noted that many of the special aspects of this type of theory over
a ring were first dealt with in [GJ]. In the case where A is a field, we reprove
some results from [VK], [FP1], [DCK1] and [DCK2].

The algebra S(h;) is a polynomial ring over k with generators H,, o
a simple root. Take for A especially the local ring at the maximal ideal
generated by all H,. (We should denote this algebra by A, but write A to
avoid double indices.) It turns out that we can lift the Qk 1 to projective
objects Q4,5 in C4 and that the homomorphisms behave well under base
change:

Home, (Qa,1,Q4,7) ®4 k ~ Home, (Qk,1, Qk,7)-

There is a Lie algebra gz over Z with g, ®z k ~ g, for all k. We can
find a Cartan subalgebra by of gz with hz ®z k ~ b for all k. Set S = S(hz)
equal to the symmetric algebra of h over Z. Then S ®z k ~ S(h;) for all £,
and we can regard A as an S-algebra. Now Theorem 7 is an easy consequence
of:

Theorem 7': There is an algebra € over S that is finitely generated as

an S-module such that € Qg A is wsomorphic to the endomorphism ring of
DrcyQar for all k. (Here A = Ay.) Moreover, we have o decomposi-

tion & = @”63 Z’I,J such that the isomorphism takes each EI’J Rs A to
Home, (Qa,1,Q4,7)-

Well, this just replaces the previous question by a modified one: How
does one get a characteristic free approach to the homomorphisms of the
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Q4,17 Consider inside the fraction field of A the subring
A’ = A[H' | o a positive root ]

and set Q% = Qa1 ®4 A® for all I. Now it is easy to get a characteristic
free approach to the Hom¢ 40 (@ I,QO) Each Q* 7 splits into a direct sum of

certain Z®(w.0) with w € W (These are the analogues of the Z(w.0) over
A%)) The multiplicity of Z%(w.0) in Q? is independent of k. The module of
homomorphisms from Z%(w.0) to Z%(w'.0) is equal to 0 for w # w' and equal
to A? for w = w'. So the module of homomorphisms from Q? to Q?} can be
described independently of k as a direct sum of matrix spaces over A°%.

Of course, the homomorphisms from Q4,1 to @ 4, are exactly the homo-

morphisms from QI to Qm that map Qa1 C QI to Q4,7 C QJ In order to
find them we consider mtermedlate rings. For each positive root 3 set

AP = A[H' | a a positive root, a # 8] C A®

and Qf = Qa1 ®4 AP for all I. We have then A = AP and Q4 =
I ) ,3>0 )
Np>o @7 and

Home, (Qa,1,Qa,s) = (] Home ,, (QF,Q%). (*)

B8>0

The terms on the right hand side of (x) can be described independently of k:
Denote the analogue of Zx(\) over A® by Z#(\). Any Z#(w.0) has a projective
cover QP (w.0) in C4p; it is an extension of Z#(w.0) by another module of the
form Z#(w,.0). Each Q? is a direct sum of certain @#(w.0); the multiplicity
of each @#(w.0) in each Q[IJ is independent of k. Furthermore, we can describe
the module of homomorphisms between Q?(w.0) and Q?(w'.0) for all w, w'
independently of k.

So we have described each term on the right hand side in (x) indepen-
dently of k. We take their intersection inside the corresponding Hom space
over AP that we can describe independently of k. So, what we need is to
have the terms over each A? embedded into the terms over A? independently
of k. This is done easily for each (3 separately, but it has to be done for all
B simultaneously. And that turns out to be an unpleasant problem, but in
Sections 8-15 we show that it can be done.

We do not want to discuss the details at this point. Let us just say that
we discuss (in Section 8) the Ext groups over A? of the Z#(w'.0) involved
in a QP(w.0). We describe in Section 9 how an arbitrary choice of bases
for these Ext groups leads to a fully faithful embedding of a subcategory of
C4 into a combinatorial category. This subcategory contains all projective



REPRESENTATIONS OF ALGEBRAIC GROUPS AND QUANTUM GROUPS

modules. We show then in Section 10 how translation functors behave under
this embedding. It turns out that we need to know precisely how the bases
for the Ext groups behave under the translation functors. We investigate this
in the sections 11 and 12, and we choose in Section 13 specific bases that
behave nicely under the translation maps. We describe in Section 14 similar
combinatorial categories over the integers and see in Section 15 that they can
be given a graded structure so that the combinatorial translation functors are
well behaved. We prove then in Section 16 our main results. In the sections 17
and 18 we show: If Lusztig’s conjecture (on characters of irreducible modules)
holds for %, then the block By is (for a suitable grading) a Koszul algebra and
the coefficients of the Kazhdan—Lusztig polynomials have an interpretation
in terms of our graded structure. In Section 19 we apply our theory to a
few explicit examples. Four appendices contain several computations that are
logically independent of our main theory. Two additional appendices discuss
general properties of gradings and Koszulity.

Dear Reader: On a first reading we suggest that you — having acquainted
yourself with the basic theory of the sections 1-7 — go on to understand the
propositions 8.6, 9.4, and 10.11. If you are then willing to believe in Theorem
13.4 (which has a rather long computational proof), you can proceed directly
to the main sections 14-16.
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Basic Notations

We work in this paper with a fixed (finite) root system R (in some real
vector space). Before we start let us fix some notations involving the root
system data only. These notations will be used without further explanation.
We set:

R* a fixed system of positive roots in R,
by the simple roots in R with respect to RT,
Wa the fundamental weight corresponding to o € ¥,
X =Y sex Lwa, the weight lattice of R,
p = Zaeg Wo = %25€R+ B,
BY the coroot corresponding to a root 3 € R,
s3 the reflection with respect to 8 € R,
given by sg(A\) = A — (X, 8Y)p for all A € X,
W the Weyl group of R,
l(w) the length of w € W with respect to the generators (sg)sex,
wy the element in W with wo(R%) = —RT,
$8,m for 3 € R and m € Z the affine reflection with
sgm(A) =A—((N\,BY) —m)B forall A € X,
W, the affine Weyl group of R (generated by all sg ),
WeA = w(A + p) — p (the dot action),

A<p = p—AEY s Na,

(do)acy integers in {1,2,3} such that the matrix (do(3,a"))a,gex is
symmetric and such that each indecomposable component of
R contains an « € ¥ with dy = 1,

and, if R is indecomposable,

% the largest short root in R,
h the Coxeter number of R.

All our rings will have an identity. If A is a ring and if n > 0 is an integer

11
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such that n! is invertible in A, then we set

(a) _ala=1)(a=2)--(a=n+1)

n n!

for all a € A.
A list of frequently used notations introduced in the text can be found
at the end of the paper.

12



1. The General Setup

1.1. As pointed out above, we consider a root system R and shall use the
basic notations introduced there. Let k be a Noetherian commutative ring. If
M is an X-graded k-module, denote its homogeneous component of degree
v by M, (for all v € X). We shall consider X-graded algebras U with
graded subalgebras U°, UT, and U~ satisfying certain conditions. First of
all, multiplication should induce an isomorphism of k—modules

U"eU'eUt S U (1)

(A notation like M ® N, where ® appears without an index, will always
denote a tensor product of k—modules. For tensor products of elements we
use ® without an index quite generally.)

We require further that

U° c Uy (2)
and
(Ut)o=(U")o=k-1, (3)
that for all v € X
(U+),, #0 = v>0 (4)
and
U7),#0 =  v<O0. (5)

There are more conditions that we shall introduce as we go along. Before we
do that, we shall describe the two examples that we have in mind.

1.2. Case 1: Let k be an algebraically closed field of prime characteristic
p, let G be a connected, simply connected semisimple algebraic group over
k. Choose a maximal torus T in G. Suppose that the root system of G with
respect to T has the same type as R. Then X can be identified with the group
of characters X(T') on T such that R is mapped to the root system of G.
Denote the Lie algebra of G resp. of T by g resp. by . We have a
triangular decomposition g = n~ @ h @ n, where n™ resp. n~ is the direct
sum of the root spaces for positive resp. for negative roots. For each € R

13
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let E, be a root vector for . We shall suppose that we get these root vectors
by base change from a Chevalley system in a suitable semisimple Lie algebra
over C. Set H, = [Eqy, E_4] € b for all a € R.

The Lie algebra g is a restricted Lie algebra. Denote its p-th power map
by X — X[, One has E[f] =0 and H([,p] = H, for all o € R. Let U(g) be
the enveloping algebra of g. For any X € g the element X? — X[l € U(g) is
central in U(g). The map X — X? — X[?l from g to U(g) is semilinear.

Let I be the (twosided) ideal in U(g) generated by all X? — X[?! with
X € n~ Unt. By the semilinearity just mentioned, it is also generated by all
E? with o € R. Set U = U(g) = U(g)/I. For any Lie subalgebra g’ of g let
U(g') be the image of U(g') in U(g). We shall look especially at U® = U(h)
and Ut =U(n*) and U~ = U(n").

By the PBW-theorem we get a basis for U(g) by taking monomials in the
E, and in a basis of h (for any fixed order of the product). Because the E? are
central in U(g), such a monomial is in I if and only if the exponent of one E,
is greater or equal to p. So we get a PBW-type basis for U(g) by taking all
those monomials where the exponents of the E, are less than p. We get similar
bases for U?, U*, and U~ by taking the monomials involving only terms from
b, resp. nt, n~. A look at these bases shows that U° is isomorphic to the
enveloping algebra U(h) — which coincides with the symmetric algebra S(h)
— and that U™ resp. U~ is isomorphic to the restricted enveloping algebra
of nt resp. of n™.

It is clear from the bases that 1.1(1) is satisfied in this case. The adjoint
action of T on U(g) stabilizes I and induces an action on U = U(g). If we set
U, equal to the v—weight space for this action (for all v € X = X(T)), we get
an X-grading on U, for which U®, U*, and U~ are graded subalgebras and
for which the conditions 1.1(2)—(5) are obviously satisfied.

1.3. Case 2: Corresponding to the root system R there is a quantized
enveloping algebra U; over Q(v) where v is an indeterminate over Q. It
is defined by generators E,, F,, K4, and K;! for all « € ¥ with certain
relations. For example, each K ! is indeed the inverse of K,. We shall not
write down these relations that can be found in [Lu7], p. 90.

Let p > 1 be a positive integer prime to the nonzero entries of the Cartan
matrix of R, hence odd. Choose a primitive p-th root of unity ¢ and set
k = Q(¢). Define a k-algebra U, with generators E,, F,, K,, and K ! for
all o € ¥ with the same relations used for U; but with v replaced by (. This
algebra is a version over k of the C-algebra U, studied by DeConcini and
Kac, cf. [DCK1], 1.5. The results that we are going to quote from [DCK1]
can be proved over k with the same proofs as in [DCK1] over C.

Denote the subalgebra of U, generated by all E, (resp. by all Fy,, resp. by
all K, and K;') by Uy (resp. by Uy, resp. by UY). Then U} is the algebra
of Laurent polynomials in the commuting variables K'y. All monomials in the
K, with arbitrary integer exponents (positive and negative) are a basis of UY.
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There is a unique X—-grading of U such that each E, has degree «, each
F, degree —a, and each K, degree 0. (The relations defining U, are obviously
homogeneous for this grading.) It is then clear that 1.1(2)—(5) are satisfied
by U,. Also 1.1(1) can be shown to hold, cf. [DCK1], Prop. 1.7. (However,
the finiteness condition to be introduced in 2.1 will not be satisfied.)

One can define for each 8 € Rt a root vector Eg € (U;')s and a root
vector Fg € (Uy )—p. This involves certain automorphisms T,,. They were
constructed on U; by Lusztig in [Lu7], 3.1; his construction carries over to
U,. For any 3 € R one chooses a simple root & € ¥ and w € W with
B = w(a); one then sets Eg = T, (Ey) and Fg = T(Fy). Here E, and
F, are (some of) the generators of U, introduced above. For 3 € ¥ this
definition is compatible with our previous convention, cf. [Lu6], Prop. 1.8(d)
that generalizes to the non-simply laced case. Note that these root vectors
are indeed in (U)™ resp. in (Uz)~ by [Lu7], 4.2. We shall usually write E_g
instead of Fjg.

In some cases we have to assume that the root vectors have been chosen
using a reduced decomposition of wq as in [Lu7], Appendix. This applies
whenever we work with PBW-type bases. There are such bases for Uy and
U, consisting of all monomials in the Eg with 3 > 0 resp. with 3 < 0 with
nonnegative exponents. Here (and in (1) below) the product has to be carried
out in a specific order described in [Lu7], Appendix. Now 1.1(1) says (and
this is really Prop. 1.7 in [DCK1]) that we get a basis of U, consisting of all

products
n(B “r(a m
0 22 T o 1T 55 W
BERt a€cl BERT

with n(3) and m(/3) nonnegative and r(«) arbitrary integers.

All Ef with 3 € R and all K% with o € ¥ are central in Uy, cf. [DCK1],
Cor. 3.1. Suppose that we have chosen the E3 using a fixed decomposition of
wy. Let It resp. I be the ideal in U, resp. in U, generated by all Eg resp.
by all E? ; with 8 € R*, and let I be the ideal in U, generated by I and
I=. It is then clear that I™ resp. I~ has a basis consisting of all monomials

in the Eg resp. the E_g with 3 € R where at least one exponent is greater
or equal to p, and that I has as basis all products as in (1) with at least one

m(B) or n(3) greater or equal to p. Obviously It = INU} and I~ = INU; .

Set U = Uy /I and let U°, U, and U~ be the images of UY, U, , and U,
in U. We denote the images of the generators K, and of the root vectors Eg
again by K, and Eg. We get a basis for U consisting of products as in (1)

with 0 < m(8),n(3) < p for all 3 € Rt and r(a) € Z arbitrary. Taking the
products involving only K resp. only Eg resp. only E_z one gets bases for
U° resp. for U™ resp. for U~. One has obviously isomorphisms U ~ U° and
Ujf/I* ~U* and U; /I~ ~ U~. The conditions 1.1(1)~(5) are satisfied.
There is a different version Us of a quantized enveloping algebra over k
due to Lusztig, cf. [Lu7], 8.1. It is constructed from U; via a certain form over
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Z[v,v™!'] involving divided powers. There are elements E,, F,, K, and K*
in Us (for all a € ¥) that satisfy the defining relations of the generators of U.
So there is a homomorphism f : U; — Us mapping the generators of U, to
the analogous elements in Us. The image is the finite dimensional subalgebra
u of Us introduced in [Lu7], 8.2. The kernel contains all E%, hence I, and we
get thus a surjective homomorphism f: U — u.

The algebra u has a triangular decomposition u = u~u’u*t. The three
factors have PBW-type bases and are the images under f of U™, U°, and
Ut. A look at the bases shows that f induces isomorphisms U* ~ ut and
U~ ~ u~, whereas u’ is identified with U° divided by the ideal generated by
all K27 —1. We see especially that It is the kernel of the natural map Uy —
Us, hence that it is independent of the choice of the reduced decomposition of
wo. A similar remark applies to I~. Therefore I is independent of this choice.

1.4. Suppose for the rest of section 1 that we are in one of the cases from
1.2 or 1.3.

Lemma: There is a group homomorphism X — Auty_q1,(U®) denoted by
U 1 such that

su = uji(s) (1)
forallpe X, ueU,, and s € U°.

Proof: In Case 1 one takes for i the unique automorphism of U® ~ S(§) with
H(H) = H + p(H) for all H € . (One should really take the differential of u
when evaluating it at H.)

In Case 2 one sets

NI ,) = (P K,

for all @ € . Then (1) is obvious for the generators by the defining relations,
hence in general.

Remark: We could also consider a Case 2' where we take as our algebra
u=u"Uju", cf. [APW2], 0.2. In that case one would define

X([K";C]) _ [Ix"a;c+()\,av)]

m m

for certain additional generators of Uy, cf. [Lu7], 6.6 or 5.1 below.
1.5. Lemma: There s for each w € W an automorphism Ty, : U — U with
T,(U% =U° and  T,(U,) =Uy, forallv e X, (1)

such that

T,oXoT;' =w(\) forallX€X. (2)

e
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Proof: In Case 1 we consider a representative of w in the normalizer of T
in G and its adjoint action on g and U(g). It maps each E, to a nonzero
multiple of E,,. Therefore it stabilizes the ideal I as in 1.2 and induces an
automorphism of U = U(g). It has obviously the required properties.

We have already mentioned that in Case 2 Lusztig’s construction of the
T, from [Lu7], 3.1 generalizes from Uy to U,. It is easy to see that they have
the properties (1)—(2) for U, instead of U. We want to prove that each T,
stabilizes the ideal I as in 1.3. Then it will induce an automorphism of U
having the desired properties. Of course, it is enough to show To(I*) C I
and To(I7) C I for all o € ¥ where T, =T, .

The argument at the end of the proof of Prop. 3.3 in [DCK1] shows that
there are choices of root vectors (Eg)ser and (Ej)ger with To(Eg) = E;a(ﬂ)

for all 3 € R — {a}. Because I" is independent of the choice of the root
vectors, we see that T, Q(Ef;) € It c I for all these 8. On the other hand,
we have To(E?) = —K2F?2 € I by formula (3.3.3) in [DCK1]. So indeed
To(IT) C I. The case of I~ is symmetric.

1.6. Lemma: There is an involutory antiautomorphism 7 of U with T(Ey)
= F, and 7(F,) = Eq4 for all a € ¥ and with 7(s) = s for all s € U°.

Proof: In Case 1 the properties of a Chevalley system imply that there exists
an antiautomorphism of g mapping Eg to E_g for all 3 € R and H to H
for each H € §. It induces an antiautomorphism of U(g) that maps each Eg
to E? 8 hence stabilizes I, and yields an antiautomorphism of U with the
desired properties.

In Case 2, a look at the defining relations shows that there are involutory
antiautomorphisms of U; and U, interchanging E, and F, for all « € ¥ and
fixing each K,. Going through Lusztig’s construction one checks that there
is a similar antiautomorphism on U;. Call all these involutions 7.

We want to show that the 7 on U, stabilizes the ideal I. Then we can
define it on U = U, /I as desired. The map f : U, — Us commutes obviously
with 7. This implies 7(ker f) = ker f. Because of 7(U,’) = U, we get also
T(ker f NUS) = ker f N U; . These intersections are just IT and I~, so we
get 7(I1t) = I~ hence 7(I) = I as claimed.

1.7. We shall also need a comultiplication on U. It can be constructed easily
in Case 1. In Case 2, however, it will require a nontrivial argument that we
shall give in 7.1.
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2. Module Categories

Keep all notations and assumptions from 1.1 through the whole paper.
Later on (from Section 4 on) we shall assume that we are in Case 1 or 2 from
1.2/3. However, in the next two sections we need only weaker conditions that
we shall describe in 2.1.

2.1. We want to make the following additional assumptions on U and its
subalgebras. We require:

(A) The set of v € X with (U1), #0 or (U7), # 0 is finite.

and:

(B) Each (U"), and each (U™), 1s a free k-module of finite rank.

These conditions are obvious in the cases from 1.2/3. They imply in general:
(C) U* and U™ are free k-modules of finite rank.

We require also the analogue of Lemma 1.4:

(D) There is a group homomorphism X — Autg_,(U°) denoted by p— fi
such that

su = ufi(s) (1)
forallpe X, ueU,, and s € U°.

Because 0 is the identity map, this condition implies obviously:

(E) The algebra U° is commutative.

2.2. The following lemma contains some easy consequences of our assump-

tions.

Lemma: The submodules U'Ut and U~U° are graded subalgebras of U. Any
basis of UT resp. of U™ as a k-module is a basis of U'U™ resp. of U=U° as
a U%-module under left and right multiplication, and it is a basis of U as
a module over U~U° under left multiplication resp. over U'UT under right
multiplication.
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Proof: Because Ut and U~ are graded, Condition 2.1(D) implies U°U™* =
UtU® and U°U~ = U~U°. Therefore these submodules are (obviously
graded) subalgebras. We get from 1.1(1) that also the multiplication maps
U@UT - UUT and U~ @ U’ — U~U" are bijective. Condition 2.1(D)
yields that the same is true for the multiplication maps on Ut ® U° and on
U%®@U~. These bijectivity statements imply immediately the results on bases
as U%-modules. The claims on U follow from the bijectivity in 1.1(1).

Remark: We get also that the multiplication maps from U~ @ Ut @ U° and
from U’ @ U~ @ Ut to U are bijective. Therefore U is free as a U’~—module
under left and right multiplication. One gets a basis of U over U°, if one
chooses bases, say (u;); resp. (u});, of U™ resp. of U", and takes then all

products u,u’] Each U, is a free U%-submodule of U.

2.3. Let A be a Noetherian commutative algebra over U®. Denote the
structural homomorphism by 7 : U° — A.

We want to define three categories: Ca, C'4, and C'y. An object of C4
is a U ® A-module M with an X-grading as a k—module satisfying certain
properties. So M is a k-module with a direct sum decomposition

M= P M,. (1)

pEX

Furthermore there are commuting actions of U and A on M that are
compatible with the k—structure. We shall write the action of U on the left
and the action of A on the right, i.e., uma should mean the same as (u @ a)m
for all u € U and a € A. We impose a finiteness condition:

(A) M 1is finitely generated over A.
Next we require that the action of A preserves the grading (1):

(B) M,ACM, for all p € X(T).

In other words, any M, is an A-submodule of M. It is now clear that (A) is
equivalent to:

(A") The set of p with M, # 0 is finite, and each M, us finitely generated
over A.

We also require that each homogeneous part U, of U shifts the grading
by v:

(C) UM, C Myt, for all p,v € X(T).

The algebra U° acts in two ways on M. One action arises from the
embedding of U into U, the other one from the homomorphism = : U° — A.
Both actions preserve the grading. We require finally that they are related by

(D) sm=mn(f(s)) forall p€ X(T),m e M,,s e U°.
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A morphism between two objects in C4 is a homomorphism of U @ A-
modules that preserves the gradings. There are obvious notions of submodules
and quotient modules, we have kernels, images, and cokernels for homomor-
phisms. (In order to get kernels we assumed A to be Noetherian.)

By abuse of notation, we shall usually call an object M of C4 simply a
module in C4 and the M) its weight spaces. If each M, is free over A, the
formal character ch(M) of M has the obvious definition.

Replacing U in the definition of C4 by U°U™ resp. by U° we get categories
that we shall denote by C'y resp. C.

2.4. Suppose that we are in Case 1. The left action of an H, with o € R on
an M) (with M in C4 and X € X) is equal to the multiplication on the right
by M H,) + m(H,). So H? (the ordinary p-th power in U(g) and U°) acts
on the left as right multiplication by A(Hy)? + n(Hy)P = AN Hy) + 7(Hy)P.
(Note that A(Hy) is the reduction modulo p of the integer (A, "), hence in

F,.) We have H' = H, in g, so the central element H? — HYP of U(g) (and
of U%) acts on M on the left as right multiplication by w(Hg)? — n(Hy).

Suppose that A is a field. There is a linear form f on g with values in
some purely inseparable extension of A such that f(E,) =0 for all & € R and
f(Hg)? = w(Hs)? — n(Hp) for all 3 € S. Then each X? — X[?l € U(g) with
X € gactson M in C4 on the left as right multiplication by f(X)P. A module
in C4 is therefore the same thing as a finite dimensional U(g ® A)-module
together with an X -grading such that each X? — X[?! acts as multiplication
by f(X')? and such that the compatibility conditions (C) and (D) in 2.3 hold.

As an example. consider A = k where we regard k as a U%-algebra via
the augmentation map (sending each H € h to 0). Then the linear map f
as above is just 0. The condition that each X? — X[?] act as 0 on M in Cy
means that M is a restricted g-module (or a G;-module). Furthermore an
X-grading of a k-module is the same as a structure as a T-module. (The
homogeneous parts of the grading correspond to the weight spaces.) So a
module in Ci is a Gi—-module that is also a T-module such that a certain
compatibility condition holds. This condition amounts just to the condition
that M is a GyT-module. So we can identify C; with the category of all finite
dimensional G;T—modules.

Similarly, one identifies Cj resp. Cy with the categories of all finite di-
mensional B}t T-modules resp. T-modules. (Here Bt is the Borel subgroup
containing T corresponding to the positive roots.)

Consider Case 2 with A = k and 7 : U® — k given by n(K,) = 1 for all
o € X. Then each K, acts on any M, on the left as right multiplication by
¢ da(Ma”) g9 K? —1 annihilates M. So M can be regarded as a module of type
1 (in the sense of [Lu4], 4.6) for the homomorphic image u of U. We can extend

it to a d-module by letting Uj act on each M, via the character denoted by
\x in [APW2], 0.3. Thus M is made into an object of the category Cy (over
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k) introduced in [APW2], 0.4. One can check that this is an equivalence of
categories.

In this case Cj and C} correspond to similar categories involving Uu*
and Uy instead of u.

2.5. Lemma: The forgetful functor induces (for an arbitrary A) an equiv-

alence of categories between C'y and the category of all X -graded A-modules
that are finitely generated over A.

Proof: On one side, condition 2.3(D) says that the action of U° on an M in

C", is determined by the grading and the A-module structure: Any s € U°
has to act on any M, as the element 7(i(s)) € A. On the other hand, we can
use exactly this formula to define for each X-graded A-module M an action
of U? first on each M, and then on M. We get obviously an object in C'}.

Remark: This discussion shows especially that the category C'j contains
enough projectives: An M in C is projective, if and only if all M, are pro-
jective as A—modules, that is, if and only if M is projective as an A-module.

2.6.  We have obvious forgetful functors from C4 and C; to '}, and from
Ca to C'4. We shall construct (left) adjoint induction functors using tensor
products. Consider first an object M in Cj. We want to make

"\ (M) =UUt @pyo M (1)

into an object in C'y. We let any u € U°U™ act via left multiplication on the
first factor, and any a € A via the given action of a on the second factor. (This
makes sense because both maps are U%-linear, where we regard U°U™ as a
U%-module via right multiplication.) These actions of U°U* and A commute
obviously. The grading is defined via

(U°U+ Qo M)” = P UT*), ©uo My, (2)
veX

This makes sense because all (U°U™), and all M,/ are U’-submodules. It
is now easy to check that the conditions in 2.3 are satisfied, or rather their
analoga for C';. In the case of 2.3(D) observe that one has for s € U° and

m € M, and u € (U°U™),:
s(u@m)=(su)@m = (uv(s)) @m =u® (V(s)m)
= u® mfi(i(s)) = (u @ m)(fi o 7(s)) = (u @ m)(u + v)(s).
Considered as an A-module ®',(M) is a finite direct sum of copies of M,

because UUT is free of finite rank over U°. This yields the required finiteness
condition. It is obvious how to define ¢/, on morphisms.
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Remark: We can carry over the construction and the arguments above more
or less verbatim (replacing U°U* by U) to get a functor @4 : C)y — C4 with

D4(M)=UQuo M. (3)

2.7. Lemma: a) The functor ®4 resp. @', is exact and is left adjoint to
the forgetful functor C4 — C'y resp. C'y — C'y.

b) The functors @4 and @', map projective objects to projective objects.

c¢) The categories C4 and C'y have enough projective objects. Any projective
object in these categories is projective as an A-module.

Proof: a) The exactness follows from the freeness of U resp. of U°U™ over
U°, cf. 2.2. The proof of the adjomtness is similar in both cases. We give the
details only for ®,. Let M be in C';. The map

0o: M — ®,(M), m—1Q®m
A

is a morphism in C’;. It induces for any N in C; an isomorphism (via f +—
fofo):
Home: (94(M), N) ~ Homey (M, N). (1)

The inverse map associates to any g : M — N the map § with g(u @ m) =
ug(m) for all u,m. The only difference from the standard situation is that
we have to take the grading into account.

b) This claim is obvious because each functor is left adjoint to an exact
functor.

c) For any N in C4 choose a projective P in 'y with an epimorphism
P — N, cf. 2.5. We get by adjunction a map ®4(P) — N that is again
surjective. This shows that C4 has enough projectives. If IV is projective in
C4, this surjection has to split. This shows that the projective obJects in Cy4
are exactly the direct summands of the ® 4(P) with P projective in C'y. These
P are projective as A-modules. Furthermore ® 4(P) is a direct sum of copies
of P when regarded as an A-module. So any direct summand of ® 4(P) is

projective over A. The argument for C'; is analogous.

Remark: It will be convenient at one point to work with an enlarged version
of C4 and to replace 2.3(A) by the weaker condition:

(F) The set of p € X with M, # 0 is finite.

Let us denote this enlarged category by GC4. If M is a module in GCy,
then there is for all x € M a submodule M' of M with x € M' and M' in
Ca. Indeed, if 2 = 37 z, with z, € M), then M' = }° Uz, works. This
property implies easﬂy If Q is a projective object in C4, then Q is projective
also in GCy4.

Similar remarks apply to C'; and C'}.
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2.8. We usually call projective objects in C4 projective modules in C4.
Having enough projective objects in our categories we can use projective res-
olutions to compute Ext—groups.

Lemma: Each ExtéA(M, N) with M and N in C4 and i > 0 1s a finitely
generated A-module.

Proof: Since A is Noetherian and since each Ext group is a subquotient of a
suitable Hom group, it is enough to consider that case. The Hom group in C4

is a submodule of the Hom group between A-modules, hence is Noetherian
since both modules and A are Noetherian.

Remarks: 1) Similar results hold in €'y and C'j.

2) The functors ®4 and &', send projective resolutions to projective
resolutions. We get therefore formulas similar to the Shapiro lemma. For
example, one has for all M in €} and all N in C4 isomorphisms

Extg, (24(M), N) ~ Extgy (M, N) (1)

for all ¢. There is a similar formula involving ®',.

2.9. Proposition: Let M be a module in C'y that is projective as an A-
module. Then there ezists a projective resolution P, of M in C'y such that
there is for each N in C'y an integer r = r(N) > 0 with

Home (P;,N) =0 for alli>r. (1)

Proof: Fix a group homomorphism h : X — Z with h(a) > 0 for all positive
roots . For any X-graded module L set min(L) resp. max(L) equal to the
minimum resp. maximum of all h(u) with L, # 0.

Consider the natural map

fi: @4(M)=UUt@pe M - M
with fi(u @ m) = um. Denote the kernel of f; by M;. The embedding f,

as in 2.7 splits f;. This shows especially that M, is a projective A-module.
Regarded as a k-module ®',(M) is the direct sum of all (U*), @ M,. We

have (Ut)y = k and h(v) > 0 for all other v with (U*), # 0, by 1.1. This
implies easily
min(M;) > min(®’,(M)) = min(M). (2)
We can construct a projective resolution
"—)PQ—QP1—>P0—>]\/I
of M in (', as follows: Take Py = ®',(M) with the map f, onto M. This

works because M is projective in C'j and because ®', preserves prOJectlves
Because M, is again projective over A, we can now take P; = ®',(M;) with
the natural map onto M; C Fy. Now iterate Formula (2) yields

min(M) = min(Fp) < min(P;) < min(P) < ---. (3)

For any N in C'; there exists an index r with min(P;) > lndX(J\/) forall i > r.
Then (1) holds obviously.
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Remark: The proposition implies of course that
Extg (M,N)=0 foralli>r (4)
with N and r as in (1).
2.10. We want to introduce an induction functor Z4 : C'y — Ca with
ZA(M) =U @uoy+ M (1)

for all M in C'y. Most of the arguments in 2.6 generalize to this construction.
Ounly the definition of the grading has to be modified, because the homoge-
neous parts in U and M are not U°UT-stable. Multiplication induces an
isomorphism of k-modules

U-UUt =S U (2)
So we get an isomorphism as k-modules (in fact: as U~ @ A-modules)
Zy(M)~U~ @M. (3)
We get now an .X -grading of Z4(1/) by A-submodules via
Zi(M), = P U7) © My, (4)
veX

The compatibility of the U°U*-action on M with the grading implies that
the canonical map U @ M — U @poy+ M induces a surjection

P U oM, — Za(M),.
veX

This implies easily that the U-action on Z4(M ) is compatible with the grad-
ing.

It is now easy to check that Z4 is left adjoint to the forgetful functor
C4 — (4, that it is exact and maps projectives to projectives. Furthermore,
it is clear that we can identify Z4 o ®', with ®4. One has (as in 2.8(1)) for

all M in €'y and all N in C4 isomorphisms
Extg, (Za(M), N) = Extgr (M, N) (5)
for all s.

In the situation considered in 2.4 (Case 1 with A = k) the functors ®y,
%, and Zj are just the usual coinduction functors between the categories of

T-, Bf T-, and G;T-modules, cf. [Ja6], 1.8.20, I1.9.1.
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2.11. Because the multiplication map is an isomorphism U’ @ UT — UU*
the conditions 1.1(2)-(4) imply that (U°U™*) = U° and that

Ut =U0%g I, where It =@(UOU+)V' (1)
v>0

Obviously It is a two-sided ideal in U°U™, and we get an isomorphism

f:uUut/r- =yt (2)
induced by the projection from U°U™ onto U° corresponding to the decom-
position (1).

We can use (2) to regard any M in /4y as an object in C'y: We keep the
grading and the A-module structure and get the action of U°U™ from that of
U° via f. This action still commutes with that of A and it is still compatible
with the grading because all (U°U™), with u # 0 are contained in the kernel
of f.

We can consider for all up € X(T') an object M of Cj such that M, = A
and M, = 0 for all v # p, cf. 2.5. We denote this object by A*. Using the
remarks above we can regard A* as an object in C'; that is annihilated by
@D,50(UT),. We can then construct the induced module

Za(p) = Z4(A"). (3)
In the situation of 2.4 (Case 1 with A = k) any k* is just the one dimen-
sional Bff T-module where T acts via p. So Zi(y) is just the module Z;(u)

as in [Ja6], I1.9.1(5). In Case 2 one gets for A = k the modules M¢()) from
[DCK1], 3.2.

We can apply ®4 and &', to A* regarded as a module in C’j and shall
use an analogous notation:

Pa(p) =2a(A*)  and a(p) = @ (A"). 4)
2.12. A Z-filtration of a module M in C4 is a chain

of submodules such that each M;/M;_; is isomorphic to Z4()\;) for some
A € X.

If M has a Z-filtration, then all M, are free over A. For M as in (1)
the formal character ch M is the sum of the ch Z4();). It is obvious that the
ch Z4(A) are linearly independent (cf. also 4.7(1)). Therefore the number of
factors isomorphic to Z4(A) in a Z-filtration of M depends only on M, not
on the choice of the special Z-filtration.

Lemma: Let M be a module in C'y resp. in C'y such that each M, is free over
A. Then Zo(M) resp. ®4(M) has a Z-filtration.

Proof: In the case where M is in C'4, there is a filtration of M with factors
of the form A* with u € X. The exactness of Z4 transforms this filtration of
M into a Z-filtration of Z4(M). For M in C'j one observes that the weight
spaces of ®,(M) are free. By the part already proved we get a Z-filtration
of Z4(®',(M)) ~ ®4(M).
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2.13. Lemma: For any M in C4 there is a projective module Q in C4 such
that Q has a Z-filtration and such that M is a homomorphic image of Q.

Proof: We can proceed as in the proof of 2.7.c. We choose an epimorphism
P — M where P is projective in C';. We can assume that P is free over A.
Then @ = ® 4(P) has a Z-filtration by the last lemma and satisfies the claim

of the lemma.

Remark: In some cases we can be more precise. For example, consider M =
Z4(\) with A € X. We have an obvious surjection ®',(\) — A* in C);.
Therefore we can take Q@ = Z4(®',(A)) = ®4()). By 1.1 and 2.6 each weight
wof ®,(X) satisfies p > A, and ®'4())y is free of rank 1. So any Z-filtration
of @ involves only Z4(u) with u > A, and Z4()\) occurs exactly once (at the

top).

2.14. Lemma: a) If Exte, (Z4(X), M) # 0 for some M in C4 and X € X,
then M has a weight p with p > A.

b) Let A, pu € X. IfExte (Za(X),Za(p)) #0, then p > A

¢) If @ module M in C4 has o Z-filtration, then one can find a (possibly
different) Z-filtration of M with the following property: Whenever \; > A;
(in the notations of 2.12(1)), then i < j.

Proof: a) Consider in C4 an exact sequence
0> M— N — Z4\)—0. (1)

Let v € Ny be an inverse image of the standard generator vg = 1®1 of Z4()).
If Eqv =0 for all & € RY, then there is a homomorphism from Z4(\) to N
that maps vy to v and then splits (1). So if (1) does not split, there is a > 0
with E,v # 0. We get especially that A + « is a weight of M, hence a).

Now b) is an obvious consequence of a), and ¢) is one of b).

2.15. Lemma: Let M be a module in C4 with a Z-filtration. Then there
ezists a projective resolution P, of M in C4 such that there is for each N in
C4 an integer r = r(IN) > 0 with

Home, (P, N)=0  foralli>r. (1)

Proof Suppose first that M = Z4(u) for some p € X. Then there is a
prOJectlve resolution P! of A* in C'; with the property required in Proposition
2.9. We apply the functor Z 4 to P! and get according to 2.10 a projective
resolution of M with the desired property.

For general M we use induction on the length of a Z-filtration. If M’ is
a submodule of M, such that M' and M/M' have projective resolutions as
desired, we use the algebraic mapping cone to get a resolution of M with the
desired property.
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Remark: The lemma implies of course that
ExtéA(M,N)=O foralli >r (2)
with NV and r as in (1).
?.16. Lemma: Suppose that any finitely generated projective A-module is
Tee.
a) Any direct summand of o module with a Z-filtration has a Z-filiration.

b) Any projective module in C4 has o Z-filtration.

Proof: a) One can use the standard arguments, e.g. from [BGG1].
b) If M is projective in C4, then any epimorphism ¢ — M as in Lemma 2.13
has to split. Now apply a).

Remark: The assumption of this lemma will certainly be satisfied, if A is a
field or a local ring.

28



3. Projective Modules

As in the last sections, we shall always denote by A a (Noetherian and
commutative) U%-algebra with structural map = : U° — A. Any A-algebra
is assumed to be Noetherian and commutative.

3.1. Let A' be an A-algebra. If A’ is finitely generated as an A-module, then
there is an obvious (exact) restriction functor C4» — C4: We take the same U-
module with the same grading, and make an a € A act via its canonical image
in A'. If A’ is arbitrary, then this construction yields a functor GC 4 — GC4,
where GC4 is the enlarged category considered in the remark to 2.7. We get
a functor in the opposite direction, called eztension of scalars: Map any M
in GCs to M @4 A’ with the obvious U ® A'-action and the grading given by

(M®ad"), =M, 044" (1)

This functor maps C4 to C4/ for arbitrary A’. It is easy to check for any N in
GC s that the standard isomorphism Hom 4 (M, N) — Hom /(M ®4 A', N)

induces an isomorphism
HomgcA(M,N)ZHomgcA,(M ®a A',N). (2)

In other words, we have constructed a functor left adjoint to the restriction
functor. There are obvious similar constructions for ', and C'j. The associa-
tivity of the tensor product implies that one has for each M in C'; a canonical
isomorphism

(I)A(M)(X)AA"Z@AI(M@AA’). (3)
There are similar statements for ® and Z instead of ®. Let us mention
explicitly that
Za(p) @a A’ Zai(p) (4)
for all 4 € X. In many cases we shall use the simplified notation
MA/ =M a4 Al- (5)

Lemma: Let M be a module in Cy4.
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a) If M is projective in Ca, then M ®4 A’ is projective in C 4.
b) If M has o Z-filtration, then so has M @4 A'.

Proof: The first claim follows from the adjointness property (2) together
with the remark in 2.7. Since modules in C4 with a Z-filtration are free over
A, short exact sequences involving only modules of that type split over A.
Therefore (4) implies b).

3.2. Lemma: Let A' be a flat A-algebra. We have for all M, N in C4 and

all i > 0 a canonical isomorphism

Extp, (M,N) @4 A' = Ext} ,(Mar,Nar). (1)

Proof: First of all, we have an isomorphism
HomA(M, N) [ A= HomA:(MA:,NAI),
since M is finitely presented as an A-module. This isomorphism is compatible
with the additional structure and induces an isomorphism
HOIHCA(M,N)(X)AA';Hoch,(MA/,NA/). (2)

Because tensoring with A’ is exact, it takes projective resolutions to projective
resolutions, and we get the more general claim for all ¢ > 0.

Remark: Similar results hold in C; and C'}.

3.3. Proposition: Let M be a projective module in C4 and let N be any
module in C4. Then Home, (M, N) is a finitely generated A-module and one
has for any A-algebra A':

Home, (M,N) @4 A' ~ Home ,, (Mar, Nar). (1)
If N is projective as an A-module, then so is Home, (M, N).

Proof: We know (cf. 2.7) that there is a projective M’ in C'y such that M
is a direct summand of ® 4(M'). It is obviously enough to consider the case
M = ® 4(M'). By the adjointness property of ® 4 we get isomorphisms

Home, (M, N) ~ Home/ (M', N) @ Hom4(M,,N,). (2)
peX
All M, and N, are finitely generated, almost all of them are 0. This implies

the first claim.

If N is projective over A, then so are all N,,. Since the M, are projective
over A anyhow, this proves our last claim.

Using 3.1(3) and again adjointness one sees that the right hand side in
(1) can be identified with

Homcxl (M’ ®a A,,N @A Al)

This module can be decomposed as in (2). In this way we can reduce (1)
to the corresponding base change property for finitely generated projective
A-modules M' which is obvious.
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Remark: Similar results hold (with the same proof) in C'y and (of course, by
our proof) in C'§.

3.4. Proposition: Let M be a module in C4 with a Z-filtration, and let N
be a module in C4 that is projective over A. Suppose that

Exte,, (Majm;Najm) =0 (1)

for all mazimal ideals m of A and alli > 0. Then the A-module Home, (M, N)
i8 projective, and we have for all A-algebras A’

EXtéA,(MA’yNA') =0 for alli >0 (2)

and
HOHICA(M,N) XA A,'l’HOIIch,(MA/,NA/)_ (3)

Proof: We take a projective resolution P, of M in C4 as in Lemma 2.15 and we
set Q; = Home, (P;, N). There is an integer r with @; = 0 for all ¢ > r. For
each A-algebra A’ the complex P,® 4 A’ is a projective resolution of M4s. (The
P, ®4 A" are projective by 3.1.a. The exactness follows from the fact that the
resolution P, splits over A because M and all P; are projective A-modules.)
Furthermore, Proposition 3.3 implies that we can identify (Q;)4 = Q; ®4 A’
with Home,, (P; ®4 A', N4r). Therefore the complex

€4 : 0= Home,,(Ma,Na) = (Qo)ar = (Q1)ar = -+ = (Qr)ar — 0

is exact at the Hom term and at the @y term and has higher cohomology
equal to Exte ,(Mar, Nas). Our assumption (1) says that €4/ is exact for
all maximal ideals m of A. We claim that the complex €4 is split exact. This
will imply the proposition.

To prove this claim we first observe that by Proposition 3.3 the @); are
all finitely generated projective A-modules. Assume for the moment that A
is a local ring with maximal ideal m. The exactness of €4/ implies easily
that of €4 using the Nakayama lemma and induction on r.

For general A denote for each maximal ideal m of A the local ring at m
by Am. We can apply the proof above to each Ay since Ap/mAny, ~ A/m.
The exactness of €4 for all m implies the exactness of €4. Then the splitting
follows since all ); are projective.

Remark: Let M, N be modules in C4 that are projective over A. Let A’
be an A-algebra with a finite projective resolution as an A-module. In this
situation one can show that there is a spectral sequence with

Ey™" = Torf (Ext{, (M, N), A') = Ext ? (Mar, Na).

If A is a regular local ring with maximal ideal m, this can be applied to
A= A/m. This yields a different approach to Proposition 3.4 for regular
rings.
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3.5. Corollary: Let M be a module in C4 with a Z-filtration. Then M is
projective in Cy, if and only if My is projective in C4/m for all mazimal
1deals m of A.

Proof: If M is projective, then each M, is projective by Lemma 3.1.a.
Suppose now that each My, is projective. There is (by 2.13) an exact
sequence

0->N->-Q—-M-—0 (1)

in C4 where @ is projective and has a Z—filtration. Since M is free over A, the
sequence splits over A. Therefore N is projective over A. Since each M, /n
is projective, the assumptions of Proposition 3.4 are satisfied. We get now
from 3.4(2) especially that Extg, (M, N) = 0, hence that (1) splits and M is
projective as a direct summand of the projective module Q.

3.6. Fix v € X. Denote by C4(< v) the full subcategory of all M in C4
such that M)y # 0 implies A < v. This subcategory is closed under taking
subquotients and extensions. All Z4(\) with A < v belong to C4(< v).

Let M be amodule in C4. Suppose that (M;);cr is a family of submodules
of M such that each M/M; is in C4(< v). Then M/(); M; is in C4(< v).
Indeed, if u € X satisfies u £ v, then one has M, = (M;), for all i, hence
M, = (; Mi)u. Denote the intersection of all submodules M' of M with
M/M' in C4o(< v) by OYM, and set 'Y M = M/O”M. The argument above
implies that I'"M isin C4(< v). I Nisin C4(<v)andif f: M —- Nisa
homomorphism, then M/ ker(f) isin C4(< v), so O¥M is contained in ker(f).
This shows that the natural map M — I'’M induces for all N in C4(< v) an
isomorphism

Homc, (T* M, N) = Hom (M, N). (1)

It is now clear that I'"M is functorial in M and that the functor I'V is left
adjoint to the inclusion. (This construction is of course in some sense dual to

Donkin’s Oy, cf. [Don], 12.1.6.)
3.7. Lemma: Let M be a module in C4.
a) If M is projective in C4, then TV M is projective in C4(< v).
b) If M has o Z-filtration, then O*M and I'VM have a Z-filtration and one
has for any A-algebra A':
FV(M) ®a A'EFV(M ®a A’). (1)

Proof: The claim in a) is an immediate consequence of 3.6(1), since the
inclusion of C4(< v) into C4 is an exact functor.

Assume now that M has a Z-filtration. Lemma 2.14.a implies that we
can find a Z-filtration of M as in 2.12(1) such that there is an index j with
Ai £ v for all i < j and with A\; < v for all i > j. We claim that OYM = M;.
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By construction M/M; is in C4(< v), so we have O”M C M;. On the other
hand, one has for all N in Ca(<v)andall A € X:

If A\ £ v, then Home, (Z4(A), N) =0. (2)
Indeed, a generator of weight A in Z4(\) has to be mapped to Ny = 0. Now
(2) 1mphes Home, (M;, M/O"M) = 0, hence M; = O”M. Now the claim in
b) about Z-filtrations is clear. The formula (1) follows from this construction
and 3.1(4).

3.8. Lemma: For any M in C4(< v) there ezists a projective module Q) in
Ca(< v) such that Q has a Z-filtration and such that M is a homomorphic
mmage of Q.

Proof: We can regard M as a module in C4 and get a projective module P
in C4 with analogous properties from Lemma 2.13. Then @ = I'" P satisfies
our claim by Lemma 3.7.

Remark: The proof shows that the projective modules in C4(< v) are the
direct summands of all I'” P with P projective in C4.

3.9. We define analogous categories C'4(< v). For any M in C!y the direct
sum of all M, with p £ v is a submodule O' M of M. (Use 1.1(4) and 2.3(C)!)

Set T'""M = M/O'" M. This is a module in C';(< v) and it is clear that the
natural map from M to I'" M induces for all N in C',(< v) an isomorphism

Homg: (I'”M, N) — Home (M, N). (1)

This shows that ' is an exact functor from C!y to C'4(< v) left adjoint to
the inclusion. It takes projective resolutions to projective resolutions. This
implies for all M, N in C';(< v) and all ¢ > 0:

Exter <p) (M, N) = Extg, (M, N). (2)
Formulas 2.10(4) and 1.1(5) show that Z4 maps C'4(< v) to C4(< v).

3.10. Lemma 3.1.a and the results in the subsections 3.2 — 3.5 can be
generalized to the categories C4(< v).

For example, since these are full subcategories of C4, it is clear that we
have still the adjointness property leading to 3.1.a and that 3.2(1) holds in
Ca(<v)fori=0,ie, Ext® = Hom. It follows then for arbitrary ¢ as in the
proof of Lemma 3.2.

We can extend 3.3(1) to C4(< v) as follows: If M is of the form I'VQ
with @ projective in C4, then the claim follows from 3.8(1) and 3.7(1). In
general M is a direct summand of a module of this type.

In order to get the analogues of 3.4 and 3.5 we have to extend some
results from Section 2. That is trivial for Lemma 2.8. If we take a projective
resolution P, of M as in Proposmon 2.9 and apply I''” to it, then we get a
projective resolution P! of M in C';(< v) satisfying the analogue of 2.9 for
C'4(£ v). Finally, 2.10(5) and Lemma 2.15 generalize since Z4 maps C4 (< v)
to Ca(Lv).
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4. Lifting Projectives

We assume from now on that we are in Case 1 or 2 from 1.2/3. Certain
subsections work still in a larger generality.

4.1. For any k—algebra A there is a natural X—grading on U~ ® A such that
(U~ ® A), = (U7), ® Afor all v € X. The properties 1.1(3),(5) and 2.1(A)
imply that

(U~ @A) =EPU 2 A), (1)

v<0

is a two-sided ideal in U~ @ A consisting of nilpotent elements such that
(U @A)/(U”®A)c ~ A (2)

If A= F is a field, this implies that (U~ ® F')«¢ is the radical of the algebra
U-QF.

For each U%-algebra A any Z4(p) with g € X is isomorphic to U~ ® A
as a U~ @ A-module. Under this isomorphism (U~ ® A)<o is mapped to
D, <, Za(p)v. In the case where A= Fisa field, this subspace of codimen-
sion 1 has to contain every proper U~ ® F-submodule, hence every proper
U ® F-submodule of Zp(p). So the sum of all U @ F-submodules contained
in P, , Zr(p)y is the radical of Zp () and the corresponding factor module

(the head of Zp(u))
Lr(p) = Zp(p)/radZp(p) 3)

is a simple U ® F-module, called the simple U ® F-module with highest weight
p. Now radZp(p) is the direct sum of its weight spaces, hence a module in Cp.
(Observe: If M'is a U® F-submodule, then the direct sum of the projections
of M' on all weight spaces is a submodule in Cr.) Therefore also Lp(u) is a
module in Cp. One can characterize Lr(p) as the unique (up to isomorphism)
simple module M in Cp generated by a highest weight vector of weight p, i.e.,
by some v € M, with (U*),v = 0 for all weights v > 0. Each simple module
in Cp is isomorphic to exactly one Lp(pu).
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4.2, Let A € X. We can twist the structural homomorphism 7 : U 0 5 A
(for any U°-algebra A) by (—)) and get a new homomorphism

7r'=7ro(:\):):U0—+A.
This yields a new algebra structure on A, denoted by A[A]. For any M in C4
we construct M[A] in C 4 as follows: Take the old M as a U ® A-module.
Define the grading on M[A] by
My = M,_x

for all p € X. It is obvious that M[)A] satisfies 2.3(A)—(C). In order to see
2.3(D) observe that for all s € U® and m € M[)],:

sm = mr((i— A)(s)) = m( o (=) 0 fi)(s) = m7’ (ji(s)).

It is obvious that we get an equivalence of categories from C4 to C4pyy. If M
is free over A, then the construction implies

ch(M[A]) = ch(M)e(). (1)
One has for all p € X:
Za(WN =~ Zapy(p+ ) (2)
and (if A = F is a field)
Lr(p)[A]l 2 Ly (e + A). (3)

We have A[0] = A and A[A][N] = A[A+ X] for all \,\' € X since p+— 1 is a
group homomorphism. We have then also

M[O]=M and MPJN]=MA+X] forall MinCs (4)

The construction in 1.4 shows in both cases that A = id for all \ € pX.
We get thus A[pr] = A for all v € X; the formulas (2) and (3) take then the
form (for all u € X)

Za(wlpv] = Za(p+pv) and  Lp(p)pv] ~ Lr(p+pv). (5)

Furthermore (4) shows that C4 is a pX-category in the sense of Appendix
E.3.

Consider the special case A = k where k is regarded as a U%-algebra via
the augmentation map (as in 2.4). Each M[pv] with M in Cx and v € X can
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be identified with the tensor product M ® Li(pv) in the category of G1T-
modules resp. in the quantum analogue. Here Li(pv) has dimension 1, and g
resp. u acts trivially on this module. The tensor product M ® Li(pv) is often
denoted by M ® pv, cf. (in Case 1) [Ja6], Section I1.9. We have for M, N in
Ck

@ Home, (M @ pv, N) ~

{Homg(M, N), in Case 1,
veX

Hom, (M, N), in Case 2. (6)

(Cf. [Jad], 2.5(2), in Case 1; one argues similarly in Case 2.) Compare this to
the definition of Hom* in the pX—category Ck, i.e., with (cf. E.3(1))

Homc (M,N) = @ Home, (M[pv], N). (7
veX

We get clearly

Homy (M, N), in Case 1,

8 ~
Hoka (M7 ‘]V) - { Homu(M, N), in Case 2, (8)

as long as we consider Cy as a pX—category. (Of course, if Y is any subgroup
of pX, then Cy is a Y—category by restriction. If we consider that structure,

then Hom® gets a new meaning and (8) will be false in general.)

4.3. The subalgebras T,(U™), T,(U®) = U°, and T,,(UT) of U satisfy the
conditions in 1.1 and 2.1, if we work with w(R™") instead of RT. Therefore
the whole theory developed so far can be carried out in this situation as well.
The categories C4 and C'y do not change, and the category C' 4 is replaced by
an equivalent one. We have induction functors similar to ®', and Z4. We
denote the analogue to Z4 by Z} and get especially modules

Z¥(p) = U ®uor, (v+) A* (1)

for all p € X. Note that Z%(p) is our old Z4(p).

If A= F is a field, then the discussion in 4.1 generalizes to all Z§(u)
with w € W. One works with T,,(U ™) instead of U~. So for all w € W and
p € X the radical of Z§(p) as a U ® F-module is in Cr and

Ly(p) = Z (p)/radZF (p) (2)

is a simple module in Cp.
By 4.1, there is for all w € W and p € X a weight pu,, with

Li(p) = L (pow)- 3)

The results in Section 5 (cf. 5.12) will show, how to determine p,, in principle.
But they will not yield a closed formula.

Suppose that A has the property that each finitely generated projective
A-module is free. Working with w(R™) instead of R we see now that Lemma
2.16 implies: Every projective module in C4 has a filtration with factors of

the form ZY%(p).
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4.4. Let w € W. We can twist any structural homomorphism 7 : U° — A
with T, and consider 7' = m o T;1 : U® — A to get a new algebra structure
on A that we denote by Afw].

We can define for any M in C4 a module M[w] in C4py,) as follows: Take

M with the old structure as an A-module, let any u € U act as T;!(u) on
M, and set M[w]u My-1(y for all p € X. Then 2. 3(A),(B) are obviously

satisfied. It is easy to check (and left to the reader) that 2.3(C),(D) hold.
It is clear that we get an equivalence of categories between C4 and Cypy). It
satisfies

ch(M[w]) = w(ch(M)) (1)

for all M that are free over A.
One has in this case for all z,w € W and u € X:

Za(w)[w] > Z§i, (wp). (2)

Indeed, let vy resp. v, be the standard generators of Z4(u) resp. of Z47 Al (wp).

By construction, p + z3 is not a weight of Z5(u) for any 8 € R™, hence
wp + wzB not a weight of Z%(u)[w]. We get Ty, (Eg)vy = 0 in Zf‘(u)[w]
for all 3 € R*. The universal property of Z A[zw](wu) yields a homomorphism
Z A[w](wu) — Z%(p)[w] mapping v to v;. One gets similarly a homomor-
phism Z%(p) — Z}‘f’[zw](wu)[w‘l] mapping v; to ve. It can be regarded as

a homomorphism Z%(p)[w] — = 2 (w (wp). These two maps are then inverse
isomorphisms.
If A= F is a field, then (2) implies for all p € X and z,w € W.
Ly(w)[w] = Lpf,)(wp). (3)

4.5. Recall the antiautomorphism 7 from 1.6. For any U ® A-module M we
get a new U ® A-module M7, the contravariant dual of M, by setting

MT™ = Homu (M, A) (1)
as an A-module and by letting u € U act as follows:
(uf)(m) = f(r(u)ym)  forall f € M™ and m € M. (2)
If M is a module in C4, then we make M ™ into a module in C4 setting
M{={feM"| f(M,)=0forall pu#X}. (3)

So M can be identified with the dual of M. It is easy to check 2.3(A)~(D).
(Use that A is Noetherian to get that M" is finitely generated. )
If M is free over A, then obviously

ch(MT™) = ch(M) (4)
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and (using our finiteness assumption)
(MT)"~M (5)

and
(M4 AN >~ M"@4 A (6)

for any A-algebra A'.
Suppose now that A = F' is a field. For any p the contravariant dual of
the simple module Lg(u) is simple and has the same formal character. We

get
Lp(p)" ~ Lp(p) (7)

for all p € X(T).
Because (5) holds for all M in Cr one has

Extg, (M7, M'") ~ Extg_(M', M) (8)
for all 7 and all M, M' in Cp.
4.6. Proposition: Suppose that A= F s a field. One has
Exté, (Lr (1), Le(Y)  Exti, (Le(N), Le()) 1)
for all ¢ and all \,p € X. Furthermore:
If p # X, then Home, (radZp(X),Lr(p)) = Exte (Lp(A), Lr(p).  (2)

Proof: The first claim is an immediate consequence of 4.5(7) and (8). As in
the classical case, cf. [Ja6], I1.2.14 or 11.9.16, the exact sequence

0— rade()\) e ZF(/\) e LF()\) -0
induces for all 1 an exact sequence

0 — Home, (radZr(A), Lr(p)) — Exte, (Lr(X), Lr())
— Extg_(Zr(X), Lp(p)).

In case p # X the last term is 0 by Lemma 2.14.a.
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4.7. We have by construction for all p € X and w € W:
chZ4(p) =e(p)chU~

and

ch Z(n) = e(p) cb(Tw(U™)) = e(p)w(ch U™). (1)
Using the PBW-type basis of U™ we get

_ 1 —e(—pp)
chU~ = L W (2)
1 =5

One knows that p — wp is the sum of all positive roots o with w™(a) < 0. It
is now easy to see that

w(chU™) =e((p—1)(p—wp))chU™. (3)

Set
w) = p+(p—1)(wp - p) (4)
for all p € X and w € W. With this notation (3) implies (for all u, w)

ch Za(p) = ch Z% (u{uw)) (5)

Lemma: Let u € X. One has for all w,z € W:

1

Home, (Z5(u(z)), Z% (m{w))) ~ A (6)

and

Home, (Zﬁ(#(x))v ZX(N(“’))T)

1

A (7)

Proof: Set M* = Z7(p(x)) for all z € W. By construction M, is free over

A of rank 1, and p(z) + 20 is not a weight of M* for any 8 € R*. By (5)
the same is true for M¥. So we can find v with .M;”(z) = Av. Furthermore,
any p(z) + zB with 8 € Rt is not a weight of M™. This yields T,(Eg)v =0
for all these 3. Therefore there is a homomorphism M?* — M™ mapping the
standard generator to v. Obviously any other homomorphism from M? to
M™ has to be a multiple. This proves (6). This argument uses only the fact
that M™ has the same character as M?*. It works equally well for (M™)7,
since that module has the same character as M* by 4.5(4).
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4.8. Note that u(we) = p—2(p —1)p for all p € X.
Lemma: Suppose that A = F s a field.

a) The socle of U~ @ F as a module over itself under left multiplication has
dimension 1 and is equal to (U™ @ F)_3(p-1),-

b) For all p € X the socle of Zp(p) is simple and equal to
soc Zp(p) = UZF (1) p—20p-1)p- (1)

Proof: a) The weight —2(p — 1)p is the smallest weight of U™, so (U™ ®
F)_3(p—1), is annihilated by (U~ ® F)<o, hence a one dimensional simple

submodule of U™ ® F. So it is contained in the socle, and we claim that it is
the whole socle.

In Case 1 the algebra U~ ® F' is isomorphic to the restricted enveloping
algebra UlPl(n~ @ F). This algebra has a simple socle, cf. [Ja6], 1.2.14(9),
1.8.5/7.

In Case 2 one uses the nondegenerate bilinear form on u considered by

Xi in [Xil] when he proved the symmetry of u, cf. [Xi2], 2.9. It restricts to a
non degenerate bilinear form on u™ ~ U~ that can be extended to U™ ® F.
The socle is the space perpendicular to the radical, hence has dimension 1.
(Compare also the argument in [PW1], 9.5.)
b) The isomorphism between U~ ® F' and Zp(p) maps the socle determined
in a) to Zp(p)y—2(p—1)p- Therefore this one dimensional weight space is con-
tained in every nonzero U~ ® F-submodule. This implies that Zp(u) regarded
as a U @ F-module has a simple socle given by (1). It is obvious from that
formula that this socle is the direct sum of its weight spaces, hence in Cg and
thus also the socle of Zp(u) as a module in Cp.

Remark: More generally, each Z¥(u) has a simple socle. For example, the
socle of Z3°(u) is generated by Zg° (1) u42(p—1)p-

4.9. Lemma: Suppose that A= F is a field. Let u € X. One has for any
nonzero homomorphism ¢ : Zg°(u —2(p — 1)p) — Zp(p):

soc Zp () = im(p) > Lg*(p = 2(p — 1)p) (1)
and for any nonzero homomorphism ¢' : Zp(pu) — Zg°(p —2(p — 1)p):
soc Zp°(p—2(p—1)p) =im(¢") ~ Lr(u). (2)

Proof: The image of ¢ is generated by
P(Zp° (1= 2(p = 1)p)u-2(p-1)p) C ZF(1)u-2(p—1)p- (3)

Since ¢ is nonzero and since the right hand side in (3) has dimension 1, we
have equality in (3). Now (1) is an immediate consequence of 4.8(1). The
proof of (2) is similar.

Remark: Lemma 4.7 implies that there exist ¢ and ¢' as above.
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4.10. Lemma: Omne has for all p € X 1somorphisms

Z3(p=2(p—-1)p) — Za(p)" (1)

and
Za(p+2(p—1)p) = Z3° ()" (2)

Proof: Let u be a basis for the k~-module (U~™)_5(p—1),- Then u®1 is a basis
of Za(p)u—2(p—1), and we can choose a basis f of (Z4(1)"),—2(p-1), With
f(u®1) =1. By 4.7(7) we get a homomorphism ¢ : Z3°(p — 2(p — 1)p) —
Za(p)" with (1 ® 1) = f. We have ¢(7(u) ® 1) = 7(u)f = f o u, hence
Y(r(u)®1)(1®1) = f(u®l) =1 and Y(7(u)®1) # 0. In the case where A = F
is a field, this implies that ¢ is nonzero on the simple socle of Z5°(u—2(p—1)p),
hence injective. By dimension comparison it has to be bijective over a field,
hence in general and we get (1). Now (2) follows by applying 7 to (1) with p
replaced by p+ 2(p — 1)p and from 4.5(5).

4.11. Proposition: One has Extg, (Za()),Z°(n)) = 0 for all \,p € X
and alln > 1.

Proof: Consider at first the case n = 1. We can interpret Ext! via short exact
sequences. From that point of view it is obvious that

Exte, (Z4(X), Z3° (1)) ~ Ext!(Z3° (1), Za(A)7), (1)

since these modules are free over A, cf. 4.5(5). Using Lemma 4.10 we can
rewrite this as

Exte, (Za(X), Z3°(n)) ~ Ext'(Za(u+2(p — 1)p), Z3°(A = 2(p ~ 1)p)). (2)

The largest weight of Z3°(u) resp. of ZJ°(A = 2(p—1)p) is p+2(p — 1)p
resp. A. So Lemma 2.14.a implies: If the left resp. right hand side in (2) is
nonzero, then p+2(p—1)p > Aresp. A > p+2(p—1)p. We cannot have both
inequalities at the same time, so the Ext' groups in (2) have to be zero.

In general, we use induction on n. The remark in 2.13 yields a short
exact sequence 0 —» N — @ — Z4(\) — 0 such that @ is projective and such
that IV has a Z-filtration. We get for all n > 1:

Extg, (Za(X), Z3° (1) = Exte [ (N, Z3°(1). (3)
The right hand side in (3) vanishes by induction, since it vanishes for each
of the factors in a Z-filtration of N. The largest weight of Z°(u) resp. of

ZYy°(A—=2(p—1)p)is p+2(p— 1)p resp. A. So Lemma 2.14.a implies: If the
left resp. right hand side in (2) is nonzero, then yu + 2(p — 1)p > A resp. A >
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u+2(p—1)p. We cannot have both inequalities at the same time, so the Ext!
groups in (2) have to be zero.

In general, we use induction on n. The remark in 2.13 yields a short
exact sequence 0 —» N — Q — Z4(\) — 0 such that @ is projective and such
that NV has a Z-filtration. We get for all n > 1:

Extg, (Za(A), Z3°(w) = Extg (N, Z3° (w))- 3)

The right hand side in (3) vanishes by induction, since it vanishes for each of
the factors in a Z-filtration of N.

4.12. Proposition: Let A\, € X. One has

Home, (Za(A), Z° (w)) = { A, ifp=A-2p-1)p;

0, otherwise.

Proof: If this space of homomorphisms is nonzero, then A is a weight of
Z4°(p), hence A < p+2(p — 1)p. Using 7 we see that also

Home, (Z3°(1)7, Za(A)7) = Home,, (Za(u+2(p—1)p), Z3° (A-2(p—1)p)) # 0.

This implies g+ 2(p — 1)p < A, hence g = A — 2(p — 1)p. In that case the
claim follows from 4.7(6).

Remark: Let w € W. Consider the equivalence of categories M +— M[w™?]
as in 4.4. By 4.4(2) it induces isomorphisms (for all A, uz and all n > 0)

Extg, (Z§(\), Z2% (1)) ~ Extg , (Zar(w™'X), 220 (w™" 1))

where A' = A[w™!]. Therefore this and the previous proposition imply for all
Aand p
Exte, (ZX(A), Z3"°(n)) =0  foralln >0 (1)
and
w ww A, lf = )\ -2 - 1w N
Home, (250, Z5™ () = { o Bf=2 -2 0w )
4.13. Let M, N be modules in C4 such that M has a Z-filtration and IV has
a filtration with factors of the form Z;°(x). Then Proposition 4.11 implies
that

Exte, (M,N)=0 for all n > 1, (1)
and Proposition 4.12 implies that Home, (M, N) is a free A-module. The
following corollary is an important special case:

Corollary: Let M be a module in C4 with a Z-filtration. The A-module
Home, (M, Z3°(A —2(p — 1)p)) is free for all X € X, and its rank is equal to
the number of factors isomorphic to Z4(A) in a Z-filtration of M.
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4.14. Lemma: Let M, Q) be modules in C4 such that M has a Z-filtration
and @ s projective. Then

Extg, (M,Q)=0  foralln>0 (1)
and Home, (M, Q) is a projective A-module.

Proof: If A is a field (or local), then the last statement in 4.3 implies that @
has a filtration with factors of the form Z%°(u). Then the claims follow from
4.12. In general we apply Proposition 3.4.

4.15. Suppose for the rest of Section 4 that F is a U%-algebra that is a field.
The category Cr has enough projectives and all modules have finite
length. Therefore the usual arguments show that there is a one to one corre-
spondence between simple modules and projective indecomposable modules.
Denote by Q@ (A) the unique (up to isomorphism) projective module with

Qr()\)/radQr(A) ~ Lr(}). (1)

For any M in Cp the multiplicity [M : Lg())] of Lrp(A) as a composition
factor of M is given by

[M: Lp()\)] = dimHome, (Qr(A), M). (2)

Proposition: Any Qr(\) with A\ € X has o Z-filtration. Any Zp(p)
with p € X occurs exactly [Zp(p) : Lr(X)] times in such ¢ Z-filtration.

Proof : The existence follows from 2.15.b. By 4.13, we know that Zp(p) occurs
as a factor exactly

dim Home, (Q(N), ZE° (1 — 2(p — 1)p))

times. This number is equal to [Zp°(p — 2(p — 1)p) : Lr(M)] by (2). Because
the formal characters of the simple modules in Cr are linearly independent,
the multiplicities in a module depend only on the formal character of the
module. We know by 4.7(5) that Zz°(u — 2(p — 1)p) and Zp(p) have the
same formal character. Therefore we get the claim.

Remark: One can prove the reciprocity formula also using the approach in

[Ja3], 3.8.

4.16. Let F' be an extension field of F. We have then
LF()\) RF F”szr()\) for all A € X, (1)

since obviously End¢, Lr(A) = F. This implies that extension of scalars from
Cr to Cp/ take composition series to composition series, especially that

Zr(w): Le(N] = [Zp () : Lp(N)] forallApeX.  (2)

By Lemma 3.1 each Qr(\) @ F' is projective in Cps; by (1) it maps onto
Lpi(X). So (2) and Proposition 4.15 imply that

QF()‘)®FFIQ'QF'(/\) for all A € X. (3)
4.17. Fix v € X. Recall the discussion of Cr(< v) in 3.6 — 3.10.
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Lemma: There is for all A € X with A < v a projective cover Q% () of Lp(A)
in Cp(< v). It has a Z—filtration with factors Zp(p) where p € X with p < v.
Any such Zp(u) occurs exactly [Zp(pu) : Lr(\)] times. If A < v —2(p — 1)p,
then Q%(X) =

Proof: The module Q'}(A) =TYQr()) is projective in CF(< v). Since it is a
homomorphic image of Q@ (X), one gets Q% ( 8 /rad@%(A) ~ Lp(\). Therefore
Q%(A) is a projective cover of Lp(A) in Cp(< v). The claim about the Z-
filtration follows from the construction in 3.7 and from Proposition 4.15. (One
could also argue directly using 3.8 and imitating the proof in 4.15.) If [Zr(p) :
Lp(M)] # 0 for an arbitrary p € X, then ) is a weight of Zp(u). This implies
A>pu—2(p—1)p, hence p < A+2(p—1)p. For A <v—2(p—1)p we get then
pu < v for all Zp(p) occurring in @ (A), hence the last claim.

4.18. Suppose in 4.18-19 that A is a local ring with residue field F.

Proposition: There is for all A € X with A < v a projective module Q% (X)
in CoA(Sv) with Q%(N) @4 F ~ Q%(N).

Proof: We use induction on A from above. Recall from the remark in 2.13
that ® 4()) is projective in C4 and has a Z-filtration where only Z4(u) with
p > A occur. The module Z4(A) occurs exactly once and is the top factor.
Set Q@ =I'®4(\). This is a projective module in C4(< v) with a Z-filtration
and a surjection Q — Z4(A).

Now QF is projective in Cp(< v) by the generalization of 3.1.a to C4(< v),
cf. 3.10. It is therefore a direct sum of certain Q% (u). The statement on the
Z-filtration implies that only weights u > A can occur. The module Q% (X))
occurs because of the surjection Qr — Zp(\), and it occurs only once because
Zr(A) occurs only once in a Z-filtration. So @ has a decomposition

Qr~QrN e P Qr(wm® (1)
A<u<y

for suitable integers m(u) > 0.

For A = v we can take Q%()\) = Q. In general, we know by induction
that there exist Q% (u) for all p with A < u < v, and we have to show that
we can find a decomposition

Q~Q e P Quwm™n. (2)
A<u<y

Then Q' ® 4 F has to be isomorphic to Q@ ()) by the Krull-Schmidt theorem,
ie., we can take Q%(A) = Q" Set M =P, _,, Q4(w)™®). Tn order to get

2), consider the projection f : Qr — Mp coming from (1). We have by 3.3
generalized to C4(< v), cf. 3.10)

Home, (QF, Mr) ~ Home, (Q, M) ®4 F.

So there is a homomorphism f @ — M that lifts f. The Nakayama lemma

implies that f is surjective. Because M is prOJectlve the epimorphism f has
to split. We get a decomposition Q ~ Q; & M, i.e., (2).
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Remark: The argument used in the last part of the proof says: If Q) and M
are projective in C4(< v) and if M is a direct summand of Qr, then M is a
direct summand of (). The same argument works in C4.

4.19. Theorem: a) There is for all A € X a projective module Q 4(X) in C4
such that Qa(A\) ®4 F ~ Qr()). This module is unique up to isomorphism.

b) Any projective module in C 4 is isomorphic to a direct sum of certain Q 4(X).

Proof: Let us first show the existence of the Q4(A). Choose an arbitrary
v > A+ 2(p—1)p. The module ®4(}) is then contained in C4(< v) since
all weights of ®4()) are less or equal X + 2(p — 1)p. Therefore it is equal to
the module @ =T ®4(A) in the proof of 4.18. So @ and its direct summand
Q%(X) are prOJectwe 1n CA We have Qr(A) = Q%()) by Lemma 4.17. So we
can take Q4(}) =

The uniqueness ?up to 1somorphlsm) of the @ A( ) as well as the claim
in b) follow from the remark in 4.18. (Note: If M in C4 is projective and
satisfies Mg = 0, then M = 0 since M is free over A by Lemma 2.7.c.)

Remark: The functors M +— M|pv] with v € X are equivalences of categories
on Cr and on Cyu, cf. 4.2. They take (indecomposable) projective objects to
(indecomposable) projective objects. Therefore 4.2(3) implies for all A and v
in X

QrNP] = Qe +pr)  and  QaNV = QaA+pr). (1)
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5.1. In Case 2 we define K for all A € ZR as

Kx=[[kr@et® i x=) m(@)a
o€l a€l

One gets then T, (K)) = Ky for all w € W and A € ZR. (It is enough
to check this when w is a simple reflection and A a simple root. Then it is
obvious by the definitions.) In Case 1 one has T\,(Hg) = Hyp for all w € W
and B € R.

We define dg for all roots 3 via dg = d, for all @ € ¥ with 3 € Wa.
This is well defined, because d, has the same value for simple roots conjugate
under W.

Let o € R. In Case 1 we set ES™ = E7/(m!) for all integers m with
0 <m < p. In Case 2 set first

m

[mla= ("™ =¢7*™)/(¢*-¢™)  and  [m]y =[]l

=1

(where d = d,) for all integers m resp. for all integers m > 0. Then [m]}, # 0

for all m with 0 < m < p. So we can define ES™ = E™ /[m]}, for all these m,
and we can set

(7] -l
Jla Ulam =l
for all integers j and m with 0 < j < m < p. (The left hand side can be

defined more generally, but we shall need it only in this special case.)
In Case 2 we define (with d as above) elements

[Ka;a] _ ﬁ K, (=51 _ g1~ d(a=s+1)

m dj _ =4
j=1 C C
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for all integers a,m with 0 < m < p. We shall use the abbreviation

Koja] _ Ka¢®d = K5igod
[I{a;a] = [ 1 a] = Cd_<_d

and get for 0 < m < p

m—

[ Keie] = mly- H [Fasa ).

Note that K2¢2%¢ — 1 from [K,;a] by the factor Ko(¢(? — (~%)(%¢ which is a
unit in U°.

5.2. Let A be an algebra over U® with structural map 7 : U° — A. Set
= {8 € R|n(Hg)? — m(Hp) = [I}_,(7(Hp) + j) is not a unit in A}
in Case 1, resp.

Rr={B € R|n(Kp)* —1=[[_,(7(Kp)*¢* — 1) is not a unit in A}
={B € R|[I}-,(n[Kp;]) is not a unit in A}

in Case 2. If A = F' is a field, then these conditions mean

R,={B€R|n(Hs) €F,} resp. R.={B¢€R|n(Kp) =1}

Set W, equal to the subgroup of W generated by all sg with 3 € R, and
set Rf = R,NR*. If A= F is a field, then ZRY N RY = RY in Case 1,
and ZR, N R = R, in Case 2. So then R, is a root system with Weyl group
W, and we can choose R} as a system of positive roots in R,. Denote the
corresponding set of simple roots in R, by ¥,.

In general, R, will not be a root system. Take for example R of type A,
and denote the two simple roots by « and 3. Assume that we are in Case 1
and set A equal to the subalgebra of the field of fractions of U generated by
U° and by [[5_,(Ha+p + )~ Then Rx = {+a, £} is not a root system.

(More precisely, it is not a root system with the given choice of coroots.)
5.3. Set B equal to the subalgebra of the field of fractions of U° generated
by U° and all

l:I Hy+j) ' =(HE —1)7! resp. I__[[Ka;j]_1 (1)
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with & € Rt. Define subalgebras B? (for each 3 € R*) and B? of the fraction

field of U° via
B? =B[H;'|a € Rt,a # ] (2)

resp.
B? = B[[Ka;0] ™' | € RT,a # f] (3)

and
B =B[H;'|a€R*] resp. BY=B[[K,;0!|acR". (4

The following statements are more or less obvious:

Lemma: Let A be a U’-algebra with structural map 7 : U° — A.

a) A is a B®-algebra, if and only if R, = 0.

b) Let 3 € R*. Suppose that A is a B-algebra. Then A is a BP-algebra, if
and only if R, C {£0}.

c¢) Suppose that A is a field. Then A is a B-algebra, if and only if

R, ={a € R|7w(H,) =0} Tesp. R.={a€R|7(Ky,)*=1}. (5)

5.4. For the next subsections (until 5.12) we fix a simple root o € X, we set
s = 8q and d = d,.

Let U(a) resp. U(—«) be the subalgebra of U generated by E, resp. by
E_,. It has as basis all E!, resp. all E* , with 0 < i < p. We can also take
all E((,') resp. E(_Zfl

Set

e 4

P(a) =U(-a)UUT. (1)

We claim that this is a subalgebra of U. In Case 1 this is clear, because P(«)
is the image in U of the enveloping algebra U(p,) of the minimal parabolic
subalgebra

Po =bT +EX_o =b" +5(b")

of g. In Case 2 the defining relations imply E_,Es — EgE_, € U° for
all 3 € X, hence E_qu — uE_, € UU™ for all v € U*. This implies
UtU(-a) C P(«a), hence the claim by Lemma 1.4.

In both cases the PBW-type bases for U and its subalgebras show that
P(a) is free of rank p as a right module over U’U™, and that U is free of rank

pN~! as a right module over P(a). (N is the number of positive roots.) One
has

P(a) = U(=a)U%U(a) @ Q) (2)
where

Q)= P P(a), = P U(-a)U°U(a)(UH),.

v¢Za vé¢Zo
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Obviously, Q(a) is a two-sided ideal in P(c), and U(—a)U°U(a) is a subal-
gebra isomorphic to P(a)/Q(a).

The automorphism T, = T, stabilizes P(), Q(a), and U(—a)UU(a).
This is obvious for Case 1. In Case 2 one uses the explicit formulas for T}, on
the generators and (for Q(«)) the fact that T(P(a),) = P(a)s()-

5.5. For all u, ' € X we can regard

W a(k) = P(a) Bpous A* &
and ,
(') = P(e) ®uor, (v+) A* (2)
as modules in a category analogous to C4, Cy,... involving P(c) instead of
U,v'u+,...

Because the multiplication map is an isomorphism U(—a) @ U'Ut —

P(a), all Ef_’gx ® 1 with 0 < ¢ < p are a basis of ¥ 4(u). We denote this basis
by vg,v1,...,Vp—1 Where

vi=ED ®1€ Ua(p)yoia- (3)

One has then for all ¢ — using the convention v, =0 =v_; —

E_ov;i = (i 4+ 1)vipq resp. E_qv; = [t + 1]qvitq (4)

and
Eovi = vioy(7(Ha) + p(Ha) — i+ 1) (5)

resp.
Eov; = vi_1m[Kao; (p,@Y) — i+ 1]. (6)

Similarly, any ¥ (p') has a basis vy, vy, ..., v,_; Where
V= BO 91 € U4(i ) sia 7
One has

Equj = (i + 1)viy, resp.  Equi = [i + 1]qviy, (8)

and
E_qv; = —vi_y(m(Ho) + p'(Ha) +i - 1) (9)

resp.
E_gvl = —v_ 7[Kq; (¢, a¥) +1 - 1]. (10)

The action of U® on these bases is determined by the weights. The ideal
Q(«) annihilates ¥ 4(p) because p — iov + v is not a weight of this module for
any v ¢ Zo. Similarly it annihilates ¥%(u').
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5.6. Let u € X and keep the notations from 5.5 with p' = g — (p — 1)a.
The universal property of the induced modules ¥ 4(p) and ¥ (p — (p — 1)a)
yields unique homomorphisms

Pa:Pa(p) = ¥y(p—(p—1)e) and 99;:‘1'74(#—(?—1)04)—*\1&4(#1&

with 4 (vo) = vy_; Tesp. 4, (vg) = vp—1. An argument as in 4.7 shows that @4
and ¢!, are bases for the corresponding Hom spaces. The formulas 5.5(3)—(10)
imply for all ¢

palon) = (-1yeh (T ) ?
resp. o05) = (1) e [K,,; (f’av) ]) (3)
and ) = oy <7r(Ha) +u(Ha) i+ 1) (4)
resp. o) = 1y [Ka;i+ 1i+ (M»av>]). (3)

5.7. We get for all p,p € X the induced modules Z4(p) and Z5(p') by a
two—step induction as

Za(p) 2 U @p(a) (P(a) Quov+ A*) =U ®p(a) Ya(p) (1)
and ,
Zi(1') = U @p(a) (P(a) ®uor,w+) A*) =U ®p(a) Ta(n)-  (2)

Using induction from P(a) to U we get from 5.6(1) homomorphisms

¢ =1Qpa: Za(p) = Z3(p— (p—1)a) (3)

and
'=10¢h: Zi(n = (0~ Do) = Za(n). @

Each of them maps the standard generator to an element that is a basis of its
weight space. So ¢ resp. ¢’ is a basis of the corresponding Hom space, cf. 4.7.

Recall that U is free over P(a) of rank p¥ ~!. This implies, for example:
One has ker ¢ = U ®p(q) ker pq; so, if ker ¢, is free over A of rank say m,

then ker ¢ is free of rank pV~—1m.
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5.8. Let u € X and let p and ¢' be the homomorphisms from 5.7(3),(4).
Lemma: If o ¢ Ry, then ¢ and ¢' are isomorphisms.

Proof: By the discussion in 5.7 it is enough to prove the corresponding state-
ment for ¢, and ¢!, as in 5.6. Under our asssumption on « the coefficients
on the right hand side in 5.6(2)—(5) are units in A. So ¢, and ¢, take a basis
to a basis, hence are bijective.

5.9. Keep the assumptions and notations from 5.8. Suppose that A = F is
a field. Consider the case where & € R,. There is a unique integer n with
0<n<pand
m(Ha) +{p+p,a')=n-1€F, CF (1)
in Case 1, resp.
m(Kq)?¢R4ktet) = cin (2)

in Case 2. (Note that (p,@") = 1, because « is simple, and that u(H,) is the
reduction modulo p of {(u,a").)

Lemma: a) If n = p, then ¢ and ¢' are isomorphisms.

b) For n < p one has

im(p) = ker(¢") and  im(¢') = ker(p)

and
dimim(p) = pV~In and dimker(¢) = p™V~1(p — n).

There is @ homomorphism
¥ Zp(p—na) — Zr(p) (3)
with im(y) = ker(p) and a long ezact sequence
= Zp(p— (ptn)a) = Zp(p — pa) > Zp(p—na) = Zp(p) — -+ (4)

Proof: By the discussion in 5.7 it is enough to prove the corresponding state-
ments for the maps ¢, and ¢}, from 5.6. In Case 1 the formulas (1) and 5.6(2)

yield pq(vi) = (—1)’(";1)v;,_1_i. Therefore the kernel of ¢, is spanned by
all v; with n < ¢ < p—1 and is zero for n = p. One gets the same result from
(2) and 5.6(3) in Case 2 and shows similarly in both cases that the kernel of
¢!, is spanned by all v; with p—n < ¢ < p—1 for n < p whereas it is 0 for
n = p. This implies a) and the first claims in b).

Assume from now on n < p. Let g, 01,...,0,—1 be the basis of ¥p(p —
na) analogous to vg, vy,...,0,—;. We have Equ, = 0 by 5.5(5),(6). So the
universal property of induced modules yields a homomorphism 9, : ¥p(u —
na) — Yp(p) with ¥4(99) = v,. It satisfies

1

bolo) = ("F Yo 1o wali) = "T| o 0
d
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for 0 < i < p—-n-—1and ¢u(0;) =0 for i > p—n — 2. It it now clear
that im(¢) = ker(¢,) and that the kernel of 1, is equal to the image of
the analogue of ¢!, for ¥p(u — na). (Note that p — n plays the role of n for
p —na.) We get ¢ as in (3) by inducing 9 from P(o) to U. We have then
imy = ker ¢. By repeating the construction we get the sequence (4).

Remark: We get also an infinite exact sequence
= Zp(p) = Zp(p— (p =)&) = Zp(p) = Zp(p— (p— 1)o) = -+ (6)
where the maps are ¢ or ¢' alternatingly.
5.10. Keep the assumptions and notations from 5.9.
4.4(2) implies that we can regard ZY(u) as Za (w™p)[w] where A’ =
Alw™!], and Z¥*(p') as Z%, (w™p')[w]. Therefore the homomorphisms be-

tween Z 4 (w™'y) and Z%,(w™tp—(p—1)a) asin 5.7(3),(4) can be interpreted
as homomorphisms

01 Z3(p) = Z3°(p = (p - Dwa) (1)
and
¢ Z3 (k= (p— Dwa) — ZZ(p). (2)

The restrictions of T, and T,-1 to U° coincide. Therefore the structural
map of A’ is
7= 7roT1;_11 =7n0T,.

The behaviour of ¢ and ¢’ depends therefore on 7'(Hy) = 7(Hya) resp. on
7'(Kq) = (K wa). Now the results from 5.8/9 translate as follows:

Lemma: a) If wa ¢ Ry, then ¢ and ¢' are isomorphisms for all p € X.
Furthermore, if A= F 1s a field, then

F(p) 2 L(p— (p—Dwa)  end  Lp°(p) = Lp(p+ (p— Dwa) (3)
forall pe X.
b) Suppose that wa € Ry and that A = F is a field. Let n be the integer with
0<n<pand
n-l=n'(Ha)+ (w7 p+p,a") = 1(Hua) + (1 + wp, (wa)")  (4)
resp.
<2dn — 7‘,I(I‘/—()I)2<2d(1,u‘1”—}4),0,") — W(I‘rwa)ZCZd(u-i-wp,(wa)v>. (5)

Ifn =p, then ¢ and ¢’ are 1somorphisms. Forn < p one has im(p) = ker(y')
and im(¢') = ker(p) and

dimim(p) = pNn and dimker(p) = pV~1(p - n). (6)

There is (for n < p) a homomorphism ¥ : Zg(p — nwa) — Zg(u) with
im(¢) = ker(yp).
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Remark: We get also an exact sequence as in 5.9(4). It leads to the following
character formula:

ch(ker ¢) = Z ch Z¢(p - (ip + n)wa) — Z ch Z¢(p — ipwar).  (7)
i>0 i>1

Note that this formula works also for n = p where it yields 0.

5.11. Keep the assumptions and notations from 5.10 with A = F a field.

Lemma: If wa & Ry or if wa > 0, then p+ (p—1)(p — wp) s not a weight
of ker(y).

Proof: We can assume that wa € R} and that n < p in the notations of 5.10.
Any weight of Z¥(p) has the form

p= D mugwf=p— Y mgft Y, m_gh (1)
BERt BER!(w) BER(w)
with 0 < mg < p for all 3 where
Rw)={Be Rt |w™'8<0} and R(w)={B8€R"|w™'3>0}.

We have w(a) € R'(w). The weights of ker(¢) are the sums as in (1) with
Mwa 2 N. SO U+ D gcpw (P — 1) is not a weight of ker(p). The claim

follows because s g, 8= p — wp.
Remark: The same kind of argument shows also:

If wa € R} and n < p, then p — (p — 1)(p + wp) is a weight of ker(p). (2)
Use that g1 — 5 iy (P — 1)8 is a weight of ker(y) if n < p.

5.12. Lemma: Let w € W with wa € RY. Then one has for allv € X:
Lp*(v) = Lig(v + (p — m)wa) (1)

where m s the integer with 0 < m < p and

m-1= W(Hwa) + (I/, (wa)v) resp. (2‘1'" = W(Kwa)zC?d(V’(wa)v).

Proof: Apply 5.10 to u = v + (p — 1)wa. The corresponding n is n = m — 1
for m > 1, and n = p for m = 1. For n < p the modules Z§(y — nwa) and
Z#*(v) have the same nonzero image in Z}(u), so their simple heads have to
be isomorphic. This and the fact that ¢ is an isomorphism for n = p yield
the claim.

Remark: The lemma and 5.10(3) show (in principle) how to find the weight
M In 4.3(3).
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5.13. Let w,z € W. Choose a reduced decomposition 27 w = s159--- s,

of 27 'w, where s; is the reflection with respect to a simple root «;. Set
T; =1x51850--+8;_1for1<i<r+1. Soz; =2z and z,4; = w.
Fix p € X. We have for 1 < ¢ < r homomorphisms (recall the notation

4.7(4))
vi s Z3 (p(xi)) = Z3° (w(@i) — (p — Dzi())

as in 5.10(1). Because of z;s; = ;41 and s;p = p — o; we can write this as

pi: Zg (z) = Z3 4 (1{@iga)- (1)

The composition
@ =ro-0py0p

is then a homomorphism

¢ Za(z)) = 23 (p(w)). (2)

Lemma: Suppose for all i that z;a; € Ry or z;a; > 0. Then ¢ induces an
1somorphism on the u-weight spaces. It is a basis for the corresponding Hom
space. If

Y Ry)N{a € RT |wlza < 0} =0, (3)

then  1s an isomorphism.

Proof: Recall from 4.7(5) that all Z%(u(y)) with y € W have the same
character. Their u-weight spaces are free of rank 1. Our first claim (and then
also the second one via 4.7) will follow, if we show that each ¢; induces an
isomorphism of the p—weight spaces. It is enough to look at the case where A
is a field and to show that y is not a weight of ker(¢y;). That claim, however,
follows from Lemma 5.11 applied to u(z;) instead of pu.

We know by Lemma 5.10.a that ¢; is an isomorphism, if z;a; ¢ R,. So
© is an isomorphism, if

R.N{zia; |1<i<r}=0.

Since
{ea € Rt |wlza <0} = {s189-- 5,10 | 1 <i < 7},

the last claim follows.

Remark: We have z;o; > 0 for all ¢ if and only if [(w) = I(z) + {(z~ w). For
example, this holds for + = 1 and w arbitrary, and it holds for w = wy and
x arbitrary. If l(w) = I(z) + {(z~ w) or if (3) holds, then the assumption in
the lemma is satisfied for each reduced decomposition of z=!w. Our second
claim implies then that a different reduced decomposition of z~!w multiplies
¢ by a unit in A.
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5.14. Lemma: Let u € X and w e W.
a) Ifwa >0 for all a € R}, then Za(u) — Z%(u{w)).
b) If w'a < 0 for all o € RY, then Z¥(p{w)) — Z3°(pu{wo)).

Proof: We get a) applying the last claim of Lemma 5.13 in the case z = 1.
We get b) applying it to (wp,w) instead of (w, ).

Remark: Lemma 5.3 implies now:
If A is a B®-algebra, then Za(p) == Z¥(u(w)) for allw € W.

If A is a Bf-algebra for some 3 € R*, then Z¥%(u(w)) == Za(p) for all
w €W with w™'8 > 0, and Z%(p(w)) — Z3°(u(wo)) for all w € W with
w3 <0.

5.15. We assume in the remaining subsections of this section that F is a
field that is a U%-algebra, and that 7 is the structural map.

Lemma: Let 3 € R be a root with m(Hg) = 0 resp. with n7(Kg)? = 1. One
has then for all p € X :

ch L¥" (sgm) = 5 ch LE (). (1)

Proof: Set s = sg. On U° the operator T} is given by
Ty(Ho) = Ho — B(Ha)Hy  tesp.  Ty(Ka) = Ko K577 (2)

for all @ € R. This implies: If 7(Hg) = 0 resp. if 7(Kg) = 1, then 7 o T,y and
7 coincide on U°. Then A = A[s], and the functor M — M|[s] as in 4.4 maps
C4 to itself. We have then LE(p)[s] >~ L% (sp) for all w € W and p € X by
4.4(3), hence (1) in that case.

The situation where 7(Kg) = —1 in Case 2 requires more preparation.
One has for any choice of integers r(«) for a € ¥ an involutory automorphism
o of Uy with 0(K,) = (=1)"YK,, 0(E,) = (-1)"¥E,, and o(F,) = F, for
all o € &, cf. [Lud], 4.6. Each weight vector in U; and U is then multiplied
by 1 or by —1 under o. Therefore ¢ maps I to itself and thus induces a similar
involutory automorphism (also denoted by o) of U. We can twist 7 by ¢ and
get ' = moo :U® — A. Denote A with this algebra stucture by A[o]. We
get a functor M +— M(o] from C4 to C4fs) where M[o] is M with the old
structure as an A-module and the old grading, where any u € U acts as o(u)
acts on M. It is easy to see that this functor is an equivalence of categories,
that it satisfies ch(M[o]) = ch(M) whenever this makes sense and (for A = F

field)
) LE(n)lo] =~ L¥ (1) 3)
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for all p € X and w e W.
Suppose now that m(Kjgz) = —1. We can choose o such that o(K,) =

(=1)(>F") K, for all a € I, hence for all @ € R. Then moo(Ky) = moTy(Ka)
for all o € R. This implies F[o] = F[s]. We get therefore

w)[s] ~ LF[s] (sp) =~ ?’[)a](sﬂ) Lz’ (sp)lo],
hence (1) in this case.

5.16. The following result is an immediate consequence of Lemma 5.15:

Lemma: If F is a B-algebra, then one has for allw € W, x € Wy, and
peX:
ch LY (zp) = xz ch Ly (p).

5.17. Set
Xr={peX(T)|0< (n,av)<p for all a € X.}.
Proposition: If F is a B-algebra, then one has for allv € XT and w € Wy

Lr((p=1)p—v) = Lip((p— Dwp — wr).

Proof: We want to use induction on the length of w as an element of W;.
The case w = 1 is trivial. It is enough to show for all w € W, and o € £,
with w(a) > 0 that

2% (p = Vwsap — wsav) = LE(p — 1wp — wv). 1)

Let s, = 5152+ - - 8 be a reduced decomposition of s, in W. So each s; is the
reflection with respect to a simple root o; in R, and one has

R(sa) = {B € BT | 5a(B8) < 0} = {wi(;) | 1 < i <1},
where w; = 81 ---5;_1 for 1 <i <r+ 1. One has
R(sq) N Ry = {a}
because « is simple in R, and hence s, stabilizes R} — {a}. So there is an

index j with w;(a;) = a, and one has w,(a,) ¢ Rr, hence wwi(a;) ¢ Ry for
all i # 5. Therefore 5. 10(3) yields for all v’ and all ¢ # j an isomorphism

ww.(( _ 1)ww,'p+ UI) ~ Lt;wiﬂ((p_ 1)wwi+1,0+ yl)
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Using this repeatedly, we see: The left hand side in (1) is isomorphic to
L% (p1) with  py = (p— Dww;sjp — wsav,
and the right hand side in (1) is isomorphic to
L% (up)  with  pp = (p— Dww,p— wr.

We have ww;(o;) = w(a) > 0, so Lemma 5.12 implies that

Lp"® () = L™ (1 + (p = 1 = n)wa),
where n is the integer with 0 < n < p and

(p1,w(a)”)=n+1 (mod p).
So we have to show that u, is equal to
p1+(p—1—-n)wa=(p—1)(ww;s;jp+ wa) — wsev — nwa.

Because
ww;sjp + wa = ww;(sjp+ a;) = ww;p

we have to show that

—SqV —no = —v,
i.e., that
n=(v,a’).
By definition
n=((p—lww;sjp— wser,w(a)’) —1=—(w;s;p,a’) — (sav,a”) — 1

= —(s;jp,o)) + (v,0") = 1= (v,a") (mod p).

This shows that n and (v,a") are congruent modulo p. Because both are
between 0 and p — 1 (by definition resp. by the assumption that v € XT),
they are equal.

5.18. Corollary: If F' is o B-algebra, then for all v € X] the formal
character of Lp((p — 1)p — v) 1s Wr-invariant.

This is an obvious consequence of Proposition 5.17 and Lemma 5.16.
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6.1. Choose a reduced decomposition wy = sys;--- sy of wy and fix p € X.
Apply the construction from 5.13 with z = 1 and w = wy. Write now w; =
5189 -++8;_1 for 1 <i < N + 1. We get homomorphisms

pi: 28 () — Z5 (w(wien))
and their composition
i Za(p) > Z5°(n—2(p - 1)p).

We assume in the next subsections (until 6.6) that A = F' is a field with
structural homomorphism 7.
Lemma 4.9 implies

Lr(p) = 9(ZFr(p) =soc Zp®(n = 2(p — 1)p). (1)
For all 3 € Ry let ng = ng(p) be the integer with 0 < ng < p and
m(Hg)+ (u+pBY)=ng-1  resp.  w(Kpg)2(2Hutef") = c2dns  (9)

where d = dg.

Lemma: Let 3 = w;(«;) for some i with 1 <i < N. Then p; 1s an isomor-
phism if and only if B ¢ Ry or if B € Ry and ng = p. Otherwise ker(yp;) is a
homomorphic image of Zp' (p(w;) — ngp3).

Proof: We have

(w(wi) + wip,8Y) = (u+p,8Y) (mod p).

Therefore the claim is an immediate consequence of Lemma 5.10.
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6.2. Lemma: Let \,u € X. If Lp()) is a composition factor of Zp(p),
then g = X or Lr(X) is a composition factor of Zp(pu—ngQ) for some 3 € R}
with ng # p.

Proof: Use the notations from 6.1. Suppose that Lg()) is a composition factor
of Z péu with XA # p. Then 6.1(1) implies that Lg()) is a composition factor
of ker(y), hence of ker(y;) for some i, therefore (by 6.1) of Zp*(u(w;) — ngf),
where 3 = wi(a;) € R} and ng # p. This module has (by 4.7(5)) the same
character as Zp(pu — ngfB3), so Lr()) is a composition factor of this second
module also.

Remark: This lemma implies a strong linkage principle. First a notation: For
pand B asin 6.1(2) set Bl pu=p—ngBif ng < p, and 3] p = p otherwise.
We can now state the principle as follows: If Lp()\) is a composition factor
of Zp(u), then there is a chain \g = A\, A1,..., A\, = pu and B3; € R} with
BilXi=Ai—g for 1 <i<r.

6.3. Lemma: Let p € X. The following are equivalent:
(1) Zp(p) is irreducible.

(11) One has ng(p) = p for all 3 € RY.

(ii1) Lp(p) is projective and injective in Cp.

Proof: Use the notation from 6.1. Formula 6.1(1) implies that Zg(u) is simple
if and only if ¢ is bijective. Because all Z(v) have the same dimension, this
holds if and only if each (; is an isomorphism. By Lemma 6.1 this is equivalent
to ng = p for all B € RY, i.e. to (ii).

If Zp(p) is irreducible, then a dimension argument shows that Lg(u) is
not a composition factor of any Zp(A) with A # u. So Proposition 4.6 implies

Ext, (Lr(p), M) =0 = Extl, (M, Lp(p)) (1)

first for all simple M, then for all M in Cr. Therefore L () is both projective
and injective in Cp, cf. the argument in [Ja6], 11.10.2.
On the other hand, if Lr(u) is projective, then the exact sequence

0— radZF(y) — Zp(y) — LF(,u) — 0

has to split. The radical of a module can split off only if it is 0, so we get
radZp(p) = 0 and (i).

Remark: If R, = 0, then (ii) is always satisfied. So all Zp(u) are irreducible,
hence all simple modules in Cr projective and injective:

Qr(p) = Zp(p) = Lp(p)  forall pe X. (2)

All modules in Cp are semisimple. These facts as well as the results in 6.3
follow in Case 1 easily from the much more general Theorem 2 in [VK], see
also [FP1]. Similarly, in Case 2 they follow from [DCK1] and [DCK2].
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6.4. As an example, consider the case where there is exactly one positive
root 3 in R,. In the set up of 6.1 there is a unique ¢ with 1 < ¢ < N and
B = wi(e;). All p; with j # i are isomorphisms. The image of ¢ is isomorphic
to the image of ;. Let ng be the integer as in 6.1(2). For ng = p also ¢; is
an isomorphism and Zp(u) is irreducible and one has

Qr(p) = Zr(p) = Lr(p)- (1)

Suppose now that 0 < ng < p. Then the image of ¢;, hence of ¢, has
dimension pV ~!ng by 5.10(6), so we get

dim Lp(p) = p" ~'ng. (2)
The kernel of ¢; is equal to a homomorphic image of Zz*(u + (p — 1)(wip —

p) — ngB). This module is isomorphic to Zr(p — ngB) under the composition
of analogues of the ¢; with j < i. So ker(y;) is a homomorphic image of

Zp(pu—~ngB) and has dimension p¥ ~!(p—ng). This is equal to the dimension
of Lp(u — ngfB) by (2) applied to p — ngB. So ker(y;) is isomorphic to
Lp(p — ngfB) and we have an exact sequence

0— Lr(p—npB) = Zr(p) — Lr(p) — 0. 3)

It is now obvious that Lp(u) is a composition factor of Zp(u) and of
Zp(p + (p — ng)B) and it does not occur in any other Zg(X). Therefore we
have by 4.15 an exact sequence

0= Zr(p+(p—np)B) = Qr(p) — Zr(p) — 0. (4)

It leads to a projective resolution

= Qr(p+pB) = Qr(p+ (p—np)B8) = Qr(n) — Zr(p) = 0. (5)

Using this resolution one can compute easily all Ext groups between two
Zp(p'). One gets especially

Exte, (Zr(n), Zr(p + (p = ng)B)) ~ F. (6)

This implies that for any nonsplit extension 0 — Zp(pu+ (p — ng)B) - M —
Zp(u) — 0 the module M is isomorphic to Qp(pu).

6.5. We shall use homomorphisms like the ¢ from 5.5(3) to construct filtra-
tions of all Zg(p). Let F[X] be the polynomial ring over F in one indetermi-
nate X.
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Lemma: o) In Case 1 set A = F[X]. There ezists a homomorphism of k-

algebras 7 : U° — A such that there is for each root B € R an element cg € k
with
7(Hg) = cgX + n(Hp) and cg # 0. (1)

b) In Case 2 set A = F[X, (X + 1)7!] and let 7 : U° — A be the homomor-
phism with T(Ky) = (X + 1)n(Ky) for all a € . One has for all 3 € R*:

7(Kp) = (cgX + 1)7(K3) (mod X?) (2)

for some integer cg > 0.

Proof: a) We can regard U° as a polynomial algebra over k in the indetermi-
nates H, with o simple. So for any choice of the ¢, with « simple there is a
unique 7 with T(Hy) = co X +7(Hy) for all a simple. For an arbitrary root 3
we can express Hg as a linear combination Hg = ) mgqoH, of the H, with
a simple with coefficients mg, € F,. We get then 7(Hg) = cgX + n(Hp)
with cg = 37, mgacq. If we choose the ¢, linearly independent over F,, then
cg # 0 for all 3. (Note that Hg # 0, because there is a w € W with w(f3)
simple, hence Hg = w™'H,g).) If p is greater than the Coxeter number of

R, we can take m(H,) = X for all a simple, but that does not work for small
primes.

b) If =73 cx m(a)a then

T(Kg) = 7([] K&®) = (X + )2 ™@n(Kg) = (1+ Y m(a)X)r(Kp),
a€ED

s0 g = D ex M(a) > 0 will work.

6.6. Choose A and 7 as in Lemma 6.5. Regard F' as an algebra over A via
X — 0. Then
Zr(p) >~ Z(p) @7 F ~ Z(p)/ XZ (1) (1)

for all 4 € X. Consider the homomorphisms ¢ and ; as in 6.1 over A. Define
a filtration first on Z4(u) by

Z(ny ={ve Zz(p) | pv) € X722 (1 = 2(p — 1)p)} (2)

for all j > 0, and set then Zp(u)’ equal to the image of Z;‘\(u)j in Zp(p)
under reduction modulo X.

Set
N(p) = |{B € Rf |np #p} |
with ng = ng(u) as in 6.1(2).
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Proposition: One has
Zr(w)/Zr(p)' = Lp(n)  and  Zp(p)V®W =socZp(n).  (3)

Furthermore, Zp(p)NW+1 =0 and

S chZp(p) = > (3 chZp(p—(ip+np)B) — Y ch Zr(u—ipB)). (4)

7>0 Bert 120 >0

Proof: By construction Zp(p)! is the kernel of the reduction modulo X of ¢.
This reduction is the analogue of ¢ over F. So 6.1(1) implies the first part in
(3)-

Over the field of fractions of A the analogue of R, is empty. Therefore
all ¢; and ¢ induce isomorphisms over this field, cf. 6.1. This implies that
Zp(p)? = 0 for all j > 0 and that an expression like >, ch Zp(n)’ makes
sense. This sum can now be computed using the ideas from [And], cf. [Ja6],
ch. I1.8.

Using ¢; we can define a filtration of each Z; = Zz*(u(w;)) analogous to
the one on Zp(p). This filtration can be described explicitly. We can regard
Z; as a suitable Zp: (p')[w;], cf. 5.10. We get ¢;, hence also the corresponding
filtration from a map on Z 4, (y'). That map is induced from a map over P(o;)

for which we have explicit formulas as in 5.6(2),(3). A basis element of the
form [, E'T_"[gﬂ)vj (where the product is over 3 € Rt — {«;}) is mapped to

c;j times the basis element [], ETéﬂ)U;_j_H for some ¢; € A. Now 6.5(1),(2)
and the formulas in 5.6 imply that the X-adic evaluation of the c; is either 0
or 1. This implies that (Z;)* = 0 and that (Z;)® is the kernel of the reduction

modulo X of ¢;. So ch(Z;)! is given by a formula like 5.10(7). It involves
characters of certain Zp'(u1) that can be replaced by characters of suitable

Z}(u2) using 4.7(5).

Now }>.5och Zp(p)? is equal to the sum of all ch(Z;)!. This leads easily
to (4). (Details are left to the reader. Notice that the contribution from 3 is
0if ng =p.)

The p—2(p — 1) p-weight space in each Z; has dimension 1. By 5.11(2) it
is contained in the kernel of ¢; whenever 8 = w;(o;) € Ry and ng < p. This
fact together with the discussion above implies easily that Zr(u),—a(p—1), is
contained in Zp(u)N® and not in Zp(u)N®+!. Because this weight space

generates the socle of Zp(u), we see that Zp(u)V (¥ is the last nonzero term
in the filtration.
Composing ¢ with an isomorphism as in Lemma 4.10 we get a homomor-

phism
f:Z3(p) = Z3(w)"
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We can use it to define a contravariant bilinear form on Z2(u) via (z,y) =
(f(z))(y)- As usual, we get then a non-degenerate contravariant form on each
Zp(p)? /Zp(p)’*!, ie., an isomorphism

Zp(n) [Zr(py ™ = (Zr(p) | Zr(n) )" (5)

We get especially an isomorphism

Zp ()N ~ (Zp(u)N(”))T.

Because the simple socle of Zp(u) occurs with multiplicity 1 in this term —
the u — 2(p — 1)p—weight space has dimension 1 — it splits off. Therefore it
has to be equal to this term.

6.7. Recall the notations sg,, and w.\ from the list of basic notations.
Denote by W), the group generated by all sg ,, with 8 € R and m € Z. This
group is isomorphic to the affine Weyl group W, of R (under sg mp — sg,m)-

For any U’-algebra A with structural map = denote by Wy , the group
generated by all sg ,p, with 8 € R and m € Z. If R, is a root system (for
example, if A is field, cf. 5.2), then Wy , is isomorphic to the affine Weyl
group of R,.

As observed in 6.2, there is a strong linkage principle for the Zp(u). Let
us now state the (weaker) linkage principle in the special case of a B—algebra.

Lemma: Suppose that the field F is a B-algebra. Let \,u € X. If Lp()\) is
a composition factor of Zp(u), then X € Wr pept.

Proof: Under our assumption the integers ng = ng(u) in 6.1(2) are deter-
mined by 0 < ng < p and

(p+p,8Y)=ng (mod p) (1)
for all 3 € R,. This implies for each 3 € R}:

p—ngPB =88 mpep where mp = (u + p, ) — ng.
So the claim follows from Lemma 6.2 by induction on p — A for fixed A.

6.8. The group W, acts on the Euclidean space Xp = X ®z R as an
affine reflection group. It defines a system of facets, alcoves and walls in Xg,
cf. [Bou2], chap. VI, §2, and chap. V, §1 and §3. For an explicit description
of a facet and of its closure one may compare [Ja6], 11.6.2(1), (2). Inside the
closure of a facet F' there is a special subset that 1s called the upper closure
of F, cf. [Ja6], I1.6.2(3). One defines symmetrically a lower closure of F.
Suppose that R’ is a subset of R with sg(R') = R’ for all 8 € R'. Then
R' is a root system in the vector space generated by R'. Set W' equal to the
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subgroup of W, generated by all sg mp with 3 € R' and m € Z. Then also
W' acts on Xg as an affine reflection group. We get a system of facets with
respect to W' and we can define upper and lower closures as before.

Let us look especially at the case where R' = {£3} for some 3 € R*.
Suppose that A € Xgr satisfies

np < (A+p,6") <(n+1)p )

for some integer n. The facet of A with respect to W' = < sgmp | Mm € Z >
consists of all p with

np < {4+ p,8Y) < (n+1)p, (2)

the closure of that facet consists of all p with

np < (p+p,8Y) < (n+1)p, (3)

its upper closure consists of all y with

np < (p+p,8Y) < (n+1)p, (4)

and its lower closure of all p with
np < (p+p,BY) < (n+1)p. ()

If A € Xg satisfies np = (A + p,5Y) for some integer n, then the facet of A
with respect to W' consists of all p with np = (1 + p,3Y), and this facet is
equal to its closure as well as to its upper and lower closures.

6.9. We define a partition of X into disjoint subsets that are called the blocks
over A. We require that A and g belong to the same block, if Home, (Z4()),
Za(p)) # 0 or if Exte, (Z4(X), Za(p)) # 0. We take then the finest possible
partition with this property.

Denote by D4 the full subcategory of C4 containing exactly all objects
with a Z-filtration. If bis a block over A, denote by D 4(b) the full subcategory
of all N in D4 where the factors in a Z-filtration involve only Z4(u) with
pEb.

Proposition: a) If b, b' are blocks with b # b, then Homp ,(M,M') =0 for
all M in Da(b) and M' in D4(b').

b) Each M in D4 has a unique decomposition M = &, My, where the sum 1s
over all blocks b over A, such that each My is in D 4(b).

Proof: This follows directly from the definition of a block.
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6.10. Set C4(b) equal to the full subcategory of all modules M in C4 such
that M is a homomorphic image of a module in D 4(b).

Any N in Dy4(b) is by Lemma 2.13 a homomorphic image of a projective
module @ in D,4. By Proposition 6.9 it is then also the image of @, so we
may assume that @ is in D4(b). This implies now that also any M in C4(b)
is a homomorphic image of a projective module in D 4(b).

Theorem: a) If b, b’ are blocks with b # b', then Home, (M, M') =0 for all
M in C4(b) and M' in C4(Y).

b) Any M in C4 has a unique decomposition M = @, M,, where the sum is
over all blocks b over A, such that each My is in C4(b).

c) Each C4(b) is closed under homomorphic images, submodules, eztensions,
and finite direct sums.

Proof: a) Let f: Q@ — M and f' : Q" — M' be surjective homomorphisms
with @ projective in D 4(b) and Q' projective in D4a(b'). If g: M — M' is a
homomorphism, then the projectivity of @) yields a homomorphism ¢’ : Q —
Q' with f'og' = go f. Now g’ = 0 by 6.9.a, hence g = 0 by the surjectivity
of f.

b) There is a projective module @ in D4 with a surjection f : Q — M.
We have Q = @, Qs as in 6.9, hence M = ), M}, where My = f(Q;) for all
blocks b. Obviously each M, is in C4(b). The directness of the decomposition
of M as well as its uniqueness follow from part a).

c) This is clear.

Remark: Any M in C4(b) for some block b has a projective resolution com-
pletely contained in C4(b). This implies for all M, M' as in a) that Ext}, (M,
M') = 0 for all ¢ > 0. Therefore we could admit arbitrary Ext groups in the
definition of a block, not just Ext® = Hom and Ext'.

6.11. We say that a module M in C4 belongs to a block b if M is in C4(b).
Lemma: Let A € X. Each Z¥ (A (w)) with w € W belongs to the block of .

Proof: By 4.7(6) the endomorphism algebra of M = Z%(A(w)) is A. Therefore
each nonzero summand M, as in 6.10.b has the form aM with a € A idem-
potent, a # 0. If f is a basis of the A-module Home, (Z4(X), M), cf. 4.7(6),
then af is a nonzero homomorphism from Z4(\) to M. So 6.10.a implies
that b is the block of A\. The claim follows.

6.12. In the case of a field one defines usually blocks via simple modules.
We show now that our definition coincides with the usual one.

Lemma: Suppose that A = F is a field. The blocks over F can also be
characterized as giving the finest partition of X such that A\, u belong to the
same block if Lp()\) and Lrp(p) have a non trivial eztension.
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Proof: Let us call Blocks (with a capital B) the parts of the partition defined
in the lemma. If A\, \’ belong to blocks b and V', then Lg(}) is in Cp(b) and
Lr(X)isin Cp(b'). If b# V', then Extg (Lr(X), Lp(X')) = 0. Therefore each
Block is contained in a block.

In order to get the other direction, note that Theorem 6.10 generalizes
obviously to Blocks: For every Block b let Cr(b)' consist of all M in Cr with
composition factors only among the Lr(\) with A € b. If M in Cp(b)" and M’

in Cp(b')" with b # b', then obviously Home, (M, M') = 0 = Exte, (M, M").
Furthermore every M in Cr admits a unique decomposition M = @, M,
with b running over all Blocks such that M) is in Cr(b)'.

If X\ belongs to a Block b, then Zp()) being indecomposable i 1s 111 C F( )
If X' belongs to a different Block o', then the groups Home, (Zp(

and Extg, (Zp(X), Zp(X')) vanish. Therefore each block is contalned in a
Block. This proves the lemma.

6.13. Proposition: If A is a B-algebra, then the block of each u € X 1s
contained in Wy pept.

Proof: If A is a field, then the claim follows from Lemma 6.12 together with
4.6(2) and Lemma 6.7.

Consider now arbitrary A; let A\, u € X. For each A-algebra A’ and each
¢ use the abbreviation

By = Extl, (Zar(\), Zar ().

Suppose that there is an ¢ with EY # 0. We have to show that A € W pep.
It will be enough to find a max1rna1 ideal m of A and an index j > 0 with

EA /m # 0. Then we can use the result in the case of a field, since each A/m
is a B-algebra and since the analogue of Wi , for A/m is contained in W ,.
Well, suppose that E} A/m

3.4 implies that EY = 0 for all i > 0. So our assumption implies that E% #0.
Now 3.4(3) shows that there is a maximal ideal m in A with EY /m 7 0.

=0 for all j > 0 and all m. Then Proposition

Remark: Suppose that A is a B%-algebra. Then the block of each p € X is
equal to {u}. (This is the case R, = @) of the Proposition. It can be proved
more directly using the remark in 6.3 instead of Lemma 6.7.) By Corollary
3.5 and 6.3(2) each Za(p) is a projective module in C4. Any M in C4({u})
is by definition a homomorphic image of Z A( )™ for some integer m > 0. So
Za(p) is a projective generator for C4({u}).

6.14. Proposition: Let A’ be an A-algebra. Then each block over A' is
contained in some block over A.
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Proof: Let A € X be a weight and b the block containing it. Using 6.10 we
see that Z4()) has a resolution P* — Z4()\) by projective objects P* that lie
in D 4(b). Since Z4()) and all the P* are free over A, this complex remains
exact when we apply ® 44’ to it. By Lemma 3.1 the P! ® 4 A’ are projective
inC Al

Let now p € X be another weight, belonging to the block b', and let
Q* — Z4(p) be a projective resolution with all @* in D4(b'). By standard

homological algebra '
Exte,, (Za(A), Za (1))

can be identified with the set of homotopy classes of chain maps from P* ® 4
A to Q' @4 A'. But if b # ¥, then Home,,(P" ®4 A',Q™ ®4 A') =
Home, (P™,Q™)®4 A' = 0 for all n, m, where we use first 3.3 and then 6.9.a.
Hence ExtéA, (Zar(X), Zar(p)) =0 for all ¢ and this proves the proposition.

6.15. Lemma: Let 3 € RT. Suppose that A is o BP-algebra, that is not a

B®-algebra. Let p€ X. If (u+p,B8Y) =0 (mod p), then the block of p is
equal to {u}. Otherwise it is equal to

{p+ipB, p+ (ip—(n+p,8"))B |i € Z}. (1)

Proof: If A is a field, then the claim follows from the discussion in 6.4. For
arbitrary A we argue as in the proof of 6.13. We get thus in the first case that
the block of 4 is equal to {u} as desired, in the second case that it is contained
in the set in (1). (Of course, that is also a special case of Proposition 6.13,
since this set is equal to W pept.) In order to see that the block is equal to this
set (and not smaller), choose a maximal ideal m of A containing the image of
Hpg resp. of [K3;0]. Then the block of u over A/m is equal to the set in (1)
by the result for a field. The claim follows now from Proposition 6.14.

6.16. Suppose in this subsection that A = F is a field that is a B-algebra.
We know that R, is a root system, cf. 5.2. For any A € X let R} be the
union of all irreducible components R; of R, such that there is an o € R,

with (A + p,a") Z0 (mod p). Set Wﬁ"p equal to the affine Weyl group for
R} generated by all Sa,mp With a € R} and m € Z. We have obviously
Ry = R} and Wpt?" =W} for all \,v € X.

Proposition: For each A € X the block of A over F is equal to W?,p'A‘

Proof: Let us denote the block of any A over F' by bp(X). We get the inclusion
brp(A) C Wﬁ:,p.)\ arguing as in 6.13, since we can easily replace Wy , by Wﬁ,p
in Lemma 6.7.

So we have to prove the other inclusion. We are going to use the notation
ng(p) asin 6.1(2). So the ng(u) are integers between 1 and p with (u+p, 8Y) =
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ng(p) (mod p) for all 3 € Rf, cf. 6.7(1). We want to show first for all
B € R} and all A € X:

If ng(A) < p, then A —ng(X)B € br(A). (1)
If we have (1) for a given 3 and all A, then we get for that 8 and all A
If ng(A\) < p, then A — (ng(A) + pm)B, A —pmB € bp(A) for all m € Z. (2)

(Note that ng(A—ng(A)) = p—ng(A) in case ng(A) < p, and use induction on
|m|.) We want to prove (1) by induction on the height of 3 and may assume
(2) for all positive roots in R, of smaller height. Well, if ng(A) < p, then
ch Zp(X —ng(N)) is one of the summands in the sum formula 6.6(4). So we
get [Zr(X) : Lr(X — ng(X\)B3)] # 0 or there is an o € R} with ny(X) < p and
[Zr(X — psa) : Lp(XA — ngPB)] # 0 for some integer s > 0. In the first case (1)
is obvious. In the second one we get first A — ng(A)3 € bp(A — psa); since
the height of o has to be smaller than that of 3, we know by induction that
brp(\ — psa) = bp(A), and (1) follows.

Let us now fix an irreducible component R; of R,. We have to show
that sq,mpeA € bp(A) for all A € X with Ry C R} and all o € Ry N R* and
m € Z. If no(\) < p, then this follows from (2). If ny(A) = p, then the set of
all so,mpeA With m € Z is equal to the set of all A — mpa with m € Z. So we
have to show for all A € X

If Ry C R}, then A — pa € bp()). (3)

(We get then A — pma € bp(\) for all m € Z by induction on |m|.)

Choose a basis ¥; of the root system R; such that R; N R* is the cor-
responding positive system. It is enough to prove (3) for oo € ¥;. If there
is some B € R; with (A4 p,3Y) # 0 (mod p), then there is also a 3 € L,
with this property. So, given o € £; and A € X with R; C R}, we can
find a sequence a; = @, a3,...,a, in X1 with (A + p,a)) Z0 (mod p) and
(ai, ;) < 0for all i < s. We may assume that s is minimal with this prop-
erty (given A and «); this implies in particular that (A + p,a)) =0 (mod p)
for all i < s and (o, ) =0 for all i < s — 1. We use induction on s (for all
possible A). If s = 1, then n,(A) < p and (3) follows from (2). So suppose
that s > 1. Set b = ngy,(A) and X' = X — ba,. We have bp(A) = bp(X')
and bp(X — pa) = bp(X — pa) by (2) applied to a,. If (N + p,ay ;) Z0
(mod p), then we can use the induction on s and get bp(\') = bp(X — pa),
hence bp(A) = bp(\ — pa) as desired.

Suppose now that (' +p,a)_;) =0 (mod p); We have by construction
(M +p,a)_1) = —-blas,a)_;) (mod p), so we get ba,)_;) =0 (mod p).
Since 0 < b < p, this is impossible if (a5, a)_;) = —1. If (a,,a)_;) = -2,
then p has to be even and b = p/2. Then (a;,s,...,a5) is a basis of a
root system of type C, with a, a long root. (Use the minimality of s.) We
have then 8 = 209 + -+ + 205—1 + @3 € R; and v = 204 + B € Ry, and
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we have ¥ = af + -+ ay_; + o) and v¥ = oY + 3Y. We have then
ny(A) = b= ng(A — pa), hence — using (2) —

br(A) =br(A—by =A—pa—bB) = br(A - pa).

If (a5, ¢)_;) = =3, then s = 2 and (a3, a3) is a basis of a root system of type
G, with o a long root. Furthermore p is divisible by 3 and b € {p/3,2p/3}.
Take now 8 = oy and v = 3a; + a3 in case b = p/3, resp. ¥ = 3a; + 2, in
case b = 2p/3. We have in both cases n,(A) = p/3 and can argue as above.

Remark: The theorem implies (in the notation of its proof) that
WarpeA =br(X) + pZR, for all A € X. (4)

In fact, we can derive this formula much faster: it follows already from (2).

6.17. If Q is a union of blocks for A, we can define categories D 4(?) and
Ca(Q) extending the definitions in 6.7 and 6.9. For M in C4 set (in the
notations from 6.10.b)

pI'QM = @Mb' (1)
bCQ

Then prq is an exact functor from C4 to C4(f2), and we have pro M = M if
and only if M is in C4(Q). If X is the disjoint union of subsets (£2;);es such
that each €2; is a union of blocks, then one has for all M in C4

M= @ pro, M. (2)
i€l
We get thus an isomorphism between C4 and the direct sum of all C4(2;).

By abuse of notation we shall sometimes write prg, for the projection map
M — prqM with kernel equal to the direct sum of all M, with b ¢ Q.

If A is a B-algebra, then any W ,—orbit 2 in X is a union of blocks (by
Proposition 6.13). We shall mainly work with Q of this type. The family of
all Wy ,—orbits is then a possible choice for the €2; in (2).

Any module in C4(€?) has a projective resolution such that all terms in
the resolution are in D 4(f2). So the Ext groups of two modules in C4(2) are

the same, whether computed in C4 or in C4(Q2). If Q' is another union of
blocks for A with QN Q' = 0, then

Extg, (M,M')=0  foralli>0 (3)

whenever M in C4(Q2) and M’ in C4(Q').

Let A' be a A-algebra. By Proposition 6.14 any block for A is a union of
blocks for A’. So for 2 as above, C4:(2) makes sense, and M in C4(Q2) implies
M ®4 A" in Ca (). Similarly, M in D4(Q2) implies M @4 A’ in D4 (Q).
(Note: If M isin Dy, then M ®4 A’ is in D4/, cf. Lemma 3.1.b.) One has the
functors prg, also over A’. They commute obviously with base change: Given

M in C4 one has
pro(M @4 A') = (prgM) ®4 A'. (4)
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6.18 Let A be a B-algebra and let 2 be a union of orbits for Wr , in X. So
Qis nion of blocks over A; the categories C4 () and D 4(R) are > defined.

For each v € ZR, the translatlon by pv is an element of W, ,. Therefore
A — X+ pv maps Q bijectively to itself. The functor M — M [pu] as in 4.2
maps any Z4(p) to Za(p + pr) and is clearly exact. So it preserves D4(Q),
hence also C4(2). Now 4.2(4) shows that C4(Q) is a (pZR,)—category in the
sense of Appendix E.3.

Suppose that 2 is just one orbit for Wy , in X. Then the group of trans-
lations by elements in pZ R, has only finitely many orbits in (2, in other words,
there are py, po, ...,y € Q such that €2 is the union of all y; + pZR,. There
is for each ¢ a projective module @; in C4(f2) that maps onto Z4(p;). For
each A € Q there are an ¢ and a v € ZR, with A = p; + pv; then Z4()) is a
homomorphic image of Q;[pv]. We can now deduce that each M in D4(2) is
a homomorphic image of a (finite) direct sum of modules of the form Q;[pv;;]
with 1 < ¢ < r and v;; € pZR,. (Use induction on the length of a Z-
filtration.) But then also each module in C4(f) is a homomorphic image of
such a sum. So P = @;_, Q; is a projective (pZR,)-generator of C4(f2) in
the sense of E.3.

We can carry out the constructions above with W, instead of W ,. If
2 is an orbit of W in X, then C4(Q2) is in a natural way a (pZR)- category,
a.n(z v;e can find a prOJectlve module P in C4(f2) that is a (pZR)—-generator of
Ca(2
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7. Translation Functors

7.1. In order to construct tensor products of modules we need a comulti-
plication on U. By construction, U = U'/I where U’ is an algebra that has
already a comultiplication A and where I is a twosided ideal in U’'. In Case
1 we have U’ = U(g) and A is given by A(X) =X ®1+1® X forall X € g.
In Case 2 we have U' = U, (cf. 1.2) and A is given by

A(Ky) =Ko ® Ko,

A(Ey) =E, 1+ Ko Q Ey,

A(Fy) =1 Fy+F, @ K!

for all o € X.
Proposition: A induces a comultiplication on U.

Proof: This is easy in Case 1 where A(E}) = Ef®@1+1® Ej for all B € R.
The situation is more complicated in Case 2. In order to prove our claim
we have to show that

AI)CI®U, + U, ®1. (1)

Since A is a homomorphism and I is generated by I™ and I~ it will be enough
to show that
AIN)YCITeU + U oIt (2)

and
AIT)CI™ U Uy + Uy ®I. (3)

The proofs of these two claims are similar. We shall carry out only that of
(3). One has by construction A(U;) C Uy ® U, U]. We want to show for
any 3 € Rt that

A(EP,) e I" QU U + Uy @17, (4)
Let (ui)i<i<s be a basis of B,5_,4(U; ), consisting of all monomials in a

PBW-type basis of U, having weights > —p3. We want to assume that the
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numbering is chosen such that all u; with ¢ < r (for some index r) are exactly
those monomials where all exponents are < p — 1. Let (¢;),es be a basis of

U = U°. There are uniquely determined elements u; ; € Uy (almost all equal
to 0) with

A(E? ) =3 uij @ uit,. (5)

=1 jeJ

Denote the weight of u; by p;. Then each u;; has weight —p — p;. Claim (4)
is equivalent to

If 1 <4< r,then u;; € I~ forall j € J. (6)

The counit € on U, satisfies (¢ ® 1) o A = id. This implies

E’iﬂ = Z Ze(u,-j)uitj.

i=1 jeJ

One has (1) = 1 and € maps each (U, ), with v # 0 to 0. Now u;; has weight
0, if and only if p; = —pB. This implies £(u;;) = 0 whenever u; # —pg. If
pi = —pf3, however, then u;; € k and e(u;;) = u;;. Now E’iﬂ itself is one of
the u; with ¢ > r. Therefore we get:

u;j =0 for all ¢ < r with p; = —pfB and all j € J. (7)

Suppose that (6) does not hold. Let v > —pB3 be minimal for: There exist
i < r with g; = v and u;; ¢ I~ for some j € J. We have v > —pf3 by (7).

We can consider any u—module as a U—module via the homomorphism
f:U; — uC Us asin 1.3. Take for example M; = Zy((p — 1)p) with its
standard generator m;. Because u — um; is a bijection from U~ to M, the
annihilator of my in U, is equal to the kernel of f in U;, i.e., to ™.

Let K be the field of fractions of U = U°. Consider My = Zk(0) in Cx
and its standard generator m,. Regard M, as a module over U,;. One has
u;me = 0 for all ¢ > r, because these u; are in the kernel of U; — U and
annihilate M;. The u;my with 1 < ¢ < r are linearly independent over K,
hence the u;mat; with ¢ < r and j € J are linearly independent over k.

We can now regard M; ® M, as a module over U; using A. One has

EPg(mi@ma) =Y > uijmi @ uimat; (8)
i=1 jeJ

since tmg = mot for all t € U°. All summands with u;; € I~ are 0.
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Because E? P is central in U, it commutes with all F, with o € ¥. So
Eo(my @ my) = 0 implies 0 = E,E? 5(m; ® my), hence

0= E Z(Eauﬁml ® uimat; + Kquiym; ® Eauim2tj)- (9)
i=1 jeJ

The choice of v implies: The sum of all terms in (9) that belong to Zx((p —
1)p) ® Zk(0), is equal to

0= Z Z Equijmy ® uimayt; (10)
1 JeJ

where the sum over 7 is over all ¢ < r with yu; = v. Since the u;m,t; are
linearly independent over k, we get

0 = Eq(uijms) (11)

for all j € J and all ¢ as above. This shows (for all these 7 and j) that u;;m,
is a vector of weight (p — 1)p—pB—v < (p—1)p in Zx((p — 1)p) that is
annihilated by all E, with o € ¥. It therefore generates a proper submodule
of Zx((p—1)p). On the other hand Zx((p—1)p) is irreducible by 6.3. Therefore

0 = u;;my for all j € J and all 7 < r with p; = v. This implies now u;; € I~
for all these 7, j contradicting the choice of v. So (6) has to be true.

7.2. It is clear by construction and by the proof in 7.1 that the comultipli-
cation on U induces comultiplications on U°, U°U* and U~U°. In fact, we
get on U and on these subalgebras structures of Hopf algebras. It is obvious
that the counit factors through U. In Case 1 the antipode S on U(g) is given
by S(X) = —X for all X € g. That induces clearly an antipode on U and

those subalgebras. Again Case 2 is more complicated. On U, the antipode is
given by

S(E,) = —K;'E,,

S(Fa) = —FoK,,
S(Kq) =K'

for all & € X. Obviously UL, U, U?, USU; and all U, are stable under S.
In order to show that S induces maps on U®, U~U°, and U°U™ it suffices

to prove that S(I*) C USI™ and S(I7) C I"UJ. By symmetry it will be
enough to treat the second case and to show

S(E? ;) € I7UY (1)

for all 3 € R*. Consider the module M, and its generator m, as in the proof
above. The annihilator of my in U, UJ is exactly I~UY. So (1) is equivalent

to:
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Since S is an antiautomorphism of U, and since E? 8 is central in U,, so is
S(E? 5). We get therefore for all o € X:

EoS(E? 3)my = S(E” 5)Eam; = 0.

This implies (2) because S(E? ;5)m, has weight —pf and because M, = Zx(0)
is simple by the remark in 6.3.

7.3. Consider k as an algebra over U° via the augmentation as in 2.4. For
any module F in C; and any module M in C4 we can make E ® M into
an object of C4 as follows: We let A act on the second factor only. As a
U-action we take the tensor product of the two given representations using
the comultiplication described above. This action commutes obviously with
that of A. Finally we define the grading as usual giving any E, @ M, degree
pu+v. This is obviously a grading by A-modules. One checks easily properties
2.3(C) and (D).

In the case of 2.4 this construction is the usual tensor product of G{T—-
modules resp. of u—modules. One has in general an obvious compatibility
with base change:

~

(E®M)®AA’—)E®(M®AA’). (1)
For all N in C4 the canonical isomorphism
Hom(M,E ® N) = Homu(E* ®@ M, N) (2)
induces an isomorphism
Hom¢,(M,E ® N) — Hom¢, (E* ® M, N). (3)
At this point we have to be careful in the quantum case with its complicated
definition of the comultiplication. The trace map tr : E* @ E — k with
f®e — f(e) is a homomorphism of U-modules. The map in (2) sends any
h: M — E® N to the composition of
dh:E*QM - E*QEQN

with tr ® id, hence to a homomorphism of U-modules. The canonical map

E ® E* = Endi(E) is an isomorphism of U-modules. Let ¢ be the inverse
image of the identity map under this isomorphism; it is U-invariant. The
inverse map in (2) sends any h' : E* ® M — N to the composition

M—-EQE*QM — EQ®N,

where the second map is id® h' and the first one v — ¢ ®v. The U—-invariance
of ¢ implies that this composition is a U-linear.
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If we apply (3) to E* instead of E, then we get an isomorphism
Home, (M, E* @ N) = Home, (E** ® M, N).
This leads to
Home, (M, E* @ N) — Hom¢, (E ® M, N) (4)

as soon as we have an isomorphism c : E — E**. In Case 1 we can take
the canonical map ¢; : E — E** with ¢;(e)(f) = f(e). In Case 2, however,
we have ucy(e) = ¢1(S?(u)e) for all u € U and e € E. Now the square of the
antipode S is given by

S%(u) = (g;,lqu,,.

So we can take in this case

cle) = c; (K le).

Both isomorphisms, (3) and (4), have the usual functorial properties in M
and N.

7.4. One can define in the same way tensor products of modules in Cj with
modules in C'y, and of modules in C; with objects in C'j. One has then tensor
identities: For example, if E is a module in Cx and M is in C';, then there is
a canonical isomorphism

ZA(EQM)~FEQ®Zs(M). (1)

In order to prove this statement one checks that the right hand side has the
universal property (cf. 2.10) of the left hand side using 7.3(4) and its analogue
in C}.

As usual one gets using the tensor identity:
If M in C4 has a Z-filtration, then so has each E Q@ M with E in Cy.

In other words, using the notation from 6.9, the subcategory D 4 is stable
under tensor products with finite dimensional modules in Cy.

More precisely, each E ® Z4(u) has a filtration with factors Z4(u + v)
each occurring dim F, times. It can be constructed as in the classical case,
see, e.g., [Ja2], 2.2: One takes a basis (e;);<i<n of E such that e; is in the v;
weight space and such that v; < v; implies ¢ > j. Then each

Viz S Unle; ® Za(w)

=1

is a submodule of £ ® Z4(u) with V;/Vi_y ~ Z4(p + v;). If v, spans the
weight space Za(p),, then V;/V;_; is generated by the class of e; ® v,,.
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7.5. Suppose from now on that A is a B-algebra. Let W' be a subgroup of
W, that is generated by reflections and contains W, ,. By Proposition 6.13
any orbit of W' in X is a union of blocks over A. (Here and below orbits are
always orbits for the dot action.) We have thus for each orbit Q of W' in X
the subcategory C4(€?) and the functor prg from C4 to C4(Q2) as in 6.17.

Let Q, I" be orbits for W' in X. Consider an alcove for the affine reflection
group W'. Its closure contains exactly one element A € Q and exactly one
element p € I'. Then W(u — ) is independent of the choice of the alcove. Let
v be the unique dominant weight in W (u — A). Choose a simple module E
with highest weight v for G in Case 1, for U; in Case 2. Then F is a module
in Cy with a W-invariant formal character.

For any M in C4(Q) we can now define

ToM = prp(E @ M). (1)

This defines obviously an exact functor T3 from C4(9) to C4(T) that we call
the translation functor from Q to I'. It takes D4(f2) to D4(T), by 7.4 and
6.9.b.

If A" is an A-algebra, then we can define the translation functors also
over A'. The natural isomorphism 7.3(1) induces then an isomorphism

To(M®4A) 2 To(M)®4 A’ (2)

for all M in C4(Q).

Lemma: Let A\, u € X be in the closure of a fized alcove for W'. Then
TEZA()) has a Z-filtration with factors Za(wep) where w runs over a system
of representatives of the stabilizer of X\ in W' modulo its intersection with the
stabilizer of p. If vy spans the weight space Z4(A\)x and if ey, (for w as before)
spans the weight space Ey.y—x = Ey(u—»), then the prp(ey, ® va) generate

TEZ4(N).
This is proved by the same arguments as in the classical case, e.g., in
[Ja6], I1.7.8.

7.6. Keep the notations from the last subsection. If we reverse the role of
' and Q, then we get a translation functor TS. Its construction involves a

simple module E' isomorphic to E*. Fix an isomorphism E' — E* (unique
up to a scalar from k). Then we get from 7.3(4) an isomorphism (for M in

CA(Q) and N in CA(F))
adj, : Home, (M, T8 N) =5 Home , (To M, N), (1)
and from 7.3(3) (with M and N interchanged)

adj, : Home, (N, T M) = Home, (TN, M). (2)
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The isomorphisms in (1) and (2) are functorial in M and N. This shows
that T3 is left and right adjoint to T (and vice versa) and that (1), (2) are
possible adjunction maps.

The functorial properties of these maps can be expressed by the following
formulas where we write T = Ty and T' = T2. One has for all maps f, g
such that the formulas make sense

adj; (f o g) = adj; (f) o T(g), adjy(f 0 g) = adjy(f) 0 T'(9),
adj, (T'(f) 0 g) = f o adj; (9), adj,(T(f) 0 g) = f o adj,(9),
adji ! (fog) = T'(f) o adji ' (9), adj; ' (f o g) = T(f) o adjz ' (9),
adji ! (f o T(g)) = adj; '(f) o g, adj; ' (f o T'(9)) = adj; '(f) o g.

The adjunction maps commute obviously with base change.

7.7. Keep the notations from the last subsection. Set T = TSI; .

If Q in C4 is projective, then E ® @ is projective in C4 for any finite
dimensional F in C;. That is a trivial consequence of the adjointness property
7.3(4). If Q is projective and in C4(Q2), then T'Q is projective, since it is a
direct summand of a suitable £ ® Q.

The functor T induces for all M, M’ in C4(Q2) maps (also denoted by T)

T : Ext?, (M, M') — Ext? (TM,TM'") (1)

for all n.
Any e € Ext! (M, M') can be represented by a short exact sequence

0-M  —FE—M-—D0. (2)
Then F'is in C4(€2) and we can apply T to (2). We get a short exact sequence
0—-TM' —TE —TM — 0. (3)

Then (3) is a representative of T'e. This description of T' can be generalized
to classes in higher Ext—groups.

We use the following notation: If f : M' — M and g : N — N’ are
morphisms in a suitable abelian category, then we denote the induced map
on the Ext groups (for all n) by

(f,9)* : Ext®(M,N) — Ext"(M',N"). (4)

Suppose that M, M' are in C4(2) and N, N' in C4(T"), and that we have

isomorphisms f : N = TM and f': N' = TM'. Then we get an induced
map

tf, f'] : Ext2 (M, M') — Extg (N, N') (5)
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for all n setting
tf, f1=(f(f) ) e (6)

(We shall use a similar notation for 7§ instead of T = T}.) Note that we
have for all units a,b in A

tlaf,bf'] = ab™"4[f, . (7)

7.8. Before we go on, note the following obvious fact:
Observation: Suppose that A € X and that M, M' are modules in C4 both
isomorphic to Z4(X). Then any generator f of the A-module Home, (M, M)
is an isomorphism f: M — M.

Keep the assumptions of the last subsection. Set T' = T and T' = T{.
Let us call Q and I' equivalent W'-orbits, if there is a facet for W' containing
both an element of 2 and of I'. Then there is for each A € 2 exactly one
element Ar € T such that A and Ar are in the same facet for W'. The map
A = Ar is a bijection €2 — I'. One has for any A € € isomorphisms

TZA(/\) >~ ZA()\I") and T’ZA(/\F) >~ ZA(/\) (1)
For any M in C4(Q?) we have an adjunction map
adj, : Home, (M, T'TM) — Hom¢, (TM,TM).
Set
iy = adjy (idry) : M — T'TM. (2)
The functorial properties of the adjunction maps, cf. 7.6, imply that we have
for all homomorphisms h : M — M' in C4(Q)
T,T(h) o ZM = iMl o h, (3)
i.e., that the map M +— ips is a natural transformation from the identity
functor to T'T.
Lemma: Suppose that Q and I' are equivalent W'—-orbits.

a) For all M in C4(S2) the map ipr is an isomorphism.

b) Suppose that M is in C4(Q) and N is in Ca(T) and that f: N — TM is
an isomorphism. Then T'(f~1) oip 1s an isomorphism M —— T'N and we

have
T'(f™')oin =adjy ' (F71). (4)

Proof: a) For M of the form Z4(\) with A € Q we have TM ~ Z4(Ar). So
idrps is a basis of Home, (T'M,TM), hence its inverse image iy under the
isomorphism adj, a basis of Home, (M, T'"TM). Now T'TM is isomorphic to
T'Zs(Ar) ~ Za()\) = M. Therefore the observation above implies that iy
is an isomorphism. This extends by induction on the length of a Z—filtration
to any M in D4(2). We get it for arbitrary M using a projective resolution
contained in D 4(Q).

b) The first claim is obvious by a), the one in (4) follows by functoriality,
cf. 7.6.
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7.9. Suppose that Q and I' are equivalent W'—orbits; keep the notations of
the last subsection. Lemma 7.8 implies that the identity functor on C4(2)
and T'T are naturally isomorphic. One can similarly construct a natural
isomorphism between the identity functor on C4(I') and TT'. So T and T”
are equivalences of categories between C4(€2) and C4(T).

It follows that the maps induced by T on Ext groups as in 7.7(1) are
isomorphisms. The same is true for T'. So we see for any M, M' in C4(Q)
that the map e — T'Te is an isomorphism

Extg, (M, M'") = Ext¢, (T'TM, T'TM')
for all n. If we compose this map with those induced by ijs and z;,l, we get

an automorphism of Ext¢, (M, M').

Lemma: Suppose that Q and T' are equivalent W'-orbits. Let M, M' be
modules in C4(Q) and N, N' modules in C4(T).

a) The map (ing,i37)* o T'T is the identity on Extg, (M, M') for all n.

b)Let f: N — TM and f' : N' — TM' be isomorphisms. Set g = adj;* (f~1)
and g' = adj; ' (f'"'). Then t[g,g'] o t[f, f'] is the identity on Exte, (M, M')
for all n.

Proof: a) By the functoriality of the i,s it is enough to look at the case n = 0.
Here any h : M — M' is mapped to

iy oT'T(R)oip =iy oipp 0 h =h,

cf. 7.8(3).
b) By definition

tlg,g'lotlf, f1=(g,9 ) 0T o(f,f ") oT.

By functoriality, the right hand side is equal to (T"(f)og, g'~1oT"(f'~1))*oT'T.
Since T'(f) o g = iy by 7.8(4), and since similarly ¢'~! o T'(f'~1) = i3}, the
claim follows from a).

7.10. Suppose that W" is an affine reflection group with W, , C W" c W',
We can carry out the constructions of 7.5/6 with W' instead of W', i.e., with
W' -orbits instead of W'—orbits.

Consider again two W'-orbits 2 and I'. There are disjoint decompositions

into W"-orbits
Q=J2% ad T=JI; (1)
i€l jeJ

for suitable index sets I, J. Then the translation functor T = Tsl-; has a
decomposition T = @iel,jeJTJ'i where Tj; is the restriction of T to C4(;)
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composed with pIT; - Similarly, there is a decomposition of T' = T§ as T' =
Dier,jes Tij-

Fix ¢ €I and j € J. Choose A € Q; and choose an alcove for the larger
group W' containing X in its closure. Let u be the unique element in I' that is
in the closure of the same alcove. If I'; contains one of the elements w.u with
w in the stabilizer of X in W', then T}; = Tg: and T}; = Tr;. Otherwise one
has T}j; = 0 and T}; = 0. (Use the Z-filtration of TZ4()) described in 7.5.)

Suppose we have M in C4(2;) and N in C4(I';). We have then two
adjunction maps

adj : Home, (M,T'N) = Hom¢, (TM, N)

and
adj' : Home, (M,T};N) — Home, (Tj:M, N).

They are related as follows: Any homomorphism f : M — T'N takes au-
tomatically values in Tj; N and adj'(f) is then the restriction of adj(f) to
T;; M:

7.11. Let w € W. If we work with the positive system w(R*), then 7.4
implies that each E ® Z%(u) has a filtration with factors Z%(p + v) each
occurring dim F, times. Consider W'-orbits 2 and I' and weights A, u as
in 7.5. Then Z%(Mw)) is in C4(Q2) — by Lemma 6.11 — and T Z% (Mw))
has a filtration with factors Z%((zep)(w)), where = runs over a system of
representatives of the stabilizer of A in W' modulo its intersection with the
stabilizer of p. If v spans the weight space Z% (A (w))a(w) and if e, (for z

as above) spans the weight space E;(,_»), then the prp(e; ® v)) generate
T8 23 (Mw)).

7.12. The construction in 7.3 shows immediately for all £ in C; that
(E® M)lpv] = E® (M[pv)) (1)

for all M in C4 and v € X. In other words, tensoring with E is a pX-functor
from C4 to itself (in the sense of E.3).

Let © and.I" be W'-orbits in X. The functors M +— M[pv] with v € ZR,
commute with prg and prp, cf. 6.18. Together with (1) this implies that

To (M[pv]) = (To M)[pv] (2)

for all M in C4(?) and v € ZR,. So each T}, is a (pZR,)-functor.
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7.13. Suppose that A = F is a field. We have in our present situation results
on the translation of simple modules similar to those in [Ja6], I1.7.15.

First, we need an analogue to Proposition I1.6.23 in [Ja6]. Take the
order relation T as in [Ja6], II1.6.4, and modify its definition: We allow only
reflections s; € Wy ,. Denote thls modified relation by Tr. We next modify
the definition of close from [Ja6] 11.6.22, and say that p € X is F—close to
A€ X if u T A and if there is no a € R+ with g Tr (A — pa). The sum
formula 6.6(4) implies immediately:

If p is F—close to A, then [Zg()) : Lrp(p)] > 0. (1)

Consider now orbits {2 and I' for Wy , such that there is for each A €
exactly one Ar € I in the closure of the facet (with respect to Wr ,) of A. Set
T =T, and T' = T®. We have then (by 7.11) TZ¥(Mw)) ~ Z¥(Ar(w)) for
all A € Q and w € W. Lemma 4.9 implies that TLr(A) is either isomorphic
to Lp(Ar) or equal to 0, cf. [JaB], I1.7.14. For each p € T there is a unique
p~ € Q such that g = (¢ )r und such that p is in the upper closure of the
facet (with respect to Wy ,) of u~. Any other A € @ with Ar = p has the
form A = wep™ with w in the stabilizer of p in Wy ,. One checks as in [Ja6],
I1.6.22, that p~ is F'—close to all these A. We can now argue as in [Ja6], I1.7.15
(using (1) instead of [Ja6], I1.6.23) and get for all A € Q

TLr(\) ~ {LF(/\I‘) if A= (Ar)7; (2)

0, otherwise.

Arguing as in [Ja6], I1.7.16 we get for all p € T’

T'Qr(p) ~ Qr(n™). (3)
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Introduction to the Sections 8-10

Let us stop a bit to consider where we are and where we want to go. We
are interested in the structure of the categories Cy of GiT—modules and their
quantum analogues and want to study them by deformation. Let m € SpecU®
be the annihilator of the trivial one dimensional representation, and let A be
the completion of U° at m, so that SpecA is a formal neighbourhood of m in
SpecU°. We have seen that we can somehow deform the category Cy into a
flat family C4 over SpecA : This is the intuitive meaning of our statements
saying that

®ak : C4 — Cy, P—PQRsk

induces a bijection on isomorphism classes of projective objects (see 4.19),
that for any projective objects P,@Q in C4 the space Home, (P, Q) is free of
finite rank over A and the obvious map

Hoch(P,Q) Qak —-»Hornck(P@A k,Q XA k)

an isomorphism (see 3.3).
Now to describe a flat family it suffices to describe it up to codimen-

sion one. More precisely, recall from the general introduction our ring A% =
A[H;' | @ € R*] and its subrings A? = A[H;' | o € R, a # (3]. We have
A = () AP if the characteristic of k is different from all (o, 3Y), cf. 9.1 below.
Let us assume this for the rest of our introduction. We deduce that

Home (P, Q) = (| Hom¢(P @4 A®,Q ®4 A®) C Home(P @4 A®,Q ®4 A”),

where we abbreviate Home,, to Hom¢ for all A' = A4, AP, A® and use the quite
elementary Lemma 3.2 to pull the localization inside the Hom.

Now SpecA” is just SpecA with all walls except the 3-wall deleted, so it
should not come as a surprise that C4s behaves like an sl;-category. Recall
from the general introduction the notations Z%(\) = Z4()\) ®.4 A#, Z°(\) =
Za()) ®4 A® and abbreviate C4s = C°. For A € X and 8 € R* let us
define 3 T A to be A + nfB, where n > 0 is the smallest integer such that
(A+p,8Y) =—-n (mod p). We shall show in the next section
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Theorem: Let 3 € Rt and A € X. If BTA = )\, then ZP()\) is projective in
CP. If BT A # X, then there ezists an isomorphism Exts(Z8(N), ZB(BTN)) ~
Aﬂ/HgAﬂ of AP -modules, and the term Q in a short ezact sequence

0—Z%(B1X) —Q —2Z2°(X) = 0

is projective in C° if and only if the sequence generates Ext! over AP,

Since all our categories C4: are generated by their modules with Z-
filtrations (see 2.13), the projectives occurring in the theorem generate all

of C?. We want now to somehow glue together all these sl,—categories C? to
obtain the deformation category C4 of Cx. To formalize this idea we intro-
duce our combinatorial categories K(€2). They are defined for any W-orbit
Qin X. An object M in K(Q) is a family (M(X))req of finitely generated

A%-modules, almost all of them zero, together with (for all 3 € RT, A € Q) a

finitely generated 4°-submodule M (), 8) of M(X\) ® M(B1A) resp. of M())
if BT # Aresp. BTA = A. The morphisms are the obvious ones.

Choose now for any 3 € Rt and A € Q such that 3T\ # X an element
e?()\) € Extp(Z#(N\), ZP(B1A)). These choices determine a functor V = Vg, :
Ca(2) — K(Q). Namely for M in C4(Q2) put

VM ()) = Home(Z°(\), M @4 A%),
VM (X, B) = Home(ZP(\),M @4 A®?)  if BT A=)\

If 31X # X define VM (), 3) as follows: Represent e’()\) by a short exact

sequence Z?(B 1 \) — QP(A\)—ZP()). After tensoring with A® it splits

uniquely to determine an isomorphism Q#(\) ®4 A = Z°(\) @ Z°(B1 N).

Now let VM (A, B3) be the image of

Home(Q?()), M ®4 A®) —Home(Q?(\) @4 A®, M ®4 A?)

—Home(Z°(\) @ Z°(B1A), M @4 A%)
= VM(X) ® VM (BTA).

We obtain from the preceding considerations almost tautologically:

Theorem: Choose all e#()\) as generators of their Ext groups. Then V in-
duces for all projective objects P and Q in C4(?) an isomorphism

Homc(P,Q) -—>H0m;c(Q)(VP, VQ)
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In Section 9 we shall prove this more generally for all P and @ in C4(2)
that are flat as A-modules. From now on all V are supposed to be defined by
a choice of generators e®(\) so that the theorem applies.

Recall from the general introduction that what we need is a characteris-
tic free description of the homomorphisms between certain projectives @ 4, r
in C4(Wp0). Our theorem tells us that it suffices to describe the homomor-
phisms between the V@ 4,1 in a characteristic free way. But it is more or less
clear that the combinatorial category X(Wp.0) can also be defined over Z, and
our strategy will then be to exhibit an object of this combinatorial category
over Z that for all k specializes to V@) 4,1 when we reduce scalars.

As a first step we should describe V@Q 4,1 for fixed k. Recall that to get
Q4,1 we first translate Z4(—p) out from all walls to C 4(W,.0) and then apply a
sequence I of wall-crossings. To get V@ 4 1, we first have to describe VZ4(—p)
— this is easy — and then have to understand how translations relate to
combinatorics. More precisely, for any two W,-orbits 2 and I' we should
construct a combinatorial translation functor 7 : K(2) — K(I') such that
VrTP ~ TVqP for all projectives P in C4(2), where T : C4(Q2) — C4(T)
is our usual translation. This is done in Section 10. Well, not completely:
We don’t treat the most general translations but just translations out from
or onto some walls, which suffices for our purposes.

Let us discuss the structure of our combinatorial translations. Suppose
I lies on more walls than €2, so for every A € Q) there is a unique A\r € I in
the closure of the alcove of A\. From 7.5 we know that T'Z4()\) is isomorphic
to Z4(Ar). To get our combinatorial translations, we have to actually choose
isomorphisms fy : Za(Ar) — TZ4()) for all A € Q. These isomorphisms
together with the choices e’(\) and e?(u) we made to define Vg and Vr will

determine certain constants bf which in turn determine our combinatorial
translations.

To give an idea of how this is done let us just explain the case where both
2 and T' are regular. Then for all A € 2, 3 € R* translation of extensions
gives rise to an isomorphism

t[fx, fanl : Exte(ZP(N), Z°(B1 X)) =5 Exti(Z°(Ar), Z8 (81 Ar))

(see 7.7) and we choose b5 € Af such that bit[fy, fanle?(A) = €#(Ar). In this
case we define the combinatorial translation 7 by
(TM)(Ar) = M(A)
(TM)(r, ) = (B3, DM(X, B) + (M(A, ) N M(N)).

One may easily check that this works in case b = 1. The case = [ fa=1id
might also be instructive. It is almost equivalent to Lemma 9.10. Let us

remark that although bf is only well-defined modulo Hg, our combinatorial

translations do not depend on the choice of bf when we restrict them to the
image of V.
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The general case is similar. We only have to take walls into account and
this complicates our formulas. It will turn out that in case 81 p = p it is

the space Hy 5 ' AP /AP which takes over the role of the Extz(Z% (1), Z%(81 ).

More premsely, suppose that 3T # A but (37A)r = Ar. Then we will define
at the end of the next section an isomorphism

O[fx, fom] : Exte(ZP (M), ZP(B1N)) — Hz ' AP [AP

that will play a role similar to the maps t[fx, fs] that appeared above. In
particular, the combinatorial translations to and from walls will also involve

constants b € HgA® such that b20[f, fanle?()) = 1.
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8. Extensions in Rank 1 Situations

8.1. In order to simplify notation we shall write in Case 2 for all o € R:
H, = [K4;0].

Note that H, differs from K2 — 1 by a unit in U°.
For the next subsections (until 8.5) fix & € ¥ and suppose that A is an
integral domain with m(H,) # 0. Denote the fraction field of A by K.
Consider A € X such that

(At pa’)y=p-n (modp) (1)

for some n with 0 < n < p. We want to study Ext, (Za(}), Za(A + na)).
Denote standard generators by vy € Za(A + na) and z9 € Z4(A). The
congruence (1) implies by 5.5(5),(6)

EoEv = BV Voo (Ha). (2)

We can regard Z4(A+ no) resp. Z4(A) as a U ® A-submodule of Zg (A + na)
resp. of Zg(A). For any b € K set

2y = 20 + EMveb € Zk(N) & Zk (A + na). (3)

and
Y(b) =UvgA+UTz4A C Zg(X) ® Zk (A + na). (4)

The term U~ vgA is equal to Z4(A + na). Obviously, Y (b) is a graded A-
submodule of Zx(X) & Zx (A + na) with

Y(O)ass = Uy natoAd + Uy 24 (5)

for all v € X. It is a module in C4 if and only if it is U-stable.
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Lemma: Y (b) is U-stable if and only if m7(Hy)b € A. If so, then Y (b) is in
Ca, and there is an isomorphism Y (b)/U vy A — Z 4()\) mapping the class
of xp to xy.

Proof: If Y(b) is U-stable, then
Eoxy €Y (b)asa = B Vg A
Now (2) implies
Eoty = Eq E™vgb = B Vg (H,)b.

So, if Y(b) is U-stable, then 7(H,)b € A.

On the other hand, if this condition is satisfied, then the computation
above shows E,xy € U vgA C Y (b), hence Elzy € U vA for all »r > 0.
Furthermore A+r( is not a weight of Zx (A\)®Zk (A+na) for any 8 € Rt with
B # o and any r > 0. This shows Utz C 234+ U~ vy A. Since zp is a weight
vector, we have obviously Uz, = z,U° C x3A. This implies that Uz, A C
Y (b), hence that Y(b) is U-stable and therefore in C4. We see also that
Y (b)/U v A is generated by the class of x;. This class is annihilated by all
Ef% with 8 € R* and r > 0 and is a weight vector of weight A\. Therefore we get
a surjective homomorphism Z4()) — Y (b)/U vy A that maps zo to the class
of xy. On the other hand, the projection from Zx () & Zx (A + na) onto the

first factor induces a homomorphism from Y'(b)/U; vgA to U™ z0A = Z4())
mapping the class of z; to z¢. These two maps are inverse isomorphisms.

8.2. Each Y (b) with 7(Hy)b € A yields an exact sequence
0— Za(A+na) L Y (b) 2 Za(\) — 0 (1)

where f(vo) = vg and g(z}) = zo. Let [b] € Exte, (Za()), Za(A+na)) denote
the class of this extension for the moment.
Lemma: One has a[b] = [ab] for all a € A.

Proof: Consider the endomorphism h of Zx () & Zx (A + na) that is the
identity on Zx (A+na) and multiplication by a on Zx(X). We have h(vg) = vy
and h(zg) = axg, hence h(x,;) = azy. This implies that h maps Y (ab) into
Y (b). It is now clear that we get a commutative diagram
0 - Zs(A+na) — Y(ab) — Zu(A) — 0
id h aid
0 — Zs(A+na) L Y L Zi0) — 0

where the maps in the top row are the analogues of f and g. This proves the
claim.
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8.3. Lemma: Let b € A. For any A-algebra A' the eztension [br(H,) ']
splits over A', if and only if b € A'm(H,).

Proof: Set b' = br(H,)~!. Now [b] splits over A’ if and only if there is an
inverse image z{, € Y(b')A @4 A’ of o ® 1 with E,z{ = 0. Any inverse image

has the form zf = zp ® 1 + E(_"szo ® a' with @' € A'. This inverse image

satisfies Eoz) = B Vvy @ (b+ a'r(H,)). This expression is equal to 0 if

and only if b+ a'm(Hy) = 0. This shows that we can find zj as required if
and only if there is @' € A" with b = —a'7(H,), i.e., b € A'n(H,).

8.4. Lemma: The map a — [a] induces an isomorphism

An(Ho) ™' /A =5 Exte, (Za(N), Za(A + na)).

Proof: By Lemma 8.2 the map is a homomorphism of A-modules from
An(H,)™! € K (the field of fractions of A) to the Ext group. Lemma 8.3
implies that its kernel is equal to A. We have to check surjectivity. Consider
an arbitrary extension in C4:

0— Za(A+na) L M L Z4(\) — 0. (1)

Denote the standard generators by vy and z( as in 8.1. We claim that it splits
over K. It is enough to find a preimage in M) of xq that is annihilated by
E,. Let M' be the sum of all weight spaces M) ;o with i € Z. If we restrict
to these weight spaces (1) yields an extension

0—->\I'A()\+na) —M' —*‘I’A()\)—>0 (2)

with the W 4(u) as in 5.5(1). Because M) is contained in M', we see that
(1) splits over K if and only if (2) splits over K. In this way one can reduce
to the case where R = {a}. In this case m(Hy) # 0 implies that K is an

B%-algebra. So the remark in 6.13 yields that A and A+na belong to different
blocks over K, so that (1) splits over K.

So we can assume that M ®4 K = Zg(\) & Zk (A + na), that f and g
are induced by the embedding into the second factor resp. by projection onto
the first factor. Choose z{; € M) with g(z}) = xo. Because g is identified

with the projection we see that zj has the form zy = z¢ + E(_”oz vob for some
b € K. Since obviously M = U~ vgA + U~ zyA, we get M = Y (b). Lemma
8.1 implies b € Aw(Hy) ™!, so the sequence in (1) is in the image of our map.

8.5. Lemma: If A is o« B*-algebra, then Y(H;') is projective in C4.
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Proof: Set Y = Y(H;'). We want to apply Corollary 3.5. Consider a
maximal ideal m of A and set F' = A/m. We have to show that Y is projective
in Cp. If H, ¢ m, then the analogue of R, for F is empty. In this case Zr()\)
and Zp(X 4+ na) are projective, hence so is their extension Yp. If H, € m,

then the analogue of R} for F is equal to {@}. By Lemma 8.3 the extension

[H;'] does not split over F. Therefore the discussion at the end of 6.4 shows
that Yp ~ QF()\)

Remark: For A as above the same argument proves for any p € X with

(k+p,a¥) =0 (mod p) that Z4(p) is projective in C4.

8.6. We now want to generalize the preceding results from the case of a
simple root o to that of an arbitrary positive root 8. Until the end of this
section we fix 8 € RT and a B-algebra A. We set AP = A®p BP. We use
the abbreviations

ZP(\)=Z46(\) = Zps(\) @ps AP forall A e X

and . )
Exte(M,N) = Ext'cAﬁ (M,N)

for all M, N in C4s and all 3.

Proposition: Let A € X and n € Z with 0 < n < p such that (A + p,3Y) =
p—n (mod p).

a) If AP is an integral domain such that w(Hg) is nonzero in AP, then

APm(Hg)YJAP, ifn < p;

Ext(ZP(N), ZP(A + npB)) ~ { 0 ifn=p.

b) In general,

Aﬂ/W(Hﬂ)Aﬁv Zf n < p;

B (20, 20k ) = { £ insr

¢) Ifn = p, then ZP()) is projective in C4p. Ifn < p, then there is a projective
module QP in C46 with an ezact sequence

O—»Zﬂ(/\-{-nﬂ)——)Qﬂ-—»Zﬂ(A)—»O. (1)
Proof: Suppose at first that AP satisfies the assumption in a) and let as prove
a) and c) in this case.

Choose w € W with w™!3 simple. The remark in 5.14 implies that we
have isomorphisms

2PN~ Z%(A\w)  and  Z°(A+nB) = Z8 (Mw) +nB);  (2)
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they induce an isomorphism of the corresponding Ext-groups. We work now
with the triangular decomposition U = T,,(U~)UT,(U%). So the Z%,(x)

play the role of the Z?(u), the positive roots are w(R™), the root 8 € w(X)
is simple, and wp is half the sum of the positive roots. We have

(\(w) +wp, 8) = (\+p, 8Y) + (p(wp — p), /) =p—n  (mod p).

Now Lemma 8.4 yields the claim in a) for n < p. For n = p the remark in
8.5 implies that Z#()) is projective in C4s. So we have (for our present A)
the first claim in c); the part of a) for n = p follows. For the second claim in
c) we take the analogue of Y (H;!) working with w(R™") instead of Rt and
apply Lemma 8.5.

We can apply the proof above especially to A = B. We get now b) and
c) for general A using base change arguments. More precisely: Let A be an
arbitrary B-algebra. For n = p we know already that Zgs () is projective; so

Lemma 3.1.a implies that Z#()) is projective and the vanishing of the Ext-
group follows. Assume now that n < p. We get an exact sequence as in (1)

over A? by tensoring one over B? with A®. By Lemma 3.1.a the middle term
is still projective. Apply the functor Home(?, Z®(A+nf3)) to (1). Use for any
BP-algebra A’ the abbreviations

Hy = HomCA, (QZ,, ZAI()\ + nﬂ))

and
E}‘, = ExtéA, (Zar(A), Zar (A + np)).

We get an exact sequence
Hy —A' —Ey —0

for all A'. We have Hy ~ Hgs Q@ps A’ by Proposition 3.3. This implies now
also EY}y, ~ Ep; ®ps A'. We have

Eyps ~ B°H;'/B® ~ BP/HgB”,

where the second isomorphism is induced by b — bHz and where the first one
follows from a). We get therefore EY, ~ A'/n(Hpg)A' for all A, especially for
A' = AP. This yields the first case in b).

Remark: Choose for all A\ € X a projective module Q?(\) in C4p with a
surjection Q?(\) — Z#()) as follows: If n = p in the proposition, then take
QP(\) = ZP()), otherwise take the middle term in an exact sequence as in (1).
If M in C 45 has a Z-filtration, then we can find (using induction on the length
of a Z-filtration) a surjective homomorphism of the form @; Q*(\;) — M.
Now Lemma 2.13 implies that there is such a surjective homomorphism for
every M in C4s. In other words, the family of all Q#()\) with A\ € X generates
the category C4s.
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8.7. Let A and n be as in Proposition 8.6.
Corollary: Let

0= Z°(A\+nB) —Y —Z°()) =0 (1)
be an ezact sequence in C4p. The following are equivalent:
(i) The class of (1) generates Extg(Z8(N), Z#(\ + nB)).
(1) Y is projective in Cy0.

Proof: We can assume that n < p and that m(Hpg) is not a unit in A,

(Otherwise the Ext—group is 0 and all modules in sight are projective.) If A?
is a field, then (i) and (ii) are equivalent to the sequence not splitting, cf. 6.4.
In general, the description of the Ext—groups in 8.6 shows that (1) generates

the Ext-group over A? if and only if it does so over A®/m for all maximal

ideals m of A®. On the other hand, Corollary 3.5 says that Y is projective, if
and only if all Y45/, are projective. Now the claim is obvious.

8.8. Let X and n be as in Proposition 8.6.
Proposition: Suppose that n < p.

a) One has Ext%(ZP()\), ZP (A + pB)) ~ AP /m(Hg)AP.

b) If € is a generator of the AP -module Exty(Z8 (X + nB), ZP (X + pB)) and
if 7 is a generator of the AP -module Extz(ZP(N), ZP(\ + np)), then the cup
product of £ and 1 is a generator of the AP -module Ext2(Z%(\), ZP (A +pB)).

Proof: Write X' = X 4+ nfB. Consider the exact sequence 8.6(1). We get a

long exact sequence applying the functor Home(?, Z# () + pgB)). Since Q7 is
projective, we get an isomorphism

Exte(Z°(X), 2 (A + pB)) — Extg(Z°(X), Z° (A + pB)). (1)

Now a) follows from 8.6 applied to A’ instead of .
The same exact sequence yields also the second and third vertical map
in the diagram (where we drop all indices C and all exponents 3)

Ext (Z(\'),Z(A +pB)) x Hom(Z(X),Z(X\')) — Ext'(Z(\"),Z(XA+pB))

Ext!(Z(\),Z(A+pB)) x Ext'(Z(N),Z(N)) — Ext*(Z()),Z()\+pB))

Here both horizontal maps are given by the cup product. The commutativity
follows from the functoriality of the cup product. The last vertical map is
the isomorphism (1). The second vertical map is onto (by the long exact
sequence). We can replace ) by any other generator and can therefore assume
that 7 is the image of the identity map id. Since the cup product with id is
the identity, the claim follows from the commutativity of the diagram.
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Remark: The proof yields easily that there is a commutative diagram (drop-
ping indices)

AP /n(Hpg)AP x  AP/m(Hg)AP  — AP [ (Hg) AP

Ext!(Z(N),Z(A+p8)) x Ext'(Z(\),Z(N)) — Ext(Z(),Z(A+ph))

where the map in the first row is ordinary multiplication, the map in the
second row is the cup product, and the vertical maps are isomorphisms.

8.9. In the remaining subsections of this section we assume in addition that
AP is an integral domain. Set W' equal to the group Wy , generated by all
sg,mp With m € Z. Let Q) and T be orbits in X for W' such that any A € Q
has trivial stabilizer in W' and any u € I' has stabilizer of order 2 in W'. We
shall consider translation functcrs T = TSI; and T' = TIQ, cf. 7.5.

For any A € (2 there is a unique weight Ar € I' that is in the closure of
the alcove of A. There is then an isomorphism

TZP(\) ~ Z° (). (1)

For any p € T there are exactly two weights A, A" € Q with g = Ap = (\)r.
One has then X' — A € ZB. If X' > ), then there is an exact sequence

0— 28\ L1728 (p) % ZP()) — 0. (2)

We have in this situation:

Lemma: The module T'ZP(p) is projective in C4o. The class of (2) generates
the AP-module Exty(ZP(N), Z8(\)).

Proof: The case n = p in Proposition 8.6 implies that Z#(u) is projective in
C4s, hence so is T'Z 45 (), cf. 7.7. So Corollary 8.7 yields the second claim.

Remark: If m is a maximal ideal in A®, then T'Z 4p /(1) ~ (T'ZP (1)) ® a0
AP /m maps onto Z 45 /m(}) and onto L 46 /m()), hence contains the projective
cover @ 45 /m(A) of Lgs/m(A). If Hg € m, then 6.4(4) implies that T'Z 4 /(1)
is isomorphic to @ 45 /m(A). If AP is local and if Hg is not a unit in A%, then
T'Z#B () is isomorphic to @ 44 (A) as in 4.19.

8.10. Let us suppose in the next subsections that we have two weights
A\ A€ Q with A = (V). We set p = Ar and assume that ' > . So we are
in the situation leading to 8.9(2), we have that exact sequence and the maps
f, g occurring in it.
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Lemma: a) The maps f and g are bases of their Hom spaces:
Home(ZP(X'),T'Z (n)) = A° f (1)

and
Hom(I" 2% (1), Z°(N)) = A%, (2)

b) The AP-modules Home(T'ZP (1), Z5(N')) and Home(ZP(N), T'ZP (1)) are
free of rank 1. If f' is a basis of the former and g' a basis of the latter, then
there are units ay,a; € AP with f'o f = a1 Hgid and go g' = ax Hgid.

Proof: a) We have Hom¢(Z?()\'), Z%()\)) = 0, so the natural maps
Home(ZP(N'), ZP(N')) =5 Home(ZP(N'),T'Z5 (1)),  hw foh
and
Home(Z%()), ZP(\)) = Home(T'Z% (1), Z°()),  hwhog

are isomorphisms and send the identity map to a basis.
b) We have isomorphisms given by adjunction

Home(T'Z"(p), Z°(N')) > Home (27 (p), TZP (X)) (3)

d
- Home(ZP (M), T'ZP (1)) ~ Home(TZP (M), Z°(1)). (4)

The right hand side is in both cases isomorphic to End¢(Z”(u)) ~ A®. So
each left hand side is free over A? of rank 1.

The proof of the two last claims is similar. We shall give it only for
f'o f. We know that End¢(Z?()')) = A® -id, so there is b € A® with
f'o f =0b-id. Then b annihilates the class of 8.9(2) in Extg(Z%()), Z8(\")).
This class generates the Ext group by 8.9, so 8.6 implies that its annihilator
is generated by Hg. So there is a; € A? with b= a, H.

If the image of Hg in A® is zero, then b = 0. We get thus f' o f =0 =
1- Hgid and are done. Assume now that the image of Hs in A” is not equal
to zero. Since Hg annihilates the Ext group, we can find a homomorphism
" T'ZB(u) — ZP(N') with f" o f = Hgid. There has to be an a € A# with
f"=af'. We get

Hsid = a(f' o f) = ajaHp - id,

hence aja = 1. So a; is a unit in A?.

Remark: The following statements are now obvious:
If we choose f and g as arbitrary bases of the Hom spaces in (1) and (2),
then the sequence 8.9(2) with these maps is exact.

For any choice of units a;,a; in A? there are maps f', ¢' satisfying b).
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8.11. If we apply T to 8.9(2), then we get an exact sequence
0— Z°(u) — TT'ZP(u) — ZP(u) — 0 (1)
that splits because each extension of Z?(u) with itself is trivial, cf. 2.14.b. So
TT'ZP (1) = Z° (1) ® Z° (1) (2)
and
Home(TT'Z° (1), Z° (n)) = (A#)%. (3)
Any basis h;,hy over AP of this Hom space yields an isomorphism as in (2)

given by = — (hy(z), ha(x)).
We get by adjointness an isomorphism

adj, : End¢(T'Z% (1)) = Home(TT' 2% (1), Z° (1)). (4)

So also this space of endomorphisms is free of rank 2 over A%,
Lemma: Let g : T'Z%(p) — ZP(A) and ¢' : ZP(X) — T'ZP(u) be bases of
their Hom spaces. Then the maps id and g'og are a basis of Ende(T'ZP(p)).

Proof: We may assume that g occurs in 8.9(2). That sequence yields an exact
sequence

0 — Home(Z8(\), T' 28 (1)) 2o Ende(T' 28 (1)) 2o Home (Z8 (X)), T' 28 ().

Here h maps the basis g’ to ¢’ 0o g, and h' maps id to the basis f. So the claim
is clear.

Remark: One proves similarly: If f: Z#(X') — T'Z%(u) and f': T'Z%(u) —
ZP(X') are bases of their Hom spaces, then End¢(7'Z# (1)) has basis id, fo f'.

8.12. Suppose that we have chosen for each v € 2 an isomorphism
fo: 2°(ur) = T2 (). (1)

Then
adj; ' (£ : Z°(v) = T'ZP (ur)

v

is a basis of its Hom space.
Return to the situation of the last subsections with A, X', and p as in
8.9(2). Now choose

f=adif'(fu") and ¢ =adi;'(f71) (2)
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These elements are bases of their Hom spaces, and we can choose (by the
remark at the end of 8.10) a basis g resp. f' for the Hom space in the other
direction such that

gog'=Hgid resp.  f'of=Hgid. (3)

We have then the exact sequence 8.9(2) for these choices of f and g. If the

image of Hg in A? is non-zero, then g and f' are uniquely determined by ¢’
and f, hence by fy and fa.
If A? is equal to B? or, more generally, if the image of H g in AP is
non-zero, then
Hom¢(ZP()), ZP(\)) =0, (4)

since
0 = Home, (Zx()\), Zx (X)) = Home(ZP(N), ZP(\)) @ 46 K,
cf. 3.2. This implies for any AP that
flog"=0 (3)
since we get these maps (up to units in A?) from analogous maps over B? by

extension of scalars.

Lemma: There is an isomorphism h : TT'ZP(u) — ZP(u) ® ZP(u) such
that the diagram

0— TZ0\) L Te

TT'ZB(p) = TZP(\) —0
;,1 h f;l
0= Z() — ZPweZf(n) — Z°(w —0
s commutative, where the maps in the lower row are z — (z,0) and (z,y) —
y, and such that the diagram

7280y I rrizeR) I Tz8()\)
;1 h lf;l
ZP(p) — ZP(w@Z(n) — Z°(n)
is commutative, where the maps in the lower row are (z,y) — xHg — y and
z— (z,zHg).

Proof: Lemma 8.11 implies that Home(TT'Z?(u), Z# (1)) has basis adj, (id),
adj; (¢' o g) and that

h:TT'ZP (p) — ZP(n) & Z°(n)
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with
z + (adj, (id)(z), adj; (¢' © 9)())

is an isomorphism. It leads to two commutative diagrams as in the lemma.
We just have to compute the maps in the lower row. For the first diagram
they follow from

adj; (id) o Tf = adj, (f) = f;l,
adj;(g'0g) o Tf =adj,(¢' 0 go f) =0,
f3toTg=adjy(g") o Tg =adj(¢' 0 g).
For the second diagram the second formula follows from
adj; (id) o Tg' = adj, (¢') = f3 ",
adj,(g' 0 g) o Tg' = adjy (¢' 0 g0 ¢') = Hg adjy(¢') = Hpfy "

The first formula follows from Tf' o Tf = Hgid and Tf' o Tg' = 0 which
imply that (z,0) — xHg and (z,z2Hg) — 0.

Remark: The last claim follows also from
fof +gog=Hsid (6)
We leave the proof of (6) to the reader.

8.13. Recall that we assume that A? is an integral domain. Assume now
in addition that the image of Hg in A” is not zero. By abuse of notation we
shall often write Hg for m(Hp)

Suppose that we have weights A, A’, u as in 8.12 and maps f, as in
8.12(1). We want to construct an isomorphism

O1fx, fx] s Exte(2°(N), 2P (X)) —APHS' /AP, (1)

(We know of course by 8.6 that there is such an isomorphism.) Choose a
representative ' _

0—-2Z8\)5Y 5 5Z2°(\) =0 (2)
of a class £ in the Ext group. Since Hg¢ is 0 in the Ext-group, there is a

homomorphism j' : Z#(\) — Y with j o j' = Hg -id. This homomorphism is
unique since we have as in 8.12(4)

Home(ZP(\), ZP (X)) = 0. (3)
If we apply T to (2), we get an exact sequence

0728\ L1y ZL 12800 — 0. (4)
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Under our assumption, both extreme modules in (4) are isomorphic to Z#(u),
so this sequence splits (but not uniquely). Let i : TY — TZP()') be a
homomorphism with i’ o T7 = id. Now f;l oi' 0Tj' o fy is an endomorphism
of ZP(p), so there is a unique scalar a € A? with

fuloi'oTj o fA=aid.

Suppose that i : TY — TZ#()\') is another map with i}, o T4 = id and
let a’ € AP be the analogue to a, constructed with i} instead of i'. We have
now (i’ — i) o Ti = 0, therefore i — i) factors through T'j. So there is b € A?
with

i —ig=bfyvofyloTj.

This yields a — a’ = bHs and proves that the class of aHﬂ_1 in A? H[;I /AP is
independent of the choice of i'.
If we replace (2) by another representative of £, we see easily that we can

choose the analogue to i’ so that we get the same element a as before. This
shows that we can define

0[fx, f](§) = aHg' + A°. (5)
Remark: We have obviously for all units c,d in A?:

Blcfr,dfa] = cd™0[fx, fx]. (6)

8.14. Keep the assumptions from the last subsection.

Proposition: The map 0[fx, f] is an isomorphism Exty(ZP(N), ZP(\')) =
APHZ' AP,

Proof: Set § = 6[f, fa]. Let us show first that 6(a&) = af(€) for all a € AP
and ¢ in the Ext group. We have a commutative diagram

0 — ZaN) 25 v, 25 Zu) — 0

[

0 - Zs\) = Y L zZ,0) - 0

where the top (resp. bottom) row is a representative of af (resp. of ). Take
j' and ¢’ as in 8.13, let j! be the analogue of j' for the top row. We have

johojy=ajsoj,=aHsid = jo(aj),
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hence h o j, = aj’ by 8.13(3). We have
id=i0oTi=140ThoTi,,
so we can take i}, = i’ o Th. We get then
ivoTj. =1 0ThoTjy =1i0(aTj') =a(i' oTy"),

hence the claim.

Take now for { a generator of the Ext group that is represented by a
sequence as in 8.9(2); choose f, g as in 8.12(2) and (3) Comparing the
notations in 8.12 and 8.13 we have i = f, j = g and 7' = ¢' (by 8.12(3)).
Furthermore, the first diagram in Lemma 8.12 shows that we can take ¢/ =
fx opry o h where pry is the first projection (z,y) +— z. Then

fuloioTj' ofyx=pryohoTg ofy=id

where the last equality follows from the second diagram in Lemma 8.12. This
shows that §(§) = Hy '+ AP Since the Ext group is free over A% /Hz AP with
basis &, the claim follows from the first part of the proof.

Remark: The second part of the proof shows: Let a be a unit in A?. Then
O[f,\,f,\:]_l(aH_1 + AP) can be represented by a sequence as in 8.9(2) with

f=adji! (fx N 1Y and goadj; ' (f!) = aH sid. Indeed, that sequence represents
aé with £ as in the last part of the proof.
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9. A Functor into Combinatorics

From now on we shall usually write Hom¢ and Extc instead of Hom¢,,
and Extc,, (where A' is a U-algebra) and shall add the index A’ only in

cases where confusion is likely. Usually A’ will be A, A® or an A? (see below),
and it will be clear what is meant.

Throughout this section we suppose that A is a B-algebra that is an
integral domain such that all H, with o € R are nonzero in A. We set

A= A@pB® and AP=A®pB? foralpBeRt

and regard these algebras as subrings of the fraction field of A. From 9.5 on
we shall assume in addition that A is flat as a B-module. Also from 9.5 on
we shall impose a restriction on p. This will enable us to apply Lemma 9.1.

9.1. Lemma: Suppose in Case I that p # 2 if R has two root lengths and
that p # 3 if R has a component of type G2. Then

B= () B*

BERt

and, if A is flat as a B-module, A = (\gcp+ A8,

Proof: It is enough to prove the first claim; the second one follows immedi-
ately.

We get B and each B? by localization from a polynomial ring over & (in
the H, resp. in the K., with v € £). So they are unique factorisation domains.
It is therefore enough to show: If b is a prime element in B, then there is a 3
with b~ ¢ BP.

By construction, the prime elements b € B with b=! € B#? are exactly
the prime divisors of any H, with « € R* and a # (3. In Case 1 each H,
with o € R* is prime in U° and in B, since it is a polynomial of degree 1
and since it is not a unit in B. Under our assumption on p distinct « lead to
distinct H, that are not even multiples of each other, cf. Lemma 5.2 in [Hul]

for p > 3. This implies H;' ¢ B?, hence the claim.
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In Case 2 all K7+a with v € ¥ and a € k, a # 0 are obviously irreducible

in U°. Each a € R is conjugate to some v € E under the Weyl group, hence
each K, + a to some K., + a under an automorphism of U°. Therefore all

these K, + a are prime in U° and distinct pairs (o,a) lead to irreducibles
that are not multiples of each other. By construction each K, + 1 and each
Ko — 1 is still prime in B. We get B? from B by adjoining each (K4 +1)~!
and each (K, — 1)7! with @ € RT and o # 3. We see now that (Kg+ 1)~}
and (Kg — 1)~! are not in B? and get the claim.

9.2. For any A-module M set
MY=M®4A° and MP=M@4AP (1)

for all 3 € RT. If M is in C4, then M® resp. MP? is in the corresponding

category over A resp. over A®. We define similarly M?® for a A#—module M.
We have

Z°N=Z4N) =24V and  ZP(\)=Zus(\) =Za(N°  (2)

for all A € R*.
Lemma: Suppose that A is flat over B and that the restrictions on p
as in Lemma 9.1 are satisfied. Let M be a flat A-module. Then the natural

maps M — MP and MP — MP® are injective for all 3 € Rt, and we have
inside M
M= () M~ (3)

Proof: We can express Lemma 9.1 as follows: We have an exact sequence
0—-A— @ AP — @ A®
BERt B,YERT

where the map on A is the diagonal embedding and where the last map takes
a family (ag)g to the family of all differences ag — a,. This sequence remains
exact when tensoring over A with the flat A-module M. The claim easily
follows.

9.3. Denote by FC4 the full subcategory of all M in C4 that are flat as A—
modules. This subcategory contains all projective modules in Cy4, cf. Lemma
2.7.c. For any M in FC4 and for any A € X set

VM (\) = Home(Z°()), M?). (1)

This is (by 2.8) a finitely generated A®-module.
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For each 3 € Rt and any A € X there is a unique integer n with0 < n < p
and (A + p,8Y) =p—n (mod p); then set

BTA= X+ ng.

One has BT € sgeX + pZp3, especially BTA € Wy,
Fix 3 € Rt and A € X. In case 3T\ = )\ we set

VM (X, 8) = Home(ZP (\), MP) c VM (). (2)

This is (again by 2.8) a finitely generated A°—submodule of VM ()) and the
inclusion induces by 3.2 an isomorphism

VM), B) @46 A =5 VM(N). (3)

In case 31\ # ), we shall define for each e € Extz(Z#()),Z%(81))) and
each M as above a finitely generated AP-submodule

M(X,B,e) CVM(A) @ VM(B1A) (4)
such that the inclusion induces an isomorphism
M(X, B,e) @40 A =5 VM(X) @ VM(BTN). (5)
Let
0— 2°(31%) L Q £ 2°(3) — 0 (6)

be a representative of e. This sequence splits uniquely over A?, so there is a
unique morphism ¢' : Z%(\) — Q° with go g’ = id. The map

o (pog,pof)

is now an embedding of Hom¢(Q, M*?) into VM()) ® VM(B 1 X). We want
to set VM (A, (3, e) equal to the image of this map. The splitting of (6) over

AP together with 3.2 will then imply that (5) holds, and the finite generation
follows again from 2.8. We have to check that this image depends only on e
and not on the special representative chosen above. Well, if

0= Z°(B1A) L5 Q1 25 Z8()) — 0

is another representative of e, then there is a commutative diagram

0— 2881 L 2, Z800) =0
| H
0— Z°(B1N) 5 @ B — 0.

We have then gy ohog =gog' =id, so hog'is the a,nalogue to g' for the
second sequence. Therefore the embedding for the second sequence is given
by

¢ (pohog pofi)=(pohog,pohof).
It has the same image as the earlier map, since ¢ +— ¢ o h is an isomorphism
from Home(Q;, M?) onto Home(Q, M#).
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Lemma: We have for all a € AP
(a, 1) VM (A, B,e) C VM(X, B, ae).

Proof: There is a commutative diagram
0— 2Z8(B1N) L @ & Z8()) —o0
lm lh lam
0— 28(B1N) L Q@ L ZzZ°(\) —o0
where the second row is a representative of e, the first one of ae. There are
unique morphisms g’ : Z%(\) — Q® with gog' = id and ¢} : Z°()\) — Q? with
g1 097 =id. We have go ho g = aid, hence
hogy =ag;. (7)
By definition, VM(A, 3, €) is the image of Home(Q, M#) under ¢ — (po
g0 f). Then poh is in Home(Q;, M?), so — using (7) for the first step —
(pohogy,pohofi)=(poag,pof)=(a1)(pog pof)
is in VM(A, B,ae). The claim follows.

Remark: If a is a unit in A?, then one checks then easily that one has equality
in the lemma. (Multiply by (a~!,1).) We shall prove a more general result
in 9.10.

9.4. Let Q C X be an orbit for W, (under the dot action, as always). We
want to define a category K(Q2) and a functor Vg : FC4(Q) — K(9).

An object M in K(Q) is a family (M(X))aeq of finitely generated A%-
modules (almost all equal to 0) together with (for all 3 € Rt and A € Q) a
finitely generated A?—submodule M(),3) of M(A) @ M(BTA) if BT # A,
of M(A) if 37X = A. A morphism ) between two such objects M, M’ is
a family (¥a)req of A% linear maps ¢y : M(A) — M'()) such that for all
B€ Rt and X € O

(Va @ Ya)M(A, B) CM'(N,8)  incase BTA# A,
vaM(A, B) ¢ M'(N, B) in case 3TA = \.

Suppose that we have fixed for each 5 € Rt and A € Q with 3TA# )X a
generator e”(\) of the A#~module Extg(Z?()), Z?(B31))). For M in FC(Q)

we set
VaM()\) = VM()),

_ [vM() ), ifATA =X
VaM(A,B) = { VM), B,ef(N), if BTA# A

It is obvious that Vg is a functor from FC4(Q) to ().
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Proposition: Suppose in Case 1 that p # 2 if R has two root lengths and
that p # 3 if R has a component of type Go. If A is flat over B, then the
functor Vq 1s fully faithful.

Proof: Let M, N be modules in FC4(2). We have to show that Vo induces
an isomorphism

Homc(M, N) — Hom)c(g)(VQM, VQN) (1)

Over A? each {\} with X\ € X is a block by itself and Z%()) is a projective
generator of that block, cf. the remark in 6.13. Since each End¢(Z%())) is
isomorphic to A?, we have an isomorphism

Home(M®, N?) = (P Hom e (Vo M(X), VaN(})).
AEQ

This map is part of a commutative diagram

Hom¢(M,N) — Homy(q)(VaM, Vo N)

|

Home(MY N?) =5 @yeq Hom s (VoM (A), VaN(N)).

The two vertical maps are obvious inclusions. So we see that the map in (1)
has to be injective.
In order to prove surjectivity consider a morphism ¢ : VoM — Vo N. We

know already that there is a homomorphism A : M? — N? inducing all ¢y.
Fix 8 € RT. For A with BT\ # X let @°(\) be the middle term in e?()), for
BTA = Xset @°(\) = ZP()\). Now % induces for all A a map

Home(QP (), M?) — Home(QP (M), NP).

If it maps a homomorphism f to f', then the definitions imply easily f' = hof.
By the remark in 8.6 there is a surjective homomorphism of the form

&P, QP()\i) = MP. So we can find \; € Q and homomorphisms h; : QP(N\) —
MP such that M# = 3. hi(QP();)). As seen above ho h; is a homomorphism
from Q#();) to NP. This proves h(h;Q?()\;)) C NP for all 4, hence

h(MP) = h(S" hiQP(\) C NP.

Now
h(M)c () NP =N,
8>0

where we use for the last equality 9.2(3) and the fact that NNV is flat over A.
The claim follows.
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9.5. Assume from now on (in this section) that A is a flat B—module and
the condition on p in Lemma 9.1 and Proposition 9.4 is satisfied. Fix an orbit

©Q C X under W, and suppose that we have chosen e®()) as in 9.4, hence
chosen Vq.

For all A € X and 3 € R* let 3| XA € X be the unique weight with
BT(B1A) = A. (This is compatible with the notation in the remark to 6.2.)
We have 8| X € Wy

Proposition: Let A € Q and w € W. Then Home(Z4(X), Z% (A (w))) 1s @
free A-module of rank 1; choose a basis fy. Then

VaZi(Mw))(A) = A% fo (1)
and Vo Z% (Mw))(p) =0 for all u # X. We have for all 3 € R
B i — )\
VaZiOw)0) = { Aot | TN 2)
and, if BT # A,

B if w1 .
VaZ§(Mw))(B1), B) = {jﬂggz Hefh), >0 "

all other Vo Z¥ (M w))(u, B) are equal to 0.

Proof: Set M = Z¥(A(w)). The claim about the Hom space is a special case
of Lemma 4.7; the basis vector fj is then also a basis for the corresponding

Hom spaces over all A# and over A%, cf. 3.2. We get especially (1) and the

first case in (2). Since M? ~ Z®()\), it is clear that VM (u) = 0 for all pu # X,
and then also that VM (u,3) =0 for all u # X\, G| .
Assume from now on that 37\ # A. Choose a representative

0— 281N L Q-5 25\ —o0

of eA(X). Let g' : Z#()\) — Q be the homomorphism with go g' = Hgid. Now
VaM (), B) is the image of Hom¢(Q, M#) under h — (Hglh og',ho f). Since
Hom¢(ZP(81)), M) = 0, we get an isomorphism

Home(ZP()), MP) =5 Home(Q, MP), h—hog.

Therefore f; o g is a basis of Home(Q, M?), and Vo M(), 8) = AP(fo,0).
Choose now a representative

028\ L QL Z2f(BLN) -0

108



REPRESENTATIONS OF ALGEBRAIC GROUPS AND QUANTUM GROUPS

of e?(B1 ). Let g' : Z#(B1\) — Q be the homomorphism with gog' = Hpid.
Now VoM (B |\, 3) is the image of Home(Q, M?) under h — (Hl;lhog', hof).

There are two cases:
Case 1: w™B > 0. Then the remark in 5.14 implies that Z#()\) and M? are
isomorphic, so the basis fo of their Hom space has to be an isomorphism. We

have by 8.10 a basis f; of Hom¢(Q, Z#(\)) with f; o f = Hgid. Then f; 0 fi
is a basis of Home(Q, M?), and we get: VoM (B, 8) = A%(0, Hg fo).

Case 2: w™'B < 0. Then MP? is isomorphic to Z4%°(\(wp))?, again by the
remark in 5.14. So Proposition 4.11 implies that Exts(Z#(8 | \), M?) = 0.
We know already that Home(Z?(B3| ), M?) = 0, so we get an isomorphism

Home(Q, M?) =5 Home(ZP(N), M), hi hof.

Therefore there is a basis h of Hom¢(Q, M?) with ho f = fy, and we get
VaM(BLA,B) = AP(0, fo).

9.6. Corollary: Let A\, X' € X with Extz(Z4()), Za()\')) # 0. Then there
is B€ RY with N = 3T A #

Proof: We may assume that A € Q. We know by 2.14.b that A\’ > A, and by
6.13 that \' € . Suppose that

0— Z4(\N)— M —Zs(\) =0
is a nontrivial extension. Then the corresponding sequence
0— VaZa(X)— VoM — VqoZ4(X) — 0
does not split. Therefore there are u € Q and 8 € RT with
VaZa(XN')(1,B) # 0 # VaZa(N) (1, B).
The explicit description of the Vo Z4(v) in 9.5 implies
pe{N,BINTN{) BLA}.

We have X' # A, hence 8| )\ # 8| A. Furthermore X' > X implies 3| X # ).
Therefore p = A= 3| X and A' = 81X # ) as claimed.

9.7. Proposition: Let A € X with A+p € pX. We have for each B-algebra
B' isomorphisms Z, (Mw)) ~ Zg:/(X) for all w € W, the module Zp/()\) is
projective in Cp:.
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Proof: We may assume that B’ = B. (That is obvious for the first claim; for
the projectivity use Lemma 3.1.)

Set 2 = WpeA. The condition A + p € pX is equivalent to 3T A = A
for all 3 € RT. So Proposition 9.5 implies Vo Z¥ (M w)) = VaZp(A) for all
w € W. This yields an isomorphism Z§(A(w)) ~ Zg(\) by Proposition 9.4.
Corollary 9.6 implies that Zg(\) does not extend any Zg()'). By the remark
in 2.13 there is a projective module @ in Cp with a Z-filtration such that
Zpg()\) is a factor in this filtration. Now this factor has to split off, and Zg(})
is projective as a direct summand of a projective module.

Remark: One can prove these results without the present theory: The iso-
morphisms can be constructed using maps as in 5.10(1), (2) and arguing as
in 5.8. The projectivity follows in the case of a field from Lemma 6.3, in the
general case then from Corollary 3.5.

9.8. Lemma: Let A € Q and 3 € RT with 31\ # X. Then we have for all
M in FCA(Q) and for all e € Exti(ZP(N), ZP(B1N))

Home(ZP (M), MP) = VM (), B,e) N VM (). (1)

Proof: Choose a representative
0—2°(812) L@ % Z°(N) — 0 (2)

of e. Let g' : Z#(\) — @ be the homomorphism with g o g¢' = Hgid. So
VM(A, B3, e) is the image of

Home(Q, M?) — VM(A\) & VM (B1X),  h— (Hz'hog' hof).

Any hy og with h; € Home(Z?()\), M?) is mapped to (hy,0). This shows that
the left hand side in (1) is contained in the right hand side.

On the other hand, if a homomorphism h : @ — M? has image in
VM(X), then ho f = 0. Then h factors via g and there is a homomorphism
hy : ZP(X) — MP with h = h; og. Then the image of h is (hy,0). This yields
the other inclusion.

Remark: Keep the notations of the proof. If (z,y) is an element of VM (], 3, €)
then (z,y) = (Hl;lh og',ho f) for some h € Home(Q, M?). This implies

Hgz € Home(ZP(\),M?)  and  y € Home(Z#(BTA),M?), (3)
in particular, by the lemma,

(Hgz,0) € VM(A, B,e). (4)
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9.9. In the situation of 9.8 set

VM(X)g =VM(X, B,e) N VM(A). (1)
By 9.8(1) the right hand side is independent of e. Note that 9.8(4) implies
(Hg,0)VM(A, B,e) C VM(X)g. (2)
For A with BT\ = X we set
VM(X)g = VM(A,B) C VM()). (3)
So we have in any case, by 9.8 or by definition
VM(X) = Home(ZP(N), MP). (4)
So 3.2 implies that the inclusion induces an isomorphism
VM(N)g @48 A" =5 VM(N). (5)
We set now
VM(\)a= (] VM) (6)
BER*

and get (since we assume the condition in Proposition 9.4)
Homc(ZA()\),M) = VM()\)A (7)

If N is a second module in FC4(€?) any morphism VoM — Vo N has to map
any VM (X)g to VN())g, hence any VM (X)4 to VN(A)4. (This is clear also
from Proposition 9.4 and from (7).)

Let M be an object in K(Q). Set (for all A € 2 and 3 € RY)
MN)g=MMNNMAB)  and  MNa= [ M.

BERT

(So M(N)g = M(X,B) if BTA = )\.) Each M()\)g is a finitely generated AP-
module since M(A, 3) is finitely generated and since we always assume A to be
Noetherian. Note that these definitions are compatible with (1), (3), and (6).
If M is in the image of Vg, then the inclusion induces by (5) isomorphisms

M(N)g @45 A 5 M(2) (8)
(for all A € Q and 3 € RY) and (by (7) and 3.2) isomorphisms
M4 ®a A® ;M()\) 9)

for all A € Q. Note that 9.3(5) implies that (for all A € Q and 8 € R with
BIA#X)

M, B) @ar A” 5 M) @ M(BT) (10)
for M )in the image of V. (It would be nice to have a characterization of that
image.
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9.10. Lemma: Let A € Q and B € R with BTN # X. Let M be in FC4(Q)
and e in Exti(ZP()),ZP(B1))). We have then for all a € AP such that the
coset a + HgAP is a unit in AP /HgAP

VM(X, B,ae) = (a,1)VM (X, B,e) + VM(X)g. (1)

Proof: We have by Lemma 9.3 and by the definition 9.9(1)
VM(\,B,c€) > (e, )VM(A, Bye) + VM(N)g 2)

for all c € AP. If b, c € A? are congruent modulo AP H 8, then thereis d € AP
with b = c+ dHg, hence

(b, 1)(z,y) = (¢;1)(2,y) + d(Hp, 0)(z,y)
for all (x,y) € VM(A, B,e). This implies
(b,1)VM(X,B,e) C (c,1)VM(X,B,e) + (Hg,0)VM (X, B, €)
C (C7 I)VM()‘a /67 e) + VM()‘)ﬁ
using 9.9(2) for the second step. We get in particular, if a =1 (mod Hg),
VM(\,B,€) C (a, JVM(A, B,¢) + VM(N)g
C VM(A, B,ae) = VM(A,B,e).
We get therefore equality here; this proves (1) fora=1 (mod Hy).
In general, choose b € A? with ab=1 (mod Hg). Then
VM(X,B,e) = VM(X, B,bae)
D (ba I)VM()H B, ae) + VM()‘)ﬂ _ by (2) T
S (b, 1)(a, DVM(A, B €) + VM(\)5
since (b, 1)VM(X)g C VM (N)g
= (bav I)VM(/\’ B,e) + VM()‘)I? = VM(’\v B, 6).

where we use for the last step that (1) holds for ab by the first part of the
proof. We get now equality at all steps, especially

VM, B,¢) = (b, JVM(X, B, ae) + VM(N)5.
Apply (a,1) to both sides and add VM (A)s to them. The claim follows.
Remark: If a is a unit in A®, then we have for all M in K(f)

M(N)5 = (a, )M(N)5 C (@ YM(, ). 3)

This implies
’ (@, DM, B) + M(N)g = (a, IM(A, B), @)

in particular
! VM), B,ac) = (a, JVM(A, B,e). (5)

(One can prove (5) also directly, cf. the remark in 9.3.)
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9.11. Consider an object M in K(f2) and a subobject A of M, i.e., each
N(}) is an A®-submodule of M()) and each (), 3) is an AP—submodule of
M(X, B). We call N a compatible subobject of M, if for all X and 3
_ [ MO8 AN, it 51A =

NOB) = {M(A,ﬂ) AN(A) ®N(BTA), otherwise. (1)
If so, then we define an object M /A in K(Q) with (M/N)(X) = M(X)/N(N)
for all A and (M/N)(A,B) = M(\,B)/N(A,B) for all X\ and 8. Note that
(M/N)(A, B) is — by (1) — embedded in (M/N)(A) resp. in (M/N)(N) &
(M/N)(BTA).
Lemma: Let M be a module in C4(?) and N a submodule of M such that
N and M/N are flat as A-modules. Then Vo N is compatible in VoM and

there 1s a natural isomorphism

VoM /VoN =~ VQ(M/N). (2)

Proof: Our assumption implies that also M is flat over A. So M, N, and
M/N are all in FC4(2) and VoM, VaN, Vo(M/N) are defined. Recall from

9.2 that the natural maps M — M? and M? — M? are injective; similarly
for N and M/N. Applying this in the case of M/N we see that

Nf = MPN N
for all 3 € RT. This implies
Home(Q?()), N?) = Home(Q? (), M#) N Home(QP(N)?, N?)
for all A € 2, hence
VaN(A, B) = VaM(\, B) N (VaN()) @ VaN(B1T1)) if BTA#A, (2)

resp.

VaN(X,B) = VaM(X,6)NVaN(\)  if BTA =\ (3)

This yields the claim on compatibility.
We have by projectivity exact sequences

0 — Home(Z° (M), N?) — Home(Z°()), M®) — Home(Z%(N), (M/N)?) — 0
for all A € Q, and
0 — Home(Q”(X), N¥) — Home(Q®(X), M?) — Home(Q® (1), (M/N)?) — 0

for all A € Q and 8 € R*. Therefore the canonical map M — M/N induces
isomorphisms

VaM(X)/VaN(A) = Va(M/N)()
and

VaM(X, 8)/VaN(X, B) = Va(M/N)(X, B),
and (2) follows.
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9.12. Let M; C M2 C Mj be a chain of subobjects in K(2). The following
properties are more or less obvious:

If M, is compatible in M3, then M; is compatible in M,. If M; is
compatible in M, and M, is compatible in M3, then M; is compatible in
M3.

Suppose that M is compatible in M3. We can then construct Mjz/M;
and M3/M; as in 9.11; we have a natural embedding My /M; C M3/ M;.
Then M, is compatible in Mj if and only if M,/M; is compatible in
M3 /M. If so, then we have a natural isomorphism

Mg/Mz ~ (Mg/Ml)/(Mz/Ml)

Suppose again that M; is compatible in M3. Let Q be a subobject of
M3 /M. Let N be the inverse image of Q in Mj, i.e., the subobject of
Mj; such that each A()) is the inverse image of Q()) in M3(\) and each
N(A, B) the inverse image of Q()\,3) in M3(A,3). We have then inclusions
M; C N C M3 and a natural isomorphism N'/M; ~ Q. The discussion
above (applied to M, = N) implies that Q is compatible in M3/ M if and
only if AV is compatible in M3.

Let M; C M; C M3 be a chain of modules in FC4(2) such that also
M, /M, and M3/M, are flat over A. Then VoM, C VoM;j is the inverse
image (as above) of VoM, /VoM; C VoMs/VaM,.

9.13. Recall from 6.18 that the functors M +— M|[pv] with v € ZR map
C4(Q) into itself and make it into a (pZR)-category. We define similar shift
operators M — M|[pv] on K(Q): Set for all A € Q and 8 € R

Mpr](A) = M(A = pv),
Mpv)(A, B) = M(X = pv, B).

(Note that 37(A+pv) = (81)A) + pv for all X and 3.) We have for all M, N
in £(Q) a natural isomorphism

(1)

Homy q)(M,N) = Homyq)(M|[pv], N[pv]). (2)

We map a family (¢x)aeq to the family (v),).eo with ¢}, = ¢, for all p.
We have obviously M[0] = M and

Mpv])pv'] = Mp(v +v')]. 3)

for all M and all v,v' € ZR. So K(f2) gets the structure of a (pZR)—category.

For arbitrary v € X the map A — X + pv takes Q to another W,—orbit
Y. We can then define a functor M — M|[pv] from K(Q2) to K(Q') using the
same formulas as above. The results above extend; we shall not have to use
these generalizations.
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We can identify Z4(A + pv) with Z4(A)[py] for all A\,v € X by 4.2(5).
Using this we get also an identification

Exte(Z°(2), 2°(B1N) = Exte(Z°(A+ pv), Z°(BTA +pv)).  (4)
Now the definitions imply easily:

If we have — under the identification in (4) — eP(A + pv) = €#(A) for
adlXeQ, Be R, and v € ZR, then

Va(M[pv]) = (Vo M)pv] (%)
for all M in FC4(Q) and v € ZR.

So Vg is then a (pZR)—functor in the terminology of E.3. Our final choice
of the e? in 14.1 will satisfy the assumption above, cf. 14.12.
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0. Translations and Combinatorics

Throughout this section we consider A as at the beginning of Section 9
and keep the notations from that beginning and from 9.2-3.

10.1. Consider two orbits 2 and I for W,. We have then translation functors
T = T} from C4(Q) to Ca(T), and T' = T in the other direction. These
functors take the subcategories FC4(2) and FC4(T') to each other. (If M is
a flat A-module and E a vector space of dimension n over k, then £ ® M
is isomorphic to M™ as an A-module, hence flat; so is every direct summand
of E®@ M.) We want to compare Vo(T'N) to Vr(N) for N in FC4(T') and
VF(T]W) to VQ(M) for M in fCA(Q)
We have for all M in C4(f2) and N in C4(T") as in 7.6 adjunction isomor-

phisms

adj, : Hom¢(M,T'N) — Hom¢(T M, N), (1)
and

adj, : Home(N,TM) — Hom¢(T'N, M). (2)

They satisfy the functorial properties listed in 7.6.
10.2. Suppose that  and I' have the following property: For each A € Q
there is a unique g € I' that is in the closure of the facet of A\. We denote

then p by Ar. One has in this situation that TZ4(\) ~ Z4(Ar).
Suppose that we have chosen for each A € 2 a fixed isomorphism

fr:Za(hr) = TZa(N). (1)
We have for all A € 2 and all N in FC4(Q) an isomorphism
V(T'N)(A) = Home(Z°(\), T'N®) =5 Home(TZ°()), N?)
~ Home(Z°(Ar), N%) = VN (Ar),
where the first map is adj, and the second one is composition with fy. Denote

this map by
AG(N)x s VI'N)(A) = VN (Ap). ()
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Set
fA=adii7 (fy!): Za(A) = T'Za(Xr) (3)

for all A € Q. This map is a basis for its Hom space. For each p € T the f}
yield an isomorphism

D £ D 2’0 = T2, 4

Ar=p Ar=p

(Observe that T'Z4(p) has a Z-filtration where exactly the Z4(A) with

Ar = p occur as factors. This filtration has to split over A® so there is
some isomorphism as in (4). We can take the f} as the components of the
isomorphism, since we can take any bases of the relevant Hom spaces.)

For each A € Q the map ¢ — adj,(¢) o fj is a homomorphism

A (M) : V(TM)(Ar) = Home(Z°(\r), TM®) =5 Home(T'Z° (\r), M)
— Home(Z°(V), M) = VM (\).
(5)

Now (4) implies that the direct sum of the Af x(M) is an isomorphism

Ap(M), : VTM)(p) = € VM(A (6)

Ar=p

We shall denote the maps in (2) resp. in (5), (6) simply by A} and Ay
whenever there is no confusion likely.

10.3. For the next subsections (until 10.9), fix 3 € Rt. We want to
determine the effect of A} on AP-modules of the form V(T'N)(},B,e) or
V(T'N)(A, B) with N in FC4(T').

For any A € Q2 we are in one of four cases:

(a) A=p6TA,  BTAr=r,
(c) A# BTN, BTAr=Ar # (BTAM)r = Ar + pg,
(d) A#£BTA, Ar#BTAr = (BT Mr.

Indeed, if 31X = A, then necessarily 31TAr = Ar. f 8TA# Aand BT Ar = Ar,
then either (81 A)r = Ar or (81 A)r = Ar + pB. Finally, 87 Ar # Ar implies
BTA# Xand (BTA)r = BT1(Ar)).

In the case (a) the definitions imply obviously:

If B1) = \, then A (V(T'N)()\,ﬁ)) = VN(\r, B). (1)
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In the other cases we have to take e € Ext(Z?(\), Z#(81))) and deter-
mine the effect of A on V(T'N)(}, B,e). Here A} denotes the isomorphism
L(N)A@ A (N) g : VIT'N)N)@WT'N)(BTA) — VN(Ar)®VN((BTM)r)-

10.4. Let us now deal with the cases (c) and (d) from 10.3. In the last case
our results will involve the map

tlfas fonl - Exte(Z7(N), ZP(B1X)) — Exte(Z°(Ar), Z°((B1M)r)) (1)
defined in 7.7(6).
Lemma: Suppose that (BT A)r # Ar. Then

o C(VUNOSB U Fnl(©)s i BTAr £ An;
Ay UT'N)(, €)= { YNOw. B)BVNOr + 8, 8), if (81 A)s = Ao+P.

Proof: Let ‘ _
0—Z%(B1AN) —Q = 2Z°(X) =0 (2)
be a representative of e. Recall that there is a unique morphism j' : Z%(\) —
Q° with j o j' = id and that V(T'N)(), 3,e) is the image of Hom¢(Q,T'N?)
under the map ¢ — (¢ o j', 0 04). Therefore ALV(T'N)(),B,e) is the image
of Hom¢(Q, T'N#) under the map
o = (adj(p Oj') o fa,adj (poi)o fﬂrA)

=(adj, () o Tj' o f,adj,(¢) o Tio fap).
Since adj, is an isomorphism, this is also the image of Hom¢(7'Q, N?) under
the map

z/)»—»(d)oTj'of)‘,zboTiofm,\). (3)

On the other hand, if we apply T to (2) and use fy and fg, we get an exact
sequence

0— Z°((B1Mr) 5 TQ 25 Z°(Ar) - 0 (4)
where 1; = Tio fgp and j; = f;l oTj. We have
Jio(Tj' o fa) = fyloTjoTj o fr=id. (5)

If 3T Ar # Ar, then (4) is a representative of t[fx, fan](e), cf. 7.7(3). Fur-
thermore, (5) implies that T'j' o fy is the analogue to j' for (4). Therefore

VN(Ar, B,t[fx, fan](e)) is the image of Home(T'Q, N?) under the same map
as in (3). The claim follows in this case.
If (BTA)r = Ar + pB3, then the sequence (4) splits uniquely already over

AP and (5) implies that the right inverse of j; is equal to T'j' o f. Therefore

the map
Yo (YoTj o fr,hoTio fap)
is an isomorphism

Home(TQ, N?) = Home(Z#(Ar), N?) @ Home(Z° (Ar + pB), N¥).
This is the same map as in (3), so the claim follows.
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10.5. Suppose now that we are in the case (b) from 10.3. Neither TZ#(\)

nor TZ# (31 \) change if we replace T by the translation functor over A? with
respect to W, = < Sgmp | m € Z >. Therefore we can apply 8.13/14 and
get a map

O(fx, fan] : Extg(ZP(N), ZP(BT X)) — APH' /AP (1)
Recall: Given e € Extj(Z?()),Z%(B1))), we choose a representative
0~ Z°(B1) == @ = 2°(A) = 0 2)

of e. Denote by j' the unique morphism j' : Z%(\) — Q% with j o j' = id.
There is i’ : TQ — TZ#(31 ) with i' o T = id, and there is b € A"H/g1 with
faxn ot o(Tj')o fr=bid. (3)

Then
0fx, fopl(e) = b+ A°. (4)

Note that (31 A)r = Ar implies that A’ maps each V(T'N)(}, B,e) to a
submodule of VN(Ar) @ VN(Ar), cf. the last line in 10.3.

Lemma: Suppose that (31T A)r = Ar and BT A # X Let e € Extp(Z5()),
ZBR(BTA)) and let b € AﬂH[;1 be a representative of O(fx, fan](e). Then

Ay (WT'N)(B,€)) = {(+by,y) | 2,y € VNOr, B)}.

Proof: Here AYV(T'N)(), B, €) is equal to the image of Home(T'Q, N?) under
Y (YoTj o fa,p0Tio fap). (5)
(Argue as in 10.4!) We have in this case an isomorphism
TQ = ZP(\r)® Z°(\r)
given by
v (fan 04'(v), fx 1 o T(v)).

It induces

Home(Z?(Ar), N?) @ Home(ZP(\r), N¥) =5 Home(TQ, N?)
given by

(1,%2) = Y10 fan 0d' + 4y 0 fy ' 0 T

The composition with (5) takes (¢,0) to

(10 fz1 01 0Tj' 0 fa b1 0 fh 0 0 Tio fan) = (b, v)
and (0,) to

(Y20 fytoTjoTj o fa,hpo fytoTjoTio fan) = (32,0).
The claim follows.
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10.6. We now want to describe what A; does to AP~modules of the form
V(T M)(p,B,e) or V(TM)(p,3) with M in FC4(Q).

Set W' = Wp p, cf. 10.5. The functors T and 7" decompose over A” into
a direct sum of functors of the form T, I resp. TW, s” withv € Qand p €T
For example, the restriction of T to C Aa(W’ A) takes values in C 46 (W' Ar)

and is equal to TW,I°)‘\‘ where g = Ar. For \' € W'.)\ the maps t[fx, fan] as in

10.4(1) can be constructed also using T Ny

Fix 4 € T. Let us look at first at the case where 81T u # p. We have
then for all A € Q with Ar = p that (87T A)r = 37 u, especially BTA # A. So
all these X belong to different orbits under W'. Now 7.10 implies that 7' on

C o (W' .p) is the direct sum of all TW, with A € Q, A\r = . On the other
hand, TW, is just the restriction of T to C 40 (W' A).

For the moment, fix A € Q with Apr = 1z Both A and p have trivial
stabilizers in W', so 7.9 implies that Ty = T, VV[Y/ Y and Ty = Ty W, ‘>‘
lences of categories. For any v € W'.\ the map f] as in 10. 2(3) 1s the inverse
image of f; ! also under the analogue to adj; for Ty and 7;. It is an iso-

morphism Z#(v) = Ty ZP(vr). As in 7.7(6) we can use the f! to construct
isomorphisms

are equiva-

tlfs, fi] - Extg(Z°(vr), Z2° (1)) = Extg(Z2°(v), 2°(v"))

for all v,v' € W'sA. The remark above (on the analogue to adj, for Ty and
T;) allows us to apply Lemma 7.9.b. It implies

tlfo, fultlfs. file) =€ forall e € Ext¢(Z°(vr), Z°(vy)) (1)
(and all v,v" € W' ).

10.7. Lemma: If B3Tu # u, then one has

A (UTM) (. B,0)) = @ VM, B, 1S}, Finle)

Ar=p

for all e € Exts(2°(n), Z°(81 1))
Proof: We proceed more or less as in 10.4. We choose a representative

0— Z°(B1u) - Q L Z8(p) — 0
of e and take the right inverse j' to j over A%. By definition, W (T M)(u, 3, ) is
the image of Hom¢(Q,TM*) under h +— (hoj', hoi). Such a pair is mapped
under Ay to the family with (A, 317\) components

(adjz(h o j') o f},adjy(hoi) o fin) = (adjy(h) o T'j" o f3,adjy(h) 0 T'i o fgpy).

121



H.H. ANDERSEN, J.C. JANTZEN, W. SOERGEL

So our Ay image is also the image of Hom¢(T'Q, M?) under the map with
(A, BTA) component

his (hoT'j o fy,hoT'io fi). (1)

For the moment, fix A and use the notation Ty as in 10.6. Arguing as in
10.4 one sees that VM (X, B, ¢[f}, fiple) is the image of the map

h= (hoTgj' o f3,hoTyio fa).

This is also the restriction of (1) to Home(T5Q, M#). All (\',31)\') compo-
nents of (1) with M’ # X annihilate Hom¢(T3Q, M*?). Since T'Q is the direct
sum of all possible T3Q, the claim follows.

10.8. Consider now the case where 37T = p. For any A € Q with A\p = p we
may have B3TA = Xor BTA # A In the first case A is the only weight in W'.A
with Ap = p. In the second case we have also (3TA)r = por (BT A—pfB)r = p.
Since B1(BTA — pB) = A, we can conclude:

The restriction of T' to C 46 (W'ep) is the direct sum of all TVV[%'.“;\ with
AEQ A =p B1A=Xand of all T2} with A € Q, Ar = p = (BT M,
BTA# A /

For A of the second type in the last statement, the functor TVV‘Y,_’: leads
to an exact sequence

0— ZF(BTN) - Q L Z8()) — 0. (1)

with Q = TW,I.";\Zﬂ(u). This is just a special case of 8.9(2) with A' = ST A.
We can choose i = fgy and j with jo f, = Hpgid, cf. 8.12(2), (3) and the
remark in 8.10. Then the class of (1) in the appropriate Ext group is equal
to O[fx, fﬂp\]_l(Hgl + AP), cf. the remark in 8.14. We have by Lemma 8.12
a commutative diagram
0— TZP(BTN) % TQ TZ5(\) —0
U ) I
0—  Z°(p) — ZWezZl(ly) — Z°(w -0

Ty
—

where the maps in the lower row are z — (z,0) and (z,y) — y.

10.9. Lemma: If 8Tpu = p, then

A (VTM)(p,B) = @ VvMO\.B) & O  (Hs )VM(,B,nf(N)
BIA=2A, BIA#A,
Ar=p Ar=p=(B\)r

where nf(X) = 0[fx, fan] "L (H7 " + AP).
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Proof: AfV(TM)(p,3) is the image of Home(Z# (), TMP) under
Y (adjp () o fy | v € Qur = p),
hence of Hom¢(T' Z# (), M?) under

Y (Yo f, |veQur=p).

For any ) as above each v—component of this map with v ¢ W'.\ annihilates
Homc(TVVly,'.‘:‘Zﬂ(u),Mﬂ). So AgV(TM)(u,B) is the direct sum over all A as

above of the image of Homc(TVVy,'.'lf‘Zﬂ (1), M?) under

Y (Yo fl |ve W v =p).

For A with 8T = A only v = X occurs. In this case f} is (by 7.10) an iso-
morphism between Z#()) and TV"[‘,/,'.':‘Z A (k). So the corresponding summand
is Home(ZP(X), MP) = VM (), B).

For A with BT\ # X\ we use 10.8(1). The right inverse to j over A® is
Hﬂ_lfj\, so VM (A, B, n?()\)) is the image of Hom¢(Q, M#) under

Y (Yo (Hg' f1), 90 fapa).

If we apply (Hg,1) we get the corresponding summand of AsV(TM)(u,B).
The claim follows.

10.10. Suppose that we have chosen for each 3 € Rt and each A € Q with
BTA# X (resp. each p € T with 31 u # p) a generator e?()\) (resp. €/ (u))
of Extg(ZP(N),ZP(B 1 A)) (resp. of Ext}(ZP(u), ZP(8 1 p))). Consider the
functors Vg and Vr as in 9.4 with values in K(Q2) resp. in X(I') depending on
these choices.

There are for each 3 € Rt and each A € Q with 871 Ar # Ar (hence
BT # )X) elements af and bf in AP such that

t[fx, fanle? (V) = afe’ (Ar),

tlfa, File? (Ar) = b2eP (V). (1)

The classes of ag and bf modulo Hy are uniquely determined by (1) and we
have
a?b? =1 (mod Hp) (2)

by 10.6(1).
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There are for each 3 € R and each A\ € Q with BT\ # X and BT Ar =
Ar = (BT A)r elements a’z € A’9H[;1 and bf € AﬂHg such that
6[fr, Famle®(A) = af + A%,
0[fx, fan] ™ (a + AP) = (Ba)e? (N)
foralla € A°H 5 1/A#, where we regard bfa as an element of A®/APHyz. Now

the classes of a’z modulo A# and of bg modulo A# Hg are uniquely determined
by (2); we have obviously

(3)

kb € 1+ APHg.
We now define functors 7 : () — K(T') and 7' : K(T') — K(Q2). For
all M in () set
= P mM» (4)

Ar=p
for all p € T, and (for all 8 € R™)

M8 = @ MO e @ (05 UMOB)+HsMO);),

BIA=A, BIAEN,

Ar=p Ar=pu=(BM\)r
. (5)
if 8T = u, resp.

TM(,B) = @ (B3 DM B) + M), (6)

Ar=p

if 37 p # p. The direct sums in (4)-(6) are finite. Our finiteness assumption
in the definition of (1) says that each M()) is finitely generated over A°,
therefore so is each 7M(p). Similarly, all M(A,3) and (cf. 9.9) all M(A)g
are finitely generated over A®. So are then their homomorphic images of the
form (bf,l)M( ,) and HgM(X)g, hence also each T M(pu,3). So TM is
indeed in K(9Q).

For any A in K(T') we define 7'\ by

TN =N(r) for all A € Q, (7)
and (for all B € Rt and X € Q):
(Ar p), ifATA =X

(a,\al)/\/(/\l“aﬁ)"f'-/v(/\l“)ﬂ’ if BTAr # Ar;
TN B)= N, 3 )‘%N(Ar+p/3 B), if (BTA)r = Ar + pB; (8)
{(z+aly,y) | 2,y € N(Or,B)},
if (BTM)r =Ar,BTA#A
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In the last case we regard the right hand side as contained in
T'NNOT'NBTA) =N(Or) dN(r).

In order to show that 7'A is in K(T'), we have to check some finiteness
conditions; this is done using the same arguments as above for 7M.
It is clear how to define 7 and 7' on morphisms.

Remark: Our functors depend on the choice of the af and bf in their classes
modulo Hg (resp. modulo A? and ABHL% in the situation of (3)). However,
consider the full subcategory of all M in K(Q2) with

(Hg, 0)M(A, B) € M(N)g (9)
for all A and 3 with 3T # A. By 9.9(2) this subcategory contains the image

of Vq. It is easy to check that the restriction of 7 to this subcategory is
independent of the choices. A similar result holds for 7.

10.11. Proposition: There are natural isomorphisms

A:VroT =5 ToVg and A :VqoT = T oVr.

Proof: For any M in FC4(f2) we define A(M) at first on each Vp(T'M)(p)
with p € T" as the map

Af(TM), : Vo(TM)(p) == @ VM(X) = TVaM(X)

Ar=p

from 10.2(6). These maps induce isomorphisms at all possible (u,3) by
Lemma 10.7 or Lemma 10.9 together with Lemma 9.10.

For any N in FC4(T") we define A'(N) at first on each Vo (T'N)()\) with
A € Q as the map

AS(N)x : Va(T'N)A) =5 T'VeN(A) = Ve N(Ar)

from 10.2(2). It induces isomorphisms at all possible (A, 3) by 10.3(1), Lemma
10.4 and Lemma 10.5 together with Lemma 9.10.

Remark: Suppose that the a)\ in 10.10(1) are units in A®. We can then choose
b5 = (a})~!. This allows us (by 9.10(4)) to replace 10.10(6) by

TM(pB) = @ (@), M B) (1)

Ar=p
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and the second case in 10.10(8) by
T'N(\B) = (af, DN (Ar, B). (2)

Suppose also that each a’z in 10.10(3) is the product of H 5 ! with a unit
in AP, Again, we can choose b? = (af)"l. This allows us to replace 10.10(5)

by
TMp,B) = P MAB e @ (@) DMAXBE), (B)
BIA=A, BIAEA,
Ar=p Ar=p=(BM)r
since

HgM(X)g = b5 M(N)5 C (b, 1)M(), B).

We shall see later on that we can choose the af as above if (2 is a regular
orbit.

10.12. Suppose that M,M' are in FC4(Q2) and that ¢ : M — M'is a
homomorphism. We get a translated homomorphism Ty : TM — TM'. Now
¢ induces

Vo(A) : VM(X) — VM'(A)  forall X e Q

taking any homomorphism A : Z%(\) — M® to ¢ o h, and T induces
V(To)(u) : V(TM)(u) — V(TM") (1) forall p e T

taking any homomorphism k' : Z%(u) — TM?® to Tp o h'. If we use Ay as in
10.2(6) to identify
VIM(p) = @ vM())

Ar=p

and similarly for M', then V(T¢)(u) is just the direct sum of all Vp(X) with
Ar = p. This is an easy consequence of the functoriality properties of adj,
involved in the definition of Ay.

We can also consider N, N’ in FC4(T'), a homomorphism ¢ : N — N’
and the translated homomorphism 7"+ : T'N — T'N'. The map induced by
T'y on V(T'N)(]) is the same map as the one induced by 4 on VN (Ar) if we
use the identifications A’(N)x and A%(N')x from 10.2(2). This follows from

the functorial properties of adj; .

10.13. Consider M in FC4(9) and N in FC4(T"). Look at a homomorphism
¢ : N — TM and its image adj,(¢) : T'N — M under adjunction. Now ¢
induces

V(p()\r‘) : VN(/\F) i— V(TM)(/\F)
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taking any homomorphism h' : Z%(Ar) — N® to p o k', and adj,(y) induces
Vadiy(#)(3) : WIT'N)(N) — VM(A)
taking any homomorphism h : Z%(X) — T'N? to adj,(p) o h. If we use A% to
identify V(T'N)(X) with VN (Ar) and if we use Ay to identify VM(A) with a
direct summand of V(T M)(Ar), then Vadj,(¢)()) is identified with Vp(Ar).
Indeed, any h as above is mapped under A'f to adj, (h)o fx, then under Vyp(Ar)
to ¢ oadj;(h) o fa, finally under Ay to
adja(p 0 adjy (k) 0 fi) o fi = adjy(¢) o T"(adjy (k) 0 fi) 0 adiy™ (£7)
= adjy(¢) o adii " (adjy (k) 0 fa o £7)
= adj, () o h.

On the other hand consider a homomorphism ¢ : TM — N and the

corresponding ¥’ = adj;'(y)) : M — T'N. It is not so straightforward to
describe V¢'()) in terms of V¢(Ar). In fact, it depends on the choice of the

isomorphism E' = E* in 7.6.

10.14. Consider as an example {2 = Wp.\ with X in the interior of the first
dominant alcove, i.e., with
0<{A+p,a¥y<p forall o € RY,
and I' = Wpe(—p). Set Z = VrZ4(—p); we have obviously (cf. 9.5)
2(-p)=A" and  Z(—p,B) = AP forall 8 € R, (1)

where the inclusions Z(—p,3) C Z(—p) are the natural inclusions A? C A°.
If p € Wye(—p) with p # —p, then

Z(p)=0 and  Z(p,B)=0 forall 8 € RT. (2)

Set Q = T'Z4(—p); let us describe Q@ = T'Z ~ Vo (@ using the notation aﬁ“ A
as in 10.10(3). We have by 10.10(7) for all w € W and v € ZR

_ A ifv=0;
Qwed +pv) = { 0, otherwise. 3)
We have for all 3 € Rt and w € W
A8(1,0) ifw=1g > 0;
.A = K ) )
Q(w-, B) {Aﬂ(l,o) @ AP’ 1), ifw 1B <0. )
Furthermore, if w™!3 > 0, then
Q(waX — pB, B) = 4%(0,1). (5)

All other Q()', ) are equal to 0. We shall use this description of Q to compute
explicitly End¢(Q) in 19.4.
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Introduction to the Sections 11-13

Our goal is to actually choose isomorphisms fy and extensions e’())

and compute the constants af needed for our combinatorics in the preceding
section. The result of our computations is a “Theorem of good choices” that
we want to explain now.
For A\,u € X let us abbreviate by A — p the statement “u is in the
closure of the facet of \”. If A is a B-algebra and A, u are two elements of X,
we let T = T} denote the translation functor from Q= Wped to I' = Wyeps. If

A — p, then there is an isomorphism Z4(u) — TZa()). If now 8 € R"' is a
positive root and (8TA) — (81 p), then we also get Z4(31 p) S TZ4(BTN).

Translation of extensions gives rise to a map

Extg(Za(A), Za(B1A)) — Exte(Za(p), Za(BT 1)),

that depends on the choice of isomorphisms f} : Z4(p) — TZ 4(\) and fgrrf :
Za(BTr) = TZA(BTA).

Suppose now A, A?, A? are as at the beginning of Section 9 and use also
the notation Z#()) introduced there. Translation of extensions gives also rise
to a map

Exte(Z°(X), Z°(B1X)) — Exte(2°(n), Z°(B1 ),

that again depends on the choice of f§ and of fg& . In case u # B 7T p this
is just our [ ff , m" %] from the preceding section. In case p = 1 p this map

is zero, since there are no self-extensions of Z?(u). But if 4 = 31 p and
A # ﬁT)\ and (37A) — p we constructed in a more involved way (see 10.5) a
map

OLfS, T3+ Bxt(2°(N), Z°(B1N) — APH" /4
depending on the choice of f}, fﬁ)’(

Suppose (for the sake of simplicity) that we take as A the completion of
B with respect to the maximal ideal generated by all H, resp. by all K, — 1.
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(We shall work in greater generality in the sections 11-13, but this is really the
situation that we shall use afterwards to get our main results.) Set ho = doH,
in Case 1 and h,, = log K, in Case 2. Assume in Case 1 that p does not divide
any dg. Each hg differs from Hg by a unit in 4? (even in A).

To state our theorem, we further need some alcove geometry. Let H be
the set of reflection hyperplanes for the dot-action of W, on X ®z R. Each

H € H has an equation of the form (v + p,yY) = rp with r € Z and v € R™.
Then we set v = a(H); furthermore, for any v € X we shall write v < H
(resp. v > H) if and only if (v + p,7Y) < rp (resp. (v + p,y") > rp). For all
B € R* let H(B) be the set of all H € H with sga(H) < 0. For 3 € Rt and
A p € X with A — p set

Cﬂ(’\a/‘) = H h—a(H) H h;(lH);
HeH(B), HeH(B),
peEHA>H peEH A<H

this is an element of the fraction field of A. We have 8 T pu # p if and
only if a(H) # (3 for all H with u € H; in that case C#()\, ) is a unit in
AP, If BT p = p, then there is exactly one H € H(B) with u € H; if now
BTA# A, then either A < H (and hgCP(\, p) is a unit in AP) or A > H (and
hEICﬂ (A, 1) is a unit in A®). Note that in this case A < H is equivalent to

(BTA) — p.

Now we can state our “Theorem of good choices”.

Theorem: Suppose that p is at least the Cozeter number and that in Case
2 all prime divisors of p are good for our root system. Then it is possible to

choose simultaneously generators (over AP)

e’ (u) € Exte(ZP (1), 2° (BT 1)) (1)
for all p€ X and B € Rt with BTp # p and isomorphisms
I Za(p) = TZa(N) (2)

for all \,pu € X with X regular and X — p such that for all \,p € X and
B € Rt with X reqular and A — p we have

tfs, FaR1EP () = CP O\ p) eP(w), i BTu#
and

OLf%, faR1eP(N) = CO(\ p) + A%, if BTy =p and (BTN) — p.
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Remarks: 1) We can identify Z4(A\) and Z4(X + pv) for all A\,v € X; this
induces identifications of corresponding Ext groups. In our theorem we can
make the choices in (1) and (2) such that each e?(\ + pv) is identified with
e?()), and each f§ with f;;f;:.

2) Note that the C#(\, ) are in some sense “independent of the char-
acteristic”. This is precisely what allows us to prove our “independence of
characteristic” results from the introduction, since the af from 10.10 appear-
ing in our combinatorics can now be taken to be just the C#(\, Ar).

3) We hope that one might extend the theorem to non-regular A and
to small p. However already our proof of the above theorem involves so
dreadful computations, that we were discouraged from trying to prove the
generalization.

Our proof of the above theorem proceeds in two steps. In Section 12 we
show how to choose extensions e ()), ef (11) and isomorphisms f{ and compute

for these choices the constants a € AP/HgAP such that t[f}, fgg“ lef(\) =
ael (1) resp. 0[ff,fg&]eoﬂ()\) = a(hgz' + AP). (Observe that APHZ'/AP is a
free module over A®/HgzAP of rank 1 with basis h;l + AP.) In Section 13 we

modify our choices by suitable units to get the nice constants of the theorem
above. Section 11 contains preliminary calculations.

Let us discuss the contents of the Sections 11 and 12 in more detail. Let
us fix a regular orbit 2, an arbitrary orbit I' and let L be the simple finite
dimensional module used in the construction of T = T§ as in 10.2. For A € Q

and g = Ar we may choose f§ = fa: Za(pu) — TZ4()) such that it takes
the standard generator v, to pr(e ® vy) where vy is the standard generator of
Z4(A) and e is a nonzero vector in L,_». Similarily, we can choose f grm = fan
so that it takes vg, to pr(e’ ® vgpn) where €' € Lgy_gin = Ly, (u—r). Now
the corresponding t[f, fapn] resp. 0[fx, fop] depends on e and e'; denote it
for the moment by t%[u, A, e,e’']. Both p — X and sg(u — \) are extremal
weights of L; so there is an integer r > 0 and an element a € k, a # 0
with e/ = aE(_T[),e or e = (—l)raEf;)e. (The term (—1)" will simplify some
formulas.) Now t4[u, ), e, e'] will depend only on a; denote it by t%[u, \, a].
(Actually, it depends also on the choice of the root vectors E,g.) Later on
we shall choose a as follows: If e is part of a canonical basis of L, then so is

e’ (up to sign). For this choice we shall write tg [1, A] instead of %[y, A, a).
Suppose that we have a third W,~orbit I'" such that there is for all w € T
a unique wps € I in the closure of the facet of w. We have then translation
functors also from I' to I' and from (2 to I'. We can consider t?[v, u,a'] and
t?[v, A, a''] where v = pr for all a’,a" and then compare t°[v, u,a']ot?[u, \, a]
to t[v, \,a"]. This is done in 12.11 and then specialized to a comparison of
t2[v, ] o t2u, A] with t°[v, A] in 12.12. Using I with v + p € pX — so that
t8[v, A] takes values in APH 5 '/A# — we can make our preliminary choice
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el ()) for e#(\) and compute 81, AJe? (A) for all A.

In our calculations we have to work with translation functors not just
over A between W,-orbits, but also over AP where we work with orbits for
Wsp =< sgrp |7 €Z>. Let us disregard this complication for the purposes
of this survey.

As mentioned above, we have to find explicitly a b € A® with
tPlv, u,a'l o tP{u, A, a] = btP[v, A, a"].

(Of course, b is determined only modulo HgA?; our choice of b within its
coset will have particularly nice properties.) If 8 is a simple root, then one
can evaluate these maps (and determine b) using the explicit description of
the extensions in 8.1. If 3 is not simple, then choose w € W such that w=!73
is simple. We can then work with the positive system w(R™) and have an
explicit description of the extensions. However, they involve new “standard”
generators. For example, for Z?()\) we no longer work with vy, but with
a vector vy of weight A + (p — 1)(wp — p). We use then an isomorphism
f¥ 2 Z8(p) = TZP(X) with f{(v¥) = pr(e®vy); similarly for 31 A. Denote
the ¢[fx, fo] resp. O[fx, fop] corresponding to f} and fg, by %%, A, a)
with a as above. We can then evaluate t%*[u, \,a] on our extensions (12.5
and 12.7), hence find b,, € A? with

9%y, u,a'] 0 tP% [, X, @] = by, tP¥ [, X, a"].

Now we have to determine b,,b~1. This requires lengthy explicit calculations
that are carried out in Section 11. What we need is the formula 11.10(6).
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11. Translations in Rank 1 Situations

11.1. Fix 8 € R*. Set d = dg. Throughout this section we shall assume
that we are in one of the following two cases:

(A) We consider a B%-algebra A and arbitrary A, u € X. We apply the setup
of 7.4/5 with W' = {1}, @ = {A\}, and " = {pu}.

(B) We consider a B#-algebra A and set W' equal to the group generated by
all sg ,p with r € Z. Let A\, u € X such that p is in the closure of the facet of
A. We apply the setup of 7.4/5 with this W', with @ = W'.A and I' = W'.p.

We set T = T3 in both situations. It involves the tensor product with
a module in C; with extremal weight u — A. Denote this module by L and
choose a basis e of the weight space L,_». For the sake of easy reference let
us write down in the quantum case some rank one formulas for the action on
e. They follow easily from the so-called Kac commutation formula, cf. [Lu7],
6.5(a2). We have for (u — X, 3Y) >0

E;;)E(_rg-s)e = E(_s[);e [(,u — A BY) - s]
r d

and for (A —p,8Y) >0
— V —
e e[ —]
d

Furthermore
KgBye = M2+ EDe  and  KpEYe = (- =20 gl

11.2. Recall the notation w(w) =w+ (p—1)(wp—p) forw € X and w € W

from 4.7(4). We know by 4.7(5) that the w(w) weight space of Z4(w) is free
of rank 1 over A (for all w and w); choose a generator v¥. Write v, = v},
We have Z4(w) ~ Zp(w) ®p A. We can and shall assume that the v¥ arise
from corresponding elements over B.
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The discussion in 7.5 and our assumptions imply that T'Z4(\) is gener-
ated by pr(e ® vy) where pr = prp. More precisely, there is an isomorphism

fe:Za(p) = TZa(\) =pr(L® Z4(N)) with fe(v,) = pr(e®wy). (1)

Let w € W with w™'3 > 0. Denote the standard generator of Z% (A(w))
(of weight A(w)) by v); define v}, analogously. We have by 5.14 an isomor-

phism Z4(X) = Z¥ (A (w)) with v¥ — v}; similarly for u. We get from 7.11
an isomorphism

ZY (u{w)) = TZ3 (M w)) with v, = pr(e ® v}),
hence an isomorphism
2 Za(n) <5 TZa()  with f2(0p) = pre @ v). 2)

Of course, f. and f* differ by a factor that is a unit in A.
In the situation (A) we have

TZa(\) = (TZgs(N)) @ps A,

cf. 7.5(2), and the maps f., f* arise from the corresponding maps over B°.
In the situation (B) we have an analogous result with B? replaced by B?.
Furthermore, if we are in the situation (B) with A = B, then we can extend
scalars to B? and get into a situation (A). Using constructions of this type,
we can usually restrict to the case A = B? in our calculations in this section.

11.3. Consider w € W such that w™!f is a simple root. The A(w) — i3
weight space of Z4(\) ~ Z¥(A(w)) is spanned by E(_%v}\” for 0 < i < p, and
is zero for any other ¢. Qur assumption on w implies:

Mw),8Y) = (A+p—wp,Y) =(A+p,8") =1 (mod p)

and
(W) +wp, ) = A+ p,B¥) (mod p). 1
The calculations in 5.5 imply in Case 1:

&) i+d), w _ ) w ((Hg+ (Mw),8Y) =
Eﬂ E—ﬂ Uy —E_ﬂ'UA ( i

for 0 <4,j,i 4+ j < p. Using (1) we rewrite this as
i) (i+) w h wHsg+MN+p,8Y)—j—-1
Eg>E<_;;f>UA=E<_f;UA( gt At B - ) @)

1
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In Case 2 we get similarly
EY BT vy = B (i)™ ﬁ[Kﬂ§ A+pB)—i—k. (3
k=1
If we take (2) and (3) for u instead of A and apply f.*, then we get
EPEYpr(e @ vy) = EVpr(e @ vy) (Hﬂ Tt pg ) =i= 1> (4)

resp.

EQECH pr(e@vy) = EV)pr(e@vy)([ily) IH[Aﬂ, (ut+p,BY)—j—k]. (5)
k=1

The p{w) — i3 weight space of TZ4(X) ~ Z4(p) is spanned by EY pr(e®v,\)
for 0 < i < p. So there are for all integers i,j with 0 < ¢,j < p elements
K,k € A with

pr(E( e® E(]/),vw) = E(_i;j)pr(e R vy)K (6)
resp. with . . o
pr(EYe ® BV vY) = BV Vpr(e @ vy)w'. (7)

Here the right hand side is to be interpreted as 0 if i+ j > p resp. if j —7 < 0.

In 11.5, 11.6, and 11.7 we shall compute k or ' in certain situations.
Here 11.5 and 11.7 will be auxiliary results needed to establish 11.6. In 11.8
we shall then state two special cases of 11.6 that will be applied in 12.3 to
evaluate our translation functors on extensions. The formula in 11.5 will be
uséd again to prove Proposition 11.10, the main result of this section.

11.4. We fix (until 11.8) an element w € W with @ = w13 simple. In Case
2 we shall choose Eg = T\,(Ey) and E_g = T\, (F,). (Nothing will change, if

we multiply Ejs by a unit and E_g by the inverse of that unit.) In Case 2 the
coproduct of Eg has the form

A(Bp)=Es®@1+Ks@Es+ Y uiQuj

where u} is a weight vector of weight say 7; > 0 and where u; is a weight
vector of weight 8 —~; > 0 and where w™!v; > 0 and w™*(8 — ;) < 0 for all
t. This follows from C.5. We have also, cf. C.6,

A(E_p)=E-3@K;'+1@E_5+ Y vi®v
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where v has weight say 7; < 0 and where v; has weight —3 — 7! < 0 with
w™lyl > 0 and w™(-B - 7!) <0 for all i.

If wly > 0 and if w™ly # jw™13 for all j > 0, then \(w) —iB8+ 7 is
not a weight of Z¥(A(w)) (for any ¢ > 0). This implies uE(_'I)gvf = 0 for all
¢ > 0 and for any u of weight v. If 0 <y < B orif 0 > v > —f3, then clearly
w1y # jw™!B. So we see that in Case 2 for all e’ € L

Ej(e' ® BS)of) = (B3 ® 1+ K5 © Eg)(e' @ ESpuy) (1)

and
E_g(¢ @ EVo¥) = (B_s @ K;' + 1@ E_g)(e' @ EVw¥).  (2)

11.5. Lemma: We have
pr(e ® E(_pﬁ_l)v)\“’) = E(_pﬂ*l)pr(e ®vY)K (1)
where K is equal to 1 if (u— A, BY) <0, and equal to

Hg + (u+ p, 8Y) resp. C()\—u,ﬂv)d [Kg; {1+ p,8Y)]
Hg+ (A +p,8Y) [Kg; (A + p, BY)]

if (u—=X,BY) >0 in Case 1 resp. in Case 2.

Proof: We know by 11.3 that there is a k € A such that (1) holds. If

(n—=A,BY) <0, then E_ge =0, and — using 11.4(2) in Case 2 —
Eg’ﬂ_l)pr(e ®uvy) = pr(EEDﬂ_I)(e ®vY)) =pr(e® E(‘pﬂ;l)v;")

and Kk = 1.
Suppose now that (u — A, 3Y) > 0. Then Ege = 0. We get in Case 1

E/’;_lpr(e ® E(_”[;_I)U)\'”) = pr(Eg_l(e ® E(_pﬂ_l)vﬁ\”)) =pr(e® EZ_IE(_Z};I)UE\”).

We have by 11.3(2)

p—2
By EC vy = oy T[(He + (A +p,87) = 1- )
=0

|
—

p
=o¥(Hg+ (A +p,8") 7" || (Hs +4)
7=0
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and similarly by 11.3(4)

r—1
EY EP Vpr(e @ vf) = pr(e @ v )(Ha + (n+ p,8Y) 7 [[ (Hs + 5)-
j=0

The claim follows by plugging these formulas into
pr(e ® 1E(” Dywy = E4” IE(’J Dpr(e ® v¥)k.
In Case 2 we get first of all — using 11.4(1) —
Eg_lpr(e ® E’i?,lvﬁ\”) = pr(KZ_le ® EE_IE’:? vy
= pr(e ® BT BYG o)DM A0,

Furthermore,

p—2
B5 EEV 08 = of [T [(Ks: (Mw), 8Y) - ]

r—1

= v [Kg; (A +p,8Y)]7" [] K83 4]

j=0
There is a similar formula for v)/. The claim follows using (7~ 1= (1,

Remark: Using the notations introduced in the appendix (A.2 and A.12) we
can rewrite the formula as

= d(}‘v H?ﬁ)—ICﬂ()‘ - ”’) (2)
(Recall that in Case 1 all ¢ terms are equal to 1.)
11.6. While in Case 1 a power (Eg®1+ 1R Eg)" of A(Ejp) is simply given

by the binomial theorem, things are more complicated in Case 2. One can
show by induction on r, cf. [Lu7], 1.3:

1
(B ® ‘|[‘r]l‘ﬂ ® Eg)" Z( J(r— J)dKJE(r —J) ® E(J) (1)

Lemma: ¢) If0<r=(u— A BY) <p, then for all i with0<i<p-—r
pr(E(r)e ® E(’) vy) = Ef_i;r)pr(e ® vy )k; (2)

where

{(’““*‘Z)'(l N~ H] (Hg+(p+p,8Y) — 7)), in Case 1;
[7"+’] ([Z]d) IH] JEK g (w+p,8Y) — 5] 1 in Case 2.
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b)) If0<r=(A=p,BY) <p, then for alli withr <i<p
pr(By e ® B)uy) = V5" pr(e ® v}k (3)

where )
in Case 1;

_1)',
K’: = { (_l)rcr(i—<)\+Paﬂv))dKﬁ_r’ in Case 2.

Proof: a) We are dealing with a special case of 11.3(6). So we know that
there is some k; € A satisfying (2). Apply E;,H") to both sides. We have

El(gj )E(_rg,e =0 for j >r and El(,r) E(_r[),e = e, so we get on the left hand side in
Case 1

T+t
r+i r 1) w . r r+i—j RN
By pr(EC)e @ Evy) = > pr(EY B )e ® By TV EG0y)
i=0

= pr(EYEC) e ® B B oy)

ey (Fo+ A58 -1)

1

(using 11.3(2) for the last step), and in Case 2

Ef;‘H) pr(Ef_rz,e ® E(_'Lv;")

r+1t
- Z (‘j('+i_j)dpr(K/§+'_]El(,])E(_r{),e ® EI(QTM—J)E(_';#}:\”)
Jj=0

= ("rlpr(KSES BN e @ B BV uy)

= pr(e ® vy )¢ =A== T 1K g (A + 0, 8Y) = 5]
=1

using now 11.3(3). We use 11.3(4),(5) to evaluate the effect of EI(;H) on the
right hand side of (2); we obtain in Case 1

o (Hﬂ+(/\+p,ﬁv>—1) (Hﬂ+(u+p,ﬂv>—1)-l
! ) r+41 ’

and in Case 2

[r+i]fi : - v -T-H v a—1
%= T H[I‘ﬂ;(/\+ﬂ,ﬁ)—J]H[Kﬂ§<#+/’,ﬂ)—J] :

138



REPRESENTATIONS OF ALGEBRAIC GROUPS AND QUANTUM GROUPS

Using (1 + p, 8Y) = (A + p,BY) + r one rewrites x; and gets the claim in the
lemma.
b) We are dealing with a special case of 11.3(7). So we know that there

is some k) € A satisfying (3). Apply Eg_r) to both sides. Now E,gE,(;)e =0,
so the left hand side yields in Case 1

T—7T

r i—r 1) w r ) w H A 5 VYy=r—-1
pr(ES e B >E9;UA)=pr(E;,>e®E<_;vA>( st At pBY) = )

using 11.3(2), and in Case 2

pr(I‘x";—TEg)e ® E;,i_r)E(_iz,Uf\”) = pr(EE;)e ® Eirgvf)(r(i_r)d

([i = 1)~ [T s (A + 0, 8Y) = 7 = 4]

=1

using 11.3(3). When we apply EE;_T) to the right hand side of (3), then the
following terms occur: In Case 1

-7

i—r i—7 w w H s v -1
BB )pr(e@w):pr(e@v,\)( s+ {u+p,8Y) )

and in Case 2

Eg_r)E'(_i;r)pr(e Qvy) =pr(e® v¥)([i - T]Ei)_l H[I(ﬂ; {(n+p,8Y) = jl.

i=1

Since (u+p, BY) = (A+p, BY)—r, we can cancel binomial terms resp. products.
We get

pr(EéT)e ® EE_?;U;’), in Case 1;

pr(e @ vY)k; = ; . ‘
( $) { pr(Ef, )e ® E(_[),Uf\”)cr("r)d, in Case 2.

Now the claim will follow if we can show that (in Case 1 resp. Case 2)

(=1)"pr(e @ vy),

(r) (r) —
pr(Ey e ® B puy) = {(—1)"pr<e®vs“)<’<’-<*+""’v”“ff5 @

That is the special case j = r of the following lemma.
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11.7. Lemma: If0<r=(A—py,BY) <p, then for all j with 0 < j<r

( 1)]( )pr(e®v)\ ’

)
() (), wy _
pr(Eﬂ e E—ﬂvk) - { (—l)fpr(e ® oY) [r} ¢it- (A+p,ﬁ">)dI'_’ (1)
J

in Case 1 resp. in Case 2.
Proof: Since p({w) + 3 is not a weight of TZ4()\) ~ Z¥(p(w)), we have for all
20 | |
pr(Eé"H)e ® E(_][),v;”) =0.
Apply E_j to this equation. We get in Case 1
(r = pr(E§ e ® B 3u8) + (5 + Dpr(Ef Ve B Vog) = 0,

and in Case 2 — using 11.4(2) —

w r—J - — w
PI(E(])6®E(J;"A)C((A+[,, - ]tli 2])dI l+pr(E(]+1)e®E(]+l) “)i+1]q = 0.

We can rewrite this as

. D) o r—j . ) w
pr(E}i]H)e ® E(_];Uv)‘) = yn 1pr(EéJ)e ® E(_][),v)‘ )s

resp.

pr(Ey Ve EY] ”vs")=—pr(E§a")e®E£’%v3">{r+ﬂd< (e -1-29d e 1,

Now the claim follows by induction.

11.8. Let us state explicitly one special case of Lemma 11.6. Let m,n be
the integers with 0 < n,m < p such that

(A+p,B)=n (modp) and (u+p,8")=m (modp). (1)

Suppose that
(p=X\B"y=m-n. (2)

This assumption is satisfied, if we are in the situation (B) with p in the lower
closure (cf. 6.8) of the facet of A for W'.
We get then: If m > n, then

(E(m e E(") V)= E(_'Z)pr(e R vY)k
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with
)T IS (Hg+m —j5)™",  in Case 1 3)
"7 ml([nl) TS (K pim = 5177, in Case 2.
If m < n, then
pr(Eg"_m)e ® E(_"ﬂ)vg“’) = E(_'Z)pr(e ® vy)k'

with (1) i Case 1

, (= nem in Case 1;
m= {(—1)"_"‘Kﬂ_(n_m), in Case 2. (4)

11.9. Consider a third weight v € X. If we are in the situation (B), assume
that v is in the closure of the facet of u for W'. We shall write quite generally
pr instead of pryy,, whenever it is clear which W' orbit is to be taken.

We can apply the construction of the preceding subsections to (u,v) and

to (A,v) instead of (A, u). We have translation functors T' = TW,I.‘,': and

T" = TVVIB/,'.')'\’ . They are constructed using modules L' and L", and we choose

nonzero vectors e’ € L!,_ u and e’ € L!/_,. There are isomorphisms

fer: Za(v) = T'Za(p)  with fe(v,) = pr(e' @ v,)

and
fer s ZA(I/) = T"ZA(/\) with fen(v,,) = pr(e" ® ’U)\).

Then
g = Ge,e' e = fe" o fe_ll o (T,fe)—l (1)

is an isomorphism
g:T'TZs(\) = T"Z4(\) with g(pr(e’ ® pr(e ® vy))) = pr(e” ® vy). (2)
It is obviously independent of the choice of vy.

Let w € W with w™!8 > 0. We get then as in 11.2(2) isomorphisms f¥
and fY% from Z4(v) to T'Z 4(u) resp. to T" Z 4()\) with

fEE) =pr(e ®vY)  resp.  fH(v¥) = pr(e” @ vY).

Then
gw = g:‘je’,e” = :”’ ° (f:’))_l ° (T,f:’)—l (3)

is an isomorphism
g¥ 1 T'TZ4(X) = T"Z4(X) with g*(pr(e’ ® pr(e ® v¥))) = pr(e” @ v¥).
4
Both T'"TZ 4()) and T"Z4()) are isomorphic to Z4(v), so g and g* differ by

a unit in A.
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11.10. Keep the assumptions and notations from 11.9. We shall use the
notations ¢, and (,, introduced in A.7 and A.14.

Proposition: We have
g(pr(e' @ pr(e ® vy))) = pr(e” @ vy)cw (v, p, A)Cw (¥, 1, A).

Proof: The argument at the end of 11.2 shows that we may assume A = B?.
We use induction on the length of w. The case w =1 is trivial. It is enough
to prove the following: Let w € W and « a simple root with v = wa > 0. If
the formula holds for w, then it hold for ws,.

For such w and a we have A(ws,) = A{w) — (p — 1)y and we can take

vyt = Eff’7 Dyw vy, since the claim is independent of the choice of vy**. We

get from Lemma 11.5 constants «, &', and k" such that

pr(e®oy") =pr(e® BETuy) = EZ Vpr(e @ oX)s, (1)
pr(e' ®E(p 2 v, )= E(p 1)pr(e @ vy )k, (2)
and
pr(e" ® E(p Dyp) = E(p Dpr(e” @ v)x". (3)
Formula 11.5(2) and the definitions A.6(1) and A.12(3) show that
R (K71 = (0, Ao (0, 1, V). @)

We can replace v, above by its multiple pr(e ® vy) in the equation involving
k'. We get now — writing ¢, = ¢y (v, i, A) and (o = Cuw(v, p, A) —
g(pr(e' @ pr(e® EZTV0R))) = EZ Vg(pr(e' @ pr(e ® v})))sx
by (1) and (2)
= E(_p.y_l)pr(e" ® vY))kE' Cwuw
by induction
= pr(e"®E(p 2 VY ) KK CoypCo (k") 71
by (3).
Now apply (4) and use that cys, = cywcy and (s, = (w(y since
{@ >0 (wsa) ' <0} ={a' >0|w™a <0} U{wa =~}
Remark: Comparing this result to 11.9(4) we see that
g= Cw(Va,U'a )\)(w(V»M,A)gw- (5)
There are units a,a’,a” € A with
fe& =afe, fo = 'fer, fen = a" fen.
Then

-1

aa'a" ™" = ey (v, py A)Cuw (v, 1y A). (6)
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12. Translations of Extensions

12.1. We shall assume throughout this section that we are in the situation
(B) from Section 11. We shall keep the general assumptions from that section.
In particular, we fix a positive root 3 € R and assume that A is a B#-algebra.
Assume in addition that A is an integral domain with fraction field K and
that the image of Hg in A is nonzero.

In Case 1 we have for all z € Bf that = sgz (mod Hg). In Case 2
we get instead ¢ = sgz (mod Kz — 1). However, the Ext groups as in 8.6
involve congruences modulo Hz = [K;0]. We shall have to get congruences
modulo Hg from congruences modulo K3 —1. Therefore we shall assume from
12.9 on that A is an algebra over BP[(K4 + 1)7!]. Then we have sgz =
(mod HgA) for all z € B? in both cases.

We fix w € W with w™! simple and suppose that E;z = TwE4y-1p.
(There are a few statements that are independent of w or where w™13 > 0
suffices.)

12.2. For any weight w € X there is a unique integer » with 0 < r < p such
that (w+ p,8Y) =p—r (mod p). Recall from 9.3 that we then set

Blw=w+rp. (1)
We have B3Tw = sg,ipew for some I € Z; obviously
Blw=w < (w+p,8Y) =0 (mod p). (2)

As in Section 11 we consider weights A, 4 € X such that p is in the closure
of the facet of A for W/ = W3, = < sgrp | r € Z >. So BT = ) implies
B 1 = p. We shall make the stronger assumption that p is in the upper
closure (cf. 6.8) of the facet of A.

Let m,n be the integers with 0 < n,m < p and

A+p,B)Y=p-n (modp) and (u+p,BY)=p—m (mod p),
i.e., with

BTA=A+nB and BTp=p+mp.
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Our assumption on the facets implies that
(p=X\BY)=n-m.
We use the notations T, L, e, f., and f* asin 11.1/2. We have
Blu—BTA=sg(u—N).

Denote by € a basis element of L,,(,_x. We have analogously to f. an
isomorphism

fe: Za(BTp) — TZA(BTA) =pr(E @ Za(BTN)) (3)

with fe(vg) = pr(€ ® vgp). Similarly, there is an isomorphism

f2:Za(BTp) = TZa(BTA) with f¥(vg,) =pre@vg,).  (4)

12.3. There is a nonzero element ay, € k such that
arg(~=)mE" e ifn > ;

a)mEl(gm—")e, if m > n.

(Note that for n = m both equations say € = ax,e.)
The formulas 11.3(6), (7) applied to 3T A and 37T p instead of A and p
show that there is (e, €) € A with

pr(e ® EJufh) = U5 pr( @ v (e, ). ()
Lemma: We have

o -1 (mod Hpg), in Case 1;
k(e,€) = ay, d(p, A B) { (mod Kg —1), in Case 2.

Proof: Let us assume that ay, = 1. (The general case is an obvious conse-
quence.) Abbreviate k = k(e,€). We want to apply the formulas in 11.8 to
B1TA, B1u, €instead of A, u, e. Note that our present n and m have exactly
the meaning of n and m in 11.8 for 3T\ and 31 u instead of A and u. Note
also that 37 p is in the lower closure of the facet of 31 A for W'.

If m < n, then e = (—1)"""‘Eé"_m)€. So in this case our k is the «'
from 11.8(4) multiplied by (—1)"~™. So it is equal to 1 in Case 1, to a power
of K[}'l in Case 2. Since obviously Kg '=1 (mod Kz — 1), we have k = 1
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in both cases. On the other hand, we have 0 < n —m = (u — A, 8"), hence
B(p—A) =0and d(p, A, B) =1.
Suppose now that m > n. We have then e = E(_"I;_")E. So 11.8(3) implies

om {m'w) I (Hy +m =),
) T i — 1

We get in Case 1

=™ jromoom_ Hpt (ut e 5Y)
= ‘I;Im J) = T TR T H, (k8 (mod Hpg).

In Case 2 observe that

Kﬂ(id _ I([;lc_id C,d C-,d
Cd _ C_d Cd

This yields (modulo Kz — 1)

[Kg;i] = =[i]¢ (mod Kz —1).

m=n o _ [mla _ [=mla _ [Kgi(utp,8Y)]
_1;[ (bm = 3107 = T = ol = Bt .50

Finally m > n implies 3(x — A) = 1. So the claim follows from the definition
of d(p, A, B), cf. A.2(1),(2).

Remark: Note that (under our assumptions) the term d(u, A, 3) is a unit

in B?, hence in A. In the definition A. 2(1), (2) we can get a factor Hg
resp. [Ix[;, 0] only if 37T = p. Since p is in the upper closure of the facet of

A, we get in that case B(u — \) = 0.

12.4. We can apply the theory from 8.1-4 to the positive system w(R1).
Note that wp plays the role of p and that

(w(w) + wp, BY) = (w+p,8Y) (mod p)

for all w € X.
Suppose that 3T A # X. For each b € AH 5 ! set Y,(b) equal to the

U ® A-submodule of Zx(BTA) ® Zk () generated by v, and zy, where
— W (n), w
2 =vy + E gugnb.
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(For 3 simple and w = 1 our present Y (b) is the Y (b) from 8.1(4). We now
emphasize the dependence on A by a subscript.) We have an exact sequence

0— Za(BTA) — YX*(b) — Z4(A) = 0 (1)
where the first map is the obvious inclusion and where the second map takes

2y to v¥. Denote the class of (1) in its Ext group by yy(b). We know from
Lemma 8.4 that y} induces an isomorphism

AHZ' /A = Exte(Za(N), Za(BT).

If also BT p # p, then we define analogously Y,”(b), involving m instead of n,
and y,).

12.5. Suppose that 3T\ # A and BT pu # p. For any choice of isomor-

phisms f : Zs(p) — TZa(A) and f': Z4(BTp) — TZ4(B1 ) we get an
isomorphism

t[f, f'] : Exte(Za(A), Za(B1X)) — Exte(Za(p), Za(BT 1)),
of. 7.7(5), (6) and 7.9. We define #[u, A, e,2] and t°[u, \, e, €] as two special
o tlis ) e8] = tfe, fi] = (for (fo) )" o T, M
9l Ay e,7] = HLFE, F] = (£, (f2)) o T. )
Proposition: If BT\ # A and 81 # p, then

t[p, A e, €]y (b)) = v, (x(e, €)b) for allb e AHEI.

Proof: The exact sequence
0= TZA(BTA) — TY!(b) — TZ4(A) =0
shows that T'Yy’(b) is generated over U ® A by pr(€ ® vg, ), a generator of

TZ4(81X), and pr(e ® zy), an inverse image of the generator pr(e @ vy) of
TZ 4(\). The isomorphism (arising from the inclusion)

V(0@ K — Zr(BTX) ® Zk(N)
induces an isomorphism

TYP(b) @ K =5 TZg(B1N) @ TZk(N).
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Composing it with ()~ @ (f¥)~! we get an isomorphism

TY () @ K — Zg(BTp) ® TZx(u).

It takes pr(e ® vj,) to vg, and — using 12.3(2) with k = «(e,€) —

pr(e ® 23) = pr(e @ v¥) + pr(e ® v )b
=prie®@vy) + E(_"[;)pr(e ® vy )bk

to vy’ + E(_"[;)vg’mbﬁ. We get thus an isomorphism
f:TY"(b) = Y”“’(brc)

such that the diagram

0— TZsBTA) — TY(Od) — TZas(A) —0
l(f%”)”l lf l(fw)—
0—  Za(BTp) — YY¥(bs) —  Za(p) —0
is commutative. The claim follows.
12.6. Consider the case where 3TA # X and 8T u = p. We then set
t{u, A, e,€] : Extp(Za(N), Za(BTN)) — AHﬂ_l/A (1)
equal to the isomorphism 6[f., fz] from 8.13/14. Recall: We choose a repre-

sentative

0> Z4(BTA) =Y —jZ4(N) — 0 (2)

of a class £ in the Ext group. There is a unique homomorphism j' : Z4(A) - Y
with j o j' = Hg -id. We apply T to (2) and get an exact sequence

0= TZ4(B1N) L5 TY ZLTZ4()) — 0. (3)

Both extreme modules in (3) are isomorphic to Z4(u), so we can find a ho-
momorphism ¢’ : TY — TZ4(81)) with i/ o Ti = id. Now fgl ot'oTj' o f,
is an endomorphism of Z4(u), so there is a unique scalar a € A with

folod'oTj o f, = aid.

We set now
. A, e,2(6) = aHj' + A (4)

We define similarly #*[u, A, e, €] replacing f. and fz by f* and f2.

147



H.H. ANDERSEN, ]J.C. JANTZEN, W. SOERGEL

12.7. Lemma: Suppose that 3TA# X and BTpu = p. Then

tY[p, A e,€](yy (b)) = —k(e,€)b+ A for allbe AH/;I.

Proof: Consider the exact sequence 12.4(1). We use the notations j' and ¢
as in 12.6. We have to have

j'(v}\”) = U;‘UH,g = Z)\Hﬂ - E(_nﬁ;v;'r,\bHﬂ.
The two generators pr(e ® vy, ) and pr(e ® zx) of TY,"(b) are highest weight

vectors (with respect to wR™) of the same weight pu(w). So we can take for
i' the map with pr(e ® 2)) — 0 and pr(e ® vg,) — pr(€ @ vgy ). Then

i' 0 Tj' o f2(v¥) = i' o Tj'(pr(e ® vY))
= i'(pr(e ® (2aHg — E")v5,bHp)))
= i'(pr(e @ 2))Hp — i/ (pr(e @ E")uli\bHp))
= —pr(e ®@ vgy )k(e,€)bHg

by 12.3(2) where m = 0 since 3Ty = p. The claim follows.

12.8. We define t[u, A, e,€] and t“[u, A, e,€] in the last missing case, i.e.,
when STp=pand BTA = A, by

tlu, A e,8] = t“[u, N, e,€] = ay,id : AH;'/A — AH' /A. (1)

Observe that in this case m = n =0 and € = ay,e.

It is easy to check (cf. 7.7(7) and 8.13(6)) that one has
tlu, A, be, be] = t[u, A, e, €] forallbe k,b#0

in all three cases, 12.5(1), 12.6(4), and (1) above; similarly for ¢“. Since e is
unique up to a scalar the map [, A, e, €] (resp. t*[u, A, e,€]) depends only on
ax, and we shall wrlte

t[/"ﬂAva/\u] = t[H,A&,@], (2)

similarly for ¢*.
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12.9. Suppose from now on in Case 2 that A is a B®[(K 4 + 1)7!] algebra.

Fix for the next subsections (until 12.14) a weight v € X in the upper
closure of the facet of u with respect to W'. We can apply the constructions,
notations, and results in 12.2-12.8 to (i, v) and (A, v) instead of (A, n). The
calculations to follow will involve the terms cq, €y, (o, (w introduced in
Appendix A, cf. A.6, A.7, A.12, A.14.

Proposition: We have

v, Ay axe] = axtarpauncs(v, py NEC [V, pty @ ]t (1, Ay axg)-

Proof: Set k = d(p, A, B). If BTA# X, BTp # u, then Proposition 12.5 and
Lemma 12.3 imply that

£, X, axayy (b) = v (a3, 5b)

for all b € AHg !, (In Case 2 we have to use here and in the next case our

assumption on A to replace in Lemma 12.3 the congruence modulo Kz —1 by
one modulo Hg.) If 31X # A, BTp = p, then Lemma 12.7 and Lemma 12.3
imply that

£*[1 A, ax]yy (b) = —ax, b+ A.

If, finally, BTA =X and BTu = p, then m = n =0 and k = 1, so we get by
the definition 12.8(1)

tY[u, Ay ax,)(b+ A) = a;;/cb + A.

We get similar descriptions for the maps corresponding to the pairs (A, v) and
(A, p). They yield

tw[Va /\a a)u/] =c tw[Va Ky auu]tw[,u7 /\v a)\u]

where
c=axpauay,d(p, X, B) " d(v, u, B) " d(v, A, B).

Now the claim follows from A.6(2).

12.10. Recall that we assume that v is in the upper closure of the facet
of p and that g is in the upper closure of the facet of A\. This implies that
there is one integer r with 81Tv = sgww + prf and 31 pu = sgep + pr and
BTA =sg:A+prB3. So A.6(4), (5) imply for all o € R:

Ca(ﬂTV,ﬁTM?ﬁTA)=3ﬂ(cspa(’/7/1”)‘))' (1)

Lemma: Each co(v,p, A) and each co(BTv,81T1,81TA) is a unit in BP.
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Proof: The claim is obvious for a # +3. Using A.6(3) and (1) one restricts
to the case cg = cg(v,p,A). We have to show that all terms equal to Hg
cancel (where Hg = [K;0] in Case 2). We can assume that (v + p,3Y) = rp
for some integer r, since otherwise no Hg will occur. If (u + p,3Y) # 0
(mod p), then Hg occurs with exponent 8(p — v) — B(A —v) in cg. Under our
general assumption (u + p,3Y) and (A + p, 3Y) lie strictly between (r — 1)p
and rp. This implies B(p —v) = (A —v). If (u+ p,BY) =0 (mod p) and
(A+p,BY) Z0 (mod p), then Hg occurs with exponent 3(A—p)—B(A—v)in
cg. This exponent is 0, since (u, 3Y) = (v, V). If finally also (A + p,8Y) =0
(mod p), then (u,8Y) = (\,BY), and ¢g = 1.

Remark: Lemma A.10 and A.6(5) imply that modulo HgA
Cw(”a Hy A)Cw(IBTVa /BTﬂaﬂTA)_l = Csy (V’ Ky )\)Cﬂ(l/, Hy /\)—1' (2)
12.11. Proposition: We have

A\pQpuy Cw(Va H, )‘)
are CalBTw, BT, G0 o7Vt e )

tlv, A, ax] =

Proof: There are units a,b € A with
f=afe and fF=0bf¢

and one has then
e, Ay ary] = a7 101w, A an)-

This is obvious except possibly in the case where STA = X and BT pu = pu,
where the maps are defined in 12.8(1). But in that case fe = ax, f., similarly
for f¥, hence a = b. The formula follows.

Similarly, there are units a’,b' and a",b" having analogous properties for
(v, ) and (v, A) instead of (i, A). Proposition 12.9 implies now

tlv, A, ax,] = @' 71"t [y, A ax] = aa'd" O T T e ty, py apn ]t (i, A, any)
where
¢ = a3, axu0uvcp(V, 1y A).
Now 11.10(6) implies
aa'(a") ™ = cw (v, ty A)Cuw (v, 1, A).
If we apply 11.10(6) to 31X, B1pu, and BTv, we get similarly
Bb'(b") ™ = cu(B1%, 8114, BT N)Cuw(BTv, BT 1, BTN).

The ¢, factors in these two products together with the cg term in ¢ yield by
12.10(2) the c,, term in the proposition. Now the claim is obvious.
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12.12. We are now going to make a specific choice of ay, and shall write
81, N = tu, A, ax,] for this choice. We set ay, = a')‘#e’iu with

ay,= J[ Gw-n" JI &O-w, (1)

7>0:3/3 ¥<0, 7>0r‘9ﬂ v<0,
w™ly<0 7#£B,w™ly>0

using the notation from A.12, and

gf” = (_1)(M—>\,ﬂ )ﬂ(u—A)g(u -\ 8,w) (2)
using the notation from B.5. It should be noted that these elements depend
not only on 3, A and p, but also on the choice of the element w € W with

w13 simple.
Now A.12(3), (5) imply

danat= [ GewnN™ I Gy, 6)

¥>0,85v<0, v>0,85v<0,
wly<0 ¥#B,w™ty>0

and A.14(2) yields
A, 0,05, = Cu(V, 1, A) T (BT, BT 1, BTN). (4)

We have by B.7(3)

Efﬂ = H (=1) B2 DT =) H (=1)(r=277), (5)

7>0,85v<0 v>0,35v<0,
v#B,w™ >0

We get from this using the definitions in A.12(4) and A.14(1)

Efueﬁuefy = 25, (A, 1y V). (6)

(Note that the factors from the second product in (5) cancel.) Now Proposi-
tion 12.11 implies:

Theorem: We have

th [, Al = 24, (A, 1, 0)a (v, 1, NG [0, it 12, N]-
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Remarks: 1) Note that a}, is (in the notations from B.5) the specialization
of v(p— A, B,w)™" at v = (, cf. B.7(1). So B.5(3) implies that a, , = sfu =1
in case m = n.

2) Remark 1 implies especially: If 3TA = A (and hence 81 u = ), then
t8]u, \] is the identity on AHﬂ_1 /A, cf. 12.8(1). In the situation of the theorem
we get then

Cop (Vs 1y A) = 255, (A, p,v)  (mod HgA),
hence
Csy(Vyp, A) =1 (mod HgA). (7)

This can be seen directly as follows. We may assume that A = B? resp.
A = BP[(Kg+1)7!], hence that Hg resp. K5 — 1 is a prime element in A (or
a unit in the cases excluded in 9.1). The formulas A.8(1) and A.6(5) show

that .
SBCsy (Va K, >‘) = Cgy (Va K, >‘)_ s

hence
sy (1, A)? =1 (mod HgA).

Now (7) follows, since A/HgA is a domain (or 0).

12.13. Choose a generator hg of the ideal AHg. Later on we shall want to
work with different choices than the obvious one (hg = Hpg), since this will
enable us to compare the quantum group case with the positive characteristic
case. We allow some flexibility at this point so to simplify certain transition
formulas later on.

For each A € X there is an integer r with (r — 1)p < (A + p,8Y) < rp.
Since 3 is conjugate to a simple root, there is a weight w € X with w+p € pX
such that (w + p,8Y) = rp, i.e., such that w is in the upper closure of the
facet of A for W'. So th[w, )] is defined; since it is an isomorphism, there is
a unique element el (A) of Ext:(Z4(X), Z4(81))) in case B A # A, resp. of
AH[;I/A in case 37\ = X such that

to[w, Neg (V) = ex,d(w, A, sp)hz" + A. (1)

We claim that e ()) is independent of the choice of w. Indeed, if w' is another

weight with w’' 4+ p € pX and (w' + p,BY) = rp, then Eg,w =1 = ay,, by
Remark 1 in 12.12. Therefore

tg W', Neg (V) = 16 [w, w'Tt5 ', Neg ()

= 8 oy (W, 0!, M) T S [w, Aeg (M)

d(w,w', sg)d(w', A, sp) _
= 5§w€§w'€g'w d(w, X, 55) ngd(w’ A sﬂ)hﬂl +4

= ef,d(w', )\, sp)h5" + A
since d(w',w,sg) =1 by A.5.(2).
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Lemma: We have for all A\, p as in 12.2

5 [1, Ne§ (A) = €5,d(1, X, s5)ef ().

Proof: Choose w as above. Then w is also in the upper closure of the facet of
u for W'. We have

to s ltg 1 Neg () = 8,28, 2o (w1 1) T 10, AeG ()
= e[;ueﬁwd(w, Ky s)d(p, A, sﬂ)hgl +A
=t [w, u)(e5,,d(1, X, sp)ef (1))
The claim follows from the injectivity of #5 [w, u].

12.14. Let M € X and v € X. We identify Z4(X' + pv) with Z4(X") with
the grading shifted by pv and get as in 9.13(4) an identification

Exte(Za(X'), Za(B1X) = Exte(Za(N +pv), Z4a(BTN +pv)). (1)

In the situation of 12.12(1), (2) we see that

— B _ B
al)\+PV,H+PV - al)\yu and Extprutpr = Expe
This means that the isomorphism
f)\+pu : ZA(,U +PV) — TZA()\ +pV) (2)

used to construct tg [+ pv, A + pv] is identified with the isomorphism
fx:Za(p) — TZ4(N) (3)
used to construct 5 [u, A]. This implies (modulo our identifications) that
th e+ pv, A+ pr] = 1 [, A]- (4)
In 12.13 we can take w + pv to construct eg(/\ + pv). We get

eg(X' +pv) = eg(X) ()

for all M and v in X.
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12.15. Suppose that 3T A # X and BT p # p. Recall from 8.8 that
Ext2(Za(X), Za(A+ pB)) is isomorphic to A/HgA, and that the cup product
eg (A)eoﬂ (B 1 A) generates this module over A. Denote this cup product by

€?%()). Analogous results hold for y instead of X. The isomorphisms as in
12.14(2), (3) for v = B induce a map

tﬂ’2[/“a )‘] = (fA, (f)\+P/3)—l)* oT (1)

between these two Ext? groups. This map is independent of the choice of the
isomorphism f) as long as we make the identifications as in 12.14 and choose
fr+ps equal to fy modulo these identifications.

Lemma: We have t52[u, AJeP2()) = (=1)A=w8)ef2(y),

Proof: Our maps are compatible with the cup product, so the left hand side in
the lemma is equal to the product of ¢5 [u, )\]eoﬂ()\) with toﬂ[ﬁTp, BTAEA(BTA).
By Lemma 12.13 this product is equal to c e®?(u) where

c= e} eh s, A, 58)d(BT 1, BTN, 55)-

We have (81 p) — (B1A) = sg(u — A), so B.5(4) implies easily that 5?}1 =
(_]‘)(A—.”’ﬂv)EgTA’m#- On the Othel' hand,

d(BTr, BT, s8) = d(sgept,sge A, sg) = sgd(p, A, sg) "
=d(p, )\, s5)""  (mod Hp)

by A.8. So ¢ = (=1)*~##")  (mod Hyg), and the claim follows.
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We assume in this section that A is a B-algebra that is an integral do-
main such that all H, with o € R are nonzero in A. In Case 2 we assume
additionally that all K3 + 1 with 3 € R are units in A. We use the notations

A® and A” (for all 3 € RT) as at the beginning of Section 9 and the notations
Z%()\) and Z#()) as in 9.2(1).

For each 8 € RT we fix an element wg € W such that w;l B is simple.
The algebra A? satisfies the assumptions of the case (B) in 11.1 and of Section
12. We can apply the results of Section 12 to A? with w = wg.

13.1. We suppose that we have fixed for all @ € R an element h, € A
that generates the ideal AH,. So each H 1h, is a unit in A. We assume
additionally that

h—o=—hq forallao € R (1)
and that we can extend the action of W to A such that
w(ha) = hwa foralwe W, a € R (2)
and such that
a =sg(a) (mod hg) for all a € A and 8 € R. (3)

We assume that the eg (A) from 12.13 have been constructed using this hg.
We shall use the abbreviation

. _ (Hoz + (u’av>)H¢;1ha’ in Case 1’
s = { [Ko; (1, 0")][Ka; 0] ha, in Case 2 W

for all 4 € X and a € R. We have obviously
(n,0") =0 (mod p) = [ka;p] = ha-
Using (1) and (2) one checks easily that (for all « € R and p € X)
[k—a; 1] = —[kai 4] (5)
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and
kwo; wu] = wlka; for all w € W. (6)
Using this notation we can rewrite the d(p, A, ) from A.2 as
(ks 1 + p])a(“_”
dlpg,\,a) = | 7/ 7
mne = (5 ™

13.2. Suppose that p is greater or equal to the Coxeter number of R. We
can now choose a weight A in the interior of the “first” dominant alcove for
Wy, ie., with

0<(A+pa¥)y<p forall a€R".
We keep A fixed throughout Section 13 and set Q = Wy .

We have (w(A+p),8Y) = (A+p,(w™!B)V) forall B € R and w € W. So
we see by the choice of A that

Bw(A+p) =1 < w'B<0. (1)
We have (using the notation from A.7)

Cw a(w(A+p))
d(wwe(-p)s5) = [[ (M)

ha
a>0,s5 <0
So (1) implies

d(we, —p, sg) = H W (2)

a>0,s52<0,

w”la<0

For any X' € Q there are unique w € W and v € ZR with ' = w.\+ pv; then
set for all 3 € R*:

oty = [ Bt pon oz
65}.)\,_‘) d(weX,—p,sg)hg, fw1B <0,
where y
kB = J[  raPe. (4)
a>0,s5x<0,
a#ﬂ,w51a<0
By (2) each b#()\') is a unit in AP. Set
S =P (AP (N for all X' € Q. 5
0

This element is a basis of Exte , (Z?(X'), Z#(B1X')).
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13.3. Forall p € X set

R,={a€R|(u+pa*)=0 (modp)} 1)

The stabilizer of p in W, (for the dot action) is generated by all s, (u+p,av)
with o € R,,. This is a reflection group with root system R,,.

We call Wp—orbit I' good if there are for each p € I’ an element w ew
and a subset X' C ¥ such that R, = w(ZX' N R). It is enough to check this
condition for one p € T', since the R, for different u € I' are conjugate under
W. Clearly all regular ‘orbits are good since there R, = @ always. In Case
1 all Wy—orbits are good, if p is a good prime, cf. 2. 7 in [Ja5). Similarly, in
Case 2 a.ll Wp—orbits are good if all prime divisors of p are good.

Con51der a weight p in the closure of the alcove of A and set I' = W.p.
Set R’ = R,. We have

0<{u+pa’y<p forala€ Rt ,a¢ R, (2)

since p is in the closure of the alcove of A\. For any A’ € € there is a unique
u' € T such that p' is in the closure of the alcove of A'; denote this weight
by Ap. If we write (uniquely) X' = weA + pv with w € W and v € ZR, then
AL = Wept + pr.

Let T be the translation functor from C4(Q2) to C4(T"). In order to prove
our main result (13.4) on T we shall need (in 13.10) that I" is good. Let L be
the simple module with extreme weight 4 — A used in the construction of T'.
Choose for all w € W a basis ey, of Ly (,—») such that (in the notations of the
appendix B) e,, = P(wv!)e, if v € W with v(u — \) dominant.

We have for any X' = wed +pr € Q (with w € W and v € ZR) an
isomorphism

i Za(p') = TZa(N) with f},(vy) = pr(ey, ® va), (3)

where p' = A} = wep + pv. The f}, induce analogous maps over each 4# by
extension of scalars.

Let 3 € RT. If n = (u' — X', 8Y) > 0, then B.6 implies (cf. Remark 1 in
12.12) that

E™ Vew = (al ) Te(N — i, B, wp)eqsw-
Similarly, if n = —(p' — X', 3Y) > 0, then
Eé")ew = (a')‘,u,)_le(/\' — i, B wg)esyw.

If p' is in the upper closure of the alcove of X' for W, = < sgp | r € Z >,

then the map toﬂ[p',/\'] is defined, see 12.5, 12.6, 12.8, 12.12. The formulas
above and the choices in 12.12 imply by the definition in 12.3(1) that

th[u', N =t N, ews €5 0). (4)

If BTu' # u', then ¢ [u', N = (fi, (Fipp) 1) o T.
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13.4. Let H be the set of reflection hyperplanes for W,. Each H € H has
an equation of the form (v + p,7Y) = rp with r € Z and v € R*. Then we set
v = a(H); furthermore, for any v € X we shall write v < H (resp. v > H) if
and only if (v + p,a(H)V) < rp (resp. (v + p,a(H)Y) > rp). For all B € R*
let H(3) be the set of all H € H with sga(H) < 0. For all X' € Q and 8 € Rt

set
-1
W = I ke II  haiw (1)
HEeH(B), HeH(B),
peHN>H ' eHN<H

where p' = Ap.
Suppose that we have chosen for all 4’ € T and all 3 € Rt a unit b°(y')
in A?. We can then set

e (u') = b (u')es (u') (2)

for all u' and 3. This element is again a basis of the corresponding Ext group
resp. — for BTpu' = p' — of AﬂhEI/Aﬂ = ABHEI/A/?.
Suppose that we have chosen for all \' € Q a unit ar(X') in A. We can

then set N
fx=ar(N)fx : Za(w') — TZa(N) (3)
where p' = Ap. We get then maps
tﬂ[y’,7 A,] = t[ﬂlv Alv al"()‘,)eun aF(B T )‘l)eaﬁ w] (4)

for all B € R such that p' is in the upper closure of the alcove of A’ for Wpg .
If BTy’ # p', then tP[p', N = (fa, (for)~1)* o T. We have obviously in any

case
t7[u', X' = ap(N)ar (BTX) 715 [u', N']. (5)

Since this is a homomorphism of A®-modules that are annihilated by hg,
13.1(3) implies that

[, X' = ar(X') (sgar(BTX)) ™t [, X']. (6)

We shall prove in this section:

Theorem: Suppose that T is good. One can choose the b (u') and the ar(\')
such that for all \' € Q and B € RT (setting ' = Ap)

! ! N Cﬂ(A,v /J'I)eﬂ(/-‘,)a ZfﬁTN' # N';’
o X100 = { GO B e @
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13.5. We shall first prove Theorem 13.4 in the case where p is in the lower
closure of the “first” dominant alcove. Assume in the next subsections (until
13.9) that this holds. So we have

R ={a€R|(u+pa")=0}. 1)

The stabilizer of p in W), for the dot action is generated by all s, with o € R'.
Note that R' is the root subsystem of R generated by ¥NR'; so I is obviously

good.
We have by 13.3(2) for all 3 € R

Bluw(p+p) =1 <= w'B<0,u B ¢R. @)
This implies

d(wep, —p,sg) = H Eﬁ%ip—)] (3)

a>0,33 <0,
wla<0,w” 'agR’

Forall 3 € Rt, w e W, and v € ZR set:
Eiou,—pd(w’u’ =P, sﬂ)’{(ﬂ)v if w_lﬂ > 0, w_lﬂ ¢ R’;

ﬁ.#’_pd(w.u, —p,sg)hg, Hfw lf<0,w B¢ R
55.#,—;) d(w°uv —pP, Sﬁ), if w_lﬁ € R,-

™

b (wep + pv) =

(4)
This is well defined, since w and ws, yield the same result whenever o« € R'.
It is a unit in 4% by (3). So we can define e?(y') for all ' € T by 13.4(2).
(Note that this definition is independent of the choice of (2.)

Lemma: Let 8 € RY and p' € Wpep. If BTy = ', then P (p') = h;l—}—Aﬂ.
Proof: There are w € W and v € ZR with p' = wep + pr. The assumption
B 1y = p' implies w3 € R'. Since (¢’ + p,BY) = (pv,BY) we can take
—p + pv as the weight playing the role of w in 12.13(1) (applied to u' instead
of A). Now t£[—p + pv, '] is the identity (by Remark 2 in 12.12) so we get
eﬁ(ﬂl) = bﬂ(iu,)gfj’,-—p+pud(-p + pv,wept + pv, sﬂ)h,gl + Aﬂ
= d(wep, —p, sg)d(—p, wep, 5,3)h/;1 + AP,

Since sge(wepr) = wep and sge(—p) = —p, Lemma A.8 implies

d(—p, wep, 3,3) (5)

d(w':u'v —p Sﬂ)d(—p, w')uasﬂ) = Sﬂd(—p Wepl Sﬂ).

Under our assumptions, d(—p,wep, ) = 1, so d(—p, wep, sg) is a unit in A#
and the fraction in (5) is congruent to 1 modulo hg. The claim follows.
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13.6. Consider X' = we\ + pv € Q where w € W and v € ZR. Let 8 € R™.
Then A\p = wep + pv is in the upper closure of the alcove of X for Wpg ,, if

and only if w™13 ¢ R' N R*.
Lemma: Let 3 € RT, w € W, and v € ZR with w3 ¢ R' N R*. Set
XN =wed+pv and p' = wep + pv. Then
to {1, NP (X) = zq, (o d, wopt, —p)cy, (wops, wo, —p) ~1eP ('),
ifw B ¢ R'; and
t9 {1, NeP (V) = 24, (wod, wept, —p) (hgcs, (wops, wek, —p) ™1 )eP ('),

ifw™'B e R N(-RY).
Proof: The definitions 13.2(4) and 13.4(2) together with Lemma 12.13 imply
that
ta ', NeP (V) = ceP(u')
where

c= Eg’”’d(p‘,’ )‘,a Sﬂ)

BA(\')
ar ) (1)

b8 (u')
The &? factors from the b° terms together with the one from (1) yield

B
EZO)\,WOMEwo)\,—p&:Z’c}L,—p = Rgg (w')‘v We Lk, —P)

by 12.12(6). The d factors from the b terms together with the d factor in (1)
yield

d(wep, wed, sg)d(we, —p, sg)d(wep, —p,sg) ",

hence ¢, (wep, we, —p)~! by A.7(3). The factors hg and £(8) from the b?
terms cancel for w™!3 ¢ R', whereas they yield hg for w™'3 € R'.

Remark: Note that the proof also shows that the c,, factor (for w™'j3 ¢ R’)
resp. hg times the c,, factor (for w=!3 € R') is a unit in A”.

13.7. We have (u— A\, @) = —(A+ p,aV) for all « € R', hence
ap-—A) =1 for all « € R' N R*. (1)
Lemma: Letw € W. Then

dp ™) [ R

a>0,wa<0,
a€R'

15 a unit in A.
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Proof: Recall from A.7(1) and 13.1(7) that
_ kai i+ 0\ T4V
d(p,\,w™) = (—[ : ) .
( ) a>0],;01a<0 [ka; A+ 0l

All factors in the denominator are units in A; so are those in the numerator
for o ¢ R'. For a € R' we get a factor of h, in the numerator. Now the claim
follows from (1).

13.8. Set for all w € W:
aF(w) = Zw‘l(/\v H, _P) ’ w(d(uv )‘7 w_l)) ) H hZI- (1)

a>0,w”'a<o,
w”la€R’

Since h_o = —hq for all a, cf. 13.1(1), Lemma 13.7 implies that each ar(w)
with w € W is a unit in A.

Lemma: We have for allw € W and 3 € Rt

-1
ar(w) - (sgar(sgw)) ™ = zg, (Wed, Weps, — p)Cy, (Wopt, we X, —p)k

K= H h_a H h;t.

a>0,s5x<0, a>0,35x<0,
w”la>0,w"ta€R’ wla<0,w”ta€R’

where

Proof: A look at (1) shows that we can write ar(w)/(sgar(sgw)) in a natural
way as a product of three factors. The first one is

Zuw=1 (A 1y =) 2 (spw)=1 (A f1s =p) ™1 = 295 (W, weps, —p)
by A.14(3). The second one is
w(d(p, A, w™t) - d(p, A, w"ISﬂ)_l) = Cgy (Wepty, We, —p)

by A.11(3). The last one is

I » II ha= [ ha' II ha.

a>0,w'1a<0, a>0,w'135a<0, a>0,w™a<o0, 35a>0,w_1a<0,
w™la€eR' wlsga€R’ w-la€R’ w~la€R’

We cancel now the common factors (where o > 0 and sga > 0), we substitute
—a for « in the second product, and we get now the « in the lemma.
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13.9. For any X' = wed+prv € Q with w € W and v € ZR set ar()\') =
ar(w). We claim that Theorem 13.4 holds (for I' satisfying 13.5(1)) with this
choice of ar()\') and with the choice of the b%(y') as in 13.5(4).

Proof: Let 3€ RY,w € Wand v € ZR. Set X = wed+pv and p' = wep+pv.
Suppose that w=!8 ¢ R' N Rt so that t#[u’, \'] is defined. Now 13.4(6),
Lemma 13.6 and Lemma 13.8 show that t?[u', N']e?(\') = x'e®(u') where

k' = H h_o H Rt (1)

a>0,s5a<0, a>0,35a<0,a#8
w™la>0,w"ta€R’ w™la<0,w”'a€R’

Compare &' to CP (), u') as in 13.4(1): The hyperplanes H € ‘H with u' € H
are exactly those with an equation (z + p,a) = (v,a")p with a € R* and
wla € R'. We have X' < H if and only if w™a < 0, and H € H(B) is
equivalent to sga < 0. So the only difference with the products in 13.4(1) is
the additional condition o # 3 in the second product above. If 5T pu' # 1/,
then 3 # a(H) for all H € H with u' € H, hence ' = CA(\', ') and 13.4(7)
follows in this case. If 3T u' = p', then 8 = a(H) occurs in the second product
in 13.4(1), but not in the first one, since w™!3 ¢ R' N R*. This shows that
k' = CP(N,p')hg in this case. Now 13.4(7) follows from Lemma 13.5.

13.10. We now have to look at the case where p is not in the lower closure
of the first dominant alcove. Assume that I' is good. Set

R; ={a € R|(u+p,a”)=ip} (1)

for all i € Z. Of course, R’ is the disjoint union of the Rj. Since p is still in
the closure of that alcove, we have R; = () for |{| > 1 and

R, c R and R ,=-R,c-R'". (2)

Obviously
syR; = R; for all v € Ry and all 4. (3)
We have R} # 0 by our assumption.

Lemma: There is a weight 0 € X with

o+p€pX and (0 —p,a¥)y=0 forala€R. (4)

Proof: Since I is good, there are a subset ¥’ of ¥ and an element w' € W
such that R’ = w'(RN ZY'). We can find a weight p' € X with (p' +
p, V) = (w' ™ (u+ p),a¥) for all @ € &' (hence for all @ € w'~'R') and with
(W'+p,@¥) =0foralla € ¥, a ¢ ¥'. Obviously ' +p € pX. Then o = w'sp/
satisfies (4).
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13.11. We fix from now on a weight o satisfying Lemma 13.10. We have
o+ p,a¥) € Zp and (u + p,aV) ¢ Zp for all o € R with oo ¢ R', hence
o — p,a¥) # 0. Therefore R is the disjoint union of R', R(1) and R(-1)

where
R(1) = {a € R| (o - p,a¥) > 0} 1)
and
R(-1)={a € R|(0 - p,a") <0} = —R(1). (2)
Obviously

s+R(1)=R(1) and s R(-1)=R(-1) forallyeR. (3)

Lemma: If @(c + p) = 1, then a € R(-1) UR_,. Conversely, if a €
R(-1)UR',, thena(oc + p) =1 or (c 4+ p,a¥) = 0.

Proof: We have
(0 +pa’)>(p+pa’)>-p
for all o € R(1). Since the first term is divisible by p we get (o + p,a¥) >0,

hence (o + p) = 0 for all @ € R(1). On the other hand, we get for all
a € R(-1) = —R(1) that (o0 + p,a") < 0.

13.12. Let w € W. If v € ZR and p' = wep + pv, then the hyperplanes
H € H with y' € H correspond to the « € Rt with w™!a € R'. fw™'a € R},
then the corresponding hyperplane has equation (z + p,a) = p({v, ") + 1).
If 3 € RT, then this hyperplane is in H(3) if and only if &« € R(3)U{3} where

R(B) ={a € RT | spga < 0, # B} (1)
Set for all w € W and 3 € Rt
Ko(w, B) = | ] II hy' 2)
a€R(B),w” 'a€RY, a€R(B),w taERY,
w™la>0 wla<0
and
k1(w,B) = H h_q H h;t. (3)
a€R(B),w~la€R! | a€R(B),w-1a€ER)

The discussion above shows: If A’ = we\ + pv and p' = weA + pv, then

o _ K (w,ﬂ)m (waﬁ)7 if w_lﬂ ¢ R';
Cﬂ(,\ s M ) = {nz(w,ﬁ)ni(w,ﬂ)h?, if w_lﬂ € (R6 N (_R+)) UR'I. (4)

Note that the conditions on w™!3 cover all cases where p' is in the upper
closure of the alcove of X' for W .
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13.13. Fix (until 13.22) w € W and v € ZR, set \' = w.A + pr and
W' =wep+ pv =M. For all B € R set — with x(8) as in 13.2(4) —
_ [ &(B), ffwTlB>0;
K(w,8) = {h,g, if w8 < 0. M
So we can rewrite 13.2(3) uniformly as

(N =¢f d(wed, —p,sg)K(w, B).

wo)\,—p
If we combine Lemma 12.13 with the formula (that follows from A.7(3))
Cap (Wepty We A, —p)d(wed, —p, sg)d(wep, wed, sg) = d(weps, —p, $5),
we get

ta [u', NeP (\') = bo(w, B)ef (1) (2)

d(weps, —p, s5) K (w, B)
b w,/B = Ei w 65 - ’ ’
0( ) A wep oA, —p Csﬂ(’w.[,t, Uh}\,_p)

where

3)

whenever t?[p', \'] is defined.
Lemma: We have

d(wep, —p, s B
d((w-:w-l;,s[;))znz(w’ﬁ) II kaswe+p)] I [Raswle+e)]™,

a€EM(w,B) a€EM'(w,B)
(4)
where
M(w,B) ={a>0]|sga<0,wla<0,wae R(-1)} (5)
and
M'(w,8)={a>0]ssa<0,wla>0,wa e R(1)} (6)
and
ra(w,B)= [ ha- J] R (7)
aEM'(w,B) a€M(w,B)
Proof: The definition of R(1) implies
[ka; w(p + p)]
d(wep, we = 2
(wep, weo, s5) H he (8)
a>0,s52<0,
wla€R(1)
On the other hand,
kojw(p+ p
d(w#h—l), Sﬂ) = H %’ (9)
O’>0,Sga<0, “

wla<0,w”'a¢R’

since we get a factor equal to 1 for w™'a € R'. When we take the quotient,
all factors with w™la < 0,w™'a € R(1) cancel and the claim follows.
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13.14. Lemma: Setar(w) equal to

e RCCRIU IS | QR | GERTCRPEV I

Zw-1(A,0,—p)
a>0,w”ta<o, a>0,wa<0,
w™la€R, a€R(1)
(1)
This product is a unit in A.
Proof: Recall that
_ ko i+ )\ ** ™Y
dpaey= T ()™ )
a>0,wa<l [ka’ )‘ + P]

All factors in the denominator are units in A; so are those in the numerator
for a ¢ R'. For o € R’ we get a factor of h, in the numerator.
We have (u— X\, a") = —(A + p,aV) for all a € R}, hence

ap—-A) =1 for all @ € Ry N R™.
On the other hand (g — A, a¥) =p— (A + p,a") for all @ € R, hence
alp—A)=0 for all a € R).
This shows that
dp\w™)  J[  h3' and w(d(p A w™))- || S

a>0,wa<0, a>0,w_1a<0,
a€R wla€R)

are units in A. So are obviously the remaining factors in ar(w).

13.15. We set now ar()\') = ar(w) and use these units to construct ¢#[u', \']
as decribed in 13.4. We get then (whenever t°[u’, \'] is defined)

', Ne? (X') = by (w, B)eg (') (1)
where — with bg(w, 3) as in 13.13(3) —
bi(w, B) = ar (w)(spar(spw)) " bo(w, B). 2)

Lemma: Suppose that t°[u', X'] is defined, i.e., thatw™ 8 ¢ RYNRYT, w14 ¢
R ,. Ifw™'3 ¢ R}, then by (w,3) is equal to
(—1)IMw.B)l B ef ko(w, B)ka(w, B) K (w, B)d(wep, wea, sg);  (3)

WeO,—pP~"Welh,WeOT

otherwise we get

b (w’ ﬂ) = (_1)|M(w’ﬂ)Igioa,—pgguu,woa'no(w? B)K&(w’/@)d(w‘#’ We0, Sﬂ). (4)
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Proof: We are going to decompose

-1
ar(w) (s,gap (slgw)) = a102a304

with the single factors as below in (5) and (7)—(9). First of all, the z terms
from 13.14(1) yield a contribution

a1 = 2y-1(A 1,0) 2(spw) -1 (A, 11, 0) 20-1(X, 0, =) 2(5 5 w)-1 (A, T, — ).
By A.14(3) this product is equal to
2y (We, Wept, We0) 2, (We A, wea, —p),
so we get by 12.12(6)

ay =& el &b el (5)

Wed, Wepu“ we,—p-Wel , Weo“Wwe0o,—p*

This implies, cf. 13.13(3),

d(u"p’v —P Sﬂ).[((’w, /8)
b =¢b L :
a 0(’(1],,8) Ewou,woaswoa,—p Csﬁ(uh,u, 'LUo)\, _p) (6)
We have
w(d(p, A, w™h) - d(p, A w T sg) ) = e, (Wep, wed, —p)

by A.11(3). We merge this with a possible factor hg from the product of the
h3! and set

[ esp(wep,wed, —p), if w™'B ¢ Ry; .
a2 = Cop (Wep, wd, —p)hz", if w™!B € Ry N(—RY). (7)

Recall that we exclude the case w™'8 € R) N RT.) After having removed
0 g
possible factors equal to h:;l the h, products yield a contribution a3 equal to

II h! 11 hoya = I = II R

a>0,w‘1a<0, a>0,w'13;;oz<0, a>0,w” 'a<0, Spa>0,w_1a<0,
w™la€Ry,a#p w_lsﬂaeRg w'a€Ry,a#B w™'a€R)

We cancel now the common factors (where oo > 0 and sga > 0) and substitute
—a for « in the second product. We get thus

as = 11 h_q II h' = ko(w, B). (8)
a€R(B), a€R(B),

w™la>0,w”'a€ER) wla<0,w” a€ER)
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Our last contribution is

a= J[ wkape+s I whkap+a
a>0,3pwa<0, a>0,wa<0,
a€R(1) a€R(1)

We can rewrite this product using 13.1(6) and get

ag = I awe+p] ] [awe+e)™

w™la>0,35 <0, w™la>0,a<0,
w-la€R(1) w™la€R(1)

All factors with oo < 0, sgax < 0 cancel. We get thus

ag = H [ka; w(p + p)] H [ka; w(p + p)) 77,

aEM!(w,B) —a€M(w,p)

hence by 13.1(5)

ag = ()M TT [ksw(p+p)] [] aiw(u+p)™
a€EM!'(w,B) aEM(w,B)

Now Lemma 13.13 implies

agd(wep, —p, sg) = (=1)M@ B, (w, BYd(wep, wea, s5). 9)

The claim follows now from (2) and (6)—(9). (Recall that K(w,3) = hg in
case w3 € Ry N (—RT), cf. 13.13(1).)

13.16. Incase w™!3 ¢ R’ set
b(w,B) = (=)M@DNel | ko(w, B (w, B) T K (w,8). (1)

We have then by 13.15(1), (3)
', N]eP (') = b(w, B)ed oo o (1w, B)ri1 (w, B)d(wep, weo, sg)el (1), (2)

If w8 € R', then 31 ' = p'. We can choose w.o + pv as the weight
playing the role of w (for p') in 12.13(1). We get

el (') = d(weo, wop, Sﬂ)h;l + AP,
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since sﬁm,ww =1, cf. Remark 1 in 12.12. We have sge(wep) = wep + pf and
sge(wer) = weo + pB, so Lemma A.8 implies

d(weo, wep, sg) = sgd(wep, weo,s5) 7",
This is a unit in A®. We get therefore

el (1) = d(wep, wo, sp) "hy' + AP,
So 13.15(1)—(4) imply in this case

12 [, NP (N) = b(w, B)o(w, B)ma(w, D)5 + 4° (3)
where

(_1)IM(w’ﬂ)|€ioa,—pK2(w7 ﬂ)lﬁ (w’ ﬂ)_l ’

(—)MEDIL (10, B (1, 8)~ w(B), @

b(’w,ﬂ): {

ifw™!B € Ry N(—RT) resp. if w™!3 € R|. We claim that Theorem 13.4 will
follow in our present case if we show:

Proposition: o) If w3 ¢ R, then b(ws,,3) = b(w,8) (mod hgAP) for
ally € R

b) Ifw™'B € (RyN(—RT))URY, then b(w,8) =1 (mod hgAP).
Indeed, in the situation of b) the claim follows then from (3), cf. 13.12(4).
For w=!83 ¢ R' we want to define

P (1) = b(w, B) €8, waw d(weps, w0, 55) €f (1').

Then 13.4(7) will follow from (2). However, we have to make sure that e/ (u')

depends only on u', not on the special choice of w and v with p' = wep + pv.
We have by 13.10(4) and A.5(1)

Eaawou,wsqoo d(ws“l'/'l" WSye0, Sﬂ) = gfuou,woa d(w°ll, We0, 8,3) (5)

for all v € R'. Recall the description of the stabilizer of x in W), in 13.3. It
shows that the independence follows from a) and (5).

Remark: Note that (as in 13.5) the e®(u') are independent of the choice of €.
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13.17. Since s, = s_. it is enough to prove 13.16.a for v € (RyN(—R™))UR}.
In this subsection we want to show that 13.16.a holds for v € Rj N (—R™)
and that 13.16.b holds in case w™!3 € R, N (-RY)

Proof: Let v € RjyN(—R™"). Since p+ p is dominant, s, permutes the positive

roots not in R). Combining this with 13.11(3) we see that M(ws,,8) =
M(w,3) and M'(ws,, 3) = M'(w, 3), hence that

(=1)IMwsr B, (ws,, B) = (—=1)IM Bk, (w, B).

When dealing with 13.16.a, we assume w~ '3 ¢ R'; so the argument above
implies that w=!8 > 0 if and only if s,w™!8 > 0, hence that K(ws.,3) =

K(w,8). Furthermore 13.10(3) shows that ki (ws,, 8) = k1(w, 3). Finally, we
have s,.0 = o, hence Eisw.a,_p e eﬁ.m_p. So 13.16.a is satisfied for v € Ry.

Assume now that w~!3 = . We have then
wl(-sga) = —s;w'a  foralla € R. (1)

The map a — —sga permutes R(3). It takes {a € R(3) | w™'a € R} to
{a € R(B) | w e € R",} by (1) and 13.10(3). This implies

K1 (w, B) = 11 (hssa-ha') =1 (mod hg).
a€R(B),w-la€R]

Furthermore, (1) and 13.11(3) and the fact that s, permutes the positive roots
not in Rj, show that o — —sga maps M(w,3) to M'(w, 3), hence

()M Dl gy (w,B) = [ (h-spa-hZL)=1 (mod hy).
a€EM(w,B)

Finally, we have
(w(o +p),8") = (0 +p,7') =0,

hence &° = 1 by Remark 1 in 12.12. So 13.16.b holds for w™!3 €

weo,—p

Ry N (—RY).

13.18. It remains to prove 13.16.a for v € R} and 13.16.b for w™'3 € R).
This will be done in the next subsections. The proof in the first case will be
concluded in 13.20, that in the second one in 13.22.

Let v € R;. We have 0 < (p+ p,@") < pforall @ € Rt, o ¢ R'; so
sya¥ =aV — (y,av)yY implies

—(1,a")p < {1+ p,5507) < (1= (1,2"))p.
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We have therefore either (y,a¥) = 0 and sy = a > 0 or (y,a") = 1 and
sva < 0. If « € —=R*, o ¢ R', then we can apply this argument to —a. We
see that either (y,a") = 0 and s, = o < 0 or (y,a¥) = —1 and sya > 0.
So we get for all @ € R,a ¢ R":

1, ifa>0,s,a<0;
(7,2¥) = { -1, ifa<0,s,0>0; (1)
0, otherwise.

Lemma: a) If w3 ¢ R', then for all vy € R}

KZ(ws 1IB)K(w8 7ﬁ) _ —(w~,8Y) —(wv,a")
wa(w, K w5~ O II - wtee? o

a€R(B),w—1ag¢R'

and
(=1)IMws1.0)| = (_1)IM(w.B)] H (=1)(wme’), (3)
a>0,s5 <0,
w”la€R(-1)

b) If w3 € Ry, then

(=1)IM@AI 1 and  Ky(w,B) = H RiBeT) - (4)
a€R(B),w~ta€R(1)

Proof: In both situations — a) and b) — (1) yields for all v € R}

M'(w,8) ={a>0]|sga<0,wae R(1),w a>0,(wy,a")=0
B
U{a>0]|sga <0,w e € R(1),(wy,a") =1}

and — since (ws,y,a") = —(wy,a") and since s, permutes R(1) —

M'(wsy,8) = {a>0]sga < 0,w'a € R(1),w 'a > 0, (wy,a") = 0}
U{a>0]sga<0,wla € R(1),(wy,a") = -1},

hence y
II k= I k- ] R (5)
aEM'(wsy,B) aEM'(w,B) a>0,85 <0,
w”'a€R(1)

We have similarly

M(w,3) ={a>0]sga < 0,w™ a € R(-1),w e <0, (wy,a") = 0}
U{a>0]sga<0,wlae R(-1),(wy,a") = -1}
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and

M(ws,,8) ={a>0]sga < 0,wla € R(-1),wra < 0, (wy,a¥) =0}
U{a>0]sga<0,wlae R(-1),(wy,a") =1},

hence Y
I 2= JI 2 I  A&er. (6)
aEM(wsy,B) a€EM(w,B) a>0,s5 <0,
w”la€R(-1)

Also (3) follows immediately. Combining (5) and (6) we get

ka(wsy, B) = ka(w,8)  [[  hatre?.

a>0,35a<0,
w™lagR'

On the other hand, if we apply (1) to a = w™!3, we get

K(wsy, 8) = K(w, B)(k(8) thg) W8 if w13 ¢ R, (7)

hence (2).
It remains to show (4). So suppose now that w™'3 € R} and apply

the formulas above with v = w™!3. We have (a,3Y) > 0 for all & > 0
with sga < 0, hence (wy,av) = (8,a") > 0. Now these formulas show

that M(w,3) = 0 and that all o > 0 with sga < 0 and w™'a ¢ R' satisfy
(3,av) = 1. This yields (4).

13.19. Set for all w e X and 8 € Rt

taw,B)=  J] (-1, (1)

a>0,35 <0,
w lagR'

zb(w,ﬂ) — H (_1)(w,av)a(w)’ (11)

a>0,s5x<0,
w™la€R'

and (recall wg from the discussion preceding 13.1)

Zc(wa B) = H (_1)(44,01\/). (2)

a€R(B),wya>0
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Note that 12.12(5) implies for all w, w' € X that

egw, = zo(w — W', B)zp(w — W', B)zc(w — ', B). (3)
We have obviously z.(w+w', ) = z.(w, B)z.(w', B) for all w,w’ € X. We want
to apply (3) to P and ¢ Note that Lemma 13.11 implies

WSy o0, —p wer,—p*°

aw(o+p),f)= [[ (-pitetee” (4)

a>0,s5a<0,
w”la€R(-1)

and (since p is odd)

awl+p),8)= [[ (-0 (5)

a>0,35<0,

w™la€R’
Lemma: We have for all v € R}

(=1)!MCwen Bl pF1(w, )

WSy e0,—

(_1)]M(w,ﬂ)| Eioo’,—p K1 (ws‘)” /B)

=z(-wy,B) J[ ha™. (6)
a€R(B),
w-la€R’

Proof: First of all, since s, (0 + p) = o + p — py, we get

ze(wsy(0 + p), B) = ze(w(o + p), B)ze(—pwy, B)
= zc(w(o + p), B)zc(—w, B).
This leads to the factor z.(—w, 3) on the right hand side of (6).

Furthermore, we have s, R(—1) = R(—1) and s(c + p) = 0 + p — py, so
(4) yields

(7)

v
w(wsyo+p)f) = J[ (-ptentraen
a>0,35x<0,
wla€R(-1)
= H (—1){wlete) ™) =(wy.a®)
a>0,s5a<0,
wa€R(-1)
=z(wo+p),8) [ (-nfre.
a>0,s5 <0,
w™la€R(~1)
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Now 13.18(3) implies

(=)Mo Dz, (ws, (o + p), B) = (=DM Pzo(w(o +p),B).  (8)
Finally, we have by 13.19(5) (since we assume w~!3 ¢ R’ ,)

k1 (w, B)zp(w(o + p),B) ™ = 11 ha 1T hy!

a€R(B),w-ta€R.,  a€R(f),w-laER]

9
= H h;(ﬂl(u+p),av>/p' ©)
a€R(B),w-la€R!
Since —(ws~(p + p), ") = —(w(pu + p), ") + p(wy,a"), we get
k1(w, B)zp(wsy(0 +p),8) _ H ho(wne®), (10)
mawsy Batwot.5) oAl
Now (7), (8), and (10) yield (6) by (3).
13.20. Set for allw e X
hw,8)= [ hé. (1)

aER(B)

We have obviously h(w+w', 3) = h(w, 3)h(w', 3) for all w,w' € X. Using this
notation, 13.16(1) together with 13.18(2) and 13.19(6) yields for all v € R}

b(ws~, 3)
b(w, B)

Note that x(3) and all h(w, 3) are units in AP,
Lemma: We have for allw € X

= z(~wy, B)s(8) TP Mh(—wy,B)  Hw B¢ R. (2)

h(w, B) = K(B)~“? ) ze(w,8) (mod hgAP). (3)

Proof: The map o — —sga permutes R(3). We have w;la > 0 if and only
if w;l(—Sﬁa’) < 0 (for a # ). We can therefore rewrite (1) as

w, @)= I eIl

—sga
aGR(ﬁ),wEla<0
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We have h_;,4 = h_q = —h, modulo hg, hence

h(w,B) = H h&w,av>h;(w,s;aa )(_1)—(w,spav)
aGR(ﬂ),wgla<0

— H h&w,av)h;(Sﬁw,av) H (_1)<w,av).

a€ER(B),wy ' a<0 a€R(B),w; ' a>0
The last product is the wanted 2.(w,3). We have sgw = w — (w, 3Y) (3, hence

h—(sp w,av) — h;(w,av)(h((]ﬁ,av ))(w,ﬂv)‘

Plug this into the last equation and the claim follows.

Remarks: 1) In our first formula in the proof we might as well replace the
condition wEla < 0 by wlgla > 0. Then the same calculation as above shows

that modulo hg AP

(w,B8Y)
h(w,ms( I hff’*“”) I ue" @

«€R(B),w; ' a>0 a€R(f),w; ' a<0

2) The lemma and (2) show that Proposition 13.16.a is satisfied for all
v € R}.

13.21. Suppose that w™!'3 € R}.
Set for all w € X

2w, B) = [T (e (1)
aER(ﬂ),wgl(x)O,
w™lag¢R'
and y
2w, B) = [T (pfe. (2)
aER(ﬂ),w51a>0,
w-la€R
Obviously
2e(w, B) = z¢(w, B)z¢ (w, B). (3)
Lemma: Suppose that w™'3 € R,. Then (modulo hg)
k1(w, B)zs(w(o + p), Bzt (w(o + p), B) = 11 hg o) (4)
a€R(B),w~taER’,
w51a<0
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Proof: Set v = w™!3. The map a — —sga permutes R(3). More precisely,
it maps {@ € R(B) | w™la € R'} to itself and {« € R(8) | w™'a € R(1)}
to {a € R(B) | w™la € R(-1)}, since w™!(—sga) = —s,w™ ' and since
s, permutes each of R', R(1) and R(—1). We have wgla > 0 if and only if
wgl(—s,@a) < 0 (for a # B), so we get using 13.19(9)

k1(w, B)zp(w(o + p), B) = H ho(wlute)a¥)/p h(";(ﬂﬂaﬂ’) 850")/p.
a€R(B),w"'a€R',
w;la>0

We have (w(p + p), sga") = (w(p + p), ") — p(B,a"), so each of the second
terms in this product is equal to

h(w(lH'P); V)/Ph (8,a") _ h(w(u+p) avy/p h(ﬂisﬁa )

—spa —spa —spa
This implies that &1 (w, 8)zs(w(o + p), B) is congruent to

—1)(wlutp),a¥)/p h=(Bsa”)
I« 11 @

a€R(B),w™'a€R’, a€R(B),w laER’,
w;la>0 w[;la<0

modulo hg. The first product is equal to z!(w(o + p),3): Apply 13.10(4) to

w™ o and recall that p is odd. The claim follows.

13.22. Lemma: Suppose that w '8 € R|. Then

ka(w, B)za(w(0 + p), Bz (w(o + p), B) = I1 h{e") (mod hg).
a€R(B),w 'agR',
w;1a<0

Proof: By 13.19(4) and 13.21(1) the product of z,(w(o + p), 8) and z/(w(o +
p),3) is equal to

H (=1)wlot)a’) H (=1)$wlote)a®)

a€R(B),w; " <0, a€ER(B),w; a>0,
w™la€R(-1) w”la€R(1)

since all terms with w™la € R(—l),w;la > 0 cancel. Now o — —sga takes

one index set to the other one, and so — since p is odd — this product is
equal to
I I (_1)(w(0+p),av)—<w(a+p),spa")_

a€R(B),w™ a€R(1),
w;‘a>o
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The exponent is equal to p(83,a"). This implies
2a(w(o + ), B)zi(w(o + p), B) = I e @

a€R(B),w™ a€R(1),
w;1a>0

We can rewrite the second part of 13.18(4) as
O T | SR EU N § ST

«€R(B),w™'a€R(1), «€R(B),w™'a€R(1),
w;1a<0 w510>0
\2 \'2
= H hff"’ ) H h(_ﬁ;;)
a«€R(B),w~'a€R(1), a€R(B),w™ ' a€R(-1),
w;1a<0 w;1a<0
= H hiBe™) H (=1)(Be™)
a€R(B),w™'a¢R/, a€R(B),w™ ' a€R(-1),
w;101<0 wﬁ_la(O
- H h&ﬁ,a") H (=1)(Be”),
a€R(B),w™'agR’, a€R(B),w” ' aER(1),
wg_loz(O w;‘a>0

Combined with (1) this yields the claim.
Remark: We combine this lemma with 13.19(3) and 13.21(4), and get
ma(w, By (w, 8) el = [ BT =k(8)7" (mod hy).
aGR(ﬁ),wE1a<0
Now the definition 13.16(4) together with the first part of 13.18(4) shows that
b(w,3) = 1, hence that 13.16.b holds.

13.23. We can apply Theorem 13.4 especially to p = —p. Then R' = R (so
I is good) and we get for all 3 € RT and w € W with w18 <0

tP[—p, wa]eP (wad) = ( H h_qo H hyl) + AP, (1)
a>0,s5 <0, a>0,35a<0,

w™la>0 w™la<0

If we reverse the calculation from the proof of Lemma 13.8, then we see that
the term in parentheses on the right hand side of (1) is equal to

-1
M ow I W &
a>0,w-lsga<0 a>0,w~la<0

This shows: If A is graded such that each h, with o € R is homogeneous of
degree 1, then the product in (1) is homogeneous of degree I(sgw) — l(w).
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13.24. Consider now as an example the case where u is semiregular, i.e.,
where there is one root v € Rt with R’ = {£7y}. Note that I is good, since
any root is conjugate to a simple root.

If v is a simple root, then Theorem 13.4 amounts to the following state-
ments (where we use its notations):

If wy # £, then

h_wy€?(p'), if wy > 0,s5wy <0;

P NP (V) =S hIyef (i), if wy < 0,s5wy > 0; (1)
eP(u), otherwise.

If wy = —p3, then
', NeP (X') = h3' + AP (2)

If v is not a simple root, then it is the short dominant root in an irre-
ducible component of R, cf. [Ja6], I1.6.3. In this case Theorem 13.4 says:

If wy # £, then

hw"/eﬂ(ul)v if wry < 07 Spwy > 07
o, NeP(X') = S hplef(u'), if wy >0, spwy < 0; (3)
ef(u'), otherwise.
If wy = 3, then
tPlu', NeP(N) = hg' + AP, (4)

13.25. Identify Z4(\' + pv) and Z4()\') for all X' and v in X as in 12.14.
Identify the Ext groups as in 12.14(1). The definitions in 13.2, 13.5, and 13.16
show that we have for all A’ in Wy or in Wy (in both situations)

(N +pv)=e€P(\)  forall 3€ Rt and v € ZR.
The definitions 13.8(1) and 13.14(1) show that
tﬂ[ul +pl/, A' +pV] — tﬂ[u’,)\']

whenever these maps are defined.
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Introduction to the Sections 14-16

Our main goal is to show that the categories Cx(€2) for regular orbits
2 are in some sense independent of the ground field k. To reach this goal
we develop a combinatorial description of these categories in terms of the
underlying root system only. In the preceding sections we have prepared the
necessary tools. In the next sections we are going to apply them.

We want to explain now in a bit more detail how our combinatorial de-
scription works. Let for the moment €2 be an arbitrary orbit. To describe
Ck(Q2) we should describe the k-algebra EndP of endomorphisms for a pro-
jective generator P of Cx(2), since then Hom(P, ) induces an equivalence of
categories from Ci(§2) to the category of all finite dimensional right (EndP)-
modules.

Unfortunately Cr(§2) has no projective generator. The remedy is to bet-
ter exploit the periodicity of our situation under the group ¥ = pZR. Let
us define (for an arbitrary abelian group Y') a Y-category to be a category
equipped with a collection of shift-functors M +— M|v] for all v € Y satisfy-
ing the obvious compatibility conditions, and for any object M of an additive
Y-category C consider the Y-graded ring Endg(M ) = @D,y Home(M([v], M).
By a Y-functor between Y-categories we mean a functor that commutes with
all the shifts [v]. (Details can be found in Appendix E.)

Now let us take again Y = pZR. Clearly Ci(2) is a Y—category, and it
admits a projective Y-generator P, i.e., a projective object P in Ci(2) such
that the family of all P[v] (v € Y') generates C¢(€2). We can prove that then
Homk(P, ) = @D, cy Home(P[v], ) induces an equivalence of Y-categories

from Ci(2) to the category of all finite dimensional Y-graded right (EndﬁcP)—
modules. So to combinatorially describe Cx(€2) we should combinatorially

describe the Y-graded k—algebra EndﬁcP for a suitable projective Y-generator
P of Ck(Q)

Let us now assume again that 2 is regular. Then we can take for P an
object of the from Q@ ; obtained form Zi(—p) by translating out from all
walls and applying a suitable sequence I of wall crossings. (Actually, we show
only that we can take for P a direct sum of such objects, but let us neglect
this complication for the moment.) Let A = A(k) be the deformation ring
and @ 4,7 the deformation of Q  as in the introduction to the sections 8-10.
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Certainly also C4(12) is a Y-category, and by base change we have EndﬁcQ kI =
(End Q1) ®4 k. Also K(Q, A) is a Y-category, and V = Vg is a Y-functor
that is fully faithful on projectives, whence End%Q A= Endﬁ,CVQ Al

Now let our sequence of walls I be given as sq,...,s, € &', choose sub-
regular orbits I'y,...,I'; on the respective walls and let T; resp. T] be the

translations onto resp. out from the walls relating C4(2) and C4(T';). Also let
T : Ca(Y — p) — C4(R) the translation out from all walls. Then by definition

Qar=TT - T, T,T Zs(—p
) 1 T

and hence
War=TT---T,T,T' 2

where the 7;,7;,7' are the corresponding combinatorial translation func-
tors with VI; = T;V,... and Z2 = VZ4(-p) in K(Y — p, A) is just given by
Z(—p) = A, Z(—p,B) = AP for all B € RT, and Z()\) = 0 for X # —p.
We always assume the V-functors and the combinatorial translations to be
defined via “good choices”, so that only the beautiful constants C# (A, ) from
the introduction to the sections 11-13 enter into our combinatorial transla-
tions. Summing up, we then find that the category Cr(?) is equivalent to the
category of all finite dimensional Y-graded right modules over the Y-graded
ring
By = Bi(I) = (End4 T/ T: - T T,T'2) @4 k.

We have to admit: This is a horrible description. However, it has two
virtues and they are the very essence of our paper: First of all, the ring By
can be defined “over Z”. Secondly it can be equipped with a Z—grading in a
natural way. To explain this in more detail we need more notations.

Let S be the symmetric algebra of the Z-module ZR. We write hq € S
instead of o € R, put Sy = S ®z k, and identify the completion Sy of Si at
the maximal ideal generated by all h, with the deformation ring A = A(k)
via hq +— doHy resp. hy — log K, in Case 1 resp. Case 2.

We proceed to define combinatorial categories K(€2, S), K(T';, ), K(Y —
p, S), combinatorial translations 7;, 7;', 7', between these, and an object Z in
K(Y — p, S) as follows: We just copy our old definitions and replace A by S
everywhere. We may now in addition identify our regular orbit 2 with the
affine Weyl group W, and thus arrive at a Y-graded S-algebra

Bs = Bs(I) = End’

xw.,s) (LT TTT 2),

which is completely independent of ¥ and depends only on the underlying root
system and our sequence I of walls. Put Bz = Bs ®s Z, where we use the
augmentation S — Z, hy — 0. By our constructions it is almost clear that

Bz ®z k ~ By
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in Case 2 or in Case 1 for p > 0. This proves that the Cartan matrix of regular
blocks is the same in Case 1 and Case 2, if we assume p > 0 in Case 1. The
same statement concerning the decomposition matrix is proved similarily, but
with more technicalities. All this is explained in section 16.

As announced in the general introduction, we want to establish the iso-
morphism Bz ®z k ~ By for all k with p = chark > h. This is a much more
subtle statement whose proof requires the consideration of our Z-graded com-
binatorial categories (€, S) resp. K(€, Si) which are the subject matter of
section 15. To define them we give S a Z-grading such that deg h, = 2 for all
« € R and let an object M in K(£2, S) be a collection of Z-graded S?-modules
M(X) with a collection of homogeneous S#-submodules M()\,8) C M(X)
resp. M(X, 3) C M(A) @ M(BTA).

It turns out that the constants C#(), yu) appearing in the combinatorial
translations have precisely the right degrees to determine “graded combinato-
rial translations” between our graded combinatorial categories. Thus Bgs gets
a Z-grading, which descends to give a Z-grading on Bi. In Section 18 we
study in detail the “Z-graded representation categories” Ci(Q2) of all finitely
generated (Y x Z)-graded right By—modules.
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14. General Combinatorial Categories

We suppose in this section that (in Case 1) p satisfies the assumption of
Lemma 9.1.

14.1. We set A(k) equal to the completion of B with respect to the maximal
ideal generated by all H, resp. K, — 1. All results of the sections 9-13 can be

applied to A = A(k). We shall write A%(k) and A%(k) for the corresponding
AP and A®. We make the following choices for the elements A, as in 13.1. In

Case 1 we take
hoy =doH,

for all «; this makes sense, since our assumption above makes sure that p is

prime to each d,. In Case 2 we set

o0 _ ]+1
ha =log Ko=) (—1])—

i=1

(Ko —1)

for all a. It is easy to check that 13.1(1)—(3) are satisfied.
Suppose for the moment that p > h. For each good Wy~orbit I' (as in

13.3) and each p € I’ we choose all e (1) as in 13.5 resp. as in 13.16. (Recall
that these definitions were independent of the choice of Q2 and note that they
yield the same definition as in 13.2 in case I' = Q.) We define the functors Vr

on FC4(x)(T) for each good I' using this choice of e?.
14.2. The following lemma generalizes to any A that is a complete local
Noetherian ring.

Lemma: a) A module M in C ) is indecomposable if and only if Endc(M)
18 a local ring.

b) The Krull-Schmidt Theorem holds in the category Ca(x).

Proof: Set A= A(k). Any M in C4 is a finitely generated A-module; there-
fore also End 4(M) is a finitely generated A-module. Consider the subalgebra
U(M) of End 4(M) generated by the image of U4 and by the projections to
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the M, with v € X. It is again a finitely generated A-module. We have
obviously
Endc(M) = EndU(M) (M),

a U(M)-submodule of M is the same thing as a subobject of M in C4. Since

A is a complete local Noetherian ring, our claims follow from standard results,
cf. [CR], 1.6.10(ii), 1.6.12.

14.3. Set S equal to the symmetric algebra of the Z-module ZR. In order
to have compatible notations, we shall write h, instead of « (for all o € R),
if we regard it as an element of S. So S can be identified with the polynomial
ring over Z in the hy, 00 € L. Set

$*=Sh;'|aeRY] and SP=8[h;'|laeRY a8 (1)
(for all B € Rt). The units in S are {£1}, the units in S are all products
+ [Loers b with all m(a) € Z.

Lemma: For all 8 € Rt the Z-module S°/S? is torsion free.

Proof: The ring S is a unique factorization domain. The h. with v € Rt are
prime elements in S and do not differ by units. Any nonzero element ¢ € S?

can be written
c=m-d- H hf{(v)
YERt

with m € Z,m # 0, with all r(vy) € Z, and with d a product of prime elements
in S of positive degree that are not multiples of any h.,. The r(v) and |m]|

are uniquely determined by c. We have ¢ € S? if and only if 7(3) > 0. This
implies the claim.

14.4. Set

Sy=S®zk, Sl=85"@zk SP=S5°Qzk (1)

(for all B € RT). Set §; equal to the completion of Sy with respect to the
maximal ideal generated by all h,. Under our assumption on p, there is an
isomorphism

Sk = A(k) (2)

such that each hy in S (with o € R) is mapped to hy = doH, resp. to
ho =log K, in A(k). It induces isomorphisms

S?®s, A(k) = A%k)  and  SY ®s, A(k) = AP(k) (3)

(for all B € RT). Note that A(k) is flat over Sk, cf. [Boul], III, §3, Th. 3.
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14.5. Let A be any (commutative) S—algebra that is an integral domain and
Noetherian such that the images of the hg with 8 € R™ in A are nonzero. Set

A’=5"®sA4 and AP=S5%RsA (1)

(for all 3 € R*). We identify these rings with subrings of the field of fractions
of A. (Note that these definitions are compatible with earlier ones, e.g., in
14.4(1).) We shall always assume that

A= () 4% (2)
B

ERt

Recall that A = A(k) satisfies (2) by Lemma 9.1. The same proof as for
Lemma 9.1 shows that (2) is satisfied also by A = S and A = Sy; it then
follows for any A that is a flat Sx—module (or a flat S-module).

Let 2 be a Wy—orbit in X. We can define a combinatorial category
K(Q) = K(Q, A) generalizing the construction in 9.4 (that works, e.g., for A =
A(k)). Let us repeat: An object M in K(Q) is a family (M(X))aeq of finitely
generated A?-modules (almost all equal to 0) together with (for all 3 € R*

and X € Q) a finitely generated 4°-submodule M (), 8) of M(X) ® M(BTA)
if BTA# A, of M(A) if 37X = A. A morphism ¢ between two such objects

M, M' is a family (1y)req of A’linear maps 1) : M(A) = M'(X) such that
forall 3 € Rt and A € (:

(\B) incase BTA# N,
'\, B) in case BT = A.

'(/})\M( ’ﬂ)
We set (as in 9.9) — given M in K(Q2) —
Mg = M) NM(A,B) 3)

for all A € Q and 8 € R*. This is a finitely generated A®-module; if 3T\ = X,
then M(X)g = M(A,B). Similarly, we set

MNa= [ M. (4)

BERt

For all X and 3 set

o _ [ (M) ®M(BIN) MO B), i BTA# X,
M(A’m“{M(A)/M(A,ﬂ), S

This is an A®—module.
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14.6. Assume from now on in Section 14 that A is an S-algebra as in 14.5.
Assume until 14.13 that Q is an arbitrary Wy—orbit in X.

Lemma: Let M be in K(Q). Fiz A € Q.

a) If each M(X)g with B € RT generates M()\) over A?, then M()\) 4 gener-
ates M()\) over A®.

b) If M(}) is a torsion free A’-module, then M(X\)4 is a finitely generated
and torsion free A-module.
Proof: a) We have A% = AP [h;l]. So the condition that M())g gen-

erates M()) over A® means that there is for each = € M()) an integer
m = m(B,z) > 0 such that A’z € M(A)g. We can now take a product over

the h for all 8 and get a unit a € A® with ax € M()\); for all 3, hence with

az € M(X)4. The claim follows.
b) By our assumption, we can embed M () into a vector space, say V,

over the fraction field of A%. Choose a basis (v;); of V. Each M(\)g is
finitely generated over A®, so we can choose a finite set (yx g, j); of generators

for M()\)g over AP. Write each yy g,; as a linear combination of the v; with
coefficients in the fraction field of A. There is then an element a € A, a # 0

with
ays,; € ) Av;
[

for all B8 and j. This implies that
Mg C D> APa~ly;,

hence — using A = () 4% —
M4 cC ) Aatw;

The claim follows.

14.7. Lemma: Let M and N be in K(Q) such that all M(X) and N(X)
with A € Q are torsion free A®-modules. If each M(\)g with 3 € Rt and
X € Q generates M(X) over A, then Homy(g)(M,N) is a finitely generated
and torsion free A-module.

Proof: We have a restriction map

Homgq)(M,N) — H Hom 4 (M(A) 4, N(N) 4).
A

It is injective since each M()) is generated over A® by M(\)4 by Lemma
14.6.a and by our assumption. Each factor on the right hand side is a finitely
generated A-module (by Lemma 14.6.b). Now the claim follows, because
there are only finitely many nonzero factors and because A is Noetherian.
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14.8. Suppose that A’ is an A-algebra that satisfies the assumptions on A
from 14.5. We have a natural extension of scalars functor from K(2, A) to
K(Q,A"): Map any M in K(Q2, A) to M 4 with

Ma(A) = M) R0 A® = M(N) @4 A’ (1)

and with M4/ (), 3) equal to the canonical image of M(),3) @45 A¥ =
M, B) @4 A" in M4 (N) ® Ma(BTA) resp. in M4 () (for all 3 € RT).

Lemma: Suppose that A' is a flat A-module. We have then for all M in
K(Q, A) natural isomorphisms for all A € Q and S € R

M, B) ®@a0 AP = M(A,B) @4 A" = Mar(N,B) (2)

and

M(X,B)° @40 AP = M(X, 8)° @4 A" > Mai (X, 8)°. (3)
We have for all M, N in K(Q, A) a natural isomorphism

HOHI)C(Q’A) (M,N) ®A A’ —N—'—* HomK(Q,A:)(MAr,NA:). (4)

Proof: The flatness obviously yields (2) and (3). Consider (4). We can
describe Homy (g, 4)(M,N) as the kernel of a natural map

@Hoon (A), N (A @@Homm A B)L,N(AB)°).  (B)

We get Homp (g, 41y (Mar, Nar) as the kernel of an analogous map. We claim

that we get the analogue of (5) over A’ from (5) by extending scalars from A
to A’. Then (4) will follow because A’ is flat over A.
Well, each M(]) is finitely generated (hence finitely presented) over the

(Noetherian) ring A%, and A? is flat over S?, so we get

Hom 46 (M 4/ (A),Nar(N)) =~ Hom 46 (M(A), N (X)) @ 46 A"
= Hom 46 (M), N (1)) @4 A’

for all A. We see similarly — using (3) —

Hom 416 (M 4:(X, B), Nar (X, 8)°) =~ Hom 4 (M(, 8), N(), 8)°) @ 40 A'°
= HomAﬂ (M(/\,ﬁ),./\/‘()\,ﬂ)o) ®a A

for all A and 3. Now the claim follows taking direct sums.
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14.9. We can apply Lemma 14.8 always to (A, A') = (Sk, A(k)). Consider on
the other hand (A4, A") = (S, Sk). In that situation we have M ®sSx = M ®zk
for any S-module M; usually we shall write M} instead of Mg,. In Case 2
we have char(k) = 0 and Sy is flat over S; so we can apply Lemma 14.8. On
the other hand, in Case 1 we have char(k) = p # 0 and so Sk is not a flat
module over S.

However, most of the M in K(Q2,S) to be considered will satisfy the
following condition:

(TF) Each M(X,3)° has no p-torsion.
This condition implies (in case 3T\ # A) that the short exact sequence
0 — M(X, ) — M) e M(BTA) — M(A,5)° =0
remains exact after tensoring over Z with k. This implies that
M B)®zk=Mi(\,B) and  M(ANB)° @z k=Mi(\B3)° (1)

We get the same result for 3T A = A. So we see that 14.8(2), (3) extend to
this situation. We get for 14.8(4) a somewhat weaker result:

Lemma: Suppose that we are in Case 1. Let M and N be objects in K(2,S)

satisfying (TF). Suppose that all M()\) are free over S®. Then the natural
map
HomK(Q’S)(M,N) Rz k — HomK(Q,Sk)(Mkak)

18 injective.
Proof: We can describe Homy (g, s)(M,N) (as in the proof of 14.8) as the
kernel of a natural map

@D Homgs (M(A), N (A) = @ @D Homss (M(A, 8), (A, 8)°).  (2)
A A B

All summands in (2) have no p-torsion, therefore also the image of 1) has no
p-torsion. This implies that the natural map

Homy(a,s)(M, N) @z k — @) Homgs (M(A), N(\)) ®z k (3)
A

is injective. Our freeness assumption shows that we have natural isomor-
phisms

Homgs (M(A), N(X)) ®z k — Homgs (Mk(X), Nk (X)) (4)
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for all A\. So we can rewrite (3) as

Homy(q,s)(M,N)®z k — @ Hom o (Mir(N), Ni(N))- (5)
X

This map is the composition of the functorial map
Homyq,s)(M,N) ®z k — Homg(q,s,) (M, Nk)
with the obvious embedding

Homg(a,s,)(Mi, Vi) — P Hom s (M (X), Ni(})).
X

Since the composition is injective, so is the first map — and that is our claim.
Remark: We can replace the assumption that all M()) are free over S? by

the weaker condition that all M()) are projective over S°.

14.10. We define for all A €  and w € W an object 2 = ZY(A) in K£(R)
as follows: Set for all p € X

0 : — \-.
zpg0={ " Hroy o
for all B € Rt
w _ [ AP if BTA=X;
Z*(A’ﬁ)‘{Aﬂ(l,O), if BT £ X @)

and, if BTA # A, (with 3|\ as in 9.5)

A(’

0,hg), if w8 > 0;
AP(0,1

Z&U(ﬁl/\aﬁ) = { ’ )’ if w‘lﬂ < 0; (3)

set all other ZY (u,3) equal to 0.
Note that Proposition 9.5 says

VaZ i (Mw)) = ZX(A(K)). (4)

We have obviously

ZN(A)a = ZX(4) (3)
for any A-algebra A’ as in 14.8; similarly in the situation of 14.9.
Lemma: For A= S each Z) satisfies the condition 14.9(TF).
Proof: For any A the AP-module A%/hgAP is isomorphic to A?/A? (via
z+ hgAP h;lx + A#); so each nonzero Z(u, B)° is isomorphic to A°/A8.
Therefore the claim follows from Lemma 14.3.
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14.11. Recall the definition of compatible subobjects from 9.11. We make

the same definition in (2, A) for any A as in 14.5. As in 9.11 we define

for each M in K(2, A) and each compatible subobject A" of M the quotient

M/N. Furthermore, we define the inverse image in M of a subobject in

M/N asin 9.12. The remarks from 9.12 generalize to this situation.
Counsider for A as above an A-algebra A’ as in 14.8.

Lemma: Suppose that A’ s a flat A-module. If N is a compatible subobject
of an M in K(Q, A), then N4 is a compatible subobject of M 41 and there is

a natural isomorphism (M/N)ar — M [Nar.

Proof: The flatness implies easily that N4 is a subobject of M 4. The
compatibility condition 9.11(1) means that A'(), 3) is the kernel of the natural
map

M, B) — (MA) & M(BTA))/(N(A) & N(BTA)) (1)

(with an obvious modification in case 31\ = A). The flatness of A’ over A
implies that N4 has the same property inside M 4/, hence is is a compatible
subobject; also the last claim follows.

14.12. Asin 9.13 we can make K(Q) into a (pZR)-category: We define the
functors M +— M|[pr] with v € ZR by the formula 9.13(1). The statements
in 9.13(2), (3) extend. The definition in 14.10 implies for all A and w

K)[pV] =Zf+pu' (1)

Each functor M +— M|[pr] commutes obviously with any extension of
scalars as in 14.8.

For A = A(k) the choice of e” in Section 13 satisfies e?(u + pv) = e?(v)
for all u, see 13.25. So 9.13(5) implies that Vg is a (pZR)—functor.

14.13. Following the general convention in E.3(1) we set for all M and N
in K£(Q)
Homfc(m(M,N) = @ Homyc(q)(M[pr], NV). (1)

vEZR

There are only finitely many nonzero summands on the right hand side: In-
deed, if Homgq)(M|[pv],N) # 0, then there are A and p with M(A) # 0 and
N(p) # 0 and p — X\ = pv; this leaves only finitely many possibilities for v.

Consider the case A = A(k); take M, N in FC4(Q?) and set M = VoM,
N =VqoN. Since Vg is a (pZR)-functor (and fully faithful) we have

Hom o, (M, N) ~ QZ;R Home(M][pv], N). (2)
ve
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Regard k as an A(k)-algebra via the augmentation map (taking all h. to 0).
If M is projective in C4(xy and if N is projective over A(k), then Proposmon

3.3 and (3) imply

Hom} o) (M, N) @ k) k = P Home, (Mi[pv], Ni). (3)
VEZR

Claim: If p is prime to the indez of connection of R, then

" ., J Homg(M,N), in Case 1,
HomK(Q)(M,N) ® A(k) k=~ {Homu(M, N), in Case 2. (4)

Proof: Compare (4) to 4.2(6)—(8). We see that we have to show: If v € X
with Home, (Mg [pv], Nx) # 0, then v € ZR. Well, if that Hom space is
nonzero, then there are weights A of M and p of N with u — A = pv. If \;
is an element of €, then all weights of a module in C4(Q2) are in the coset
A1 + ZR. So we get now pv € (ZR) N pX. By assumption p is prime to the
index of connection [X : ZR)], and so v € ZR as desired.

14.14. Assume from now on that p is greater than or equal to the Coxeter
number. Fix a regular Wy—orbit (2. This means that the stabilizer in W, of
any element in € is trivial. So 2 is the orbit of an element such as the A in
13.2. Let I" be a good Wy—orbit. As in 10.2 we denote for each A € {2 by Ap
the unique element in I' contained in the closure of the alcove of A. Denote

for all A € Q and 3 € R the element C#(\, Ar) from 13.4(1) by af and set
8 = ()

We define functors 7 : K(2) — K(T') and 7' : K(I') — K(f2) using the
formulas 10.10(5)—(8) with the a§ and b; as above. There are a few sim-
plifications since BT A # A for all A € Q and all 3 (because (2 is regular).

Furthermore, we can apply the remark to 10.11 since our af satisfy the as-
sumptions there. Let us state the definition explicitly: We set for all M in
K()

TM(p) = @ MO 1)

Ar=p
for all u € T', and (for all B € RT)

MuB) = @ ©®, )M pB), (2)
Ar=p=(BMA)r
if BT = p, resp.
M(u,B) = @ ¥, HM (X (3)

Ar=p
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if BT p# p.
For any N in K(T') we define 7' by

T'NA)=N(r) forall \eQ, (4)

and (for all 3 € R* and X € Q):

5\7%1)%@%(), | if(ﬁTAr)# Ar;
. _ 0,B) BN +pB8,8), i (BTA)r = Ar +pB;
TNOB =\ Ya +aly,y) |20y € NOm B},

if (BTA)r = Ar, BTA# A

(3)

One checks as in 10.10 that 7 and 7' preserve the finiteness conditions
in the definition of the combinatorial categories. It is clear how to define 7
and 7' on morphisms.

It is easy to see that 7 and 7' commute with the extension of scalars
functors defined in 14.8. We have C#(\ + pv, (A + pv)r) = C#(\, Ar), hence
a§=af ,, and b =0{  forallA\€Q, 3€R* andv € ZR. So T and T'

are compatible with the functors Q@ — Q[pr] on K(Q) and on K(I') (for each
v € ZR), i.e., they are (pZR)-functors in the sense of E.3.
In the case A = A(k) we have isomorphisms

V]"OT;TOVQ and VQOT';T'OVF (6)

with T = T5 and T' = T as in 10.1. This follows from Proposition 10.11
and Theorem 13.4. (Recall the choice of Vg and Vr in 14.1. The construction
of the isomorphism in 10.11 involves the choice of certain fy in 10.12. We
choose them as in 13.9 resp. as in 13.15. The maps t[fx, fan] and 0[fx, fan]

from 10.3(1) and 10.5(1) are then equal to certain t?[(\)r, \'], cf. 13.4(4). We
get then that 10.10(1),(3) are satisfied for the af as above. )

14.15. Let (Qy,9Q;) be either (2,T) or (I',Q2) with Q and I' as in 14.14.
Denote the corresponding functor (7 or 7', as constructed in 14.14) by 7; :

Lemma: Let M be an object in K(€2y).

a) Each AY-module Ty M(X) with X € Qg is isomorphic to a finite direct sum
of certain M(p) with p € Q.

b) Let B3 € RY. Each AP-module Ty M(),3) with X\ € Q2 is 1somorphic to a
finite direct sum of certain M(p,[3) with p € .

¢) Let 3 € Rt. Each AP-module T, M(), 3)° with X\ € Qy 1s isomorphic to @
finite direct sum of certain M(u,[3)° with u € Q.

192



REPRESENTATIONS OF ALGEBRAIC GROUPS AND QUANTUM GROUPS

Proof: The claim in a) is obvious from 14.14(1), (4). For b) and c) note: Let b
be a unit in A®?. For each p € Q; with 81 p # p the map (z,y) — (bz,y) is an
automorphism of the 4°-module M (u) ® M(B7 ). In induces isomorphisms

of A®—modules -
M(p, 8) — (b, 1)M(p, B)

M, B)° = (M(p) & M(BT )/ M(p, B)
= (M(p) & M(BTw))/(b, )M (1, 8).

For each p € Q; with 31 u = p the map (z,y) — (z+by,y) is an isomorphism
of AP-modules

M(p, B) & M(p, B) = {(x + by, y)le,y € M(, 5)}
and induces an isomorphism of A®-modules
M(p) [ M(p, B) & M(p)/ M(n, 5)
— (M(p) & M(p)/{(z +by,y) | 2,y € M(p,B)}.
Now the claims follow easily from 14.14(2), (3), (5).

and

14.16. Keep the notations from 14.15. That lemma says that 7; preserves
(i.e., that 7 and 7' preserve) many properties. In particular, if each M(y)

with p € Q, is free (resp. torsion free, resp. a projective module) over A°,
then so is each Ty M(A) with A € Q,. There is a similar statement for the

M, B) with AP replacing A°.
We see also in case A = S: If M satisfies 14.9(TF), then so does T M.

14.17. Lemma: Suppose that M has the following property: Each M(pu,3)
with B € Rt and p € Q; generates M(p) (in case BTp = p) resp. M(p) @
M(BTp) (in case BT p # u) over A®. Then Ty M has the analogous property.

Proof: The condition that M(u,3) generates M(u) & M(B8 T p) (in case

B 1 p # p) means that there is for each z € M(p) @ M(B T p) an integer
m > 0 with hZ'z € M(p, 3), cf. the proof of 14.6.a. In other words, it means

that there is for each T € M(u, 3)° an integer m > 0 with h7'Z = 0. This last
version works equally well for 3T u = u. Now it is clear by Lemma 14.15.c
that this property is preserved under 7.

Remark: Note that the condition in this lemma implies the condition in

Lemma 14.6 (also used in 14.7): Each M(u)s generates M(u) over A%, In-
deed, this is obvious for 31T = p. For BT p # p take any z € M(p). As we
saw in the proof, there is an integer m > 0 such that

hg (2,0) = (hj'z,0) € M(p,f).
Then hf'z € M(u)g. This shows that M(u)s generates M(pu) as claimed.

193






15. Graded Combinatorial Categories

15.1. In this section we are going to look at certain graded rings and mod-
ules. We are going to use the general conventions from E.1. Unless explicitly
stated otherwise, graded means Z-graded in this section.

The algebras S and Sy have a natural grading. We change this grading
such that each h, with @ € R has degree 2; so we have S = @ ;5 S2d;

similarly for Sk.
Suppose until 15.4 that A is a graded S—algebra that satisfies the as-

sumptions of 14.5. We get each A% and A? from A by localizing with respect
to a multiplicative set consisting of homogeneous elements. So we get induced

gradings on the A? and on A°.

15.2. Let Q be an orbit of W, in X. We define a graded version I~C(Q) =

IC(Q,A; of the category K(2, A). An object in K(2, A) is an object M in

K(€, A) with a grading
M) =P MO, (1)
1€Z
(for each A € Q) as an A?-module such that each M(]),3) is a homogeneous
subgroup (in fact: a homogeneous AP—submodule) of M(A\)®M (BT \) resp. of
M(X). Morphisms are morphisms in (€2, A) that respect the gradings, i.e.,
with ¥y M(X); € M'(X); for all X and ¢ (using the notations from 14.5).
We have an obvious forgetful functor from K(Q2, A) to K(Q2, A). We shall

often use the same notation for an object in (2, A) and for its image in
K(€Q, A); it should then be clear from the context what we mean. If M is an

object in K(€, A) and if r is an integer, then we define M(r) as M with the
grading shifted by r, i.e., with

M(r)(A) = M(X)(r) (2)

for all A € Q. Obviously M(r) and M define the same object in K(2, A).
If M and N are objects in (£, A), then set for all integers r

Homy (g, 4)(M,N), = {¢ € Homkq,4)(M,N) | o M(A)i T N(N)igr Vi, A}

195



H.H. ANDERSEN, J.C. JANTZEN, W. SOERGEL

We have
Homg g, 4)(M,N), = Hom%(Q’A)(M(r),N) = Homz(Q’A)(M,N(—r)) (3)
and
Homy (g, 4)(M, N) = @) Homgq,4) (M, N),. (4)
r€Z

Note that this is a grading of Homy g, 4)(M,N) as an A-module. In the case
M = N it makes Endxg 4)(M) into a graded A-algebra. We have as in
E.1(3) forall s€ Z

Homy(g,4)(M(=s), N') = Homg(q, 4) (M, N)(s) = Hom(g, 4)(M, N (s)).
(3)
If A" is a graded A-algebra that also satisfies the assumption in 14.5,
then we have a natural extension of scalars functor from K(2, A) to K(2, 4").
(For M in K(€2, A) define M 4/ as an object in K(2, A’) as in 14.8 and take

then the obvious grading on each M 4/()), i.e., each z ® b with x € M(A);
and b € A} gets degree i + j.) The functorial maps

HomK(Q,A)(M,/\/’) ®A A’ 4 HomK(QYA:)(MAr,NAI) (6)
(for M and A in K(Q, A)) preserve the grading.

15.3. Consider as an example the ZY introduced in 14.10. We make them
into objects in K(f2, A) by choosing the given grading on Z¥(\) = A?; so the
generator 1 of this module gets degree 0. It is then obvious from 14.10(2),
(3) that all ZY(p, 3) are homogeneous submodules. We shall always take this
grading, when we regard ZY as a graded object.

Take w, € W and X € Q and consider Homy g, 4)(ZY, 23) as a graded

A-module. Any homomorphism ¢ : 2} — Z3 takes the generator 1 of ZY())

to an element of Z5()\) = A?. So there is an element a € A? with (1) = a,
and v is uniquely determined by a. The condition that 1) maps each ZY (A, 3)
to Z3(),B) is equivalent to a € AP for all 3, hence to a € Mg AP = A, We
get additional conditions from the 8 with 87X # X. If w™!3 < 0, then the
condition is that ahg € APhg (if 2713 < 0) resp. that ahg € A® (if 2713 > 0).
This is automatically satisfied for a € A. If w=!3 > 0, then the condition is
that a € APhg (if 2713 < 0) resp. that a € A# (if z7!8 > 0). In the second
case this condition follows from a € A, but in the first case we have to satisfy
a € APhg N A; this shows that we have an isomorphism

Hompg(g,4)(2%, 23) — AN N APhg. (1)

B>0,8MF#X
w™18<0,z718>0
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The right hand side is graded and the isomorphism is compatible with the
gradings.

We can do better if A is equal to S or to Sx. Then A is a unique
factorization domain and hg is irreducible in A. This implies that 4°hgNA =
Ahg for all 3. Furthermore, the hg are not proportional for distinct 8 (under
our assumptions on the characteristic of k in Case 1), so we can rewrite (1)
as

Homg g 4)(2Y,235) — A- H hg. (2)
8>0,8MFA
w”18<0,z718>0

For arbitrary A this works still in those cases where the product is empty,
eg,ifw=zxorifw=1.

15.4. Let us restate the most important cases of 15.3(1), (2). In order to
simplify notation we set

2= 2} and N = Z}Y° (1)
for all A € X. The number

Nx=|{BeR"[B1A=1}|
={BeR"|(A+p,8)=0 (modp)}|
=|{HeH | e H}

(using the notation from 13.4) is constant on W,—orbits. Set
Ng =N, forall X€Q. (2)

Now 15.3(1), (2) yield obviously (since each hg has degree 2!)

Lemma: We have for all A € Q an isomorphism of graded A-modules
Hompg(q,4)(2x, 2)) =~ A. 3)

If A is equal to S or Sk, then we have also an isomorphism of graded A-
modules

Homy g, 4)(2), 23) = A(2(|RT| ~ Na)). (4)

Remark: If p # X, then there is not a weight v with 2% (v) # 0 and Z}(v) # 0;
so we get (for all w,z and arbitrary A)

Homy(g,4)(2Y, Z;) = 0. (5)
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15.5. In the next sections (until 15.12) we shall mainly look at the case
A = Sy and the relationship between K(f,Sk) and K(Q, A(k)). If M is an
object in K(€2, A(k)), then an Sk -form of M is an object M’ in K(€Q, S¢) with
(M") a(ky = M; or, more rigorously, with a fixed isomorphism (M) 4y —
M. Similarly, a graded Sy—form of M is an object M in IE(Q,Sk) with
M A(k) = M. (Note that A(k) is not a graded ring; so the last identity is in
K(, A(k)), not in a — nonexistent — K (2, A(k)).)

If M and N are objects in K(2, A(k)) and if M’ resp. A" is an S—form
of M resp. of N, then 14.8(4) implies

Homy g, s,)(M',N') ®s, A(k) ~ Homk(q, acky) (M, N). (1)

If M is a graded Sy—form of an object M in K(Q, A(k)), then so are all
M(r) with r € Z.

We shall be mainly interested in graded Si—forms of certain Vo M with M
in FCaqx)(?). For example, each ZY is a graded Sy—form of Vo Z§;, (AM(w)),

cf. 14.10(4), (5).

15.6. Let M, A be objects in K(Q, A(k)), let M resp. N be a graded Si—
form of M resp. N. Suppose that HOm}C(Q’A(k))(M,N) is a finitely generated

A(k)—module Then 15.5(1) and Lemma E.8.c imply that Homy g, sk)(]\ji N)
is a finitely generated Sx—module. Since Si lives only in degrees > 0, there is
then an integer r with Homy g, Sk)(M N), = 0 for all i < r. We get therefore

Homx (g, a(ky) (M, N) = [] Homxa,s,) (M, N);. (1)
[y

Note: If M = VoM and N = VoN for some M, N in FC4k)(2), then
Hompy o, ax)) (M, N) is finitely generated over A(k) by 9.4 and 2.8. So we
can apply (1) in that case. On the other hand, in some cases we can deduce
finite generation of Hom,c(gysk)(/\f\//t,/\?) from Lemma 14.7.

Lemma: Let M be a nonzero module in FCacx)(Q?) and let M be a graded
Sk—form of VoM.

a) M is not isomorphic to any M(t) with i # 0.
b) If M is indecomposable, then Endx (M) is a local ring and M 1s
indecomposable in K(S2, S).

¢) If M is indecomposable and if M' is another graded Sk—form of VoM, then
there is an integer n with M' ~ M(n).

K(Q,Sk)
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Proof: The discussion above implies that Endg(q,s,)(M) is a finitely gener-
ated graded Sx—module and that there is an integer m with Endxq,s,)(M)i =
0 for all ¢ < m. This implies that all f € @, ., Endk(q,s,)(M); are nilpotent.
If f € Endgg,s,)(M):i (for arbitrary i € Z) is invertible, then f~! has to
belong to Endx(q,s,)(M)—i. We see that any f € Endx(q,s,)(M); with i # 0
is not invertible; this yields a). If we take 1 = 0, we get from Lemma 14.2.a
the first claim in b); the second one is then obvious.

Consider now M’ as in c). We can regard the identity map on VoM
as an element in the completion of Homy(q,s,)(M, M'), cf. (1). So we can
decompose id = Y°2 i, with each i, € Homy(q,s,)(M,M'),. Similarly,
we can regard it as an element in the completion of Homy g, Sk)(M',M) and

decompose id = > > __j,. (We may assume that we start with the same

index —s < 0.) We get thenid=3,___ j_,0i,in

End (M) = End)C(Q,Sk)(M)O C End}C(Q’A(k))(VQM),

K(,Sk)

so at least one summand j_p 0 ip, has to be a unit in Endxq,ax))(VaM).

Denote its inverse by f. Then f has to be contained in Endk(Q Sk)(M). We

get a direct sum decomposition M' = i,(M) @ ker(f o j_,). Since M' is
indecomposable, this yields M' = i,(M) ~ M(n) as desired.

Remark: Part c) of the lemma implies for all A € X that the ZY(r) with
r € Z are the only graded Sx—forms of VoZ};,(A(w)) (for any A and w).

15.7. Proposition: Let M, and M, be modules in FC4k)(2) with M,

indecomposable. Suppose that M is a graded Sx—form of Va(M; & M;) and
that My is a graded Si—form of VoM. Then there exists a graded Sk—form
M of VoM, and an integer n with M ~ M;(n) & M.

Proof: Set M = My, & M,, let v : My — M and 7 : M — M, be the inclusion
and the projection. We can decompose, cf. 15.6(1),

)
L= Z Ly with Lr € Homx(g,sk)(Ml,M)r

and
o
T = Z Tr with T, € Homx(g’gk)(M,Ml)r.
Then mov=3"__ m_, 0, is the identity on M;. Since End~ (M) is

K(Q,Sk)
a local ring by Lemma 15.6.b, there is an integer n such that 7_, o¢, is a unit
in this ring; denote the inverse by f. Then e = ¢, o f o 7_,, is an idempotent
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in End%(ﬂ, sk)(M) and we have a decomposition M = eM & (1 — e)M in

}~C(Q,Sk). Furthermore ¢, = €0 ¢, is an isomorphism M;(n) —— eM with
inverse f o m_,. We want to take My = (1 — e)M and have to show that
((1 = e)JM) 41 is isomorphic to VoM, in K(Q2, A(k)).

Regard e as an endomorphism of VoM and identify it with its inverse
image under Vo. We have Vo(eM) = e(M 4(x)) = (e M) ax)y = VoM, hence
eM ~ My, and Vo((1 —e)M) = (1 — e)(Myk)) = ((1 — e)M) o). We get
also M =eM & (1-e)M ~ M; & (1—e)M, hence (1—e)M ~ M, by Lemma
14.2.b. So we get indeed ((1 — e)M) 4.y = VoM.

15.8. Consider for the moment an arbitrary (graded) A as in 15.1. If

M is an object in K(Q2, A) and if N is a compatible subobject that is also
a homogeneous subobject (this amounts to: each A(\) is a homogeneous
submodule of M(X)), then we get a natural grading on M /A. The inverse
image in M of a homogeneous subobject of M /N is then homogeneous.

Lemma : a) Let M be an object in K(Q, S) and N a homogeneous subobject
of M. If Naw) is a compatible subobject of M k), then N is a compatible
subobject of M.

b) If M and N C M are modules in FC 4()(Q) with M/N flat over A(k), and
if M and N C M are graded Sp—forms of VoM resp. of VoN, then N is a
compatible subobject of M and M /N is a graded Sx—form of Vo(M/N).

Proof: a) If L is the kernel of a map as in 14.11(1), then N(\,3) C L.
Both L and N(A, 3) are homogeneous. The assumption on N4k in M 4k
implies that N'(\, 8) ®s, A(k) = L ®s, A(k) inside M(X,3) ®s, A(k), hence
that (L/N(A,B)) ®s, A(k) = 0. Since L/N(), () is graded, this implies
L/N(X, B) =0 by Lemma E.8.a. We get thus N'(A,3) = L as claimed.

Now b) follows easily from a).

Remark: Suppose in b) that @ is a submodule of M containing N with M/Q
and Q/N flat over A(k). Suppose that Q' C M/N is a graded Sy—form of
Va(Q/N). Then the inverse image Q@ C M of Q' is a graded Sx—form of Vo Q.
(Note that Q 4(k) C M 4(k) is the inverse image of Q'A( k) and apply the final
remark in 9.12.)

15.9. Suppose that M is in FC4x)(Q2) and that M € K(, Si) is a graded
Si—form of VoM. We call a filtration

0=MeCM;CMyC...C Mp=M (1)

of M permissible if all M; are homogeneous subobjects of M and if there are
submodules M; of M with M/M; (and hence M;) flat over A(k) such that
VaM; = (M;)a) for all i. The inclusions (M;)ax)y C (M;)aw) for i < j
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yield then inclusions M; C Mj;. Each M;/M; is flat over A(k), so (M;) (k) is
a compatible subobject of (M;) (k). Now 15.8 implies that also each M; is
a compatible subobject of M; and that each M;/M; is a graded Si—form of
Va(M;/M;).

Suppose that (1) is a permissible filtration and that we are given for each
i > 0 a permissible filtration of M;/M,;_;. We can then refine (1) by inserting
(for each 7 > 0) the inverse images in M; of the terms in the given filtration
of M;/M;_1. The final remark in 15.8 shows that this refinement is again a
permissible filtration.

If a filtration as in (1) is permissible and if there is for each ¢ > 0 a weight

1; € Q and an integer m; such that in E(Q,Sk)
Mi/ My ~ 2, (m;), (2)
then we call it a permissible Z-filtration. If so, then
VaM;[VaM;_y ~ (Mi/Mi_1) aky = VaZa) (1),

hence M;/M;_y =~ Z 4(x)(p;) for all i. On the other hand, if there are y; € Q
such that M;/M;_; ~ Zu)(pi) for 1 < @ < r, then each M;/M;_; is a
graded Sy—form of VoZ4(k)(pi). There are then integers m; such that (2)
holds for all 7; so (1) is a permissible Z-filtration.

We define analogously a permissible Z'-filtration of M to be a permissible
filtration as in (1) such that there are p; € Q and integers m; such that

K(9Q,Sk)

Mi/ M1 ~ Zﬂ (my). (3)
Arguing as above we see that this is equivalent to M;/M;—, ~ Z); ;(1;) using
the notation

Za(p) = Z3° (p{wo)) (4)
for any U%-algebra A and all u € X.

15.10. Proposition: Let M and N be modules in FCaxy, let M (resp.

N) be a graded Sx—form of VoM (resp. of VaN). Suppose that M has a
permissible Z-filtration with factors Z,,(m;), 1 < i < r, and that N has

a permissible Z'-filtration with factors Z:,j (nj), 1 < j < r. Then we have
wsomorphisms of graded Si-modules

Hom;c(g Sk) M N @ Sk j — mz (1)
1] hi=V;j
and

Hompg (g s,y (N, M) ~ @ Sk(m; —n; + 2(JRT| — Ng)). (2)

1,5 Hi=Vj
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Proof: Write A = A(k). Fix a filtration of M as in 15.9(1) and consider

the submodules M; of M as in 15.9. So we have M;/M;_1 ~ Z(pi) and

M i|Mio1 ~ 2, (m,) for all i. We consider first (1) in the case where N =
(z/) for some v € X. By 4.13(1) each

0 — Home(M;/M;—1,ZY(v)) — Home(M;, Z'4(v))

— Home(M;—y,Z%(v)) — 0

is exact, hence so is each

0— HomK(Q’A)(VQ(Mi/M,‘_l),VQZA(V)) — Homy g, 4)(VaMi, Vo Z)(v))
— Homyq 4)(VaMi—1,VaZ}(v)) — 0.

By our assumption, we can rewrite this as

0 — Homy(q,4)(Mi/Mi-1)4,(Z,)4) = Homg(g,4)((Mi)4,(Z),) )
— Homyg,4)((Mi-1)a4, (Z,)a) — 0.

The maps in this sequence arise from the corresponding maps over Si by
extension of scalars from Sy to A(k). Lemma E.8.b implies that the corre-
sponding sequence over Sy (of graded Si—modules) is again exact:

0 — Homy(q,s,)(Mi/Mi_1, Z)— Homgg,s,)(Ms, z)
— Hom,c(g,sk)(M,'_l,Z:,) — 0.

The first term is by 15.4(5) equal to 0 if u; # v, otherwise it is isomorphic to
Sk(—m;) by 15.4(3) and 15.2(5). This shows that (as graded Sx—modules)

Hom}C(Q’Sk)(M, Z’,,) ~ @ Sk<—mi>

pi=v
and (slightly more generally, cf. 15. 2(5)) foralln € Z
Hom;c(g Sk) M Z @ Sk n - m, (3)
wi=v

Consider now arbitrary N with a permissible filtration as in 15.9(1) with terms
now denoted by N; and with corresponding submodules N; of N. Suppose

now that N;/Nj_y =~ Z}(v;) and N;/Nj—1 ~ Z, (n;) for all j. By 4.13(1)
each
0 — Home(M, N;—1) — Home(M, N;) — Home(M, N;j/Nj_1) — 0
is exact. Arguing as above we see that each
0 — Homg(q,s,)(M, N;_1) — Homg(q,s,) (M, N;)
— Homy(q,s,)(M, 2Z,,(n;)) = 0

is exact. The last term is by (3) isomorphic to the direct sum of all Si(n; —m;)
with p; = vj. This yields (1) by induction. The proof of (2) is similar and
left to the reader. (One has to use 15.4(4) instead of 15.4(3) and 4.12(1) for
w = wy instead of 4.13(1).)
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15.11. For a graded Sx—module M of the form
M =~ P Si(ri) (1)
i=1

with r; € Z the r; are uniquely determined by M (with its grading). This
follows, for example, by looking at the Poincaré series of M as a graded vector
space over k = (Sx)o. We can therefore define the graded rank of M as the
element

rkM =Y "t7" € Z[t, 17 (2)
=1

in the ring Z[t,t~!] of Laurent polynomials over Z. (The minus sign in the
exponent will simplify some formulas later on.) We have obviously

tk (M(r)) =t""tk N for all r € Z. (3)

Proposition 15.10 yields a formula for rk Homy g s,)(M, N). Let us state
explicitly two special cases: First take N = Z;L with p € Q. Then

rkHomK(Q Sk) (M, Z Z[M Z ]tm (4)

meZ

where (M : Z,(m)] denotes the multiplicity of Z,(m) as a factor in a permis-
sible Z-filtration of M. Note that this formula together with the uniqueness
in (1) shows that [M : Z,(m)] is independent of the choice of the permissible
Z-filtration. We have similarly

I'kHOIn)c(Q Sk)(Zl“N Z[N Z’( )]t~n (5)

neZ

where now [N : Z|,(n)] denotes the multiplicity of Z,(n) as a factor in a

permissible Z'-filtration of V. As before, this number turns out to be inde-
pendent of the choice of the permissible Z'-filtration.

Note that the uniqueness result above does not extend to Sq’ and the S f .

For example, multiplication by any h, is an isomorphism S} b =8 0( 2). On
the other hand, it does extend to S.

15.12. Lemma: Let M be a module in FC(x)(Q2). Suppose that M is a

graded S-form of VoM. If M has a Z-filtration, then there ezists a permis-
sible Z-filtration on M.
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Proof: Write A = A(k). Let A € Q be maximal for M) # 0. Then there is (by
2.14) a submodule N of M such that N ~ Z4()\)" for some integer r > 0 and
such that M/N has a Z-filtration involving only factors Z4(v) with v # A,
in fact with v 2 A\. We have

AT ~ Homc(ZA(/\),N) = Homc(ZA(/\),M)
>~ HomK(Q’A)(VQZA(/\),VQM)
~ HomK(Q,sk)(ZA,M) ®Sk A

Lemma E.8.d implies that Homy (g, s,)(2x, M) is free over Sy and that we can
find a basis consisting of homogeneous elements. So there a basis fi, fa,..., fr
of Hom¢(Z 4(A), M) such that their images Vf; in Homy(q, 4)(VaZa(A), VaM)
are a basis of Homy (g s,)(2x, M) consisting of homogeneous elements. We
have now N = @_, fi(Z4(\)) and

Va(fiZa(X)) = (Vfi)VaZa(A) = ((Vfi)Zx)a
for all i. Each (Vf;) 2, is homogeneous. Set

Mi=@WF)2xn  and  Mi=@DfZa(\)
i<i i<i
for all ¢, then each M, is homogeneous and satisfies (M;)4 ~ VoM;. So the
M, are a permissible Z-filtration of N' = M, and N is a graded Sy—form of
VaN. Now M/N is a graded Sx—form of Vo (M/N); we can apply induction
to M/N, and then take inverse images in M to complete the proof.

Remark: A similar proof shows: If M has a Z'filtration (i.e., a filtration with
factors of the form Z/;,(u)), then there exists a permissible Z'iltration on
M.

The only change in the proof is that we now take A minimal among the
weights in 2 such that Z), ;,()) occurs as a factor in a Z'-filtration of M.

15.13. Consider as in 14.14 a regular orbit {2 and a good orbit I" of W, in
X. For any )\ € ) denote by Ar the unique element in I' in the closure of the
alcove of A. Set

o(A)=o\\T)=|{H€E€H|Axr € H, A > H}|, (1)
u(A) =u(A\T)=|{HeH | € H X< H}, (2)
and
r(A) =r(A\,T) =o(A,T) —u(A,T) (3)
using the notations from 13.4. Note that obviously (for all A € Q)
oA, T) 4+ u(AT) = Nr. (4)

Choose (for all 3 € R* and all A € Q) the a5 and b} as in 14.14. All are
homogeneous elements in S? or in S# h;l.
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Lemma: We have

dega? =r(\)—r(B1TN)  and  deghl =r(BTA)—r(A).  (5)

Proof: Recall that we work here with the grading where deg h = 2 for all a.

Of course it is enough to consider af since we take b’g Set u = Ar.
If} be the reflection

Consider the reflection hyperplanes H with u € H. Let 81
hyperplane with 37p € 8T H and o371 H) = £sg(a(H)). We shall compare

the contribution of H to the degree of aj to its contribution to () minus

the contribution of 3T H to r(BTA).

Suppose first that sga(H) > 0. Then A > H if and only if BTA > 1
H; therefore H contributes the same number (+1 or —1) to r(A) as BT H
contributes to r(37A). So the contribution to the difference is 0; on the other

hand H contributes nothing to af .

Suppose now that sga(H) < 0. Then either A > H and 8TA < 8T H
or A< H and BT > 371 H. In the first case we get a contribution of +2 to
r(A) = r(B71A), in the second one we get —2. On the other hand, in the first

case H contribute h_, (g to af , in the second case it contributes h;(lH). So
the degree of this factor is equal to the contribution to r(X) — r(37A).

15.14. In the remaining subsections of Section 15 we suppose (as in 15.1-
3) that A is a graded S—algebra satisfying the conditions in 14.5. Keep the
assumption on 2 and I' from 15.13. Consider the functors 7 and 7' between

K(Q, A) and K(T, A) as in 14.14. We want to define functors between K(£2, A)
and K(T', A) that yield 7 and 7' when we forget the grading.
For M in K(f2, A) define a grading on each 7M(u) with u € T by

= P MNi_rny forallieZ. (1)
Ar=p
For N in K(T', A) define a grading on each T'N()) with A € Q by
TIN(/\), = N(/\F)i+r()\) for all i € Z. (2)

Proposition: We get on TM resp. on T'N wvia (1) resp. (2) a structure as
an element of K(I', A) resp. of K(Q, A).

Proof: We have to show that each 7M(y, 8) resp. each T'N(A, ) is homo-
geneous. Let us begin with the first case. Each 7 M(y,3) is the direct sum

of certain (bf, 1)M(A, B) with Ap = p. Now
(05, IMX, B)i € M(N)itr(am)—r(r) ® M(BTN);
CTM(1)itrian) ® TM(BT 1) itr(am);
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this shows that 7M(u, 3) is homogeneous.
Consider now 7', If 31 Ar # Ar, then T'A'(), 8) = (a5, 1)N(Ar, 3) and

(@3, DN (Ar, B)i € N )itr(a)—r(sny BN (BTAD);
CT'NN)izriam) ®@ T'N(BTA)i—rin);
so T'N(), B) is homogeneous. The homogeneity is obvious in the case where

(BT Mr = Ar +pB8. If (81 A)r = Ar, then {(z,0) | z € N(Ar,8)} is clearly

homogeneous; since

{(@8y,v) | y € N(Or, B)i} € NOAr)isr(n)—r(am) & N (Ar)i
CT'NN)izr(an) @ T'N(BTA)i—r(amn),

we see that 7'N(A, 8) is homogeneous also in this case.

15.15. It is clear that we get now functors between K(Q2, A) and K(T', A).
We shall denote them again by 7 and 7' and call them graded translation
functors. They commute with extensions of scalars. We can take in particular
A = Sk and get:

Lemma: Let M be a module in FCuk) (). If M is an Sy—form of VoM,
then TM 1s an Sp—form of VoT M. If M s a graded Sk—-form of VoM, then
TM is a graded Sx—form of VoT M.

Proof: The first claim could have beeen stated already in Section 14, since
it follows from 14.14(6) and 14.16. (Note that we need 14.16 to get 7M of
finite type.) The extension to the graded case is now obvious.

Remarks: 1) If we have a permissible filtration (M;)o<i<r of M as in 15.9(1),
then the 7.M; are a permissible filtration of 7M.
2) Analogous statements hold for 7' instead of 7.

15.16. Lemma: We have for all A € Q isomorphisms in K(T, A)
T2, ~ Z)‘F<2O(/\,F) + Nr) (1)

and
T2, ~ 2 (V). 2)

Proof: Set p = Ar € ' and N' =T Z,. We have

Np) = P &) =20 = A°

Ap=p
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and N(p') = 0 for all ' # p. Consider 3 € R*. If BT p # p, then
N, B) = (05, 1) 2a(A, B) = A° (b3, 0) = 4°(1,0)
— since bf is a unit in A® — and
N(BLp,B) = (b5, DZA(BLA, B) = AP(0, hg).
If 31 u = p, denote by Hy the hyperplane with a(Hy) = 3 and p € Hy. If

A < Hy, then
N (1, B) = (05, 1)25(), B) = APhg,

since bfh;l is a unit in A%. If A > Hy, then

N(p, B) = (5§20 D 2A(BLN, B) = A7hs.

Ky = H ha(H)~

peH

Set

This is a unit in A%, so k, is a basis of A'(1) and we have an isomorphism
Y 2,(p) = N(p) with (1) = k,. We claim that ¢ induces an isomorphism
2, — N extending it by 0 to all Z,(y') = 0 with p' # p. We have to
check that it induces isomorphisms Z,(u', 3) — N (', 3) for all ' € I' and
B € RY. If BTu # p, then £, is a unit in AP; so ¢ takes the basis (1,0) of
Z,(u,B) to the basis (k,,0) of N'(u,3) and the basis (0, hg) of Z,(8| p, 3)
to the basis (0, hgr,) of N(8 | u,B3). If 31T u = p, then n,,hgl is a unit in
AP so K, = (/f”h[;l)hﬂ is a basis of N (u,3). It is the image under v of
the basis 1 of Z,(u, ), so again ¢ induces an isomorphism. We have thus
proved our claim. So far we have not yet taken the grading into account. By
15.14(1) the element 1 in A/(p) has degree r(\) when regarded as an element
of N(p). Furthermore k, has degree 2Np, so 9 is homogeneous of degree
7(A)+ 2Nr = 20(\) + Nr. In other words, we have the isomorphism of graded
objects as claimed in (1).

Consider now Z). We can go through the same series of steps as for the
2y above. Let us point out only the changes. In the general description at
the beginning we get at the end

ZV(BINB) = AP(0,1) i BTA#N

Correspondingly we get later on for A" = T Z|, that

N(Blp,B)=AP(0,1)  if BTu+#pu,
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whereas we get for Tpu=p

APhg, if A < Hy;
Nn, 8) = { if A > H,.

We consider now ¢ : Z,(u) — N (p) with ¢(1) = &/, where

K/:‘ = H ha(H)-

pEH A H

Now fc;, is a unit in A% in all A? with 81y # u, and in those A# with
BTur = pand A > Hy. In the remaining cases n;lhgl is a unit in A®. Going

through the different cases we see that ¢ induces isomorphisms at all (u, 3).
Now &), has degree 2u()) so ¢ is homogeneous of degree r(\) + 2u(A) = Nr.
So v induces an isomorphism of graded objects as in (2).

15.17. Lemma: Suppose that A= Sx. Letp € I'. ThenT'Z, (resp. ’T'Z;)
has a permissible filtration with factors Zx(—Nr) (resp. Z\(—r(A,T))) with A
running over all weights in Q with Ar = p.

Proof: We look first at M = T'Z,. We have M()) = 0 for A € Q with

Ar # p, and M(X) is free over S,? of rank 1, if Ar = p. In the second case
we denote by g, the basis of M()) that corresponds to the basis element 1

of Z;l(,u) = Sg under the obvious identification. For our choice of grading gy

has degree —r(\) = —r(A\,T'). We have for 8 € RT with 31 u # u for all A
with A\p =

M\, B) =S7(gx,0) and  M(BLAB) = S{(0,9x).

(This uses the fact that af is a unit in S,f) If 3Tu = p, then we get for all A
with p = Ar = (ﬂT/\)r

M, B) = 52(gx,0) & 52 (agx, gam),

MBTAB) =52(ggn,0)  and  M(BLAB) = S0, 9»).

We choose now a numbering A\, Ag,..., A, of {A € Q| Apr = p} such that
Ai < Aj implies ¢ < j. We have especially: If 3T A; = Aj, then ¢ < j, and if
BLAi = Aj, then j <i.

We define a filtration

0=M¢yCMyCM;C...CM, =M
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of M by
oy = § M), i<

for all 7 and j and by
Mi(X, B) = M(X, B) N (Mi(X) & Mi(BTA))

for all ¢ and all A € Q and 3 € R*. Each M(), ) is obviously homogeneous,
hence so is each M;(, 3) as an intersection of homogeneous submodules. So
each M, is a homogeneous and compatible subobject of M.

On the other hand, the module M = T"Z), ;,(u) has a filtration

O=MyCM i CM,C..CM, =M

with M;/M;_; ~ Zh(k)()\,-) for all ¢ > 0, cf. 7.11. We have obviously

0y a0 — J Home(Z0(N\;), M?), if j <4;
Home(Z(2;), M7) {0, if > .
This implies for all ¢ and A that (M;) 4(x)(A) = Vo M;(A). Since both (M;) 4cx)
and VqM;()) are compatible subobjects of M = VoM, we get (M;) 4y =
Vo M;(A) for all i. So the M, are a permissible filtration of M.

Set now M, = M;[M;_; for all i > 0. Let us use the notation gi = gx;
to avoid double indices. We have obviously

M) = {Sgg,’ ~ S i A=

0, otherwise.

%et B € )R+. We have M;(31 \i) = 0, hence in each case (3T u # p and
Th=np
Mi(\i, B) = S (9:,0) = Mi(\i, B).

If 37Tu # p, then clearly
MBI, B) = S§(0,9:) = Mi(BL i, B).

We get easily the same result, if 37y = p and (8] A;))r # p. On the other
hand, if 8T = pand (8] X\i)r = p, then 8| X\; = A; for some j < i.

Furthermore 5 5
Ml(/\ﬂﬂ) = Sk (9170) D Sk (ai. g;, gz)
and

Mi_1(\j, B) = 8§ (g;,0).
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So M;(B1 X\, 3) is generated freely (over S,’:) by the image of (afj 9j,9:). If

we embed M; (3] );,3) canonically into M;(8]\;) ® M;();) this generator
is mapped to (0, g;). So we get also in this case that

Mi(BLN) = S2(0,9:).

It is now clear that there is an isomorphism 2, — M taking the standard
generator 1 to g;. If we take the grading into account, we get an isomorphism

Mi/M,’_l jad Zi\‘. (—T’(A,))

The second claim in the proposition follows.
Let us now look at the first claim and set M =T'Z,. So we have

, otherwise

M) = {Sggx ~ SY i Ar =gy

where the basis element gy has degree —r()). We have now for 8 € R™ with
BTp# pforall X with A\p =

M(X, ) = 5{(gx,0)  and  M(BLX,B) = S{(0, hg»).
If 31 p = u, then we get (as before) for all A with u = Ap = (BT A\)r
M, 8) = S{(9x,0) @ 5§ (a5, gan),

MBI B) = SL(gsm,0)  and  M(BLAB) = SZ(0,9x).

We choose now a numbering A;, Az,..., A, of {A € Q| A\r = p} such that
Ai < A; implies ¢ > j. For example, we can take the reverse of the previous
ordering. We have especially: If 3TA; = Aj, then i > j, and if 8| A; = A,
then 7 > 1.

We define again a filtration

0=M¢gCM;CMyC...C M. =M
of M by
) = d M), i<y
Mz()\]) o {0, if j>1

for all ¢ and j and by
Mi(A, B) = M(A, B) N (Mi(A) & Mi(BTX))

210



REPRESENTATIONS OF ALGEBRAIC GROUPS AND QUANTUM GROUPS

for all i and all A € Q and 3 € RT. As before, each M; is a homogeneous
and compatible subobject of M.
The module M = T'Z4(xy(u) has a filtration

O=MyCM,CM,C..CM,=M
with M;/M;_, ~ ZA(k)()\i) for all ¢ > 0, cf. 7.5. We see as in the other
case that (M;)4k) = VaM; for all i, hence that the M; are a permissible

filtration of M. Set now M; = M;/M;_; for all i > 0. Again use the
notation g; = g»,. We have obviously

Mi(\) = {s,?gi ~ S0 i A=\

0, otherwise.
Let 8 € RT. If 31 # u, then obviously
Mi(Ni, B) = 8¢ (gi,0) = M;(\i, B)

and

Mi(BLXi, B) = S7(0,9) = Mi(B1 s, B)-
Suppose now that 3Ty = . Let Hy be the reflection hyperplane with u € Hy
and o(Hy) = 3. Consider first the case where A\; < Hy, hence 8T \; = A; for
some j < i. Then

Mi(Ni, B) = 57 (9i,0) @ Sf (a3, 9ir 95)
and M;_; (), B) is the intersection of this module with S?(0, g;), hence
Mii (M. B) = S{(0, hsg))-
So M, (), 3) is generated freely (over S,f) by the image of (aigi, g;). (Think!)
If we embed M;();, 3) canonically into M;(\;) @ M;(B871);) this generator is
mapped to (aig,-,O). Since afihﬂ is a unit in Sf, we get
‘/Wl()\l? ﬁ) = S][:(h;lgl’ 0)
On the other hand, since (8| A;)r # p, we have
Mi(BLXi, B) = S7(0,9) = Mi(B1 A, B)-
Consider now the case where A\; > Hy. Then (37 A;)r # p, hence
MZ(AZ7/B) = S][:(gl’()) = M(/\Zaﬂ)
Furthermore, we see
Mi(BLX:, 8) = 57(0,hpgi) = Mi(B1 i, B),
cf. the determination of M;_;();,3) a moment ago in the other case.

These formulas for M; imply that there is an isomorphism 2y, = M;
taking the standard generator 1 to (k},)~'g;, with &/, as at the end of 15.16.
This map is homogeneous of degree —r(\;) — 2u()\;) = —Np. The claim
follows.
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Remark: The lemma holds for arbitrary A if we drop the word “permissible”
from its statement.

15.18. Consider especially the case where I' is semiregular, cf. 13.24. For
each p € Q there is exactly one weight p' € Q with (¢')r = pur and y' # p.
One has then either p' < por p < p'.

Lemma: Suppose that I' s semiregular. Let M be a graded Si—form of an
VoM with M in FCux)(Q). If M has a permissible Z-filtration (resp. Z'-
filtration), then so has T]T,M. One has then for all p,p' € Q with pr = (u')r
and p < p' and for oallr € Z

[T'TM:Z,(r)]=[M: Z,(r)]+[M: Z,(r—2)], (1)

(T'TM : Z()] = [M: Zu ()] + M 2ol — 2] )
resp.

[T'TM: ZL(T‘)] =[M: Z;l(r - 2)]+[M: Z'ﬂ, (r—2)], (3)

[T'TM: Z,(r)]=[M:Z,(r)]+[M: Z,(r)] (4)

Proof: We know by 15.15 that our translation functor takes permissible fil-
trations to permissible filtrations. The lemmas 15.16 and 15.17 show that
in our situation 7'7 M has a permissible filtration where each factor has a
permissible Z-filtration (resp. Z'filtration). The discussion in 15.9 (second
paragraph) shows that we can refine the filtration of 7'7M to a filtration
of the desired type. This construction shows also that it is enough to prove
(1),(2) for M = Z, and to prove (3),(4) for M = Z) (for all X € ).

Let X' € Q be the weight with (A')r = Ar and A’ # X\. We have Nt =1,
and o(A) =1 = r(A) in case A > X, and o(A) = 0 and r(A) = —1 in case
A < A. So the lemmas 15.16 and 15.17 yield in the second case that 7'7T Z)y
has a permissible filtration with factors Z) and Z,. Similarly, 7'7 Z) has
a permissible filtration with factors Z)(2) and Z),. In the first case 7'7T 2,
has a permissible filtration with factors Z,(2) and Z (2), whereas 7'T Z)

has a permissible filtration with factors Z),(2) and Z). This yields easily the
formulas (1)—(4).
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16. The Main Results

16.1. So far we have been working with a fixed field k that is either alge-
braically closed of characteristic p # 0 (in Case 1), or the p-th cyclotomic field
for some odd number p (in Case 2), cf. 1.2, 1.3. In this section we regard k
as variable, but fix R, X, W, £. We add (k) to certain notations introduced
in the preceding sections in order to indicate their dependence on k. For ex-
ample, we shall denote by B(k) the algebra called B before. Note that the
algebra S introduced in 14.3 depends only on R, not on k.

By our conventions p(k) is the characteristic of k in Case 1, it is the
(multiplicative) order of ¢ in Case 2. We consider only k& with p(k) > h.
Furthermore, we assume that p(k) is odd; if R has a component of type G,
we assume also that p(k) is prime to 3.

By our assumption on p(k) we can find (for each k) a weight Ag(k) in the
interior of the first dominant alcove for Wy, i.e., with

0< (Xo(k)+p,@¥) <p(k) foralla€ R*.

Set Qr = Wp(ryeAo(k); this is then a regular orbit of W) in X. Set ¥, (k)
equal to the set of reflections with respect to the walls of the alcove of Ag(k).
So X,4(k) consists of all s, with o € ¥ and of all s, , with o the dominant
short root in an irreducible component of R. Then X, (k) generates Wyy).

We shall always identify the affine Weyl group W, with W) via s4,m +—
Sa,mp- We have a generating set X, for W, that identifies with X, (k) C Wpy.
For all 8 € Rt and w € W, we define 31w € W, such that (8T w)e\o(k) =
BT (weXo(k)) for all k (modulo the identification W, — Wyx)).

16.2. For each subset ¥’ C X, let Wy be the subgroup of W, generated by
¥'. We define a category K(W, /Wy, S) analogous to the categories K(T, S).
An object M in K(W,/Wx/,S) is a family M(wWyx) (wWyg € W, /Ws:) of
S®-modules (almost all equal to 0) together with (for all 3 € R and wWyy €
W,/Wsx:) an SP-submodule M(wWy:, B) of M(wWsg:) @ M((81w)Ws) if
(ﬁT’w)ng # wWy, of M(ng:) if (ﬁTUJ)Wgr = wWgyxi. The definition of
morphisms should be obvious.
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For all k each Wy)—orbit I' in X has a representative u in the clo-
sure of the first dominant alcove. Then the stabilizer of p in W, has the
form Wy for some ¥’ as above. The map wWys — wep induces a bijection
W,/Wsr — . We now identify KX(W,/Ws:,S) with K(T, S): We map any
N in K(T',S) to the M in K(W,/Ws,S) with M(wWs/) = N(wep) and
M(wWg:, ) = N(wep, 3) for all w € W, and all 8 € R*. It is clear that this
is an isomorphism of categories. 5

We define similarly graded categories K(W,/Wsx/,S). The construc-
tion above yields also an isomorphism of categories between K(I',S) and
K(W,/Ws:,S). In particular, we get thus isomorphisms between K(Q,.S)
and K(W,, S), between K(Q, S) and K£(W,,S).

For I' and u as above the root subsystem R, as in 13.3(1) is determined
by ¥'; so it depends on ¥’ only, whether I' is good. If so, then we define
translation functors 7 from K(W,, S) to K(W,/Wx:,S) and 7' in the opposite
direction that correspond (for all k and all I" as above) to the functors 7 and
T' from 14.14 between K(§,S) and K(T',S) (under our identifications as

above). The main point is to note that the af = CP(\,Ar) depend only on
the w € W, with A = weo(k) and on X', not on k. Details are left to the
reader.

Also graded versions of 7 and 7' can be defined that correspond to the
graded translation functors from 15.14. Now the main point is to observe that
the numbers o(wsAg(k)) and u(weAo(k)) from 15.13(1),(2) depend on w and
Y only.

We can define for each p € ZR a functor M — M[u] on K(W,,S) that
yields for each k the functor M +— M[p(k)u] on K(Qk, S) (as in 14.12) under
our identifications from above. In this way K(W,, S) is a (ZR)—category that
we can identify with each (p(k)ZR)-category K(€Q%,S) modulo the identifi-
cation ZR — p(k)ZR, XA — p(k)X. The corresponding Hom* on K(W,,S)

yields then the Hom* on each K(f2,S) under our identifications.

16.3. Let s € ¥,. Choose for all k a weight u(s)r € X in the closure of
the alcove of Ag(k) such that the stabilizer in Wiz of u(s)x is equal to {1, s}

(modulo our identification). The orbit
D(s)k = Wperyen(s)x (1)

is then a semiregular orbit, hence good, cf. 13.24. There is for each A € ()} a
unique weight A" € Q with (A )r = Ar (where I' = I'(s)x) and A’ # A. Denote
this weight by As; if A = weAo(k) with w € Wk, then As = (ws)sXo(k).

We have for each B(k)-algebra B’ a translation functor T' from Cp:(§2)
to Cp/(['(s)x) and a translation functor T' in the other direction. We denote
their composition by ©, = T'oT. This functor from Cp: () to itself is usually
called the translation functor through the s—wall. (The B(k)-algebras that we
are mainly interested in are B' = A(k) and B' = k via the augmentation
map.)
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We have for each A as in 14.5 combinatorial translation functors 7 and 7'
as in 14.14 between K(€Qy, A) and K(I'(s)k, A). We denote their composition

~

by ©,. So this is a functor from K(Q%, A) to itself. If A is graded, then
we take for 7 and 7' their graded versions as in 15.14 and get a functor on

K(€%, A) also denoted by 0,.

We can carry out the construction of o, especially for A = S. Using
the identification of K(W,,S) with each K(Qk,S) we get then for each k a
translation functor on K(Qk,S). It is independent of k (by the discussion in
16.2); we denote this functor again by Q..

16.4. Let v € X. Consider for each k the special point p(k)v — p (special
for Wiy(xy) and its (good) orbit

Tk = Wpys(p(k)v — p) = p(k)v — p+ p(k)ZR.

Counsider for each B(k)-algebra B’ the translation functor 7" from Cg/(I'y) to
Cp () and set

Qo,.(B") =T'Zp (p(k)v — p) = T' Zp, (p(k)v — p)- (1)

(Recall from the remark in 9.5 that Zp/(p) ~ Zp,(p) for any special point p.)
Define similarly for each A as in 14.5

QG,V(A) = T’Zp(k)u—p(A) = T’Z;)(k)u—p(A) (2)

where 7' is the combinatorial analogue to T'. If A is graded, then we take
the graded 7' and regard Qy ,(A) as an element in K(Q, A).

By our identifications each k gives rise to an object Qp ,(S5) in INC(Wa, S).
This object is independent of k. (Well, there is £’ C £, such that W, /Wy, is
identified with 'y, for all k. Then there is Z in K(W, /Wy, S) corresponding to
each Z,(x),—,(S). Finally the analogue to 7' on K(W,/Ws:, S) is independent
of k.)

16.5. For each pair (I,v), where I is a (finite) sequence I = (iy,1s,...,%,)
of elements in ¥, and where v € X, set (for each B(k)-algebra B')

Qry(B') =0;0;,---0;,Q,(B"). (1)
Proposition 9.7 implies that Zp/ (p(k)v — p) is projective in Cp/. Since the
translation functors take projective modules to projective modules (7.7), also

each Qr,(B') is a projective module in Cp/(2). The translation functors
commute with extension of scalars, cf. 7.5(2). Therefore there are natural

isomorphisms
Qr,u(A(k)) ®aw) k =~ Qrp(k). (2)
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Lemma 3.3 yields for all pairs (I,v) and (J, 1) as above an isomorphism
Home(Qr,,(A(k)), Quu(A(K))) @) k ~ Home(Qr,u(k), Quu(k)).  (3)
Similarly, set for all (I,v) as in (1)
Qru(4) =0:,04,-6;,Qp,,(4) (4)
for each algebra A as in 14.5. If A is a graded algebra, then we regard (4) as a

definition in IE(Q;C, A) using the graded translation functors as in 15.14. The
statements in 16.3 and 16.4 about independence from k show that we get an
object Qr ,(S) in K(W,, S) that is independent of k.

By 15.15 each Qy ,(Sk) is a graded Si—form of Vo, Qr,,(A(k)); it admits
a permissible Zfiltration and a permissible Z'-filtration. Also the combi-

natorial translation functors commute with extension of scalars; so we have
isomorphisms (of graded objects)

Qr,v(S) ®s Sk ~ Qr,,(Sk). (5)
The compatibility of the translation functors with the functors Q — Qlw] for
w € ZR (cf. 14.14) and 14.12(1) imply that for all A and (I,v)

QI,V(A)[W] = QI,V—H«'(A)- (6)
Proposition: a) For each S-algebra A as in 14.5 and each pair (I,v) as
above Qr ,(A) is of finite type. Each Qr ,(A)(w) with w € W, s free of finite
rank over A®. Each Homy(q, 4)(Qr1,,(A4), Qsu(A)) (where (I,v) and (J, p)
are two sequences as above) is a finitely generated and torsion free A-module.
b) Each Qg (S) satisfies 14.9(TF) for all primes p.

¢) For all (I,v) and (J, ) as above there are isomorphisms

Homq,,s,)(Qr,»(Sk), Q1,4(Sk)) ®s, k — Home(Q1,,(k), Q1,u(k))
and (in Case 1 resp. in Case 2)

Hom} o, (Q1+(50): Quu(51) @, k= { g @b Grwif)

We regard here k as an Sy—algebra via the augmentation map.

Proof: By 14.16 the Qj ,(A) satisfy the first two claims in a) as well as (for
A = §) the claim in b), since they are obviously satisfied by Z,(x),—,. Also
the property in Lemma 14.17 is inherited, hence (see the remark in 14.17)

each Qr ,(A)(w)s (with w € W, and 3 € R*) generates Qy,, (A)(w) over A°.
Therefore Lemma 14.7 yields the last claim in a).

We can also apply 14.8(4) to the flat ring extension A(k) D Sy for
the Qy,. Combine this with the fact that each Q;,(Sk) is an Sy—form of
Va,Qr1,,(A(k)). We get thus by Theorem 9.4 isomorphisms

Homyc(q,,s,)(Qr,v(Sk), Qiu(Sk)) @s, A(k) ~ Home (Qr,, (A(K)), Q,u(A(K))).

The first claim in ¢) now follows from (3), the second one from 14.13(4), the
first claim, and (6).
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16.6. Lemma: For all pairs (I,v) and (J, p) as in 16.5 the element

rkHomK(Qk,Sk)(QI,V(Sk)a QJ,M(Sk)) € Z[t’t—l]

18 independent of k.

Proof: Each factor in a permissible Z-filtration of Q ,(Sk) has the form
Zwero(k)(Sk)(r) with w € W, and r € Z. The multiplicity

(91,0 (Sk) : Zwere(r)(Sk)(r)]

depends only on I, v and w. For I = () this follows from Lemma 15.17.
For arbitrary I use induction on the length of I and Lemma 15.18 (where
v' = vs and v's = v in our present notation). There is a similar result for the

factors in a permissible Z'filtration of @ j,,(Sk). Now the claim follows from
Proposition 15.10.

16.7. Theorem: For all pairs (I,v) and (J, p) as in 16.5 the natural maps
arising from extension of scalars are isomorphisms

Homy(w,,s)(Qr1,,(5), Q1,u(S)) ®s Sk — Homg(qa,,s,)(Qr,v(Sk), Q7,u(Sk))
(1)

and

Homyyy, 6(Q1,4(5), Qru(5)) ®s Sk = Homi g, 5,1(Qru(Sk), Quu(Sk)).

Proof: The second claim will follow from the first one using 16.5(6). So we
shall deal with (1) only.

Note that we can rewrite the left hand side in (1) as
Homy(q,,5)(Q1,(5), Quu(5)) @z k.

In Case 2 our claim follows from 14.8(4) and Proposition 16.5. Suppose that
we are in Case 1. We get from Lemma 14.9 that the map in (1) is injec-
tive. By Proposition 16.5 and by 15.2(4) each Homx (g, 5)(27,,(5), Q7u(S))
is a finitely generated and torsion free graded S-module. Therefore each
Homkq,,5)(Qr1,,(S), Qsu(S))r with r € Z is a finitely generated and tor-
sion free Z-module, hence it is free of finite rank over Z. Denote its rank by
n(r). Similarly, Homyq,,s,)(2r,,(Sk), Q7,x(Sk)) is a finitely generated and
graded Sy-module, hence each Homy(q, 5,)(Qr,,(Sk), @7,,(Sk))r a finite di-
mensional vector space over k. Denote its dimension by m(r). The map in
(1) respects the grading and induces injective maps

Hompg (q,,5)(Qr,v(S), Quu(S))r ®z k — Homy(q,,s,)(Qr,»(Sk), Q5,u(Sk))r
(2)
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In order to see that (1) is an isomorphism it is enough to show that both sides
in (2) have the same dimension, i.e., that n(r) = m(r) for all r € Z.

Let k' be the cyclotomic field that we get from Q by adjoining a primitive
p—th root of unity. We can study for our root system R also the category Cy:
working in the quantum case with a primitive p-th root of unity. So there are

also Qr ,(Sk) and Qj,(Sk) in I%(Qk:,Sk'). Since we know that the map in
(1) is an isomorphism 1n Case 2, we have

Homg(w,,s)(Qr1,(S5), Q1,u(S)) ®2z k' — Homg(a,,,5,,) (1, (Skr), Qu,u(Sk))-

3
(Recall that Qr,(S) and Q,(S) are independent of k.) Since the map in §3;
respects the grading we get especially

n(r) = dimp Hom(q,, s,,)(2r1,,(Sk'), Q 7,u(Sk'))r- (4)

These dimensions are determined by rk Homg(q,,,s,,)(Qr,(Sk), @Q1,u(Sk));

recall the definition in 15.11. So Lemma 16.6 implies that n(r) = m(r) for all
r as desired.

16.8. For all pairs (I,v) and (J, ) as in 16.5 set

E[(1,v), (J; )] = Homx(w,,5)(Lr,u(5), Quu(5)) @s Z (1)
and

gﬁ [(Iv V)’ (J’ ,u)] = Homgc(wa,s)(QI,u(S)a QJ,u(S)) Qs Z (2)

where we regard Z as an S-algebra via the augmentation map. By Lemma

14.7 each £[(I,v),(J,n)] and each &[(I,v),(J, )] is finitely generated as a
Z-module. (In the second case recall that direct sums as in 14.13(1) involve
only finitely many non-zero terms.)

Corollary: We have for all (I,v) and (J, i) as above natural isomorphisms

8[(], V)’ (J’ N)] ®z k — HomC(QI,V(k)’QJ,u(k)) (3)

and

ENI,v),(J,p)] @z k = {ggzi((%ll((i))%ii((’;)))) iZ g:zz ; ”

Proof: Well, Theorem 16.7 combined with Proposition 16.5.c yields an iso-
morphism

Homyw,,5)(Qr1,4(S), Quu(S)) ®s k — Home(Qr,,(k),Qsu(k));  (5)

here we regard k as an S-algebra via the composition S — Sy — k where
the last map is the augmentation map. This map is equal to the composition
S — Z — k, where the first map is the augmentation map. Therefore we can
rewrite the left hand side in (5) as

Homy(w,,5)(Qr,4(5), Quu(S)) ®sZ ®z k = E[(I,v),(J,n)] @z k.
So (3) follows. To get (4) replace all Hom by Hom".
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16.9. For three pairs (I,v), (J,u), and (K, ) as in 16.5 the composition of
morphisms in X(W,, S) induces bilinear maps

8[(1’1’)’(‘],/-‘)] X 8[(J7N)a(K’£)] — &[(1,v), (K, §)] (1)

with the usual associativity properties. Under isomorphisms as in 16.8(3) they
correspond to the composition of morphisms in C. A similar remark holds for

the &, cf. E.3(2).

For any finite set Z of pairs (I,v) as above set Qz(k) resp. Qz(S) equal
to the direct sum of all QU*) (k) resp. Q*)(S) with (I,v) € Z. Set &1 resp.
& equal to the direct sum of all £[(I,v),(J,u)] resp. E(I,v),(J, p)] with

(I,v),(J,p) € IT. Each &7 and each &ﬁ_, is a finitely generated and graded
Z-module. We have isomorphisms

EndK(Wa,S)QI(S) Qs Z — 81',

~ (2)
Endj . Q1(S) ®s 2 &,

and
&1 @z k — EndcQz(k),

" ~ [ EndyQz(k), in Case 1; (3)
& ®zk — {EnduQI(k), in Case 2.

We get from (2) a structure of a Z-algebra on £7 resp. on SﬁI that also arises
from maps as in (1). We get in (3) now algebra isomorphisms.

16.10. For each prime number p fix an algebraically closed field k(p) of
characteristic p. Consider (in this subsection) a positive integer d > 0 and set

Z' =Z[d"'] and S’ = S[d7!].
Proposition: Let M be a finitely generated graded S'-module that is torsion

ree as a Z'-module. Suppose that M @z k(p) is a free graded Sy ,) -module
(p)

for all prime numbers p not dividing d, and that tk M ®z/ k(p) is independent
of p (for these p). Then M is a free graded S'-module.

Proof: Note that we use rk M ®z/ k(p) here in the sense of 15.11(2). We
prove the claim by induction on the (ordinary) rank of this free Si(,)—module.

Assume that M # 0. Each M, is a free Z'-module of finite rank. Let r € Z
be minimal for M, # 0. Choose v € M, that is part of a basis of M, over Z'.
Then

v® 1€ M, ®z kip) C M ®z k(p)

is nonzero (for all p as above). Since M ®z k(p) is a free graded Sy(,)—module
and since r is minimal, the Si(,)—submodule S, (v ® 1) generated by v ® 1
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is isomorphic to Sk(p)(r) and the factor module M ®z/ k(p)/Skp)(v ® 1) is
graded free with

tk (M ®z k(p)/Skp(v® 1)) = tk (M @z k(p)) — ¢ (1)

This implies that the graded S’-module S'v is isomorphic to S’(r) and that
the inclusion S'v < M induces an injection after reduction modulo p. So the
short exact sequence

0—-Sv—M-—M/Sv—0
induces exact sequences (for all n € Z)
0 = Si(p) (v @ 1)n — My @z k(p) — (M/S'v)a @z k(p) — 0.

We have
(M/S"U)n Xz k(p) ~ (M KRz k(p)/Sk(p)(U ® 1))n .

Now (1) and our assumption on M (on the independence of tk M @z k(p))
imply that the dimension of this vector space over k(p) is independent of p.
This shows that the finitely generated Z'-module gM /S'v), has no p-torsion
for any p. Therefore M/S'v is a torsion free Z'-module. It satisfies the

assumptions of the lemma and we can apply induction to it. Then the claim
for M follows.

16.11. Corollary: Let d be the product of all prime numbers less than h.
ALLE[(I,v), (], n)]®zZ[d™Y] and all E(I,v),(J, 1)]®z Z[d™"] are free graded
Z[d~1]-modules of finite rank.

Proof: All Homy(w, 5)(Qr1,4(S), Qs,u(S)) ®z Z[d™'] are by Proposition 16.10
free graded (S ®z Z[d™'])-modules of finite rank, since we can take in 16.6

all k(p) with p > h. The same argument works for Hom replaced by Hom®. If
we reduce these modules modulo the augmentation ideal, we get the modules
in the corollary and the claim follows.

Remark: Similarly all £7 ®z Z[d™!] and &5 @z Z[d™] are free graded Z[d~]-
modules of finite rank.

16.12. Set
Xp ={r€X|0< (u,a") <p(k) for all simple roots a}, (1)
the restricted region for p(k). Its translates of the form p(k)v + X, with

v € X are called the boxes for Wy ;). Each A € X is contained in exactly one
of these boxes (for a given k).
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For each w € W, there is a unique v = v(w) € X such that weAo(k) is
contained in the box p(k)(v — p) + Xp(x) for all k. We want to associate to w

a sequence I = I(w) as in 16.5 and set

Q(W)(B') = QI(w),V(w) (B,) and Q(w) (A) = Qf(w),"(w) (A) (2)

for all B(k)-algebras B’ and for all A as in 16.5(4). We do this by induction
on the number of reflection hyperplanes separating weA¢(k) from the special
point p(k)v — p. If that number is 0, then weAo(k) is in the top alcove of
the box p(k)(v — p) + Xp(k); in that case we take I = (. Otherwise we can
find s € £, independently of k such that wedg(k) < wseAg(k) and such that
WSeAg k; is in the same box as weAg(k). Then the alcoves of wsAg(k) and
wssAg(k) are separated only by one reflection hyperplane, namely by the one
corresponding to wsw™!, cf. [Hu3], 4.4. (The discussion there extends to the
case where R is not irreducible.) So we can apply induction to ws and assume
that I(ws) has already been defined. Now set I(w) = (s, I(ws)). So we have
(for all B and A as above)

Q™(B')=0,Q(B) and Q™(4)=06,0"4). (3)

Note that we have especially defined Q*)(S) in K(W,,S ) for all w € W,. We
set for all w,w’ € W,

Ewun) = E[I(w), v(w)), (I(w'), v(w")],
E oy = ELI (), v(w)), I(w'), v(w"))]

using the notation from 16.8.

(4)

16.13. For the moment fix k. For each A\ € Q) there is a unique w € W,
such that A = weXg(k). We shall often write QV(B') instead of Q(*)(B')
and Q™ (A) instead of Q(*)(A).

Any A € X can be decomposed uniquely A = A° 4+ p(k)A! with A° € X,k
and \! € X. Set then

X = woe X + p(k)(A! + 2p). (1)
Obviously

~

A = woed + p(k)(A! — woA! +2p) € W(kye .

If A € Q, then e Q0. So there is for all w € Wy(;) an element @ € Wy,
with wedg(k) = @WeAo(k). If we identify (as usual) W, with W), then the
resulting map (w — @) on W, is independent of k. (Note that the map
A — X on X does depend on k and that this fact is not reflected in the

notation. However, whenever we are going to use the notation X it will be
clear over which k£ we work.)

Our next statements involve the order relation 1 on X. It depends on
p(k). We refer to [Ja6], I1.6.4 for its definition and basic properties.
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Lemma: Let A € Q. Let B' be a B(k)-algebra. If Zp/(p) with p € Q
occurs as a factor in a Z—filtration of QN (B'), then AT p 1 X. Both Zp ()
and Zp (X) occur with multiplicity 1 as factors in a Z-filtration of QN (B').

Proof: Let v € X be the weight such that X is contained in the box p(k)(v —
p) + Xpk). We are going to use the same type of induction as in the con-
struction of the QM (B') in 16.12. If ) is in the top alcove of that box, then
Q™ (B') = Qy,,(B') has a Z-filtration with factors Zp (p(k)v + wep) where
= woe(A — p(k)v) = P p(k)v and where w runs over the ordinary Weyl

group W, cf. 15.17. Each of these factors occurs with multiplicity 1 and we
have

A= p(k)y +woep T p(k)v +wep T p(k)v + p =X
for all w € W since p is dominant. So the claim follows in this case.

If X is not in the top alcove of its box, then there is s € ¥, with A < As,
with s in the same box as A and with QN (B') = ©,Q**)(B'). Then Zg: (1)
occurs in a Z-filtration of Q™) (B') if and only if Zp/ (1) or Zp:(us) occurs in
a Z-filtration of Q**9)(B'), cf. 15.17. We get then by induction As T p 1 \s
resp. As T us 1 Xs. We have ) T As and Xs = s 1 . Now the claim is obvious
in the first case (As T u 1 5\;), in the second one it follows from [Ja6], Lemma

I1.6.7.a. (In order to get A T u one has to apply that lemma to the analogue
of 1 defined using —R™ as the positive system.)

Remarks: 1) Any Zp:/(p) with p € Qi occurs as a factor in a Z-filtration of
Qr1,.(B'), if and only if some Z,(Sk)(r) occurs as a factor in a permissible
Z-filtration of Qr ,(Sk) (for any (I,v) as in 16.5). So the first claim of the
lemma says also: If Z,(Sk)(r) occurs as a factor in a permissible Z-filtration

of QN (Sy), then A1 1 X.

2) The lemma can be extended to Z'-filtrations. Any Zp, (p) with p € Qi
occurs as a factor in a Z'-filtration of Qr ,(B') with the same multiplicity
with which Zp:(u) occurs as a factor in a Z-filtration of Qr,,(B'), since these
multiplicities are completely determined by the formal character of Qr ,(B').

16.14. We continue to fix k.

Lemma: For each X € Qy the module QN (k) is the direct sum of one copy of
the projective indecomposable module Qi () and of certain Qi (v) with v € Q,
v#EXand ATv 191X Similarly, QN (A(K)) is the direct sum of one copy
of Qawky(A) and of certain Q 4xy(v) withv € W, v#F X and ATv TV ] .

~

Proof: Tt is known that both Zx()) and Zg(A) occur with multiplicity 1 as
factors in a Z-filtration of Qx()\) and that all weights pu of Qx()) satisfy

p< A (In Case 1 see [Ja6], I1.11.6; the argument there extends to Case 2.)
Since Q™ (k) is projective in Cy, it is the direct sum of certain projective
indecomposable modules. If Qx(v) occurs, then Zx(A) and Zi(X) occur in
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a Z-filtration of Q™ (k). So Lemma 16.13 implies that A T v T ¥ 1 X
Distinct Q¢ (v) have distinct highest weights since v — ¥ is bijective. Lemma

16.13 implies that A is the highest weight of Q™ (k) and that it occurs with
multiplicity 1. This implies now that Qx()\) occurs with multiplicity 1 as a

direct summand of Q™ (k).
The statements over A(k) follow now from Theorem 4.19.

16.15. Proposition: For all k each Vo, Q ox)(A) with X € Qi has a graded
Sk-form. It is unique up to shift in the grading and admits both a permissible
Z-filtration and a permissible Z'-filtration.

Proof: We want to use induction on P Suppose that we know the result
already for all v € Q; with 7 — v < A — X. Now QY (S}) is a graded S—form
of Vo, QM (A(k)). By induction and Lemma 16.14 all indecomposable sum-
mands of Vg, Q™ (A(k)) except for Vq,Q acx)(\) are known to have graded
Sk—forms. Now repeated application of Proposition 15.7 yields eventually the
desired graded Si—form of Vq, Q a(x)(}).

The uniqueness claim follows from 15.6.d, the existence of the filtrations
from 15.12 and the analogous result for the @ 4(xy(}), cf. 2.16.

Remarks: 1) The proof shows that we can construct the graded Sx—form of
Va, Qax)(A) as a direct summand of Q™ (Sy).

2) We can extend the proposition to all A in a good Wy—orbit: There is a
unique weight u € Qp such that X is in the lower closure of the alcove of pu.
Then TQ 4(xy(r) contains @ 4¢x)(A) as a direct summand with multiplicity 1
for a suitable translation functor 7. We can now apply an induction similar
to the one above. (Note that we assume p > h.)

16.16. Corollary: Let M be a projective module in Cak) (%) and M a
graded Sk-form of Vo, M. Then there are A\; € Q and a direct sum decom-

position M = @_, Q; in IE(Qk,Sk) such that each Q; is a graded Sk-form
of Va, Qa)(Xi).

Proof: We have a direct sum decomposition M = @_; Q a(x)(Ai) by Theorem
4.19.b. Now apply 15.7 repeatedly.

16.17. Pick asystem vy, vy, ..., v, of representatives for the cosets in X/ZR.
Set V' equal to the set of v € W with veAo(k) € p( )i + Xp(xy. This set is

independent of k. There are for each w € W, a unique v € V and a unique
i € ZR with weXg(k) = vedo(k) + p(k)p.
Set

Q(BY=PeWB) ad Q(4)=h oV (4)
veV veEV

for all B(k)-algebras B' resp. all A as in 16.5(4).
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Proposition: For each k the module Q'(A(k)) is a projective (p(k)ZR)-
generator for Cary(Q) and Q'(k) is a projective generator for the block of
Li(Xo(k)) as a restricted g-module resp. as @ u-module.

Proof: Set Ag = Ag(k) and p = p(k). The direct sum Q = P ,cy Qax)(vedo)
is by 6.18 (and construction) a projective (pZR)-generator for Cacx) (k).
This extends to Q'(A(k)), which contains @ as a direct summand (by Lemma
16.14) and is still projective in C4(x) (%

We know that Q'(k) is a direct sum of certain Qx(v) with v € Q. Each
Q k(v) is still projective when considered as a g-module resp. as a u—module,
in fact it is still the projective cover of Li(v) in that category, cf. [Ja6]
I1.11.3(3) in Case 1. (Case 2 is similar). So Q'(k) is projective also as a
restricted g-module resp. as a u—module.

The simple g-modules (resp. u—modules) in the block of Li(Ag) are ex-
actly the Li(weXg) with w € W, cf. [Hu2] or [Ja6), I1.9.19 in Case 1. (In Case
2 this can be proved similarly.) Since all v € 2 have the form v = weA¢ + pp
with p € ZR and since then Li(v) ~ Li(ws\g) over g resp. over u, we see
that all indecomposable summands of @'(k) belong to the right block.

For each w € W there are v € V and p € ZR with wedg = veXg + pp.
We have then Qx(wedg) ~ Qr(vedo)[pp], cf. 4.19(1). So, considered as a g-
module (resp. as a u-module) Qx(vsAg) is isomorphic to Qk(w.)\g), hence to
the projective cover of Li(wsAqg) as a g—module resp. as a u—module. Lemma
16.14 implies that Q(ve)) is a direct summand of Q'(k). Therefore Q' (k)
contains (as a direct summand) a projective cover for each simple module in

the block of Lx(Ag). The second claim follows.

16.18. Set £ equal to the direct sum of all 5 y with v,v" € V, cf. 16.12(4).

So &' is a particular case of an Sﬁz as in 16.9. It is finitely generated as a Z—
module; we make it into a Z-algebra via the isomorphism

End;nc(wa,s)Q'(S) ®s Z - &, (1)

cf. 16.9(2).
We are now ready to prove Theorems 1 and 2 from the introduction:

Theorem: For all k the opposite algebra of E ®z k is Morita equivalent to
the block of u(k) resp. of UPl(g(k)) belonging to Li(Ao(k)).

Proof: This follows from 16.9(3), Proposition 16.17, and general results on
Morita equivalence, cf. [Ben], 2.2.

16.19. Let £ be a ring that is finitely generated as a module over Z. Choose
an integer N; > 0 such that

E®z Z[N'] s free over Z[N;']. (1)
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(For example, take the product of all primes [ such that £ has I-torsion.)

Let us write
Ea=ERz A

for any commutative ring A. Recall (e.g., from [Ben], p. 6, Remark ii) that a
field F is a splitting field of a finite dimensional F-algebra E, if Endg(M) = F
for every simple E-module M. There is a finite extension F' of Q that is a
splitting field of the finite dimensional algebra £q, i.e., of £q ®q F =~ &,
cf. [Ben], p. 6, Exercise. Denote the ring of algebraic integers in F by op. Let

1=Z€i (2)

i€l

be a decomposition of 1 into orthogonal primitive idempotents in €. Here I
is a suitable finite index set. There is an integer No > 0 such that all Nje;
are in the image of £ ®z or in p. Replace N, by its least common multiple
with ;. We can then regard £ ®z or[N, '] as a subring of £ containing all
e;. We can choose a multiple N of N, so large that two idempotents e;, e;
are conjugate by a unit in £®z op[N 1] if they are conjugate by a unit in Ep.
Set

o=or[N71]. (3)

Recall that op is a finite Z-module, cf. [Boul], chap. V, §1, n° 6, prop. 18.
We get by construction:
a) o 1s finitely generated over Z|N~1].

b) & is a free o-module of finite rank and a lattice in Ep.
c) All e; with i € I are in &,.

d) e;, e; with i,j € I are conjugate in &, if and only if they are conjugate in
F-

Each Ere; is the projective cover of a simple Ep—module L;. Consider an
extension field F' of F. Then each L; @ F' is a simple £p—module, since F
is a splitting field. This implies that (£pe;) @ F' is the projective cover of
L; ®F F', hence that e; is still primitive in £z/. Furthermore, we have for two
indices ¢, j that L; is isomorphic to L; if and only if L; ® p F' is isomorphic to
L;®p F'. So e; and e; are conjugate in g if and only if they are conjugate in
Epi. (For the equivalence of conjugacy and generating isomorphic left ideals,
cf. [Ben], 1.7.2.)

Consider a maximal ideal m of 0. Denote the m—adic completion of o by
o'; this is a domain since the local ring oy, is a principal ideal domain. Set
F' equal to the fraction field of o’ and m’ = o'm. The e; remain primitive in
&or, and e; is conjugate to e; in & if and only if it is so in &,. (This follows
from the analogous result for F'.) Now standard results, cf. [Ben], 1.9.4, show
that the images €; of the e; in &/, ~ £y /n are still primitive idempotents,
and that €; and €; are conjugate in &,/ if and only if e; and e; are conjugate
in &. Furthermore, the €; remain primitive over each extension field of o/m.
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(Otherwise they would split over some finite extension. Then one could lift
such a splitting to some extension of the complete local ring o’. This would
contradict the assumption that F' is a splitting field.)

The Cartan matrix of £ is the matrix of all dimp e;€re; with e; running
over representatives for the conjugacy classes. For m as above, the Cartan
matrix of &/ is the matrix of all dim,/ €;,/m€; Where we may take the
same e; as before. Both dimensions are equal to the rank of the projective
o-module e;€,e;. This shows that £F and all £/, have the same Cartan
matrix.

Morita equivalent rings have the same Cartan matrix. If we apply our

discussion above to the algebra &' from 16.18, we get therefore the following
result

Corollary: There 1s a matriz C such that the Cartan matriz of the block
of Ly(Mo(k)) as a u(k)-module is equal to C for all k in Case 2. It is also

equal to the Cartan matriz of the block of Lr(Xo(k)) as a UlPl(g(k))-module
for all k in Case 1 with char(k) > 0.

Remark: The condition “char(k) > 0” in this result as well as in 16.22-24
below means: There is an integer n(R) depending on R such that for all &
with char(k) > n(R) ...

16.20. The set of w € W, with

Ao(k) T wero(k) T wero(k) T Ao(k)

is finite and independent of k. Enumerate these elements wy, ws,...,w, such
that (for all k)

— —

w,-./\o(k) T wj./\o(k) T wj.)\o(k) T wz'o/\o(k) = j <. (1)

Set
) QUBY=Q™)(B') and  QlI(4)=Q™I)(4)

for all B(k)-algebras B' resp. all A as in 16.5(4). For all 7 and j set
) = Ewiwy)s (2)

cf. 16.12(4). We have for all ¢ and j natural isomorphisms (by 16.8)
£ i) @z k = Home(QU(k), QU (K)). (3)
For any finite subset Z of {1,2,...,r} set Qz(k) resp. Qz(S5) equal to the

direct sum of all QU(k) resp. Q(S) with i € Z. Set £ equal to the direct
sum of all & ;) with (z,j) € Z. We have then (as in 16.9) isomorphisms

Endx(w,,s5Qz(S) @s Z — &1 (4)
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and N
&1 Rz k — EnchI(k) (5)

We get from (4) on £7 a structure of an algebra over Z; the map in (5) is then
an algebra isomorphism.

Each &};)(;) and each &7 is a finitely generated and graded Z-module.
If we choose d as in Corollary 16.11, then each &) ;) ®z Z[d™!] and each
&1 ®z Z[d™ '] is a graded module that is free of finite rank over Z[d~!]. We
can factor for all k the isomorphism in (3) via

(€11 @z Zld7") @z(a-+) k = Home(QUI(k), QUI(K)),
similarly for (5).

16.21. We know by 15.17/18 how to determine the terms in the Z—filtration
of each QUl(k), cf. the proof of Lemma 16.6. Lemma 16.14 implies for each
i that QU(k) decomposes into a direct sum of certain Qx(w;+)o(k)) with
j < ¢ and that Qg(wieAo(k)) occurs with multiplicity one. The decom-
position of all Q[’](k) into indecomposables determines the factors in the
Z-filtration of each Qi(w;eAo(k)), hence (by the Brauer-Humphreys reci-
procity 4.15) all multiplicities [Zx(u) : Li(wieAo(k))] with u € Q. Since
these multiplicities are invariant under shifts by weights in p(k)X and since
Wockyedo (k) N (=p(k)p + Xp(k)) is contained in the set of all w;eAo(k), more
generally all [Zx(p) : Lg(A)] with A, u € Q are determined. It is well known
how to get from these multiplicities then the characters of the simple modules
Li(X), cf. [JaB)], 11.9.11(1). So, in order to show that these characters are
independent of k (in a suitable sense), we shall show that the decompositions
of the Q)(k) into indecomposables are independent of k (in a suitable sense).
In fact, that is our next result:

16.22. Theorem: There are integers m(j,i) > 0 for all i, j with 1 < j <

1 < r with . B
QU(k) = @D Qi (wjedo (k)0 (1)

J<i
for all i and all k with char(k) =0 or with char(k) > 0.

Proof: Of course, Lemma 16.14 shows that there is for each k a decomposition
as in (1). However, the multiplicities m(¢, j) might depend on k; denote them
for the moment by my(4, j). Lemma 16.14 implies especially that m(i,7) = 1
for all i.

We can apply the discussion from 16.19 to each &7, especially to each
&) and to £ = @z‘,]‘ &li,15)- We can choose o in 16.19 so that it works for

all these algebras. For all 7 take an index set F(¢) such that 1 = Zre EG) e(ri)

is a decomposition into orthogonal primitive idempotents in &1 ®z 0. One
gets a similar decomposition for £, by adding the decompositions for all 4.
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In Case 2 the field £ need not contain the fraction field of 0. Write ko]
for k£ adjoined that fraction field. We get then for all k¥ in Case 2 that

QU(k[o]) = P ?Q(k[o]) (2)
reE(i)

is a decomposition into indecomposables. On the other hand, we get such
a decomposition from that in (1) by field extension, since 4.16(3) implies
Qipo)(1) = Qi(u) ® kfo] for all p € X. So the Krull-Schmidt theorem im-
plies that each summand in (2) is isomorphic to some Qg[o)(wjeAo(k)) with
J < i and that Qipoj(wieAo(k)) occurs exactly once. Then the idempotent
corresponding to the unique summand isomorphic to Qo) (wisAo(k)) is not

conjugate to any idempotent in an E(j) with j < ¢, whereas all the other
idempotents are. This is at first a statement about conjugacy over k[o], but
by the construction in 16.19 it is also true over o. After changing the index

set we may assume that 0 € E(i) and egi) is the unique idempotent in E(7)
not conjugate to an idempotent in E(j) for all j < . We have then for all &

in Case 2 i
eo QU (k[0]) = Qo) (wisho(K)).

We see now in Case 2 that each m(j,¢) is equal to the number of r € E(7)
with e(r') conjugate to eg] ) in &,. In particular, that number is independent of
k (in Case 2); denote it by m(j,1).

Consider now Case 1. We have to take char(k) = p(k) large enough so
that p(k) is not a unit in o, i.e., so that k contains a residue field of 0. We
have then £ ®z k ~ & ®, k. Write é(r’) = e(r’) ® 1. The discussion in 16.19

shows that the E(r') are primitive idempotents in &, ®, k, and that E(ri), e

are conjugate if and only if e(ri), egj) are conjugate. So for all ¢
Q) = P &Ptk (3)
reE(i)
is a a decomposition into indecomposables, hence has the form of (1) with
possibly different multiplicities. The statement about the conjugacy implies

first that 20 QUI(k) ~ Qx(w;sXo(k)) for all i, and then yields the claim about
the multiplicities.

16.23. Corollary: There is for all w,w' € W, an integer d'(w,w') such
that
[Zk(weo(k)) : Li(w'eXo(k))] = d'(w,w'")
for all k with char(k) =0 or char(k) > 0.
Proof: This follows from Theorem 16.22 using the discussion in 16.21.

Remark: The corollary yields Theorem 6 from the introduction; it is now easy
(and left to the reader) to deduce Theorem 3 from the introduction and its
analogue for u(k).
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16.24. Consider in Case 1 an algebraic group Gy as in the introduction.
In Case 2 consider Lusztig’s version of the quantized enveloping algebra at
a p(k)-th root of unity. We have in both cases for each dominant weight
) € X a Weyl module V() and a simple module L(\)x with highest weight
A, cf. Section I1.2 in [JaGS and [Lu4] or [APW1].

Set W equal to the set of all w € W, with weAg(k) dominant. This set
is independent of k. Also the condition “weAo(k) € Xp(x)” defines a subset of
W, that is independent of k.

Corollary: There is for all w,w' € W with wedo(k) € Xpk) an integer
b(w,w") with
[V(wedo(k))k @ L(w'eXo(k))k] = b(w, w')

for all k with char(k) =0 or char(k) > 0.

Proof: This follows from the last corollary, the formula I1.9.11(1) in [Ja6], and
Steinberg’s tensor product theorem (cf. [Ja6], I1.3.17) resp. Lusztig’s analogue
(cf. [Lud], 7.4 for the simply laced case; the result extends to the general case
by the method in [Lu7)).

Remarks: 1) If we drop the condition that weXo(k) € Xp(k), then the bound

on char(k) in Case 1 will depend not only on R, but also on w.
2) We get now Theorems 4 and 5 from the introduction; there one can find
more discussion of this result.
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Introduction to the Sections 17 and 18

Let us use the notations of our general introduction. Analogous results
for the category O in [BGS] lead to the following

Conjecture 1: Suppose we are in Case 1 and the characteristic p of our
field k is at least the Cozeter number, p > h. Then the restricted enveloping

algebra UP)(g,) admits a Ty-stable Koszul grading.
Certainly there also is a quantum version.

Conjecture 2: Suppose we are in Case 2, that p > 1 is an odd integer, and
that all prime divisors of p are good for our root system. Then the quan-
tum version w, of the restricted enveloping algebra admits a Koszul grading
compatible with its natural X -grading.

We give the precise definition of a “Koszul grading” in Appendix F. Let
us say here only that a Koszul grading on a ring A is a positive Z-grading
A = @i>0 A' with particularly good homological properties. Appendix F
contains also a discussion of the general properties of Koszul gradings. For
example, we prove there that a finite dimensional algebra admits a Koszul
grading if and only if all of its blocks do. So we can attack the conjectures
block by block.

In the next two sections we show how the validity of Lusztig’s conjecture
implies that all regular blocks of Ul?}(g,) resp. of u, admit a Koszul grading.
So to establish the conjecture it remains to treat the singular blocks. The
main obstacle there is that we do not know how to prove parity vanishing for
the extensions between standard objects and simple objects. The analogous
problem for the category O was solved in [Sol] using geometric methods, but
we do not see how to generalize this to our present situation.

Let us explain how we proceed in the case of regular blocks. We first show
how our graded combinatorics from Section 15 determines a Z-grading on the
blocks. This much is independent of Lusztig’s conjecture and works (under
our general assumption p > h) for any block corresponding to an orbit 2 that
is good in the sense of 13.3. Considering categories of Z-graded modules over
these blocks with their Z—-grading we construct the “graded” representation

categories Ci(2), define graded translation functors relating them, and study
their properties.
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Assuming now Lusztig’s conjecture, we prove that the Z-grading on the
blocks can be choosen such that there are no components of negative degrees
and that the part of degree zero is semisimple — this is a consequence of the
restrictions on the degrees appearing in the definition of Lusztig’s polynomials.
We can even calculate the Poincaré polynomials of the blocks with respect to
this Z—-grading from our graded combinatorics.

If our block is in addition regular and p > h, then the dimensions of the
higher Ext groups between simple objects of Cx(€2) can be found in [CPS
assuming Lusztig’s conjecture. The numerical Koszulity criterion of [BGS
implies then that our grading makes the regular blocks into Koszul rings.

Let us just warn the reader that in the next two sections we treat these
matters in a different order than in this introduction. Recall that Lusztig’s
conjecture predicts the multiplicity [Qx(p) : Zg(A)] of Zx(A) as a subquotient
in a Z-filtration of the indecomposable projective Q() to be just the value
at 1 of a certain polynomial. In Section 17 we show that the individual coef-
ficients of this polynomial are analogous multiplicities in the graded category

Ek(Q) This, however, will only become clear in Section 18, where we dis-

cuss the graded categories Ci(f2) along with their deformed versions C(£2, Si)
and the (deformed) graded translation functors relating them. We then use
the results from 17 to deduce Koszulity of the regular blocks from Lusztig’s
conjecture.
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17. Gradings and Lusztig’s Conjectures

17.1. In this section we work again with a fixed k; however, we assume that
k satisfies the assumptions in 16.1. We drop the extra k from notations such
as p(k) or B(k).

We choose a length function 6 as in [Lu2], 2.11. However, we regard it not
as a function on the set of alcoves for Wp, but on the set of regular elements
Ain X: Set 8(A) equal to the value of 6 on the unique alcove containing A.

Choose (asin 16.1) a weight Ag in the interior of the first dominant alcove
and set 2 = Wy )g. For each A € () there is a unique w € W), with A = w.A¢;
we set then (as in 16.3) As = wse)Ag for all s € ¥,. We can apply 6 to all
elements in (2; it satisfies for all A € (2 and s € &,

o) +1, if A< As;
8(As) = {w) S1 A As (1)

(This property determines é up to a constant.) One has (cf. [Kat], 1.12) for
al A€ Qand v € ZR

O(A+pr) — 6(X) = 2ht(v), (2)

where ht is the height function defined by ht(3_sc5 msB) = 3 5cx mp-

Let I' be an arbitrary orbit of W), in X. For each u € I there is a unique
A1 € €2 such that p is in the upper closure (cf. 6.8) of the alcove of A;. Denote
this element Ay by p~. We have then for all A € Q with Ar = p (using the
notation from 15.13)

8()) = 6(u~) + o(A,T). (3)

Indeed, the definition of the upper closure implies that o(u~,[') = 0. If
A # p~, then there is s € £, with As < X and (As)r = p; we have then
o(As,I') = o(A,T') — 1 and get (3) by induction.

17.2. Consider the group algebra Z[t,t~'][X] and denote its standard basis

by (e(it))uex. Denote by 9 the submodule of Z[t,t1][X] generated freely
over Z[t,t™!] by all e() with u € Q.
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By 15.10 we can define for any M in IE(Q, Sk) with a permissible Z-
filtration

hzM =) rkHomgq,s,)(M, Z})e(u) € M (1)
neEN
and for any M in I%(Q, Si) with a permissible Z'-filtration
M =3 rkHomx(a,s,) (2, M) Pe(u) € M. @)
LER
Note that 15.11(4),(5) imply
haM =33 [M: Z,(r)]t"e(p) (3)
HEQ rEZ
resp.
M= D M Z ()T We(p). (4)
HEQ TEZ

We have obviously
hzZx=e(\) and  hi2Z\ =t"2Me()) (5)

for all A € Q. It is clear that hz and h', are additive on permissible filtrations
if defined on all quotients. We have also for all » € Z and all M (such that
hzM resp. h', M is defined)

hz(M(r)) =t"hz(M)  resp.  hiz(M(r)) =t""hz(M).  (6)

Proposition 15.10 shows how we can determine rk Homy(q,s,)(M,N) and
rk Homgq, s,) (N, M) for M and A as in that proposition from a knowledge
of hzM and RN

17.3. Let $ be the Hecke algebra of W, over Z[t,t~']. This is an algebra
with generators T, with s € £,. They satisfy (Ts + 1)(T, — t?) = 0 for all
s € ¥, (and other relations). There is an action of §) on 91 given by

_ fe(Xs), if A < As;
Toe(A) = {tze(/\s) + (12 = 1)e(A), if A > As; (1)

cf. [Lu2], 1.6. (Note that we identify  with the set of alcoves considered by
Lusztig and that we take t = ¢'/2 in Lusztig’s paper.)

Lemma: Let s € S, and M in K(5, Si).
a) If M has a permissible Z-filtration, then hz(©,M) = (T, + 1)hz(M).

b) If M has a permissible Z'-filtration, then hly(6,M(=2)) = (Ty+1)h’y(M).

Proof: This is an easy consequence of Lemma 15.18 and of 17.1(1). Details
are left to the reader.
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17.4. Consider an orbit I' for W), consisting of special points. We have then
Nr = |R"| in the notation from 15.4(2); each p € I satisfies Zg: (u) ~ Zl, (1)
for any B-algebra B’ and Z,(A) = Z,(A) for any A as in 14.5.

For any p € T the projective indecomposable module Qx(u™) in Cy is

given by

Qi(p™) = T Z(w); (1)
cf. [Ja6], I1.11.10 for 4 = (p — 1)p in Case 1. The argument there extends
to arbitrary p and to Case 2. In Cux) the module @ 4(x)(p) is isomorphic
to Z 4(k)(p) since it has a Z-filtration (2.16) and since it is a lift of Qx(y) =
Zi(p). Therefore 7.7 shows that also T Z A(k) (1) is projective. It is a lift of
T Zk(p); so we have

Qi (1) =TE Zagy (). (2)

If v € X is the weight with u = pv — p, then (2) shows that Q 4¢x)(1~) =
Qp,,(A(k)) in the notation from 16.4. Set

Q™) = Qo (Sk){IRT| = 8(p7)). (3)

(The reason for choosing this specific shift should become clear later on.)
Now Q(u7) is a graded Sy—form of Vo@Q 4¢x)(#~). Lemma 15.16 implies that

Q(p~) has a permissible Z-filtration with factors Zx(—6(p~)) where A €
with Ar = p. So we have

ha(Qu™)) =777 3 " e(N). (4)

Ar=p

Because of 2, = Z|, there is (by 15.17) also a permissible Z'filtration of
Q(u™); its factors are the Z\(|R*| — 8(u~) — r()\)) with X as above. Using
17.1(3) and r(\) = 20(\) — |RT|, cf. 15.13(3),(4), we can rewrite this factor
as Z\(2|RT|+ 8(u~) — 26(\)). We get therefore

R (Q(u7)) = 172IRTI=EWT) 3™ ey, (5)
Ar=p
hence s
hz(Q(p™)) = 1 Il (Q(u™)). (6)

17.5. Lusztig introduces in [Lu2], 2.7 an $-submodule 9° of 9. One takes
all W,,~orbits I' consisting of special points and considers for all i € I" the sum

2= . €(A). Then 9M° is generated by all these sums (for all 4 and all T).
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Lusztig then goes on to prove (in [Lu2], 2.12) the existence of an involutory
and $—antilinear map @5 : M — M’ with

@6( Y e(/\)) = tP2RHS26T) §7 (), (1)

Ar=p Ar=p
Here antilinear refers to the involutory antiautomorphism of $) with
t—t! and Ty — T;l =t7T, +t72 -1
for all s € ¥,. This antilinearity implies especially
O5((T, + Du) = t7 (T, + 1)®5(u) for all u € M° and s € T,. (2)

Recall the notation A from 16.13(1).

Lemma: For all A € Q the elements hz;Q™(Sy) and h', Q™M (Sy) are in M°
and satisfy h'y QN (Sk) = ®5(hzQ™V(Sk)). We have (with N = |R*))

[QW (Sk)(=8(N)) : Za(m)] = bm,—n—s(2); (1)
[QW(Sk)(=8(N)) : ZX(m)] = bm,N-5(0)5 (2)
[QV(S)(=6(N) : Z5(m)] =6, ;5 (3)
[QW(Si)(=8(N) : Z5(m)] =6, 55 (4)

Proof: We use induction on the number of reflection hyperplanes separating
A from the top alcove of its box. If A is in that top alcove, then the first claim
follows from 17.4(4),(5) and the second one from (1) and 17.4(6). We have

QM (81)(=86(N)) = Q(A)(Sk)(—N) in the notations from 17.4. Therefore the
formulas (1)—(4) follow from 17.4(4),(5) together with the fact that in this

case 6(X) = 6(\) + N.
If X is not in that top alcove, then there is an s € £, with Q™M (Sy) =
0,0*9)(S) and A < Xs. Then Q**)(S}) satisfies the claims by induction.

We have 6()\) = 6(As) — 1 and (/):)s =As < A and 6(/):) = 6(%) + 1. Now the
claim follows from Lemma 17.3; for (1)-(4) we can also use 15.18.

17.6. Recall (from Remark 1 in 16.15) that Q™ (Sy) has a direct sum-

mand that is a graded Sy—form of Vo@Q 4(x)(A). The same is true for any
QM (S)(m). So we can find a graded Sg-form Q(X) of V@ acky()) that is

236



REPRESENTATIONS OF ALGEBRAIC GROUPS AND QUANTUM GROUPS

a direct summand of Vo@Q 4(k)(A)(IN — 6())). The formulas in 17.5 together
with Lemma 16.15 imply

[Q(A) : 2x(m)] = bm,—s(x)> (1)
[Q(N) : Z5(m)] = bm,2n—-500); (2)
[Q(N) - Z)I(m)] = 6m,N—6(§)’ 3)
Q) : Z’;(m)] = 6‘m,N-—6(’)\\)’ (4)

where N = |R*|. Each of these formulas together with the fact that Q(X) is a
graded Si—form of Va@ 4(x)(A) determine it uniquely up to isomorphism, cf.
Lemma 15.6.c.

Note that for A in the top alcove of its box this notation is compatible
with the one from 17.4(3), cf. 17.4(4).

17.7. Lemma: If M is a graded Sy—form of VoM for a projective mod-
ule M in Cary(Q), then hzM and h'zM are in M and satisfy h'yM =
(I)g(th).

Proof: Note first: If M satisfies the claim, so does each M(r). In general,
Corollary 16.16 implies that it is enough to look at M = @Q 4(x)(A) with X € Q.
So we may assume that M = Q(A). Now we use induction on X=X\ We
can decompose QM (S;)(—6())) into the direct sum of Q()) and of certain
Q(v)(Sk)(m) with v —v < X— . By induction each of these Q(v)(m) satisfies

the claim. So does Q™ (S;)(=6(\)) by Lemma 17.5. Therefore it holds also
for the remaining summand Q(\).

17.8. Lusztig introduces in [Lu2], 5.2 and 8.9, certain elements D¢ and D¢
in 9 for each alcove for W,. Identifying each A € 2 with its alcove, we can

regard these elements as parametrized by Q. Set D()) = D, for all A € Q.

By [Lu2], 7.3 and 8.9 the coefficient of e(\) in D()) is equal to t~*(V); if the
coefficient of e(v) with v # X in D()) is not equal to 0, then v < A and the

coefficient has degree at most —&(v) — 1. (Recall that our ¢ is the ¢*/2 in
[Lu2].) We have furthermore ®sD(X) = D()) for all A.
If p is a special point for W, then

D) =t =0T 37 e(w) (M)

vr=p

where I' = Wyep, cf. [Lu2], proof of 8.3. (Recall that 6(;;:) =6(u”) + |RT|
by 17.1(3).)
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Lusztig has made in [Lul] a conjecture on the characters of irreducible
Gr—modules in Case 1 and in [Lu4] a conjecture on the characters of irre-
ducible Us—modules in Case 2. We get then conjectures also for the charac-
ters of simple modules in Cg, since these modules lift to G resp. to Us if the
highest weight is in X,. (For the other weights apply 4.2(5).) However, there
is in Case 1 in [Lul] a restriction on the highest weight of the modules. For
small p (more precisely, for p < 2h — 3) Lusztig’s conjecture does not cover all
weights in X,. When we say below (and in 18.17ff.) “If Lusztig’s conjecture
holds for £” we mean that for all p-regular weights A € X, the character of
Li(A) is given by the formula in Lusztig’s conjecture. So this is in Case 1 for
h < p < 2h — 3 somewhat stronger than Lusztig’s conjecture; it is in that case
the conjecture 5.5 in [Kat].

Theorem: If Lusztig’s conjecture holds for k, then

hzQ\) =B ID(Y)  for all X € Q.

Proof: Let us use the abbreviation N = |R*|. Note that the claim is (by
Lemma 17.7) equivalent to k', Q()\) = t=VD()). We prove the theorem again

using induction on A — A. If A = p~ for a special point u, then the claim
follows from (1) and 17.4(4).

Suppose now that there is a reflection s € ¥, with A < As and As in the
same box as A\. We assume inductively

hzQ(As) =t"D(Xs) and  h,Q(\s)=t"VD(}s).

So the degree estimate for the coefficients of D(Xg) implies for all v # As

[Q(As): Z,(i)] #0 = i< N—6(v)—1and v < As (2)
and
[Q(As): 2,(i)] #0 => i > N —§(v)+ 1 and v < As. (3)

Consider the graded Si—form M = ©,Q(\s)(—1) of VaO,Q aky(Xs).
The formulas in 15.18 imply (for all v € Q and m € Z):
If v > vs, then

M: Z2,(m)] = [Q(As) : Z,(m — 1)] +[Q(As) : Z,5(m +1)] (4)
and

M 2, (m)] = [Q(As) : Z,(m + 1)] +[Q(As) : Z,,,(m + 1)]. (5)
If v < vs, then
(M 2,(m)] =[Q(As) : Z,(m +1)] + [Q(As) : Z,5(m — 1)] (6)

and
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M 2,(m)] = [Q(s) : Z,(m — )]+ [Q(Xs) : Z,,(m — 1)]. (7)

There is a decomposition of M into indecomposables of the form Q(v)(7)

with v € Q and 7 € Z, cf. 16.16. Since X is the largest weight of M (or
rather of ©,Q 4(x)(As)) and occurs with multiplicity 1, there is exactly one

summand of the form Q(A)(n). The formulas (4)—(7) show especially (since
5(Xs) =6(N)+1)

(M 2x(m)] = [Q(As) : Zxs(m — 1)] = Em—1,-6(rs) = Om,—6(\);

we get here the first equality, because Zi()) does not occur in Qx(As), and
the second equality from the normalization of Q(As). On the other hand, if
Q(A)(n) is a direct summand of M, we have [M : Z5(n — §()))] # 0, hence
n = 0. This shows that that Q(A\)(n) occurs if and only if n = 0, and then it
occurs exactly once.

Consider now summands with v # A. If Q(v)(i) occurs as a summand of
M, then

M:Z5(i-6@)+N)]>0 and [M:Z2i-6D)+N)] >0
by 17.6(3), (4). Suppose first that v < vs, hence ¥ > Us. Then (4),(5) imply
[Q(As) : Z5(i = 6(V) + N = 1)] +[Q(As) : Z5,(i = 6(¥) + N+ 1)] >0
and
[Q(As) : Z5(i — 8(D) + N + 1)] + [Q(Xs) : Z5 (i — 6(P) + N +1)] > 0.
Now (2) implies i < 0 and (3) implies i > 0. So only i = 0 can occur. We

see also that the number of summands Q(v) is bounded above by [Q(As) :
Z-(N = 6(V) — 1)]; by our induction hypothesis this is just the coeflicient of

t=8)~1e(D) in D(Xs) that is denoted by (7, As) in [Lu2], 8.1. For v > vs
(i.e. U > VUs), the same argument as above (with a small change for v = )
yields ¢ > 0 and ¢ < 0; so these v cannot occur. This shows that we have a
decomposition of the form

M = o) & P o) (8)

with all m(As,v) < p(7, Xs). Here “v ... is short for “v < vs,D < X;,(S(X;)—
6(7) odd”. (The last condition follows from (7, As) # 0, cf. [Lu2].) We get

hzM =hzQ\) + Y m(\s,v)hzQ(v).
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Each v in this sum satisfies 7 — v < A — A. So we can apply induction to
them. We can also apply induction to Q(As) and then compute hzM using
17.3. We get thus

tNhzQ(\) = t™H(T, + )D(s) — Y m(As,v)D(P).

On the other hand, the formula in [Lu2], 10.7 for the D¢ can be rewritten as
D) =t7Y(T, + )D(Xs) = > u(¥,As)D (D

The D(V) with v € Q are linearly independent, cf. [Lu2], 8.3. So we see that

hzQ(A) = t~ND(X) if and only if m()\s, v) = u(?, As) for all v as above. Since
the m(As,v) are determined by

T, T,Qk(As) = Qx(A) & P Qu(r)™”,

this condition is equivalent to Lusztig’s conjecture, cf. (e.g.) [Cli], 3.1 in Case
1. (The same argument works in the quantum case.)

17.9. Let us introduce a notation for the coefficients of D()) and write
Z Dy (t)e(v Z D! At ‘e(v). (1)

If Lusztig’s conjecture (as above) holds for our k, then we have by the last

theorem hzQ(\) = tND(X) where N = |R*|, and also h},Q(\) = t—ND(}),
see the beginning of the proof. So we have for all A, u € Q and n€Z

Q) : Zu(n)] = D3 (L)

and

[QV) : 2, (n)] = DX, (L3)

cf. 17.2(3),(4). We add here an L to the equation number to indicate that the
result depends on the truth of Lusztig’s conjecture.
Proposition 15.10 shows how to determine Homy(gq,s,)(Q()), Q(u)) for

A, € Q: We have to look at all v € Q. Each occurrence of a Z,(m) (with
m € Z) as a factor in a permissible Z-filtration of Q()) together with an

occurrence of a 2! (n) (with n € Z) as a factor in a permissible Z'-filtration
of Q(v) leads to a direct summand Sg(n — m) in this Hom space; and we get
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the total Hom space summing over all pairs as above. If we assume (L2) and
(L3) for all weights in 2, then an easy calculation shows

tkHomg(q,s,)(Q(N), QW) = ) D, 3D, 2% (L4)
VvEQ

(Recall that the coefficient of ¢ is equal to dimj Homy g s,)(Q(X), Q(1))-i-.)
The highest power of ¢ occurring in any D, , is less or equal to —§(v) — 1 in
case v # V', whereas D, ,» = ") in case v = v'. So (L4) shows: If Lusztig’s
conjecture holds for our k, then Homg g s,)(Q(}), Q()): = 0 for all i < 0;
in case A # p this vanishing holds also for ¢ = 0, whereas in case A = y that
degree 0 part has dimension 1.

Independently of Lusztig’s conjecture, these arguments show:

Lemma: Let M and N be modules in FCux)(Q), let M (resp. N) be a
graded Sy—form of VoM (resp. of VaN ). Suppose that M has a permissible

Z-filtration and that N has a permissible Z'filtration. Suppose that there are
weights A; and p; in Q with

haM=tR1N"DN)  and BN =tTIRTY D).
=1 j:]

Then we have Homy(q, s)(M,N)m = 0 for all m < 0; the dimension of
Homg(q,s,) (M, N)o over k is equal to the number of pairs (i,5) with A\; =
1
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18. Graded Representation Categories and Koszulity

In this section we shall work over a fixed field k. Let us abbreviate
pZR =Y.

18.1. Let A be a B-algebra. Let {2 be an orbit of W, in X. We know by
6.18 that C4(9) is a Y-category and that we can find a projective Y-generator
P of C4(2). Set

E(Q) = E(Q, P) = (End}P)°P?. (1)

This is a Y-graded A-algebra that is finitely generated as an A-module. (Note
that there are only finitely many 7 € Y with Hom¢(P[7], P) # 0. Then use
Lemma 2.8.) So E({?) is a Noetherian ring. By Proposition E.4 the functor

Hg : N — Homl(P,N) (2)

induces an equivalence of categories from C4(f2) to the (abelian) category of
all finitely generated Y-graded E(2)-modules.

It is not hard to construct an explicit inverse for this functor. Recall
that by definition an object of C4(£2) is just an X-graded (U ® A)-module or,
equivalently, an .X-graded (U, A)-bimodule with some properties. Certainly
we can regard any Y-graded space as an .X-graded space. So we can view
E(Q) as an .X-graded ring, and then P is an X-graded (U, E(Q))-bimodule.
Hence we can form for any finitely generated Y-graded E(§?)-module M the
X-graded (U ® A)-module P®pgq) M. For M = E(QQ) we just find P ® g(q)
E(Q) = P, and since our tensor product is right exact, we really get a functor

DQZMHP@E(Q)M (3)

in the opposite direction. By E.2 our functor Dg is adjoint to Hg, so it has
to be an equivalence of categories inverse to Hg.

18.2. Let I' be another W,~orbit and let Q be a projective Y-generator of
C4(T'). We can carry out the constructions in 18.1 for (I', Q) instead of {Q, P).
Recall the translation functors

T :C4s(02) — Ca(D) and T :C4(T) = Ca(Q)
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from Section 7. We can use the equivalences of categories Hg and Hr to
transport T and T" to the categories of finitely generated Y-graded modules
over E(Q) resp. E(I'). More explicitly, set

oTr = Hom%(P,T'Q) and 1Tq = Homk(Q,TP). (1)

Thus oTr is a Y-graded (E(Q), E(I'))-bimodule, and rTq is a Y-graded
(E(T"), E(Q))-bimodule. We get now functors T and T' given by

T(M) =rTq ®E(Q) M resp. T'(N) =oTr ®E(T) N (2)

from the category of finitely generated Y-graded modules over E((2) to that
over E(I") resp. in the opposite direction. We have by Proposition E.5 up to
natural equivalence

ToHg=HroT resp. T'oHr =HqoT'. (3)

The functor T' has by E.2 a right adjoint given by M +— Hompggq)(oTr, M).
On the other hand T is right adjoint to 7", so also T is right adjoint to T'
by (3). Since the right adjoint is unique, we see that there is for each finitely
generated Y-graded E(?)-modules M an isomorphism

rTe @p@) M — Hompq)(oTr, M) (4)

that is functorial in M. If we take in particular M = E(Q), then we get an
isomorphism of Y-graded (E(T"), E(?))-bimodules

I‘TQ ; HOIIIE(Q)(QTI‘, E(Q)) (5)

We deduce also that Hompg)(eTr, ) is an exact functor, hence for all
finitely generated Y-graded E(?)-modules M the obvious map

Hompgg)(eTr, E(Q)) ®E@) M — Hompgq)(oTr, M) (6)

is an isomorphism.

18.3. Let A’ be an A-algebra. If P is a projective Y-generator of C4(2),

then P @4 A’ is a projective Y-generator of C4/(Q). (Indeed, P ®4 A’ is

projective by 3.1.a. Clearly each Z4/(\) with A € Q is a homomorphic image

of some (P ®4 A')[7] ~ (P[7]) ®4 A’ with 7 € Y. Now argue as in 6.18.)
Proposition 3.3 implies for the algebras as in 18.1(1)

E(Q,Po4A)~EQ,P)®4 A (1)

Moreover, the functors Hg as in 18.1(2) — constructed with P and P @4 A'
— commute with extension of scalars.

Consider, as in 18.2, a second pair (', Q)). Then oTr®4 A’ resp. rTo®4
A" are the analogues of oTr resp. of r Tq [with the bimodule structures arising
from (1) and its analogue for I'|. We get therefore the analogue of T over A’
from T by extension of scalars; similarly for T".
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18.4. Let Q2 and I" be two orbits of W, in X as in 10.2; so there is for each
A € Q a unique Ar € I in the closure of the facet of A.

Lemma: Let A be a B-algebra such that O and 1 are the only idempotents
of A and such that the image of each Hg in A is not a unit in A. Then the
Y-graded bimodules ' Tq and oTr are indecomposable.

Proof: Formula 18.2(4) shows that it is enough to deal with r Tq. So, suppose
rTq ~ M; & M, is a decomposition of rTq. By 18.2(2) this decomposition
leads to a decomposition of functors T ~ T; @ T, where T; corresponds to
M;®E@) - More generally, by 18.3 the analogue of T over each A-algebra
A’ splits, and this splitting is compatible with extension of scalars from A
to A’. Using 18.2(3) we see that also the functor T (over A and each A')
splits T = T, & T where both summands are Y-functors, and that also this
splitting is compatible with extension of scalars. (Recall that the Hq and Hp
are equivalences of categories.)

Furthermore, the right adjoint T” of T corresponds to the right adjoint
Hompgry(rTq, ) of rTa®g) - Arguing as above we see that also 7" breaks
up as T' ~ T| & T3 [into Y-functors, over each A’, compatibly with extension
of scalars] where T is right adjoint to T;.

Now TZ4(A) ~ Za(Ar) is indecomposable for all A € Q, since 0 and 1
are the only idempotents of A; so we get a partition Q = ; U Q, with

Q={AeQ|TiZ4(A) #0}.

Clearly €2, and (2, are stable under translations by elements from Y. We may
assume that Q; # (). We want to show that Q; = 0. If so, then T kills every
Z (), hence kills every projective, hence is the zero functor in other words
M, = 0. So r'Tq is indecomposable as claimed.
In order to show that Q2 = 0, we look at all residue fields F' of A modulo
a maximal ideal. Fix such an F and let Wr p be the corresponding affine
Weyl group as in 6.7. Fix an arbitrary A\g € Q; and set Q' = WrpeAo. Then
{Ar | A € '} is also an orbit for Wy ,. The results in 7.10 on the
decomposmon of T and T" for orbits under W7r ,p together with 7.13(3) show
for all 4 € I that (prQ, oT"QFr(u) ~ Qr(p~) where p~ is the unique weight
in Q' such that p is in the upper closure of the facet of u~ for Wy ,. The
decomposition of T' leads to a decomposition

prg o T' = (prg: o T7) & (prg o Ty),

where both summands are again exact. Since each Qp(p™) is indecomposable,
we get a disjoint decomposition I'' = I'} UT", where

={p €T | (pro/ o T})Qr (1) = (pro: o T)Qr(1)}.

If (e.g.) p €T, then (prg, o T3)Qr (1) = 0, hence also (prQ, o)) Zp(p')=0
for all Zp(u') in a Z filtration of Qr(p) (smce prg: o Tj 1s exact). We can
take in particular p' = p and see thus that

i={pel"|(prg oT))Zp(p) #0}  (fori=1,2).
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All Zpgl.l,') with [Zp(p') : Lp(p)] # 0 occur in a Z-filtration of Qg (), so all
these p' are in the same I'; as p. Using Proposition 4.6 we see now that all u'
with Ext!(Lp(p'), Lr(p)) # O are in the same I} as y, hence that the whole
block of p over F is contained in that I',. So each I'; is a union of blocks
over F. On the other hand, the T} commute with the shift functors [pr] with
v € ZR, hence the (prg, oT}) with the [pv] with v € ZR,. So each I} is closed
under translation by elements from pZR,. Now 6.16(4) implies that one of
the I'; has to be equal to I, the other one empty. If I'' = I'}, then we have
for all A € O

Home(Qr(Ar), T1 Zr (X)) =~ Home((pro: 0 T1)QF (Ar), Zr(A)) = 0,

hence Th' Zp(A) % Zp(Ar). This yields Q' C Q; contradicting the choice of
Ao € ' N Q. Therefore we have IV =TI} and get now as above Q' C ;.

We can find for each 3 € R a maximal ideal in A that contains Hg and
get a residue field F' of A such that the image of Hg in F'is equal to 0. Now
the discussion above shows that 2, is stable under all sg ,p, with m € Z.
Since this works for all 3, we see that 2, is stable under W,, hence 2, = Q
and Qy = 0 as desired.

18.5. We can apply the results of the preceding subsections to A = A(k) =
Sk. We now want to construct a graded version (over Si) of the E(Q) and
the T from above. First we have to make the graded combinatorial cate-

gories IE(Q, Sk) into Y-categories by introducing a graded version of the shift
operators from 9.13.
Denote by ! : Y — 2Z the character with (in the notations from 17.1)

(1) =6(A+7)—6(}) (1)

for all A € X in a regular Wj-orbit, i.e., we set I(7) = 2ht(7/p), cf. 17.1(2).
Let Q be an arbitrary Wy,-orbit in X and consider the Z-graded combi-
natorial category K(Q, Si). For M in K(Q, S) and 7 € Y we define M([7] in

K(Q, Sk) by the formulas

MI7I(A) = M(X = 7)(=l(7)),

MI(A B) = MO = 7, B)(I(7). 2
If M has a permissible Z-filtration, then 17.2(3) shows
hz(M[r]) = (hz M)t~ Te(r), (3)
and if M has a permissible Z'-filtration, then 17.2(4) shows
Ry (M) = (R M)A (), ()
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Note that the graded Si—forms Q(A) of VQng()\) in 17.6 are chosen such
that Q(A + 1) ~ Q(M)[7].

For M, N in K(R, Si) we denote by Homfz(M,./\/') the (Y x Z)-graded
space with homogeneous components

HomﬁE(M,.f\/’),,,’ = Homk(g,sk)(M[T](i),N) = Homgq,s,)(M[7],N)i. (5)

18.6. All W,-orbits to be considered below are supposed to be good in
the sense of 13.3. In order to avoid too many indices we shall write C(2, S)
instead of Cg (Q).

Choose a projective Y-generator P of C(2, S k). Then P is flat over Sk by

2.7, i.e., in FC(Q, §k) Choose a graded Sx—form P in IE(Q, Sk) of Vo P. This
is always possible by 16.15. Now consider the (Y x Z)-graded Si—algebra

Eq = Eq(P,P) = (EndgzP)"”” (1)

and denote the category of finitely generated (Y x Z)-graded Eq—modules by

C(Q, Sk) = C(; P,P). It follows from 15.10 and 16.15 that Eq is a graded
free module of finite rank over Si. So it satisfies the assumptions on A in

E.6, and we can apply the results in E.6 and E.9-11. Each module in E(Q) is

finitely generated as an Sp—module, the ring Fq is Noetherian, and E(Q, Sk)
is an abelian category. We call it a graded deformation category.

Remark: Another pair of choices (P',P') leads to an algebra Eq(P’,P') that
turns out to be Morita equivalent to Eq(P,P). We get thus an equivalent

graded deformation category E’(Q, PP~ E(Q, P,P). This will follow from
our results in subsection 18.13 on graded translation functors, applied to the
case ()} =I'. However we don’t need this independence, so we omit the details

and just suppose a pair (P, P) chosen when we speak of E(Q, Sk).

18.7. Since C(f2, S k) is just a category of graded modules over a graded ring,
we can shift the grading and form for M in C(Q) and ¢ € Z resp. v € Y the

shifted objects M (i) resp. M(v) in C(f,Si). However we shall write M][v]
instead of M (v) for v € Y so to stay coherent in our notations.

The completion Eq = Eq ®s, Sk of Eq along the Z-grading is by 15.5(1)
isomorphic to the algebra E(f2) as in 18.1(1) where A = Si. Recall the
equivalences of categories Ho and Dgq from 18.1 that are supposed to be

constructed with our present P.
Let us now define the functor “completion along the Z-grading”

v:C(Q,S) —C(Q,5), M~ P@g, M. (1)
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We have for all M in C(€, S) a natural isomorphism

Do(M ®s, Sk) =P ® (M ®s, 8k) = P®p, M =vM, (2)

E®S

hence an isomorphism of functors
Dq 0( ®Sk§k) = . (3)

So v has the same properties as the completion ®sg, §k, since Dgq is an equiv-
alence of categories.

18.8. By a “graded form” of an object M in C(Q Sk) we mean an object M
in C(Q Sk) along with an 1somorph1sm oM =5 M. Equlvalently, we might

ask for an isomorphism M ®s, S = HqM of Y-graded Eq-modules. By
Lemma E.9.c each indecomposable object has up to shift and isomorphism
at most one graded form. We shall construct for each A € Q a graded form

Zs, (\) resp. Z’Sk()\) of ng(/\) resp. Zé\ (A) and prove (with Ng as in 15.4):
k
Theorem: a) There are isomorphisms of Z-graded Sy-modules:

Sk, fA=p,i=0;

0, else;

Extly, y(Zs, (), Z, (1)) {

By (Z5,(\), Z ~, [ Se(2(R*| ~ Na)), if A= p,i=0;
EXtEQ,Y(ZSk(A)’ZSk(,u)) —_— {Ok‘< (| | Q)) zf /,L 2

else.

b) Each Zs,(\) has o unique simple quotient Li(X). This Ly(\) is o graded
form of Li(X). Every simple object of(Nf(Q, Sk) 18 1somorphic to some zk(/\)(z)
for unique A € Q, ¢ € Z.

¢) Each projective object of C(1, §k) admits a gmded form. An object M
n E(Q,Sk) 15 projective 1f and only if vM in C(Q, Sk) 18 projective. Any
projective object in C(Q Sk) admits a filtration with all subquotients among
the Zs, (A\)(i). It also admits a filiration with all subquotients among the

Z5, (M)
18.9. We shall construct the modules in 18.10; the proof of the theorem will
be concluded in 18.12. First we need a better link between our graded defor-

mation category E(Q, Sk) and the graded combinatorial category I~C(Q, Sk).
Consider the functor r from K(€2, Sk) to C(€2, Sk) given by

rM = Hom%(’P,M), (1)
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and the functor 7 from K(S2, §k) to the category of all finitely generated Y-
graded Eq-modules given by

FN = Homl (Vo P, \V). (2)
We have by 14.8(4) and the choice of P natural isomorphisms
Homﬁk(”P,M) ®s, Sk = Homk (VoP, M ®s, Sk) (3)
for all M in K(€, Si), hence up to natural equivalence
( ®s,Sk)or = Fo( ®s,5) (4)
On the other hand, we have natural isomorphisms
Hom, (P, M) = Hom (Vo P, Vo M) (5)

for all M in FC(1, S &), hence up to natural equivalence
Hg [on FC(Q,5;)] = 7o Va. (6)

Lemma: Let M be in FC(, Si) and let M in K(2, Si) be o graded Sy—form
of VaM.

a) Then rM in E(Q,Sk) is a graded form of M.
b) Let N in IE(Q,S;C) be a graded Sy—form of VoN for some N € fC(Q,gk).
Then the obvious map

H (M,N) —Hom, (rM,rN)

MR (@,s1) C(,5k)

18 an isomorphism.

c) Suppose that 0 C N C M isg, permissible two-step filtration of M. Then

the maps N' — M — M/N in K(Q, Si) induce a short ezact sequence
0—rN —rM—r(M/N)—0

of (Y x Z)-graded Eq-modules.

Proof: a) follows immediately from (4) and (6) and the definitions. For b)
observe that our map is just the degree zero part of a map

HOIII,C(Q,S,C)(M,N) —>H0mEn,y(7‘M, TN) (7)
of graded Sp—modules. So we need just to show that this map is an isomor-
phism or, equivalently, that it becomes an isomorphism under ®g, S k. Now if
we apply ®s, S to (7) we get just the map

Hom,c(g,gk)(VQ M,VoN) ——»Homﬁn’y(?VQM, FVaN)

induced from our functor 7. But 7 is fully faithful on the image of Vg by (6),
since Hq is an equivalence of categories and Vg is fully faithful.
For c) just notice that by definition of a permissible filtration (15.9) our

sequence becomes short exact under completion ®g, Sk.
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18.10. Recall the objects Z}; in K(£, S) from 15.3. Set for all 4 € X and
wewWw _
Zg,(p) =rZ,(Na — 6(n7)) (1)

using the notation p~ from 17.1. This is a module in C(€, Sx). We have
obviously

ng (p)[r] ~ Zg”k (n+ 1) forallTeY. (2)
Note that 18.9(4), (6) yield

78, (n) ®s, Sk ~ HaZ¥ (n)- (3)
We shall use the abbreviations
Zs,(w)=Z5,(n) and  Zg (p) =28 (n). (4)
Let us now prove part a) of Theorem 18.8. Observe first that
Exti, v (Zs,(V), Zs, (n) ®s, Sk = Extly | (HaZg (N), HaZg ()
[by E.7(2)]

= Exti(Zg, (V). Z4 ()
=0 unlessA\=pu,i=0 [by 4.11/12].

We get similarly EthEn,Y(Z'S,, (A), Zs, (1)) = 0 unless A = p, i = 0. So, to
finish the proof of part a) of our theorem, it remains to treat the cases with
¢ = 0. But there the claim follows from 15.4 via Lemma 18.9.b.

18.11. We next go for 18.8.b. Note that we can regard modules in Ci(2)
also as modules in C(2, S) via the natural map Sy—»k, cf. 3.1. This applies
in particular to all M ®5 k with M in C(Q2, Sk).

Lemma: Suppose M in E(Q,S’k) 18 @ graded form of M in C(Q,S'\k). Then
M ®s, k 1s a graded form of M ®§k k.

Proof: Apply v to the exact sequence

@M(Q} —M —M@s, k— 0,
a€d

where the first map is given by the row matrix (hq)eexs-
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18.12. Set Zx(\) = Zs, ()) ®s, k; this is by Lemma 18.9 a graded form of
Zx(M). Clearly Zi(A) does not change under completion, so we have

HoZi(\) ~ Zi(\) ®s, Sk = Zi(N).

We know from 4.1 that Z()\) has a unique maximal proper subobject in
Ck(€), hence also in C(2, Si). Therefore also Zi()), considered as a Y-graded
Eq-module, has a unique maximal subobject equal to radz | Zk(A). Since

Zk()\) is annihilated by the maximal ideal i C Sy, this is also the maximal
subobject of Zi(\) considered as a Y-graded Eqg-module, i.e.,

radﬁn,yzk()\) =radg,y Zk()\).

By Proposition E.11 this radical is Z-homogeneous. Thus we can define the
object Li(\) in C(€2, Sk) to be the unique simple quotient of Zi(A),

ik(/\) — Zk(/\)/radEn’ka()\),

and it is clear that Lk()\) is a graded form of Li(A) in C(Q, S%). Observe next
that every obJect M in C(Q Sk) is a finitely generated graded Sk—module
Hence (Sk)>01M M implies M = 0. Thus every simple object in C’(Q Sk) is
annihilated by (Sk)so. Hence the simple quotients of Z Sk()\) and Zx()\) are
the same, and hence L()) is the unique simple quotient of Zs, ()).

If L is any simple object in C(Q Sk), we know (Sk)>0L = 0 and in partic-
ular L is of finite dimension and does not change under completion. Since we
know that the Hq Ly () are all the simple Y-graded Fq-modules, there has to

exist (for some A € Q) a surjection L—»Li()\) of Y-graded Eg-modules. This
surjection can also be considered as a map of Y-graded Eqg—modules, and one
homogeneous component of this surjection gives necessarily a nonzero map
L — Li(X)(3) in C(€, Sk), which then has to be an isomorphism. This settles
part b) of our theorem.

We finally treat part c¢). Lemma E.9.a says that vM is projective if and

only if M is so. The remaining statements follow from 16.15 using Lemma
18.9. This concludes the proof of Theorem 18.8.

18.13. Assume from now on that (2 is a regular W,-orbit, and that I' is an
arbitrary orbit. Suppose that we have chosen (P, P, Eq) as above and that

(@, Q, Er) are analogous choices for I'. We can imitate the construction from
18.2 for our graded deformation categories. Set now

oTr = Homiic.(P, T'Q) and rTq = Hom%(Q,’TP). (1)
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So oTt is a (Y x Z)—-graded (Egq, Er)-bimodule, and rTg is a (Y x Z)-graded
(Er, Eq)-bimodule. By 15.5(1) and 15.15 the Z—completion of 7T resp. of
rTq can be identified with the bimodule o Tr resp. with rTq from 18.2(1).
Next we define the graded translation functors Ty and T* by

Ti: C(Q, S:) — C(T, %), M — rTq @p, M, (2)

and - _
T C(F,Sk) —*C(Q,Sk), N +— Tt @ Er N. (3)

Proposition: The following functorial diagrams commute up to natural equi-
valence:

cQ,8:) = C(Q,5) T, S) = CT,5)
T T ™ lT’
CT,8) - C(T,5) (O, S) -5 C(Q,5).

In particular, our graded translation functors are ezact.

Proof: We only treat the first diagram. If we compose v o Ty with Hr, then
we get by 18.7(3) up to natural equivalence the functor

M (rTa ®gq M) ®s, Sk ~ rTq ®p, (M @s, Sk),

ie, M —» T(M®s, §k) By definition of v this functor is equal (up to natural
equivalence) to T o Hg o v, hence to Hr o T o v by 18.2(3). This yields the
claim in the proposition since Hr is an equivalence.

18.14. Consider the functorial diagram

K©Q,8) L K(T,S5k)

I s

CQ,5) =5 CT,S)

and the natural transformation 7j o r — r o 7 given as the composition

rTo @z, Hom%(P,M) -——+Hom9’E(Q,TP) @ EBq Homgz(T’P, TM)
_>Hom§~C(Q,TM).

Lemma: If M is a graded Sx—form of VoM for some M € fC(Q,gk), then
our natural transformation gives an isomorphism TirM — rT M.
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Proof: Indeed, we just have to show that our map becomes an isomorphism
under completion. But then our map gets transformed into the composition
rTq @p_ Hom{(P, M) —Hom}(Q,TP) ®5_ Hom{(TP,TM)

—sHom}(Q,TM),
and this is an isomorphism by Proposition E.5 or, closer to the truth, by its
proof.

Remark: We can construct similarly a natural transformation 7*or — ro7T"'
that induces an isomorphism T*rA — r7'A whenever A is a graded Sj—
form of Vo N for some N € FC(T', S).

18.15. By E.2 our graded translation functors 71 and 7™ have right adjoints
T' and T, given by

T = Hompg . (rTq, ) and T« = Homg, (oTT, ).

Recall the notation o(A,I') from 15.13.
Theorem: a) We have Ty ~ T, and T' ~ T*(—2Nr).

b) We have T.Zs, () = Zs, (Ar){o(\,T)) and T1Z5, () =~ Z% (Ar){—o(\,T))
for all X € Q.

¢) For all p € T the translated module T*Zs, (1) has a filtration with sub-
quotients Zs, (A\){o(\,T)), where A runs over all A € Q such that A\p = p.
Similarly T!Z’S'k (1) has a filtration with subquotients Z'gk(/\)(—o(/\,l")), where
A runs over all A € Q such that A\r = p.

Proof: After completion rTq and Homg, (o1, Eq) get isomorphic by 18.2(5).

Since they are indecomposable by Lemma 18.4, they have to be isomorphic
up to shift:

FTQ (2) ~ HomEﬂ (QT]", EQ)
for some ¢ € Z. For each M in C(f2, S¢) the canonical map f in
T"M<l> ~ HomEn(QTI‘a EQ) BEq M —L* HomEn(QTp, M) =T.M

is an isomorphism, since it becomes the isomorphism 18.2(6) under comple-
tion. So there is an ¢ € Z such that T, ~ T;(¢). Similarly we find a j € Z such

that T" =~ T*(j).
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In order to prove a) we have to show that ¢ = 0 and j = —2Np. We
postpone this and look first at b) and c). We have for all A € Q

TZ5, (N) = Tir Z5(~6(N)) [by definition of Zj ()]
~ rT 24 (=6(N)) [by 18.14]
>~ rZy (Nr —6(N)) [by 15.16]
~ Z% (Ar){—o(\,T)) [by definition of Z% (Ar)].

For the last step we need also that §((Ar)™) = 6(A) —o(A,T), cf. 17.1(3). This

proves the second claim in b); we get similarly T} Zs, () ~ Zs, (Ar){o(A,T)).
This will yield the first claim in b) as soon as we have shown that ¢ = 0.
Using similar arguments and 18.8.c we deduce from 15.17 that each

T*ZS,c (1) (resp. each T*Z’gk(u)) with g € I has a filtration with subquo-

tients Zs, (A){(o(A,T)) (resp Z'gk(/\)(ZNp — o(A\,T'))), where A runs over all
A € Q such that Ap = p. So we get the first claim in c); the second one will
follow when we know that j = —2Nr.

So let us return to a). Choose A € 2. We have isomorphisms (by 18.8
and the results on Ty and T* above)

Si(—o(\,T)) = Homp, v(Zs, (Ar)(o(A, T)), Z5, (Ar))
~ Homg,,y(T1Zs, (\), Z5, (r))
~ Homg,,y(Zs,(\), T'Zs, (Ar))
o~ HomEn,y(Zsk()\), T*Z'sk(Al“)U))
~ Si(j — o(\,T) + 2Np).

We deduce j = —2Np. Similarly we calculate ¢ from the isomorphisms
Sk(—0(A,T)) =~ Hompg,y (T* Zs, (Ar), Z5, (V)
~ Homg, y(Zs,(\), TuZ5, (\))
~ Homp, y(Zs,(\), T: Zs, (A)(3))
(

(
(
~ Hompg, y(Zs, (A), Zs, (M) (—o(\,T) + )
~ Sk(i — o(A,T)).

We deduce ¢ = 0. The theorem follows.

18.16. Set for all A € 2 _
Qs (A) =rQ(A). (1)
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This module in C(, Si) is (by Lemma 18.9.a) a graded form of Qs, (A). By
Lemma 18.9.c the permissible Z-filtration of Q()) yields a filtration of Qs. (N
with factors of the form Zs, (1)(n) with p € Q and n € Z. The top factor
Z5(—6(X\)) in the first filtration leads to an epimorphism Qs, (\)—»Zs, (1), cf.

18.10(1), hence to an epimorphism Qs, (\)—»Li(}).
We get from Lemma 18.9.b for all A, 1 € Q an isomorphism of (Y x Z)-
graded Sx—modules

Hom{(Qs, (1), @s, (1)) ~ Homjq 5, (Q(A), Q(w)). 2)

The right hand side can be described explicitly, if we know that Lusztig’s
conjecture (as in 17.8) holds for our k. Well, we have by definition

rkHom g 5,,(Q(Y), Q(w) = Y rkHomk(a 5, (QA+7),Q(1)).  (3)
TEY
So 17.9(L4) implies
tkHomj g 5,) (QN), Q) = > 3 D,5,, D,z "¢, (14)

vEQ TEY

where we use (as in 17.9) an L to indicate that the formula depends on the
truth of Lusztig’s conjecture. Some calculations later on will simplify if we
replace the D-polynomials by Lusztig’s ()-polynomials (again regarded as
indexed by elements in 2). So they are given by

Q)\,u = té(”)D)\,/u (5)

cf. [Lu2], 8.9. Recall that our ¢ is the ¢*/2 in [Lu2]; so the @y , involve only
even powers of t (cf. [Lu2], 5.2). Using (5) we can rewrite (L4) as

rk Homgc(ﬂ,sk)(Q()\), Q(p)) = Z Z Qu,/X+rQu,jIt26(y)_6()\+r)_6(”)' (L6)
veQ rey

The Q-polynomials satisfy (by [Lu2], 7.4)
QA+T,;4+T = Q)\,u (7)

for all \,p € Qand 7 € Y. There are 7y, 7, € Y with N = woeA + 71 and
B = woept + 5. If we now substitute v + 7, for v and 7 — 7, + 7 for 7, then
we can rewrite the right hand side of (L6) using (7) as

Z Z Qo weortrQy wosp t26(u)—6(woo)\+r)—6(wooy). (L8)

VvVEQ TEY
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18.17. Let € C 2 be a system of representatives for the orbits of Y in 2
acting by translation. Then P = @, .q, Qk()) is a projective Y-generator of

Cr(Q2). From 18.9 we deduce an isomorphism of Y-graded rings

(Endy( @ Qs.(V)) ®s, k)" = (End*P)°r>. (1)
A€Q,

Let us call the left hand side A; thisis a (Y x Z)-graded k-algebra. If Lusztig’s
conjecture holds, then A is positively graded and its degree zero part is just
a product of || copies of k, with a basis of pairwise orthogonal idempotents

1n» € Ap given as the images of the projections onto Qg, (A). This follows
from 18.16(2) and the discussion on 17.9. More precisely, we can calculate
the Poincaré polynomial P(A,t) of our ring, an (€ x ; )-matrix with entries
in Z[[t]] given as

P(A,t)xu = (rkHomi(Qs, (V), @s, () (¢ 7). (2)

If Lusztig’s conjecture holds, then 18.16(L8) says

P(A,t))\,,‘ — Z Z Qu,wooA+r(t_l)Qu,wo-u(t_l) té(wo.)\+r)+6(w0-u)—26(u)'

veQ rey
(L3)
Note that indeed P(A,t),, € Z[t].

Proposition: Suppose that p > h. If Lusztig’s conjecture holds for k, then
A 13 a Koszul algebra.

Proof: We want to deduce this from the numerical Koszulity criterion ex-
plained in [BGS], 2.11. So we have to know the Poincaré polynomial of
E(A) = Ext%(Ap, Ag). By definition of A the category of finitely generated
Y—graded A-modules is equivalent to C¢(2); under this equivalence Ay1y cor-
responds to Li(A), for each A € €2;. Hence Ay corresponds under our equiva-
lence to L = P cq, Lk(A) and E(A) ~ P, oy Exte(L[r], L) has the Poincaré

polynomial P(E(A),t) with entries

P(E(A),t)xu = Y > t' dimExte(Le(p), Li(A + 7).
T€Y I€EZ

The dimensions of Ext—groups between irreducible objects have been deduced
from Lusztig’s conjecture in [CPS] in the case Q is regular and p > h in Case
1. Their results extend to Case 2: One simply has to replace the reference to
Friedlander and Parshall in [CPS], 3.12.2.3 by a reference to the main result
in [GK]. We have by [CPS], 5.8.1

P(E(A),t)r, = Y Y #WHAN=26@P,  (+"1)P, s 4 (t71),
T€EY vEQ
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where the P are the generic Kazhdan-Lusztig polynomials as in [Kat], 3.3.
The P are polynomials in t?, so P(E(A), —t),, is equal to

Z Z(—1)6()‘+T)_6(“)t6(“)+60‘+r)_26(")}3,,,”(t_l)13,,’)\+,.(t_1).
TEY veQ
So the (A, p)—entry of P(A,t)P(E(A),—t) is equal to
Z Z Z (_1)5(17+r')—6(u) (Qu,wooA+‘rQu,woonPV’,;4PV’,n+r’)(t_l)'

n€EQR v €EQ T, 7' EY
. t&(won\+r)+6(woon)—26(u)+6(u)+6(n+1")—26(1/').

Substitute v — w7’ for ¥ and 7 — w7’ for 7 and apply 18.16(7) to the Q-
factors. The sum above turns into

Z Z Z (“1)6(n+r )=o) (Qv,woo>\+TQu,woo(n+r')PV',uPV’,n+r')(t_l)'
TIGQI V)"'GQ T,TIGY
. $6(woe At 7)+8(woe(n+7"))—28(v)+6(u)+8(n+7")—-26(v")

(One uses 18.5(1) to rewrite the exponent of t.) If n runs over €y and 7' over
Y, then n + 7' runs over Q. So we can rewrite the sum as

Z Z Z(_l)é(W)_é(”)(Qu,woo)\-}-rQV,wo'wﬁu’,uﬁy’,w)(t_l)'

weQv'eQ TeY
. t&(woo)\+r)+6(woow)—26(1/)+6(u)+6(w)—26(u').

We have

S(woew) +6(w) = |RT|  forallw e Q, (4)
e.g., by [Lu2], 1.4.3. On the other hand, [Lu2], 11.10 implies (cf. [Kan], 2.9)
that

3 ()M OCDQ, By e = Bt woes (5)

wEN

for all v,v' € Q. So the sum simplifies to

3 ST (—1) 2000 (Q, o ntr Praga, ) (7180 M~ R,

veQ rTeY
where we have used in the exponent of ¢ that —26(v) — 26(v') = —26(v) —
26(wger) = —|R*| by (4). Now apply the counterpart of (5), i.e., the fact

that the )-matrix is also the right inverse to the (iﬁ)—ma‘crix. We get
Z 5woo)\+r,woou = 6,\,;4-
TeY

(For the last step use that A and p are from a system of representatives modulo
Y.) These results tell us that P(E(A), —t) is inverse to P(A,t). Hence A is
Koszul by the numerical Koszulity criterion.
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18.18. Recall that @ is a projective Y-generator of C(T, §k) This implies
that Qx = Q ®3, k is a projective Y-generator of Cx(I'). We have Er ®g,
§k ~ (End”cP)"”’, hence Er := Er Qs, k =~ (Enngk)"”P. The category
of finitely generated Y-graded Er ;-modules is equivalent to Ck(I') under
MHPk@Er\’k M ~ P®EPM.

The algebra Er  is (Y x Z)-graded; denote by Ci(T") the “graded rep-
resentation category” of all finitely generated (Y x Z)-graded Er ;—modules.
(We can identify Ci(I') with a full subcategory of C(T', Si): Take all M with

hoM = 0 for all o.) We have a functor T : Cx(I') — Ci(T") where we first, forget
the Z-grading and then apply the equivalence of categories from above. If we

embed Ci(T) into C(F Si) as above and similarly embed Ci(T') into C(T', Sk)
(cf. 18.11), then ¥ is just the restriction of the functor v from 18.7.

Objects in Ci(T) are for example the Lik(}), the Z()), the Z4(\) =
ZS’c (A ®Sk k and also the Qx()) := Qs, () ®s, k (with A € T'). We have
TLe(A) =~ Li(N\), 5Ze(N) > Zi(N), TZL(N) ~ ZL(N), TQk(N) =~ Qi ()) for all
A € I'. (Apply Lemma 18.11.) Since @k(A) is projective in Ek(l"), the last
isomorphism implies that Qk(z\) is the projective cover of Zk()\).

The discussion of the functor v above shows for any M and N in ac(F)
and any ¢ that

Ext}, (TM,TN) =~ QB Ext’ t5 oy (M(r), N). (1)
We can use this to show for all A\, u € T" that

= _Jk ifi=r=0, A=y
Extfv (I‘)(Zk(/\)(r>’ Zi(w) = {0, otherwise. (2)

Indeed, (1) and 4.12(1), (2) yield the vanishing for all ¢ > 0 and for ¢ = 0
when X\ # p. They also show for i = 0 and A = p that there is exactly one
r where the Hom space is equal to k, whereas it is equal to 0 for all other r.
This unique r is readily determined from Theorem 18.8(a). We get similarly

Ext <r)<Zk<A><>Zk<u>>={’“’ if i =0,r =2(R* = Np), \=p; (5

0, otherwise.
18.19. The first parts of the following result motivated the shifts appearing
in the definitions of the graded deformation category and of its objects.

Proposition: Suppose that p > h and that Lusztig’s conjecture holds for k.
Let 2 be a reqular Wy—orbit in X.

a) For any A, € Q we have Ex‘rfv (Li(N), Li(p)(n)) = 0 unless i = n.

Cr(Q)
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b) For any A\, u € Q we have
Extt o (Ze(\), Li(p)(n) = 0= Exty o (Le(n), Z(A\)(n))

unless i = n.
¢) Each @k(A) with A € Q admits ¢ Zy—filtration and o Zv;c—ﬁltration,' we have

SUI@O) ¢ Zul(r)ler = $—IDHRT G o

L1
_Z[Qk FAMIC ias o

and

[Zk(w) : e ()] = [@e (N () : Zi(w) 2IRTD] = [k (V) : Zu(w)(r)]. (L2)
Proof: a) This follows from general properties of Koszul rings applied to A
as in 18.17, cf. [BGS], Proposition 2.1.3.

b) We can apply [CPS], Theorem 3.8, to the category Z’k(ﬂ) with weight
poset A = Q x Z with the order given by (w,n) < (w',m) if and only if

w < w', the length [ : A — Z given as {(w,n) = 6(w), and with X = Ek()\),
Y = Li(u)(n). We obtain in this way

dim Ext~ (Q)(Lk()\), Ek(ﬂ)(")) =

>33 dimExelrr (L), Zh(v)(0) dimExt o (Zu(w)(3), Le(w)m).

veQ reZ jez

From a) we deduce that for i # n each summand vanishes, in particular the
one for v = A\, r =i, J_Oandtheoneforl/-—u,r—Oand]—n This
establishes b).

c) We start with (L1). As pointed out in 18.16, the permissible 2-

filtration of Q()) yields a filtration of Qs, (A) where the factors have the form
Zs, (p)(n). More precisely, each factor Z,(n) leads to a factor Zs, (p){n +
&(p)), cf. 18.10(1). Tensoring over Si with k we get a filtration of Qx()\) in
Cx(9), since the Zg, (1) are free over S. Now 17.9(L2) implies

[@e(N) : Za()in) = D7 M,

hence

Y@ : Zu(u) ()=t = dFTID 4 = 4IRT=E g

reZ
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where we use 18.16(5) for the last step. This yields the first equality. The
second one follows similarly from 17.9(L3).

We now prove (L2). The second equation is clear from (L1), so we
concentrate on the first. Certainly

[Zk(w) : Le(Vir)] = dim Homg o (@x(N(r), Ze(w)),

and this can be written as [@k(A)(r) : Zi(p)(?lRﬂ)] using 18.18(3).
Remark: We expect a) and b) to hold also for p > h and for an arbitrary
Wp—orbit Q.

18.20. Suppose for the moment that we are in Case 1. The restricted
enveloping algebra UlPl(g,) is (ZR)-graded in a natural way. So we can
regard it also as an X-graded algebra and study the category of all X—graded
UPl(g,)-modules.

Lemma: We have a canonical decomposition of the category of all finitely
generated X —graded UP)(g,)-modules into ®u€X/pX Criu)-

Proof: Any XA € X/pX C b; determines an algebra homomorphism A :
UlPl(h,) — k; together they give an isomorphism

Utl(h) = [ * (1)

X/pX

Consider an X-graded U'?!(g;)-module M = @, x M,. Since UPI(h,) is
contained in the degree zero part of UlPl(g, ), it stabilizes each M, and we get
a decompososition M, = ®AeX/pX M) where

M)={me M, |um=Au)m for all u € UPI(h,)}.

It is immediate that for any p € X/pX the subspace

M= @ M)cM
VEXu

is stable under UlP)(g, ) and lies in fact in Cy(,). Clearly M = Drex/px M(p)

and clearly this decomposition is respected by all morphisms of X-graded
U'P}(g,)-modules.

Remark: The discussion above generalizes to Case 2, if we replace UlPl(g;)
by u modulo the ideal generated by the (central) elements K;; -1
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18.21. Suppose again that we are in Case 1. The restricted enveloping

algebra UlPl(g,) is finite dimensional. It decomposes uniquely into a direct
product of algebras that cannot be decomposed further:

U[p](Gk) = HBi-

1=1

The factors B; are called the blocks of Ul?!(g,). Each block is the annihilator
of the product of the other blocks, hence also the annihilator of a suitable
direct sum of projective indecomposable modules for UPl(g,). Since these
modules lift to objects in Cy, cf. the proof of 16.17, we can deduce that each
block is the direct sum of its weight spaces.

Each UPl(g,)-module M is the direct sum of all B;M; we say that M
belongs to B; if M = B;M. Each indecomposable M belongs to some B;.
In partlcular each Lk(/\) with A € X belongs to some block; another Ly (u)
belongs to the same block if and only if u € WX + pX. So there is for each
W,—orbit I' a unique block such that all Ly () with p € ' belong to this block;
denote it by B(T'). For M in Ck(T') all B; # B(I') annihilate M, since they
annihilate all composition factors. So we have M = B(I')M; more precisely,
the identity in B(I') acts as the identity on M.

If T and I are two Wy—orbits, then we have B(I') = B(I") if and only if
there is p € X with I'' = F + pu. Under a decomposition as in Lemma 18.20,
the category of finitely generated X—graded B(I')-modules corresponds to the
product of all Ci,)(T') with v running over representatives for X/pX and I"
running over all orbits of the form I" + pp with g € X. Then M +— M|pp][v]
is an equivalence of categories between Ci(I') and Ci[,)(T' + pu). If Pis a
projective Y-generator P of Ci(T'), then P is also a projective X—generator
of the category of finitely generated X-graded B(I')-modules. So B(T') is X—

Morita equivalent (in the sense of F.6) to (End,P)°?P. (This endomorphism
ring is in fact Y-graded, but we can also consider it as an X—graded ring.)
Proposition: Suppose that p > h and that we are in Case 1. Let Q be a

reqular Wp—orbit in X. If Lusztig’s conjecture holds for k, then B() admits
a Koszul grading compatible with its X -grading.

Proof: This is now an immediate consequence of Proposition 18.17 and
Lemma F.7.

Remarks: 1) If a) and b) in Proposition 18.19 extend to all Wy—orbits, then

one could show that the restricted enveloping algebra Ul?l(g,) admits a Ty~
stable Koszul grading. This would allow to determine the dimensions of the

Ext groups Exték(r)(Lk(/\),Lk(,u)) and Exték(p)(Zk()\),Lk(,u)) following for
example the line of reasoning given in the proof of [BGS], Theorem 3.11.4.

2) Everything carries over to Case 2; we simply have to replace Ul?l(g;)
everywhere by the quotient of u mentioned in 18.20.
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19. Examples of Endomorphism Algebras

We return to the situation of Section 14 with the same restriction on p.
Assume that R is indecomposable. We choose A = A(k) and the hg as in
14.1. So we can regard A as an S-algebra with S as in 14.4. (In Case 1 we
could also work with A = B(k). However, then A would not be local and that
would make several proofs more complicated.)

19.1. Let Q be a Wy—orbit. We want to use our theory to determine explic-
itly End¢Q for a projective module @ in D4(2) in a very special situation.

We shall assume that
Q=P 2% () (1)
1€]
for some finite index set I where the p; € Q are distinct. Furthermore we
assume for all 3 € RT that there is a subset I(3) of I such that

Q' ~ P Q°(w) (2)

i€I(B)

where Q? () = ZP(p) if 3T = p, and where @°(p) is the middle term in a
representative of e®(u) if 37T u # p. (This is the same convention as in the
proof of 9.4. Note that the isomorphism class of Q?(u) does not depend on
the choice of e’ (u).) The existence of a decomposition as in (2) would follow
from Theorem 4.19.b, if A? were a local ring. Since the characters of distinct
QP () are linearly independent, the set I(3) is determined by the character
of Q, i.e., by the family (p;)ier.

19.2. Since A is local, each Home(Z4()), Q) is free over A, cf. Lemma 4.14.
Choose for all i € I a homomorphism f; : Z4(u;) — @ such that

HomC(ZA(#i)vQ) = Afi’ (1)
i.e., fi is a basis of this A-module. So
AV, i =
V — (3] . (3 .
aw= {3 EhEtien ?
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Fix a positive root 8. Let p € X. If 3T p = p, then the definition 9.3(2)
implies that

_[APf, i =
vow.s) = { o Hhsr 3)

If BT p # p, then choose an exact sequence
0— Z°(8T 1) —fQ° (1) —gZ° (1) = 0 (4)

representing e”(p). If neither p nor 31 u belongs to the set of the u;, then
obviously VQ(u,8) = 0. If = p; for some i € I and if 37y is not in the set
of the uj;, then h +— ho g is an isomorphism

Home(Z% (1), Q%) = Home(Q% (1), Q7).

This yields
VQ(u, B) = A°(£;,0). (5)

If 31 p = p; for some ¢ € I and if p is not in the set of the p;, then h+— ho f
is an isomorphism

Home(Q” (1), Q”) = Home(Z7(B11), Q7).

(Here we use Lemma 4.14.) This yields

VQ(u, B) = AP(0, fi)- (6)

Suppose now that u = p; and 87T p = p; for some ¢,5 € I, @ # j. There
are two possible cases: Either Q?(u) is isomorphic to a direct summand of
QP, i.e.,i € I(B), or it isn’t. Consider first the case where i € I(3). Identify
QP(u) with a direct summand of Q®. Under such an identification f is a
basis of Home(Z?(p;),Q?), hence differs from f; by a unit in B?. We can
now multiply our identification by that unit and shall assume that f = f;.
On the other side, under the identification we can regard g as a basis of
Home(QP, ZP(pi)), so there is (by Lemma 8.10.b) a unit d; in A® with hgid =
d; g o fi. Working with the basis (f; 0 g,id) of End¢Q?(u) we get

VQ(, B) = AP(£:,0) @ AP(difihg", f;). (7)

Consider now the case where i ¢ I(3). Then Q° has a direct summand of

the form Q? (31 i) ® QP (u') where p' is the unique weight with 81 u' = p.
Choose a representative

0— Z%(u) —f'Q° (') —g'Z°(1') — 0
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of e#(p'). We have isomorphisms

Home(Q” (1), Q%) ~ Home(QP (1), Q°(81 1)) & Home(Q? (1), Q% (1)),

and

Home(Q (1), Q°(81 1)) = Home(2° (), Q°(B11))
given by h+— ho f, and

Home(QP (1), Zﬂ(ui)) = Homc(Qﬂ(,u),Qﬂ(u'))

given by h — f' o h. So Hom¢(Q? (1), @7) has a basis (hy, hy) such that h,
factors through Q?(3 1 p) satisfying h, o f = f;, and such that h; factors
through QP(u') satisfying h; = f; 0 g. Composing with f and g~ we get
(0, f;) and (f;,0), i.e.,

VQ(p, B) = A°(f:,0) © A°(0, f;). (8)
19.3. Keep the assumptions and notations from the last two subsections.
Proposition: The algebra End¢Q is isomorphic to the subalgebra of AT con-
sisting of those families (a;)icr that satisfy the following condition for each
B € RT: If QP has a direct summand that is a nonsplit extension of Z°(u;)
by ZP(u;), then a; = a; (mod hg).

Proof: An endomorphism ¢ of Q is given over A? by a family (a;)icr of
elements in A® such that ¢ o f; = a;f; for all 4. In order to map @ into itself
all a; have to be in A. Furthermore all VQ(u,3) have to be stabilized. This
is automatical in all cases except for those of type (7) in 19.2. There we need

(diaifihg',a;f;) = aj(difihz", fi) + (ai — a;)dihg" (£i,0) € VQ(u, B),
i.e.,
a; —aj; € AﬂAﬂhﬁ =Ah/3.

The claim follows.

19.4. The example considered in 10.14 is obviously a special case of our
discussion above. We shall generalize it somewhat. Let p € X be in the
closure of the first dominant alcove, i.e., satisfying

0<(u+p,a¥)y<p forall o€ R".

We want to apply 19.1-3 to @ = Wy and Q = TZ4(—p), where T is
translation from Wpy.(—p) to Q. If we regard k as an A-module via augmen-
tation, then Q ® 4 k ~ T Zx(—p) is isomorphic to the projective indecompos-
able module Q(wqep), cf. [Ja6], 11.11.10. So Theorem 4.19.b implies that
Q ~ Qa(woep).
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We get from 7.5 that @ has a Z-filtration with factors Z4(w.u) with
w € W such that each wep occurs exactly once. This implies that 19.1(1) is
satisfied; we can take for I a set of representatives of W modulo the stabiliser
of u. Let 3 in Rt. We can decompose T as in 7.10 into a direct sum of trans-
lation functors for Wg , = < sgrp | 7 € Z >. This leads to a decomposition
of @7 asin 19.1(2). So all assumptions in 19.1 are satisfied, and we can apply
Proposition 19.3.

Theorem: a) If (1 + p,ay) < p, then Ende@ a(woep) 1s isomorphic to the
algebra of all functions £ : W — A such that for allw e W

E(wsq) = &(w) for all @ € R with sqep = p (1)

and

&(spw) = {(w) (mod hg) for all B € RY. (2)

b) If (p+ p,o) =p and 0 < (p+ p,a¥) < p for all @ € R, o # ay, then
EndeQ a(wosp) 18 tsomorphic to the algebra of all functions & : W — A such
that for all 3 € Rt and w e W

&(spw) = &(w) (mod hg) if B # tw(a). (3)

Proof: We can apply 19.1-3 with I = W.u. We get thus an algebra of
functions from W.pu to A satisfying certain congruences. We can regard these
functions as maps { : W — A with {(w) = &(w') whenever wep = w'ep. This
last condition is equivalent to (1) since the stabilizer of u is generated by
reflections. In b) this condition is empty, since there the stabilizer of p in W
is trivial.

In order to see which congruence conditions occur we have to understand
the decomposition 19.1(2) better. If (u + p,w™*3Y) € {0,%p}, then 8 1
(wep) = wep and QP(wep) = ZP(wep) occurs in 19.1(2), but does not lead
to a congruence condition. If 0 < (u + p,w™*BY) < p, then Q®(w.p) is an
extension of Z#(wep) by ZP(sgwep). Then QP (wep) occurs in QF, whereas
QP (sgw.p) does not occur.

This shows that &(w) is congruent to £(sgw) unless (1 + p,w™!8Y) €
{0, £p}. If we get here 0, then sgwep = wep, hence {(spw) = {(w) by (1). So
we may as well add the corresponding congruence. (This case cannot occur
in b).) If (u+ p,w™13Y) = £p, then we have to be in the situation of b) and
we have to have w™!(3 = +qaq. This leads to the exceptions in (3).

Remarks: 1) Note that it is enough to take in (1) all simple roots a with
Sqet = U, since these already generate the stabilizer of p.
2) Note that p as in b) is a weight as in 13.10.
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19.5. Let S be as in 15.2 and in Appendix D. Set

Es={6:W — S |&(ssw) = €(w) (mod hy) for all # € R*, w e W} (1)
and

Ea={6:W = A|&(spw) = E(w)  (mod hg) for all B € RT, w e W}. (2)
It is shown in D.5 that Es is a free module over S of rank |W|. More precisely,

there is a basis (n¥)ywew of Es such that n*(w') is homogeneous of degree
l(w) for all w' € W, such that

W) £0 = w'>w, and n°(w)= [[ ha (3)
a€R(w)

where R(w) = {@ € Rt | w™'a < 0} as in 5.11. The group W acts on Eg
and E4 via
(wé)(w') = {(w'w)  for all w,w' € W. (4)
If o is a simple root, then
w< wsq => son¥ =1 (5)
by D.2(4).

Let I be a subset of the set of simple roots. Set W} equal to the subgroup
of W generated by the s, with o € I. Set

W!={weW|w< ws, for all a € I}.

This is a set of coset representatives for W/Wy. Set

Es(I) = {£ € Es | £(w) = £(ww') for all w € W, w' € Wi} = (Es)™  (6)
and

Es(I)={€ € B4 | &(w) = £(ww') for all w € W, w' € Wi} = (E4)"". (7)
The n* with w € W' are in Es(I) by (5).
19.6. Recall that we can regard A as an S-algebra. We get thus a homo-
morphism Es ®s A — E4. We denote the image of n” @ 1 in F4 again by

n®. The new n* satisfy the analogue of 19.5(3) over A as well as the same
homogeneity condition as the old n.

Lemma: a) The n* with w € WY are a basis of Es(I) as an S-module.
b) The n* with w € W are a basis of Eo(I) as an A-module.
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c) The n* with w € W are a basis of E4 as an A-module.

Proof: a) The n* are linearly independent as part of a basis of Es. So it is
enough to show that they generate Eg(I). Let £ € Es(I), £ #0. Let we W
minimal with {(w) # 0. If « € I, then {(w) = {(ws,), hence w < ws, by the
minimality of w. Thus w € W!. We have for all 8 € R(w)

§(w) =&(spw) =0 (mod hyg),

so §{(w) is divisible by [[5cp(y) hs = n¥(w) in S. Let a € S with {(w) =
an®(w). Then & = & — an® € Es(I) with &'(w) = 0 and &'(w') = £(w') for
all w' 2 w. We can now apply induction to &'.

b) Since A is integral, the formula 19.5(2) implies immediately that the
n¥ are linearly independent over A. Now the proof of a) generalizes.

c) This is a special case of b).

Remark: We have to use the fact that the hg are non-proportional primes in
A to get the divisibility of £(w) by n*(w). This is where we need that p # 2
if R has two root lengths, and that p # 3, if R is of type G, cf. 9.1.

19.7. Lemma 19.6 implies that the map S — A induces isomorphisms
Es®@aA~Ey and Es(I)®@4 A~ E4(I). (1)
If i is a weight as in Theorem 19.4.a, then we have in our new notation
EA(I) ~ Ende@Qa(woepr)  where I={a€X|(p+p,av)=0}. (2)
We get especially for p = Ao with A¢ as in 14.4 that
E4 ~ Endce(Q). (3)

19.8. We can generalize the definition of E's and Es(I) to any S—algebra.
We shall consider especially the S—algebra Sy = S ®z k. It is easy to see that
Lemma 19.6 extends to Sk. (Use the same arguments as in 19.6.)

Suppose in Case 1 that p > h. Proposition D.10 shows that the map

PS5 ®S:V Sk — Es, (1)
with
P(a®@b)(w)=w(a)-b forallweW (2)

is an isomorphism of k-algebras. It is W-equivariant, if we let W act on the
left hand side via w(a ® b) = w(a) ® b. Since Sk is a free module over S}V
(under our assumption on p in Case 1, cf. [Bo2], chap. V, §5, n° 5, Thm. 4)
the map in (1) induces an isomorphism

St @sw Sk = (Bs,)" (3)
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for all subgroups W' of W, especially for all subsets I of 3:
¢ ®@sw St = Es,(I). )
Tensoring over Sy with A yields isomorphisms
Sk@sw A~ Es and S @sw A5 Ey(I). (5)

The algebras on the right hand side are by 19.7(2) endomorphism algebras of
certain modules @ 4(wgept). If we tensor over A with k, then we get by 3.3
the endomorphism algebra of Qx(wq.p). We get thus isomorphisms

SE @gp k< Ende, Qa(wowr) ©)

with I as in 19.7(2). Here k is regarded as an algebra over S}’ via the
augmentation map Sy — k. This shows:

Proposition: Let p be in the closure of the first dominant alcove with (u +
p,ay) < p. If uis p-regular, then Ende, Qx(woep) is 1somorphic to Sy modulo
the ideal generated by all homogeneous W —invariants of positive degree, i.e.,
to the covariant algebra. In general, the endomorphism algebra is isomorphic
to the ring of Wr—invariants in the covariant algebra (with I as in 19.7(2)).

19.9. Set E§ equal to the set of all maps £ : W — S such that for all 3 € R*
and w € W:

E(spw) = E(w) (mod hg) i B # +uw(a). &
Define similarly E'; by replacing S by A. We have for all 4 as in Theorem
19.4.b:

E"A jad EnchA(wo.u). (2)

Before we describe the algebras E and E'; more explicitly, we state an
elementary property of the Chevalley order:

Observation: Let w,w' € W with w' > w. If wogy < 0, then w'ay < 0.
Proof: Since oy is dominant, w' > w implies w'ay < woyy < 0.

Proposition: The S-module E' is free of rank equal to |W|. There is a basis
(€*)wew of E over S such that £“(w') = 0 whenever w' 2 w and such that

w€R(w) P> if wog > 0;
f“’(w): {H €R(w) 0

: 3
aER(w),a%—wao Nas  Otherwise. (3)
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Proof: It will be enough to prove the existence of elements ¥ € EY; with these
properties. The lower triangular form of the matrix of all £*(w') yields the
linear independence. In order to show that the {* generate E; we argue as in
19.6. Consider an arbitrary £ € E%. Let w € W be minimal for {(w) # 0. We
have for all o € R(w) with o # w(ao) that {(w) = €(sqw) =0 (mod hy).
So £(w) is divisible by £¥(w) and we can form &' = £ — (§(w)&¥ (w)1)E¥. We
then apply induction on w.

So we just have to construct the £*. We can obviously take &¥ = np* if
wog > 0. So fix from now on w with wag < 0. Set for all w' € W:

¥ (w') = 0" (w')(~w'ha,) " (4)

Let us check first that £¥(w') is in S. We can assume that w' > w since we
get 0 otherwise. Then the observation implies that w'ay < 0 and w's,, # w.

So
0= nw(wlsoto) = nw(s—w’aowl) = ﬂw(w') (mOd h—w'do)'
Therefore n* (w') is divisible by h_yrq, = —w'hqe, and £¥(w') is in S.
We now have to check for all w' € W and o € RT that

¥ (w') = €¥(sqw') (mod hy) if a#xw'ap.

We can assume w' > w, hence (as above) v = —w'ap > 0. If sow’ 2 w, then
0 =nY(sqw') = £¥(sqw’), and n¥(w') =0 (mod hy). So h, divides n*(w'),
hence also £¥(w') = n*(w')/h+, since hq and h. are coprime. On the other
hand, if sqw’ > w, then

£ (w') = €%(sau') = (n°(u') - n"’(saw'»h—l 7" (sau (h—l — (sah)™)
= (n"(w") = " (seaw"))hT! + 0" (saw")a(hs)hahT (sahy) 7

This expression is divisible by h4 in S[h7 1 (sah+)7!], hence in S, since hq is

coprime with h, and (sqh).

Remark: We have a natural map Ey ®@s A — E';. The first paragraph of
the proof above shows that the images of the ¥ ® 1 are a basis of E';. This
implies that the map is an isomorphism

Ei@s A= EYy. (5)

19.10. Let X be regular in the first dominant alcove (as in 13.2), and let p
be semiregular in the closure of that alcove with (1 + p,ay) = p (as in 13.10
or Theorem 19.4.b). So the stabilizer of p in W, is equal to {1 So} where

50 = Sag,p- Set @ =Wyl and I' = Wy, set T = TF and T' = TF

Let @ be the module we get from translating Z4(—p) to 2. So we have
Q = Qo(A) in the notation from 14.4 (for Ag = A) and Q ~ Qa(wpeA) as
observed in 19.4. We have also seen that

EndcQ ~ E4, (1)
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of. 19.7(3). Set
Q:=TQ and Q:=T'Q:.

Since A is local, Theorem 4.19.b implies that @; is isomorphic to @ 4(wqeu),
so we have

EndcQ; ~ E', (2)

by 19.9(2). We have Q2 = Q(,)(A) in the notation from 14.4. We get
from [Ja6], I1.11.10(1), that Q2 ® 4 k is isomorphic to Qx(wosg«A), hence that
Q2 ~ QA(’(U()S(]./\).

We claim that also Q, satisfies the assumptions of 19.1-3. Since @Q? is
the direct sum of the Z°(w.u) with w € W, we get from 7.5 that

A= P 2w (3)

weEWUW s

Let 3 € R*. In order to describe Qf we use the decomposition of T' over
AP according to orbits for Ws,. Let w € W. If 8 # tway, then Qf has a
block component that is an extension of Z#(weu) and Z#(sgwep). If w3 <
0, then the component is isomorphic to Q®(w.u), otherwise to Q?(sgw.pu).
Applying T yields two block components for Qg isomorphic to two different
QP()\"). One of them is an extension of Z#?(w.)) and Z#(sgw.]\), the other
one of Z?(wg.)\) and ZP(sgwsps)). On the other hand, if 8 = fwag, then
Qf has a block component isomorphic to Z?(w.u). Applying T' yields a
block component for QF that is an extension of Z%(w.\) and Z#(wsg.\) and

isomorphic to Q?(\'), where X' is the smaller of the two weights. So we get a
decomposition as in 19.1(2).

Proposition: The algebra EndcQ, is tsomorphic to the algebra of all func-
tions ( : WUW sy — A satisfying the following congruences: We have for all
BERT andwe W

((spw) = ((w) (mod hpg)

((spwso) = ((wsg) (mod hg) } if B # Tway, (4)

and

C(w) = ((wsg) (mod hg) if 8= tway. (5)

Proof: This is an easy consequence of Proposition 19.3 and of the explicit
decomposition of Q¥ found above.

271



H.H. ANDERSEN, ]J.C. JANTZEN, W. SOERGEL

19.11. Set E¥ equal to the algebra of functions ¢ : WU W sy — S satisfying
all congruences 19.10(4), (5). Define similarly E'; by replacing S by A. So
Proposition 19.10 says

E'} ~ EndcQ;.

We can embed the algebra E into E% as follows: For any £ € EY let £ be
the function on W U W'sy with
(w) (wso) &(w) forallwe W.

It is then obvious that £ satisfies 19. 10(5) and that 19. 10(4) is inherited from

the similar property 19.9(1) for £. So f isin EY, and € — § is easily checked
to be an isomorphism from E% onto the suba.lgebra

E’S ={¢ € E5 | ((w) =((wsg) forallwe W}. (1)

The elements ¢(* = {¥ with w € W will turn out to be part of a basis of E%
over S.
Set

E5(0)={C€ES|¢(w)=0  forallwe W}. (2)

This is obviously an ideal in E¢ with E%(0) N E’g = 0. We claim that
E$ = B & E5(0). (3)

Indeed, for any ¢ € EY the function {; on W U W s, with (3 (w) = (;(wsg) =
((w) for all w € W inherits 19.10(4) from (. So ¢y is in E%5 and ¢ — ¢ is in
E5(0).

It is easy to check that the function {*° with
¢*°(w) =0 and (*°(wsg) = whq, forallw e W 4)
is in E¢, hence in E¢(0). We can therefore define for each w € W:
¢ = ¢uee. ()

(For w = 1 this is compatible with (4) since ¢* = 1.) Our usual arguments
yield now the first two parts of:

Proposition: a) The S-module EY is free of rank 2|W|. The (* with w €
W UWsq are a basis of EG over S.

b) The S-module E¢(0) is free of rank |W|. The (¥*° with w € W are a basis
of E4(0) over S.

¢) We have a natural isomorphism E§ @g A = EY.

Proof: As far as c) is concerned, note that we can carry out the constructions
above also inside E'{. The claim follows now from 19.7(1) and 19.9(5).
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19.12. The description of the basis in 19.11 implies especially that the

multiplication with (°° is a bijection from E/'g onto E%(0). This can be seen

directly as follows. The injectivity is clear since all (*°(wso) = whq, are
nonzero and since S is an integral domain. To get the surjectivity, define for
a given ¢ € E4(0) a function  on W via

E(w) = ((wsg)(Whey) ™ forallwe W.

As soon as we know that £ € E we see that ( = ( ’05. Well, the congruences
19.10(5) imply that £(w) € S for all w. The congruences 19.9(1) follow from
19.10(4) using the same calculation as used for the £¥ following 19.9(4).

If we apply this construction to ((*°)? we get (Exercise!)

(€*0)2 = ¢ (haoC* = (a0, a¥)¢*). (1)

a€l

Since E% = Eg[( %] the structure of EY is determined by that of E' and by
this formula.

19.13. Let us now give another description of the algebra E'. Keep the
notations from 19.11-12. We can embed Eg into EY¢ as follows. For any
n € Eg define a function 7 on W U W by

N(w) =n(w) and 7f(wse) = N(wsa,) for all w e W. (1)
It is clear that 7 satisfies the congruences 19.10(4). Since

T(w50) = 1(WSay) = Nswae) = 7(w) = 7(w)  (m0d huay)
for all w € W, also 19.10(5) holds, so indeed 7 € E¥¢. In order to simplify

notation set
§' = Sq4q-

The map n — 7 is obviously injective and identifies Es with
Es={C € EY%|((wso) =C(ws')  for all w € W}. (2)
Write af = Zﬁez mgBY. We claim: If R is not of type A;, then
n% =(°* +me(®  forallaeX. (3)
(We use here the abbreviation n® = n*= for any o € .) The assumption on R

makes sure that £% = 5°«, so that both (** and 7 coincide on W. Since ¢oe
vanishes on W, both sides in (3) agree on W. We have n%(w) = wy — ww, for

273



H.H. ANDERSEN, J.C. JANTZEN, W. SOERGEL

all w € W where w, is the fundamental weight corresponding to «, cf. D.1l.e.
This implies:

o~

n*(wsp) = n*(ws') = we — ws'w,
= Wy — WWo + (Wa, @y YWha,

= n*(w) + mawhqy, = (**(wsg) + Ml (ws).

So both sides in (3) agree also on Ws,. For R of type 4, one has £°= = h1n®

and gets
= hacsa + Cso-

The mg have greatest common divisor 1, so (3) 1mphes that ¢* is in Es+ E’
Therefore EY is generated as an algebra by Es and E s, and the multiplication

is a surjective homomorphism Es®s ES — EX.
We have

{TIEEglnEE} {n € Es | n(w) = n(ws') forallwe W} = (Es)*

We can therefore refine the statement above and get a surjective algebra
homomorphism

Es®gy Es — E§  with n@E— ft. (4)

We want to show that it is an isomorphism.

Suppose that Eg is free of rank 2 over E%. Now EY is free of rank |W|
over S, therefore Es ® . EY is free of rank Q[SI/V| over S. On the other hand
S

EY is free over S of the same rank. Any surjective homomorphism between
free modules of the same finite rank is an isomorphism (in the commutative
case). So the map in (4) is an isomorphism.

If char(k) # 2, then Sy is free over (Si)* with basis (1, hq,). Suppose
that we are in Case 1 that p > h or in Case 2. Then 19.8(1)—(3) imply now

that Es, is free over Ef;'k of rank 2. We can develop the theory above also
over Sk (and over A). Now our remarks imply that (4) induces isomorphisms

Es, @(gs, e Es, — Eg, (5)

and N
EA ®(EA)"' Ef4 _’Ex (6)

(for k as above).
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19.14. We want to compute Hom¢(Q, Q2) and Home(Q2, Q) with @ and Q-
as in 19.10. We cannot proceed as in the proof of Proposition 19.3, because
the unknown units d; from 19.2(7) will no longer cancel. Instead, we shall use
the detailed description of @ = Vq@ and Q; = VqQ, that is provided by the
theory from Sections 10 and 13. Recall that we have described Q in 10.14.

The precise values of the aﬁ. , from 10.14(4) are given by 13.23(1); however,
they will turn out to be irrelevant for our present purpose.
Note that Q; = Q(s,),0(A) in the notation from 16.5. We get from 10.11

and 13.4 the following description: We have
Qa(wed) = Q(wer) = A% = Qy(wsga))
for all w € W; all other Qy()\') are zero. For 8 € Rt and w € W with
w3 # oy we get
Q2(wo)\, ,8) = Q(wo)\, /8)
and (in case w™!3 < 0)
Q2(wed — pB, B) = Q(weA — pB, B).

We shall not have to know Qs(wsgeA, 3) and Qa(wsgeA — pf3, 3) for our cal-
culations. For 8 and w with w™!3 = oy we get
Qo (wad, B) = AP(hg,0) ® AP(1, hg),
Q2 (wsge), B) = AP(hg,0),
Q:(sgwe, B) = AP(1,0) @ AP(0, hy),
Qa(sgwsge), B) = AP(1,0) @ AP (h51,1).

It is now easy to check that Home(Q2, Q) is identified with the set of all
maps £ : W — A such that for all 3 € RT and w € W:

&(spw) = &(w) (mod hp) if B#tw(a),

1.e.,
Home(Q2,Q) ~ E;. (1)

Similarly, one can identify Hom¢(Q, @2) with the set of all maps £ : W — A
such that for all 8 € R* and w € W

E(spw) =&(w) (mod hg) if B # tw(ap)

and
E(w) € Ahyay,-
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One checks easily that one gets an isomorphism

E:‘l P HomC(Qa Q2)9 f — g (2)
where (for all w € W) )
§(w) = §(w)hwao-

It should not come as a surprise that both Hom spaces are isomorphic to
E', ~ Endc@Q);, since we have (in the notations from 10.1) isomorphisms

adj, : EndeQ; — Home(Q2, Q)

and N
adj; : Home(Q, Q2) — EndcQ;.

The remarks in 10.13 imply that we take in (1) the identification arising from
adj, whereas in (2) we modify the identification from adj, and make it more
compatible with the grading. Note also that the discussion in 10.12 implies
that the map

End¢Q — EndcQ,, h— Th

corresponds to the inclusion of E4 into E;, and that the map
Enchl — Enchz, h— T’h

corresponds to the embedding of E'; into E'{ given by & — E as in 19.11.
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Appendix A

The computations in Section 11 lead to certain functions of the weights
involved. In this appendix we introduce notations for these functions and
prove some of their properties. In A.2-11 all terms are to be regarded as
elements of the fraction field of U°, in A.12-14 as elements of the ground

field.

A.1. Forallo € Rand XA € X set

() = { 1, if (\aY)<0;

0, otherwise.

We have obviously

(wa)(wA) = a(A)
for all w € W, and

(—a)(=A) =a(N)
Furthermore 1-a(), if (\aY)#£0
a(-A) = { 0=a()), if (A7av) o,
hence

(A a¥ya(=2) = (A, oY) (1 —a(N)).

A.2. Forall \,u € X and all o € R set in Case 1:

d(,ua )"a) = (Ha + (/\+p’aV)

and in Case 2:

[Ka; (1 + p, av)])a(”_”

d(“’ )\,Ol) = ([KQ; (>\+P, 01V>]
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Using A.1(4) one checks easily that

Ho + (n+p,2Y)

d(p, A, @) = Ho+ (A +p,a") d(A, p, o) (3)
o (Kot (u+ p.0%)]
_ [Ka; {p+p, 0" N
d(/.t, )\,a) = [A’a; (A +p’ a\/)] d()‘vﬂ7 ) (4)
A.3. We have
[K_q; —m] = —[Kq;m] (1)

for all & € R and m € Z, hence
[K—a; (A+ p,(—)")] = =[Ka; (A + p,2”)]
for all A € X. In the other case, we have obviously
H o+ X+p,(=a)Y)=—(Ha+ (X + p,a")).
Therefore A.1(3) yields easily
d(p, A\, —a) = d(, g, @)~ (2)
for all A\, u € X and o« € R.
A.4. One sees easily for all w € W and o € R that
w(Hoy+m)=Hyo+m  tesp.  w[Ky;m] = [Kya;m] (1)
for all m € Z. This together with A.1(2) implies
d(wep, we\, war) = wd(p, A, o) (2)
for all A\, p € X.
A.5. In Case 1 we work in characteristic p, so we have H,+m+rp = H,+m
for all r € Z. In Case 2 we have similarly [K;m + rp] = [Kq;m] since ( is a
p-th root of unity. This implies
d(p + pw, A + pw, o) = d(p, A, ) (1)
for all \, p,w € X, and o € R. We have obviously

A+ pp+p€pX = d(u,A\,a)=1 foralla €R. (2)
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A.6. Forall \,u,v € X and o € R set
ca(v, i, N) = d(p, v,0) 1A, p, @) (N, v, @).
Using A.2(3) resp. (4) one checks easily that always

ca(V, py A) = d(v, p,0) 7 1d(p, A, @) (v, A, ).

(1)

(2)

The formulas for the d terms in A.3-5 yield now formulas for the ¢, terms.

We get (for all A\, p,v € X and o € R)

c—a(Vypy A) = cal(vy b, )\)"1

— the proof here requires (2) — and
Cwa(Wel, Wept, weX) = wea (v, gy A)
for all w € W, and (for all w € X))
Ca(V + pw, 4 pw, A + pw) = ca(v, 1, A).

A.7. Forallwe W and A, u,v € X set

dprwy= [ dure)

a>0,w-1a<0

and

o= ] calvi, V).

a>0,w—1a<0

Comparing these definitions to A.6(1), (2), we see

Cw(Vy iy A) = d(p, v, w) 1N, pyw) (A, v, w)
=d(v, p,w) " d(p, N\, w) (v, A, w).

A.8. Lemma: We have for allw € W and \,u € X:

wd(p, A, w™t) = d(we, wep, w) L.
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Proof: We use A.7(1), A.4(2), A.3(2) to get

wd(p, \,w™t) = H wd(p, A\, a) = H d(wep, W, W)

a>0,wa<l a>0,wa<0
= H d(wed, wept, @)™t = d(weX, wep, w) .
a>0,w-1a<0

Remark: Using A.7(3) the lemma implies easily for all w € W and A, p,v € X:
Wey-1(V, ty A) = Cop(Wer, weps, wed) L. (1)

A.9. Lemma: We have for all3 € Rw € W and all A\, u,v € X:

Cap (WeV, Wept, we ) = w <cw-1‘.,,S (v, ty N)ew-1(v, fy )\)_1) .

Proof: Fix A, p,v and write ¢, = co(v, p, A) for all @ € R. Then A.6(4) and
A.7(2) imply

Wl ey, (Wev, wep, wed) = H Co-1gq = H Ca

a>0,35 <0 wa>0,swa<0

= H Ca H Ca

a>0,wa>0,sgwa<i a<0,wa>0,55 wa<0

= H Ca H c;t

a>0,wa>0,55wa<0 a>0,wa<0,sgwa>0

= Il e Il <
a>0,s5wa<0 a>0,wa<0
= Cy-144 (Vv 22 )‘)cw‘l (Va Ky /\)_17
using A.6(3) to get from line 2 to line 3.

A.10. Lemma: Suppose that 3 € R* and w € W with w™'3 simple. Then
we have for all \,u,v € X:

$5Cw(SgeV, Sgefl, SgeX) = Cu (Vs py A)esy (Vs 1y X)L eg (v, 1y A).
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Proof: Abbreviate again ¢, = co(v,,A). By A.6(4) the left hand side is

equal to
I cwa= II = II e II e«
a>0,w=la<0 spa>0,w=1s50<0 a>0,55>0,  a<0,s5a>0,
wlsga<0 w'lsﬂa<0

A root o with o > 0 satisfies w™!ar < 0 if and only if it satisfies w™'sgar < 0
and o # B. (Recall that w™!( is simple.) So we can rewrite the product as

-1 -1
Moo 0 ee- T o« 0 & I o
a>0,850>0,  a>0,85a<0, a>0,w a0 4>0,550<0, a>0,35a<0,
w™la<0 w_lsga>0 wla<o w”la>0,a#8

(We have used A.6(3) to replace the c_, by c3'.) In the last expression the

first product yields the ¢, term in our claim, the second and third product
yield the c;ﬂ1 term except for a missing factor c[;l. The claim follows.

A.11. If A + p is dominant, then @(A + p) = 0 for all @ € R, hence
dX,—p,a) =1=d(\, —p,w) for all « € Rt and w € W. (1)
If A+ p and p + p are dominant, then
cw( A, 1, =p) = d(A, g, w) ™! foralwe W (2)
by A.7(3), and

o (e, gty we(—p) = w(d(/\, " w—l)d(/\,ﬂ,w—lsy)‘l) 3)

for all ¥ € R and w € W by Lemma A.9. (Of course, w«(—p) = —p.)
A.12. Recall that ( is a primitive p—th root of unity in Case 2. In order to
avoid too many separate formulas for our two cases, we set ( = 1 in Case 1.
In that case all expressions (, and (,, to be defined will be equal to 1 and all
formulas involving these terms will be trivial.
For all A € X and o € R set

Ca(X) = (4=XeNTN and  z,(N) = (~1)PeTEN, (1)

We have then by A.1(5)

Ca(=X) = GNP and  za(=A) = 2a(W)(-D)M. (2)
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For all A\, u,v € X set

Calv, 1, X) = Calp = V)Ca(A = p)Ca(A = )7 3)
and
Za(Vy 11, A) = za(B = V)2a(A = p)2a(A = V). (4)
Then (2) implies
Cal¥s 1, 2) = Ca(v = m)Calpt = ACal(v = X) 7 (3)
and
Za(V 1, A) = 2a(V — p)za(p = M)za(v = A). (6)

A.13. The formulas in A.1 imply
Coal®X) = V) = Coal=A)  and  Zya(wd) = za(A) = 2-a(=N)
forall A € X, o € R, w € W. This implies for all A\, u,v € X and a € R that
Cwa(Wer,wept,wed) = (o(v, g, A)  and  zya(Wer, wep, wed) = z4(v, i, A)

for all w € W, and — using A.12(5), (6) — .
ol i) = Calr ) and  z_a(m o A) = 2a(m N, (2)

We have obviously for all w € X:

Ca(vtw, ptw, A +w) = Ca(v,p,A)  and  za(v+w, ptw, Atw) = Za(V’#’()\g)-

A.14. Forall \,u,v € X and w € W set

G,V = [ Calvimd) and zu(mp,N) = [ zalwm ).

a>0,w-ta<0 a>0,w-1a<0
(1)

A calculation similar to the one in A.10 shows for all w € W and 3 € R*
with w3 simple

G N Culsperysgepssged) = [T & I G @

a>0,s5a<0, a>0,85a<0,
w™la<o a#B,w la>0

where we use the abbreviation (o = (o(¥, ity A).
If we imitate the calculations in A.9, we get

Zog (Wol, Weph, We ) = 2(g,w)~1 (¥, py A) 2451 (¥, 1, A). (3)
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Appendix B

In this appendix we shall use some results from Lusztig’s new book [Lul0]
to choose extremal weight vectors in the finite dimensional simple modules
for quantum groups and to give explicit formulae for the action of the braid
group on these vectors. (In the simply laced case these formulae can also be
obtained from [Lu9], Section 5.)

B.1. Asin 1.3 we let U; denote the quantized enveloping algebra corre-
sponding to our root system R. Recall that we agreed in 1.3 to choose the
braid group operator T, on U; in accordance with the convention in [Lu7].
(In [Lul0], Chapter 37 this operator is denoted T, where i corresponds to
a.)

Let M be an integrable U;—-module. For each simple root o Lusztig
introduces (in [Lul0], 5.2.1) an operator P(s,): M — M by

Pode= Y (DR EORD
a,b,c;a—b+c=(\,aV)

for all z € M. (In [Lul0] this operator is denoted by 7] _;.) We then have
the following formula, see [Lul0], Proposition 37.1.2

P(s4)(Ts, (u)x) = uP(sq)(x) forallu e Uy, x € M. (1)

Moreover, we have by [Lul0], Proposition 5.2.2: If x € M, satisfies E,z = 0,
then n = (v,a") > 0 and
P(sa)x = Fén)x, (2)
and
P(sa)F{Mz = (—=1)"w ™"y, (3)

B.2. According to [Lul0], Theorem 39.4.3, the P(s,) satisfy the braid
relations. So we can define for each w € W with reduced decomposition
w = §182 -+ S, the operator

P(w) = P(sy)P(s2)--- P(sn)
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that is independent of the choice of decomposition. We have of course P(1) =
id, and B.1(1) implies

P(w)(Ty-1(u)z) =u P(w)z  for all z € M and u € U. (1)

Suppose from now on that M is simple with highest weight w. Choose a
highest weight vector z; and set

Zy = P(w)zy (2)
for each w e W.

Lemma: FEach ., has weight ww. One has for all w € W and all simple
roots a:

_ ) Ts,w ifw—la > 0;
P(sa)xw - { (_1)(wwvav)vda(ww,av)xaaw, Zf w_la < 0, (3)
and v
F{voe Ny, =g,  ifwla>0, (4)
and v
E((]_(w“"’a ))xw — xsa,w Zf w—la < 0- (5)

Proof: We get the first part by induction on I(w). If the claim holds for a
given w and if « is simple with w™'a < 0, then n = (ww, ") > 0 and

To,w = P(sqw)zy = P(so)P(w)z1 = P(34)%w = F{V x4,

using the induction hypothesis, and B.1(2) for the last step. So z,, , has
indeed weight s,ww and we have also established (4) and the first case in (3).

On the other hand, if w™!a < 0, then —n = (ww,a") < 0 and
P(sq)xy = P(sa)Fén)x%w = (=1)"v "oy,

by B.1(3). This yields the second part of (3). Since EMFMz, v = 24,0,
also (5) follows.

B.3. Proposition: We have for all w,y € W:

P(y)xw - C(ya w)xyw

where
cywy= J[ (—utnleer (1)

v>0,yv<0,
w™ly<0
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Proof: We use induction on the length of y. We have obviously ¢(1,w) = 1
for all w € W, and B.2(3) implies for any simple root o that

_ (_Uda)(ww,av), fwla < 0; 9
(sar ) {1, if w=la > 0. @)
For y # 1 there is a simple root a such that s,y is shorter that y. Since
obviously
c(y, w) = c(Sa; Sayw)c(say, w),

induction and (2) yield the claim.
Remark: Using the notation from A.1, we can rewrite (1) as

cwy= I (-otlmrime, ®)

v>0,yv<0

B.4. Lemma: Let y,w € W and a simple with m = (—ww,y(a)") > 0.
Set B = yo. Then

T (BS™)ew = ey w)e(y™ s5w) " 2op -

Proof: We have

T,(E{™)xw = P(y™) " (B P(y™")zw)  — by B.2(1) —
=c(y™, w)P(y ) HE{Vzy-10)
=c(y ", w)P(y™") as,y-1w  — by B.2(5) —
=y~ w)e(y™ ysay T w) T 2yg,y-1w

using Proposition B.3 twice.

B.5. Forallve X,3€ Randy € W set

(v, B,y) = H (_1)(%7")V(V)—(sa",*/vﬁ(sw) (1)
>0,y 1v<0
and
o, By =[] i ()70 = (35v,7" )T (35v)) 2)
>0,y 14<0

We have obviously:

(v, 8Y) =0 = e(v,8,y) = v(v,8,y) = 1. 3)
We have also
e(sgv, B,y) = (v, B,y) (4)
and
o(sgv,B,y) = (v, B,y) ™" (5)

Indeed, if we plug sgv into the definitions (1), (2), the exponents get multiplied
by —1.
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B.6. Proposition: Let 8 € RT. Suppose that we have y € W with o =
y~18 simple and that we set Eg = Ty(E,) and E_g = T, (F,). Let w € W.
Ifw™1B <0, then

E{mB Dy = e(ww, B, y)o(ww, B, y)T sy w, (1)

If w='3 >0, then

EYGP N g, = e(ww, B, y)v(ww, B,Y)T ;0. 2)

Proof: (1) is an immediate consequence of Lemma B.4 and B.3(3). We get
(2) from (1) using B.5(4), (5) and the fact that E},m)E(_':,;)xw = 1z, where
m = (ww, 5V).
Remark: If (ww, 3Y) = 0, then we get x,,, = 2. More generally, if ww = vw,
then z,, = z,.

B.7. Let 3 € Rt and y € W with o = y~!3 simple. Consider the definition
B.5(2); we get for all v € X

V= V=
v(v, B,y) = H oy ()W) H vy () F(W)
¥>0,y~14<0 357>0,y"1s5v<0

by substituting sgy for v in the second product. Since y~'sg = soy~' with
« simple, we see that y~'sgy < 0 if and only if y=!'y < 0 as long as v # £/3.

We can therefore replace the condition in the last product by

sgy >0,y 'y <0, v # -3

Now the terms with sgy > 0 in the first product and the terms with v > 0 in
the second product cancel. We get

LR | ARG | AR

v>0,33v<0, v<0,85v>0,

vy 1y<0 Yy~ 1y<0,9# B

We substitute —v for v in the second product and get

v(v, B,y) = H vy (v YA (v) H vy (Y )F(=v) (1)

v>0,35v<0, v>0,85v<0,
¥~ 1y<0 v#£B,y~ >0
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Similarly, one gets

(v, B,y) = H (=1) w7 7®) H (=1) 7 M(=0)

¥>0,35v<0, v>0,85v<0,
¥y~ 1y<0 1#£B8,y~ y>0

Using A.1(5) one can rewrite this as

ew.By)= [I e I (~per.

7>0)3ﬂ7<01 7>0)Sa“/<0,
1#£B ¥#£B,y~ >0

(2)

3)

B.8. We can now move away from Q(v). Since both P(w) and its inverse
involve only divided powers of the E; and F; as well as ordinary powers of the
K; and v, they preserve Lusztig’s lattice over Z[v, v~!]. This implies that the
Z, are also bases of their weight spaces in this lattice. If we now specialize v,
say to a root of unity (such as 1), we get the action of the appropriate divided

power of T,(E,) on the extremal vectors in the specialized module.
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Appendix C

In this appendix we want to prove a certain property of coproducts A(Ep)
with 3 € R. For %03 simple this coproduct is part of the definition of A,
cf. 7.1. For arbitrary 3 the formulas get more complicated and there is no
closed formula in general. We shall use the approach from [LS] to these
coproducts, cf. [LS], Proposition 2.4.1. However, they introduce the Hecke
operators T; in a different way from Lusztig (in [Lu3], 5.1 and [Lu5], 1.2).
Therefore we include for the benefit of the reader a self contained proof of the
crucial step (Proposition C.4). This proposition can also be found in [Lul0],
see Proposition 37.3.2. (Note that our T, corresponds to Lusztig’s T;'; and
that our R, is obtained from his L! by applying T, ® T,.) One may also
compare the approach in [KR], Section 7, that is similar to that in [LS].

C.1. Set A = Q[v,v™'] and let U4 be Lusztig’s A-form of the quantized

enveloping algebra U; over Q(v) (generated by all ES, F{™ and K=" with
a € Landn € Z, n > 0). It is a free module over A with a PBW-type
basis. All T, induce automorphisms of U4, and A induces a comultiplication
Ua—=Ua®aUa.

Let A’ be the local ring of A at the maximal ideal generated by v — 1.
Set Uy =Uq @4 A'; the Ty, and A extend to Uy:.

In the subsections C.2 — C.6 we shall work with Uyg. In C.7 we shall
describe how to make the transition to the algebra U that we consider in
Case 2.

C.2. Fix (until C.4) a simple root a. We shall write T, for T, . Set

Ro=) a,K;"E{ ® F{"K] (1)
n=0
where
an = an(@) = (=)D 2 (yle —yde )], @)

Here R, is an element of the completion of the .A'-algebra Uy ® Uy with
respect to the maximal ideal A'(v—1) of A'. Note that a,, is contained in the
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n—th power of that ideal. We have the following iteration formula for the a,:

obviously ag = 1. Note that we can rewrite (1) as

Za,, (F{M) @ T,(E(™) (4)

n=0
since To(Ey) = —Fo Ky and To(Fy) = —K;'E, and
(FoKo)" = v mn"Ddaprpn and  (K7'E,)" = o™ Ddea - pn,

C.3. An elementary calculation shows that R, has an inverse R;' in the
completion of Uy ® Uy given by

Z anK;"E™ @ F{M K™ (1)

n=0
where @, is the image of a, under the automorphism of A over Q that maps
v to v71, i.e., we have

Ty = ap(a) = %"V (yle —y=d )]y (2)

There is an involutory antiautomorphism 2 of Uy that maps Es to Fjg
and Kg to K;l (for all simple roots 3) and v to v™!, cf. [Lu7], 1.1. It satisfies

AoQ=(0Q®NoooA (3)

where ¢ is the automorphism with 0(a ® b) = b® a. Comparing (1) to C.2(4)
one checks easily that

R;'=(0®0)o0(R,). (4)
C.4. Proposition: We have A(To(z)) = RN (Toa @ Ta)A(z)Ry for all
z € Uy.

Proof: Let us first show: If the claim holds for z, then it holds for Q(z). B
[Lu7], 3.1, Q commutes with T,. So we get using C.3(3), (4)

ATy Uz)=AQT,(z) = (2R Q) 0 A Ty(x)
=(Q®Q) o(R;" - (Ta ® Ta)A(x) - Ra)
= (2@ Q)(0(R;") - (Ta @ Ta)o A(z) - 0(Ra))
=(Q@Mo(Ra) (20 Q)(Ta ® Ta)o Alz) - (AR Q)a(RY)

(since 2 ® 2 is an antiautomorphism)
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=R (T, ®T,)(Q® Qo A(x) - Ry
= R (Ta ® Ta)A Q(z) - Re

It is obviously enough to prove the claim for generators of Uy4:. For
x = Kg (with 8 € R) we have A(z) = z ® z. Since clearly R, commutes
with z @ z the claim follows easily for x = Kg. It is therefore enough to look
at © = Eg with £ a simple root. Since Q(E3) = E_z the argument above
shows that we can assume that 3 is a simple root. We have now to check that

Case 1: (3,a") = 0. In this case T, (Eg) = E and also T, (K3) = Kp so that
the claim comes down to checking that R, commutes with Eg® 1+ Kz ® Ep.
This is clear since (3,a") = 0.

Case 2: (3,a") =2, i.e., « = 3. Let us drop the subscripts o and also let us
pretend that d = d, = 1 (i.e. we replace v? by v). We have T(E) = —FK
and A(T(E)) = —(FK 91+ K ® FK). Also, (T®T)A(E) = ~(FK ®1 +
K~!' ® FR), so that the relation we have to check is

RFK©1+K@FK)=(FKN®1+ K™ ® FK)R. (2)
We compute

K "EMWFK = K~ (FE™ + [K;1 - n]E" VK

I"—n+203(1—n) — —nyl-n

— FIX—_"+1E(n) + E(n—l)’

v—uv!
and
(K "E™ @ FWE™) (K @ FK) = v™*"[n+ 1]K "1 E™ @ Fn+) g1,
So for the left hand side in (2) we get the following contributions
an FK'~"E™ @ FM K™

—3n

(@nt1 —— + apv™*"[n + 1) K17"EM™ @ PO+ frntt
v—

-n

—0p41 II'\'_"_IE(") ® F(n+1)I"n+1.

v—v

Note that by C.2(3) the middle term is zero. For the right hand side in (2)
we compute

(FK @ 1) (K™"E™ @ FWR") = FR~"t1 E™ g p( fn
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and
(KT'@ FK)(K"E™ @ FWK™) = v 2"[n + 1)K "1 E™ @ ) g+t
We now compare the contributions from this with the above; using C.2(3) we

discover that the terms do indeed match up nicely.

Case 3: (B,aY) = —1. Again we drop the subscript o and we shall write
E' = Eg and similarly for F' and K'. We have d = d, = —(o, ") and
dg = 1. Let us also set By = T(E') and Ky = T(K') = K'K. Then
Ey=—-EE' + v %E'E and

A(E)=E @1+ K ®Ey— (v —v )K'EQ E'.

Moreover,
(TR®T)A(E') =Ey @1+ K, ® Ep.

It is easy to check that R commutes with Ey ® 1. (Use C.2(4) and observe

that T(F(™) clearly commutes with T(E').) So the claim is equivalent to the
relation
R(Ky®E;— (v —v)K'EQE') = (K, ® Eo)R. (3)

For the left hand side we observe
(K"E™ @ FWK™) (K, ® Ey) = v ""K'"™"K'E(™ @ F("NK"E,
and
(KT"EM™W @ FWK"YK'EQE') =v™"[n+ 1),k "K'E"+t) @ F(WK"E!,

For the right hand side we need the following commutation formula between
F and Ej:

E F™ = pM 4 d(n=2) p(n—1) pr—1 gt (4)
This gives

(Ko @ Eo)(K™"E™ @ FWEK™) =y~ i"K!""K'E(™ @ F("NK"E,
+ UZd(n_l)I(l_nK,E(n) ® F(n_l)I{n_lE'

and comparing these contributions we again find that they match. (Recall

C.2(3).)

Case 4: (B,a¥) = —2. We shall use the same abbreviations as in Case 3
except that have now d =d, =1 and dg = 2.
In this case we have

Ey=E®E —y 'EE'E+v?E'E® and K,=K?K'.
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Hence

A(E) = (E®P®14vEK®RFE+K?QED)E' ®1+K'®E')
~-vH{E®1+KQE)E'®1+K' QFE)E®1+KQE)
+vHE' Q1+ K'@ E'Y(E® @ 1+vEK @ E + K* ® E®).

When we combine the product of the first two terms in the first product
with the product of the three first terms in the second product and with the
product of the two first terms in the third product, we get Eq®1. Likewise the
combination of the last terms in the 3 products give Ky @ Ey. The following
terms cancel out: the combination (3x1,2x1x2,1x3) (this means the product
of the third and first term in the first product together with the product of
the second, the first and the second terms in the second product etc.), and
the combination (2x1,1x1x2+2x1x1,1x2). From (—,1x2x2,2x2)
we get the contribution

v 3(1-v)K'KEQ® E'E
and from (2 x2,2x2x1,-)

v} (v* - 1)KK'E® EE'.
So this combines to

v !'(v? -1)KK'E® (EE' — v *E'E).
Finally from (1 x 2,1 x 2 x 1,2 x 1) we get
(V= 1)(v? = v HK'ED QE' = v(v—v ) 2] K'E® @ F,
so altogether we find that A(Ey) is equal to
Ey®1+Ko®Eo+(v—v ') KK'EQ(EE'-v 2E'E)+v(v—v"')?[2] K' ED QF'.
We also need to see how Ey and F(™ commute:
E)F™ = EOFWE — v 'EE'EF™ 4 v E'E@OF™ = a4 b4,

where
B,

a= F(n)E(Z)EI +F("‘1)[K,—n]EE' +F(n—2) |:I\’, 22— n]
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b=—v 'EE(FWE + F"V[K;1 - n))
— v Y (FWEE'E 4+ F"V[K;1 -n|E'E+ F"Y[K;1 - n]EE'
+ F"=9[K:2 — n][K;3 — n]E")
and

= v 2(FMWE'E® 4 F*-D[K:2 — n]E'E + F("~2 [I‘ ) 42‘ ”] E).

So we see that EgF(™ is equal to

F™WE, + F"Y([K; —n] — v"![K;1 - n])EE'
— F" Y7 K;1 - n] - v }[K;2 - n])E'E
+ Fn=2)( [I‘ ; 22_ "] v YK 2 - n][K; 3 - n]4+v? [I‘ ; 42" "’] VE'
=FWE, —v" ' F" VKN EE' — v ?E'E) + v*" *F" K2 E

Again it is easy to check that R commutes with Ey ® 1. The above formula
for A(Ey) shows that our claim reduces to show that

R(K¢®Ey+(v—v")KK'EQ(EE'—v™2E'E)+v(v—v ") [2] K'EPQE') (5)

is equal to (K, ® Eq)R. We use the above formula for EqF(™) to compute
(Ko ® Ep)R and get the following contributions

an K> "K'E™ @ (v FWK"Ey — o 1PV K=Y (EE' — v 2E'E)
+ ,U4n—6F(n—2)I(n—2).
In (5) we get
an(v"IK*"K'E™ @ FIWK"E,
+@w—-v YHn+ 1K "K' EM) @ FWKYEE' — v ?E'E)

+ v(v — v~ 220" ————————[n + 1[]2[]n +2] K"K'E"Y @ FWENE'.

So the terms match if and only if a, satisfies
-0 = ap_1 (v —v7h)[n]

and

an,U4n—6 — an_z(v _ v—1)2 2n— B[n 1][n]
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But these relations are indeed satisfied by our a,, cf. C.2(3).

Case 5: (3,aY) = —3. In this case d, = 1 and dg = 3. The proof proceeds
along the same lines as in the last case. We shall write down only the crucial
formulas and leave the rest to the reader. We shall use the same abbreviations
as before. We have

Ey=T(E)=v"E'E® —v ?EE'E® + v 'E®DE'E - E®F'
and Ky = K*K' and
A(Eg) = Eo @1+ I'\'g ® EO
—(v=v HYK?’K'E® (E®E' —v ?EE'E + v *E'E®)
—v(v—v )2JKK'E® ® (EE' — v~ *E'E)
— (v —v ) 2]BK'E® @ E'
and
EyF™ = FME) 4 o"F-UK~YEDE' — v 2EE'E 4+ v *E'E®)
— It =D K=Y EE — v E'E)
+ v3n-—12F(n—3)I"—3EI.
C.5. We shall say that © € Uy ® Uy has weight (p,v) if it is contained in

(UA’)u ® (UA’)V-

Proposition: Let o be a simple root and w € W with § = wa > 0. Set
Eg = Ty,E,. There are weights v; with 0 < v; < B aend w™'y; < 0 and
w1 (B = ;) > 0 for all j such that

A(Eg)=Es®1+Ks®@Eg+ Y (1)
i
with x; € Uy @ Ugr of weight (7]'7[3 - ’Yj)-

Proof: Let w = s;s2--+s, be a reduced decomposition of w with s; = s4,
where «; is a simple root (for 1 < i < r). Set S; = Ty, @ Ty, and R; = R,
for all . Proposition C.4 applied r times yields

A(TwEs) =R (Ty ® Ty)A(Es) - R=R™ - (Es@1+ K3 ® Eg)- R (2)

where

R=(85ySr_1)(Ry) - (S1S2)(Rs) - S1(Rs) - Ry. (3)

Set B; = s152---si—1a; for 1 < 4 < r. Then the §; are exactly the pos-
itive roots v with w™'y < 0. The definition of the R, implies that each
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(8152 - -+ Si—1)(R;) and each (5152 - - - Si—1)(R;) ! has the form IQ1+Y o2 | yn
with y,, of weight (n3;, —nf3;). If we now evaluate (2) we get Eg @1+ KgQ Eg
when we multiply all the 1®1 terms. Besides that we get from E3®1 elements
of weight (84> 1_, nifBi, — > ., ni3;) with all n; > 0 and at least one n; > 0.
Similarly, we get from K3 ® Es elements of weight (3°._; ni3:i, 8— > i_, niBi)
with all n; > 0 and at least one n; > 0. However, A(Ej) is contained in
U¢ A' U +, ® U7/, so after cancellations only terms of weight (7,3 — ) with

<7 and OA < B — v can survive. This shows that all contributions from
E,g ® 1 will have to cancel and that only contributions from K3 ® Eg with
0<vy=>!_,nB <P can survive. We have then w™ly =3 1_ nw™!g; <
0, whereas w™!8 = o > 0. This shows also that ¥ < 3. Finally we have
wl(B-—v)=a-wly>0.

C.6. Corollary: Let o be a simple root and w € W with = wa > 0. Set
E_3=TwE_,. Then there are weights ’y;- with —3 < v; < 0 and w_l’y} <0

and w= (=B —7}) > 0 for all j such that

AE_g)=E_s0K;' +10E_5+Y (1)
J
where y; € Ug @ Unr has weight (’7;-, -0 - ’y;)

Proof: We get this from C.5 using the involutory antiautomorphism €2 as in
C.3. Besides C.3(3) we have to use that 2 maps a weight vector of weight
to a weight vector of weight —v and that it commutes with T,.

C.7. It is clear that C.5(1) and C.6(1) extend to Ug C Uy since Uyg ®
Ug C Ugy @ Uy and since A and the T, on Uy are the restrictions of the
analogous maps over Uy. It then follows that C.5(1) and C.6(1) hold also in
Us = Us @4 k (where we regard k as an A-algebra via v — () and in the
subalgebra u of Us, cf. 1.3.

Let us now look at the algebra U from 1.3. The formulas in 7.1 for A
imply for all p > 0 that

A(UN) ¢ @ KU @(UY), (1)
0<v<y
and
AU =) € B U )@ U )k (2)
0<v<np

We have a canonical map f : U — u, cf. 1.3. It is compatible with A and
each T,. It induces isomorphisms Ut — ut and U~ -~ u~. Since weight
space decompositions in U and u are direct and since the K, with v € X are
units in both rings, it follows that f maps the right hand sides in (1) and (2

bijectively to the analogous objects in u. This implies that C.5(1) and C.6(1

hold also in U.
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D.1. In [KK], 4.20, the authors define for each w € W a function
W —-8Sc=5®zC, (1)

where S is the symmetric algebra of the Z-module ZR. Kostant and Kumar
work in that paper with Kac-Moody algebras over C. We can apply their
results to the special case of a complex semi-simple Lie algebra with root
system R. We can then identify Sc as above with the symmetric algebra of
the dual of a Cartan subalgebra of that Lie algebra (and that is what Kostant
and Kumar use).

For our purposes a minor change in notation will be useful: We define
for all w € W:

n“:W —Sc, with p¥(z)=¢Y (a7%) (2)
for all z € W. The following properties gfor all w € W) of n* are immediate
translations of [KK], Prop. 4.24(a), (c), (d):

a) If x € W with n¥(x) #0, then w < z.

b) n*(w) = Ha>o,w-1a<0 .

¢) Each n*(z) with x € W 1s homogeneous of degree l(w).
d)n'(z)=1forallzeW.

e) If « 18 a simple root, then

8

n°e(T) = wa — Twe forallz e W,

where wq 18 the fundamental weight corresponding to «.

Though d) is not stated explicitly in [KK], 4.24, it is an easy consequence.
(We can also use D.2(4) below.)

We use in a) the Chevalley ordering (often called “Bruhat ordering”) of
W. For more details on this ordering, we refer to [Hu3], 5.9.
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D.2. We define for each simple root o an operator A, on all functions f
from W to the fraction field of S¢ by

(Aaf)(w) = -f(ﬂ"’%—;—f(—@ for all w € W. (1)

Now [KK], 4.24(b) implies-for all w € W and all « simple

w_ 0, if wsy > w;
Aar” = {17"’3“, if wsy < w. (2)

More explicitly, we have for all w,z € W and all simple roots «

Wips ) = n"(z), if l{wsy) > (w);
0" (5q) {nw(a:) + (za)n?=(z), if l(wsy) < (w). (3)

We can express the first equation as

w

san¥ =1 if o simple with w < ws,. (4)
We use here the operation of W on functions f on W given by
(wf)(z) = f(zw) for all w,z € W. (5)

D.3. We can use D.2(3) to compute each n*(z) inductively. We use first
induction on w starting with w = 1 given by D.1(d). Then we use for each w
induction on z starting with z = 1, i.e., with (1) = 0 for w # 1 by D.1(a).
If x # 1, then we choose a simple root « with zs, < z; then apply D.2(3) to
x54 1nstead of z and get n*(z) in terms of n*(xsy) and — if wsq < w — of
n¥*«(xs4). This formula shows especially:

Lemma: Each n" takes values in S.

Remark: We leave it to the reader to show more precisely the following (by
induction on r): Suppose that & = s1s2---s, with s; = s,, for some simple

root o;. Then
Z H 5182 8§, -1 a,y) (1)

i v=1

where the sum is over all sequences i = (i1 < iz < ... < ¢;) with 4; > 1
and 4; < r such that w = s;,8;, - s; is a reduced expression of w. (Here
l=1l(w).)

One can, alternatively, use (1) to define the n*. The main work is to
show the independence of the sequence chosen for . Once that is done, the
proof of the other properties (mentioned above or below) is easy.
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D.4. Let wy be the longest element in W. We have by D.1(a), (b) for all
reW
" (z) = {H"” S (1)

0, otherwise.

Lemma: Let w,x € W and o € Rt. Then

n”(sqz) = n*(z) (mod Sa).

Proof: We use induction on /(w) from above. The case w = wy is obvious
by (1). Suppose that w # wy and choose a simple root 3 with wsg > w.
Let x € W. If a = 203, then sqx = xsg and Agn™ = 0 implies n*(z) =
n*(zsg) = n*(sqx). Suppose now that a # 3. It is enough to prove

n"(sax) = 0"(x) (mod S[(zB)7", (sa2) ™ ).

Well, we have n* = Agn® where v = wsg, hence (using the induction hypoth-
esis for the second step)

n'(saxsg) —n°(sa) n°(zsg) —n*(z)

7¥(sa7) = n%(x) = 5aD B
_ n’(zsg) —n¥(x) _ n*(zsp) —n°(x)
B Saxf ]
= (n"(xsp) — n”(x))(sa% ~ %) =0 (mod a).

D.5. Set

Es={f:W — S| f(saxz) = f(z) (mod Sa) forallz € W and o € R(})
1

Lemma D.4 says that n* € Eg for all w e W.
Lemma: The n* with w € W are a basis of Es as a module over S.

Proof: It is clear by D.1(a), (b) that the n* are linearly independent over
S. We have to show that they generate Fs. Choose a total order on W
compatible with the Chevalley order. Let f € Es with f # 0; let w € W be
the smallest element with f(w) # 0. We want to use induction (from above)
on w in the total order to show that f is in the span of the n*. We have
saw < w for all & € RT with w™'a < 0, hence f(sqw) = 0 and f(w) = 0
(mod «). Since the @ € RT are prime in S and pairwise not multiples of each
other, we see that f(w) is divisible in S by the product of all & > 0 with
w™la < 0, ie., by n*(w), cf. D.1(b). Let a € S with f(w) = an®(w); then
g=f—an” € Es and we can apply induction.
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D.6. It is clear that Eg is closed under multiplication. So any product n*n¥
is a linear combination of the n*. Obviously

77177“’ =n¥ forallw e W. (1)

Besides that, let us mention only a special case that is the translation of
Proposition 4.30 in [KK]. One has for all w € W and all simple roots a:

e =0t (WP + Y (wwa, BV (2)
B

w—>w

where we use the notation w—"-w’ from [BGG2] to indicate that 3 is a positive
root with w' = sgw and I(w') = I(w) + 1. (For the general case, see [KK],
4.31.)

D.7. We can define E 4 for any S—-algebra A by replacing S in D.5(1) by A. If
A is an unique factorization domain, and if the greatest common divisor in A
of two distinct positive roots is equal to 1, then we can generalize Lemma D.5
to E 4. Strictly speaking, we have to replace any n* by its composition with
the structural map S — A, but by abuse of notation we call this composition
again n".

Let k& be any field, but suppose that char(k) # 2, if R has two root
lengths, and that char(k) # 3, if R has a component of type G2. We can then
apply the discussion above to A = S = S @z k, cf. the proof of Lemma 9.1.
Note that we get especially

Es, ~ Es @z k. (1)

We can regard Si as the symmetric algebra of the vector space ZR @z k. We
denote the homogeneous components of this graded algebra by S} (r > 0), and

set Si = @D, Sp- We extend the notation (p,a¥) to all u € S = ZR®z k
such that so(p) = p — (g, @¥)a (for all € R).

Suppose that G is a connected semisimple algebraic group defined over k
with root system R, and suppose that T is a maximal torus in G, defined and
split over k. If char(k) = O or if char(k) = p > 0 with p prime to the index
of connection of R, then we can identify Sy with the symmetric algebra of

Lie(T)*. If G is of adjoint type, then this holds without restriction on k. (The
identification is supposed to identify the roots and to be W—equivariant.)

D.8. We keep our assumptions on k and the notations introduced in D.7
until the end of this appendix. For all a € Si the map F(a) : W — S with

Fla)(w) =wa  forallweW (1)
takes values in Eg, since

sqwa —wa =0 (mod Ska) foralla € Rand w € W.
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So there are cy(a) € Sk such that (for all a € Sg):

Fla)= Y cula)r™ 2)

weW

For example, one has for all 4 € S}

F(u)=pn' = > (g,a)n’. (3)
a€X
If we look at F(a)(1) = a and F(a)(sq) = Saa, We see that
ci(a) =a and ¢4, (a) = 2a87% foralla €. (4)

(Use that n*(1) = 0 for w # 1, that n*(sq) = 0 for w # 1, 54, that n*(1) =
n'(se) = 1, and that n°=(s,) = @, cf. D.1.) For all a € S} all F(a)(w) are in
Sk- So D.1(c) implies

a €S; = cyla) € S,:_l(w) for all w e W, (5)

where Si = 0 for i < 0.
We have for all 4 € ZR and a € Sk

F(ap) = F()F(a) = (' = 3" (w,a¥)n*) 3 cula)n®
a€X weW

by (2) and (3). We can evaluate the last product using D.6(1), (2). If we
compare coefficients with F(au) = > cw cw(ap)n®, we get

culap) = w(p)ew(a) = Y (W', fY)ew(a). (6)

D.9. Define the Demazure operator A, : Sy — Sk for a € ¥ by

S — a

Ao(a) = for all a € Sk. (1)

(This differs from [BGG2] or [Dem] by a minus sign.) Define for all w € W
the operator A,, via
Ay =Aq, 0Ag, 02 0A,, (2)

for any reduced decomposition w = $4, Sa, * * * Sq,, of w, cf. [BGG2] or [Dem).
Now [BGG2], 3.7 implies (taking into account that our convention differs by

(=1)"™ from theirs)
Aw(ap) = w(m)Au(a) = D (w'n,0Y)Aw(a) 3)

) B
w —w

for all @ € Sy and p € ZR. The ¢, satisfy by D.8(6) the same formula. We
get now by induction on the degree of a
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Lemma: One has ¢y, = Ay for allw e W.
(Note that A, (u) =0 for p € S} and w with I(w) > 1.)

Remark: The definition of the A, makes it clear that there are elements
by (w') in the fraction field of Si, independent of a, such that

Aw(a) = ) by(w')w'a (4)
w' eW
for all a € S. A priori, these b, (w') might depend on a reduced decomposi-
tion of w. But we can regard the w € W as characters on the multiplicative
monoid of Si with values in the fraction field. This yields the necessary linear
independence that says that (4) determines the b, (w') uniquely. If we plug
(4) into D.8(2) using the lemma we get for all w; € W and a € Si:

wia = F(a)(w1) =Y Aw(@)n®(wi) = Y (Y bu(w)n®(w;))w'a.
w w'eW weW
Using again the linear independence we see that the matrix with entries n*(w')
is the inverse of the matrix with entries by (w).

D.10. Denote the augmentation ideal of Sx by m. Set
Ey = Es, /mEs, ~ Eg, ®g, k. (1)

Denote the canonical map Es, — Ej by f — f, denote by F : Sy — Ej the
composition of F' with this canonical map. Then F is given by

F(a) = Z Ay(a)n®  for all a € S}. (2)
l(w)=r

(and for all ). The n¥ are a basis of Ex. In [Dem], Cor. 4 de la Prop. 3 the
author considers a map from Sy to an algebra H with a basis (zy)wew given
by the same formula (2) with n* replaced by z,,. Provided that char(k) is 0
or prime to |W|, Demazure shows (Thm. 2) that his map is onto and has as
kernel the ideal generated by (Sj)". Assume that this assumption on k is

satisfied. Then F : S; — Ej is onto and induces an isomorphism of Ej with
the covariant algebra. The graded Nakayama lemma implies now that

~

F:8,® 58 — Es, with F(a®b)(w) = w(a)b (3)

(for all a,b € Sy and w € W) is surjective. It factors clearly over a (surjective)
homomorphism

d:5; ®S’:V Sk — Es,. (4)
Now @ is Si-linear, if we let Sy act on the tensor product via multiplication
on the second factor. Since Si is free of rank |W| over S}V — for our &,

cf. [Bou2], chap. V, §5, n® 5, Thm. 4 — both sides in (4) are free of rank |W]|
over Sk, and we see:

Proposition: If char(k) = 0 or if char(k) = p > 0 with p prime to |W|, then
D is an 1somorphism.
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Appendix E

Throughout this appendix let Y be an abelian group. From E.6 on let &
be a field.

E.1. We shall generally denote graded pieces of a (Y-)graded abelian group
M by M,, i.e., write M = @,y M,. A subgroup N of M is called homoge-
neous, if it is the (direct) sum of all N N M,; it is then naturally graded. For
any Y-graded abelian group M as above and any u € Y we define M (u) as
M with the grading shifted by u, i.e., with

(M{p))y =M,_, forallveY. (1)

Suppose that A is a Y-graded ring. An A-module will always be a left
A-module, unless explicitly stated otherwise. If M is a Y-graded A-module,
then each M (v) with v € Y is again a Y-graded A-module. If M, N are Y-
graded A-modules, then we denote by Hom 4(M, N) the group of all A-linear
maps from M to N, and by Hom 4 y (M, N) the group of all ¢ € Hom 4 (M, N)
that preserve the grading, i.e., with ¢(M,) C N, for all v. More generally,
set forall u €Y

Homy4(M,N), = {¢ € Homs(M,N) | ¢ M, C Nyy, for all v}.
We have obviously

Hom 4 (M, N), = Homyy (M(p), N) = Homy4 y (M, N(—pu)). (2)

Let us denote by Homf“,(M, N) the Y-graded abelian group with graded

pieces Hom”A’Y(M, N), = Homy(M,N),. If A is commutative, this is even a
Y-graded A-module. We have for all v € Y

Hom’, ,(M(—v), N) = Hom", (M, N){v) = Hom!, (M, N(v)).  (3)

There is a natural embedding of Hom4 (M, N) into the direct product of
all Homu(M,N),. If M is finitely generated over A, then this induces an
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isomorphism of Hom 4 (M, N) with Homf“,(M, N), so Hom4(M, N) admits
a Y—grading.

We denote the Ext groups in the graded category by Extil’y. If Ais
left noetherian, then we can extend the statements above to the higher Ext’.
If M and N are finitely generated Y-graded A-modules, then each group
Ext' (M, N) has natural Y-grading given by

ExtY (M, N), = Ext’y y(M{g), N)
and we have for all ¥ € Y canonical isomorphisms of Y-graded groups
Ext’ (M, N(v)) = Ext’y(M, N)(v) = Ext, (M(-v), N). (4)

We shall need even a more general version of the above. Namely, if
Y, Z are two abelian groups and A is a (Y x Z)-graded left noetherian ring,
then for any finitely generated (Y x Z)-graded A-modules M, N and any i

the group Extf‘l’y(M , V) has a natural Z-grading given by Exti"Y(M YNy =
Extfq,YxZ(M(,u), N) for each 1 € Z, and again we have for all v € Z canonical
isomorphisms of Z-graded spaces

Ext’ y(M, N{(v)) = Ext’y v (M, N){v) = Ext}y y (M(-v),N). (5)

Here we have abused notation to write (v) instead of ((0,r)). We shall con-
tinue to do so in the future.

E.2. Let A be a Y-graded ring and let M resp. N be a Y-graded right
resp. left A-module. Then M ®4 N admits a natural Y-grading. Indeed, it
is clear how to give M ®z N a Y—grading, and we only have to show that the
kernel of the surjection M @z N—M ® 4 N contains with an element all its
homogeneous components. But by definition this kernel is generated by all
expressions mr @ n — m Q@ rn for m € M, r € A and n € N, and it is clear
that it is generated as well by all such expressions with m,r,n homogeneous.
(We could have used this argument in 2.10. However, it would not have given
the more precise character information contained in 2.10(4).)

Let A, E be Y-graded rings and T' a Y-graded (A4, E)-bimodule. Then
the functor

from Y-graded E-modules to Y-graded A-modules is left adjoint to the func-
tor

M — Hom’, (T, M) (2)

in the opposite direction. Indeed one checks that such an adjointness is in-
duced by the classical isomorphism

Hom (T @ M, N) — Hompg(M,Hom4(T, N)).
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Observe that if T is finitely generated as a left A-module, then
Homﬁyy(T, N) =Homyu(T,N).

E.3. By a Y-category we mean an additive category C along with a collection
of “shift”-functors M +— M(v) for v € Y such that (M(v))(u) = M(v + p)
for all v, u € Y and M(0) = M for all M in C. More precisely, a Y-category is
a system (C, ((V))vey, (dv,u)v,uey) Where C is an additive category, each (v) :
C — C, M — M(v) an additive functor, and each ¢,,, a natural equivalence
Gup ( Yo (p) — (v+ p), such that (0) is the identity functor and the natural
transformations ¢, 4,0 ({(V)¢u,r) and @y p 7 0(¢y, (7)) from (v) o (u) o () to
(v + p + 7) coincide. In particular M — M (v) and M +— M(—v) are inverse
equivalences of categories (for each v € Y).

For example, the category of Y-graded A-modules as in E.1 is a Y-
category.

If A is another Y—category, a functor 7 : C — A is called a Y-functor
if To(v) =(v)oT for all v € Y. More precisely, a Y-functor is a system
(T, (¥v)vey) where T : C — A is an additive functor and the v, are natural
equivalences v, : 7 o (v) — (v) o T such that v is the identity and for all
v, € Y the obvious pentagon of natural transformations commutes, i.e., the
two natural transformations ¢,4, 0 (T ¢, ) and (¢, ,T) o ((¥)Vu) 0 (¥ (1))
from 7 o (v) o (1) to (v + p) o T coincide.

For M, N € C we form the Y-graded group

Hom},(M, N) = @ Hom¢(M (), N). (1)
pey

(Note that this is compatible with the convention from E.1.) Given M;, M,
and M3 in C we define a bilinear map

Hom(M;, My) x Hom(M,, Ms) —Homb(M;, M) (2)

as follows: Let v, v’ € Y and ¢ € Homc M, (v ) ), ¥ € Homc(Mz (v'), M3).
Then we map (<p, ¥) in (2) to Yo(v')p Where Yo E Homc(M1<V+l/ )s Mg(u )
is the image of ¢ under the shift functor. More precisely, we map (g, ) to
Yo (V)po gy (M)t

It is easy to check that (2) has the usual associativity properties and that
C together with Hom’ is an additive category. In particular, each End’ c(M)
with M in C has a ring structure.

For M € C let My be the full subcategory of C of all objects that are
finite direct sums of some M(v) with v € Y. If C is abelian and M € C is
such that every object of C is a quotient of some object in My, then we say
that M is a Y-generator of C.
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E.4. Proposition: Let C be an abelian Y-category and P a projective Y-
generator of C. Then M — Homft(P, M) s an equivalence of categories from
C to the category of finitely presented Y-graded (Enng)"”’—modules.

Proof: Let us abbreviate the notation and put E = (End%P)"”’ and H =

Homﬁc(P, ). At first H is just a functor with values in the Y-graded F-
modules. It is exact since P is projective. By inspection it induces an equiva-
lence of categories H : Py — Ey. By our assumptions every M € C admits a
two-step resolution Ky — K;—»M with K, K, € Py, and if we apply H we
see that HM is finitely presented. This proves that our functor lands indeed
in the finitely presented modules.

Next we prove that H is fully faithful. We show first that for any K3 € Py
and M € C our functor induces a bijection

Hom¢(K3, M) —Hompg,y (HK;3, HM).
Indeed this follows by the five-lemma from the diagram

Home (K3, K3) — Home (K3, K7) —» Hom¢ (K3, M)

Homp y(HK3,HK,) — Hompy(HKsHK,) — Hompgy(HKsHM)

where we took a resolution of M in Py as above and use that by what we
know already the first two verticals are isomorphisms. Then consider for any
N € C the diagram

Home(M, N) — Home (K, N) — Home (K5, N)

|

Hompg y(HM,HN) < Homgy(HK;,HN) — Hompgy(HK, HN).

By what we know already the last two verticals are isomorphisms, hence so
is the first one by the five-lemma and H is fully faithful.

It is left to show that every finitely presented Y-graded E-module N is
isomorphic to HM for some M € C. By assumption N admits a two-step
resolution F, — Fy—»N with F,F, € Ey. Since H induces an equivalence
Py — Ey, there is a morphism K; — K in Py and a commutative diagram

HI(Q _— HI(]

| |

PR — R

whose verticals are isomorphisms. Now H is exact, so N — HM where
M = coker(K,; — K,).
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E.5. Proposition: Let 7 : C — A be an additive right ezact Y-functor
between abelian Y-categories. Let P € C, Q € A be projective objects, put
Ep = (EndiP)°P?, Eq = (End4Q)°?, and form the Y-graded (Eq, Ep)-

bimodule oTp = Homf‘t(Q, TP). Suppose in addition that P is a Y-generator
of C. Then the following functorial diagram commutes up to natural equiva-

l : 1
e C Home(®; ) {Y-graded Ep-modules}

l']’ Hom! lQTP®EP
A TG {Y-graded Eg-modules}.

Proof: For every M € C we have a natural map

7 : @Tp @, Homh(P, M) —Hom'((Q, T P) @, Hom% (TP, TM)
—Hom*(Q,TM)

where the first arrow comes from the functor 7, the second one from the
composition of morphisms. These maps form a natural transformation 7 from
the composition a of the two functors above the diagonal of our functorial
diagram to the composition b of the two functors below, 7 : a — b. We just
have to show that all 7p; are isomorphisms. This is clear for M = P, hence for
all M € Py. For M € C arbitrary choose a two-step resolution G — F—»M
with F,G € Py-. Since both a and b are right exact, we obtain a commutative
diagram
aG — aF —» aM

L

G — LF —» bM

with right exact rows, where the vertical arrows are 7g, T7r, and ) respec-
tively. Since F and G lie in Py. both 7p and 74 are isomorphisms. But then
also 737 has to be an isomorphism, by the five-lemma.

E.6. Fix a field k. Let Si be a polynomial ring over %k in finitely many
variables h,, with a Z—grading given by some prescription degh, = n, for
certain n, > 0. Regard S as a (Y x Z)-graded ring via the trivial Y-grading,
i.e., with (Sk)oi = (Sk)i and (Sk)y;=0forallv €Y, v#0andall i € Z.

Let A be a finite (Y x Z)-graded Si-algebra. Thus 4 is a (Y x Z)-
graded ring along with a homomorphism from S to the center of A that is
compatible with the (Y x Z)-grading; furthermore A is finitely generated as
an Sp—module.

Lemma: o) If M is an indecomposable finitely generated (Y X Z)-graded
A-module, then its endomorphism ring (in the graded category) is local.

b) The Krull-Schmidt theorem holds in the category of all finitely generated
(Y x Z)-graded A-modules.
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Proof: It is enough to prove a). Let ¢ € End 4 yxzM be an endomorphism.
Since every Z-homogeneous component M; of M has finite dimension, there
is some n(i) such that ¢™(M;) does not depend on m for m > n(i). Since
M is generated in finitely many degrees, there is even an n such that ¢™ (M)
does not depend on m for m > n. It then follows from counting dimensions
in each degree that the surjection " "(M )—»gozn(M ) = ¢™(M) is an
isomorphism, hence that the surjection <p : M—»p™(M) is split. So if M is
indecomposable, ¢ is either nilpotent or an isomorphism, hence End 4 y xzM
is local.

E.7. For a Z-graded abelian group M = EB,GZ M; we have the associated
filtration, i.e., the filtration by all @, . >j Mi with j € Z. This filtration defines
a topology on M. We denote the completion of M with respect to this topol-
ogy by M. ltis equal to the union of the [, . ; Mi over all j € Z (taken inside

[I;cz M:). If there is an integer r with M = @, M;, then M= [Lis- M.
Usually a family m = (m;)i>, € M (where each m; € M;) will be denoted by

m=3Z,
The topology on Sy defined by the grading is the same topology as defined
by the maximal ideal generated by all h,. So the completion of S; with respect

to the grading is equal to the completion studied in 14.4, and the notation Sk
is unambiguous.

For each Z—graded Sx—module M the completion M is an §k—module in
a natural way. If M is finitely generated over Si, then we have a natural
isomorphism

M ®s, S = M, (1)
cf. [AM], Prop. 10.13.
If A is finite (Y x Z)-graded Si—algebra as in E.6, then its completion A

identifies with A®g, §k; it is a Y—graded §k—algebra. The completion functor
takes a finitely generated (Y x Z)-graded A-module to a finitely generated

Y—graded A-module. If M and N are two such modules, then canonically for
all ¢

Extil’y(M, N) X s, §k ~ EXt%Y(M Qs §k,N®Sk §k) (2)
E.8. Lemma: a) If M i3 a Z-graded Sx-module, then

M=0 < M®s,S=0.
b)If f: M — N s a graded homomorphism of Z-graded S-modules, then f
18 injective (resp. surjective, resp. bijective), if and only if fR1: M ®sg, Sy —
N ®s, Sy is injective (resp. surjective, resp. bijective).
¢)IfMisa Z—gmded Sk-module, then M 1is ﬁmtely generated over Sy if and
only if M ®s, Sk 18 finitely generated over .S’,c
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d) If M is a Z-graded Sy-module such that M ®s, Sy is free of finite rank
over §k, then M is isomorphic to a finite direct sum of Z-graded Sy—modules
of the form Sk(n;).
Proof: ) Suppose that M # 0. If M is finitely generated over S, then
M ®s, Si~M # 0. In general, consider a finitely generated homogeneous
submodule M; of M and use that M; ®s, Sk CM®s, Sk
b) Apply a) to the kernel and the cokernel of f; use that Sy is flat over Sk.
¢), d) Set M* = M @s, S and M = M ®s, k = M* @5 k. There is a
Z-grading on the k-vector space M such that the canonlcal SlJ.I‘]QCthIl T
M — M preserves the grading. If M” is finitely generated over Sk, then M
if finite dimensional over k. (If M” is free of finite rank r over Sk, then M
has dimension r over k.) Choose a basis v;, 1 < ¢ < r of M over k consisting
of homogeneous elements, say v; € —]\7[-,,(1) We can then find m; € My(;) with
7r(m,) = v;. Now the Nakayama lemma implies that the m; ® 1 generate M"

over S k. (If M" is free over S, k, then these elements have to be a basis of M*.
We have now a homomorphism f of Z-graded Sx—modules from the (ﬁmte
direct sum of all Sg(n(7)) to M taking a family (a;); to ) a;m;. Then f @1
is surjective (resp. bijective), hence so is f by b). We get thus one direction
in c) resp. d). The other direction in c) is obvious.

E.9. Consider again a finite (Y x Z)-graded Si-algebra A as in E.6. If N
is a finitely generated Y-graded A-module, then a “graded form” of N is by
definition a ﬁmtely generated (Y x Z)-graded A-module N along with an
isomorphism N ®s, Sk — N.

Lemma: Let M be a finitely generated (Y X Z)-graded A-module.
a) M 1is projective if and only if M ®s, Sk is projective.
b) If M ~ M(t) for some i € Z, i # 0, then M = 0.

¢) Suppose that M ®g, Sk is indecomposable. If M' is a graded form of
M ®s, Sk, then there is i € Z with M' ~ M(q).
Proof: a) If M is projective, then it is a summand of an object from Ay xz,

hence M ®s, Sk is a summand of an obJect from Ay, hence is projective.
On the other hand, if M ®s, Sk is projective, then EXtXY(M ®s,

Sty N ®s, Sk) = 0 for all finitely generated (Y x Z)-graded A-modules N.
Then E.7(2) and Lemma E.8.a imply Ext}‘,,y(M, N) =0 for all these N, and
M is projective.

The proof of b) resp. c) is very similar to that of 15.6.a resp. 15.6.c.
One uses that for all finitely generated (Y x Z)-graded A-modules M and N
the Z—-graded Sy—module Hom 4 y (M, N) is finitely generated; so there is an
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integer 7 with Homy4 y (M, N); = 0 for all ¢ < r. Applied to N = M we get

easily b). For c) one uses in addition Lemma E.6 and E.7(2) [for Hom = Ext°].
Details are left to the reader.

E.10. Consider the following property of Y and k:

(E) For each finite subset Y1 C Y the restrictions to Yy of the characters

from'Y to the multiplicative group k> of k generate the full ring of functions
Y — k.

For example, (E) is satisfied for Y = Z, if k is infinite. Indeed, for any n + 1

pairwise distinct elements \; in k* (or even in k) the square matrix (A\})?;_,
is nonsingular (because a polynomial of degree n has at most n roots). By the
same argument the condition (E) is satisfied if Y = Z/nZ, the characteristic
of k does not divide n and k contains all n-th roots of unity. Furthermore, if
(E) holds for two groups, it holds for their direct product. It follows that (E)
holds for all Y if char(k) = 0 and k contains all roots of unity, which then
form an injective Z-module isomorphic to Q/Z.

Let A be a Y-graded k-algebra. If M is an A-module, we write rad 4 M
for the Jacobson radical of M, i.e., we set rad4M = ()N where N runs over
all proper maximal A-submodules of M.

Proposition: If (E) is satisfied, then the radical rad 4 M is homogeneous for
each Y-graded A-module M.

Proof: For every character x : Y — k* there is a unique k-linear automor-
phism ®, € EndiM such that &, (m) = x(v)m for all m € M,, v € Y.
Although the ®, are not always A-linear they always map submodules to
submodules, since &, (am) = x(v)a®,(m) fora € A,, v € Y. In particular
®, (radyM) = rad4 M for all x, and in view of our conditions on k and Y
this means that rad 4 M is homogeneous.

E.11. We need in 18.12 a slightly more general result. Let k¥ and Y be as
above. Suppose Z is another abelian group and A is a (Z x Y')-graded ring,.
If M is a Z-graded A-module consider rad 4 zM, the intersection over all
maximal Z—-graded submodules of M.

Proposition: If (E) is satisfied, then the Z-radical rad 4,z M is homogeneous
for each (Z x Y)-graded A-module M.

Proof: Almost identical to the above proof and omitted.
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Appendix F

F.1. We recall the notion of a Koszul ring.

Definition 1: A Koszul ring is a positively Z—graded ring A = @ i>o Ai such
that (1) Ao is semisimple and (2) the graded left A-module Ay = A/As¢
admits a graded projective resolution

. —P? P! P A0

such that P? is generated by its degree i part, P* = AP} for all i.

Definition 2: Let A be a ring. A Koszul grading on A is a Z—grading such
that the corresponding Z-graded ring is Koszul.

Here come some generalities concerning Koszul gradings.

F.2. Lemma: Let A be an Artinian ring and A = @5, Ai a Koszul grading
on A. Then rad4A = @D,>: 4j and hence the obvious morphism

A=P A — PradyA/rady' A
i>0 i>0

18 an 1somorphism of graded rings.

Proof: The lemma holds in fact for every grading on A such that (1) A is
generated by Ay, A; and that (2) A, is semisimple as is established in [BGS],
proof of 2.4.1. Every Koszul grading has these properties, see, e.g., [BGS|,
2.3.

F.3. Lemma: Suppose A and B are Morita-equivalent Artinian rings.
Then A admits a Koszul grading if and only if B does.

Proof: Suppose A = ;5 Ai is a Koszul grading. Then every simple A-
module has the form Ayp for a suitable idempotent p € Ay. Its projective
cover is Ap. Hence any finitely generated projective A-module P admits a
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grading compatible with the given grading on A, and this grading can even
be chosen such that P is generated by its part of degree zero, P = AP,.

Now B has the form B = (End4P)°P for some projective generator P
of the category of finitely generated A-modules, and if we choose a grading
on P as above we get a positive Z—grading on B. We want to prove that
this is a Koszul grading. Note first that by our assumptions the functor
Hom4(P, ) is an equivalence between the categories of all finitely generated
Z—graded modules over A and over B. It transforms Py into By. In particular
B;*? = Endp By = End4 P, is semisimple, and so is By. In addition

Extlg 5(Bo, Bo(n)) = Ext'y z(Po, Po(n)) =0
unless ¢ = n, the latter since A is Koszul, see [BGS], Proposition 2.1.3. But
then also B is Koszul by [BGS], Proposition 2.1.3.
F.4. Lemma: An Artinian ring A admits a Koszul grading if and only of
all its blocks admit Koszul gradings.

Proof: Observe first that a finite direct product of Z-graded rings is Koszul
if and only if all of its factors are: This is immediate from the definition.
In particular, if all blocks of A admit Koszul gradings, so does A. On the
other hand, consider the block decomposition A = [[ B where B runs over
the blocks of A. If A is given a Koszul grading, then by Lemma F.2 we

have an isomorphism of Z-graded rings A ~ €,5, rad’A/rad"™' A. Since
rad'A = II rad’B, we deduce an isomorphism of Z-graded rings
A~ H(@ radiB/radi+lB).
i>0

By our first remark, all the factors on the right hand side are Koszul. But
since a block decomposition is unique, we deduce ring isomorphisms

B' ~ @radiB/radiHB
i>0
for a suitable permutation B — B' of the blocks (the identity, but why
bother), and thus all blocks B’ of A admit a Koszul grading.

F.5. Analogues of the preceding lemmas hold in a graded context. More
precisely, let Y be an abelian group and A an Artinian Y-graded ring. We
say that a Z-grading on A is compatible with the Y-grading if and only if
they fit together to a (Y x Z)-grading.

Lemma: If A is given a Koszul grading compatible with 1ts Y-grading, then
the rad'A = P, Ai are (Y x Z)-homogeneous and the obvious morphism

A= @ A — @radiA/radi'+1A
i>0 i>0
is an 1somorphism of (Y X Z)-graded rings.

Proof: This is an obvious consequence of Lemma F.2.
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F.6. To generalize the next lemma we have to treat graded Morita equiva-
lence. Let Y be an abelian group and A, B two Artinian Y-graded rings.

Definition: We say B is Y-Morita equivalent to A if and only if the category
of all finitely generated Y-graded A-modules has a projective Y-generator P
such that there is an isomorphism of Y-graded rings B ~ (End 4 P)°PP.

Remark: It follows then from Proposition E.4 that Hom4(P, ) is an equiv-
alence between the Y-categories of all finitely generated Y-graded modules
over A and over B. Since this equivalence is right exact, we see from Propo-
sition E.5 that it can also be written as a tensor functor Q®4 where Q is
the Y-graded (B, A)-bimodule @ = Hom4(P, A). We find A = (EndpQ)°P?
and the inverse equivalence of categories is given by the adjoint Homp(Q, ),
which can also be written P@p. We deduce that B is Y-Morita equivalent to
A if and only if A is Y-Morita equivalent to B.

One might even prove that A is Y-Morita equivalent to B if and only if
the Y-categories of all finitely generated Y-graded modules over A and over
B are equivalent. We won'’t dive into the details.

F.7. Lemma: Suppose A and B are Y-Morita equivalent Y-graded Artinian
rings. Then A admits a Koszul grading compatible with its Y-grading of and
only if B does.

Proof: Suppose A = @5, Ai is a Koszul grading of A compatible with its
Y-grading. Then every simple Y-graded A-module has the form Aop(v) for a
suitable Y-homogeneous idempotent p € Ay and v € Y. Its projective cover is
Ap(v). Hence any projective finitely generated Y-graded A-module P admits
a (Y x Z)-grading compatible with the given (Y x Z)-grading on A, and this
grading can even be chosen such that P is generated by its part of Z-degree
zero, P = AP,;.

Choose a projective Y-graded A-module P such that B ~ (End 4 P)°P? as
Y-graded rings. A (Y x Z)-grading on P as above induces a (Y x Z)-grading
on B extending its Y-grading. As in the proof of Lemma F.3 we show that
the underlying Z-grading makes B into a Koszul ring.

F.8. To formulate the next lemma, we have to first discuss the graded
analogue of block decomposition. If A is an Y-graded Artinian ring, then
its block decomposition is not necessarily compatible with the Y-grading.
However, it is clear that A decomposes in a unique way into a direct product
of Y-graded subrings that are indecomposable as Y-graded rings and will be
called the Y-blocks.

Lemma: Suppose A is an Artinian Y-graded ring. Then A admits a Koszul
grading compatible with its Y-grading if and only if all its Y-blocks do.

Proof: This is just a direct transposition of the proof of Lemma F.4 into the
graded setting. Note first that a finite direct product of (Y x Z)-graded rings
is Koszul for the underlying Z-grading if and only if all of its factors are: This
is immediate from the definition.
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To prove the other direction, consider the Y-block decomposition A =
[I1 B where B runs over the Y-blocks of A. If A is given a Koszul grading
compatible with its Y-grading, then by Lemma F.5 we have an isomorphism

of (Y x Z)-graded rings A ~ @, rad'A/rad"" A. Since rad’A = [Jrad'B,
we deduce an isomorphism of (Y x Z)-graded rings

A~ [ (P rad B/rad™*' B).

i>0

By our first remark, all the factors on the right hand side are Koszul. Since a
Y-block decomposition is unique, we deduce isomorphisms of Y—graded rings

B' ~ @ rad'B/rad'*'B
i>0

for a suitable permutation B +— B’ of the Y-blocks (the identity, but why
bother), and thus all Y-blocks B’ admit a Koszul grading compatible with
their Y-grading.
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