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Introduction 

Let R be a finite root system with Weyl group W. For any prime p 
and any algebraically closed field k of characteristic p consider the connected, 
simply connected semisimple algebraic group Gk over k with root system R. 
Dénote the Lie algebra of Gk by gk. This is a p-Lie algebra, i.e., it has 
an additional structure, the p-th power map X \—• X^. In this case it is 
the ordinary p-th. power, if we think of éléments of g*, as dérivations. We 
shall consider représentations of gk as a p-Lie algebra. This means that the 
action of any on the module is the p-th. power of the action of X. The 
corresponding module is then called a restricted g^-module. It is a module 
for the restricted enveloping algebra 17^(0*), which is the quotient of the 
universal enveloping algebra of 0̂ . by the idéal generated by ail Xp — X^ 
with X E 0£- The algebra U^(gk) has finite dimension equal to pm where 
m = dim0j.. 

The représentation theory of the U^(gk) turns out to have many fea-
tures that are (conjecturally) independent of p. Let us mention first the one 
most easily described. Since U^(gk) has finite dimension, it is the direct 
product of indécomposable algebras, the blocks of U^(gk). Each indécom­
posable restricted 0fc-module M belongs to exactly one of thèse blocks; it is 
the unique block not annihilating M. Dénote by Bk the block of the trivial 
one dimensional 0^-module. Work ([Hu2]) by Humphreys from 1971 showed: 
If p is greater than the Coxeter number h of R, then the simple modules be-
longing to Bk are indexed by the Weyl group W. The Cartan matrix of Bk 
is therefore a (W x PF)-matrix. In the cases known at that time (and in the 
cases known today) this matrix is independent of p (as long as p > h). So 
one might conjecture that this independence should hold in gênerai. (This 
conjecture is implicitly contained in Verma's last conjecture in [Ver] to be 
discussed below.) We shall prove: 

Theorem 1: There is a Zi-algebra B (finitely generated as a Zi-m,odule) such 
that for ail k with char(fc) > h the block Bk is Morita équivalent to B ®z k. 

(More precisely, we construct a B such that B ®z Z[((ft — 1S free 
of finite rank over Z[((h — l)!)-1].) The theorem implies that for p ^> 0 the 
Cartan matrix above is indeed independent of p. Our methods do not yield 
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reasonable bounds. Thèse bounds arise from conditions that certain algebraic 
numbers should not have p in their denominators. 

The algebra B has also an interprétation in characteristic 0. Take an odd 
integer p > 1 (prime to 3 if R has a G2 component) and consider the quantized 
enveloping algebra Up at a p-th. root of unity. Here we take Lusztig's version 
constructed via divided powers. It contains a finite dimensional analogue up 
of the restricted enveloping algebra. (This was discovered by Lusztig, cf. [Lu6] 
and [Lu7].) Then: 

Theorem 2: If p > h, then B®z Q(^T) w Morita équivalent to the block of 
Up containing the trivial one dimensional module. 

Let us return to the characteristic p > 0 situation. One of the main tools 
of Humphreys in [Hu2] was the use of the analogues of the Verma modules: 
Consider the Lie algebra bk of a Borel subgroup of G*, take a one dimensional 
U^(bfc)-module and induce to U^(Qk). Suppose that p > h. Then there are 
\W\ induced modules (Zw)wew of this type belonging to Bk- Each Zw has a 
unique simple homomorphic image Lw; the Lw with w € W are exactly the 
simple modules belonging to Bk mentioned above. One of the main results 
in [Hu2] is the following: The projective cover Qw of Lw has a filtration with 
factors of the form Zw> with w' G W] any Zw> occurs exactly dk{w\ w) times 
where dk(w'', w) is the multiplicity of the simple module Lw as a composition 
factor of Zwi. This implies especially that the Cartan matrix of Bk is de-
termined by the décomposition matrix, i.e., the matrix of ail dk(w',iv), and 
we can now replace the previous conjecture on the Cartan matrix by one on 
the décomposition matrix (for p > h). And that is indeed part of Verma's 
Conjecture V in [Ver]. We can show: 

Theorem 3: Let w,w' G W. There is an integer d(wf,w) > 0 such that 
dk{w\w) = d(wf,w) for ail k with char(k) ^> 0. 

Again, there is an interprétation in characteristic 0. The û , have anal-
ogous modules Zw and Lw, and then d(w',w) is equal to the multiplicity of 
Lw in Zwt whenever p > h. 

The remaining part of Verma's Conjecture V is concerned with multiplic-
ities for the algebraic group Gk- (Both parts are in fact closely related, since 
Verma's (proven) Conjecture IV tells us how to express the d(wf, w) in terms 
of multiplicities for Gk) At this point we need more notations. Let X be the 
group of weights of the root system R. Let Wa be the affine Weyl group of i?, 
i.e., the semidirect product of W and the group of translations by éléments 
in ZR. Set p equal to the sum of the fundamental weights. 

Let Tk be a maximal torus in Gk and set i)k equal to the Lie algebra of 
Tk. We assume that Tk is contained in the Borel subgroup with Lie algebra 
bk so that t)k C 6^. We identify the group of characters of Tk with À". To 
each dominant weight À G X there correspond a simple module and a Weyl 
module with highest weight À. Dénote by À) the multiplicity of the 
simple module with highest weight À as a composition factor of the Weyl 
module with highest weight //. The linkage principle (first conjectured by 
Verma) states that 6fc(//, A) ^ 0 implies À G Wa*fi where any w G W acts via 
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w.p, = w(fi + p) — p and any translation by some v G ZR as translation by pu. 
(Perhaps we should write w.pX for w G Wa and À G X to dénote this action. 
But it should always be clear what we mean.) The linkage principle together 
with the translation principle implies that we know (for p > h) ail bk(p,\) 
if we know ail bk(w',w) = bk(wf.O,w.O) with w, wf G Wa such that w.O and 
wf.O are dominant. 

The second part of Verma's Conjecture V says that the bk(wf, w) should 
be independent of k for ail w,w' G Wa with w.O and wf.O dominant. (This 
condition is independent of k if p > h.) Steinberg's tensor product theorem 
shows easily that this conjecture will not work if w'.O is "large" with respect 
to p2. So one should modify the conjecture and impose an upper bound on 
w''. In [Lui] Lusztig has made a conjecture on the bk(w',w) (or rather for 
the inverse matrix) that would imply Verma's (modified) Conjecture V. Set 

equal to the set of ail w G Wa with w.O dominant whenever p > h. Our 
results imply: 

Theorem 4: For ail w,wf G there is an integer b(w',w) such that 
b(w(,w) = bk(w',w) for ail k with char(k) ^> 0. 

In characteristic 0 consider an odd integer p and the algebra Up as above. 
We have simple modules and Weyl modules for Up indexed by the dominant 
weights, and we have analogous multiplicities bp(ji, À). There is again a linkage 
principle involving the action of Wa where again the translation by a weight 
v G ZR acts as translation by pv. We get now: 

Theorem 5: If p> h, then b(w',w) = bp(wl.O, w.O) for ail w,w' G . 

Thèse two results imply that one gets for char(ft) = p 0 each irre-
ducible G k -module with "restricted" highest weight by réduction modulo p 
from a simple Up-modnle as conjectured by Lusztig. It also implies that his 
conjecture in [Lui] follows for char(fc) ^> 0 from its quantum analogue in 
[Lu4], 8.2. 

Kazhdan and Lusztig have recently shown that there is an équivalence of 
catégories between certain t/p-modules and certain représentations of affine 
Kac-Moody Lie algebras. This resuit was announced in [KLll, proved in the 
simply laced case in [KL2] - [KL5], and in gênerai in [Lull]. (Recall that 
our p is always prime to the entries in the Cartan matrix.) This équivalence 
implies that Lusztig's conjecture in the quantum case is équivalent to a simi-
lar conjecture in the Kac-Moody case. In the latter case Kashiwara and 
Tanisaki have recently announced ([KT]) a proof of the conjecture; an earlier 
manuscript by Casian ([Cas]) has not convinced ail of its readers. 

In order to get our results we work mainly not in the catégories of re­
stricted 0j.-modules or of G^-modules (or their analogues in characteristic 
0), but in the category of fl^-î^-modules and a characteristic 0 analogue. A 
Qk'Tk -module is a restricted flj.-module M that is also a Tk -module such that 
(obvious) compatibility conditions hold. Giving a représentation of Tk on M 
is the same as giving a grading M = 0t/GX Mv of M by X. The compatibility 
conditions say that every root vector Ea in gk maps each Mv to MvjrOL and 
that every H £ ï)k ac^s 011 each Mv as multiplication by v(H). (We write 
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v{H) by abuse of notation. We really mean the differential of v : Tk —• k on 
the Lie algebra fjk of Tk.) Note that gk-Tk-modules were called Ui-T-modules 
in [Ja3] and that they are usually called (Gk)\Tk-modules nowadays. 

One can define bk~Tk -modules similarly. One associâtes to each À 6 l 
a one dimensional bk~Tk-module, then an induced gk-Tk-module Zk(X). It 
has a simple head Lk(X). Dénote the multiplicity of Lk(X) as a composition 
factor of Zk(n) by d'k(n,X). If char(fc) > /i, then ail thèse multiplicities are 
known as soon as we know ail d'k(wf,w) — d(k(w'.0,w.O) with w, w' G Wa. 

Theorem 6: For ail w,w' G Wa there is an integer d'(w',w) such that 
df(wf,w) = dfk(wf,w) for ail k with char(A:) >> 0. 

The df(wf, w) have again an interprétation in characteristic 0. One defines 
a suitable category of u^-modules with an X-grading satisfying similar com­
patibility conditions. Then the d'(wf,w) are the corresponding multiplicities 
in this category whenever p > h. 

* * * 

We want to give an idea of how thèse results are reached. For the sake 
of simplicity let us concentrate on the prime characteristic case and just say 
that there are analogous results or constructions in the quantum case. Let us 
also assume that char(&) = p > h. 

In the category of gk-Tk-modules each simple module Lk(X) has a pro-
jective cover Qk(X). It has a fîltration with factors of the form Zk(n) and 
each Zk(fi) occurs exactly d^p^X) times. One can therefore translate Theo­
rem 6 into a statement about the characters of the Qk(w.O). In one case this 
character is well understood: Take the unique élément w0 G W that maps 
ail positive roots into négative roots. One knows that Qk = Qk(wo*0) has a 
filtration with factors Zk(w.O), w G W each w occurring once. We have now 
for our category the so-called wall crossing functors. If we apply a séquence / 
of thèse wall crossing functors to Qk, we get a projective module Qk,i- If one 
knows for ail I and w G Wa the multiplicity of Qh(w*0) as a direct summand 
of Qk,ii then one knows ail dfk(wf, w"). In fact, one can find a finite family 3 
of thèse séquences such that the décomposition of the Qk,i with / G 3 alone 
détermines ail multiplicities. 

Theorem 7: There is an algebra £ over Z (finitely generated as a ï-module) 
such that £®zk is isomorphic to the endomorphism ring of the gk-Tk-module 
@l€3 Qk,l for M k. Moreover, we have a décomposition £ = @j J^£I,J 

such that the isomorphism takes each £^j ®z k to H o m ^ ^ (Qk,i, Qk, J ) -

This theorem (together with some alcove geometry and elementary facts 
on idempotents) yields Theorem 6. From that Theorems 3 and 4 follow by 
known results. Considered as a {/^(g^-module ®Ie^Qk,i is a projective 
generator for the block Bk. A small modification of the construction of £ from 
Theorem 7 yields an algebra B over Z such that B ®z k is (for char(fc) ^> 0) 
isomorphic to the algebra of ail endomorphisms of 0jGa Qk,i as a gk-module. 
Then B satisfies the claim of Theorem 1. 
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Thèse indications should convince you that Theorem 7 and its quantum 
analogue are really the crucial results. So we sliould now answer the question: 
How does one get a characteristic free approach to thèse endomorphism alge-
bras? Well, one essential step is not to work just with thèse g^-Tît-modules, 
but also to lift them to suitable local rings. This approach was inspired by 
the success of a similar method in [So2] and [So3]. 

For each commutâtive algebra A over the symmetric algebra S(t)k) we 
define a category CA generalizing the gk-Tk-modules. An object in CA is 
an A-module M with a structure as a gk-module and with a grading M = 
©i/GX Mv by X. Furthermore every root vector Ea G gk maps each Mv to 
Mu+a and E? annihilâtes M. Finally, every H G i)k acts on each Mv as 
multiplication by H + z/(iï"), or rather by its image under the structural map 
S(t)k) —» A . If we take A = k with the augmentation map S(i)k) —» k where 
H i-+ 0 for ail H G ï)k, then Ck is just the category of ail gk-Tk-modules. 
(In our "real" définition in 2.3 we add a finiteness condition and assume 
additionally that A is Noetherian.) 

The first seven sections of this paper contain the basic theory of the 
category CA and its quantum analogue. We discuss topics such as induction, 
projective modules, Ext groups, base change, filtrations, the linkage principle, 
blocks, translation functors. Ail of this is quite parallel to the corresponding 
théories for algebraic groups (cf. [Ja6]) and quantum groups (cf. [APW1]). It 
should be noted that many of the spécial aspects of this type of theory over 
a ring were first dealt with in [GJ]. In the case where A is a field, we reprove 
some results from [VK], [FP1], [DCK1] and [DCK2]. 

The algebra S(l)k) is a polynomial ring over k with generators i ïa , a 
a simple root. Take for A especially the local ring at the maximal idéal 
generated by ail Ha. (We should dénote this algebra by A*, but write A to 
avoid double indices.) It turns out that we can lift the Qkj to projective 
objects QA,I in CA and that the homomorphisms behave well under base 
change: 

HomcA (QA,I, QA,J) ®A k ~ HomCfc (Q*,/, 

There is a Lie algebra gz over Z with gz ®z k ~ gk for ail k. We can 
find a Cartan subalgebra f)z of gz with f)z ®z k ~ t)k for ail k. Set S = S(fjz) 
equal to the symmetric algebra of f)z over Z. Then S ®z k ~ S(ï)k) for ail k, 
and we can regard A as an 5-algebra. Now Theorem 7 is an easy conséquence 
of: 

Theorem 7f: There is an algebra £ over S that is finitely generated as 
an S-module such that £ ®s A is isomorphic to the endomorphism ring of 
Ç&ieiQAj for ail k. (Here A = AK.) Moreovcr, we have a décomposi­
tion £ = @j jç.y£i,J such that the isomorphism takes each £J^J ®s A to 
RomcA(QA,i,QA,j)-

Well, this just replaces the previous question by a modified one: How 
does one get a characteristic free approach to the homomorphisms of the 
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QAJ7 Consider inside the fraction field of A the subring 

A® = AlH^1 | a a positive root ] 

and set Q0 = QA,I ®A ^ for ail I. Now it is easy to get a characteristic 
free approach to the Home 0 (Q0, Q0): Each Q\ splits into a direct sum of 
certain Z®(w.O) with w E Wa. (Thèse are the analogues of the Zk(w.O) over 
A0.) The multiplicity of Z®(w.O) in Q0 is independent of k. The module of 
homomorphisms from Z0(uuO) to Z0(w'.O) is equal to 0 for w ^ wf and equal 
to A0 for w = w'. So the module of homomorphisms from Q\ to Q0 can be 
described independently of as a direct sum of matrix spaces over A0. 

Of course, the homomorphisms from QA,I to QA,J are exactly the homo­
morphisms from Q0 to Q j that map C Q\ to <3A,J C Q0. In order to 
find them we consider intermediate rings. For each positive root j3 set 

A13 = Afiî"1 | a a positive root, Û / / 3 ] C A 0 

and = Q ^ j ®A A$ for ail J. We have then A = f)p>0 ^ AN(̂  QA, / = 

fV>o Qi and 

HomCA(QA,/,QA , j) = 

d>0 

Rome A,(Qf,Q% (*) 

The terms on the right hand side of (*) can be described independently of k: 
Dénote the analogue of Zfc(À) over A@ by Z/3(\). Any Z^{w.G) has a projective 
cover QP(w.Q) in CA ;̂ it is an extension of Z^(w»0) by another module of the 
form Z^(u;i.O). Each is a direct sum of certain QP(w*0); the multiplicity 
of each Q^(w.O) in each Qj is independent of fc. Furthermore, we can describe 
the module of homomorphisms between Q^(w.O) and Q^(wf.O) for ail w1 
independently of k. 

So we have described each term on the right hand side in (*) indepen­
dently of k. We take their intersection inside the corresponding Hom space 
over A0 that we can describe independently of k. So, what we need is to 
have the terms over each A$ embedded into the terms over A0 independently 
of k. This is done easily for each (3 separately, but it has to be done for ail 
(3 simultaneously. And that turns out to be an unpleasant problem, but in 
Sections 8-15 we show that it can be done. 

We do not want to discuss the détails at this point. Let us just say that 
we discuss (in Section 8) the Ext groups over A13 of the ZP(w'.0) involved 
in a QP(w»0). We describe in Section 9 how an arbitrary choice of bases 
for thèse Ext groups leads to a fully faithful embedding of a subcategory of 
CA into a combinatorial category. This subcategory contains ail projective 
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modules. We show then in Section 10 how translation functors behave under 
this embedding. It turns out that we need to know precisely how the bases 
for the Ext groups behave under the translation functors. We investigate this 
in the sections 11 and 12, and we choose in Section 13 spécifie bases that 
behave nicely under the translation maps. We describe in Section 14 similar 
combinatorial catégories over the integers and see in Section 15 that they can 
be given a graded structure so that the combinatorial translation functors are 
well behaved. We prove then in Section 16 our main results. In the sections 17 
and 18 we show: If Lusztig's conjecture (on characters of irreducible modules) 
holds for ft, then the block Bk is (for a suitable grading) a Koszul algebra and 
the coefficients of the Kazhdan-Lusztig polynomials have an interprétation 
in terms of our graded structure. In Section 19 we apply our theory to a 
few explicit examples. Four appendices contain several computations that are 
logically independent of our main theory. Two additional appendices discuss 
gênerai properties of gradings and Koszulity. 

Dear Reader: On a first reading we suggest that you — having acquainted 
yourself with the basic theory of the sections 1-7 — go on to understand the 
propositions 8.6, 9.4, and 10.11. If you are then willing to believe in Theorem 
13.4 (which has a rather long computational proof), you can proceed directly 
to the main sections 14-16. 
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Basic Notations 

We work in this paper with a fixed (finite) root System R (in some real 
vector space). Before we start let us fix some notations involving the root 
System data only. Thèse notations will be used without further explanation. 
We set: 

R+ a fixed system of positive roots in R, 
S the simple roots in R with respect to i?4", 
LU„ the fondamental weight corresponding to a G S, 
X db dd 

Zo;a, the weight lattice of iî, 

s br dvre sd 1 
2 t8€R+ Pi 

d the coroot corresponding to a root /3 G -R, 
*0 the reflection with respect to 8 G i?, 

given by s*(À) = A - (A,/3V)/? for ail A G X, 
W the Weyl erroup of R, 
l(w) the length of w G W with respect to the generators (sp)pez, 
w0 the élément in W with wQ(R+) = — 
v for (5 G i? and m G Z the affine reflection with 

sa m(A) = A - ((A,/3V) - m)/3 for ail A G X, 
Wa the affine Weyl erroup of R (generated by ail s#.m), 
w.A = w(X + p) — p (the dot action), 

t* - A e £ ^ s N<*> 
( 4 ) a e s integers in {1,2,3} such that the matrix (da(/3,Qf ))a,/?eE is 

symmetric and such that each indécomposable component oi 
R contains an a G S with da = 1, 

and, if JR is indécomposable, 

an the largest short root in i?, 
h the Coxeter number of R. 

Ail our rings will have an identity. If A is a ring and if n > 0 is an integer 
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such that ni is invertible in A, then we set 

a 
b 

a(a- l ) ( a - 2 ) - - - ( a - n + l) 
ni 

for ail a £ A. 
A list of frequently used notations introduced in the text can be found 

at the end of the paper. 
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1. The General Setup 

1.1. As pointed out above, we consider a root system R and shall use the 
basic notations introduced there. Let A: be a Noetherian commutative ring. If 
M is an X-graded k -module, dénote its homogeneous component of degree 
v by Mv (for ail v E X). We shall consider X-graded algebras U with 
graded subalgebras £7°, J7+, and U~ satisfying certain conditions. First of 
ail, multiplication should induce an isomorphism of fc-modules 

U~ <g> U° ® U+ ^ U. (1) 

(A notation like M ® iV, where ® appears without an index, will always 
dénote a tensor product of /^-modules. For tensor products of éléments we 
use ® without an index quite generally.) 

We require further that 
U° C U0 (2) 

and 
(U+)o = (U-)0 = k.l, (3) 

that for ail v E X 
(U+)u^0 = • u>0 (4) 

and 
(U~)„Ï0 i / < 0 . (5) 

There are more conditions that we shall introduce as we go along. Before we 
do that, we shall describe the two examples that we have in mind. 

1.2. Case 1: Let k be an algebraically closed field of prime characteristic 
p, let G be a connected, simply connected semisimple algebraic group over 
k. Choose a maximal torus T in G. Suppose that the root system of G with 
respect to T has the same type as R. Then X can be identified with the group 
of characters X(T) on T such that R is mapped to the root system of G. 

Dénote the Lie algebra of G resp. of T by g resp. by f). We have a 
triangular décomposition g = n~ © f) © n+, where n+ resp. n~ is the direct 
sum of the root spaces for positive resp. for négative roots. For each a E R 
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let Ea be a root vector for a. We shall suppose that we get thèse root vectors 
by base change from a Chevalley System in a suitable semisimple Lie algebra 
over C. Set Ha = [Ea, E-a] G i) for ail a G R. 

The Lie algebra g is a restricted Lie algebra. Dénote its p-th power map 
b y l K J H . One has E[£] = 0 and H[^] = Ha for ail a G R. Let U(g) be 
the enveloping algebra of g. For any X G 0 the élément Xp - X^ G U(g) is 
central in U(g). The map I H P - X^ from g to U(g) is semilinear. 

Let I be the (twosided) idéal in U(g) generated by ail Xp — with 
l G n ~ U n + . By the semilinearity just mentioned, it is also generated by ail 
E_p with a G R. Set U = Ï7(g) = U(g)/I. For any Lie subalgebra gf of g let 
C/(g') be the image of U(g') in ÏÏ(g). We shall look especially at U° = Ï7(f|) 
and £7+ = C7(n+) and U~ = U(xT). 

By the PBW-theorem we get a basis for U (g) by taking monomials in the 
EA and in a basis of f) (for any fixed order of the product). Because the E? are 
central in U (g), such a monomial is in I if and only if the exponent of one EA 
is greater or equal to p. So we get a PBW-type basis for U (g) by taking ail 
those monomials where the exponents of the EA are less than p. We get similar 
bases for U°, and U~ by taking the monomials involving only terms from 
f), resp. n+, n~. A look at thèse bases shows that U° is isomorphic to the 
enveloping algebra U(fj) — which coincides with the symmetric algebra 5(fj) 
— and that resp. U~ is isomorphic to the restricted enveloping algebra 
of n+ resp. of n". 

It is clear from the bases that 1.1(1) is satisfied in this case. The adjoint 
action of T on U(g) stabilizes I and induces an action on U = U(g). If we set 
Uv equal to the z/-weight space for this action (for ail v G X = X(T)), we get 
an X-grading on C7, for which U°, Î7+, and U~ are graded subalgebras and 
for which the conditions 1.1(2)—(5) are obviously satisfied. 

1.3. Case 2: Corresponding to the root System R there is a quantized 
enveloping algebra Ui over Q(v) where v is an indeterminate over Q. It 
is defined by generators EA, FAI KA, and K~X for ail a G S with certain 
relations. For example, each K~L is indeed the inverse of KA. We shall not 
write down thèse relations that can be found in [Lu7], p. 90. 

Let p > 1 be a positive integer prime to the nonzero entries of the Cartan 
matrix of iî, hence odd. Choose a primitive p-th root of unity ( and set 
k = Q(C)- Define a fc-algebra {72 with generators EA, Fa, i ta , and K~X for 
ail a G S with the same relations used for U\ but with v replaced by (. This 
algebra is a version over k of the C-algebra studied by DeConcini and 
Kac, cf. [DCK1], 1.5. The results that we are going to quote from [DCK1] 
can be proved over k with the same proofs as in [DCK1] over C. 

Dénote the subalgebra of U2 generated by ail EA (resp. by ail FAJ resp. by 
ail KA and K~X) by (resp. by {72~, resp. by C/J). Then [/̂  is the algebra 
of Laurent polynomials in the commuting variables KA. Ail monomials in the 
KA with arbitrary integer exponents (positive and négative) are a basis of U®. 
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There is a unique X-grading of U2 such that each Ea has degree a, each 
Fa degree —a, and each Ka degree 0. (The relations defining U2 are obviously 
homogeneous for this grading.) It is then clear that 1.1(2)—(5) are satisfied 
by U2. Also 1.1(1) can be shown to hold, cf. [DCK1], Prop. 1.7. (However, 
the finiteness condition to be introduced in 2.1 will not be satisfied.) 

One can define for each (3 G R+ a root vector Ep G {U2)p and a root 
vector Fp G ({72~)-/?. This involves certain automorphisms Tw. They were 
constructed on L\ by Lusztig in [Lu7], 3.1; his construction carries over to 
U2. For any (3 G R+ one chooses a simple root a G S and w G W with 
(3 = w(a); one then sets Ep = Tw(Ea) and Fp = Tw(Fa). Here Ea and 
Fa are (some of) the generators of U2 introduced above. For (3 G S this 
définition is compatible with our previous convention, cf. [Lu6], Prop. 1.8(d) 
that generalizes to the non-simply laced case. Note that thèse root vectors 
are indeed in (U2)+ resp. in (U2)~ by [Lu7], 4.2. We shall usually write E-p 
instead of Fp. 

In some cases we have to assume that the root vectors have been chosen 
using a reduced décomposition of WQ as in [Lu7], Appendix. This applies 
whenever we work with PBW-type bases. There are such bases for and 
U2 consisting of ail monomials in the Ep with (3 > 0 resp. with (3 < 0 with 
nonnegative exponents. Here (and in (1) below) the product has to be carried 
out in a spécifie order described in [Lu7], Appendix. Now 1.1(1) says (and 
this is really Prop. 1.7 in [DCK1]) that we get a basis of U2 consisting of ail 
products 

d+dr 
L - 0 

d+d 

d;d +d; 

dd+dr 

jpm(p) (1) 

with n((3) and m(/3) nonnegative and r(a) arbitrary integers. 
Ail Epp with f3 G R and ail RP with a G S are central in U2, cf. [DCK1], 

Cor. 3.1. Suppose that we have chosen the Ep using a fixed décomposition of 
WQ. Let I+ resp. I~ be the idéal in resp. in {72~ generated by ail Ev^ resp. 
by ail Ep_p with (3 G R+, and let / be the idéal in U2 generated by 1+ and 
I~. It is then clear that J+ resp. I~ has a basis consisting of ail monomials 
in the Ep resp. the E-p with (3 G R+ where at least one exponent is greater 
or equal to and that / has as basis ail products as in (1) with at least one 
m((3) or n(/3) greater or equal to p. Obviously = InU^~ and I~ = IDU^". 

Set U = U2/I and let U°,U+, and U~ be the images of Î72°, U£, and U~ 
in U. We dénote the images of the generators Ka and of the root vectors Ep 
again by Ka and Ep. We get a basis for U consisting of products as in (1) 
with 0 < m((3),n((3) < p for ail f3 G R+ and r(a) G Z arbitrary. Taking the 
products involving only Ka resp. only Ep resp. only E-p one gets bases for 
U° resp. for resp. for U~. One has obviously isomorphisms U2 ^ U° and 
C/2+/J+ ~ U+ and U^/I' ^ U~. The conditions l . l( l)-(5) are satisfied. 

There is a différent version U$ of a quantized enveloping algebra over k 
due to Lusztig, cf. [Lu7], 8.1. It is constructed from Ui via a certain form over 
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Z^,^-1] involving divided powers. There are éléments Ea, Fa, Ka, and K'1 
in U3 (for ail a G E) that satisfy the defining relations of the generators of J72-
So there is a homomorphism / : U2 —> U3 mapping the generators of U2 to 
the analogous éléments in Us. The image is the finite dimensional subalgebra 
u of Us introduced in [Lu7], 8.2. The kernel contains ail 2?jJ, hence I, and we 
get thus a surjective homomorphism / : U —• u. 

The algebra u has a triangular décomposition u = u~u°u+. The three 
factors have PBW-type bases and are the images under / of U~, Z7°, and 
U+. A look at the bases shows that / induces isomorphisms U+ ~ u+ and 
U~ ~ u~, whereas u° is identified with U° divided by the idéal generated by 
ail K*p — 1. We see especially that I+ is the kernel of the natural map U^ —> 

hence that it is independent of the choice of the reduced décomposition of 
u>o. A similar remark applies to I~. Therefore / is independent of this choice. 

1.4. Suppose for the rest of section 1 that we are in one of the cases from 
1.2 or 1.3. 

Lemma: There is a group homomorphism X —• Autk-aigiU0) denoted by 
H\-±]i such that 

su — ujl(s) (1) 

for ail fi G X, u G U^, and s G U°. 
Proof: In Case 1 one takes for Ji the unique automorphism of U° ~ S(fj) with 
ji(H) — H + n{H) for ail H G f). (One should really take the differential of // 
when évaluâting it at H.) 

In Case 2 one sets 
\(Ka) ^ Cda(X'a }Ka 

for ail a G S. Then (1) is obvious for the generators by the defining relations, 
hence in gênerai. 

Remark\ We could also consider a Case 2' where we take as our algebra 
û = u~U® u+, cf. [APW2], 0.2. In that case one would define 

A( 
dik +d 

m j 

Ka;c+{\,av) 

md 

for certain additional generators of I/3, cf. [Lu7], 6.6 or 5.1 below. 

1.5. Lemma: There is for each w G W an automorphism Tw : U —» U with 

TW(U°) = U° and TW(UV) = Uwv for ail v G X, (1) 

such that 
T ^ o A o T " 1 . =w(\) for ail \ eX. (2) 
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Proof: In Case 1 we consider a représentative of w in the normalizer of T 
in G and its adjoint action on g and U(g). It maps each Ea to a nonzero 
multiple of Ewa. Therefore it stabilizes the idéal I as in 1.2 and induces an 
automorphism of U = U(g). It has obviously the required properties. 

We have already mentioned that in Case 2 Lusztig's construction of the 
Tw from [Lu7], 3.1 generalizes from Ui to UÏ. It is easy to see that they have 
the properties (l)-(2) for U2 instead of U. We want to prove that each Tw 
stabilizes the idéal I as in 1.3. Then it will induce an automorphism of U 
having the desired properties. Of course, it is enough to show Ta(I+) C / 
and Ta(I-) C I for ail a G S where Ta = T3a. 

The argument at the end of the proof of Prop. 3.3 in [DCK1] shows that 
there are choices of root vectors (Ep)pER and (Ep)p^R with Ta(Ep) — E'3a^ 

for ail (3 G R — {a}. Because J+ is independent of the choice of the root 
vectors, we see that Ta(Ep) G J+ C I for ail thèse (3. On the other hand, 
we have Ta(EP) = -K*F* G / by formula (3.3.3) in [DCK1]. So indeed 
Ta(/+) C / . The case of I~ is symmetric. 

1.6. Lemma: There is an involutory antiautomorphism r of U with r(Ea) 
= Fa and r(Fa) = Ea for ail a G S and with r(s) = s for ail s G U°. 

Proof: In Case 1 the properties of a Chevalley system imply that there exists 
an antiautomorphism of g mapping Ep to E-p for ail (3 G R and H to H 
for each H G ï). It induces an antiautomorphism of U(g) that maps each EPp 
to Ep_p, hence stabilizes i", and yields an antiautomorphism of U with the 
desired properties. 

In Case 2, a look at the defining relations shows that there are involutory 
antiautomorphisms of U\ and U2 interchanging Ea and Fa for ail a G S and 
fixing each Ka. Going through Lusztig's construction one checks that there 
is a similar antiautomorphism on U3. Call ail thèse involutions r. 

We want to show that the r on U2 stabilizes the idéal / . Then we can 
define it on U = U2/I as desired. The map f : U2 —> U3 commutes obviously 
with r. This implies r (ker / ) = ker / . Because of T(U^~) = we get also 
r (ke r / fl U2) = ker / fl . Thèse intersections are just I+ and so we 
get t(7+) = JT~, hence r(J) = / as claimed. 

1.7. We shall also need a comultiplication on U. It can be constructed easily 
in Case 1. In Case 2, however, it will require a nontrivial argument that we 
shall give in 7.1. 
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2. Module Catégories 

Keep ail notations and assumptions from 1.1 through the whole paper. 
Later on (from Section 4 on) we shall assume that we are in Case 1 or 2 from 
1.2/3. However, in the next two sections we need only weaker conditions that 
we shall describe in 2.1. 

2.1. We want to make the following additional assumptions on U and its 
subalgebras. We require: 

(A) The set of v £ X with (U+)u ^ 0 or (U')v ^ 0 is finite. 

and: 

(B) Each (U+)u and each (U~)u is a free k-module of finite rank. 

Thèse conditions are obvious in the cases from 1.2/3. They imply in gênerai: 

(C) U+ and U~ are free k-modules of finite rank. 

We require also the analogue of Lemma 1.4: 

(D) There is a group homomorphism X —• Autk-aig(U°) denoted by ji i—• Jl 
such that 

su = uji(s) (1) 

for ail fi G X, u G U^, and s G U°. 

Because 0 is the identity map, this condition implies obviously: 
(E) The algebra U° is commutative. 

2.2. The following lemma contains some easy conséquences of our assump­
tions. 

Lemma: The submodules U°U+ and U~U° are graded subalgebras ofU. Any 
basis of resp. of U~ as a k-module is a basis of U°U+ resp. ofU~U° as 
a U° -module under left and right multiplication, and it is a basis of U as 
a module over U~U° under left multiplication resp. over U°U+ under right 
multiplication. 
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Proof: Because U+ and U~ are graded, Condition 2.1(D) implies U°U+ = 
U+U° and U°U~ = U~U°. Therefore thèse submodules are (obviously 
graded) subalgebras. We get from 1.1(1) that also the multiplication maps 
U° ® U+ -> U°U+ and U~ ® U° -+ U~U° are bijective. Condition 2.1(D) 
yields that the same is true for the multiplication maps on U+ ® U° and on 
U°(g>U~. Thèse bijectivity statements imply immediately the results on bases 
as {7°-modules. The claims on U follow from the bijectivity in 1.1(1). 

Remark: We get also that the multiplication maps from U~ ® U+ ® U° and 
from U° ® U~ ® U+ to U are bijective. Therefore U is free as a Î70-module 
under left and right multiplication. One gets a basis of U over U°, if one 
chooses bases, say (w2)z resp. (tij)j, of U~ resp. of Î7+, and takes then ail 
products Uiu'j. Each Uv is a free Ï70-submodule of U. 

2.3. Let A be a Noetherian commutative algebra over U°. Dénote the 
structural homomorphism by 7r : U° —• ^4. 

We want to define three catégories: CA, C'A-, and C^. An object of CA 
is a U ® A-module M with an X-grading as a fc-module satisfying certain 
properties. So M is a fc-module with a direct sum décomposition 

M 

d+ 1 

M,. (1) 

Furthermore there are commuting actions of U and A on M that are 
compatible with the fc-structure. We shall write the action of U on the left 
and the action of A on the right, i.e., uma should mean the same as (u ® a)m 
for ail u G U and a G A. We impose a finiteness condition: 

(A) M is finitely generated over A. 

Next we require that the action of A préserves the grading (1): 

(B) M^A C MM for ail /i G X(T). 

In other words, any MM is an A-submodule of M. It is now clear that (A) is 
équivalent to: 

(A') The set of fi with ^ 0 is finite, and each is finitely generated 
over A. 

We also require that each homogeneous part Uv of U shifts the grading 
by v\ 

(C) UuMp C M^v for ail », v G X{T). 

The algebra ?7° acts in two ways on M. One action arises from the 
embedding of U° into (7, the other one from the homomorphism n : U° —» A. 
Both actions préserve the grading. We require finally that they are related by 

(D) sm = mir(p{s)) for ail /i G X(T),m G MM,s G Î70. 
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A morphism between two objects in CA is a homomorphism of U ® A-
modules that préserves the gradings. There are obvious notions of submodules 
and quotient modules, we have kernels, images, and cokernels for homomor­
phisms. (In order to get kernels we assumed A to be Noetherian.) 

By abuse of notation, we shall usually call an object M of CA simply a 
module in CA and the M\ its weight spaces. If each MM is free over A, the 
formai character ch(M) of M has the obvious définition. 

Replacing U in the définition of CA by U°U+ resp. by U° we get catégories 
that we shall dénote by C'A resp. CnA. 

2.4. Suppose that we are in Case 1. The left action of an Ha with a £ R+ on 
an M\ (with M in CA and À E X) is equal to the multiplication on the right 
by X(Ha) + 7r(Ha). So Hp (the ordinary p-th power in U(g) and U°) acts 
on the left as right multiplication by X(Ha)p + n(Ha)p = X(Ha) + 7r(Ha)p. 
(Note that X(Ha) is the réduction modulo p of the integer (À,av), hence in 

Fp.) We have H[£] = Ha in g, so the central élément H? - H1^ of U(g) (and 
of U°) acts on M on the left as right multiplication by 7r(Ha)p — 7r(Ha). 

Suppose that .4 is a field. There is a linear form / on g with values in 
some purely inséparable extension of A such that f(Ea) = 0 for ail a E R and 
f(HpY = 7r(Hp)P - 7r(Hp) for ail f3 E S. Then each Xp - E U(g) with 
À' E g acts on M in CA on the left as right multiplication by f(X)p. A module 
in CA is therefore the same thing as a finite dimensional U(g ® A)-module 
together with an À'-grading such that each Xp — X^ acts as multiplication 
by f{X)p and such that the compatibility conditions (C) and (D) in 2.3 hold. 

As an example, consider ,4 = k where we regard k as a U°-algebra via 
the augmentation map (sending each H £ t) to 0). Then the linear map / 
as above is just 0. The condition that each Xp — X^ act as 0 on M in Ck 
means that M is a restricted g-module (or a Gi-module). Furthermore an 
Àr-grading of a fc-module is the same as a structure as a T-module. (The 
homogeneous parts of the grading correspond to the weight spaces.) So a 
module in Ck is a G\-module that is also a T-module such that a certain 
compatibility condition holds. This condition amounts just to the condition 
that M is a G\T-module. So we can identify Ck with the category of ail finite 
dimensional GiT-modules. 

Similarly, one identifies Cfk resp. C'I with the catégories of ail finite di­
mensional U^"T-modules resp. T-modules. (Here B+ is the Borel subgroup 
containing T corresponding to the positive roots.) 

Consider Case 2 with A = k and tt : U° —• k given by 7r(Ka) = 1 for ail 
a £ E. Then each Ka acts on any on the left as right multiplication by 
(da ^A'a ), so Kp — 1 annihilâtes M. So M can be regarded as a module of type 
1 (in the sensé of [Lu4], 4.6) for the homomorphic image u of U. We can extend 
it to a u-module by letting act on each via the character denoted by 
Xn in [APW2], 0.3. Thus M is made into an object of the category C~ (over 
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k) introduced in [APW2], 0.4. One can check that this is an équivalence of 
catégories. 

In this case Cfk and C% correspond to similar catégories involving U®\i+ 
and U® instead of u. 

2.5. Lemma: The forgetful functor induces (for an arbitrary A) an équiv­
alence of catégories between CA and the category of ail X-graded A-modules 
that are finitely generated over A. 

Proof: On one side, condition 2.3(D) says that the action of U° on an M in 
CA is determined by the grading and the A-module structure: Any s G U° 
has to act on any MM as the élément 7r(Jl(s)) G A. On the other hand, we can 
use exactly this formula to define for each Jf-graded A-module M an action 
of U° first on each and then on M. We get obviously an object in CA. 

Remark: This discussion shows especially that the category CnA contains 
enough projectives: An M in CA is projective, if and only if ail are pro-
jective as A-modules, that is, if and only if M is projective as an A-module. 

2.6. We have obvious forgetful functors from CA and C'A to CA, and from 
CA to C'A. We shall construct (left) adjoint induction functors using tensor 
products. Consider first an obiect M in C"A. We want to make 

<è'A(M) = U°U+ ®u° M (1) 

into an object in CA. We let any u G U°U+ act via left multiplication on the 
first factor, and any a e A via the given action of a on the second factor. (This 
makes sensé because both maps are {7°-linear, where we regard U°U+ as a 
Lr°-module via right multiplication.) Thèse actions of U°U+ and A commute 
obviously. The grading is defined via 

(u°U+®uo M] 
rd vÇ-X 

dr (U°U+)U ®t/o MM_„. (2) 

This makes sensé because ail (U^U^)» and ail Mv< are U°-submodules. It 
is now easy to check that the conditions in 2.3 are satisfied, or rather their 
analoga for CfA. In the case of 2.3(D) observe that one has for s G U° and 
m G and u G (U°U+)U: 

s(u ® m) = (su) (g) m = (uu(s)) ® m = u ® (u(s)m) 

= u (g) mn(v(s)) = (u (g) m)(/i o v(s)) = (u ® m)(fi + v)(s). 

Considered as an A-module $^(M) is a finite direct sum of copies of M, 
because U°U+ is free of finite rank over U°. This yields the required finiteness 
condition. It is obvious how to define $ ^ on morphisms. 
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Remark: We can carry over the construction and the arguments above more 
or less Verbatim (replacing U°U+ by U) to get a functor $A ' C'A ~* ^A with 

QA(M) = U®VO M. (3) 

2.7. Lemma: a) The functor $A resp. $^ is exact and is left adjoint to 
the forgetful functor CA —> CA resp. CLA —» CA. 

b) The functors <&A and <&A map projective objects to projective objects. 

c) The catégories CA and C'A have enough projective objects. Any projective 
object in thèse catégories is projective as an A-module. 

Proof: a) The exactness follows from the freeness of U resp. of U°U+ over 
Î70, cf. 2.2. The proof of the adjointness is similar in both cases. We give the 
détails only for Let M be in CA. The map 

/o : M -> &A(M), m \-+ 1 ® m 

is a morphism in CA. It induces for any N in C'A an isomorphism (via / \—> 
/ o / o ) : 

Hom^($'A(M), N) ~ Hom^(M, N). (1) 

The inverse map associâtes to any g : M ^ N the map g with g(u ® m) = 
ug(m) for ail u,m. The only différence from the standard situation is that 
we have to take the grading into account. 

b) This claim is obvious because each functor is left adjoint to an exact 
functor. 

c) For any iV in CA choose a projective P in CA with an epimorphism 
P —> N, cf. 2.5. We get by adjunction a map &A(P) —• N that is again 
surjective. This shows that CA has enough projectives. If N is projective in 
CA, this surjection has to split. This shows that the projective objects in CA 
are exactly the direct summands of the $^(P) with P projective in CA. Thèse 
P are projective as A-modules. Furthermore $>A(P) is a direct sum of copies 
of P when regarded as an A-module. So any direct summand of $^(P) is 
projective over A. The argument for CFA is analogous. 

Remark: It will be convenient at one point to work with an enlarged version 
of CA and to replace 2.3(A) by the weaker condition: 

(F) The set of ji G X with M^^O is finite. 

Let us dénote this enlarged category by QCA- If M is a module in QCA, 
then there is for ail x G M a submodule M9 of M with x G M' and M1 in 
CA- Indeed, if x = x^ with x^ G M^, then M' = Ux^ works. This 
property implies easily: If Q is a projective object in CA, then Q is projective 
also in QCA-

Similar remarks apply to C!A and CA. 
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2.8. We usually call projective objects in CA projective modules in CA-
Having enough projective objects in our catégories we can use projective res­
olutions to compute Ext-groups. 

Lemma: Each E x t ^ (M, N) with M and N in CA and i > 0 is a finitely 
generated A-module. 

Proof: Since A is Noetherian and since each Ext group is a subquotient of a 
suitable Hom group, it is enough to consider that case. The Hom group in CA 
is a submodule of the Hom group between A-modules, hence is Noetherian 
since both modules and A are Noetherian. 

Remarks: 1) Similar results hold in CFA and C'A-
2) The functors $A and $A send projective resolutions to projective 

resolutions. We get therefore formulas similar to the Shapiro lemma. For 
example, one has for ail M in CA and ail N in CA isomorphisms 

ExtjjA(*x(M),JV)~Extj.„(M,JV) (1) 

for ail i. There is a similar formula involving <è'A. 

2.9. Proposition: Let M be a module in C'A that is projective as an A-
module. Then there exists a projective resolution P# of M in C'A such that 
there is for each N in C'A an integer r = r(N) > 0 with 

Homc'A(Pi,iV) = 0 for ail i>r. (1) 

Proof: Fix a group homomorphism h : X —• Z with h(a) > 0 for ail positive 
roots ex. For any .X-graded module L set min(L) resp. max(I) equal to the 
minimum resp. maximum of ail h(fi) with ^ 0. 

Consider the natural map 

h : &A(M) = UQU+ 0Vo M^M 
with fi(u (g) m) = um. Dénote the kernel of / i by M\. The embedding /0 
as in 2.7 splits f\. This shows especially that M\ is a projective A-module. 
Regarded as a fc-module $^(M) is the direct sum of ail {U^)^ 0 M^. We 
have (f7+)q = k and h(u) > 0 for ail other v with (U+)v ^ 0, by 1.1. This 
implies easily 

min(Mi) > min($^(M)) = min(M). (2) 
We can construct a projective resolution 

>P2->P1->PQ^M 
of M in C'A as follows: Take P0 = $'A(M) with the map fx onto M. This 
works because M is projective in C"A and because &A préserves projectives. 
Because M\ is again projective over A, we can now take Pi = <ï>fA(Mi) with 
the natural map onto M\ C -Po- Now iterate. Formula (2) yields 

min(M) = min(P0) < min(Pi) < min(P2) < • • •. (3) 

For any N in CFA there exists an index r with min(Pi) > max(Ar) for ail i > r. 
Then (1) holds obviously. 
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Remark: The proposition implies of course that 

Ext j . , (M, JV) = 0 for ail i > r (4) 

with N and r as in (1). 

2.10. We want to introduce an induction functor ZA '> C'A —» CA with 

a) 

for ail Al in (J'4. Most of the arguments in 2.6 generalize to this construction. 
Only the définition of the grading has to be modified, because the homoge-
neous parts in U and Al are not {7°{7+-stable. Multiplication induces an 
isomorphism of fc-modules 

U~®U°U+ ^ U . (2) 

So we get an isomorphism as A;-modules (in fact: as U~ S A-modules) 

ZA(M) - U~ G M. (3) 

We get now an À'-grading of ZA{A1) by A-submodules via 

ZA(AI)p = Q(U-)„®M^. (4) 

The compatibility of the U°U+-action on M with the grading implies that 
the canonical map U ® M U ®u°u+ M induces a surjection 

ZA{M) = U®uoU+ M 

sdd 
d+ds4d ZA(M)*. 

This implies easily that the {/-action on ZA{M) is compatible with the grad­
ing. 

It is now easy to check that ZA is left adjoint to the forgetful functor 
CA —• C'A, that it is exact and maps projectives to projectives. Furthermore, 
it is clear that we can identify ZA O $'a with One has (as in 2.8(1)) for 
ail M in CFA and ail iV in CA isomorphisms 

Ext'CA(ZA(M),N) ~ Extj., (M,N) (5) 

for ail i. 
In the situation considered in 2.4 (Case 1 with A = k) the functors 

<J>'fc, and Zk are just the usual coinduction functors between the catégories of 
r - , BfT-, and GiT-modules, cf. [Ja6], 1.8.20, II.9.1. 
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2.11. Because the multiplication map is an isomorphism U° ® U+ —• U°U+ 
the conditions l.l(2)-(4) imply that (U°U+ )0 = f7° and that 

!70J7+ = U° 6 J+, where /+ = 0 ( E / ° [/+),,. (1) 
i/>0 

Obviously I+ is a two-sided idéal in U°U+, and we get an isomorphism 
/ : U°U+/I+ U° (2) 

induced by the projection from U°U+ onto U° corresponding to the décom­
position (1). 

We can use (2) to regard any M in CA as an object in CfA: We keep the 
grading and the A-module structure and get the action of U° U+ from that of 
U° via / . This action still commutes with that of A and it is still compatible 
with the grading because ail (UQU+)n with fi ^ 0 are contained in the kernel 
of / . 

We can consider for ail ji G X(T) an object M of CA such that = A 
and Mv = 0 for ail v ^ cf. 2.5. We dénote this object by A*1. Using the 
remarks above we can regard A^ as an object in C!A that is annihilated by 
0i/>o(î7+)I/. We can then construct the induced module 

ZA(ii) = ZA{A»). (3) 
In the situation of 2.4 (Case 1 with A — k) any k*1 is just the one dimen-

sional JB^T-module where T acts via ji. So Zk(jj) is just the module Zi(/i) 
as in [Ja6], 11.9.1(5). In Case 2 one gets for A = k the modules MAX) from 
[DCK1], 3.2. 

We can apply $A and to A*1 regarded as a module in CA and shall 
use an analogous notation: 

= ^ ( A * ) and *'A0x) = ^ ( A " ) . (4) 
2.12. A Z-filtration of a module M in CA is a chain 

M0 = 0 C Mi C . . . C Mr = M (1) 
of submodules such that each Mi/Mi-i is isomorphic to ZA(X{) for some 
Xi ex. 

If M has a Z-filtration, then ail M^ are free over A. For M as in (1) 
the formai character chM is the sum of the ch.ZA(X{). It is obvious that the 
chZ^(À) are linearly independent (cf. also 4.7(1)). Therefore the number of 
factors isomorphic to ZA(X) in a Z-filtration of M dépends only on M, not 
on the choice of the spécial Z-filtration. 
Lemma: Let M be a module in CfA resp. in CA such that each M^ is free over 
A. Then ZA(M) resp. ®A(M) has a Z-filtration. 
Proof: In the case where M is in C'A, there is a filtration of M with factors 
of the form A*1 with fi G X. The exactness of ZA transforms this filtration of 
M into a Z-filtration of ZA(M). For M in CA one observes that the weight 
spaces of $^(M) are free. By the part already proved we get a Z-filtration 
of ZA(&A(M)) ~ *A(M). 
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2.13. Lemma: For any M in CA there is a projective module Q in CA such 
that Q has a Z-filtration and such that M is a homomorphic image of Q. 

Proof: We can proceed as in the proof of 2.7.c. We choose an epimorphism 
P —• M where P is projective in CNA. We can assume that P is free over A. 
Then Q = $A(P) has a Z-filtration by the last lemma and satisfies the claim 
of the lemma. 

Remark: In some cases we can be more précise. For example, consider M = 
ZA(X) with À G X. We have an obvious surjection $fA(X) —> Ax in C'A. 
Therefore we can take Q = ZA($A(X)) = By 1.1 and 2.6 each weight 
H of &A(X) satisfies \i > À, and <&fA(X)\ is free of rank 1. So any Z-filtration 
of Q involves only ZA(/ji) with \i > À, and ZA(X) occurs exactly once (at the 
top). 

2.14. Lemma: a) If Ext^A (ZA(X), M) ^ 0 for some M in CA and X G X, 
then M has a weight \i with ji > À. 

b) Let A,/z e X. If Ext^A(ZA(X), ZA(/i)) ^ 0, then fi > X. 

c) If a module M in CA has a Z-filtration, then one can find a (possibly 
différent) Z-filtration of M with the following property: Whenever X{ > Àj 
(in the notations of 2.12(1)), then i < j . 

Proof: a) Consider in CA an exact séquence 

0 _> M N ZA(X) -> 0. (1) 

Let v G N\ be an inverse image of the standard generator vQ = 1 ® 1 of ZA(X). 
If Eav = 0 for ail a G then there is a homomorphism from ZA(X) to N 
that maps v0 to v and then splits (1). So if (1) does not split, there is a > 0 
with Eav ^ 0. We get especially that À + a is a weight of M, hence a). 

Now b) is an obvious conséquence of a), and c) is one of b). 

2.15. Lemma: Let M be a module in CA with a Z-filtration. Then there 
exists a projective resolution P. of M in CA such that there is for each N in 
CA an integer r = r(N) > 0 with 

HomcA (Pi, N) = 0 for ail i > r. (1) 

Proof: Suppose first that M = ZA(/i) for some \i G X. Then there is a 
projective resolution P[ of A*1 in CA with the property required in Proposition 
2.9. We apply the functor ZA to P[ and get according to 2.10 a projective 
resolution of M with the desired property. 

For gênerai M we use induction on the length of a Z-filtration. If M' is 
a submodule of M, such that M' and M/M' have projective resolutions as 
desired, we use the algebraic mapping cone to get a resolution of M with the 
desired property. 
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Remark: The lemma implies of course that 

Extj-A(M, N) = 0 for ail i > r (2) 

with N and r as in (1). 

2.16. Lemma: Suppose that any finitely generated projective A-module is 
free. 
a) Any direct summand of a module with a Z-filtration has a Z-filtration. 
b) Any projective module in CA has a Z-filtration. 
Proof: a) One can use the standard arguments, e.g. from [BGG1]. 
b) If M is projective in CA, then any epimorphism Q —» M as in Lemma 2.13 
has to split. Now apply a). 
Remark: The assumption of this lemma will certainly be satisfied, if A is a 
field or a local ring. 
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3. Projective Modules 

As in the last sections, we shall always dénote by A a (Noetherian and 
commutative) {7°-algebra with structural map w : U° —• A . Any A-algebra 
is assumed to be Noetherian and commutative. 

3.1. Let A ' be an A-algebra. If A ' is finitely generated as an A-module, then 
there is an obvious (exact) restriction functor CA> —* CA'- We take the same U-
module with the same grading, and make an a 6 A act via its canonical image 
in A'. If A1 is arbitrary, then this construction yields a functor GCA> —• QCA, 
where QCA is the enlarged category considered in the remark to 2.7. We get 
a functor in the opposite direction, called extension of scalars: Map any M 
in QCA to M ®A A1 with the obvious U ® A'-action and the grading given by 

(M®AA')9I = MLI®AA'. (1) 

This functor maps CA to CA> for arbitrary A ! . It is easy to check for any N in 
QCA' that the standard isomorphism Hom^(M, N) Hom^/(M ®A AF,N) 
induces an isomorphism 

HomçcA (M, N) - H o m ^ , (M ®A A',N). (2) 

In other words, we have constructed a functor left adjoint to the restriction 
functor. There are obvious similar constructions for C'A and CNA. The associa-
tivity of the tensor product implies that one has for each M in CNA a canonical 
isomorphism 

QA(M) ®A A' - $A,(M ®A A'). (3) 
There are similar statements for $ ' and Z instead of $. Let us mention 
explicitly that 

ZA(V)®AA' ~ZA.(H) (4) 

for ail il G X. In many cases we shall use the simplified notation 

MAi =M®AA!. (5) 

Lemma: Let M be a module in CA. 
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a) If M is projective in CA, then M ®A A9 is projective in CA<. 

b) If M has a Z-filtration, then so has M ®A A9. 

Proof: The first claim follows from the adjointness property (2) together 
with the remark in 2.7. Since modules in CA with a Z-filtration are free over 
A, short exact séquences involving only modules of that type split over A. 
Therefore (4) implies b). 

3.2. Lemma: Let A ' be a flat A-algebra. We have for ail M,N in CA and 
ail i > 0 a canonical isomorphism 

Ex4A(M,iV) ®A A' Ext}:Al(MA.,NA.). (1) 

Proof: First of ail, we have an isomorphism 

RomA (M, N) ® A A ' Honu' (MA<, NA< ) , 
since M is finitely presented as an A-module. This isomorphism is compatible 
with the additional structure and induces an isomorphism 

HomCA(M,A0®A A9 ^+HomcAF(MAi, NA>). (2) 

Because tensoring with A9 is exact, it takes projective resolutions to projective 
resolutions, and we get the more gênerai claim for ail i > 0. 

Remark: Similar results hold in C!A and CA. 

3.3. Proposition: Let M be a projective module in CA and let N be any 
module in CA- Then HomcA(M, N) is a finitely generated A-module and one 
has for any A-algebra A': 

KomCA(M,N) ®AA' ~ KomcA,{MA,,NA,). (1) 

If N is projective as an A-module, then so is HomcA(M, N). 

Proof: We know (cf. 2.7) that there is a projective M' in C"A such that M 
is a direct summand of $>A(M9). It is obviously enough to consider the case 
M = <&A(M9). By the adjointness property of $A we get isomorphisms 

HomCA(M,TV) - HomCA(M',iV) ~ 0 HomA(M;, JV„). (2) 

Ail and are finitely generated, almost ail of them are 0. This implies 
the first claim. 

If N is projective over A, then so are ail N^. Since the are projective 
over A anyhow, this proves our last claim. 

Using 3.1(3) and again adjointness one sees that the right hand side in 
(1) can be identified with 

HomC" (M9 ®AA9,N®AA9). 
A1 

This module can be decomposed as in (2). In this way we can reduce (1) 
to the corresponding base change property for finitely generated projective 
A-modules M9 which is obvious. 
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Remark'. Similar results hold (with the same proof) in C!A and (of course, by 
our proof) in CA. 

3.4. Proposition: Let M be a module in CA with a Z-filtration, and let N 
be a module in CA that is projective over A. Suppose that 

Ext^/m(MA/m,iVA/m) = 0 (1) 

for ail maximal ideals m of A and ail i > 0. Then the A-module B.omcA (M, N) 
is projective, and we have for ail A-algebras A' 

ExtlcAl (MAi, NA' ) = 0 for ail i > 0 (2) 

and 
KomCA(M, N) ®A A' ~ HomcA( (MA,,NA.). (3) 

Proof: We take a projective resolution P. of M in CA as in Lemma 2.15 and we 
set Qi = HomcA(P2, N). There is an integer r with Qi = 0 for ail i > r. For 
each A-algebra A1 the complex P# ®AA! is a projective resolution of MA*. (The 
Pi <S>A A! are projective by 3.1.a. The exactness follows from the fact that the 
resolution P. splits over A because M and ail P,- are projective A-modules.) 
Furthermore, Proposition 3.3 implies that we can identify (Qi)A' — Qi ®A A! 
with HomcA, (Pi <S>A A', NA>). Therefore the complex 

CA> : 0 ÏLomcA,(MA',NA') -> (QO)A> ^ (Qi)* ^ > (QT)A> ^ 0 

is exact at the Hom term and at the Q0 term and has higher cohomology 
equal to Ext^,(MA<,NA>). Our assumption (1) says that £A/m is exact for 
ail maximal ideals m of A. We claim that the complex CA is split exact. This 
will imply the proposition. 

To prove this claim we first observe that by Proposition 3.3 the Qi are 
ail finitely generated projective A-modules. Assume for the moment that A 
is a local ring with maximal idéal m. The exactness of £A/m implies easily 
that of £A using the Nakayama lemma and induction on r. 

For gênerai A dénote for each maximal idéal m of A the local ring at m 
by Am. We can apply the proof above to each Am since Am/mAm ~ A/m. 
The exactness of CAm for ail m implies the exactness of <£A. Then the splitting 
follows since ail Qi are projective. 

Remark: Let M,N be modules in CA that are projective over A. Let A1 
be an A-algebra with a finite projective resolution as an A-module. In this 
situation one can show that there is a spectral séquence with 

El2'-j = ToTf(Ext\.A(M,N),A') =» Ext^J(MA.,NA.). 

If A is a regular local ring with maximal idéal m, this can be applied to 
A = A/m. This yields a différent approach to Proposition 3.4 for regular 
rings. 
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3.5. Corollary: Let M be a module in CA with a Z-filtration. Then M is 
projective in CA, if and only if MA/m Z5 projective in CA/XTI for a^ maximal 
ideals m of A. 

Proof: If M is projective, then each MA/m 1S projective by Lemma 3.La. 
Suppose now that each MA/m ls projective. There is (by 2.13) an exact 
séquence 

O ^ i V ^ Q ^ M ^ O (1) 

in CA where Q is projective and has a Z-filtration. Since M is free over A, the 
séquence splits over A. Therefore N is projective over A. Since each M A/m 
is projective, the assumptions of Proposition 3.4 are satisfied. We get now 
from 3.4(2) especially that Ext^A(M,iV) = 0, hence that (1) splits and M is 
projective as a direct summand of the projective module Q. 

3.6. Fix v G X. Dénote by CA(< ^) the full subcategory of ail M in CA 
such that M\ ^ 0 implies À < v. This subcategory is closed under taking 
subquotients and extensions. Ail Z^(À) with À < v belong to CA(< V). 

Let M be a module in CA- Suppose that (M^)^/ is a family of submodules 
of M such that each M/M; is in CA(< v)- Then M / f ^ M ; is in CA{< v). 
Indeed, if ji G X satisfies /i ^ z/, then one has M^ = (Mt)/i f°r all h hence 
M^ = (p^M;)^. Dénote the intersection of all submodules M1 of M with 
M/M' in CA(< v) by 0 " M , and set YVM = M/OvM. The argument above 
implies that YVM is in CA(< u). If N is in CA(< P) and if / : M N is a 
homomorphism, then M/ ker(/) is in CA(< so OvM is contained in ker(/). 
This shows that the natural map M —• YvM induces for all N in CA(< V) an 
isomorphism 

HOÏÏICa (r"M, N) HomcrA (M, JV). (1) 

It is now clear that TVM is functorial in M and that the functor Tv is left 
adjoint to the inclusion. (This construction is of course in some sensé dual to 
Donkin's O^, cf. [Don], 12.1.6.) 

3.7. Lemma: Let M be a module in CA-

a) If M is projective in CA, then YVM is projective in C ^ ( < u). 

b) If M has a Z-filtration, then OvM and TvM have a Z-filtration and one 
has for any A-algebra A1 : 

T"{M) ®A A1 ~ T"{M ®A A'). (1) 

Proof: The claim in a) is an immédiate conséquence of 3.6(1), since the 
inclusion of CA(< v) into CA is an exact functor. 

Assume now that M has a Z-filtration. Lemma 2.14.a implies that we 
can find a Z-filtration of M as in 2.12(1) such that there is an index j with 
Xi ^ v for all i < j and with À; < v for all i > j . We claim that OvM — Mj. 
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By construction M/Mj is in CA(< so we have 0VM C Mj. On the other 
hand, one has for ail N in CA(< V) and ail À G X: 

If À g i/, then HomcA(ZA(À), = 0. (2) 

Indeed, a generator of weight À in ZA(X) has to be mapped to N\ = 0. Now 
(2) implies HomcA(Mj,M/OuM) = 0, hence Mj = OvM. Now the claim in 
b) about Z-filtrations is clear. The formula (1) follows from this construction 
and 3.1(4). 

3.8. Lemma: For any M in CA(< u) there exists a projective module Q in 
CA(< V) such that Q has a Z-filtration and such that M is a homomorphic 
image of Q. 

Proof: We can regard M as a module in CA and get a projective module P 
in CA with analogous properties from Lemma 2.13. Then Q — TVP satisfies 
our claim by Lemma 3.7. 

Remark: The proof shows that the projective modules in v) are the 
direct summands of ail TUP with P projective in CA. 

3.9. We define analogous catégories CFA(< v). For any M in C'A the direct 
sum of ail with /i g v is a submodule 0,UM of M. (Use 1.1(4) and 2.3(C)!) 
Set TtvM = M/0'uM. This is a module in C'A(< v) and it is clear that the 
natural map from M to Y'VM induces for ail N in C'A{< v) an isomorphism 

HomC/A(T,UM,N) Hom^(M, N). (1) 

This shows that TLU is an exact functor from C'A to CFA(< v) left adjoint to 
the inclusion. It takes projective resolutions to projective resolutions. This 
implies for ail M, N in C'A(< v) and ail i > 0: 

ExtU(<v)(M,N) ~ Ext^ (M,iV). (2) 
A v — ' A 

Formulas 2.10(4) and 1.1(5) show that ZA maps C'A{< y) to CA{< ^)-
3.10. Lemma 3.La and the results in the subsections 3.2 - 3.5 can be 
generalized to the catégories CA(< ^)-

For example, since thèse are full subcategories of CA-, it is clear that we 
have still the adjointness property leading to 3.1.a and that 3.2(1) holds in 
CA(< V) for i — 0, i.e., Ext0 = Hom. It follows then for arbitrary i as in the 
proof of Lemma 3.2. 

We can extend 3.3(1) to CA(< v) as follows: If M is of the form TVQ 
with Q projective in CA>> then the claim follows from 3.8(1) and 3.7(1). In 
gênerai M is a direct summand of a module of this type. 

In order to get the analogues of 3.4 and 3.5 we have to extend some 
results from Section 2. That is trivial for Lemma 2.8. If we take a projective 
resolution P% of M as in Proposition 2.9 and apply Y,v to it, then we get a 
projective resolution P[ of M in C^(< v) satisfying the analogue of 2.9 for 
C^(< ^)- Finally, 2.10(5) and Lemma 2.15 generalize since ZA maps C'A(< v) 
to CA(< u). 
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4. Lifting Projectives 

We assume from now on that we are in Case 1 or 2 from 1 .2 /3 . Certain 
subsections work still in a larger generality. 

4.1. For any fc-algebra A there is a natural X-grading on U~ ® A such that 
(U~ ® A)„ = {U-)„ ® A for all v eX. The properties 1.1(3),(5) and 2.1(A) 
imply that 

( E T ® A)<0 = 0 ( C T ® A ) „ ( 1 ) 
i/<0 

is a two-sided idéal in U~ ® A consisting of nilpotent éléments such that 

(U~ ® A)/(U~ ® A)<0 ~ A. (2) 

If A = F is a field, this implies that (U~ ® F)<o is the radical of the algebra 
U~®F. 

For each U°-algebra A any ZA(/J>) with fi E X is isomorphic to U~ ® A 
as a U~ ® A-module. Under this isomorphism (U~ ® A)<0 is mapped to 
©i/<^ ZA(ii)W In the case where A = F is a field, this subspace of codimen-
sion 1 has to contain every proper U~ ® F-submodule, hence every proper 
U ® F-submodule of ZF(H)- SO the sum of all U ® F-submodules contained 
in ® J/<A4 Zp{l*)v is the radical of Zp(n) and the corresponding factor module 
(the head of Zp(fi)) 

LF(n) = ZF(//)/radZF(//) (3 ) 

is a simple U®F-module, called the simple U®F-module with highest weight 
li. Now radZp(/i) is the direct sum of its weight spaces, hence a module in Cp. 
(Observe: If M1 is a U® F-submodule, then the direct sum of the projections 
of M1 on all weight spaces is a submodule in Cp.) Therefore also Lf(AO 1S a 
module in CF. One can characterize LF(JI) as the unique (up to isomorphism) 
simple module M in Cp generated by a highest weight vector of weight //, i.e., 
by some v G MM with {U~^)vv = 0 for all weights v > 0. Each simple module 
in CF is isomorphic to exactly one LF(i^)-
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4.2. Let \ € X. We can twist the structural homomorphism ir : U° —> A 
(for any {7°-algebra A) by (—A) and get a new homomorphism 

tt' = 7T o p \ ) : £7° -+ A 

This yields a new algebra structure on A, denoted by A [À], For any M in CA 
we construct M[A] in CA[À] as follows: Take the old M as a U ® A-module. 
Define the grading on M [A] by 

M[A]„ = M„_A 

for ail fi £ X. It is obvious that M[X] satisfies 2.3(A)-(C). In order to see 
2.3(D) observe that for ail s G U° and m G M[A]^: 

sm = mir((fi — À)(s)) = m(7r o (—À) o Jl)(s) = mnf(jl(s)). 

It is obvious that we get an équivalence of catégories from CA to CA[\] • If M 
is free over A, then the construction implies 

ch(M[À]) = ch(M)e(À). (1) 

One has for ail fi G X: 

ZA(ri[\]~ZA[x](vL + \) (2) 

and (if A = F is a field) 

LF(fi)[\]~LF[x](fi + \). (3) 

We have A[0] = A and A[À][À'] = A [À + À'] for ail A, A' G X since /i ^ /ï is a 
group homomorphism. We have then also 

M[0] = M and M[A][A'] = M[\ + A'] for ail M m CA. (4) 

The construction in 1.4 shows in both cases that A = id for ail A G pX. 
We get thus A\pu] = A for ail v G X; the formulas (2) and (3) take then the 
form (for ail fi G -X") 

ZA(fJ<)\pv] ^ ^ A ( A * + ^ ) and LF(fi)\pv) ^ LF(fi + pu). (5) 

Furthermore (4) shows that CA is a pX-category in the sensé of Appendix 
E.3. 

Consider the spécial case A = k where k is regarded as a {7°-algebra via 
the augmentation map (as in 2.4). Each M[pi/] with M in Ck and v G X can 
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be identified with the tensor product M ® Lk{pv) in the category of G\T-
modules resp. in the quantum analogue. Here Lk(pv) has dimension 1, and g 
resp. u acts trivially on this module. The tensor product M ®Lk{pv) is often 
denoted by M ®pv, cf. (in Case 1) [Ja6], Section II.9. We have for M, N in 
Ck 

dz 

Romc, (M ® pv, N) ~ 
Homfl(M, N), in Case 1, 
Homu(M, N), in Case 2. (6) 

(Cf. [Ja4], 2.5(2), in Case 1; one argues similarly in Case 2.) Compare this to 
the définition of Hom" in the pX-cateejory Ch, i.e., with (cf. E.3(l)) 

Hom*. (M,N) = 
deid 

Homc„(M\pv],N). (7) 

We get clearly 

HomjLfc(M,iV) ~ 
Homa(M,iV), in Case 1, 
Homu(M,iV), in Case 2, (8) 

as long as we consider Ck as a pX-category. (Of course, if Y is any subgroup 
of pX, then Ck is a Y-category by restriction. If we consider that structure, 
then Hom^ gets a new meaning and (8) will be false in gênerai.) 

4.3. The subalgebras TW(U~), TW(U°) = £7°, and TW(U+) of U satisfy the 
conditions in 1.1 and 2.1, if we work with w(R+) instead of i?+. Therefore 
the whole theory developed so far can be carried out in this situation as well. 
The catégories CA and CnA do not change, and the category CfA is replaced by 
an équivalent one. We have induction functors similar to <&lA and ZA. We 
dénote the analogue to ZA by ZA and get especially modules 

TW(U~), TW(U°) = £7°, x (1) 

for ail » G X. Note that ZA(fi) is our old ZA(fi). 
If A = F is a field, then the discussion in 4.1 generalizes to ail Zp(ii) 

with w G W. One works with TW(U~) instead of U~. So for ail w £ W and 
fi G X the radical of Zp{fj) as a U ® F-module is in CF and 

= Z^AO/radZjJKAi) (2) 

is a simple module in CF-
By 4.1, there is for ail w G W and fi G X a weight jiw with 

TW(U~), TW(U°) = £7°, (3) 

The results in Section 5 (cf. 5.12) will show, how to détermine jiw in principle. 
But they will not yield a closed formula. 

Suppose that A has the property that each finitely generated projective 
A-module is free. Working with w(R+) instead of i?+ we see now that Lemma 
2.16 implies: Every projective module in CA has a filtration with factors of 
the form Z\{u). 

37 



H.H. ANDERSENJ.CJANTZEN, W. SOERGEL 

4.4. Let w £ W. We can twist any structural homomorphism tt : U° —+ A 
with Tw and consider 7r' = 7r O T"1 : {7° —• A to get a new algebra structure 
on A that we dénote by A[w]. 

We can define for any M in CA a module M [tu] in CA[w] as follows: Take 
M with the old structure as an A-module, let any u £ U act as T~l(u) on 
M, and set M ^ ] ^ = Mw-i^ for ail ju G I . Then 2.3(A),(B) are obviously 
satisfied. It is easy to check (and left to the reader) that 2.3(C),(D) hold. 
It is clear that we get an équivalence of catégories between CA and CA[W) • It 
satisfies 

c h ( M H ) = w(ck(M)) (1) 

for ail M that are free over A. 
One has in this case for ail x,w eW and fi G X: 

ZA(ri[w]*Z%w](u,ri. (2) 

Indeed, let Vi resp. v2 be the standard generators of ZA(fi) resp. of Z^w^(wfi). 
By construction, ji + x(3 is not a weight of Z\(fi) for any (3 G hence 

+ not a weight of Z\(n)[w\. We get Twx(Ep)v\ = 0 in Z^(/i)[it;] 
for ail /3 G The universal property of Z^w^(wfi) yields a homomorphism 
Z^w^(wfi) —> ZA(fi)[w] mapping v2 to v\. One gets similarly a homomor­
phism ZA(/jt) —> Z^^(w/i)[w_1] mapping vi to v2. It can be regarded as 
a homomorphism ZA(fi)[w] —> Z^^](w//). Thèse two maps are then inverse 
isomorphisms. 

If A = F is a field, then (2) implies for ail n G X and x, w G 

M ^ L^w](wn). (3) 

4.5. Recall the antiautomorphism r from 1.6. For any U ® A-module M we 
get a new C7 ® A-module Mr, the contravariant dual of M, by setting 

Mr = HomA(M,A) (1) 

as an A-module and by letting u G U act as follows: 

(uf)(m) = f(r(u)m) for ail / G MT and m G M. (2) 

If M is a module in then we make Mr into a module in CA setting 

M{ = {feMT\ / ( M , ) = 0 for ail p + A }. (3) 

So M£ can be identified with the dual of M\. It is easy to check 2.3(A)-(D). 
(Use that A is Noetherian to get that Mr is finitely generated.) 

If M is free over A, then obviously 

ch(Mr) = ch(M) (4) 
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and (using our finiteness assumption) 

(MT)T ~ M (5) 

and 
(M ®A A!)r ~ MT ®A A! (6) 

for any A-algebra A1. 
Suppose now that A = F is a field. For any ji the contravariant dual of 

the simple module LF(n) 1S simple and has the same formai character. We 
get 

LF{p)T~LF{n) (7) 

for all fi e X(T). 
Because (5) holds for all M in CF one has 

Ext[.F(Mr,M'r) Extî-F(M,,M) (8) 

for all i and all M, M1 in CF. 

4.6. Proposition: Suppose that A = F is a field. One has 

Ex4F(LF(M),LF(A)) ~ Ext'CF(LF(X),LF(fx)) (1) 

for all i and all A,// G X. Furthermore: 

Ifn?\, then HomCF(radZF(A),XF(/i)) ~ Ext£F(LF(À),£F(/i)). (2) 

Proof: The first claim is an immédiate conséquence of 4.5(7) and (8). As in 
the classical case, cf. [Ja6], II.2.14 or II.9.16, the exact séquence 

0 -> radZF(A) —• ZF(A) —• LF(A) 0 

induces for all \x an exact séquence 

0 -> HomcF(radZF(A),Xf(/i)) —>ExtèF(LF(A),LF(/i)) 

—•ExtèF(ZF(A),IH/i)) . 

In case \ the last term is 0 by Lemma 2.14.a. 
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4.7. We have by construction for ail p G X and w G W: 

ch ZA(P) = e(/i) ch U 

and 
ch Z%(p) = e(fi)ch(Tw(U-)) = e(n)w(chU-). (1) 

Using the PBW-type basis of U we get 

c h t r = 
1 - e r'(p)ss ks 

1 + d+ 
l - e ( - / 3 ) 

(2) 

One knows that p — wp is the sum of ail positive roots a with w 1(a) < 0. It 
is now easy to see that 

w(chU ) = e((p — l)(p — wp))chU . (3) 

Set 
H(w) =p + (p- l)(wp - p) (4) 

for ail fi G X and w G W. With this notation (3) implies (for ail p, w) 

ch ZA(p) = ch Z%(p{w)) (5) 

Lemma: Let p G X. One has for ail x G W : 

KomcA(Z*Mx}),Z%(fi(w))) ~ A (6) 

(dl) 

HomcA(Z'A(n(x)),Z%(»(w)y)~A. (7) 

Proof: Set M* = for ail a: G VF. By construction Mx^ is free over 

A. of rank 1, and p(x) + xj3 is not a weight of Mx for any (3 G By (5) 
the same is true for Mw'. So we can find t> with = Av. Furthermore, 

any p(x) + xf3 with f3 G i?+ is not a weight of M™. This yields Tx(Ep)v = 0 
for ail thèse /3. Therefore there is a homomorphism Mx —• Mw mapping the 
standard generator to v. Obviously any other homomorphism from Mx to 
Mw has to be a multiple. This proves (6). This argument uses only the fact 
that Mw has the same character as Mx. It works equally well for (M™)r, 
since that module has the same character as Mw by 4.5(4). 
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4.8. Note that p(w0) = p — 2(p - \)p for ail p G X. 

Lemma: Suppose that A = F is a field. 

a) The socle of U~ ® F as a module over itself under left multiplication has 
dimension 1 and is equal to (U~ ® F)_2(p-i)p-

b) For ail p E X the socle of Zf(P) is simple and equal to 

SOC Zf(H) = UZf(P)n-2(p-l)p- ( I ) 

Proof: a) The weight — 2(p — l)p is the smallest weight of U~, so (U" (g) 
F)_2(p_i)p is annihilated by (U~ ® P)<o, hence a one dimensional simple 
submodule of U~ ® F. So it is contained in the socle, and we claim that it is 
the whole socle. 

In Case 1 the algebra U~ ® F is isomorphic to the restricted enveloping 
algebra U^(n~ ® F). This algebra has a simple socle, cf. [Ja6], 1.2.14(9), 
1.8.5/7. 

In Case 2 one uses the nondegenerate bilinear form on u considered by 
Xi in [Xil] when he proved the symmetry of u, cf. [Xi2], 2.9. It restricts to a 
non degenerate bilinear form on u~ ~ U~ that can be extended to U~ ® F. 
The socle is the space perpendicular to the radical, hence has dimension 1. 
(Compare also the argument in [PW1], 9.5.) 
b) The isomorphism between U~ ® F and Zf(H) maps the socle determined 
in a) to ZF(aOm-2(>-I)P- Therefore this one dimensional weight space is con­
tained in every nonzero ?7~®F-submodule. This implies that Zf(ji) regarded 
as a U ® F-module has a simple socle given by (1). It is obvious from that 
formula that this socle is the direct sum of its weight spaces, hence in Cf and 
thus also the socle of Zf(P) as a module in Cf> 

Remark: More generally, each Zp(fi) has a simple socle. For example, the 
socle of Z™°(ii) is generated by Z^0(^)/x+2(p-i)p-

4.9. Lemma: Suppose that A = F is a field. Let \x G X. One has for any 
nonzero homomorphism (p : Zp°(/J — 2(p — l)p) —> Zjp(//); 

soc ZF(/i) = im(v?) a Lp° (fi - 2(p - l)p) (1) 

and for any nonzero homomorphism (p1 : Zf(/i) —> Zp°(fi — 2{p — l)p): 

soc Zp (fi - 2(p - l)p) = im(y>') ~ LF(fï). (2) 

Proof: The image of <p is generated by 

V(ZF°(V ~ 2(p - m^ip-Vp) C ZF(/i)M_2(p_1)p. (3) 

Since (p is nonzero and since the right hand side in (3) has dimension 1, we 
have equality in (3). Now (1) is an immédiate conséquence of 4.8(1). The 
proof of (2) is similar. 

Remark: Lemma 4.7 implies that there exist <p and p> as above. 
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4.10. Lemma: One has for ail p G X isomorphisms 

Zy{n-2{p-l p ^ ZA(uV (i) 

and 
zA(»+2(p-i)P)-^zxxxxxT(»y. (2) 

Proof: Let w b e a basis for the fc-module (17 )-2(p-i)p- Then 1 is a basis 
of ZA(II>)II-2(P-I)P and we can choose a basis / of (Z^(/i)r)//_2(/?_i)p with 
f(u ® 1) = 1. By 4.7(7) we get a homomorphism ip : Zj°(p - 2(p - l)p) -> 
ZA(/J>)T with ^>(1 (g) 1) = / . We have I/J(T(U) ® 1) = r ( u ) / = f o u, hence 
</>(T(I/)®1)(1®1) = /(tx® 1) = 1 and ^(T(IX)®1) ^ 0. In the case where A = F 
is a field, this implies that rp is nonzero on the simple socle of Zp° (p—2(p— l)p), 
hence injective. By dimension comparison it has to be bijective over a field, 
hence in gênerai and we get (1). Now (2) follows by applying r to (1) with p 
replaced by p + 2(p — l)p and from 4.5(5). 

4.11. Proposition: One has Ext%A(ZA(\), Z™°(p)) = 0 for ail X,p G X 
and ail n > 1. 

Proof: Consider at first the case n = 1. We can interpret Ext1 via short exact 
séquences. From that point of view it is obvious that 

Ext^(ZA(A),Z7( / i ) )~Ext1(Z7(M)r ,Z^(A)r) , (1) 

since thèse modules are free over A, ci. 4.5(5). Using Lemma 4.10 we can 
rewrite this as 

Ext^(ZA(A),Z70u)) ~ Ext1 (ZA(p + 2 ( p - l)p),Z%>(\ - 2 ( p - l)p)). (2) 

The largest weight of Z%°(p) resp. of Z%°(\ - 2(p - l)p) is p + 2(p - l)p 
resp. A. So Lemma 2.14.a implies: If the left resp. right hand side in (2) is 
nonzero, then p + 2(p — l)p > A resp. A > p + 2(p — l)p. We cannot have both 
inequalities at the same time, so the Ext1 groups in (2) have to be zéro. 

In gênerai, we use induction on n. The remark in 2.13 yields a short 
exact séquence 0 —• iV —• Q —• ZA(X) —> 0 such that Q is projective and such 
that N has a Z-filtration. We get for ail n > 1: 

E x t ^ ( Z A ( À ) , Z ^ ) ) c E x t ^ i V , ^ ) ) . (3) 

The right hand side in (3) vanishes by induction, since it vanishes for each 
of the factors in a Z-filtration of N. The largest weight of Z^°(p) resp. of 
Z^°(X — 2(p — l)p) is p + 2(p — l)p resp. A. So Lemma 2.14.a implies: If the 
left resp. right hand side in (2) is nonzero, then p + 2(p — l)p > X resp. A > 
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p + 2(p — l)p. We cannot have both inequalities at the same time, so the Ext1 
groups in (2) have to be zéro. 

In gênerai, we use induction on n. The remark in 2.13 yields a short 
exact séquence 0 —• N —• Q —• ZA(^) —* 0 such that Q is projective and such 
that N has a Z-filtration. We get for ail n > 1: 

Ext? (ZA(X), Z?(»)) x Extne-\N, Z?(jx)). (3) 

The right hand side in (3) vanishes by induction, since it vanishes for each of 
the factors in a Z-filtration of N. 

4.12. Proposition: Let À,// G X. One has 

KomcAZA(\),Zr(ri)* 
A, if /i = A - 2(p - l)p; 
0, otherwise. 

Proof: If this space of homomorphisms is nonzero, then À is a weight of 
ZA°(p), hence À < p + 2{p — l)p. Using r we see that also 

EomcA(ZT(^T^A(X)T) * KomcAZA(n+2(p-l)p),Z%°(\-2(p-l)p)) ? 0. 

This implies p + 2(p — l)p < À, hence p = À — 2(p — l)p. In that case the 
claim follows from 4.7(6). 

Remark: Let w G W. Consider the équivalence of catégories M \—> M[w-1] 
as in 4.4. By 4.4(2) it induces isomorphisms (for ail À, p and ail n > 0) 

E x t ^ Z ^ A J . Z T ' O i ) ) * E x t ^ Z ^ - ^ Z ^ - 1 / , ) ) 

where A' = A[u; 1]. Therefore this and the previous proposition imply for ail 
A and u 

Ext?x(Z%(\), Z™w°(n)) = 0 for ail n > 0 (1) 

and 

HomCyl(Z^(A),Zro(^)) = 
A, if p = À — 2(p — lW/>; 
0, otherwise. (2) 

4.13. Let M, iV be modules in CA such that M has a Z-filtration and N has 
a filtration with factors of the form ZA°(p). Then Proposition 4.11 implies 
that 

Ext£A (M, iV) = 0 for ail n > 1, (1) 

and Proposition 4.12 implies that Homcj4(M, iV) is a free A-module. The 
following corollary is an important spécial case: 

Corollary: Let M be a module in CA with a Z-filtration. The A-module 
HomcA(M, ZA°(\ — 2(p — l)p)) is free for ail À G X, and its rank is equal to 
the number of factors isomorphic to Z^(À) in a Z-filtration of M. 
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4.14. Lemma: Let M, Q be modules in CA such that M has a Z-filtration 
and Q is projective. Then 

Ext£A (M, Q) = 0 for all n > 0 (1) 

and HomcA (M, Q) is a projective A-module. 

Proof: If A is a field (or local), then the last statement in 4.3 implies that Q 
has a filtration with factors of the form Z^°(p). Then the claims follow from 
4.12. In gênerai we apply Proposition 3.4. 

4.15. Suppose for the rest of Section 4 that F is a î7°-algebra that is a field. 
The category CF has enough projectives and all modules have finite 

length. Therefore the usual arguments show that there is a one to one corre-
spondence between simple modules and projective indécomposable modules. 
Dénote by QF(A) the unique (up to isomorphism) projective module with 

QF(A)/radQF(A) * LF(\). (1) 

For any M in CF the multiplicity [M : LF(X)] of LF(X) as a composition 
factor of M is given by 

[M : LF(X)] = dimHomCF(QF(À),M). (2) 

Proposition: Any QF(X) with A G X has a Z-filtration. Any ZF(p) 
with p G X occurs exactly [Zpyfi) ' LF(X)] times in such a Z-filtration. 

Proof: The existence follows from 2.15.b. By 4.13, we know that ZF(p) occurs 
as a factor exactly 

dimHomCp(QF(A), Zpfa - 2(p - l)p)) 

times. This number is equal to [Zp°(fi — 2(p — l)p) : LF(A)] by (2). Because 
the formai characters of the simple modules in CF are linearly independent, 
the multiplicities in a module dépend only on the formai character of the 
module. We know by 4.7(5) that Zp(p - 2(p - l)p) and ZF{p) have the 
same formai character. Therefore we get the claim. 

Remark: One can prove the reciprocity formula also using the approach in 
[Ja3], 3.8. 

4.16. Let F' be an extension field of F. We have then 

LF(X) ® F F' - LFi(X) for all A G X, (1) 

since obviously EndcF£F(A) = F. This implies that extension of scalars from 
CF to CF' take composition séries to composition séries, especially that 

[ZF(p) : LF(X)] = [ZF'(p) : LF*(\)] for all X,p G X. (2) 

By Lemma 3.1 each QF(X) ®F FF is projective in CF>; by (1) it maps onto 
LF'(X). SO (2) and Proposition 4.15 imply that 

QFW ®F F( - QF'(X) for all A G X. (3) 

4.17. Fix v G X. Recall the discussion of CF{< v) in 3.6 - 3.10. 
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Lemma: There is for ail X G X with X < v a projective cover Qp(X) of Lp{X) 
in Cp(< v). It has a Z-filtration with factor s Zp(p) where p G X with p<v. 
Any such Zp(fi) occurs exactly \ZF{P) : Lp(X)] times. If X < v — 2(p — \)p, 
then QVF{\) = QF(X). 

Proof: The module QF(X) = T^QpiX) is projective in CF(< V)- Since it is a 
homomorphic image of <2F(A), one gets QuF(X)/i&àQuF(X) ~ LF(X). Therefore 
QF(X) is a projective cover of Lp(X) in CF(< The claim about the Z -
filtration follows from the construction in 3.7 and from Proposition 4.15. (One 
could also argue directly using 3.8 and imitating the proof in 4.15.) If [Zp{p) -
Lp(X)] ^ 0 for an arbitrary / i G l , then À is a weight of ZF(P). This implies 
À > p — 2(p — 1)/), hence fi < X + 2(p — l)p. For À < v — 2(p — l)p we get then 
p < v for ail ZF{P) occurring in QF(X), hence the last claim. 

4.18. Suppose in 4.18-19 that A is a local ring with residue field F. 

Proposition: There is for ail X £ X with X < v a projective module QA(X) 
m CA(< v) with QVA{\) ®A F ~ QUF{X). 

Proof: We use induction on À from above. Recall from the remark in 2.13 
that $A(X) is projective in CA and has a Z-filtration where only ZA(p) with 
p > X occur. The module ZA(X) occurs exactly once and is the top factor. 
Set Q = ru^A(X). This is a projective module in CA(< v) with a Z-filtration 
and a surjection Q —+ ZA(X). 

Now QF is projective in CF(< z/) by thegeneralizationof 3.1.atoC^(< i/), 
cf. 3.10. It is therefore a direct sum of certain QF(p). The statement on the 
Z-filtration implies that only weights p > X can occur. The module QF(X) 
occurs because of the surjection QF —• ZJF(À), and it occurs only once because 
ZF(X) occurs only once in a Z-filtration. So QF has a décomposition 

QF^QF(X)® QUpr^ 

d < u <u 
( 1 ) 

for suitable integers m(p) > 0. 
For À = v we can take QA(X) — Q. In gênerai, we know by induction 

that there exist QA(p) for ail p with À < p < and we have to show that 
we can find a décomposition 

Q= Q E dl 

d < e s ds 

Q( du msm,n (2) 

Then QF ®A F has to be isomorphic to QF{X) by the Krull-Schmidt theorem, 
i.e., we can take Q\(X) = Q'. Set M = (B\<p<* QM™^- In order to get 
(2), consider the projection / : QF —• MF coming from (1). We have by 3.3 
(generalized to CA(< v), cf. 3.10) 

HomCp (QF,MF) ~ YLomcAQ.M) ®4 F. 

So there is a homomorphism / : Q —» M that lifts / . The Nakayama lemma 
implies that / is surjective. Because M is projective, the epimorphism / has 
to split. We get a décomposition Q ~ Qi © M, i.e., (2). 
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Remark: The argument used in the last part of the proof says: If Q and M 
are projective in C U ( < v) and if Mp is a direct summand of QF5 then M is a 
direct summand of Q. The same argument works in CA-

4.19. Theorem: a) There is for ail À G X a projective module QA(^) in CA 
such that QAW ®A F ~ QF{^)- This module is unique up to isomorphism. 

b) Any projective module in CA is isomorphic to a direct sum of certain QA(^)-

Proof: Let us first show the existence of the QA(ty- Choose an arbitrary 
v > À + 2(p — l)p. The module is then contained in C^(< since 
ail weights of $^(À) are less or equal À + 2(p — l)p. Therefore it is equal to 
the module Q = P ^ ^ À ) in the proof of 4.18. So Q and its direct summand 
QAW are projective in CA- We have QFW = QFW Lemma 4.17. So we 
can take QA(X) = QAW-

The uniqueness (up to isomorphism) of the QA(^) as well as the claim 
in b) follow from the remark in 4.18. (Note: If M in CA is projective and 
satisfies MF = 0, then M = 0 since M is free over A by Lemma 2.7.c.) 
Remark: The functors M i—> M[pz/] with v G X are équivalences of catégories 
on and on CA, cf. 4.2. They take (indécomposable) projective objects to 
(indécomposable) projective objects. Therefore 4.2(3) implies for ail À and v 
i n X 

QF{\)\pv]^QF{\+py) and Q A ( À ) M ^ < 2 A ( A + H - (i) 
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5.1. In Case 2 we define K\ for ail À G ZR as 

Kx = 

d + d 

Km(a) e[j0 if A = 

d+d 

m(a)of. 

One gets then ^ ( / ^ a ) = Kw\ for ail w G W and À G Zi?. (It is enough 
to check this when w is a simple reflection and À a simple root. Then it is 
obvious by the définitions.) In Case 1 one has Tw(Hp) = Hwp for ail w G W 
and (3 G R. 

We define dp for ail roots (3 via dp — da for ail a 6 S with (3 G Wa. 
This is well defined, because da has the same value for simple roots conjugate 
under W. 

Let a £ R. In Case 1 we set = E™/(m\) for ail integers m with 
0 < m < p. In Case 2 set first 

Hd = (çim-Cdm)/(Cd-Ci) and d k = 
md 

dd+ 

dre 

(where d = da) for ail integers m resp. for ail integers m > 0. Then [m]^ ^ 0 
for ail m with 0 < m < p. So we can define = E™/[m]ld for ail thèse m, 
and we can set 

m 
J dr 

re 
kls +d= 

d+ ld + dr 

for ail integers j and m with 0 < j < m < p. (The left hand side can be 
defined more generally, but we shah need it only in this spécial case.) 

In Case 2 we define (with d as above) éléments 

Ka',a 

m 

m 

J=l 

TW(U~), TW(U°) = £7°, X ion, 

w - ((d) dkdkl 
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for ail integers a, m with 0 < m < p. We shall use the abbreviation 

[Ka;a] = 
Ka;a 

1 
dr 

Ka(ad -K-x<i-ad 

(d — c~d 

and get for 0 < m < p 

Ka\a 

m 
red (Hk)"1 

m —1 

j=0 

[Ka;a-j]. 

Note that Kl(2ad - 1 from [Ka\ a] by the factor Ka((d - (~d)(ad which is a 
unit in U°. 

5.2. Let A be an algebra over U° with structural map tt : U° —> A. Set 

Rn = {f3eR\ ir(HpY - 7r(Hp) = IIi=i(^(^) + J) is not a unit in A) 

in Case 1, resp. 

RV = {P£R\ ir(Kp)2* - 1 = II i=i(^(^)2C2i " 1) is not a unit in A} 

= {/3 e R \ HPi=1(n[Kpij]) is not a unit in A} 

in Case 2. If A = F is a field, then thèse conditions mean 

Rn = {f3eR\ 7r(Hp) G Fp} resp. Rn = {/3 G R \ 7r(/i»2^ = 1}. 

Set Wn equal to the subgroup of W generated by ail sp with (3 G Rn and 
set R+ = Rn fl If A = F is a field, then ZR^ H Rv = R^ in Case 1, 
and ZRn D i? = Rn in Case 2. So then i?^ is a root System with Weyl group 
Wn and we can choose R+ as a System of positive roots in Rn. Dénote the 
corresponding set of simple roots in Rn by E^. 

In gênerai, Rn will not be a root System. Take for example R of type A2 
and dénote the two simple roots by a and /3. Assume that we are in Case 1 
and set A equal to the subalgebra of the field of fractions of U° generated by 
U° and by rij=i(-^W/? + j ) "1 - Then Rn = {±a,±/3} is not a root System. 
(More precisely, it is not a root System with the given choice of coroots.) 

5.3. Set B equal to the subalgebra of the field of fractions of U° generated 
by U° and ail 

p-i 

d <1 

(Ha+jy^isssHr1-ssdd!dd)-1 resp. 
p-i 

d+dkr 

d+ klre ds+d (1) 
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with a G R+- Define subalgebras (for each (5 G R+) and of the fraction 
field of U° via 

Bfi = B[H~1 \ a€R+,a^ p] (2) 
resp. 

B$ = B[ [A"Qssss;0]-1 | a G ^ /3] (3) 
and 

S0 = ^[tf-1 | ssssa G resp. J30 = B[ [tfa; 0]"1 | a G (4) 

The following statements are more or less obvious: 

Lemma: Let A be a U° -algebra with structural map TT : U° —• A. 

a) A is a B®-algebra, if and only if Rn = 0. 

b) Let (3 G R+. Suppose that A is a B-algebra. Then A is a B@-algebra, if 
and only if Rn C {±/?}. 
c) Suppose that A is a field. Then A is a B-algebra, if and only if 

Rn = {aeR\ 7r(Ha) = 0} resp. R7r = {aeR\ 7r(Ka)2 = 1}. (5) 

5.4. For the next subsections (until 5.12) we fix a simple root a G S, we set 
s = s Q and d = da. 

Let U(a) resp. U(—a) be the subalgebra of U generated by Ea resp. by 
E-a. It has as basis ail Ela resp. ail E!_a with 0 < i < p. We can also take 
ail resp. E^a. 

Set 
P(a) = U(-a)U°U+. (1) 

We claim that this is a subalgebra of U. In Case 1 this is clear, because P{ct) 
is the image in U of the enveloping algebra U(pa) of the minimal parabolic 
subalgebra 

pa = b+ + kX_a = b+ + s(b+) 

of g. In Case 2 the defining relations imply E-aEp — EpE-.a G U° for 
ail (3 G £, hence E-au - uE-a G U°U+ for ail u G U+. This implies 
U+U( —a) C -P(ck), hence the claim by Lemma 1.4. 

In both cases the PBW-type bases for U and its subalgebras show that 
P(a) is free of rank p as a right module over U°U+, and that U is free of rank 
pN~* as a right module over P(a). (N is the number of positive roots.) One 
has 

P(a) = U(-a)U°U(a) © Q(a) (2) 

where 
Q(«) = 

dd <lxlm 
p = 1d 

d< di <w 
U(-a)U°U(a)(U+)„. 
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Obviously, Q(a) is a two-sided idéal in P(a ) , and C7(—a)U°U(a) is a subal-
gebra isomorphic to P(a)/Q(a). 

The automorphism T3 = TA stabilizes Q(c*), and £/(—Qf)i70î7(of). 
This is obvious for Case 1. In Case 2 one uses the explicit formulas for TA on 
the generators and (for Q(c*)) the fact that TS(P(a)I/) = P(a)3^y 

5.5. For ail p! G X we can regard 

*A(/i) = P(a) ®uou+ A» 

and 
*Ad,') = P(a)®UOTt(u+) A» 

( 1 ) 

(2) 

as modules in a category analogous to CA-, C'A, . . . involving P(ot) instead of 
u, u°u+,.... 

Because the multiplication map is an isomorphism U(—a) ® U°U~^ 
P(a ) , ail E^}a ® 1 with 0 < i < p are a basis of ^^( / / ) . We dénote this basis 
by v0,vu ... ,vp-i where 

V,' = ^ ® l 6 t A ( / i ) H a - (3 ) 

One has then for ail i — using the convention vp — 0 = — 

E _ a ^ = (i + 1)VÎ+I resp.dsd dss d= [i + l]<*Vi+i (4) 

and 
£<*^ = vi-1(7r(Ha) + p(Ha) - i + 1 ) (5) 

resp. 
EaVi = Vj_i7r[!ifa; (//, av) - i + 1]. (6) 

Similarly, any \t^(//) has a basis v'0, v[,..., _j where 

v' = £&> ® 1 € * V / i ' V + i « - (7 ) 

One has 

Eaw = (i + l)t; +1 resp.s Eav'i = [i + l]dv'i+1 (8) 

and 
Ê-a^! = —Vi_i(7r(iîa) +fdddd dss ddf+ * " 1 ) (9) 

resp. 
E-cV'i = -v'i^Ka, <^',<*v) + i - 1]. (10) 

The action of U° on thèse bases is determined by the weights. The idéal 
Q(a) annihilâtes W^(//) because p — ia + v is not a weight of this module for 
any v £ Za. Similarly it annihilâtes \I/^(/i'). 
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5.6. Let fi E x and keep the notations from 5.5 with fi' — fi — (p — l)a. 
The universal property of the induced modules ^A(p) and ^A(fi — (p — l )a) 
yields unique homomorphisms 

<pa : *A{fi) -+ V3A(fi -(p- l)a) and ^ : V3A(fi -(p- l)a) -+ VA(fi) 
(1) 

with (pa(vo) = resp. pa(vf0) = vp-\. An argument as in 4.7 shows that (pa 
and <̂ 'a are bases for the corresponding Hom spaces. The formulas 5.5(3)-(10) 
imply for ail i 

<Pa(Vi) = (-1) 
w(Ha) + p(Ha] 

i (2) 

resp. 

<pa(vi) = (-iyv'p-i-A 
TW(U~), TW( 

i 
(3) 

and 

<Po,Kvi) = VP-l~i 
'ir(Ha) + u(Ha) + i + 1> 

i 
(4) 

resp. 

<Pn{Vi) = v«_i_iJrl 
TW(U~), TW(U°) ds 

i (5) 

5.7. We get for ail £ X the induced modules ZA(p) and ZSA(\J) by a 
two-step induction as 

ZA(p) ~ U ®P{a) (P(a) ®VoU+ A*1) = *7 ®P(a) *A(/x) (1) 

and 
Zi( , . ' ) ~ *7 ®P(a) (P(«) ®t/or,(^+) A"') = *7 ®P(a) (2) 

Using induction from P(a) to U we get from 5.6(1) homomorphisms 

<p = l®<pa: ZA{p) -f Z^(/x - (p - l)a) (3) 

and 
<p' = l®<p'a: Z\{p -(p- l)a) -+ ZA{p). (4) 

Each of them maps the standard generator to an élément that is a basis of its 
weight space. So (p resp. <pf is a basis of the corresponding Hom space, cf. 4.7. 

Recall that U is free over P(ol) of rank pN~x. This implies, for example: 
One has ker<£> = U ®p(a) ker^a; so, if ker^a is free over A of rank say m, 
then ker (p is free of rank p^"1™. 
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5.8. Let p G X and let (p and (p' be the homomorphisms from 5.7(3),(4). 

Lemma: If a £ Rn^ then <p and (p' are isomorphisms. 

Proof: By the discussion in 5.7 it is enough to prove the corresponding state-
ment for cpa and cpfa as in 5.6. Under our asssumption on a the coefficients 
on the right hand side in 5.6(2)-(5) are units in A. So (pa and (pfa take a basis 
to a basis, hence are bijective. 

5.9. Keep the assumptions and notations from 5.8. Suppose that A = F is 
a field. Consider the case where a G Rn- There is a unique integer n with 
0 < n < p and 

ic(Ha) + {p + p, av) = n • 1 G Fp C F (1) 

in Case 1, resp. 

7r(/C)2C2̂ +P'aV> =C2dU (2) 
in Case 2. (Note that (/>, av) = 1, because a is simple, and that p(Ha) is the 
réduction modulo p of (//, av).) 

Lemma: a) If n = p, then (p and (p1 are isomorphisms. 

b) For n < p one has 

im(<p) = ker(</?') and im(^') = ker(^) 

and 

dimim(^) =pN~1n and dimker((^) = pN~x(p — n). 

There is a homomorphism 

: ZF(p — na) —• ZF(p) (3) 

with im(^) = ker((^) and a long exact séquence 

• ZF(p - (p + n)a) —• ZF(p - pa) -> ZF(p - na) —• ZF(p) (4) 

Proof: By the discussion in 5.7 it is enough to prove the corresponding state-
ments for the maps (pa and (pfa from 5.6. In Case 1 the formulas (1) and 5.6(2) 
yield (pa(vi) = ( — 1)* {n~1)v,p_1_i. Therefore the kernel of <pa is spanned by 
all Vi with n < i < p — 1 and is zéro for n = p. One gets the same resuit from 
(2) and 5.6(3) in Case 2 and showrs similarly in both cases that the kernel of 
(pfa is spanned by all v[ with p — n < i < p — 1 iox n < p whereas it is 0 for 
n = p. This implies a) and the first claims in b). 

Assume from now on n < p. Let £o, . . . , vp-i be the basis of \&F(A* ~ 
na) analogous to VQ, VI, ... ,vp-\. We have Eavn = 0 by 5.5(5),(6). So the 
uni versai property of induced modules yields a homomorphism ipa : ̂ F(p — 
na) —• ^F{p) with 4Ja{vo) = vn. It satisfies 

+d4d3d+ e 
'n + i 

i d+d1 resp. tl>a(Vi) = 
n + i 

i \d 
Vn+i (5) 
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for 0 < i < p — n — 1 and ipa(vi) = 0 for i > p — n — 2. It it now clear 
that im(ifta) = ker(<^a) and that the kernel of ipa is equal to the image of 
the analogue of p'a for ^p(p — na). (Note that p — n plays the rôle of n for 
p — na.) We get ip as in (3) by inducing xpa from P(a) to U. We have then 
inup = kerp. By repeating the construction we get the séquence (4). 

Remark: We get also an infinité exact séquence 

...^ZF(ri^Z'F(fi-(p-l)qskqkqkqka)-+ZF(vi)^Z'F(l*-(p-l)<x)^--- (6 ) 

where the maps are p or p' alternatingly. 

5.10. Keep the assumptions and notations from 5.9. 
4.4(2) implies that we can regard ZA(p) as Z'A>(W-1 p)[w] where A' = 

and ZAs(pf) as Z3A,(w~1 p')[w]. Therefore the homomorphisms be-
tween ZA'{W~XH) and ZsA,(w~l p-(p- l)a) as in 5.7(3),(4) can be interpreted 
as homomorphisms 

<p:Z^)^ZqlsldldT(fi-(p-l)wa) ( 1 ) 

and 
V':ZT(M-(P -l)wa) - Z ^ / i ) . (2) 

The restrictions of T~l and Tw-\ to U° coincide. Therefore the structural 
map of A' is 

7r' = TTOT'I, = 7ToTw. w 1 
The behaviour of p and p' dépends therefore on 7rf(Ha) = 7r(Hwa) resp. on 
7r'(Ka) — 7r(Kwa). Now the results from 5.8/9 translate as follows: 

Lemma: a) If wa (£ Rn, then p and p1 are isomorphisms for ail p G X. 
Furthermore, if A = F is a field, then 

L%(p) ~ L%3(p -(p- l)wa) and L%s(p) ~ L%(p + (p - l)wa) (3) 

for ail p G X. 

b) Suppose that wa G Rn and that A = F is a field. Let n be the integer with 
0 < n < p and 

n • 1 = ir'(Ha) + (w~lp + p, av) = 7r(Hwa) + (p + wp, (wa)v) (4) 

resp. 
(2dn = Tr\Ka)2Ç2d{w~ltl+p>aV) = ir(Kwa)2(2d{»+wp>{wa)Vl (5) 

If n = p, then p and pf are isomorphisms. For n < p one has im.(p) = ker(^;) 
and im(pf) = ker(<£>) and 

dimim(<^) =pN~1n and dimkei(p) — pN_1 (p — n). (6) 

There is (for n < p) a homomorphism ip : Zp(p — nwa) —• Zp(p) with 
im(ip) = ker(p). 
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Remark: We get also an exact séquence as in 5 .9(4) . It leads to the following 
character formula: 

ch(ker<£>) = 

i>0 

ch Zp (p — (ip + n)wa) — 
i>i 

]chZ$(p-ipwa). (7) 

Note that this formula works also for n = p where it yields 0. 

5.11. Keep the assumptions and notations from 5 . 1 0 with A = F a field. 

Lemma: If wa £ Rn or if wa > 0, then p + (p — l)(p — wp) is not a weight 
ofkev((p). 

Proof: We can assume that wa G and that n < p in the notations of 5.10. 
Any weight of ZF(p) has the form 

r+d1r 
s+s1drd23 

mw(3w(3 = p -

d+r1dr 

mp(3 + 
s+ 1re 

d d 3d 
( 1 ) 

with 0 < mp < p for ail j3 where 

R(w) = {/3 G R+ | w~lp < 0 } and R'(w) = {(5 G R+ \ w'1 (3 > 0 } . 

We have w(a) G Rf(w). The weights of ker(<£>) are the sums as in ( 1 ) with 
mwa > n. So p + 22pER(w)(p - 1)/? is not a weight of kei((p). The claim 
follows because ^2peR(w) P' = p - wp. 

Remark: The same kind of argument shows also: 

If wa G R^ and n < p, then p - (p - l)(p + wp) is a weight of ker(^). (2) 

Use that p — J2peR'(w)(P ~~ tyP ls a weig^ °f ker(^) if n < p. 

5.12. Lemma: Let w G W with wa G R^- Then one has for ail v G X: 

LwF9«(v)~LwF(v + (p-m)wa) ( 1 ) 

where m is the integer with 0 < m < p and 

m • 1 = 7r(Hwa) + (y, (wa)v) resp. C2dm = 7r(/w)2C2rf<I/'(u;a)V>. 

Proof: Apply 5 . 1 0 to p = v + (p — l)wa. The corresponding n is n = m — 1 
for m > 1, and n = p for m = 1. For n < p the modules ZF(p — nwa) and 
Zp3(v) have the same nonzero image in Zp(p), so their simple heads have to 
be isomorphic. This and the fact that ip is an isomorphism for n = p yield 
the claim. 

Remark: The lemma and 5 .10(3) show (in principle) how to find the weight 
pw in 4 . 3 ( 3 ) . 
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5.13. Let w,x G W. Choose a reduced décomposition x~xw = Sis2 - — sr 
of x~xw, where Si is the reflection with respect to a simple root cv2. Set 
Xi = xsis2 - • - for 1 < i < r + 1. So x\ = x and #r+i = w. 

Fix /i G X. We have for 1 < i < r homomorphisms (recall the notation 
4.7(4)) 

ipi : Z^inixi)) - ZAiai(ti(xi) -(p- l)xi(ati)) 

as in 5.10(1). Because of XjSj = Xi+\ and s^p = p — ai we can write this as 

<Pi:ZAi(»(xi))-+ZAi+1Mxi+1)). (1) 

The composition 
(f = (pr O • • • O (f2 O (fi 

is then a homomorphism 

ip : ZA(p(x)) - Z%{p{w)). (2) 

Lemma: Suppose for ail i that X{a{ (jL Rn or xjû^ > 0. Then (p induces an 
isomorphism on the fi-weight spaces. It is a basis for the corresponding Hom 
space. If 

x " 1 ^ ) H {a G R+ | w~lxa < 0} = 0, (3) 

then (p is an isomorphism. 

Proof: Recall from 4.7(5) that ail ZA(fi(y)) with y £ W have the same 
character. Their //-weight spaces are free of rank 1. Our first claim (and then 
also the second one via 4.7) will follow, if we show that each <pi induces an 
isomorphism of the //-weight spaces. It is enough to look at the case where A 
is a field and to show that [i is not a weight of ker(<^). That claim, however, 
follows from Lemma 5.11 applied to //(#;) instead of p. 

We know by Lemma 5.10.a that cpi is an isomorphism, if XiCti £ R^. So 
(p is an isomorphism, if 

Rn H {xiOùi I 1 < i < r} = 0. 

Since 
{a G i?+ | w 1xa < 0} = {si$2 ' * " St-ic*i | 1 < i < r} , 

the last claim follows. 

Remark: We have XiOti > 0 for ail i if and only if l(w) = l(x) + l(x~lw). For 
example, this holds for x = 1 and w arbitrary, and it holds for w = WQ and 
x arbitrary. If l(w) = l(x) + l(x~lw) or if (3) holds, then the assumption in 
the lemma is satisfied for each reduced décomposition of x~lw. Our second 
claim implies then that a différent reduced décomposition of x~lw multiplies 
(p by a unit in A. 
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5.14. Lemma: Let p G X and w G W. 

a) If w-xa > 0 for all a G R+, then ZA(fi) -^U Z%(fi(w)). 

b) If w~la < 0 for all a G R+, then Z%(fi(w)) -^U Z%°(p(w0)). 

Proof: We get a) applying the last claim of Lemma 5.13 in the case x = 1. 
We get b) applying it to (WQ,W) instead of (w,x). 

Remark: Lemma 5.3 implies now: 

If A is a -algebra, then ZA{ji) — » ZA(fi(w)) for all w G W. 

If A is a B@-algebra for some (3 G R+, then Zx^{ji{w)) ZA(p) for all 
w eW with w~1f3 > 0, and Z%(fi(w)) -^U Z%°(fi(w0)) for all w e W with 
w-1^ < 0. 

5.15. We assume in the remaining subsections of this section that F is a 
field that is a U°-algebra, and that TT is the structural map. 

Lemma: Let f3 G R be a root with n(Hp) = 0 resp. with t t ( A » 2 = 1.0 ne 
has then for all p G X: 

chL3F"w(spfi) = spchLf(p). (1) 

Proof: Set s = s p. On U° the operator Ts is given by 

T3(Ha) = Ha- (3(Ha)Hp resp. T3(Ka) = K^K'^^ (2) 

for all a E R. This implies: If 7r(Hp) = 0 resp. if 7t(Kp) = 1, then n oT3 and 
7r coincide on U°. Then A = A[s], and the functor M \—• M[s] as in 4.4 maps 
CA to itself. We have then Lf(fi)[s] ~ L3^(sfi) for all w G W and fi G X by 
4.4(3), hence (1) in that case. 

The situation where n(Kp) = — 1 in Case 2 requires more préparation. 
One has for any choice of integers r(a) for a G S an involutory automorphism 
a of U2 with a(Ka) = (-l)r(a)A'a, a(Ea) = (-l)r(a>£a, and a(Fa) = Fa for 
all a G E, cf. [Lu4], 4.6. Each weight vector in C/j" and {72~ is then multiplied 
by 1 or by — 1 under a. Therefore a maps J to itself and thus induces a similar 
involutory automorphism (also denoted by a) of U. We can twist TT by a and 
get 7r' = 7r o a : U° —• A. Dénote A with this algebra stucture by A[a]. We 
get a functor M t-> M [a] from CA to CA^ where M [a] is M with the old 
structure as an A-module and the old grading, where any u E U acts as a(u) 
acts on M. It is easy to see that this functor is an équivalence of catégories, 
that it satisfies ch(M[cr]) = ch(M) whenever this makes sensé and (for A = F 
a field) 

LF(V)W] - LF[<T](V) (3) 
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for ail p G X and w G W. 
Suppose now that ir(Kp) = - 1 . We can choose a such that <j(Ka) = 

(-l)(<*>Pv>Ka for ail a G S, hence for ail a e R. Then 7roa(ii:a) = 7roTs(#a) 
for ail a G i?. This implies F[cr] = F [s]. We get therefore 

L^(p)[s] ~ L^[s]{sp) ~WWWW ~ i ^ M M , 

hence (1) in this case. 

5.16. The following resuit is an immédiate conséquence of Lemma 5.15: 

Lemma: If F is a B-algebra, then one has for ail w G W, x G W„, and 
/i € A": 

chLxFw(xp) = xchL%(n). 

5.17. Set 

AT = {/x 6 X(T) | 0 < {p, av) < p for ail a G 

Proposition: If F is a B algebra. then one has for ail v G XT and w G W„: 

LF((p - l)p - v) ~ Z£((p - 1)^/9 - wv). 

Proof: We want to use induction on the length of w as an élément of Wn. 
The case w = 1 is trivial. It is enough to show for ail w G Wn and a G 
with w(a) > 0 that 

L^5Q ((p - l)wsap - wsav) ~ Lf((p - l)wp - wu). (i) 

Let sa = S\S2 - - • sr he & reduced décomposition of sa in W. So each Si is the 
reflection with respect to a simple root in i?, and one has 

R(sa) = {(3eR+\ sa((3) < 0} = { ^ K ) | 1 < i < r} , 

where Wi = si • • • s^-i for 1 < i < r + 1. One has 

R{sa)nRn = {a} 

because a is simple in Rn and hence sa stabilizes i?+ — {a}. So there is an 
index j with Wj(aj) = a, and one has Wi(ai) £ Rn, hence wwi(ai) £ Rn for 
ail i ^ j . Therefore 5.10(3) yields for ail v1 and ail i ^ j an isomorphism 

LpWi ((p - l)wwiP + v') ~ SSSS 1((p - l ) ^ + i P + V) 
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Using this repeatedly, we see: The left hand side in (1) is isomorphic to 

j^wWjSj with fli = (p — l)wWjSjP — wsav, 

and the right hand side in (1) is isomorphic to 

L^Wj (/i2) with p2 — (p — l)wwjp — wv. 

We have wwj(aj) = w(a) > 0, so Lemma 5.12 implies that 

Lpw*8i (/ii) ~ L^j3j (p1 + (p-l- n)wa), 

where n is the integer with 0 < n < p and 

(pi,w(a)v) = n + 1 (mod p). 

So we have to show that p2 is equal to 

Pi + (p — 1 — n)wa = (p — l)(wWjSjp + wa) — wsau — nwa. 

Because 

wwjSjp + wa = WWJ(SJP + aj) = wwjp 

we have to show that 
— sau — na = —v, 

i.e., that 
n = (/y, av). 

By définition 

n = ((p — l)wwjSjp — wsav, w(a)v) — 1 = —(wjSjp, av) — (sav, ay) — 1 

= -(sjp,ctj) + - 1 = (^,aV) (mod p). 

This shows that n and (z/, av) are congruent modulo p. Because both are 
between 0 and p — 1 (by définition resp. by the assumption that v G -X"f ), 
they are equal. 

5.18. Corollary: If F is a B-algebra, then for all v G X* the formai 
character of Lp((p — l)/>_ v) i$ Wn-invariant. 

This is an obvious conséquence of Proposition 5.17 and Lemma 5.16. 
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6.1. Choose a reduced décomposition w0 = sis2 • • • SN of w0 and fix p G X. 
Apply the construction from 5.13 with x = 1 and w = WQ. Write now wl = 
SiS2 • • • Si-i for 1 < i < N + 1. We get homomorphisms 

<Pi:ZZ<Mwi))^ZÏi»(vL(wi+1)) 

and their composition 

v ? : Z ^ ( / i ) - . Z 7 ( A i - 2 ( p - l V ) . 

We assume in the next subsections (until 6.6) that A = F is a field with 
structural homomorphism 7r. 

Lemma 4.9 implies 

LF(u) ~ ^ (ZF(M ) ) = socZSH/i - 2(p - l)p). (D 

For ail /? G i?7r let = np(p) be the integer with 0 < np < p and 

7r(ffy) + (// + p, Pv) = np • 1 resp. 7r(A»2C2d</i+^V> =C2dn/3 (2) 

where d — dp. 

Lemma: Let (3 = Wiipii) for some i with 1 < i < N. Then (fi is an isomor­
phism if and only if f3 £ Rn or if f3 G R^ anà np = p. Otherwise kev(ipi) is a 
homomorphic image of ZF{ (p(wi) — np/3). 

Proof: We have 

(piwi) + Wip, (3V) = lp + p, (3V) (mod p). 

Therefore the claim is an immédiate conséquence of Lemma 5.10. 
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6.2. Lemma: Let À,/i 6 I . If Lp(X) is a composition factor of ZF(P), 
then p = A or Lp{\) is a composition factor of ZF{ii — npf3) for some (3 G R^ 
with np ^ p. 

Proof: Use the notations from 6.1. Suppose that Lp(A) is a composition factor 
of ZF(H) with À ^ p. Then 6.1(1) implies that Lp{X) is a composition factor 
of ker(<p), hence of ker(<^) for some i, therefore (by 6.1) of ZFi(p(wi) — np(3), 
where f3 = Wi(ai) G R* and np ^ p. This module has (by 4.7(5)) the same 
character as ZF(P — np/3), so LF(A) is a composition factor of this second 
module also. 

Remark: This lemma implies a strong linkage principle. First a notation: For 
p and (3 as in 6.1(2) set (3 j p = p — np(3 if np < p, and (3j /i = p otherwise. 
We can now state the principle as follows: If Lp(X) is a composition factor 
of ZF{P), then there is a chain ÀQ = A, Ài, . . . ,Àr = p and /3{ G R^ with 
Pil^i = A;_i for 1 < i < r. 

6.3. Lemma: Let p G X. The following are équivalent: 

(i) ZF(P) is irreducible. 

(ii) One has np(p) = p for all j3 G R^> 

(iii) LF{P) is projective and injective in CF> 

Proof: Use the notation from 6.1. Formula 6.1(1) implies that ZF(P) is simple 
if and only if p is bijective. Because all ZF(v) have the same dimension, this 
holds if and only if each pi is an isomorphism. By Lemma 6.1 this is équivalent 
to np = p for all (3 G i.e. to (ii). 

If ZF(P) is irreducible, then a dimension argument shows that Lp(p) is 
not a composition factor of any Zjr(A) with À ^ p. So Proposition 4.6 implies 

ExtJF(XF(/i),M) = 0 = ExtJ.F(M, LF(H)) (1) 

first for all simple M, then for all M in CF- Therefore LF(P) is both projective 
and injective in CF, cf. the argument in [Ja6], II.10.2. 

On the other hand, if LF(P) is projective, then the exact séquence 

0 -+ radZi?(/x) —» Zp(p) —• LF(P) —• 0 

has to split. The radical of a module can split off only if it is 0, so we get 
radZir(/x) = 0 and (i). 

Remark: If Rn = 0, then (ii) is always satisfied. So all Zp(p) are irreducible, 
hence all simple modules in projective and injective: 

QF(p) = ZF(p) = LF(p) for all p G X. (2) 

All modules in CF are semisimple. Thèse facts as well as the results in 6.3 
follow in Case 1 easily from the much more gênerai Theorem 2 in [VK], see 
also [FP1]. Similarly, in Case 2 they follow from [DCK1] and [DCK2]. 
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6.4. As an example, consider the case where there is exactly one positive 
root (3 in Rn. In the set up of 6.1 there is a unique i with 1 < i < N and 
(3 = Wj(ai). AU pj with j ^ i are isomorphisms. The image of (p is isomorphic 
to the image of pi. Let np be the integer as in 6.1(2). For np = p also <pi is 
an isomorphism and ZF(p) is irreducible and one has 

QF(H) = ZF(ft) = LF(fi). (1) 

Suppose now that 0 < np < p. Then the image of hence of p, has 
dimension pN~lnp by 5.10(6), so we get 

dimLF(p) =pN~1np. (2) 

The kernel of p>i is equal to a homomorphic image of Z^{(p + (p — \){wip — 
p) — np/3). This module is isomorphic to ZF(p — np/3) under the composition 
of analogues of the <pj with j < i. So ker(^) is a homomorphic image of 
ZF(p — np/3) and has dimension pN^(p — np). This is equal to the dimension 
of LF(p — np(3) by (2) applied to p — np(3. So kev(pi) is isomorphic to 
LF(p — np/3) and we have an exact séquence 

0 - LF(p - np(3) - ZF(p) - LF(p) - 0. (3) 

It is now obvious that LF(p) is a composition factor of ZF(p) and of 
ZF(p + (p — ^/?)/3) and it does not occur in any other ZF(X). Therefore we 
have by 4.15 an exact séquence 

0 - ZF(p + (p- np)(3) - QF(p) - ZF{p) -+ 0. (4) 

It leads to a projective resolution 

• QF(p + p(3) - QF(p + (p- np)f3) - QF(M) - ZF(//) - 0. (5) 

Using this resolution one can compute easily ail Ext groups between two 
ZF(p'). One gets especially 

Ext* F ( Z F M , ZJ,(/* + (p - n^/3)) ~ F . (6) 

This implies that for any nonsplit extension 0 ZF(p + (p — np)(3) -+ M —> 
ZF(p) —+ 0 the module M is isomorphic to QF(p). 

6.5. We shall use homomorphisms like the cp from 5.5(3) to construct filtra-
tions of ail ZF(p). Let F[X] be the polynomial ring over F in one indetermi-
nate X. 
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Lemma: a) In Case 1 set A = F[X}. There exists a homomorphism of k-
algebras 7r : U° —> A such that there is for each root (5 G R an élément cp G k 
with 

7t(Hp) = cpX + 7r(Hp) and cp ^ 0. ( 1 ) 

b) In Case 2 set A = F[X, (X + l)-1] and let f : U° —• A be the homomor­
phism with 7t(Ka) = (X + l)7r(Ka) for ail a G S. One has for ail (3 G R+ : 

7r(Kp) = (cpX + l)7r(Kp) ( m o d l 2 ) (2) 

for some integer cp > 0. 

Proof: a) We can regard U° as a polynomial algebra over k in the indetermi-
nates Ha with a simple. So for any choice of the ca with a simple there is a 
unique 7r with 7r(Ha) = caX + 7r(Ha) for ail a simple. For an arbitrary root (3 
we can express Hp as a linear combination Hp = ^a mpaHa of the Ha with 
a simple with coefficients mpa G Fp. We get then Tr(Hp) = cpX + 7r(Hp) 
with cp = mpaca. If we choose the ca linearly independent over Fp, then 
cp ^ 0 for ail (3. (Note that Hp ^ 0, because there is a w G W with w((3) 
simple, hence Hp = w~1Hw(py) If p is greater than the Coxeter number of 
i?, we can take ft(Ha) = X for ail a simple, but that does not work for small 
primes. 

b) If (3. = X âGS m(a)a then 

7t(Ks) = 7f( 
c*€£ 

JC(a)) = ( * + !)• m^n(Kp) = (l + m(a)X)7r(Kp), 

so = laez m(a) > 0 will work. 

6.6. Choose A and n as in Lemma 6.5. Regard F as an algebra over A via 
I H O . Then 

ZF(p) ~ Z ^ / i ) ~ Z2{p)/XZ2{n) ( 1 ) 

for ail p G X. Consider the homomorphisms ip and ^2 as in 6.1 over A. Define 
a filtration first on Z^-(p) by 

Z^y = {ve Z~(p) | <p(v) 6 X'Z^(p - 2(p - l)p)} (2) 

for ail j > 0, and set then ZF{H)3 equal to the image of Z^in)3 in Zp(p) 
under réduction modulo X. 

Set 

N{pl)=WDSD \{f3eRt\n^p}\ 

with np — np(p) as in 6 .1 (2) . 
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Proposition: One has 

ZFIUMZAÙ1 * LF(u) and ZF(fi)N^ = soc ZF(p). (3) 

Furthermore, ZF(fi)N^)+1 = 0 and 

q< 0 

]ch zF(ny = 
d+ kds +sd 

ch ZF(fi - (ip + np){3) -

i>0 

chZF(fi-ip(3)). (4) 

Proof: By construction Zp(fi)1 is the kernel of the réduction modulo X of (p. 
This réduction is the analogue of (p over F. So 6.1(1) implies the first part in 
(3). 

Over the field of fractions of A the analogue of Rn is empty. Therefore 
ail (pi and (p induce isomorphisms over this field, cf. 6.1. This implies that 
ZF(fiy = 0 for ail j >> 0 and that an expression like Ylj>o cĥ Cz-O*7' makes 
sensé. This sum can now be computed using the ideas from [And], cf. [Ja6], 
ch. II.8. 

Using ipi we can define a filtration of each Z{ = Z^i(fi(wi)) analogous to 
the one on ZF(fi). This filtration can be described explicitly. We can regard 
Zi as a suitable Zpi(p!)[wi\, cf. 5.10. We get hence also the corresponding 
filtration from a map on Z^, (AO- That map is induced from a map over P(&i) 
for which we have explicit formulas as in 5.6(2),(3). A basis élément of the 
form Ylp E-jf^vj (where the product is over (3 G R+ — {&{}) is mapped to 

Cj times the basis élément f ]^ E™p^vfp_j+1 for some Cj G A. Now 6.5(1),(2) 
and the formulas in 5.6 imply that the X-adic évaluation of the Cj is either 0 
or 1. This implies that (Zi)2 = 0 and that (Zi)1 is the kernel of the réduction 
modulo X of <pi. So ch(Zi)1 is given by a formula like 5.10(7). It involves 
characters of certain Z^{(fX\) that can be replaced by characters of suitable 
Z\(fi2) using 4.7(5). 

Now X^>o ch ZF(fiy is equal to the sum of ail ch(Zi)1. This leads easily 
to (4). (Détails are left to the reader. Notice that the contribution from (3 is 
0 if ri/3 = p.) 

The fi — 2(p— l)/>-weight space in each Z\ has dimension 1. By 5.11(2) it 
is contained in the kernel of (pi whenever (3 = Wi(ai) G R^ and np < p. This 
fact together with the discussion above implies easily that ZF(fi)tl_2{p-i)p is 
contained in ZF(fi)N^ and not in ZF(fi)N^+1. Because this weight space 
générâtes the socle of Zp(fi), we see that ZF(fi)N^ is the last nonzero term 
in the filtration. 

Composing (p with an isomorphism as in Lemma 4.10 we get a homomor­
phism 

/ : Z2{n) - Z-Atf. 
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We can use it to define a contravariant bilinear form on Z^ip) via (#,y) = 
(f(x))(y). As usual, we get then a non-degenerate contravariant form on each 
Zp^Y/ZF(fJ>y+1, i-e., an isomorphism 

zF{rf/zF(rf+1 ~ (ZSSSSDWWXDF^y/ZF^y^y. (5) 

We get especially an isomorphism 

ZF(u)N™ ~ (ZF(u)NM)r. 

Because the simple socle of Zp{p) occurs with multiplicity 1 in this term — 
the p — 2{p — 1)/^weight space has dimension 1 — it splits off. Therefore it 
has to be equal to this term. 

6.7. Recall the notations sp^m and w*X from the list of basic notations. 
Dénote by Wp the group generated by ail sptTnp with (3 G R and m G Z. This 
group is isomorphic to the affine Weyl group Wa of R (under spyTnp H-• sp^m). 

For any U° -algebra A with structural map 7r dénote by WniP the group 
generated by ail spiTnp with (3 G Rn and m G Z. If Rn is a root System (for 
example, if A is field, cf. 5.2), then W^iP is isomorphic to the affine Weyl 
group of Rn. 

As observed in 6.2, there is a strong linkage principle for the Zp(p). Let 
us now state the (weaker) linkage principle in the spécial case of a B-algebra. 

Lemma: Suppose that the field F is a B-algebra. Let À,// G X. If Lp(\) is 
a composition factor of ZF{P), then À G W^^.p. 
Proof: Under our assumption the integers np = np(fi) in 6.1(2) are deter-
mined by 0 < np < p and 

(fj, + p,(3w) = np (modp) (1) 

for ail (3 G Rn- This implies for each j3 G R^: 

p - np(3 = sp)Tnp.p where mp- (p + p, (3W) - np. 

So the claim follows from Lemma 6.2 by induction on p — À for fixed À. 

6.8. The group Wp acts on the Euclidean space X R = X ®z R as an 
affine reflection group. It defines a System of facets, alcôves and walls in X R , 
cf. [Bou2], chap. VI, §2, and chap. V, §1 and §3. For an explicit description 
of a facet and of its closure one may compare [Ja6], 11.6.2(1), (2). Inside the 
closure of a facet F there is a spécial subset that is called the upper closure 
of F , cf. [Ja6], 11.6.2(3). One defines symmetrically a lower closure of F. 

Suppose that R' is a subset of R with sp(Rf) = R' for ail (3 G R1Then 
R1 is a root System in the vector space generated by R1. Set W1 equal to the 
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subgroup of Wp generated by all s^mp with f3 G Rf and m G Z. Then also 
Wf acts on X R as an affine reflection group. We get a system of facet s with 
respect to W' and we can define upper and lower closures as before. 

Let us look especially at the case where Rf = { ± / 3 } for some (3 G R+. 
Suppose that À G X R satisfies 

np<{\ + p,(3w)<{n + l)p (1) 

for some integer n. The facet of À with respect to W1 = < sp,mp \ m G Z > 
consists of all p with 

np< (n + P,f3v) < (n + l)p, (2) 

the closure of that facet consists of all p with 

np< (fi + P,(3v) < (n + l)p, (3) 

its upper closure consists of all p with 

np< (n + p, f3v) < (n + l)p, (4) 

and its lower closure of all p with 

np< (p + P,Pv) < (n + l)p. (5) 

If À G X R satisfies np = (À + />, /3V) for some integer n, then the facet of À 
with respect to W consists of all p with np = (p + /3V), and this facet is 
equal to its closure as well as to its upper and lower closures. 

6.9. We define a partition of X into disjoint subsets that are called the blocks 
over A . We require that À and p belong to the same block, if HomcA (Z^(À), 
ZA(P)) 7̂  0 or if Ext^A(Z^(A), ZA(P)) ^ 0. We take then the finest possible 
partition with this property. 

Dénote by VA the full subcategory of CA containing exactly all objects 
with a Z-filtration. If b is a block over A, dénote by T>A(b) the full subcategory 
of all N in VA where the factors in a Z-filtration involve only ZA{P) with 
p G b. 

Proposition: a) Ifb, V are blocks with b ̂  b\ then Homî>A(M, M') = 0 for 
all M in VA{b) and M1 in VA(bf). 

b) Each M in VA has a unique décomposition M = 06 where the sum is 
over all blocks b over A, such that each M& is in VA{P). 

Proof'. This follows directly from the définition of a block. 
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6.10. Set CA(b) equal to the full subcategory of ail modules M in CA such 
that M is a homomorphic image of a module in T>A(b). 

Any N in T>A(O) is by Lemma 2.13 a homomorphic image of a projective 
module Q in VA- By Proposition 6.9 it is then also the image of <2&, so we 
may assume that Q is in T>A(b). This implies now that also any M in CA(b) 
is a homomorphic image of a projective module in VA(b). 

Theorem: a) If b, b1 are blocks with b ^ b', then HomcA (M, M') = 0 for ail 
M in CA(b) and Mf in CA(V). 

b) Any M in CA has a unique décomposition M = @hMb, where the sum is 
over ail blocks b over A , such that each Mb is in CA(b). 

c) Each C^(fe) is closed under homomorphic images, submodules, extensions, 
and finite direct sums. 

Proof: a) Let / : Q —• M and / ' : Qf —• Mf be surjective homomorphisms 
with Q projective in T>A(b) and Q' projective in VA^1). If g : M —• M' is a 
homomorphism, then the projectivity of Q yields a homomorphism g1 : Q —• 
Q1 with ffog' = gof. Now g' = 0 by 6.9.a, hence g = 0 by the surjectivity 
of/-

b) There is a projective module Q in VA with a surjection f : Q —> M. 
We have Q = 06 QB as in 6.9, hence M = YJhMh where Mb = f(QB) for ail 
blocks b. Obviously each Mb is in CA(b). The directness of the décomposition 
of M as well as its uniqueness follow from part a). 

c) This is clear. 

Remark: Any M in CA(P) for some block b has a projective resolution com-
pletely contained in CA(&). This implies for ail M, M1 as in a) that Ext^A (M, 
M1) = 0 for ail i > 0. Therefore we could admit arbitrary Ext groups in the 
définition of a block, not just Ext0 = Hom and Ext1. 

6.11. We say that a module M in CA belongs to a block b if M is in CA(P). 

Lemma: Let X e X. Each Z%(\(w)) with w G W belongs to the block of X. 

Proof: By 4.7(6) the endomorphism algebra of M = Z%(X(w)) is A . Therefore 
each nonzero summand Mb as in 6.10.b has the form aM with a G A idem-
potent, a ^ 0. If / is a basis of the A-module HomcA (Z^(À), M), cf. 4.7(6), 
then af is a nonzero homomorphism from ZA(X) to Mb. So 6.10.a implies 
that b is the block of À. The claim follows. 

6.12. In the case of a field one defines usually blocks via simple modules. 
We show now that our définition coincides with the usual one. 

Lemma: Suppose that A — F is a field. The blocks over F can also be 
characterized as giving the finest partition of X such that À, ji belong to the 
same block if Lp{X) and Lp(fi) have a non trivial extension. 
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Proof: Let us call Blocks (with a capital B) the parts of the partition defined 
in the lemma. If À, À' belong to blocks b and 6', then LF(X) is in CF(b) and 
LF(\') is in CF(b'). If b ̂  bf, then Ext^F(LF(À),LF(À')) = 0. Therefore each 
Block is contained in a block. 

In order to get the other direction, note that Theorem 6.10 generalizes 
obviously to Blocks: For every Block b let CF(b)' consist of ail M in CF with 
composition factors only among the LF(X) with À G b. If M in CF(b)' and M' 
in CF(bfy with b + 6', then obviously HomCF(M,M') = 0 = E x t ^ ( M , M ' ) . 
Furthermore every M in CF admits a unique décomposition M = 06 M(&) 
with b running over ail Blocks such that M(&) is in CF(b)f. 

If À belongs to a Block 6, then ZF(X) being indécomposable is in CF(b)'. 
If À' belongs to a différent Block 6', then the groups ïiomcF(ZF(X), ZF(X1)) 
and Ext}.F(ZF(X), ZF(X1)) vanish. Therefore each block is contained in a 
Block. This proves the lemma. 

6.13. Proposition: If A is a B-algebra, then the block of each fi G X is 
contained in W^)P*ii. 

Proof: If A is a field, then the claim follows from Lemma 6.12 together with 
4.6(2) and Lemma 6.7. 

Consider now arbitrary A; let À, /i G X. For each A-algebra A1 and each 
i use the abbreviation 

E\, =Ext'CAl(ZA,(\),ZA,(n)). 

Suppose that there is an i with EA ^ 0. We have to show that A G W^^fi. 
It will be enough to find a maximal idéal m of A and an index j > 0 with 
EJA/m ^ 0. Then we can use the resuit in the case of a field, since each A/m 
is a B-algebra and since the analogue of W^^ for A/m is contained in WniP. 

Well, suppose that E3Ajm = 0 for ail j > 0 and ail m. Then Proposition 

3.4 implies that EA = 0 for ail i > 0. So our assumption implies that EA ^ 0. 
Now 3.4(3) shows that there is a maximal idéal m in A with EA^m ^ 0. 

Remark: Suppose that A is a B0-algebra. Then the block of each /i G X is 
equal to {/i}. (This is the case Rn = 0 of the Proposition. It can be proved 
more directly using the remark in 6.3 instead of Lemma 6.7.) By Corollary 
3.5 and 6.3(2) each ZA(ji) is a projective module in CA. Any M in CA({ji}) 
is by définition a homomorphic image of ZA(/i)m for some integer m > 0. So 
ZA(n) is a projective generator for CA({fi}). 

6.14. Proposition: Let A1 be an A-algebra. Then each block over Af is 
contained in some block over A. 
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Proof: Let À G X be a weight and 6 the block containing it. Using 6 . 1 0 we 
see that ZA(X) has a resolution P* —• ZA(X) by projective objects P1 that lie 
in SD DLS DSince ZA(X) and ail the P% are free over A, this complex remains 
exact when we apply ®AA* to it. By Lemma 3.1 the P1 ®A A1 are projective 
in CA1 • 

Let now p G X be another weight, belonging to the block and let 
Q9 —» ZA(P) be a projective resolution with ail in 2?^(6'). By standard 
homological algebra 

EX4a / (Z^ (A) ,Z^ ( / / ) ) 

can be identified with the set of homotopy classes of chain maps from P* ®A 
A! to Q'+t ®A A1. But if b ± 6', then HomCj4/(Pn ®A A',Qm ®A A1) = 
HomcA (Pn, Qm) ®A Af = 0 for ail n, m, where we use first 3 .3 and then 6.9.a. 
Hence ExtJ» (ZA'(A) , WWWW D = 0 for ail i and this proves the proposition. 

6.15. Lemma: Let (3 G -R+. Suppose that A is a B13-algebra, that is not a 
-algebra. Let p G X. If (p + p, f3v) = 0 (mod p), then the block of p is 

equal to {/i}. Otherwise it is equal to 

{p + ip/3, p + (ip - <ji + p, /3V))/3 | i G Z}. ( 1 ) 

Proof: If A is a field, then the claim follows from the discussion in 6.4. For 
arbitrary A we argue as in the proof of 6 .13 . We get thus in the first case that 
the block of fi is equal to {/J,} as desired, in the second case that it is contained 
in the set in (1 ) . (Of course, that is also a spécial case of Proposition 6 .13 , 
since this set is equal to W^^%p.) In order to see that the block is equal to this 
set (and not smaller), choose a maximal idéal m of A containing the image of 
Hp resp. of [iiT^;0]. Then the block of p, over A/m is equal to the set in ( 1 ) 
by the resuit for a field. The claim follows now from Proposition 6.14. 

6.16. Suppose in this subsection that A = F is a field that is a B-algebra. 
We know that Rn is a root System, cf. 5.2. For any A G X let i î^ be the 
union of ail irreducible components Ri of Rn such that there is an a G Ri 
with (A + p, av) ^ 0 (mod p). Set WF equal to the affine Weyl group for 
RF generated by ail sa>mp with a G Rp and m G Z. We have obviously 
R***" = R* and w DLDL SL= W^p for ail A, v G X. 

Proposition: For each X £ X the block of X over F is equal to WFP*X. 

Proof: Let us dénote the block of any A over F by 6F(A). We get the inclusion 
&F(A) C WFP*X arguing as in 6 .13 , since we can easily replace W^,? by WFP 

in Lemma 6.7. 
So we have to prove the other inclusion. We are going to use the notation 

np(p) as in 6 .1 (2 ) . Sothenp(p) are integers between 1 andpwith (//+/>, /3V) = 
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np(/ji) (modp) for all (3 G R%, cf. 6.7(1). We want to show first for all 
(3 G Rt and all A G X: 

If n/3(A) < p, then A - np(\)/3 G bF(X). (1) 

If we have (1) for a given (3 and ail À, then we get for that f3 and ail À 

If np(\) < p, then A - (np(X) + pm)(3, A - pmf3 G bF(X) for ail m G Z. (2) 

(Note that np(X — np(X)) = p — n^(A) in case n^(A) < p, and use induction on 
\m\.) We want to prove (1) by induction on the height of (3 and may assume 
(2) for ail positive roots in Rn of smaller height. Well, if np(X) < p, then 
ch ZF(X — np{\)) is one of the summands in the sum formula 6.6(4). So we 
get [ZF(X) : LF(X - np{X)f$)\ ^ 0 or there is an a G Rt with nQ(X) < p and 
[ZF(X — psa) : LF(X — np/3)] ̂  0 for some integer s > 0. In the first case (1) 
is obvious. In the second one we get first A — np(X)/3 G bF(X — psa); since 
the height of a has to be smaller than that of /3, we know by induction that 
bF(X — psa) = bF(X), and (1) follows. 

Let us now fix an irreducible component i?i of Rn. We have to show 
that saimp.X G bF(X) for ail A G X with i?i C RF and ail a G Ri fl i?+ and 
m G Z. If na(A) < p, then this follows from (2). If na(X) = p, then the set of 
ail sa^mp»X with m G Z is equal to the set of ail A — mpa with m G Z. So we 
have to show for ail A G X 

If Rx C RF, then A - pa G &F(A). (3) 

(We get then A — pma G &F(A) for ail m G Z by induction on |m|.) 
Choose a basis Ei of the root System R\ such that R\ fl i2+ is the cor-

responding positive System. It is enough to prove (3) for a G Ei . If there 
is some (3 G R\ with (A + p, (3V) ^ 0 (mod p), then there is also a (3 G Ei 
with this property. So, given a G Si and \ £ X with i?i C RF, we can 
find a séquence ai = a, a 2 , . . . , a3 in Ei with (A + p, a^) ^ 0 (mod p) and 
(a2-, a ^ ) < 0 for ail i < s. We may assume that s is minimal with this prop­
erty (given A and a); this implies in particular that (A + />, a^) = 0 (mod p) 
for ail i < s and (a3, aV) = 0 for ail i < 5 — 1. We use induction on 5 (for ail 
possible A). If s = 1, then rca(A) < p and (3) follows from (2). So suppose 
that s > 1. Set b = naa(A) and A' = A - bas. We have 6F(A) = bF(X') 
and 6p(A — pa) = bF(X' — pa) by (2) applied to as. If (A' + p,a^_x) ^ 0 
(mod p), then we can use the induction on s and get bF(X') = bF(X' — pa), 
hence &F(A) = bF(X — pa) as desired. 

Suppose now that (A' + />, a ^ ) = 0 (mod p); We have by construction 
(A' + /9,a£_i) = -&(Û^,Q£1I) (modp), so we get ^ a ^ a ^ ) = 0 (modp). 
Since 0 < b < p, this is impossible if ( a ^ a ^ ) = —1. If ( a ^ a ^ ) = —2, 
then p has to be even and b = p/2. Then ( a i , a 2 , . . . ,a5) is a basis of a 
root System of type C3 with as a long root. (Use the minimality of s.) We 
have then (3 = 2a2 + • • • + 2as_x + a9 G R\ and 7 = 2ai + (3 G and 
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we have /3V = o£ + • - • + a^_x + o% and 7V = + /3V. We have then 
n7(À) = b = np(\ — pa), hence — using (2) — 

bF(X) = &F(A - 67 = À - - b/3) — bF(X — pa). 

If (aa, a ^ j ) = —3, then 5 = 2 and («i, Of2) is a basis of a root System of type 
<j?2 with ot2 a long root. Furthermore p is divisible by 3 and b G {p/3, 2p/3}. 
Take now /3 = a2 and 7 = 3ofi + a2 in case b = p /3 , resp. 7 = 3ai + 2a2 in 
case & = 2p/3. We have in both cases n7(A) = p/3 and can argue as above. 

Remark: The theorem implies (in the notation of its proof) that 

Wn P.X = bF(X) + pZRn for ail A G X. (4) 

In fact, we can dérive this formula much faster: it follows already from (2). 

6.17. If Q is a union of blocks for A, we can define catégories 2?^(fî) and 
CA(^) extending the définitions in 6.7 and 6.9. For M in CA set (in the 
notations from 6.10.b) 

d+ 4f 4re 
d+d4r 

x+d4r ( 1 ) 

Then prQ is an exact functor from CA to C^(^), and we have pr^M = M if 
and only if M is in CA(ÎÎ). If X is the disjoint union of subsets (fît).'e/ such 
that each fî; is a union of blocks, then one has for ail M in CA 

M = 

d+r4 
d+d4rd (2) 

We get thus an isomorphism between CA and the direct sum of ail C^(fij). 
By abuse of notation we shall sometimes write prfi for the projection map 

M —• prfiM with kernel equal to the direct sum of ail Mb with b ÇÙQ. 
If A is a B-algebra, then any W^-orb i t Q in X is a union of blocks (by 

Proposition 6 .13) . We shall mainly work with Q of this type. The family of 
ail W^p-orbits is then a possible choice for the f22 in (2). 

Any module in CA(ÏÏ) has a projective resolution such that ail terms in 
the resolution are in X ^ f i ) . So the Ext groups of two modules in CA(ÎÎ) are 
the same, whether computed in CA or in C^(fi). If QR is another union of 
blocks for A with Q H Q' = 0, then 

Exil (M,M') = 0 for ail i > 0 (3 ) 

whenever M in CA(ÎÎ) and M' in CA(Œ'). 
Let A ' be a A-algebra. By Proposition 6 . 1 4 any block for A is a union of 

blocks for A!. So for Q as above, C^/(fî) makes sensé, and M in C^(fî) implies 
M (gu A ' in CA'(^)- Similarly, M in X>A(^) implies M ®A A ' in X>A'(N)-
(Note: If M is in VA, then M ® ^ A ' is in VA'*> cf. Lemma 3.1.b.) One has the 
functors pr^ also over A ' . They commute obviously with base change: Given 
M in CA one has 

prQ(M ®A A ' ) = (prnM) ®A A ' . (4) 
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6.18 Let A be a JB-algebra and let fi be a union of orbits for Wn,P in X. So 
fi is nion of blocks over A; the catégories CA(Q) and T>A(^) are defined. 

For each u G Zi?^ the translation by pu is an élément of W„ p. Therefore 
\ \-+ \ + pu maps fi bijectively to itself. The functor M i—• M|pz/] as in 4.2 
maps any ZA(/J>) to + and is clearly exact. So it préserves D ^ f i ) , 
hence also CU(fi). Now 4.2(4) shows that CA{Q) is a (pZiî^-category in the 
sensé of Appendix E.3. 

Suppose that fi is just one orbit for WniP in X. Then the group of trans­
lations by éléments in pZRn has only finitely many orbits in fi, in other words, 
there are //i, /i2, • • •, G fi such that fi is the union of ail fa +pZRn. There 
is for each i a projective module Qi in C^(fi) that maps onto ZA{HÎ). For 
each À G fi there are an i and a u G Zi?^ with À = +pv\ then ZA(X) is a 
homomorphic image of Qi\pu]. We can now deduce that each M in T>A(^) is 
a homomorphic image of a (finite) direct sum of modules of the form Qi\pu{j] 
with 1 < i < r and Uij G pZRn. (Use induction on the length of a Z-
filtration.) But then also each module in C^(fi) is a homomorphic image of 
such a sum. So P = 0[ = 1 Qi is a projective (pZiî^-)-generator of CA(ÏÏ) in 
the sensé of E.3. 

We can carry out the constructions above with Wp instead of W^iV. If 
fi is an orbit of Wp in X, then CU(fi) is in a natural way a (pZiî)-category, 
and we can find a projective module P in C^(fi) that is a (»Zi?)-generator of 

Ca (A). 
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7. Translation Functors 

7.1. In order to construct tensor products of modules we need a comulti-
plication on U. By construction, U = U'/I where U' is an algebra that has 
already a comultiplication A and where i" is a twosided idéal in U'. In Case 
1 we have U' = U(g) and A is given by A(X) = X ® 1 + 1 ® X for all X G 0. 
In Case 2 we have U' = U2 (cf. 1.2) and A is given by 

A(Ka) = Ka®Ka, 

A(Ea) = Ea®l + Ka ® Ea, 

A(Fa) = 1 ® Fa + Fa ® / C 1 

for all a G S. 

Proposition: A induces a comultiplication on U. 

Proof: This is easy in Case 1 where A(£7j§) = Epp ® 1 + 1 ® ̂  for all (3 G iî. 
The situation is more complicated in Case 2. In order to prove our claim 

we have to show that 

A(J) CI®U2 + U2®L (1) 

Since A is a homomorphism and / is generated by 7+ and I~ it will be enough 
to show that 

A(/+) C /+ ® U+ + U%U+ ® 7+ (2) 

and 
A(7") C / " ® V^V\ + C72" ® (3) 

The proofs of thèse two claims are similar. We shall carry out only that of 
(3). One has by construction A(£/2~) C U2 ® U^U®- We want to show for 
any (3 G i?+ that 

A ( ^ ) G / " ® t/2-i720 + Ï72- ® (4) 

Let (t^)i<i<5 be a basis of 01/>_1,̂ (^2~)z/ consisting of all monomials in a 
PBW-type basis of Î72~ having weights > —pf3. We want to assume that the 
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numbering is chosen such that ail U{ with i < r (for some index r) are exactly 
those monomials where ail exponents are < p — 1. Let (tj)jej be a basis of 
U2 = U°. There are uniquely determined éléments Uij G U2 (almost ail equal 
to 0) with 

A Ep - 3 = 
3 

i = 1 i ceJ 

Uij ®) Uîtj. (5) 

Dénote the weight of Ui by pi. Then each u^ has weight —p(3 - Claim (4) 
is équivalent to 

If 1 < i < r, then Uij G / for ail j G J. (6) 

The counit e on U2 satisfies (e ® 1) o A = id. This implies 

Ee= d 
3 

1=1 ?GJ 
£\W'ij}Uitj. 

One has ^(1) = 1 and e maps each (t̂ 2~)^ with v ^ 0 to 0. Now Uij has weight 
0, if and only if jii = — p/3. This implies s(uij) = 0 whenever pi ^ — p/3. If 
Pi = —p/3, however, then Uij G k and e(uij) = Uij. Now E1 .̂̂  itself is one of 
the Ui with i > r. Therefore we get: 

un = 0 for al l i < r with Lti = —p(3 and ail j G J. (7) 

Suppose that (6) does not hold. Let v > —p/3 be minimal for: There exist 
i < r with pi = v and Uij £ I~ for some j G J. We have v > —p/3 by (7). 

We can consider any u-module as a ^ -module via the homomorphism 
/ : U2 —> u C U3 as in 1.3. Take for example M\ = Zk((p — l)p) with its 
standard generator mi. Because u \—• i/mx is a bijection from Î7~ to Mi, the 
annihilator of mi in Î72~ is equal to the kernel of / in Î72~, i.e., to J~. 

Let K be the field of fractions of C72° = U°. Consider M2 = Z^(0) in CK 
and its standard generator m2. Regard M2 as a module over Î72. One has 
Uim2 = 0 for ail i > r, because thèse Ui are in the kernel of U2 -+ Ï7 and 
annihilate M2. The î/2m2 with 1 < z < r are linearly independent over if, 
hence the Uim2tj with z < r and j £ J are linearly independent over fc. 

We can now regard Mi ® M2 as a module over U2 using A. One has 

Ep_Jmi ® m2) = 
r 

i=i jeJ 

Uijmi ® Uim2tj (8) 

since tm2 = m2t for ail t £ U . Ail summands with Uij G i" are 0. 
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Because Ev_^ is central in U2, it commutes with ail Ea with a G S. So 
Ea(mi ® ra2) = 0 implies 0 = EaE^_Jmi ® ra2), hence 

0 = 
r 

d+ lkdr +d 

(EaUijmi ® Uim2tj + KaUijmi ® EaUim2tj). (9) 

The choice of i/ implies: The sum of ail terms in (9) that belong to Zk((p -
l)p) ® ZK{Û)V is equal to 

0 = 
i jeJ 

EaUijmi ® Uim^tj (10) 

where the sum over i is over ail i < r with pi = v. Since the U{m2tj are 
linearly independent over fc, we get 

0 = Ea(uijm1) (11) 

for ail j G J and ail i as above. This shows (for ail thèse i and j) that w^-mi 
is a vector of weight (p — l)p - pf3 - v < (p - l)p in Zk((p - l)p) that is 
annihilâted by ail Ea with a G S. It therefore générâtes a proper submodule 
of Zk((p—l)p). On the other hand Zk((p—l)p) is irreducible by 6.3. Therefore 
0 = Uijmx for ail j E J and ail i < r with pi = v. This implies now Uij G / " 
for ail thèse i, j contradicting the choice of v. So (6) has to be true. 

7.2. It is clear by construction and by the proof in 7.1 that the comultipli-
cation on U induces comultiplications on 17°, U°U+ and U~U°. In fact, we 
get on U and on thèse subalgebras structures of Hopf algebras. It is obvious 
that the counit factors through U. In Case 1 the antipode S on U(g) is given 
by S(X) = —X for ail X G g. That induces clearly an antipode on U and 
those subalgebras. Again Case 2 is more complicated. On U2 the antipode is 
given by 

S(Ea) = -K^Ec, 

S(Fa) — —FaKa, 

S(Ka) = K-1 

for ail a G S. Obviously U2, U2 U2, U2U2 and ail Uv are stable under S. 
In order to show that S induces maps on [7°, U~U°, and U°U+ it suffices 
to prove that S(J+) C U$I+ and S(I~) C /~{72°. By symmetry it will be 
enough to treat the second case and to show 

s(E>_g) e ru* (i) 

for ail (3 G R+. Consider the module M2 and its generator m2 as in the proof 
above. The annihilator of m2 in U^U® is exactly I~U2. So (1) is équivalent 
to: 

S(Ep_„)m2 = 0. (2) 
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Since S is an antiautomorphism of Ï72 and since Ep_^ is central in 172, so is 
S(EP_^). We get therefore for all a G S: 

EaS(Ep_fi)m2 = S(Ep_fi)Eam2 = 0. 

This implies (2) because S{Ep_^)m2 has weight —p/3 and because M2 = ZK(0) 
is simple by the remark in 6.3. 

7.3. Consider k as an algebra over U° via the augmentation as in 2.4. For 
any module E in Ck and any module M in we can make E ® M into 
an object of CA as follows: We let A act on the second factor only. As a 
î7-action we take the tensor product of the two given représentations using 
the comultiplication described above. This action commutes obviously with 
that of A. Finally we define the grading as usual giving any Ep ® Mv degree 
fi + v. This is obviously a grading by A-modules. One checks easily properties 
2.3(C) and (D). 

In the case of 2.4 this construction is the usual tensor product of G\T-
modules resp. of u-modules. One has in gênerai an obvious compatibility 
with base change: 

{E ® M) ®A A1 E ® (M ®A A1). (1) 

For all N in CA the canonical isomorphism 

HomA(M, E ® N) HomA(E* ® M, N) (2) 

induces an isomorphism 

HomCA (M, E ® N) ^ UomCA (E* ® M, N). (3) 

At this point we have to be careful in the quantum case with its complicated 
définition of the comultiplication. The trace map tr : E* ® E —• k with 
/ ® e i-+ / (e) is a homomorphism of {7-modules. The map in (2) sends any 
h : M —y E ® N to the composition of 

id® h : E* ® M E* ® E ® N 

with tr ® id, hence to a homomorphism of î7-modules. The canonical map 
E ® E* Endfc(.E') is an isomorphism of {7-modules. Let t be the inverse 
image of the identity map under this isomorphism; it is LMnvariant. The 
inverse map in (2) sends any hf : E* ® M —• N to the composition 

M->E®E*®M->E®N, 

where the second map is id® h' and the first one v t®v. The [/-invariance 
of t implies that this composition is a LMinear. 
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If we apply (3) to E* instead of E, then we get an isomorphism 

RomcA (M, E* ® N) HomcA (E** ®M,N). 

This leads to 

RomcA (M, E*®N)^ HomcA (E ® M, N) (4) 

as soon as we have an isomorphism c : E —> E**. In Case 1 we can take 
the canonical map Ci : E E** with ci(e)(/) = / (e) . In Case 2, however, 
we have uc\(e) = ci(S2(u)e) for ail u £ U and e E E. Now the square of the 
antipode 5 is given by 

S2(u) = K^uK2p. 

So we can take in this case 

c(e) = c1(K2-p1e). 

Both isomorphisms, (3) and (4), have the usual functorial properties in M 
and N. 

7.4. One can define in the same way tensor products of modules in C'k with 
modules in C'A, and of modules in C'I with objects in CA. One has then tensor 
identities: For example, if E1 is a module in Ck and M is in C'A, then there is 
a canonical isomorphism 

ZA(E®M)~E®ZA{M). (1) 

In order to prove this statement one checks that the right hand side has the 
universal property (cf. 2.10) of the left hand side using 7.3(4) and its analogue 
inC^. 

As usual one gets using the tensor identity: 
If M in CA has a Z-filtration, then so has each E ® M with E in Ck. 

In other words, using the notation from 6.9, the subcategory VA is stable 
under tensor products with finite dimensional modules in Ck. 

More precisely, each E ® ZA(fi) has a filtration with factors ZA(fi + v) 
each occurring dimii^ times. It can be constructed as in the classical case, 
see, e.g., [Ja2], 2.2: One takes a basis (ej)i<j<n of E such that is in the V{ 
weight space and such that V{ < Vj implies i > j . Then each 

d+d1 
i 

j=l 
UA(ej (g) ZA(LL)) 

is a submodule of E ® ZA(fi) with VJ/VJ-i ~ ZA(/J, + Vi). If spans the 
weight space ZA(ii)^^ then VJ/VJ-i is generated by the class of ez ® v^. 
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7.5. Suppose from now on that A is a S-algebra. Let W1 be a subgroup of 
WP that is generated by reflections and contains W^^. By Proposition 6.13 
any orbit of W in X is a union of blocks over A. (Here and below orbits are 
always orbits for the dot action.) We have thus for each orbit fi of W1 in X 
the subcategory C^(fi) and the functor prfi from CA to CA(SÎ) as in 6.17. 

Let fi, T be orbits for W in X. Consider an alcove for the affine reflection 
group W. Its closure contains exactly one élément À E fi and exactly one 
élément p G T. Then W(ji — À) is independent of the choice of the alcove. Let 
v be the unique dominant weight in W(/JL — À). Choose a simple module E 
with highest weight v for G in Case 1, for U$ in Case 2. Then E is a module 
in Ck with a VF-invariant formai character. 

For any M in C^(fi) we can now define 

T£M = PTT(E®M). (1) 

This defines obviously an exact functor TQ from C^(fi) to CU(r) that we call 
the translation functor from fi to T. It takes P^(fi) to P^(r) , by 7.4 and 
6.9.b. 

If A' is an A-algebra, then we can define the translation functors also 
over A!. The natural isomorphism 7.3(1) induces then an isomorphism 

T£(M®AA')~T£(M)WEDDD®AA' (2) 

for all M in CA(Q). 

Lemma: Let \,pEXbein the closure of a fixed alcove for W. Then 
TQZA(^) has a Z-filtration with factors ZA{^*P) where w runs over a system 
of représentatives of the stabilizer of X in W1 modulo its intersection with the 
stabilizer of p. If v\ spans the weight space ZA(X)\ and if ew (forw as before) 
spans the weight space EW9^-\ = Ew^^x), then the p r ^ e ^ ® v\) generate 

TEZA(X). 

This is proved by the same arguments as in the classical case, e.g., in 
[Ja6], II.7.8. 

7.6. Keep the notations from the last subsection. If we reverse the rôle of 
T and fi, then we get a translation functor Tp2. Its construction involves a 
simple module EF isomorphic to E*. Fix an isomorphism E1 E* (unique 
up to a scalar from k). Then we get from 7.3(4) an isomorphism (for M in 
CA(SÏ) and N in CA(T)) 

adJ! : HomCA ( M , T ? N ) ^ HomCA (T^M, JV), (1) 

and from 7.3(3) (with M and N interchanged) 

adj2 : Hom^ (N, T%M) HomCyl (T?N, M). (2) 
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The isomorphisms in (1) and (2) are functorial in M and N. This shows 
that TQ is left and right adjoint to Tp (and vice versa) and that (1), (2) are 
possible adjunction maps. 

The functorial properties of thèse maps can be expressed by the following 
formulas where we write T = and V = Tp. One has for all maps / , g 
such that the formulas make sensé 

ADJI(/ O g) = ADJ^/ ) o T(g), ADJ2(/ O g) = ADJ2(/) O T'(g), 

ADJ1(T'(/) og) = fo adj^g), ADJ2(T(/) O g) = f O ADJ2(<?), 

ADJI_1(/ O g) = T'(f) O ADJF1^), adtftf 0 = T( / ) O A D J J 1 ^ , 

ADJR1!/ O T(g)) = A D J ^ / ) O 5, ADJ^CF O 7 » ) = A D J ^ / ) O g. 

The adjunction maps commute obviously with base change. 

7.7. Keep the notations from the last subsection. Set T = . 
If Q in CA is projective, then E ® Q is projective in for any finite 

dimensional E in C*. That is a trivial conséquence of the adjointness property 
7.3(4). If Q is projective and in C^(fi), then TQ is projective, since it is a 
direct summand of a suitable E ®Q. 

The functor T induces for all M, M' in C^(fî) maps (also denoted by T) 

T : Ext£A (M, M') —• E x t ^ (TM, TM') (1) 

for all n. 
Any e G Ext1 (M, M') can be represented by a short exact séquence 

0 —• M' —• E —• M -+ 0. (2) 

Then E1 is in CA{^) and we can apply T to (2). We get a short exact séquence 

0 TM' —• TE —• TM —• 0. (3) 

Then (3) is a représentative of Te. This description of T can be generalized 
to classes in higher Ext-groups. 

We use the following notation: If / : M' —• M and g : N —• N' are 
morphisms in a suitable abelian category, then we dénote the induced map 
on the Ext groups (for all n) by 

(/,#)* : Extn(M,N) —>Extn(M',iV'). (4) 

Suppose that M, M' are in and TV, TV' in C^(r), and that we have 
isomorphisms / : TV TM and / ' : TV' TM' . Then we get an induced 
map 

t[f, / ' ] : E x t ^ (M, M') —+ ExtnCA (N, N') (5 ) 
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for ail n setting 
<[/,/'] = (f,(fr1)*oT. (6) 

(We shall use a similar notation for Tp instead of T = TQ.) Note that we 
have for ail unit s a, b in A 

t[af,bf'] = ab-1t[f,f']. (7) 
7.8. Before we go on, note the following obvious fact: 
Observation: Suppose that À G X and that M, M' are modules in CA both 
isomorphic to ZA(X). Then any generator f of the A-module HomcA(M, M1) 
is an isomorphism f : M —> M'. 

Keep the assumptions of the last subsection. Set T = TQ and Tf = Tp. 
Let us call Q and T équivalent W-orbits, if there is a facet for W containing 
both an élément of Q and of T. Then there is for each À G fi exactly one 
élément Àp G T such that À and Àp are in the same facet for Wf. The map 
À i—• Àr is a bijection fi —> T. One has for any À G Q isomorphisms 

TZA(\) ~ ZA(\R) and T'ZA(\R) ~ ZA(\). ( 1 ) 

For any M in CA(Q) we have an adjunction map 

adji : HomcA (M, T'TM) HomcA (TM, TM). 
Set 

iM = adJr^idrM) : M —• T'TM. (2) 
The functorial properties of the adjunction maps, cf. 7.6, imply that we have 
for ail homomorphisms h : M —* M' in CA(Q) 

T'T(h) o iM = iM, o h, (3) 
i.e., that the map M ij^ is a natural transformation from the identity 
functor to T'T. 
Lemma: Suppose that Q and T are équivalent W-orbits. 
a) For ail M in CA(Q) the map ÎM is an isomorphism. 

b) Suppose that M is in CA(fl) and N is in CA(T) and that f : N TM is 
an isomorphism. Then T'(/_1) o i^ is an isomorphism M ~—> TfN and we 
have 

R / ( / - l ) o î M = A D I R E R 1 ) . (4) 
Proof: a) For M of the form ZA(X) with A G fi we have TM ~ ZA(XT). So 
idrM is a basis of HomcA (TM, TM), hence its inverse image z'm under the 
isomorphism adjj a basis of HomcA (M, T'TM). Now T'TM is isomorphic to 
T'Z^(Àr) ^ ZA(X) = M. Therefore the observation above implies that %M 
is an isomorphism. This extends by induction on the length of a Z-filtration 
to any M in VA(Q). We get it for arbitrary M using a projective resolution 
contained in VA(Q). 

b) The first claim is obvious by a), the one in (4) follows by functoriality, 
cf. 7.6. 
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7.9. Suppose that Q and T are équivalent W-orbits; keep the notations of 
the last subsection. Lemma 7.8 implies that the identity functor on C^(f2) 
and T'T are naturally isomorphic. One can similarly construct a natural 
isomorphism between the identity functor on CA(X) and TT'. So T and T' 
are équivalences of catégories between CA(Q) and CA(T). 

It follows that the maps induced by T on Ext groups as in 7.7(1) are 
isomorphisms. The same is true for T'. So we see for any M, M' in CA(Q) 
that the map e I—• T'Xe is an isomorphism 

Ext S (M, M') Ext£ (T'T M, T'T M') 

for ail n. If we compose this map with those induced by iyi and we get 
an automorphism of Ext£A (M, M'). 

Lemma: Suppose that Q and T are équivalent W-orbits. Let M, M' be 
modules in C^(fi) and N, Nf modules in C^(r). 

a) The map (IM-) *m 7 )* °T'T is the identity on Ext£A (Af, M1) for ail n. 

b)Letf:N-+ TM and f':N'^ TM' be isomorphisms. Set g = adjf 1(f1) 
and g1 = adj^1 (/'_1). Then t[g, g'] o t[fj'] is the identity on Ext£A(M,M) 
for ail n. 

Proof: a) By the functoriality of the %M it is enough to look at the case n = 0. 
Here any h : M —• M' is mapped to 

ij, o T'T (h) o iM = ijjt o iM, o h = h, 

cf. 7.8(3). 
b) By définition 

9'] o *[/, /'] = (g, g"1)* o Tf o (/, f'-1)* o T. 

By functoriality, the right hand side is equal to (T'(f)og, g'~loT,(/'-"1))*oT'T 
Since T'(f) og = iM by 7.8(4), and since similarly g''1 o T^/ ' "1) = i^1,, the 
claim follows from a). 

7.10. Suppose that W" is an affine reflection group with WViP C W" C W. 
We can carry out the constructions of 7.5/6 with W" instead of W7, i.e., with 
W'-orbits instead of W-orbits. 

Consider again two W-orbits Q and T. There are disjoint décompositions 
into VF"-orbits 

n = 

d 

dr and r = 

vr 

d+52 
(D 

for suitable index sets J, J. Then the translation functor T = T£ has a 
décomposition T = (BieIjeJTji where Tji is the restriction of T to CA(^i) 
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composed with prr. . Similarly, there is a décomposition of Tf = Tp as T' = 
oO ie E Tij 

Fix i € I and j G J. Choose À G fî2 and choose an alcove for the larger 
group W containing À in its closure. Let p be the unique élément in T that is 
in the closure of the same alcove. If Tj contains one of the éléments w.ji with 
w in the stabilizer of À in W , then Tji = and T[- = Tr.\ Otherwise one 
has Tji = 0 and T[j = 0. (Use the Z-filtration of TZA(X) described in 7.5.) 

Suppose we have M in CA(^Î) and N in CA(TJ). We have then two 
adjunction maps 

adj : RomcA(M,T'N) ^ HomcA(TM,N) 

and 
adj' : UomcAM.TljN) RomcA(TjiM,N). 

They are related as follows: Any homomorphism / : M —• T'N takes au-
tomatically values in Tj,N and adi'(f) is then the restriction of adi(f) to 
TjiM: 

adj'(/) = adj(/)|ri;M. (2) 

7.11. Let w G W. If we work with the positive System then 7.4 
implies that each E (g) Z™(fj,) has a filtration with factors Z%([i + u) each 
occurring d i m ^ times. Consider W-orbits Q and T and weights À, fi as 
in 7.5. Then Z%(\(w)) is in CA(ÎÎ) — by Lemma 6.11 — and T%Z%(\(w)) 
has a filtration with factors Z^((x./i)(u;)), where x runs over a System of 
représentatives of the stabilizer of À in W1 modulo its intersection with the 
stabilizer of /i. If v'x spans the weight space Z™(\(w))\(w) and if ex (for x 
as above) spans the weight space ET(„-\\. then the p r r ( e r (g) v{) generate 
TKZWXlw)). 

7.12. The construction in 7.3 shows immediately for ail E in Ct that 

(E ®M)\pv] = E® (M\pv\) (1) 

for ail M in CA and i / G l . In other words, tensoring with E is a pX-functor 
from CA to itself (in the sensé of E.3). 

Let Q and.T be W-orbits in X. The functors M h-» M\pv] with v G ZRn 
commute with prfi and prr, cf. 6.18. Together with (1) this implies that 

Tk(M\pv]) = (TkM)\pv\ (2) 

for ail M in C^(fî) and v G ZR^. So each is a (pZiî7r)-functor. 
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7.13. Suppose that A = F is a field. We have in our présent situation results 
on the translation of simple modules similar to those in [Ja6], II.7.15. 

First, we need an analogue to Proposition II.6.23 in [Ja6]. Take the 
order relation | as in [Ja6], II.6.4, and modify its définition: We allow only 
reflections s^ G Wn}P. Dénote this modified relation by 1>. We next modify 
the définition of close from [Ja6], II.6.22, and say that fi G X is F-close to 
À G X if fi | F À and if there is no a G with fi ]p (À - pa). The sum 
formula 6.6(4) implies immediately: 

If a is F-close to A, then \ZF(X) : LF(LL)]>0. (1) 

Consider now orbits fi and T for WniP such that there is for each À G fi 
exactly one Ap G T in the closure of the facet (with respect to W^^) of À. Set 
T = Tl and T1 = Tp. We have then (by 7.11) TZf(\(w)) - Z$(\T(w)) for 
ail À G fi and w G W. Lemma 4.9 implies that TLF(X) is either isomorphic 
to LF(\r) or equal to 0, cf. [Ja6], II.7.14. For each fi G T there is a unique 
fi~ G fi such that fi = (fi~)r und such that fi is in the upper closure of the 
facet (with respect to WK,P) of fi~. Any other À G fi with Àp = fi has the 
form X = w.fi~ with w in the stabilizer of fi in VF^^. One checks as in [Ja6], 
II.6.22, that fi~ is F-close to ail thèse À. We can now argue as in [Ja6], II.7.15 
(using (1) instead of [Ja6l, II.6.23) and get for ail A G fi 

TLF(X) - LF(Ar), ifA = (Ar)"; 
0, otherwise (2) 

Arguing as in [Ja6], II.7.16 we get for ail fi G T 

T'QF(H) ~ QF(n-). (3) 
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Introduction to the Sections 8-10 

Let us stop a bit to consider where we are and where we want to go. We 
are interested in the structure of the catégories Ck of GiT-modules and their 
quantum analogues and want to study them by déformation. Let m G Specll0 
be the annihilator of the trivial one dimensional représentation, and let A be 
the completion of U° at m, so that SpecA is a formai neighbourhood of m in 
Spec{7°. We have seen that we can somehow deform the category Ck into a 
flat family CA over SpecA : This is the intuitive meaning of our statements 
saying that 

®Ak :CA->Ck, P^P®Ak 

induces a bijection on isomorphism classes of projective objects (see 4.19), 
that for any projective objects P, Q in CA the space Hom^A (P, Q) is free of 
finite rank over A and the obvious map 

HomCA (P, Q) ®A k —>HomCfc (P ®A k, Q ®A k) 

an isomorphism (see 3.3). 
Now to describe a flat family it suffices to describe it up to codimen-

sion one. More precisely, recall from the gênerai introduction our ring A* = 
AIH'1 | a G and its subrings A13 = A ^ " 1 \ a G a ^ /?]. We have 
A = f)A& if the characteristic of k is différent from all (a,/3v), cf. 9.1 below. 
Let us assume this for the rest of our introduction. We deduce that 

Homc(P,Q) = f]Homc(P®A AP,Q ®A AP) C H o m c ( P ® A A \ Q ®A A0), 

where we abbreviate HomcA, to Home for all A1 = A,A@A® and use the quite 
élémentary Lemma 3.2 to pull the localization inside the Hom. 

Now SpecA^ is just SpecA with all walls except the /3-wall deleted, so it 
should not corne as a surprise that CAP behaves like an $l2-category. Recall 
from the gênerai introduction the notations Z^(X) = ZA(X) ®A A@, Z0(À) = 
ZAW ®A A0 and abbreviate CAP = C13. For A G X and f3 G R+ let us 
define (3 f A to be A + where n > 0 is the smallest integer such that 
(A + p, (3V) = — n (mod p). We shall show in the next section 
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Theorem: Let (3 G R+ and A G X. If / 3 | À = À, then ZL3(X) is projective in 
C13. If /3|A ^ A, then there exists an isomorphism Ext^(Z^(À), Z^(/3 î À)) ~ 
A^/HpA^ of A@-modules, and the term Q in a short exact séquence 

0 -> ZP(f3] A) —>Q —+Z*(À) -+ 0 

projective in if and only if the séquence générâtes Ext1 over A@. 

Since ail our catégories CA* are generated by their modules with in­
filtrations (see 2.13), the projectives occurring in the theorem generate ail 
of C*. We want now to somehow glue together ail thèse z\2-catégories C^ to 
obtain the déformation category CA of Ck- To formalize this idea we intro-
duce our combinatorial catégories /C(fi). They are defined for any W^-orbit 
fi in X. An object M in /C(fi) is a family (M(\))\ç.çi of finitely generated 
A0-modules, almost ail of them zéro, together with (for ail (3 G A G fi) a 
finitely generated A^-submodule M(X,/3) of M(\)®M(f3]\) resp. of M(X) 
if f3] A A resp. /3|A = A. The morphisms are the obvious ones. 

Choose now for any (3 G R+ and A G fi such that (31 A ̂  A an élément 
e^(A) G Ext^(Z^(A),Z^(^îA)). Thèse choices détermine a functor V = Vçi : 
CA(fi) K(fi). Namely for M in CA(fi) put 

VM(A) = Homc(Z0(A), M ®A A0), 

VM(A,/3) = Homc(Z^(A),M®A Ap) if/3|A = A. 

If /3 j A ^ A define VM(A,/3) as follows: Represent e^(A) by a short exact 
séquence Z^(f3 î A) Q^(A)^Z^(A). After tensoring with A0 it splits 
uniquely to détermine an isomorphism Q^(A) ®A -40 —• Z0(A) © Z0(/3| A). 
Now let VM(A,/3) be the image of 

Homc(g/3(A), M ®A A*) —•Homc(Q/'(A) ®A A\ M ®A A®) 

-^Homc(Z0(A) © Z\(3]\),M®A A®) 

= VM(A)© VM(/?ÎA). 

We obtain from the preceding considérations almost tautologically: 

Theorem: Choose ail e^(A) as generators of their Ext groups. Then V in­
duces for ail projective objects P and Q in CA(Q) an isomorphism 

Romc(P,Q) -^EomK(Ç1)(VP,VQ). 
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In Section 9 we shall prove this more generally for all P and Q in CA(Q) 
that are flat as A-modules. From now on all V are supposed to be defined by 
a choice of generators e/3(\) so that the theorem applies. 

Recall from the gênerai introduction that what we need is a characteris­
tic free description of the homomorphisms between certain projectives QA,I 
in CA(Wp*0). Our theorem tells us that it suffices to describe the homomor­
phisms between the VQAJ in a characteristic free way. But it is more or less 
clear that the combinatorial category JC(Wp»0) can also be defined over Z, and 
our strategy will then be to exhibit an object of this combinatorial category 
over Z that for all k specializes to VQAJ when we reduce scalars. 

As a first step we should describe VQAJ for fixed k. Recall that to get 
QA,I we first translate ZA(—p) out from all walls to CA(WP.O) and then apply a 
séquence I of wall-crossings. To get VQAJ-, we first have to describe VZA(—p) 
— this is easy — and then have to understand how translations relate to 
combinatorics. More precisely, for any two W^-orbits fi and T we should 
construct a combinatorial translation functor T : /C(fi) —• IC(T) such that 
VTTP ~ TVçiP for all projectives P in CA(Q), where T : CA(Q) -> CA(T) 
is our usual translation. This is done in Section 10. Well, not completely: 
We don't treat the most gênerai translations but just translations out from 
or onto some walls, which suffices for our purposes. 

Let us discuss the structure of our combinatorial translations. Suppose 
T lies on more walls than fi, so for every À G fi there is a unique Àp G T in 
the closure of the alcove of À. From 7.5 we know that TZ^(À) is isomorphic 
to Z^(Àr). To get our combinatorial translations, we have to actually choose 
isomorphisms f\ : ZA(\r) —• TZA(^) for all À G fi. Thèse isomorphisms 
together with the choices e^(À) and el3(p) we made to define Vçi and Vr will 
détermine certain constants which in turn détermine our combinatorial 
translations. 

To give an idea of how this is done let us just explain the case where both 
fi and T are regular. Then for all À G fi, /3 G iî+ translation of extensions 
gives rise to an isomorphism 

t[h,fm) : Ext^(Z^(A),^(/3ÎA)) ^ E x t ^ ( A r ) , ^ ( / 3 î A r ) ) 

(see 7.7) and we choose b{ G A13 such that b{t[fx, f^\]e^(\) = e^(Ar). In this 
case we define the combinatorial translation T by 

(TM)(XT) = M(\) 

(TM)(\r,P) = (6f, l)M(X,/3) + (M(\,(3) n M(\)). 

One may easily check that this works in case b{ = 1. The case fi = T, f\ = id 
might also be instructive. It is almost équivalent to Lemma 9.10. Let us 
remark that although is only well-defined modulo Hp, our combinatorial 
translations do not dépend on the choice of b^ when we restrict them to the 
image of V. 
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The gênerai case is similar. We only have to take walls into account and 
this complicates our formulas. It will turn out that in case /3 | // = fi it is 
the space H'1 AP/AP which takes over the rôle of the Ext£(Z*(/z), Z^( /3 | fi)). 
More precisely, suppose that /3|À ^ À but (/3|À)r = Ap. Then we will define 
at the end of the next section an isomorphism 

6[fx,M : E x t ^ ( À ) , ^ ( / ? Î A ) ) -, H? A*/A» 

that will play a rôle similar to the maps t[f\,f^\] that appeared above. In 
particular, the combinatorial translations to and from walls will also involve 
constants b{ G HpAfi such that b^0[fxjp\x]ep(\) = 1. 
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8. Extensions in Rank 1 Situations 

8.1. In order to simplify notation we shall write in Case 2 for ail a E R : 

Ha = [Ka-0}. 

Note that Ha differs from K\ — 1 by a unit in U°. 
For the next subsections (until 8.5) fix a G S and suppose that A is an 

intégral domain with 7r(Ha) ^ 0. Dénote the fraction field of A by K. 
Consider X E X such that 

(À + av) = p — n (mod p) (1) 

for some n with 0 < n < p. We want to study Ext^A (ZA(X), ZA{X + na)). 
Dénote standard generators by v0 G ZA(X + na) and x0 G ZA(X). The 
congruence (1) implies by 5.5(5),(6) 

EaE^v0 = E^vo^Hc). (2) 

We can regard ZA(X + na) resp. ZA(X) as a U® A-submodule of ZK(X + na) 
resp. of ZK(X). For any b G -fiT set 

z6 = x0 + E(^v0b G ZK(X) © ZA-(A + na). (3) 

and 
Y(b) = C7-v0A + CTa6A C ZA-(A) © ZK(X + na). (4) 

The term U~v0A is equal to ZA(X + na). Obviously, Y(b) is a graded A-
submodule of ZK(X) © ZK(X + na) with 

Y(&)A+„ = U~_nav0A + U~xbA (5) 

for ail v G X. It is a module in CA if and only if it is ?7-stable. 

89 



H.H ANDERSEN, J.CJANTZEN, W. SOERGEL 

Lemma: Y(b) is U-stable if and only if 7v(Ha)b G A. If so, then Y(b) is in 
CA, and there is an isomorphism Y(b)/U~v0A Z^(A) mapping the class 
of xi, to XQ. 

Proof: IiY(b) is [/-stable, then 

Eaxh G Y(b)x+a = E^-1]v0A. 

Now (2) implies 

Eaxh = EaE{%0b = f ^ " 1 Wff«)&-

So, if y(6) is [/-stable, then Tt(Ha)b G A. 
On the other hand, if this condition is satisfied, then the computation 

above shows EaXb G U~voA C Y(b), hence E^Xb £ U~voA for ail r > 0. 
Furthermore À+r/3 is not a weight of Z t f (A)©Z#(A+rca) for any (3 G R+ with 
j3 ̂  a and any r > 0. This shows U^Xb C + t/—^o^4- Since Xb is a weight 
vector, we have obviously U°Xb = XbU° C XbA. This implies that Ux^A C 
y(6), hence that Y(b) is [/-stable and therefore in CA- We see also that 
Y(b)/U~voA is generated by the class of This class is annihilated by ail 
Ep with /3 G i?+ and r > 0 and is a weight vector of weight A. Therefore we get 
a surjective homomorphism Z ^ ( A ) —• Y(b)/U~v0A that maps x0 to the class 
of Xfe. On the other hand, the projection from Z k ( A ) © Zr-(A + na) onto the 
first factor induces a homomorphism from Y(b)/U^v0A to U~x0A = Z ^ ( A ) 
mapping the class of x\> to XQ. Thèse two maps are inverse isomorphisms. 

8.2. Each Y(b) with 7r(Ha)b G A yields an exact séquence 

0 -> ZA(X + na) - f Y(b) 9 
ZAW 0 (1) 

where f(vo) = and g{x}>) = XQ. Let [b] G Ext^A (Z^(A), Z^(A + na)) dénote 
the class of this extension for the moment. 

Lemma: One has a[b] = [ab] for ail a G A. 

Proof: Consider the endomorphism h of Z# (A) © Z#(A + na) that is the 
identity on Z#(A+na) and multiplication by a on Z#(A). We have h{vç>) = t?o 
and /i(xq) = a#o, hence h(xab) = axb. This implies that /i maps Y(ab) into 
y(6). It is now clear that we get a commutative diagram 

0 ZA(X + na) Y(ab) ZA(X) 0 

id d a id 
o ZA(X + na) f Y(b) 

9 ZA(A) 0 

where the maps in the top row are the analogues of / and g. This proves the 
claim. 
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8.3. Lemma: Let b £ A . For any A-algebra A1 the extension [b7r(Ha) 1] 
splits over A', if and only if b G Af7r(Ha). 

Proof: Set b' = bnfâa)-1. Now [6'] splits over A( if and only if there is an 
inverse image x'0 G Y(b')\ (Su A1 of x0 ® 1 with £^#0 = 0. Any inverse image 

has the form x'Q = x&> (g) 1 + E ^ ^ o ® a' with a' G A'. This inverse image 
satisfies Eax'Q = E^~^VQ (g) (b + af7r(Ha)). This expression is equal to 0 if 
and only if 6 + af7r(Ha) — 0. This shows that we can find xf0 as required if 
and only if there is a' G A' with b = —a,7r(iïa), i.e., b G A'7r(iïa). 

8.4. Lemma: TAe map a \—> [a] induces an isomorphism 

AK(HA)-L/A Ext1CA(ZA(X),ZA(X + na)). 

Proof: By Lemma 8.2 the map is a homomorphism of A-modules from 
A7r(ifa)_1 C K (the field of fractions of A) to the Ext group. Lemma 8.3 
implies that its kernel is equal to A . We have to check surjectivity. Consider 
an arbitrary extension in CA: 

0 ZA(X + na) M ZA(X) 0. (1) 

Dénote the standard generators by i;0 and x0 as in 8.1. We claim that it splits 
over K. It is enough to find a preimage in M\ of x0 that is annihilated by 
Ea. Let M' be the sum of ail weight spaces M\+ia with i G Z. If we restrict 
to thèse weight spaces (1) yields an extension 

0 -+ VA(X + na) —>M' —>VA(X) 0 (2) 

with the \£A(aO as M 5.5(1). Because M\ is contained in M', we see that 
(1) splits over K if and only if (2) splits over K. In this way one can reduce 
to the case where R+ = {a}. In this case 7r(Ha) ^ 0 implies that K is an 
B0-algebra. So the remark in 6.13 yields that À and X + na belong to différent 
blocks over iïT, so that (1) splits over K. 

So we can assume that M ®A K = ZK(X) © ZK(X + na), that / and g 
are induced by the embedding into the second factor resp. by projection onto 
the first factor. Choose xf0 G M\ with g(xfQ) = XQ. Because g is identified 
with the projection we see that xf0 has the form xfQ = XQ + E^vob for some 
6 G K. Since obviously M = U~VQA + U~x'0A, we get M = Y(b). Lemma 
8.1 implies b G A^{Ha)^1 ^ so the séquence in (1) is in the image of our map. 

8.5. Lemma: If A is a Ba -algebra, then Y(H~1) is projective in CA. 
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Proof: Set Y = Y(H~l). We want to apply Corollary 3.5. Consider a 
maximal idéal m of A and set F = A/m. We have to show that Yp is projective 
in Cjp. If HA £ m, then the analogue of RN for F is empty. In this case ZF(X) 
and ZF(X + na) are projective, hence so is their extension YF. If Ha G m, 
then the analogue of i?+ for F is equal to {a}. By Lemma 8.3 the extension 
[iî"1] does not split over F. Therefore the discussion at the end of 6.4 shows 
that YF ~ QF(X). 

Remark: For A as above the same argument proves for any /i G X with 
(p, + aw) = 0 (mod p) that ZA{P) is projective in C^. 

8.6. We now want to generalize the preceding results from the case of a 
simple root a to that of an arbitrary positive root j3. Until the end of this 
section we fix (3 G i?+ and a £?-algebra A . We set A@ = A ® B . We use 
the abbreviations 

ZP(X) = ZA? (A) = ZB? (A) ®Bp A? for ail A G X 

and 

Ex4(M,iV) = E x t ^ ( M , i V ) 

for ail M, A7" in and ail i. 
Proposition: Let X e X and n G Z witffc 0 < n < p such that (A + p,/3v) = 
p — n (mod p). 
a) If A13 is an intégral domain such that ft(Hp) is nonzero in A ^ , then 

ExtUZP(X),ZP(X + nf3)) ~ 
A^(HQ)-1/A^ if n < p; 
0, if n = p. 

b) In gênerai, 

ExtUZP(X),ZP(X + nf3)) ~ 
AP/ir(HB)Afi, ifn<p; 

10, if n — p. 

c) Ifn = p, then Z&(X) is projective in CAP • Ifn < p, then there is a projective 
module Q@ in CAP with an exact séquence 

0 _> ZHX + n(3) — ^ Zp{\) -+ 0. (1) 

Proof: Suppose at first that A13 satisfies the assumption in a) and let as prove 
a) and c) in this case. 

Choose w e W with simple. The remark in 5.14 implies that we 
have isomorphisms 

^ ( A ) ~ z ; , ( A W ) and Zf>(\ + nP)~Z%(\(W) + n/3); (2) 
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they induce an isomorphism of the corresponding Ext-groups. We work now 
with the triangular décomposition U = TW(U~)U°TW(U+). So the Z^(p) 
play the rôle of the Z^(p), the positive roots are w(R+), the root j3 G w(E) 
is simple, and wp is half the sum of the positive roots. We have 

{\{w) + wp, (3y) = (À + p, f3v) + (p(wp -p),p<)=p-n (mod p). 

Now Lemma 8.4 yields the claim in a) for n < p. For n = p the remark in 
8.5 implies that Z^(À) is projective in CAp. So we have (for our présent A) 
the first claim in c); the part of a) for n = p follows. For the second claim in 
c) we take the analogue of Y(H~l) working with w(R+) instead of i2+ and 
apply Lemma 8.5. 

We can apply the proof above especially to A = B. We get now b) and 
c) for gênerai A using base change arguments. More precisely: Let A be an 
arbitrary J3-algebra. For n = p we know already that ZBp (À) is projective; so 
Lemma 3.1.a implies that Zf3(X) is projective and the vanishing of the Ext-
group follows. Assume now that n < p. We get an exact séquence as in (1) 
over A& by tensoring one over B@ with A&. By Lemma 3.1.a the middle term 
is still projective. Apply the functor Homc(?, Z/3(X + nf3)) to (1). Use for any 
B^-algebra A' the abbreviations 

HA, =EomcA,(Q%,ZA,(X + nf3)) 

and 

E\, =Ext1CAt(ZAf(X),ZA,(X + nf3)). 

We get an exact séquence 
HA. —>Af —Œ\, -* 0 

for ail A1. We have HAt en HBp ®Bp A' by Proposition 3.3. This implies now 
also E\, ~ Egp ®fî/3 A'. We have 

ELB(3 - B^H^/BP - B?/HpBP, 

where the second isomorphism is induced by b «—• bHp and where the first one 
follows from a). We get therefore E\, ~ A'/^{H^A1 for ail A!especially for 
A1 = A13. This yields the first case in b). 

Remark: Choose for ail À G X a projective module Q^(X) in CAp with a 
surjection Q^(X) —+ Z^(X) as follows: If n = p in the proposition, then take 
QP{X) = ZP(X), otherwise take the middle term in an exact séquence as in (1). 
If M in CAp has a Z-filtration, then we can find (using induction on the length 
of a Z-filtration) a surjective homomorphism of the form 0 • Q^(Xi) -+ M. 
Now Lemma 2.13 implies that there is such a surjective homomorphism for 
every M in CAp. In other words, the family of ail Q^(X) with X e X générâtes 
the category CAp. 
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8.7. Let À and n be as in Proposition 8.6. 

Corollary: Let 

0 -+ Z \ \ + np) —• Y —>Z^(À) 0 (1) 

be an exact séquence in CAp. The following are équivalent: 

(i) The class of (1) générâtes Ext£(Z*(À), Z^(A + np)). 

(ii) Y is projective in C^p • 

Proof: We can assume that n < p and that n(Hp) is not a unit in A13. 
(Otherwise the Ext-group is 0 and all modules in sight are projective.) If A@ 
is a field, then (i) and (ii) are équivalent to the séquence not splitting, cf. 6.4. 
In gênerai, the description of the Ext-groups in 8.6 shows that (1) générâtes 
the Ext-group over A& if and only if it does so over A13 /m for all maximal 
ideals m of A13. On the other hand, Corollary 3.5 says that Y is projective, if 
and only if all YAp /m are projective. Now the claim is obvious. 

8.8. Let À and n be as in Proposition 8.6. 

Proposition: Suppose that n < p. 

a) One has Ext£(Z^(A), Z^(A + p(3)) ~ A?/n(Hfi)AP. 

b) If £ is a generator of the A13-module Ext1c(Z/3(X + np), Z^(A + p/3)) and 
if n is a generator of the A@-module Ext^(Z^(A), Z^(A + np)), then the cup 
product of £ and n is a generator of the A?-module Ext£(Z^(A), Z^(A + p(3)). 

Proof: Write À' = À + n/3. Consider the exact séquence 8.6(1). We get a 
long exact séquence applying the functor Homc(?,Z^(A + pf3)). Since Q@ is 
projective, we get an isomorphism 

E x t ^ ( ^ ( A ' ) , ^ ( A + p / 3 ) ) -^Ext2c(Z^\),Z^\ + pf3)). (1) 

Now a) follows from 8.6 applied to À' instead of À. 
The same exact séquence yields also the second and third vertical map 

in the diagram (where we drop all indices C and all exponents (3) 

Ext1 (Z(Xf),Z(X + p(3)) x Hom(Z(A'),Z(A')) -> Ext1(Z(A,)5 Z(À +p(3)) 

Il ! I 
Ext1(Z(A,),Z(A + p/3)) x Ext1(Z(A),Z(A')) Ext2(Z(A), Z(A + p(3)) 

Here both horizontal maps are given by the cup product. The commutativity 
follows from the functoriality of the cup product. The last vertical map is 
the isomorphism (1). The second vertical map is onto (by the long exact 
séquence). We can replace n by any other generator and can therefore assume 
that n is the image of the identity map id. Since the cup product with id is 
the identity, the claim follows from the commutativity of the diagram. 
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Remark: The proof yields easily that there is a commutative diagram (drop-
ping indices) 

A0/7c(Hp)AP x Afi/n(Hfi)AP -+ A0/n(Hfi)A? 

Ext1(Z(V),Z(A+p/5)) x Ext1(Z(A),Z(V)) -> Ext2(Z(A),Z(À +p/3)) 

where the map in the first row is ordinary multiplication, the map in the 
second row is the cup product, and the vertical maps are isomorphisms. 

8.9. In the remaining subsections of this section we assume in addition that 
A13 is an intégral domain. Set W equal to the group WpiP generated by ail 
sp,mp with ra G Z. Let fi and T be orbits in X for Wf such that any A G fi 
has trivial stabilizer in W and any p, G T has stabilizer of order 2 in W. We 
shall consider translation functors T = T^ and T1 = Tp, cf. 7.5. 

For any A G fi there is a unique weight Ap G T that is in the closure of 
the alcove of A. There is then an isomorphism 

TZ\\) ~ Z*(Àr). (1) 

For any p G T there are exactly two weights A, A' G fi with p = \T = (A')r-
One has then A' — A G Z/3. If A' > A, then there is an exact séquence 

0 ZP(\') M T'Z^p) Z*(À) -+ 0. (2) 

We have in this situation: 

Lemma: The module TfZ^(p) is projective in CAp • The class of(2) générâtes 
the A?-module Ext£(Z*(À), Z*(À')). 

Proof: The case n = p in Proposition 8.6 implies that Z@(p) is projective in 
CAp, hence so is T1 ZAp(n), cf. 7.7. So Corollary 8.7 yields the second claim. 

Remark: If m is a maximal idéal in A^, then T'ZAp/m(p) ^ (T'Z^(p)) ®Ap 
A^/m maps onto ZAp/m(A) and onto LAp/m(A), hence contains the projective 
cover QAp/m(A) of LAp/m(A). If Hp G m, then 6.4(4) implies that T'ZA/m(p) 
is isomorphic to QAp /m(A). If A^ is local and if Hp is not a unit in A^, then 
TfZ@(p) is isomorphic to QAP(\) as in 4.19. 

8.10. Let us suppose in the next subsections that we have two weights 
A, A' G fi with Ap = (A')r- We set p = \r and assume that A' > A. So we are 
in the situation leading to 8.9(2), we have that exact séquence and the maps 
/, g occurring in it. 

95 



H.H. ANDERSEN, J.CJANTZEN, W. SOERGEL 

Lemma: a) The maps f and g are bases of their Hom spaces: 

Homc(Z0(\'),rz<i(n)) = Aftf (1) 

and 
Uomc(rzt>(ri,Zf,(\)) = Aflg. (2) 

b) The A?-modules Homc(r'Z^(/x), Z^(A')) and Homc(Z/î(A), T'Z^(p)) are 
free of rank 1. If f is a basis of the former and g' a basis of the latter, then 
there are units ai,ù2 G A& with / ' o / = aiHpid and g o g' = aïHpid. 

Proof: a) We have Homc(Z/3(A'), Z^{\)) = 0, so the natural maps 

Homc(Z/?(A'),Z^(À')) Homc(Z*(À'), r ' Z ' V ) ) , h ^ / o h 

and 

Hom^Z^À) , Zfi(X)) Eomc(T'Zfi(fï), Z/3(X)), h^hog 

are isomorphisms and send the identity map to a basis. 
b) We have isomorphisms given by adjunction 

H o m c ( T ' Z ^ ) , Z"(À')) ~ Uomc(Z/3(fi)JTZl3(Xf)) (3) 

and 
Homc(Z*(À),T'Z/V)) ~ H o m ^ T Z ^ À ) , ^ ) ) . (4) 

The right hand side is in both cases isomorphic to Endc (Z^(/i)) ~ . So 
each left hand side is free over A@ of rank 1. 

The proof of the two last claims is similar. We shall give it only for 
/ ' o / . We know that End^Z^À' ) ) = A$ • id, so there is b G A? with 
/ ' o / = b • id. Then b annihilâtes the class of 8.9(2) in E x t ^ Z ^ À ) , Z^(À')). 
This class générâtes the Ext group by 8.9, so 8.6 implies that its annihilator 
is generated by H p. So there is ai G A13 with b = ai H p. 

If the image of Hp in A13 is zéro, then 6 = 0. We get thus f'of = Q — 
1 • Hpid and are done. Assume now that the image of Hp in A& is not equal 
to zéro. Since Hp annihilâtes the Ext group, we can find a homomorphism 
/" : T'ZP(p) -> ZP(X') with / " o / = Hpià. There has to be an a G A$ with 
f" = af. Weget 

Hpid = a(f o f) = aiaHp • id, 

hence ai a = 1. So ai is a unit in A13. 

Remark: The following statements are now obvious: 
If we choose / and g as arbitrary bases of the Hom spaces in (1) and (2), 

then the séquence 8.9(2) with thèse maps is exact. 
For any choice of units ai,a2 in A& there are maps / ' , g' satisfying b). 
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8 .11 . If we apply T to 8.9(2), then we get an exact séquence 

0 -> Z^(fi) —* TT'Z^(fi) — Z ^ ) -+ 0 (1) 

that splits because each extension of Z^{\i) with itself is trivial, cf. 2.14.b. So 

TT'Z^n) Z\ii) © Z\ix) (2) 

and 
HomcCTT'Z^M), Z"(M)) ~ (A?)2. (3) 

Any basis /ii,/i2 over of this Hom space yields an isomorphism as in (2) 
given by x \—> (hi(x), h2(x)). 

We get by adjointness an isomorphism 

adJ! : Endc(T'Z^p)) ^ Homc(TT'Z'5(/u), Z^(fi)). (4) 

So also this space of endomorphisms is free of rank 2 over 

Lemma: Let g : TZ\[i) Z*(A) and g' : Z*(A) -+ TZ^fi) be bases of 
their Hom spaces. Then the maps id and g' og are a basis of Endc(T'Z^(^z)). 

Proof: We may assume that g occurs in 8.9(2). That séquence yields an exact 
séquence 

0 Homc(Z^(A) ,T ,Z / ? ( / i ) ) -^Endc(T ,Z / ? ( / i ) )^Homc(Z / ? (y ) , r ,Z / 3 ( / i ) ) . 

Here h maps the basis gf to g' og, and /i' maps id to the basis / . So the claim 
is clear. 

Remark'. One proves similarly: If / : Z/?(A/) TZ^/i) and / ' : T ' Z ^ / x ) 
Z/3(Xt) are bases of their Hom spaces, then Endc(T,Z/?(//)) has basis id, fof. 

8.12. Suppose that we have chosen for each v G SI an isomorphism 

f-.ZH^^TZFFFFFFHv). ( i ) 

Then 
a d J r 1 ( / - 1 ) : Z » - > T ' Z ' V r ) 

is a basis of its Hom space. 
Return to the situation of the last subsections with A, A', and \.i as in 

8.9(2). Now choose 

/ = adj1-1(/A'1) and s ^ a d j r V r 1 ) . (2) 
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Thèse éléments are bases of their Hom spaces, and we can choose (by the 
remark at the end of 8.10) a basis g resp. / ' for the Hom space in the other 
direction such that 

g o g' = Hp id resp. / ' o / = Hp id. (3) 

We hâve then the exact séquence 8.9(2) for thèse choices of / and g. If the 
image of Hp in is non-zero, then g and / ' are uniquely determined by g1 
and / , hence by f\ and f\*. 

If A13 is equal to or, more generally, if the image of Hp in is 
non-zero, then 

Homc(Z^(A),^(A')) = 0, (4) 

since 

0 = RomCK(ZK(\),ZK(\')) = Homc(Z^(A),Z^(A')) ®A, K, 

cf. 3.2. This implies for any A@ that 

fog' = 0 (5 ) 

since we get thèse maps (up to units in A*) from analogous maps over by 
extension of scalars. 

Lemma: There is an isomorphism h : TT'Z^(fi) Z^{fi) © Z^(fi) such 
that the diagram 

0 d d+ddsl Tf d+dkdrd+d Tg TZHX) 0 

0-

ddsd 

zHii) 

bdd 

Z ' ( / i ) © ^ ( , i ) 

drd 
CK(ZK(\),ZK o 

is commutative, where the maps in the lower row are x i—• (x,0) and (x,y) 
y, and such that the diaqram 

TZ^(X') 
Tf 

TT'ZP(n) 
Ta' 

TZH\) 

f-1 
CK(ZK(\),ZK CK(ZK(\),ZKd 

h /R1 

Z/»(/i) 

is commutative, where the maps in the lower row are (x,y) i—• xHp — y and 
x h+ (x,xHp). 

Proof: Lemma 8.11 implies that Home (TV (/x), Zfi(fi)) has basis adj^id), 
adJi(V o g) and that 

h:TrzP(fi)^ZP(fi)®ZP(SSSSSfi) 
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with 
x (adj ! (id) (aO, adj! (0; o g) (s)) 

is an isomorphism. It leads to two commutative diagrams as in the lemma. 
We just have to compute the maps in the lower row. For the first diagram 
they follow from 

adj1(id)oT/ = adj1(/) = /A-1, 

adJi(g' og)oTf = adjj(g' ogof) = 0, 

o Tg = adM) o Tg = a d j ^ ' o g). 

For the second diagram the second formula follows from 

adj1(id)orp' = adj1(5') = /A~1, 

adjj (g' og)o Tg' = adjj (g' 0 g 0 g') = Hp adjj (g') = Hpf^1. 

The first formula follows from Tf o Tf = Hp id and Tf o Tg' = 0 which 
imply that (x,0) 1—> xHp and (x,xHp) 1—• 0. 

Remark: The last claim follows also from 

fof'+g'og = H0id. (6) 

We leave the proof of (6) to the reader. 

8.13. Recall that we assume that A@ is an intégral domain. Assume now 
in addition that the image of Hp in A@ is not zéro. By abuse of notation we 
shall often write Hp for 7r(Hp) 

Suppose that we have weights À, À', /i as in 8.12 and maps fv as in 
8.12(1). We want to construct an isomorphism 

6[fx,fy] : E x t ^ ( A ) , ^ ( A ' ) ) — A ^ 1 / ^ . (1) 

(We know of course by 8.6 that there is such an isomorphism.) Choose a 
représentative 

0 -> Z'(À') Y - û jZfi(X) -+ 0 (2) 

of a class £ in the Ext group. Since HpÇ is 0 in the Ext-group, there is a 
homomorphism f : Z^(X) —• Y with j o f = Hp • id. This homomorphism is 
unique since we have as in 8.12(4) 

Homc(Z^(À),^(À')) = 0. (3) 

If we apply T to (2), we get an exact séquence 

0 -> TZP{X') ^UTY ^ TZ\X) 0. (4) 
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Under our assumption, both extrême modules in (4) are isomorphic to 
so this séquence splits (but not uniquely). Let i1 : TY —* TZ^(Xf) be a 
homomorphism with i' o Ti = id. Now f^1 o i' o Tf o f\ is an endomorphism 
of Z^(/x), so there is a unique scalar a G A13 with 

f^1 oi' oTf ofx = aid. 

Suppose that i'0 : TY —• TZ(3(Xt) is another map with if0 o Ti = id and 
let a' 6 A13 be the analogue to a, constructed with if0 instead of i'. We have 
now {i1 — i'0) o Ti = 0, therefore if — if0 factors through Tj. So there is b G A13 
with 

i'-i'0 = bfx,of^oTj. 

This yields a — a' = bHp and proves that the class of aHJ1 in A^H^1 /A13 is 
independent of the choice of V. 

If we replace (2) by another représentative of £, we see easily that we can 
choose the analogue to i1 so that we get the same élément a as before. This 
shows that we can define 

^ , M O = < + / (5 ) 

Remark: We have obviously for ail units c, d in A&: 

8[cf\,dfX'] = cd-10[fxJx']. (6) 

8.14. Keep the assumptions from the last subsection. 

Proposition: The map 6[f\, fy] is an isomorphism ExtJ.(.Z^(A), Z^(X')) 
APH^/AP. 

Proof: Set 6 = 0[f\,f\>]. Let us show first that 6(aÇ) = a9(Ç) for ail a E A? 
and f in the Ext group. We have a commutative diagram 

0 ZA(\') 
la Ya 3a 

ZAW 0 

ID h aid 
O ZA(\') 

i 
Y j ZAW 0 

where the top (resp. bottom) row is a représentative of a£ (resp. of £). Take 
j ' and i' as in 8.13, let j'a be the analogue of j ' for the top row. We have 

johoj'a= aja o j'a = aHp id = j o (af), 
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hence h o fa = af by 8 .13(3) . We have 

id = i' oTi = i' oThoTia, 

so we can take i'a = i' o Th. We get then 

%'a 0 Tj'a = i' o Th o Tj'A = i' o (a Tf) = a(i' o Tf), 

hence the claim. 
Take now for £ a generator of the Ext group that is représentée! by a 

séquence as in 8 .9(2) ; choose / , g as in 8 .12(2) and ( 3 ) . Comparing the 
notations in 8 . 1 2 and 8 . 1 3 we have i = /, j = g and jf = g' (by 8 .12(3) ) . 
Furthermore, the first diagram in Lemma 8 .12 shows that we can take if = 
fx o prj o h where p ^ is the first projection (x, y) H-> X. Then 

fc1 o i' o Tf o /A = pri o h o Tgf o fx = id 

where the last equality follows from the second diagram in Lemma 8.12. This 
shows that 0(£) = H^1 +A13. Since the Ext group is free over A13/HpA13 with 
basis £, the claim follows from the first part of the proof. 

Remark: The second part of the proof shows: Let a be a unit in Then 
#[/À, fx'l^iaHp1 + A&) can be represented by a séquence as in 8 .9(2) with 

/ = a d j ^ / ^ 1 ) and goadjf 1(f\1) = aHpid. Indeed, that séquence represents 
a£ with £ as in the last part oi the proof. 
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9. A Functor into Combinat or ics 

From now on we shall usually write Home and Extc instead of HomcA, 
and ExtcA, (where Af is a £7°-algebra) and shall add the index A1 only in 
cases where confusion is likely. Usually A1 will be A, A0 or an A13 (see below), 
and it will be clear what is meant. 

Throughout this section we suppose that A is a B-algebra that is an 
intégral domain such that ail Ha with a G R are nonzero in A. We set 

A0 = A ®B B0 and A* = A®BBP for ail (3 G R+ 

and regard thèse algebras as subrings of the fraction field of A. From 9.5 on 
we shall assume in addition that A is flat as a J3-module. Also from 9.5 on 
we shall impose a restriction on p. This will enable us to apply Lemma 9.1. 

9.1. Lemma: Suppose in Case 1 that p ^ 2 if R has two root lengths and 
that p ^ 3 if R has a component of type G?2- Then 

B = 
ddbrd 

B? 

and, if A is fiât as a B-module, A = 0^6^+ ^ • 

Proof: It is enough to prove the first claim; the second one follows immédi­
at ely. 

We get B and each B13 by localization from a polynomial ring over A; (in 
the H1 resp. in the with 7 G S). So they are unique factorisation domains. 
It is therefore enough to show: If b is a prime élément in B, then there is a (3 
with b'1 i B13. 

By construction, the prime éléments b £ B with 6"1 G are exactly 
the prime divisors of any Ha with a G i?+ and a ^ /3. In Case 1 each Ha 
with a G R~*~ is prime in U° and in 5 , since it is a polynomial of degree 1 
and since it is not a unit in B. Under our assumption on p distinct a lead to 
distinct Ha that are not even multiples of each other, cf. Lemma 5.2 in [Hul] 
for p > 3. This implies H^1 fi B13, hence the claim. 
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In Case 2 ail Ky + a with 7 G £ and a £ k, a ^ 0 are obviously irreducible 
in U°. Each a G R+ is conjugate to some 7 G S under the Weyl group, hence 
each Ka + a to some if7 + a under an automorphism of U°. Therefore ail 
thèse Ka + a are prime in U° and distinct pairs (a, a) lead to irreducibles 
that are not multiples of each other. By construction each Ka + 1 and each 
Ka — 1 is still prime in B. We get B& from B by adjoining each (Ka + l ) -1 
and each (Ka — with a G R+ and a ^ (3. We see now that (ify + l)"1 
and (Kp — are not in and get the claim. 

9.2. For any A-module M set 

M0 = M ® A A0 and Mp =M®A Ap (1) 

for ail (3 G If M is in CA>> then M0 resp. M$ is in the corresponding 
category over A9 resp. over . We define similarly M0 for a A^-module M. 
We have 

Z\X) = ZA*(A) = ZA(A)0 and Z*(À) = ZA,{\) = ZA{\f (2) 

for ail A G 
Lemma: Suppose that A is flat over B and that the restrictions on p 

as in Lemma 9.1 are satisfied. Let M be a flat A-module. Then the natural 
maps M —y M@ and M@ —> M0 are injective for ail (3 G R+, and we have 
inside M0 

M = 

f3£R+ 

M?. (3) 

Proof: We can express Lemma 9.1 as follows: We have an exact séquence 

0 —• A -

),^(A')) = 0, 

A? 

Homc(Z^(A 
A0 

where the map on A is the diagonal embedding and where the last map takes 
a family (ap)p to the family of ail différences ap — a7. This séquence remains 
exact when tensoring over A with the flat A-module M. The claim easily 
follows. 

9.3. Dénote by TCA the full subcategory of ail M in CA that are flat as A-
modules. This subcategory contains ail projective modules in CA, cf. Lemma 
2.7.c. For any M in TCA and for any A G X set 

VM(A) = Homc(Z0(A),M0). (1) 

This is (by 2.8) a finitely generated A0-module. 
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For each (3 G R+ and any X £ X there is a unique integer n with 0 < n < p 
and (A + p, /3V) = p — n (mod p); then set 

/?|A = A + n/3. 

One has / 3 | A G S/j.A + £>Z/3, especially /3|A G W^.A. 
Fix /3 e R+ and A G X. In case /3 f A = A we set 

VM(A,/3) = ïïomc(Zfi(\),Mfi) C VM(A). (2) 

This is (again by 2.8) a finitely generated A@-submodule of VM(A) and the 
inclusion induces by 3.2 an isomorphism 

VM(\,8)®Afi A9 ^VM(X). (3) 

In case /3 | A ^ A, we shall define for each e G Ext1c(Z^(X), Zfi(0 î A)) and 
each M as above a finitely generated -submodule 

VM(A, /3, e) C VM(A) © VM(/3 î A) (4) 

such that the inclusion induces an isomorphism 

VM(\,3,é)®A, A® VM(X) © VM(73ÎA). (5) 

Let 
0 ->Z*( /3 îA) drd 

Q 
a Z"(A) -f 0 (6) 

be a représentative of e. This séquence splits uniquely over A , so there is a 
unique morphism g' : Z0(A) —• Q0 with g o gf = id. The map 

(f*-> ((pog',<po f) 

is now an embedding of Homc(Q, Af^) into VM(A) © VM(/3 î A). We want 
to set VM(A,/3,e) equal to the image of this map. The splitting of (6) over 
A0 together with 3.2 will then imply that (5) holds, and the finite génération 
follows again from 2.8. We have to check that this image dépends only on e 
and not on the spécial représentative chosen above. Well, if 

0 - Homc(Z^(A),^(A')) dr Qi 91 Zp{\) - 0 

is another représentative of e, then there is a commutative diagram 

0- Z"(/3ÎA) e/ O 9 zHx) • 0 

h 

0 - ZHBÎX) h 
Qi 

9i 
Z ' ( A ) 0. 

We have then g\ o h o g' — g o g' = id, so h o g' is the analogue to g' for the 
second séquence. Therefore the embedding for the second séquence is given 
by 

ip ((p o h o g', (p o /j) = (ip o h o g\ (p o h o / ) . 
It has the same image as the earlier map, since (p »-> (p o h is an isomorphism 
from Romc(Qi,Mfi) onto Homc(Q,M^). 
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Lemma: We have for ail a £ A13 

(a,l)VM(A,/?,e) C VM(A,/?,oe). 

Proof: There is a commutative diagram 

0 Homc(Z^(A),^( o. 91 zH\\ •+ O 

ha dr a id 

O zH0\\) f 
Q 

9 ZHX) 0 

where the second row is a représentative of e, the first one of a e. There are 
unique morphisms g' : Z0(A) —* Q0 with go g' = id and g[ : Z0(A) —• Q0 with 
gi o g[ = id. We have g o ho g[ = a id, hence 

hog[= ag[. (7) 

By définition, VM(À, /J, e) is the image of Homc(<3, M^) under y? v-+ ((f o 
gf,po f). Then (p o h is in Homc(Qi, M^), so — using (7) for the first step — 

(<pohog[,(poho fx) = o a g',(p o f) = ( a , % o ^ ' , ^ o / ) 

is in VM(A,/3 ,ae) . The claim follows. 

Remark: If a is a unit in A^, then one checks then easily that one has equality 
in the lemma. (Multiply by (a-1 ,1) . ) We shall prove a more gênerai resuit 
in 9 .10 . 

9.4. Let fi C X be an orbit for WP (under the dot action, as always). We 
want to define a category /C(fi) and a functor VQ : TCA(SÎ) —• /C(fi). 

An object A4 in /C(fi) is a family (A4(A))A£Q of finitely generated A0-
modules (almost ail equal to 0) together with (for ail (3 G i?+ and À G fi) a 
finitely generated A^-submodule A4(A,(3) of A4(A) 0 A4(/31 A) if (3 î A ± A, 
of A4 (À) if (3 î A = A. A morphism V7 between two such objects A4, A4' is 
a family (V^Aen of A0-linear maps : A4 (A) —• A4'(A) such that for ail 
(3 G i?+ and A G fi: 

(V>À 0 rl>n\)M(\p) C A4'(A,/3) in case / 3 | A ^ A, 

</>AAf(A,/3) C A4'(A,/3) in case /3ÎA = A. 

Suppose that we have fixed for each (3 G R+ and A G fi with j31A ^ A a 
generator e*(À) of the A^-module Ext£(Z*(À), Z^(/?î A)). For M in TCA{ti) 
we set 

V Q M ( A ) = VM(\\ 

VçiM{\(3) = 
VM(A,/3), if flîA = A; 
VM(A,/3,e^(A)), i f / 3 îA^A. 

It is obvious that is a functor from ^C^(fi) to /C(fi). 
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Proposi t ion: Suppose in Case 1 that p ^ 2 if R has two root lengths and 
that p ^ 3 if R has a component of type G2. If A is flat over B, then the 
functor VQ is fully faithful. 
Proof: Let M, N be modules in FCA^)- We have to show that Vçi induces 
an isomorphism 

Homc(M, AO HomxvmfVnM, VniV). ( 1 ) 

Over A0 each {A} with A G X is a block by itself and Z0(A) is a projective 
generator of that block, cf. the remark in 6 .13 . Since each Endc(Z0(A)) is 
isomorphic to A0, we have an isomorphism 

Homc(M0,7V0) rdd 

bred 
RomAt(VQM(X),VQN(X)). 

This map is part of a commutative diagram 

Homc (M, N) 

Homc(M0,iV0) 

EomK(ÇÎ}(VnM,VnN) 

®AefiHomAe(VnM(À),VniV(À)). 

The two vertical maps are obvious inclusions. So we see that the map in ( 1 ) 
has to be injective. 

In order to prove surjectivity consider a morphism ip : V Q M —• VQN. We 
know already that there is a homomorphism h : M0 —• iV0 inducing ail 
Fix f3 e R+. For A with f5\X ^ A let QP(\) be the middle term in e^(A), for 
(3]X = A set Qp(\) = Zl3(X). Now i\> induces for ail A a map 

Romc(Q^(X),M^) -+ Homc(Q^(A) ,^) . 

If it maps a homomorphism / to then the définitions imply easily / ' = hof. 
By the remark in 8.6 there is a surjective homomorphism of the form 

0 • QP(\i) —• . So we can find A2 G $1 and homomorphisms /i; : Q/3(\i) —• 
such that = hi(Q/3(Xi)). As seen above /zo/ij is a homomorphism 

from Q^(Ai) to JV*. This proves h(hiQfi(Xi)) C iV* for ail i, hence 

VM(A,/3,e^(A)), 

db 
hiQP(Xi)) C iV* 

Now 
/i(M) C 

/?>o 

+d1dr-+drd 

where we use for the last equality 9 .2 (3 ) and the fact that iV is flat over A. 
The claim follows. 
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9.5. Assume from now on (in this section) that A is a flat B-module and 
the condition on p in Lemma 9.1 and Proposition 9.4 is satisfied. Fix an orbit 
Q C X under Wv and suppose that we have chosen e^(A) as in 9.4, hence 
chosen Vfo. 

For ail A E X and (3 E R+ let j3 [ A E X be the unique weight with 
(3] (fil A) = A. (This is compatible with the notation in the remark to 6.2.) 
We have f3[ A eWp.A. 

Proposition: Let A € Q and w E W. Then Homc(^(A), Z%(\(w))) is a 
free A-module of rank 1; choose a basis /0. Then 

VaZ*l(\lw))(\) = A*fo (1) 

and VnZ%{\{w)){n) = 0 for ail \i ^ A. We have for ail f3 G R+ 

VçtZ%(\{w))(\,(3) = 
d+1+dr .//?ÎA = A: 
A"(/o,0), VM(A,/3,e^(A (2) 

and. if /31A 5̂  A, 

VnZÏ(A(u;))(/?lA,/?) = A>(0,SSSS i/uT1/? > 0; 
if/3îA^A. ifw-lf3 < 0; (3) 

a// other VçiZA(X(w))(fjt^(3) are equal to 0. 

Proof: Set M = ZA(\(w)). The claim about the Hom space is a spécial case 
of Lemma 4.7; the basis vector /0 is then also a basis for the corresponding 
Hom spaces over ail A& and over A0, cf. 3.2. We get especially (1) and the 
first case in (2). Since M0 ~ Z0(A), it is clear that VM(/JL) = 0 for ail fi ^ A, 
and then also that VM(/i,/3) = 0 for ail \x ̂  A,/3 jA. 

Assume from now on that (3]\ ^ A. Choose a représentative 

0 ZH(3]X) î 
Q 

9 VM(A,/3,e^(d) 0 

of e^(A). Let g' : Z"{\) —• Q be the homomorphism with go g' = ifyid. Now 
VnM(A, /3) is the image of Homc(<2, M&) under /i (->• (H^ho g',ho f). Since 
Homc(ZP((3î A), M) = 0, we get an isomorphism 

H o m c ^ A ) , M ^ ) Homc(Q,M"), h^hog. 

Therefore /0 o p is a basis of Homc(Q,M^), and VnM(A,/3) = A^(/0,0). 
Choose now a représentative 

0 - Z'(\) f 
Q 

9 ZP(PIX) 0 

108 



REPRESENTATIONS OF ALGEBRAIC GROUPSAND QUANTUM GROUPS 

of e^(/3 j A). Let g1 : A) Q be the homomorphism with #o#' = Hpid. 
Now VnM(/31 A, (3) is the image of HomC(<2, M * ) under h K+ (H^hog1, hof). 
There are two cases: 
Case 1: w'1 (3 > 0. Then the remark in 5.14 implies that Zp{\) and axe 
isomorphic, so the basis /0 of their Hom space has to be an isomorphism. We 
have by 8.10 a basis fx of Homc(Q, Zfi(\)) with / i o / = Hpid. Then /0 o fx 
is a basis of Homc(Q,M^), and we get: VqM(/3 j A,/3) = A^(0,fl>/0). 
Case 2: w'1 (3 < 0. Then M13 is isomorphic to Z^0{\{WQ)Y, again by the 
remark in 5.14. So Proposition 4.11 implies that Yixt1C(Z^((3 j A), M^) = 0. 
We know already that Homc(Z^(/3 j A), M&) = 0, so we get an isomorphism 

Homc(Q, Mfi) Homc(^(A), Mfi), h^hof. 

Therefore there is a basis h of Homc(Q,M^) with hof = /0, and we get 
VqM(/3|A,/3) = A^(0,/0) . 

9.6. Corollary: Let A, A' G X with ExtLC(ZA(\),ZA(\')) ^ 0. Then there 
is (3eR+ with A' = /3|A ^ A. 

Proof: We may assume that A G fi. We know by 2.14.b that A' > A, and by 
6.13 that A' G fi. Suppose that 

0-+ ZA(X') — • M — • ZA{\) ->0 

is a nontrivial extension. Then the corresponding séquence 

0 - V n ^ À ' ) — > V n A f — f V n ^ A ) 0 

does not split. Therefore there axe fi Ç. Q and (5 G i?+ with 

VaZA(\')(ii,P) î 0 ? VaZA(\)((i,P). 

The explicit description of the VQZA(U) in 9.5 implies 

/ / G ^ / U A ' } n { A , / H A } . 

We have A' ^ A, hence f3[ A' ^ /3 jA. Furthermore A' > A implies / 3 | A ^ A'. 
Therefore /i = A = (3j A' and A' = /? | A ^ A as claimed. 

9.7. Proposition: Let X e X with \+p G pX. have /or eac/i B-algebra 
Bf isomorphisms ZQ,(X(W)) ~ ZB'(X) for ail w G W; the module ZB'(X) is 
projective in CB> > 
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Proof: We may assume that Bf = B. (That is obvious for the first claim; for 
the projectivity use Lemma 3.1.) 

Set Q = Wp.À. The condition A + p G pX is équivalent to (3 | À = À 
for ail f3 G R+. So Proposition 9.5 implies VQZ^(X(W)) = VQZB(X) for ail 
w G W. This yields an isomorphism ZQ(X(W}) ~ ZB(X) by Proposition 9.4. 
Corollary 9.6 implies that ZB(X) does not extend any Zs(XF). By the remark 
in 2.13 there is a projective module Q in CB with a Z-filtration such that 
ZB(X) is a factor in this filtration. Now this factor has to split off, and ZB(X) 
is projective as a direct summand of a projective module. 

Remark: One can prove thèse results without the présent theory: The iso-
morphisms can be constructed using maps as in 5.10(1), (2) and arguing as 
in 5.8. The projectivity follows in the case of a field from Lemma 6.3, in the 
gênerai case then from Corollary 3.5. 

9.8. Lemma: Let À G fi and (3 G R+ with j3]X^ X. Then we have for ail 
M inTCA(ti) and for ail e G Ext£(Z*(À), Z\(3\A)) 

Homc(Z^(A), Mp) = VM(A, (3, e) D VM(A). (1) 

Proof: Choose a représentative 

0 -+ Z^{(3]X) F ZP{\) -+ 0 G D (2) 

of e. Let g1 : Z@(X) —• Q be the homomorphism with g o g' = Hpid. So 
VM(A, /3, e) is the image of 

Romc(Q, M*) VM(A) © VM{f3] A), A ^ (tf"1/* o j ' , f to / ) . 

Any /ii og with /ii G Homc(Z/3(A),M13) is mapped to (/ii,0). This shows that 
the left hand side in (1) is contained in the right hand side. 

On the other hand, if a homomorphism h : Q —• M@ has image in 
VM(A), then h o f = 0. Then /i factors via g and there is a homomorphism 
hi : ZP(\) -> with h = h1og. Then the image of /i is (hU0). This yields 
the other inclusion. 

Remark: Keep the notations of the proof. If y) is an élément of VM(A, /3, e) 
then y) = (H^h o g', h o f) for some /i G Homc(<3,M^). This impl les 

Hpx G Homc(Z/î(A),M/?) and y G Homc(^( /3 î A), Mfi), (3) 

in particular, by the lemma, 

(Hfix,0) € VM(A,/3,e). (4) 
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9.9. In the situation of 9.8 set 

VM{\)p = VM(\,f3,e)nVM(\). (1) 

By 9.8(1) the right hand side is independent of e. Note that 9.8(4) implies 

(Hp,0)VM(\,(3,e)cVM(\)p. (2) 

For A with 31A = A we set 

VM(\)(, = VM(A, (5) C VM(A). (3) 

So we have in any case, by 9.8 or by définition 

VM{\)0 = Homc(^(A), M13). (4) 

So 3.2 implies that the inclusion induces an isomorphism 

VM(\)p ®AP A9 -=U VM(A). (5) 

We set now 
VM(X)A = 

VM(A,/3,e^(A)), ze 
VM(\)« (6) 

and get (since we assume the condition in Proposition 9.4) 

Uomc(ZA(\),M) = VM{\)A. (7) 

If N is a second module in TCA(SÏ) any morphism V Q M —• VçiN has to map 
any VM{X)p to VN(X)^, hence any VM(X)A to VN(\)A. (This is clear also 
from Proposition 9.4 and from (7).) 

Let M be an object in /C(fi). Set (for ail A € fi and f3 e R+) 

M(\)p = M(\)nM(\,l3) and M(X)A = 
/3ZR+ 

M(X)s. 

(So M(\)p = M(X,f3) if (3]X = A.) Each M{\)p is a finitely generated 
module since .M (A, (3) is finitely generated and since we always assume A to be 
Noetherian. Note that thèse définitions are compatible with (1), (3), and (6). 
If M is in the image of V^, then the inclusion induces by (5) isomorphisms 

M(\)p®A0 A® -^M(X) (8) 

(for ail A G fi and (3 G R+) and (by (7) and 3.2) isomorphisms 

M(X)A®AA* ^M(X) (9) 

for ail A G fi. Note that 9.3(5) implies that (for ail A G fi and f3 G R+ with 
/ 3 | A ^ A ) 

M(\,P)®ap A* ^UM(X)®M((3]X) (10) 

for M in the image of VQ. (It would be nice to have a characterization of that 
image.) 
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9.10. Lemma: Let A G fi and (3 G i?+ wîtà /3|A ^ A. Let M be in TCA{SÎ) 
anrf e m Ext^(Z^(A), 1 A)), have then for ail a e A? such that the 
coset a + HpAP is a unit in A@/HpA13 

VAf (A, (3, a e) = (a, 1)VM(A, /?, e) + VM(A)^. (1) 

Proof: We have by Lemma 9.3 and by the définition 9.9(1) 

VM(A,/3,ce) D (c, l)VM(A,/3,e) + VM(X)fi (2) 

for ail c G A^. If 6, c G A^ are congruent modulo A^Hp, then there is d G A^ 
with b = c + hence 

(6, l)(x, y) = (c, l)(z, y) + d(Hfi, 0)(s, y) 

for ail (x y) G VM(A,/3,e). This implies 

(6,1)VM(A, (3, e) C (c, 1)VM(A, /3, e) + (ffy, 0)VM (A, /?, e) 

C(c,l)VM(A,/3,e) + VM(A)/3 

using 9.9(2) for the second step. We get in particular, if a = 1 (mod Hp), 

VAf (A, (5, e) C (a, 1)VM(A, 0, e) + VM(X)p 

C VAf(A,/3,ae) = VM(\,(3,e). 

We get therefore equality here; this proves (1) for a = 1 (mod H/?). 
In gênerai, choose b £ A@ with ab = 1 (mod -ff/j). Then 

VAf (A, /S, e) = VAf (A, (i, ba e) 
D (b, 1)VM(A, /?, oe) + VAf (A),, — by (2) — 
D (b, l)(a, l)VAf (A, /?, e) + VAf (A)„ 

since (6, l)VM(\)p C VAf (A),, 
= (6a, 1)VM(A, (3, e) + VAf (A)^ = VAf (A, (3, e). 

where we use for the last step that (1) holds for ab by the first part of the 
proof. We get now equality at ail steps, especially 

VAf (A, (5, e) = (b, 1)VM (A, /?, ae) + VM(X)p. 

Apply (a, 1) to both sides and add VM{\)p to them. The claim follows. 

Remark: If a is a unit in , then we have for ail M in /C(fi) 

M(X)p = (a,l)M(X)p C (a,l)M(X,/3). (3) 

This implies 
(a,l)M(X,(3) + M(X)p = (a,l)M(X,/3), (4) 

in particular 
VM(A, /3, a e) = (a, 1) VM(A, (3, e). (5) 

(One can prove (5) also directly, cf. the remark in 9.3.) 
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9.11. Consider an object M in /C(fi) and a subobject J\f of A4, i.e., each 
J\f(\) is an A0-submodule of A4 (A) and each J\f(\,f3) is an A^-submodule of 
Al (À, (3). We call Af a compatible subobject of Al, if for ail À and (3 

^ J M ^ ) n A T ( A ) , if/?TA = A; m 
VVl 'P j ~ \7W(A,/3)n(7V(A)©AR(/3îA)), otherwise. W 

If so, then we define an object M/Af in JC(Q) with (M/Af)(\) = M(\)/Af(\) 
for ail A and (M/M)(\,P) = M(\,(3)/Af(\,(3) for ail A and /?. Note that 
(M/M)(\,(3) is — by (1) — embedded in {M/M){\) resp. in (M/M)(X) © 
(M/N)(f3]\). 
Lemma: Let M be a module in CA(fi) arid iV a submodule of M such that 
N and M/N are flat as A-modules. Then VqN is compatible in VqM and 
there is a natural isomorphism 

VQM/VnN~Vçi(M/N). (2) 

Proof: Our assumption implies that also M is flat over A. So M , iV, and 
M/N are ail in JR^(fi) and V Q M , VçiN, Vq(M/N) are defined. Recall from 
9.2 that the natural maps M —• M13 and —• M 0 are injective; similarly 
for N and M/N. Applying this in the case of M/N we see that 

NP = M13 H TV0 
for ail (3 E This implies 

Hom^Q^A), JV^) = Homc(Q^(A),M^) nHomc(^(A)0,iV0) 

for ail À G fi, hence 

VnN(\,/3) = VnM(\,(3)n(Vç1N(\)(BVçiN((3n)) i W A # A , (2) 
resp. 

VniV(A, /3) = VFIM(A, /?) n VfiiV(A) if (3 î A = A. (3) 
This yields the claim on compatibility. 

We have by projectivity exact séquences 

0 -+ Homc(Z0(A),iV0) Homc(Z0(A),M0) -+ Homc(Z0(A), (M/N)*) 0 
for ail A E fi, and 

0 Homc(Q^(A), N?) - Homc(Q^(A), M ^ ) -+ Homc(Q^(A), (M/N)13) 0 

for ail A E fi and (3 E Therefore the canonical map M —• M/iV induces 
isomorphisms 

VnM(A)/VniV(A) ^ + Vfi(M/iV)(A) 
and 

VnM(A,/3)/VnJV(A,/?) Vn(M/N)(\,(3), 
and (2) follows. 
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9.12 . Let Mi C M2 C AI3 be a chain of subobjects in /C(fî). The following 
properties are more or less obvious: 

If A4i is compatible in M3, then Mi is compatible in A4 2. If A4i is 
compatible in A42 and Al2 is compatible in A l 3 , then A l i is compatible in 
M*. 

Suppose tha t Mi is compatible in AI3. We can then construct M3/M1 
and M2/M1 as in 9.11; we have a natural embedding M2/Mi C M3/M1. 
Then A4 2 is compatible in A4 3 if and only if A4 2/A41 is compatible in 
M3/M1. If so, then we have a natural isomorphism 

A43/A42 ^ (M3/Mi)/(M2/Mi). 

Suppose again that A4i is compatible in AI3. Let Q be a subobject of 
M3/M.1. Let J\f be the inverse image of Q in A43, i.e., the subobject of 
A43 such tha t each Af(\) is the inverse image of Q(A) in A^3(A) and each 
A/"(A,/3) the inverse image of Q(A,/3) in A43(A,/3). We have then inclusions 
A4i C Af C AI3 and a natural isomorphism A /Mi ~ Q. The discussion 
above (applied to A4 2 = AT) implies that Q is compatible in M3/M1 if and 
only if M is compatible in A4 3 . 

Let Mi C M2 C M3 be a chain of modules in FCA^) such tha t also 
M2/Mi and M 3 / M 2 are flat over A. Then VQM2 C V Q M 3 is the inverse 
image (as above) of VçiM2/VçiMi C V Q M 3 / V Q M I . 

9 .13 . Recall from 6.18 that the functors M 1—• M[pi/] with v G Zi? map 
C^(fî) into itself and make it into a (pZi?)-category. We define similar shift 
operators A4 1—• M\pv\ on /C(fi): Set for ail A G H and /3 G i?+ 

M\pv](\)=M(\-pvSSSS), 

M\pv](\,3) = M(\-pv,a). 
(1) 

(Note tha t /3 Î (À + pi/) = {(3]\)+pv for ail A and (3.) We have for ail A4, M 
in /C(Q) a natural isomorphism 

Homx;(tt)(A4,A/') HomA:(fi)(A4[pi/], A / "M) . ( 2 ) 

We map a family (V>A)ÀGQ to the family (^JJ/ien wiïh ^ = Vv-*" ôr a^ /i* 
We have obviously A4 [0] = Al and 

(M\pu])\pu'] = M\p(p + u')]. (3) 

for ail A4 and ail z/, z/ G Zi?. So /C(fi) gets the structure of a (pZiî)-category. 
For arbitrary v G X the map A \—• A + pu takes fi to another W^-orbit 

Q1. We can then define a functor A4 1—• M[piv] from JC(Q) to /C(fî') using the 
same formulas as above. The results above extend; we shall not have to use 
thèse gêneralizations. 
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We can identify ZA(\ + pv) with ZA(\)\pu] for ail À,i/ E X by 4.2(5). 
Using this we get also an identification 

Ext* ( ^ ( A ) , î A)) ~ E x t ^ ( A + p»/), î A + pi/)). (4) 

Now the définitions imply easily: 
If we have — under the identification in (4) — e/3(X + pu) = e^(À) for 

allXeVt, (3 e R+, and v E ZR, then 

V n ( M H ) = ( V n M ) H (5) 

for ail M in TCA(Vt) and v E ZR. 
So Vçi is then a (pZi?)-functor in the terminology of E.3. Our final choice 

of the in 14.1 will satisfy the assumption above, cf. 14.12. 
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0. Translations and Combinatorics 

Throughout this section we consider A as at the beginning of Section 9 
and keep the notations from that beginning and from 9.2-3. 

10.1. Consider two orbits fi and T for WP. We have then translation functors 
T = T£ from CA{Q) to CA(T), and T = Tp in the other direction. Thèse 
functors take the subcategories TCA(Vl) and TCA(Y) to each other. (If M is 
a flat A-module and E a vector space of dimension n over then E ® M 
is isomorphic to Mn as an A-module, hence flat; so is every direct summand 
of E ® M.) We want to compare VQÇT'N) to Vr(iV) for N in TCA(Y) and 
Vr(TM) to Vn(M) for M in JR^ f i ) . 

We have for ail M in CA(Q) and iV in CU(r) as in 7.6 adjunction isomor­
phisms 

adjj : Homc(M, T'N) ^ Home(TM, N), (1) 

and 

adj2 : Homc(iV,TM) Homc(TFN, M). (2) 

They satisfy the functorial properties listed in 7.6. 

10.2. Suppose that fi and T have the following property: For each À E fi 
there is a unique /i G T that is in the closure of the facet of À. We dénote 
then fi by Àp. One has in this situation that TZA(X) ~ ZA(\r). 

Suppose that we have chosen for each À E fi a fixed isomorphism 

h : ZA(\r) TZA{\). (1) 

We have for ail À E fi and ail N in fCA(Q) an isomorphism 

V(T'N)(\) = Homc(Z0(A),T'iV0) ^ Homc(TZ0(A),iV0) 

Homc(Z0(Ar),iV0) = ViV(Àr), 

where the first map is adjj and the second one is composition with f\. Dénote 
this map by 

A'F(N)X : V(T'iV)(A) VN{\R). (2) 
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Set 
f'x = A D J R 1 ^ " 1 ) : ZA{\) - T'ZA(XT) ( 3 ) 

for ail À G fi. This map is a basis for its Hom space. For each JI G T the FFX 
yield an isomorphism 

Ar=A* 
dvrd 

Ar=A* 
Z\\) T'Z\fi). (4) 

(Observe that T 'Z^ / i ) has a Z-filtration where exactly the Z^(À) with 
Ap = /i occur as factors. This filtration has to split over A0, so there is 
some isomorphism as in (4). We can take the F'X as the components of the 
isomorphism, since we can take any bases of the relevant Hom spaces.) 

For each À G fi the map cp i—• adj2(^) o F'X is a homomorphism 

AFT\(M) : V(TM)(Àr) = Homc(Z0(Ar),TM0) Homc(T'Z0(Ar),M0) 

-+ Homc(Z0(A),M0) = VM(A). 
(5) 

Now (4) implies that the direct sum of the Aft\(M) is an isomorphism 

Af(M)P : V(TM)(,i) 
d+d4r 

VM(X). (6) 

We shall dénote the maps in (2) resp. in (5), (6) simply by A'f and Af 
whenever there is no confusion likely. 

10.3. For the next subsections (until 10.9), fix (3 G R+. We want to 
détermine the effect of A'f on A^-modules of the form V(T'iV)(A, /3, e) or 
V(T'iV)(A,/3) with iV in TCA(T). 

For any A G fi we are in one of four cases: 

(a) A = /3ÎA, /nAr = Ar, 
(6) A # / 3 | A , /3ÎAr = Ar = (/3îA)r, 
(c) A^/3ÎA, /3îAr = Ar^ ( /3 îA) r = Ar+p/3, 
(d) A^ /3 îA, A r / / 3 î A r = (/3îA)r. 

Indeed, if /3|A = A, then necessarily J5f Ar = Ar. If /31A ^ A and J3 f Ar = Ap, 
then either (/3 î A)r = Ar or (/?ÎA)r = Ar + Finally, /?ÎAr + Ar imphes 
/ 3 î A # A a n d (/?ÎA)r = /?î(Ar)). 

In the case (a) the définitions imply obviously: 

If /31A = A, then ,4^(V(T'JV)(A,/3)j = ViV(Ar,/3). ( 1 ) 
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In the other cases we have to take e G Ext^(Z/3(À), Z^(/3|À)) and déter­
mine the effect of A'f on V(T'7V)(A, /?, e). Here ^ dénotes the isomorphism 

^ ( ^ © ^ ' / ( A O / ^ A : V(T'N)(\)(BV(TfN)([3î\) ViV(Ar)©ViV((/?îA)r). 

10.4. Let us now deal with the cases (c) and (d) from 10.3. In the last case 
our results will involve the map 

t[fx,M : E x t i ( ^ ( A ) , ^ ( / 3 î A ) ) — , E x t i ( ^ ( A r ) , ^ ( ( ^ î A ) r ) ) (1) 
defined in 7.7(6). 

Lemma: Suppose that (/?f A)r ^ Xr- Then 

A'f(V(T'N)(\,(3,e)) = VN(\T,l3,t[fx,M(e)), if £ Ar; 
VJV(Ar,/3)eViV(Ar + P3,f3), if(Pn)r = *T+P(3. 

Proof: Let 
0 ZHBXX) -^->Q^-> ZFI(X) -.• 0 (2) 

be a représentative of e. Recall that there is a unique morphism f : Z0(A) —• 
Q0 with j o f = id and that V(T'iV)(À,/3,e) is the image of Uomc(Q,T'Nfi) 
under the map (p i—• (cp o f, <p o i). Therefore A!fV(T*N)(\, /3, e) is the image 
of Home(Q.T'iV^) under the map 

^ i-> ( a d j i ^ o j ' ) o ^ a d j ^ o i ) offtx) 

=(adji (v?) o T j ' o /A, adjj (y>) o Ti o fmx). 

Since adjj is an isomorphism, this is also the image of Homc(TQ, N?) under 
the map 

i/; h+ M) o Tf o /A,^o Ti o fm\). (3) 
On the other hand, if we apply T to (2) and use f\ and f^\, we get an exact 
séquence 

0 -H. Zfi((PÏ\)T) -lUTQ^ ZP(\T) -+ 0 (4) 
where ii = Ti o fm\ and ?'i = fx 1 o T j . We have 

j i o (Tj ' o /A) = /A"1 O Tj o Tf o fx = id. (5) 

If (5 j Ar 7^ Ar, then (4) is a représentative of t[fx,f/3\\](e), cf. 7.7(3). Fur-
thermore, (5) implies that Tj' o fx is the analogue to f for (4). Therefore 
VN(\r,/3,t[fx, fp\\](e)) is the image of Homc(T<3,N&) under the same map 
as in (3). The claim follows in this case. 

If (/?|A)r = Ar + pfi, then the séquence (4) splits uniquely already over 
A^, and (5) implies that the right inverse of j i is equal to Tf o fx. Therefore 
the map 

tft^WoTfofx^SSSSSSoTiofnx) 
is an isomorphism 

Homc(TQ,i\^) H o m c ( ^ ( A F ) , ^ ) 0 Homc(^(Ar + p(3),N?). 

This is the same map as in (3), so the claim follows. 
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10.5. Suppose now that we are in the case (b) from 10.3. Neither TZ^(\) 
nor TZP((31 À) change if we replace T by the translation functor over A@ with 
respect to WpiP = < Sj3iTnp \ m G Z >. Therefore we can apply 8.13/14 and 
get a map 

OlfxJnx] : E x t ^ ( A ) , ^ ( / 3 î A ) ) — A ' t f J 1 / ^ . (1) 

Recall: Given e G Ext^(Z^(À), Z^(/3 | A)), we choose a représentative 

0 -> Z ^ î A) Zp{\) -+ 0 (2) 

of e. Dénote by j ' the unique morphism f : Z0(A) —• Q0 with j o j ' — id. 
There is i1 : TQ TZ^(/?Î A) with i' oTï = id, and there is & G A^H~l with 

/ ^ o t ' o ( T j > / A = &id. (3) 

Then 
e[fxJnx}(e) = b + A?. (4) 

Note that (/31 A)r = Ar implies that Aff maps each V(T'iV)(A,/3, e) to a 
submodule of ViV(Ar) 0 VW(Àr), cf. the last line in 10.3. 

Lemma: Suppose that (/3 î A)r = Ar and j3 ] A / A. Zetf e G Ext^(Z^(A); 
Z^(/3|A)) <md /e< b G A^H^1 be a représentative of 0[f\, fp\\](e). Then 

A'f (V(T'N)(\,/?,e)) = {(x + by,y)\x,ye VN(Xr,/?)}. 

Proof: Here A'/V(T,iV)(A, /?, e) is equal to the image of Homc(TQ, 7V )̂ under 

ip (ip o Tf o fx^ip o Ti o fmx). (5) 

(Argue as in 10.4!) We have in this case an isomorphism 

TQ ^ (Ar )©Z'3(Ar) 

given by 

^ ( / w o i H / A " I o W 
It induces 

Homc(Z^(Ar),iV^) 0Homc(Z^(Ar),iV/3) Homc(XQ, A^) 

given by 

(^1^2) H ^ O o i' + </>2 o Z"1 o Tj . 

The composition with (5) takes (^i,0) to 

(^1 0 fol 0 i' 0 Tf o fx, ipi o f~{ o i' o Ti o fax) = (^16, ^1) 

and (0, ̂ 2) to 

(V>2 o Z^1 o T j o Tf o fx, ^2 o fxl o Tj o Ti o fax) = (^2,0). 

The claim follows. 
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10.6. We now want to describe what Af does to A^-modules of the form 
V(TM)(/i,/5,e) or V(TM)(/i,/3) with M in TCA(Q). 

Set W = WpiP, cf. 10.5. The functors T and T' décompose over mto 

a direct sum of functors of the form T^,*j^ resp. Ty^!*^ with v G fi and / / E T . 
For example, the restriction of T to CAp(W\\) takes values in ( ^ ( W ' . À r ) 

and is equal to T^t'x where ji = Àp. For À' G W\À the maps t[f\, f^\] as in 

10.4(1) can be constructed also using T^,##j\ 
Fix /i G T. Let us look at first at the case where j3 | n ^ fi. We have 

then for ail À G fi with \T = fi that (/3|À)r = /?î^, especially /3|À ^ À. So 
ail thèse À belong to différent orbits under Wf. Now 7.10 implies that Tf on 
CA(3(W'.ii) is the direct sum of ail T^,^ with À G fi, Xr = V- On the other 
hand, T^,^ is just the restriction of T to ( ^ (W' .À) . 

For the moment, fix À G fi with Àp = ji. Both À and ji have trivial 
stabilizers in W , so 7.9 implies that To = TWI*£ and Tq = T^!*^ are équiva­
lences of catégories. For any z/ G VF'.À the map as in 10.2(3) is the inverse 
image of f~l also under the analogue to adjj for T0 and Tq. It is an iso­
morphism ZP(v) TqZP(vy)> As in 7.7(6) we can use the fv to construct 
isomorphisms 

t[fvJ'u,] : E x t ^ V r ) , ^ ) ) ^ E x t ^ Z ^ ^ . Z ^ i / ' ) ) 

for ail v,v* G W.A. The remark above (on the analogue to adjj for T0 and 
Tq) allows us to apply Lemma 7.9.b. It implies 

<[/ , , /„ '](<[#,&]e) = e for ail e G E x t ^ K ^ ^ V f )) (1) 

(and ail G W.A). 

10.7. Lemma: WWW jjl, then one has 

Af(y(TM)(n,(3,e)) = 0 VM(\,l3,t[f'x,f'^]e) 
Ar=/x 

for allée E x t ^ Z ^ / / ) , Z^(/3î/i)) 

Proof: We proceed more or less as in 10.4. We choose a représentative 

0 - Z^Plfi) SSS Q -1+ z'( / i ) - 0 

of e and take the right inverse f to j over A0. By définition, V(TM)(/i, /3, e) is 
the image of Homc(<3, TM^) under h i-> {hof, h o i). Such a pair is mapped 
under Af to the family with (À,/3|À) components 

(adj2(7» o / ) o adj2(/i o i) o /^A) = (adj2(/*) o T ' j ' o /A,adj2(ft) o T't o /^A). 
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So our Af image is also the image of Homc(T'Q,M/î) under the map with 
(A,/3|A) component 

h^(hoT'j'of'x,hoT'iof'SSSSSS^). (1) 

For the moment, fix À and use the notation Tg as in 10.6. Arguing as in 
10.4 one sees that VM(À,^,t[/^,/^.A]e) is the image of the map 

* H ( f c o T i / o / i , f c o ^ o / ^ ) . 

This is also the restriction of (1) to Eomc(T^Q, M13). AU (A',/3| A') compo-
nents of (1) with A' ^ A annihilate Homc(T0'<2, M13). Since T'Q is the direct 
sum of ail possible TQ<3, the claim follows. 

10.8. Consider now the case where /3|(i — \±. For any À G fi with Àp = /i we 
may have /3|À = À o r / 3 | À ^ À . In the first case À is the only weight in Wf*\ 
with Àp = /i. In the second case we have also (/3|À)r = // or (/3| A — p(3)r = A*-
Since / 3 | ( / 3 | A — p/3) = A, we can conclude: 

The restriction of V to CAfi(W'.fi) is the direct sum of ail T%',;£ with 

A G fi, Ar = /i, £ î A = A and of ail T $ ; * with A G fi, Ar = jx = (/3 î A)r, 
/ 3 | A ^ A . 

For A of the second type in the last statement, the functor T$C##* leads 
to an exact séquence 

0 -+ Z*(/?î A) -UQ-L Zp(X) - 0. (1) 

with Q = T$;£Zp(ii). This is just a spécial case of 8.9(2) with A' = (3 | A. 
We can choose i = f'^x and j with j o f'x = iî^id, cf. 8.12(2), (3) and the 
remark in 8.10. Then the class of (1) in the appropriate Ext group is equal 
to Otfxifftxl^iHp1 + A13), cf. the remark in 8.14. We have by Lemma 8.12 
a commutative diagram 

0 - TZH(3î\) 
Ti 

TQ 
Tj ) TZP(\) ^ 0 

0 -

r 1 

A^A.dreds VM(A,/3,e^(A)), 
h 

d+d4r 

A"1 

0 

where the maps in the lower row are x •-»• (x, 0) and (x, y) i—> y. 

10.9. Lemma: If f3\= /j,, then 

Af(V(TM)(»,/3)) = 

e+e4r 

db1rd 

VM(\,0) 

d+b4rd 
\r=H=(p\\)r 

(H0,l)VM(\,p,rJ}(\)) 

where rff{\) = 0[f\, M^HJ1 +SSSS 

122 



REPRESENTATIONS OF ALGEBRAIC GROUPS AND QUANTUM GROUPS 

Proof: AfV(TM)(fi,f3) is the image of Homc(Z*(/i),TM*) under 

i\) >-> (adj2(V>) o fl | v G fi, vv = aO, 

hence of H o m c f T ' Z ^ ) , M^) under 

ip ̂  (ip o ffu | 1/ G fi, = //). 

For any À as above each z/-component of this map with v £ W'.X annihilâtes 
Homc(T^AZ^(/ / ) ,M^) . So AfV(TM)(^(3) is the direct sum over ail A as 

above of the image of Homc(T%,:TZP(N),M0) under 

^ W o / : i ^ r , A ^ = / I ) . 

For A with 3] A = A only v = A occurs. In this case f'x is (by 7.10) an iso­
morphism between Z^(X) and T^^Z^(fi). So the corresponding summand 
is Homc(^(A) ,M^) = VM(\,3). 

For A with 3 | A ^ A we use 10.8(1). The right inverse to j over is 
^ V A > SO VM(\,P,rfî(\)) is the image of Homc(Q,M^) under 

VM(A,/3,e^(A)), if/3îA^A. ddd 

If we apply (Hp,l) we get the corresponding summand of AfV(TM)({i, f3). 
The claim follows. 

10.10. Suppose that we have chosen for each (3 G i?+ and each À G fi with 
(3 | À ^ À (resp. each fi G T with /3 j /i ^ /i) a generator e^(À) (resp. e^(/i)) 
of Ext£(Z*(À),Z*(/3 î A)) (resp. of Ext£(Z*(/i),Z*(/3 î /i))). Consider the 
functors Vfo and Vr as in 9.4 with values in /C(fi) resp. in /C(r) depending on 
thèse choices. 

There are for each (3 G and each À G fi with (3 | Àp 7^ Ar (hence 
/31À 7^ À) éléments and fcf in A13 such that 

* [ / A , / , ™ F ( A ) = a V ( A R ) , 

t[f'x,fm]e^\T) = b{e^\). 
(1) 

The classes of ax and 6^ modulo ify are uniquely determined by (1) and we 
have 

alK = 1 (mod H8) (2) 

by 10.6(1). 
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There are for each (3 G R+ and each A G Q with (3jA ^ A and /31 Ap = 
Ar = (/?ÎA)r éléments G ^-ff^ 1 and &f G A^H0 such that 

«[/A,//nA]e/,(A) = aJ + ^ , 
^[/A,/m]-1(a + ^ ) = (^a)e'3(A) 

( 3 ) 

for ail a G A^Hp 1 /A13, where we regard b^a as an élément of A@/A^H^. Now 
the classes of modulo A& and of modulo A^Hj are uniquely determined 
by (2); we have obviously 

a{b{ G 1 + A13 H p. 

We now define functors T : K{Çl) -» /C(r) and T' : /C(r) - • /C(îî). For 
ail M in K(Q) set 

TJW(/i) = 
x+ 4dr+d 

.M(A) (4) 

for ail n G T, and (for ail /3 G -R+) 

TM(u,3) = 
d+br 

Ar=M 

-M(A,/3) © 
/WA, 

Ar=/*=(/îrA)r 

((6^,l)>f(A,/3) + i î ^ ( A ) / J ) , 

if /3|/i = resp. 

TM(n,l3) = 
+b4rd 

VM(A,/3,e^(A)), if/3îA^A.e 

(5 ) 

(6) 

if /3|/i ^ /i. The direct sums in (4)-(6) are finite. Our finiteness assumption 
in the définition of /C(fi) says that each is finitely generated over AK 
therefore so is each TM(fi). Similarly, ail M(X,/3) and (cf. 9.9) ail M.(\)p 
are finitely generated over A&. So are then their homomorphic images of the 
form (b1,l)M(\,P) and HpM(\)p, hence also each TM(p,/3). So TM is 
indeed in /C(fi). 

For any M in K(T) we define T'Af by 
VM(A,/3,e^(A)),/IK. for ail A G fi, (7) 

and (for ail j3 G iî+ and A G fi): 

qkd d+djr(d+ kez 

AT(Ar,/3), if ATA = A; 
( a { , l ) ^ ( A r , / 8 ) + ^ ( A r ) ^ if/?T Ar ^ Ar; 
Ar(Ar,,/3)©AT(Ar+p/3,/3), if (0ÎA)r = Ar + p/3: (8) 
{(x + a^!,,y) | X,î, G AT(\T,P)}, 

if (/3îA)r = Ar , /3 îA^A. 

124 



REPRESENTATIONS OF ALGEBRAIC GROUPS AND QUANTUM GROUPS 

In the last case we regard the right hand side as contained in 

T'Af(A) © T'A/%#Î A) = AT(Ar) © A/"(Ar). 

In order to show that TfJ\f is in /C(T), we have to check some finiteness 
conditions; this is done using the same arguments as above for TM. 

It is clear how to define T and T ' on morphisms. 

Remark: Our functors dépend on the choice of the and in their classes 
modulo Hp (resp. modulo A@ and A^H2^ in the situation of (3)). However, 
consider the full subcategory of ail M, in /C(fi) with 

(Hp,0)M(\,8)cM(X)p (9) 

for ail A and j3 with (3]\ ^ A. By 9.9(2) this subcategory contains the image 
of VQ. It is easy to check that the restriction of T to this subcategory is 
independent of the choices. A similar resuit holds for T1. 

10.11. Proposi t ion: There are natural isomorphisms 

A:VToT ToVçi and A! : VQOT T'oVT. 

Proof: For any M in ?CA{$Ï) we define A(M) at first on each Vr(TM)(/x) 
with /i G T as the map 

AfiTM), : V R ( T M ) W 
\r=t* 

V M ( A ) = T V Q M ( A ) 

from 10.2(6). Thèse maps induce isomorphisms at ail possible (/i,/3) by 
Lemma 10.7 or Lemma 10.9 together with Lemma 9.10. 

For any N in TCA{T) we define A'(N) at first on each VQ(T'N)(\) with 
A G fi as the map 

A'f(N)x : VQ{T'N){\) T'VTN(\) = VTN(\R) 

from 10.2(2). It induces isomorphisms at ail possible (A,/3) by 10.3(1), Lemma 
10.4 and Lemma 10.5 together with Lemma 9.10. 

Remark: Suppose that the in 10.10(1) are units in A&. We can then choose 

B\ = («A)-1- This allows us (by 9.10(4)) to replace 10.10(6) by 

TM(ii,0) = 

d+dr 

((a{)-\l)M(X,Ô) (1) 
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and the second case in 10.10(8) by 

T'Af(X,f3) = (all)Af(\r,/3). (2) 

Suppose also that each ax in lU.lU(o) is the product 01 ti^ with a unit 

in . Again, we can choose = (a^)_1. This allows us to replace 10.10(5) 
by 

TM(u,3) = 

/9TA=A, 
AR=M 

M(\,p) e 

x+ed4+re 
\r=p=(p\\)r 

((ai)-\l)M(\,/3), (3) 

since 
Hf,M(\)f> = b{M(\)fi C (bll)M(\,f3). 

We shall see later on that we can choose the ax as above if fi is a regular 
orbit. 

10.12. Suppose that M, M' are in ^C^(fi) and that (p : M —• M' is a 
homomorphism. We get a translated homomorphism T(p : TM —> TM' . Now 
& induces 

V<p(\) : VM(A) —• VM'(A) for ail A G fi 

taking any homomorphism h : Z0(A) —> M0 to 99 o /i, and T<£> induces 

V(T(p)(fi) : V(TM)(/i) —• V(TM')(/i) for ail // G T 

taking any homomorphism /i' : Z®(ji) —• TM0 to T<̂  o ft'. If we use Af as in 
10.2(6) to identifv 

VTM(fi) 1 VMf A) 

Ar=/x 

and similarly for M' , then V(TV)(/i) is just the direct sum of ail Vfy>(À) with 
Ap = A*- This is an easy conséquence of the functoriality properties of adj2 
involved in the définition of Af. 

We can also consider iV, N' in FCA(F), a homomorphism ip : N -> Nf 
and the translated homomorphism T V : T'N —• T'JV'. The map induced by 
T ' ^ on V(T'N)(\) is the same map as the one induced by \j) on ViV(Àr) if we 
use the identifications A'f(N)\ and A'f(N')\ from 10.2(2). This follows from 
the functorial properties of adjj. 

10.13. Consider M in ^C^(fi) and iV in «HJ^r). Look at a homomorphism 
cp : N —• T M and its image adj2(^) : T'A/" —> M under adjunction. Now 99 
induces 

V^(Ar) : ViV(Ar) V(TM)(Ar) 
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taking any homomorphism h1 : Z0(Ap) —> iV0 to (p o b!, and adj2(^) induces 

Vadi9M(À) : V(T'N)(\) —• VM(A) 

taking any homomorphism /i : Z0(A) —• T'iV0 to adj2(<^) o h. If we use A!f to 
identify V(T'iV)(A) with ViV(Ar) and if we use Af to identify VM(A) with a 
direct summand of V(XM)(Ar), then Vadj2(<£>)(A) is identified with V^(Ar). 
Indeed, any h as above is mapped under A'f to adj1(/i)o/A, then under V(p(\r) 
to (p o adj^f/i) o /A, finally under Af to 

adj2(<^ o adj^ft) o /A) o / ; = adj2(<^) o T^adj^/i) o /A) o a d ^ \ f x *) 

= adj2(y?) o adjj ^adj^/i) o /A o fx *) 

= adj2(y?) o/i. 

On the other hand consider a homomorphism ip : T M —• N and the 
corresponding ip' = adj^~1(^) : M —• T'A7". It is not so straightforward to 
describe Vfy'(A) in terms of V0(Ap). In fact, it dépends on the choice of the 
isomorphism Ef E* in 7.6. 

10.14. Consider as an example Q = Wp*\ with A in the interior of the first 
dominant alcove, i.e., with 

0 < (A + p,av) < p for ail a G R+, 

and T = WPA—p). Set Z = VTZA(—P)', we have obviously (cf. 9.5) 

Z(-p) = A® and Z(-p,P) = Af* for ail j3 G (1) 

where the inclusions Z(—p,f3) C Z(—p) are the natural inclusions C A9. 
If p. E Wp.{—p) with p ^ —p, then 

Z(p) = 0 and Z(p, j3) = 0 for ail 0 G -R+. (2) 

Set Q = T*'ZA(-P)] let us describe Q = T'Z ~ VçiQ using the notation a^#A 
as in 10.10(3). We have by 10.10(7) for ail w G W and v G Zi? 

Q(uuA +p^) = A0, ifi/ = 0: 
0, otherwise. ( 3 ) 

We have for ail 3 e R+ and w G W 

Q(w.\,8) = 
AP(l.O). if w^B > 0; 

(4) ^ ( l , 0 ) 8 ^ ( a i A , l ) , ifU;-1/3<0.dd 

Furthermore, if w 1/3 > 0, then 

Q(w.\-pP,p) = Afi(0,l). (5) 
Ail other Q(A', /3) are equal to 0. We shah use this description of Q to compute 
explicitly Endc(Q) in 19.4. 
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Our goal is to actually choose isomorphisms f\ and extensions e/3(X) 

and compute the constants ax needed for our combinatorics in the preceding 
section. The resuit of our computations is a "Theorem of good choices" that 
we want to explain now. 

For A,// G X let us abbreviate by A —• \i the statement "/i is in the 
closure of the facet of A". If A is a S-algebra and A, \x are two éléments of X , 
we let T = TQ dénote the translation functor from Q = WP»X to T = W^./i. If 

A —y //, then there is an isomorphism ZA(I^) — • TZA(X). If now (3 G i?+ is a 

positive root and (/? j A) —» (/3î//), then we also get ZA{(3] JJ) TZA{(3]X). 
Translation of extensions gives rise to a map 

ExtUZA(\),ZA(3]\)SSSSSS) ^ExtUZA(u),ZA(3îu)), 

tha t dépends on the choice of isomorphisms /(* : ZA(U) —» TZAW and f%l\ : 

ZA{ô]n)^TZA{SSSSS3]\). 
Suppose now A, A**, A® are as at the beginning of Section 9 and use also 

the notation Z^(X) introduced there. Translation of extensions gives also rise 
to a map 

E x t ^ ( A ) , ^ ( / 3 Î A ) ) t^(A),^(/3Î E x t ^ ' V ) , ^ / ? ^ ) ) , t^(A),^(/3ÎCE 

that again dépends on the choice of f£ and of fj^\- In case ji ^ /3 | /i this 

is just our ^[/A,/^4] from the preceding section. In case /i = /3|/i this map 

is zéro, since there are no self-extensions of Z^(fi). But if fi = (5 | ji and 
À ^ /3] \ and ( /3 | À) —• ji we constructed in a more involved way (see 10.5) a 

map 
ct^(A),^(/3Î F D E x t i ( ^ ( A ) , ^ ( / 3 î A ) ) t^(A), Ext^'V),^/?^)), 

depending on the choice of f\,ffî\. 

Suppose (for the sake of simplicity) that we take as A the completion of 
B with respect to the maximal idéal generated by ail Ha resp. by ail Ka — 1. 
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(We shall work in greater generality in the sections 11-13, but this is really the 
situation tha t we shall use afterwards to get our main resuit s.) Set ha = daHa 
in Case 1 and hQ = \ogKa in Case 2. Assume in Case 1 that p does not divide 
any dp. Each hp differs from Hp by a unit in A@ (even in A). 

To state our theorem, we further need some alcove geometry. Let 7i be 
the set of reflection hyperplanes for the dot-action of Wp on X ®z Each 
H £?{ has an équation of the form (v + /> ,7V) = rp with r G Z and 7 G 
Then we set 7 = a(H); furthermore, for any v G X we shall write v < H 
(resp. v > H) if and only if (v + p , 7 V ) < rp (resp. (v + p, 7 V ) > rp). For ail 
(3eR+ let «( /?) be the set of ail H G W with ^ ( J ï ) < 0. For (3 G i?+ and 
À , / i 6 X with À —» /i set 

C sld+ dkkd+ 

d+d2d,kd 

tieH,\>H 

h-a(H) 
+dkld +dk 

tieH,\<H 

7-1 . 

this is an élément of the fraction field of A. We have (3 | fi ^ if and 
only if où(H) / (3 for ail H with fi E H; in tha t case C^(À,/i) is a unit in 
A&. If /3 t /i = //, then there is exactly one H G with fi £ H; ii now 
/3Î A ^ A, then either A < H (and hfiCfi(\,n) is a unit in A&) or A > H (and 
/i^"1C^(A,/i) is a unit in A^). Note that in this case A < H is équivalent to 
( / 3 Î A ) - A i . 

Now we can state our "Theorem of good choices". 

T h e o r e m : Suppose that p is at least the Coxeter number and that in Case 
2 ail prime divisors of p are good for our root System. Then it is possible to 
choose simultaneously generators (over A&) 

e^(a)eExtUZ^SSSn),Z^(dU)) (1) 

for ail fi G X and (3 G i?+ with (3] fi ^ fi and isomorphisms 

rx:ZA{pSSS)^TZA{\) (2) 

for ail À,/i 6 I with A regular and A —» fi such that for ail E I and 
(3 G R~*~ with A regular and A —• fi we have 

* [ / r , / Z K ( A ) = C' (A, / i )e>( ,0 , if PU ïSSSSSSSS »; 

and 

' [ / £ / $ ] ^ A ) = C^A, / i ) + A>,SSSSS if (3]fi = fi and ([3]X) fi 
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Remarks: 1 ) We can identify Z^(A) and Z^(A + pu) for ail À, u G X; this 
induces identifications of corresponding Ext groups. In our theorem we can 
make the choices in ( 1 ) and ( 2 ) such that each e^(À + pv) is identified with 
e » ( À ) , and each f* with fgg. 

2 ) Note tha t the C@(\,fi) are in some sensé "independent of the char-
acteristic". This is precisely what allows us to prove our "independence of 
characteristic" results from the introduction, since the ax from 1 0 . 1 0 appear-
ing in our combinatorics can now be taken to be just the C^(À, Ar). 

3 ) We hope tha t one might extend the theorem to non-regular À and 
to small p. However already our proof of the above theorem involves so 
dreadful computations, that we were discouraged from trying to prove the 
generalization. 

Our proof of the above theorem proceeds in two steps. In Section 1 2 we 

show how to choose extensions e$ (À), e$ (fi) and isomorphisms f£ and compute 

for thèse choices the constants a G A^/HpA13 such that t[f£, fp[\]eo (A) = 

ae$(fi) resp. 0 [ / ^ / ^ ] e £ ( A ) = a(/i"1 + A**). (Observe that A^H^/A^ is a 

free module over A^/HpA13 of rank 1 with basis h^1 + A13.) In Section 1 3 we 

modify our choices by suitable units to get the nice constants of the theorem 

above. Section 1 1 contains preliminary calculations. 
Let us discuss the contents of the Sections 1 1 and 1 2 in more détail. Let 

us fix a regular orbit fi, an arbitrary orbit T and let L be the simple finite 
dimensional module used in the construction of T = as in 1 0 . 2 . For À G fi 
and fi = Àr we may choose f£ = fx: ZA(fi) —> T Z ^ ( À ) such tha t it takes 
the standard generator to pi(e®v\) where is the standard generator of 
Z A ( A ) and e is a nonzero vector in L^-\. Similarily, we can choose fj^£ = 
so tha t it takes to pr(e ' ® v^\) where e' G L^-^x = L30^_X). Now 
the corresponding t[f\,f(3\\] resp. 0[f\ifp\\] dépends on e and e'; dénote it 
for the moment by ^ [ / / , A,e,e '] . Both fi — À and sp(fi — À) are extremal 
weights of L; so there is an integer r > 0 and an élément a G k, a ^ 0 
with e' = aE^e or e' = ( — l)raE^e. (The term (—l)r will simplify some 

formulas.) Now ^ [ / / , À, e, e'] will dépend only on a; dénote it by t^[/i,À,a]. 
(Actually, it dépends also on the choice of the root vectors E±p.) Later on 
we shall choose a as follows: If e is part of a canonical basis of L, then so is 

e1 (up to sign). For this choice we shall write [//, À] instead of tP[fi, À, a]. 
Suppose tha t we have a third W^-orbit T' such tha t there is for ail u G Y 

a unique cjp' G T' in the closure of the facet of u. We have then translation 
functors also from Y to Yf and from fi to T'. We can consider t@[u, /i,a'] and 
tP[u, À, aft] where u — fi?» for ail a', a" and then compare tP[u, fi, a1] o^[/i, À, a] 
to t@[u, À, a"]. This is done in 1 2 . 1 1 and then specialized to a comparison of 
<o fA 0 *o I/*' A] with t%[v, A] in 1 2 . 1 2 . Using Y' with u + p G pX — so tha t 
t$[v,\] takes values in A^H^/A13 — we can make our preliminary choice 
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eg(A) for e^(A) and compute £Q[P, A]eo(A) for ail À. 
In our calculations we have to work with translation functors not just 

over A between W^-orbits, but also over A13 where we work with orbits for 
Wptp = < sp,rp | r G Z > . Let us disregard this complication for the purposes 
of this survey. 

As mentioned above, we have to find explicitly a & G # with 

tp[v, /i, af] o ^ [ p , A, a] = btp[v, A, a"]. 

(Of course, b is determined only modulo HpA13; our choice of b within its 
coset will have particularly nice properties.) If f3 is a simple root, then one 
can evaluate thèse maps (and détermine b) using the explicit description of 
the extensions in 8.1. If (3 is not simple, then choose w G W such tha t w~l(3 
is simple. We can then work with the positive system w(R+) and have an 
explicit description of the extensions. However, they involve new "standard" 
generators. For example, for Z^{X) we no longer work with v\, but with 
a vector vx of weight A + (p — l)(wp — p). We use then an isomorphism 

f% : Z?(p) TZP(X) with f%(v%) = p r ( e ® s i m i l a r l y for / 3 | A. Dénote 

the t[f\,fft\] resp. 9[f\,fp\\] corresponding to and f%x by ^,u,[p,A,a] 

with a as above. We can then evaluate ^,u;[//,A,a] on our extensions (12.5 

and 12.7), hence find bw G A^ with 

t^w[v, p , a'] o t^w[fi, A, a] = bw t^w[v, A, a"]. 

Now we have to détermine bwb~x. This requires lengthy explicit calculations 
tha t are carried out in Section 11. What we need is the formula 11.10(6). 
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11 . Translat ions in Rank 1 S i tuat ions 

11 .1 . Fix f3 G Set d = dp. Throughout this section we shall assume 
that we are in one of the following two cases: 

(A) We consider a £0-a lgebra A and arbitrary À, fi G X. We apply the setup 
of 7.4/5 with W9 = {1}, Q = {À}, and T = {/i}. 

(B) We consider a U^-algebra A and set W equal to the group generated by 
ail sp^p with r G Z. Let À , / / G l such that fi is in the closure of the facet of 
A. We apply the setup of 7.4/5 with this W, with Q = W'.X and T = W .fi. 

We set T = TQ m both situations. It involves the tensor product with 
a module in Ck with extremal weight /i — À. Dénote this module by L and 
choose a basis e of the weight space L^-\. For the sake of easy référence let 
us write down in the quantum case some rank one formulas for the action on 
e. They follow easily from the so-called Kac commutation formula, cf. [Lu7], 
6.5(a2). We have for (fi - A,/3V) > 0 

E(r)E(r+s)e =DDS (u-\,0SV)-8 

r d 

and for ( A - ^ , / 3 v ) > 0 

E(r)E(r+s)e = E(s)e ( dl + ;xw+ ks) 

r d 

Furthermore 

i i > 4 î ' ) e = Cd(<"-A^V)+2i)40e and KfiE%e = ^(»-^}-2i)EW e 

11.2 . Recall the notation UJ(W) = eu + (p — l)(wp — p) for LU G X and w G W 
from 4.7(4). We know by 4.7(5) that the UJ(W) weight space of ZA(u) is free 
of rank 1 over A (for ail v and w); choose a generator v%. Write = v^. 
We have ZA{^) ~ ZB{U) ®B A . We can and shall assume that the v™ arise 
from corresponding éléments over B. 
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The discussion in 7.5 and our assumptions imply that TZA(X) is gener­
ated by pr(e (g) vx) where pr = p r r . More precisely, there is an isomorphism 

/e : ZA(fi) TZA(X) = pr(X ® ZA{\)) with fe(v^ = pr(e ® i;A). (1) 

Let G VF with w 1/3 > 0. Dénote the standard generator of Z%(\(w)) 
(of weight X(w)) by î;a; define v'^ analogously. We have by 5.14 an isomor­
phism ZA{\) Z%(\(w)) with vx i—• vx; similarly for /i. We get from 7.11 
an isomorphism 

ZKvH) ^ TZJ{\(w)) with v'p \-> pr(e ® ?;A), 

hence an isomorphism 

f:SSSSS :ZA(p)^TZA(X) with f?(v%) = pr(e ® v\°). (2) 

Of course, /e and differ by a factor that is a unit in A. 
In the situation (A) we have 

TZA(\)~(TZBt(\)) ®B* A, 

cf. 7.5(2), and the maps / e , f™ arise from the corresponding maps over 
In the situation (B) we have an analogous resuit with B0 replaced by B@. 
Furthermore, if we are in the situation (B) with A = 2?^, then we can extend 
scalars to S0 and get into a situation (A). Using constructions of this type, 
we can usually restrict to the case A = B® in our calculations in this section. 

11 .3 . Consider w e W such that w"1 (3 is a simple root. The X(w) — i/3 

weight space of ZA(X) ~ Z™(\(w)) is spanned by E^vx for 0 < i < p, and 

is zéro for any other i. Our assumption on w implies: 

(X(w),0v) = (A + p - wp, (3V) = (X + p, f3v) - 1 (mod p) 

and 
(X(w) + wp,3v) = (X + p,/3v) ( m o d p ) . (1) 

The calculations in 5.5 imply in Case 1: 

Ù8 E_3 vx - Ù_8vx 
H3 + (\(w),f3v)-j 

i 

for 0 < i, j , i + j < p. Using (1) we rewrite this as 

VM(A,/3,e^(A)), if/3îA^A. Hd + (\ SSS+ P,Pv)-j-l 
i (2) 
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In Case 2 we get similarly 

M(A,/3,e^(A)), if/3îA^A. i>;(/i -1 

k=l 

i 
[Ke;(\ + p,3v)-j-k]. (3) 

If we take (2) and (3) for /i instead of À and apply then we get 

M(A,/3,e^(A)), if/3îA^A. i>;(/i + A/3v)-j- 'H0 + (n + p,/3v)-j-l 
l (4) 

resp. 

VM(A,/3,e^(A)), if/3îA^A. i>;(/i + A/3v)-j-fc].W 
2 

*=1 
ri>;(/i + A / 3 v ) - j - f c ] . (5) 

The fi(w) — i(3 weight space of TZA(X) ~ ZA(H) is spanned by E^ppi(e®v%) 
for 0 < i < p . So there are for ail integers i, j with 0 < i, j < p éléments 
/s, E A with 

V*{E%e ®SSSSS= ̂ _Ji)pr(e ® <)« (6) 

resp. with 
M(A,/3,e^(A)), if/3îA^A. i>;(/i + A/3v)-j-SSS (7) 

Here the right hand side is to be interpreted as 0 if i + j > p resp. if j — i < 0. 

In 11.5, 11.6, and 11.7 we shall compute K or K1 in certain situations. 
Here 11.5 and 11.7 will be auxiliary results needed to establish 11.6. In 11.8 
we shall then state two spécial cases of 11.6 that will be applied in 12.3 to 
evaluate our translation functors on extensions. The formula in 11.5 will be 
usëd again to prove Proposition 11.10, the main resuit of this section. 

11 .4 . We fix (until 11.8) an élément w G W with a = w~l(3 simple. In Case 
2 we shall choose Ep = Tw(Ea) and E-p = Tw(Fa). (Nothing will change, if 
we multiply Ep by a unit and E-p by the inverse of that unit.) In Case 2 the 
coproduct of Ep has the form 

A(Ep) = Ep ® 1 + Kp ® Ep H 
i 

di +dkl e; 

where u\ is a weight vector of weight say 7 ; > 0 and where is a weight 
vector of weight (3 — ji > 0 and where w~xji > 0 and w~1{(3 — ji) < 0 for ail 
i. This follows from C.5. We have also, cf. C.6, 

A(E-p) = E.p ® K71 + l®E-p + 
i 

, Vi ® V• 
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where v[ has weight say j[ < 0 and where Vi has weight — (3 — 7- < 0 with 
w"1^ > 0 and w_1(- /3 - 7J) < 0 for ail L 

If w"1^ > 0 and if w _ 1 7 7e jw~l(3 for ail j > 0, then \{w) — i(3 + y is 
not a weight of Zw(X(w)) (for any i > 0). This implies uE^v^ = 0 for ail 
i > 0 and for any w of weight 7 . If 0 < 7 < /3 or if 0 > 7 > — f3, then clearly 
iy""17 ̂  jw'1^. So we see tha t in Case 2 for ail ef € L 

Efi(ef ® ^ v ? ) = ( ^ ® 1 + i ï> ® ^ ) ( e ' ® J ^ t t f ) (1) 

and 
E-fi(e' <g> £ L > ? ) = ® A 7 1 + 1 ® E-f,)(e' 0 £ L > ? ) - (2) 

11.5 . L e m m a : We have 

pr(e ® E%l)vl) = £ W ( e ® (1) 

where K is equal to 1 if (fi — A,/3V) < 0, arad eçiiaZ 

M(. i>;(/i + A/3v)-j-
Ha 4- n. Bv\ 

resp. A^A. i>;(/i + A/3v 
M(A,;(/i + A/3v)-j-

[A>;(A + p,/?v)] 

if (fi — A,/3V) > 0 in Case 1 resp. in Case 2. 

Proof: We know by 11.3 that there is a n G A such tha t (1) holds. If 
(fi - A,/3V) < 0, then E-pe = 0, and — using 11.4(2) in Case 2 — 

£ i V V ( e ® O = p r ( E ^ ~ l \ e ® < ) ) = pr(e ® l ^ T 1 ^ ) 

and K = 1. 
Suppose now that (// — A,/3V) > 0. Then = 0. We get in Case 1 

Ey'Me ® E%l)vl) = Vr{E*f\e ® E %1]v^)) = W(e® E"~lE%l)vwx). 

We have by 11.3(2) 

&Q £j_q VX — VX 
v-2 

j=0 

(H« + (\ + o.3v) - 1 - j) 

= < ( ^ + (A + p,/3v>r1 
p-i 

dreb 
(Hfi+j) 
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and similarly by 11.3(4) 

Ef'Esssss^'Me ® O = pr(e ® < ) ( f l > + (/* + />, / H ) " 

dv 

J=0 

x +d+ 4d 

The claim follows by plugging thèse formulas into 

pr(e ® ^ s d d d " ^ V " ? ) = £ r l £ - 7 P r ( g ® 

In Case 2 we get first of ail — using 11.4(1) — 

M(A,/3,e^(A)), if/3îA^A. i>;(/i + A/3v)-j- ksqklsd 

= pr(E ® E J G - 1 ^ 1 ^ ) C ( ' " 1 ) < / , " A , / , V > ' ' . 

Furthermore, 

&p ^-a v\ — A 

P-2 

dbrd 
[ A > ; ( A W , / 3 v ) - i ] 

= D D D D ( A + p,/3v)]"1 

dvr 

j=0 

[Kp'Jl 

There is a similar formula for v™. The claim follows using (p = Ç • 

Remark: Using the notations introduced in the appendix (A.2 and A. 12) we 
can rewrite the formula as 

K = d ( A , ^ , / 3 ) - 1 G ( A - / i ) . ( 2 ) 

(Recall tha t in Case 1 ail £ terms are equal to 1.) 

11 .6 . While in Case 1 a power (Ep (g) 1 + 1 ® Ep)r of A(Ep) is simply given 
by the binomial theorem, things are more complicated in Case 2. One can 
show by induction on R, cf. [Lu7], 1.3: 

(Ep ® 1 + Kp ® Ep)r 
ds+d1 

r 

3=0 
cj(r-j)dKiE(rj) ®E{J\ ( i ) 

L e m m a : a) If 0 < r = (/j, — A,/3V) < p, then for ail i with 0 < i < p — r 

p r ( £ I R ] E ® E%v^) = E(^r)pv(e ® ( 2 ) 

where 

d+d1r 
(R + iV.Ul)-1 n L i (H* + (H + P, Pv) - j)'1, in CASE 1; 

. [r+tfMd)-1 n ; = i [ ^ > ; ( M + p , n - . » ca se 2 . 

137 



H.H. ANDERSEN, J.GJANTZEN, W. SOERGEL 

b) If 0 < r = (À — ^, (3V) <p, then for ail i with r < i < p 

p r ( 4 r ) e ® E%v?) = £ & r ) p r ( e ® WWWW (3) 

where 
D+D4R ( - l ) r , m Case 1; 

( _ l ) ^ r ( i - ( A + p , ^ » ^ - r 5 in Cage 2 

Proof: a) We axe dealing with a spécial case of 11.3(6). So we know tha t 

there is some K{ G A satisfying (2). Apply E^+^ to both sides. We have 

Ep^E^e = 0 for j > r and E^E^e = e, so we get on the left hand side in 
Case 1 

M(A,/3,e^(A)), if/3îA^A. i>;(/i + A/3 r-f-i 

j=0 

pr(EyE^e®E(;+t-j)E%v?) DDDD 

= W{E^E(:le®EfE%vl) WWW 

= pr(e ® v™) 
Hâ + (\ + p,3v)-l 

i 

(using 11.3(2) for the last step), and in Case 2 

EÏ+i)ME$e®E%vï) WWW 

B 
r+i 

j=0 

C-Kr+i~j)d (Kr+i-JE(J)E(r) WWW E[r+i-j)xxxx^ 

M(A,/3,e^(A)), if/3îA^A. i>;(/i + A/°°) 

= pr(e®t;r)Ci(<''-A^V>-r)<,(W!i)-1 
dr 

d+d14 

M(A,/3,e^(A)), if/3îA^A. i> 

using now 11.3(3). We use 11.3(4),(5) to evaluate the effect of E^r+^ on the 

right hand side of (2); we obtain in Case 1 

Kl = 
HR + (\ + O, 3v)-l 

i 
'H0 + (u + p,8v)-l 

r + i 

- i 

and in Case 2 

d+d4 [r + .IL 
d+d4 

i 

j=i 

M(i>;(/i + A/3v)-j-
ddrd 

d+d4 

' [ ^ ; ( / i + p ^ v ) - i ] - 1 . 
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Using (/i + />,/3v) = (A + p,(3v) + r one rewrites ni and gets the claim in the 
lemma. 

b) We are dealing with a spécial case of 11.3(7). So we know tha t there 

is some K\ G A satisfying (3). Apply E^~r^ to both sides. Now EpE^e = 0, 

so the left hand side yields in Case 1 

E(i-r)E(i-r)MSSSSSSSe ^ <} = pr(e ^ _ SSSSDr^ylz ze 
Ha + (\ + P,(3v)SSSS-^ 

i — r 

using 11.3(2), and in Case 2 

E(i-r)E(i-r)MSSSSSSSe ^ <} = pr(e ^SSSSSSSS r^yl <} = pr(e ^ _ r^yl 

([« ' -r l l r )-1 
2 —r 

brd 

A>;(A + / > , / 3 v ) - r ~ j ] 

using 11.3(3). When we apply E1^ ^ to the right hand side of (3), then the 

following terms occur: In Case 1 

E{;-r)E{l-r\v{e®v^) = W(e®v^) 
H3 + (p + p , n - l 

i — r 

and in Case 2 

E(i-r)E(i-r)Me ^ <} = pr(e ^ SDSS S_ r^yl 
i — r 

dvr 

[ A > ; ^ + /> , /3v>- j ] . 

Since sss d/3V) = (A+/>, /3V) —r, we can cancel binomial terms resp. products. 
We get 

pr(e ® v%)Ki = 
p r ( 4 r ) e ® ^ > ^ ) ; S S S S 

p r ( £ l e <g> ELriv?)Cr('"r)d, 

in Case 1; 

in Case 2. 

Now the claim will follow if we can show that (in Case 1 resp. Case 2) 

ME{I]e®EDDDD^) = XD S 
( - l ) r p r ( e ® < ) , S C D D 
( - l ) r P r ( e ® ^)(r(r-{A+^v»d/ir--r_ (4) 

That is the spécial case j = r of the following lemma. 
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11.7 . L e m m a : If 0 < r = (À - /i, /3V) < p, then for ail j with 0 < j < r 

Vx{Efe®E(»vl) =SSS 

E(i-r)E(i-r)Me ^ 3 

( - l ) ' p r ( e ® < ) 
dd 

rdvr 

E(i-r)E(iSSSS-r)Me (1) 

m Case 1 res», m Case 2. 

Proof: Since //(w) + /? is not a weight of TZ^(À) ~ Z^( / / (w)) , we have for ail 
i > 0: 

p r ( 4 i + 1 ) e ® ^ ] < ) = 0. 

Apply to this équation. We get in Case 1 

(r - j ) p r ( 4 j ) e ®WWWWW + ( j + l )p r (£#+1)e ®dddddddddd= 0, 

and in Case 2 — using 11.4(2) — 

W{ESSSSfe®E%v^) 
\r - jh 

£«A+p,j9v)-l-2i)(i 
/ ^ - 1 + p r ( 4 + 1 ) e ® ^ + 1 ) < ) L 7 - + l]d = 0. 

We can rewrite this as 

p r ( M i + 1 ) e ® ^ + 1 ) < ) =dddrx r -j 

I + i 
r ( 4 j ) e ® ^ < ) , 

resp. 

Vx{ESSSS^e®E^X)v^) = -Vx{E^e®E%vl) 
x+4r+dr 

[I + i]d 
^-((A-fp,^v>-l -2i )^- l< 

Now the claim follows by induction. 

11.8 . Let us state explicitly one spécial case of Lemma 11.6. Let m , n be 
the integers with 0 < n, m < p such that 

(À + p, /3V) = n (mod p) and (ji + /3V) = m (mod p) . (1) 

Suppose tha t 
(/i — A,/3V) — m — n. (2) 

This assumption is satisfied, if we are in the situation (B) with \x in the lower 
closure (cf. 6.8) of the facet of À for W . 

We get then: If m > n, then 

ME(Z~n)e ® E^lvl) = E(^>pT(e ® V%)K 
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with 

K = 
mUnl)-1 T]?-n(H3 + m - j ) " 1 , in Case 1; 

E(i-r)E(i-r)Me m — n 
.j=l 

E(i-r)E(i-r)Me in Case 2. 
(3) 

If m < n, then 

m(Ean-m,e ® ETlv?) = E^Me ® < V 

with 

K' = 

(_l)n-m in Case 1; 

{-l)n-mK-(n-m\ in Case 2. (4) 

11 .9 . Consider a third weight v G X. If we are in the situation (B), assume 
that v is in the closure of the facet of fi for W. We shall write quite generally 
pr instead of pvw'.u whenever it is clear which Wf orbit is to be taken. 

We can apply the construction of the preceding subsections to (//, v) and 

to (A,z/) instead of (A,/i). We have translation functors Tf = T^,*^ and 

T" = Tyy^x- They are constructed using modules V and L", and we choose 
nonzero vectors e' G L'v_ and e" G L"_x. There are isomorphisms 

fe, : zA{v) rZA(fi) with fe,(v„) = pr(e ' ® ^ ) 

and 
/e// : Za(z/) JT_> T"ZA(A) with /C„(V|,) = pr(e" ® vx). 

Then 
Q = Qe.e'.e" = fe" O f,1 O (T'f.) 1 (1) 

is an isomorphism 

g : T'TZA{\) T"ZA{\) with g(pt(e' ® pr(e ® wA))) = pr(e" ® «A). (2) 

It is obviously independent of the choice of v\. 

Let w G W with w */3 > 0. We get then as in 11.2(2) isomorphisms f™ 
and ffî from ZA{v) to T'ZA(u) resp. to T"ZA(\) with 

/ e " « ) = p r ( e ' ® < ) resp. / e " « ) = p r ( e " ® < ) . 

Then 
E(i-r)E(i-r)Me ^ <} = pr(e sses + SHJ +DSHE 

(3) 

is an isomorphism 

gw : r ' T Z ^ ( A ) T " ^ ( A ) with 0œ(pr(e' ® pr(e ® < ) ) ) = pr (e" ® < ) 
/ (4) 

Both T'TZA(\) and T"ZA{\) are isomorphic to ZA(i/), so g and «j*0 differ by 
a unit in A. 
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11 .10 . Keep the assumptions and notations from 11.9. We shall use the 
notations cw and Çw introduced in A.7 and A. 14. 

P r o p o s i t i o n : We have 

#(pr(e ' ® pr(e ® v™))) = pr(e" ® v™)cw{y, fi, \ ) (w(v, fi, A). 

Proof: The argument at the end of 11.2 shows that we may assume A = . 
We use induction on the length of w. The case w = 1 is trivial. It is enough 
to prove the following: Let w e W and a a simple root with 7 = > 0. If 
the formula holds for w, then it hold for wsa. 

For such w and a we have À(wsa) = X(w) — (p — 1 ) 7 and we can take 

vwsa _ JÇ(J--I)VW^ since the claim is independent of the choice of v™3a. We 

get from Lemma 11.5 constants K, K', and such tha t 

pr(e ® ) = pr(e ® S ^ t t f ) = E{I~l)Vi(e ® V%)K,SSSSSSS(1) 

pr(e ' ® E < ? - % » ) = sss dw ddFDGD® V™)K',SSS SS(2) 

and 

pr(e" ® £ i p 7 - 1 ) 0 = ^îf-^prCe" ®SSSSSSSSSSSSSSSSSSSSSSSSSS(3) 

Formula 11.5(2) and the définitions A.6(l) and A.12(3) show tha t 

kk'(k")_1 = c7(î/, fi, X)Ci(v, fi, A ) . S D S D ( 4 ) 

We can replace v™ above by its multiple pr(e ® v%) in the équation involving 
K'. We get now — writing cw = cw(v, /x, A) and (W = Çw(u, //, A) — 

S(pr(e' ® pr(e ® E ^ v ? ) ) ) = E ^ g ( p v ( e ' ® pr(e ® 

by (1) and (2) 

= JS?îf7_1)pr(e" ® V%))KK'CWÇW 

by induction 

= pr(e" ® f?if-1)OKK'cœC«0(«")"1 

by (3). 

Now apply (4) and use that cW3a = cwc^ and (W9a = (wCt since 

{a ' > 0 | (wsa)~ V < 0} = {a ' > 0 | w~ V < 0} U {wa = 7 } . 

Remark: Comparing this resuit to 11.9(4) we see that 

g = cw(v, fi, \ ) (w(v, fi, \ ) g w - S S S S S S S S S S S S S S ( 5 ) 

There are units a, a', a" G A with 

f ? = afe, f ï = a'fel, ft,=a"fe„. 

Then 
a a ' a " - 1 = c„,(i/, /x, A ) ^ ! / , M, A). (6) 
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12. Translat ions of Extens ions 

12 .1 . We shall assume throughout this section that we are in the situation 
(B) from Section 11. We shall keep the gênerai assumptions from tha t section. 
In particular, we fix a positive root (3 G R+ and assume tha t A is a 5^-a lgebra . 
Assume in addition that A is an intégral domain with fraction field K and 
that the image of Hp in A is nonzero. 

In Case 1 we have for ail x G B13 that x = spx (mod Hp). In Case 2 
we get instead x = spx (mod Kp — 1). However, the Ext groups as in 8.6 
involve congruences modulo Hp = [A^;0]. We shall have to get congruences 
modulo Hp from congruences modulo Kp — 1. Therefore we shall assume from 
12.9 on tha t A is an algebra over B@[(Kp + l ) - 1 ] . Then we have spx = x 
(mod HpA) for ail x G B$ in both cases. 

We fix w G W with w_1(3 simple and suppose that E±p = TwE±w-i p. 
(There are a few statements that are independent of w or where w~l(3 > 0 
suffices.) 

12.2 . For any weight to £ X there is a unique integer r with 0 < r < p such 
that (ou + p, (3V) = p — r (mod p). Recall from 9.3 that we then set 

(3îu; = uj + rf3. (1) 

We have f3*\u) = sp^.uj for some / G Z; obviously 

(3ÎOJ = (J <=> (cu + p,(3v) = 0 (mod p) . (2) 

As in Section 11 we consider weight s À, p G X such tha t p is in the closure 
of the facet of À for W1 = WpiP — < sp,rp | r G Z > . So /? î À = À implies 
(3 ] p = /I . We shall make the stronger assumption that p is in the upper 
closure (cf. 6.8) of the facet of À. 

Let m, n be the integers with 0 < n, m < p and 

(À + p,(3w) = p - n (mod p) and (p + p, (3W) = p - m ( m o d p ) , 

i.e., with 
(3]\ = \ + n(3 and (3] p = p + m(3. 
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Our assumption on the facets implies that 

(/i — À, /3V) = n — m. 

We use the notations T, L, e, / e , and /™ as in 11.1/2. We have 

/ 3 î / / - / n À = DD - À ) . 

Dénote by ë a basis élément of L3f3^_\y We have analogously to fe an 
isomorphism 

h : ZA(3U) ^ TZA(3Î\) = ME ® ^ ( / ? î A)) (3) 

with fëivffîn) = pr(e ® V/^A)- Similarly, there is an isomorphism 

:ZA{8U)^ +DKR+ ? T Z A { 3 ] \ ) w i t h / - - ( ^ ) = p r ( ë ® ^ A ) . (4) 

12 .3 . There is a nonzero élément G k such thatD D 

e = 
aXfl(-ir-™E%-m)e, 

rnJ? +DJU(m — n) 

if n > m: 

if m > n. 
( i ) 

(Note tha t for n = m both équations say ë = ox^e.) 
The formulas 11.3(6), (7) applied to j3 f À and (3] fi instead of À and ji 

show tha t there is /ç(e,ë) G A with 

pr(e ® E^A) = EMpi(ë® t#A)«(e,ë) . (2) 

L e m m a : We have 

K(e,e) = aA/Jd(p,À,/3) 
(mod if#), m Case 1; 
(mod ifa — 1), in Case 2. 

Proof: Let us assume that a /̂x = 1- (The gênerai case is an obvious consé­
quence.) Abbreviate K = K(e,ë). We want to apply the formulas in 11.8 to 
/31 À, /3 î //, ê instead of À, /x, e. Note that our présent n and m have exactly 
the meaning of n and m in 11.8 for j3jÀ and /3 î /i instead of À and ^ . Note 
also tha t is in the lower closure of the facet of /3 |À for W. 

If m < n, then e = ( - l )n~m£^n_m^ë. So in this case our k is the K! 

from 11.8(4) multiplied by ( - l ) n _ m . So it is equal to 1 in Case 1, to a power 

of Kp1 in Case 2. Since obviously KJ1 = 1 (mod Kp — 1), we have K = 1 
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in both cases. On the other hand, we have 0 < n - r a = (/i — A,/3V), hence 

P(n - À) = 0 and d(p, \,(3) = 1. 

Suppose now that m > n. We have then e = E^~n^ë. So 11.8(3) implies 

K = 
mUnl)-1 ïï?-n(Ha + m - i ) - \ 

E(i-r)E(i-r)Me ^ <} = pr(e ISKS 

We get in Case 1 

K = 
ml 

ni 

m — n 

D+D4 

m-j) 1 
m 

n 

—m 

—n 

Hd + (p + p,pv) 

Hp + (\ + p,pv) 
(mod H g). 

In Case 2 observe that 

[Ka-i] = 
K0Cd - K7\~id 

C ~~ c 
RD 

sid _ /• — id 

_ Ç-d 
= [i]d (mod Kp - 1 ) . 

This yields (modulo Kp — 1 ) 

n = 
D+B 

Md 

m — n 

j=i 
( [ m = S D V 

[m]d 

\n\d 

[-m]d 

[-n]d 

[K3;(p + p,3v)] 

[K3;{\ + p,n] 

Finally m > n implies /?(// — À) = 1. So the claim follows from the définition 
of d(p,\,(3),ci. A.2(l) ,(2). 

Remark: Note that (under our assumptions) the term d(/i, A,/3) is a unit 
in jB^ , hence in A. In the définition A . 2 ( 1 ) , ( 2 ) we can get a factor Hp 
resp. [Kp\ 0] only if (i | fi = fi. Since fi is in the upper closure of the facet of 
À, we get in tha t case (3(fi — À) = 0. 

12.4 . We can apply the theory from 8 . 1 - 4 to the positive System w(R+). 
Note tha t wp plays the rôle of p and that 

(u(w) + wp, /3V) = (u + p, f3y) (mod p) 

for ail LJ G X. 
Suppose that /3 | À ^ À. For each b G AH^1 set Yf(b) equal to the 

® A-submodule of Z/^(/3|À) © Z#(A) generated by and z\, where 

E(i-r)E(i-r)Me ^ <} =SKS 
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(For (3 simple and w = 1 our présent Y^(b) is the Y(b) from 8.1(4). We now 
emphasize the dependence on À by a subscript.) We have an exact séquence 

0 - ZA{3]\) —> Y?(b) — ZA(\) - 0 (1) 

where the first map is the obvious inclusion and where the second map takes 
z\ to v™. Dénote the class of (1) in its Ext group by y™(&). We know from 
Lemma 8.4 tha t y™ induces an isomorphism 

AHI'/A ExtUZA(X),ZA(3n)). 

If also p"\ fi ^ fi, then we define analogously Y™(b), involving m instead of n, 
and y» . 

12 .5 . Suppose that 3 f A ^ A and 3 î n ^ //. For any choice of isomor-
phisms / : ZA((i) ^ TZA{\) and / ' : ZA{3]n) TZA(3}\) we get an 
isomorphism 

*[/,/'] : ^UZA\),ZA(3SSSSSî\)) - E x t i ( Z ^ ( / i ) , Z A ( ^ î / i ) ) , 

cf. 7.7(5), (6) and 7.9. We define t[//,A,e,e] and tw[fi, A, e, e] as two spécial 
cases: 

A, C,ë] = *[SSS/e, fê] = (/e, ( /e)"1)* O T, (1) 

A, e , ë ] = t [ f ? , m S S S S = ( / « " . ( / r r 1 ) * ° r . (2) 

P r o p o s i t i o n : If 3 XX ^ À <md QXII±UL, then 

*w[Ai,A,c,c](vX,(6)) = » - (K ( c , ë )6 ) /or a// 6 G Alf* 1 

Proof: The exact séquence 

0 - T Z A ( / n A) — T I T O ) — • TZ^(A) - 0 

shows tha t TY™(b) is generated over (g) A by pr(e ® t^A), a generator of 
TZA(/3 î À), and pr(e ® z\), an inverse image of the generator pr(e ® vj7) of 
T Z A ( A ) . The isomorphism (arising from the inclusion) 

y«(fr) ® K — Z ^ ( / 3 | A) 0 Z*r(À) 

induces an isomorphism 

n 7 ( & ) ® # TZK{M\) e r z i r (À) . 
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Composing it with ( / ^ ) 1 © (f™) 1 we get an isomorphism 

TY?(b) ZK(8în) ©TZK((t) . 

It takes pr(e ® vîjU) to and — using 12.3(2) with K = «(e ,e) 

pr(e ® *A) = pr(e ® < ) + pr(e ® E ^ v ^ b 

= pr(e ® v%) + E(^pv(ë ® t#A)6« 

to + £ _ / J V ^ 6 k . We get thus an isom orphism 

/ : 2 1 7 ( 6 ) ^ S D D D D D 1 7 ( 6 « ) 

such that the diagram 

0 TZA(8]X) TY?(b) TZA(X) •0 

DKSKS D+DR DB4R 

o DBHJ+DRE S+DLR ZA(H) 0 

is commutative. The claim follows. 

12.6 . Consider the case where 31X =fi A and 3] ft = yu. We then set 

^ , A , e , ë ] : Extlc{ZA{X),ZA{31X)) - AH71 /A (1) 

equal to the isomorphism #[/e,/ë] from 8.13/14. Recall: We choose a repré­
sentative 

0 - ZA{3]X) ^ — ^ ( A ) - 0 (2) 

of a class f in the Ext group. There is a unique homomorphism j1 : Z^(À) -
with j o jf' = iî"^ • id. We apply T to (2) and get an exact séquence 

Q^TZA{8\X) 
Ti 

TY 
Tj 

TZA(X) - 0. (3) 

Both extrême modules in (3) are isomorphic to ZA(fi), so we can find a ho­
momorphism i1 : TY TZA(3 î A) with i' o Ti = id. Now / f 1 o i' o Tf o fe 
is an endomorphism of ZA(p), so there is a unique scalar a G i with 

/ f 1 o t ' o T / o / e = a i d . 

We set now 
t[fi,X,e,â}(Ç) = aH0-1 + A. (4) 

We define similarly tw\p, À, e, e] replacing fe and fe by f™ and 
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12.7 . L e m m a : Suppose that /? jÀ ^ À <md (3] p = /i. Ï7&en 

r [ / i ,A ,e , ë ] (y^ (6 ) ) = - ic(e ,ê)6 + A /or ail b e AH^1. 

Proof: Consider the exact séquence 12.4(1). We use the notations jf and i' 
as in 12.6. We have to have 

j ' « ) = vXHfi = zxHp - E^v^bHp. 

The two generators p r ( ë ® v^x) and pr(e ® z\) of TYx(b) are highest weight 

vectors (with respect to wR+) of the same weight /JL(W). SO we can take for 
if the map with pr(e ® z\) I—• 0 and pr(ë ® i;^A) I—• pr(ë ® v^x). Then 

i , o r i , o / - ( ^ ) = i ' o r j , ( p r ( e ® < ) ) 

= i '(pr(e ® (*Aff, - E^v%xbHp))) 

= i '(pr(e ® z\))Hp - z'(pr(e ® E^v^bHp)) 

= -pi(ë ® VfîX)K(e,ë)bHi3 

by 12.3(2) where m = 0 since = /i. The claim follows. 

12.8 . We define À,e,ë] and £™[/i,À,e,ë] in the last missing case, i.e., 
when (3] JJL = ji and /3|À = À, by 

t\M, A,e,ë] = A,e,ë] = o ^ i d : AH^/A - AHJ1/A. (1) 

Observe tha t in this case m = n = 0 and ë = aA/xe. 

It is easy to check (cf. 7.7(7) and 8.13(6)) that one has 

t[ji, À, 6e, 6ë] = À, e, ë] for ail b G fc, 6 7̂  0 

in ail three cases, 12.5(1), 12.6(4), and (1) above; similarly for tw. Since e is 
unique up to a scalar, the map t[fi, À, e,ë] (resp. tw[fi, À, e,ë]) dépends only on 

and we shall write 

<[/i,A,aAfl] = t[/ i ,A,e,ë], (2) 

similarly for tf™. 
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12.9 . Suppose from now on in Case 2 that A is a B^[{Kp + algebra. 
Fix for the next subsections (until 12.14) a weight v G X in the upper 

closure of the facet of /i with respect to W. We can apply the constructions, 
notations, and results in 12.2-12.8 to (/i, v) and (À, i/) instead of (A,//). The 
calculations to follow will involve the terms ca, cw, (a, (w introduced in 
Appendix A, cf. A.6, A.7, A.12, A.14. 

Propos i t i on : We have 

tw[v, A, a\„] = a^axfia^c^u, /i, X)tw[v, //, a^]tw[fi, A, aA/x]. 

Proof: Set K = d(^i,A,/3). If (31 A ^ A, /31 /i ^ û, then Proposition 12.5 and 
Lemma 12.3 imply tha t 

r [ M , A , a v ] y r ( 6 ) = 2 / ; « ^ ) 

for ail b G AH^1. (In Case 2 we have to use here and in the next case our 
assumption on A to replace in Lemma 12.3 the congruence modulo Kp — 1 by 
one modulo Hp.) If (3] A ^ A, f3] /i = //, then Lemma 12.7 and Lemma 12.3 
imply that 

tw[fi,\,aXlJ]yX(b) = -a^Kb + A. 

If, finally, (31A = A and /3 j // = //, then m = n = 0 and K = 1, so we get by 
the définition 12.8(1) 

A, aXfl](b + A) = a^nb + A. 

We get similar descriptions for the maps corresponding to the pairs (A, v) and 
(A,//). They yield 

tw[v, A, aXu] = c tw[v, /i, S +S S D+ DA, aXfi] 

where 

c = ax^a^axld(p, A, /3)_1 SSSSD /i, /3)_1 d{y, A, /?). 

Now the claim follows from A.6(2). 

12.10 . Recall tha t we assume that v is in the upper closure of the facet 
of /i and tha t \i is in the upper closure of the facet of A. This implies tha t 
there is one integer r with (3 | v = sp.v + pr(3 and (3 j ji — sp.ji + pr(3 and 
/?î A = s^.A + p r / 3 . So A.6(4), (5) imply for ail a e R: 

ca{(3]v,(3îii,(3]\) = sp(c3pa(v,fi,\)). (1) 

L e m m a : Each ca(v,{i,\) and each ca(/?f z/,/?j/i,/3f A) a wrutf m i?^. 
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Proof: The claim is obvious for a ^ ±(3. Using A.6(3) and (1) one restricts 
to the case cp = cp{y, / / , A ) . We have to show that ail terms equal to Hp 
cancel (where Hp = [Kp;0] in Case 2). We can assume tha t (is + p,/3v) = rp 
for some integer r , since otherwise no Hp will occur. If (ji + /3V) ^ 0 
(mod p) , then Hp occurs with exponent f3(fi — v) — (3(X — v) in cp. Under our 
gênerai assumption (fi + />,/3v) and (À + p,/3v) lie strictly between (r - l)p 
and rp. This implies /?(// — v) = /?(À - i/). If (// + p,(3v) = 0 (mod p) and 
(À+/>,/3v) =̂ 0 (mod p) , then ffy occurs with exponent (3(X — fi) — ,d(X — v) in 
cp. This exponent is 0, since (/i,/3v) = (^,/3v). If finally also (À + />,/3V) = 0 
(mod p), then (p,/3v) = (A,/3V), and cp = 1. 

Remark: Lemma A. 10 and A.6(5) imply that modulo HpA 

cuj(I / , / / ,A)cw;( /3ÎÏ /5/3Î / / , /3ÎA)"1 = c3j3 (v, ^, \)cp(v, /i, À ) - 1 . (2) 

12 .11 . Propos i t i on : We have 

t[v, \,a\u\ = 
À] = t[fi, X^ax^] DKLD 

« A , c 4 / n ^ / n ^ , / n A ) 
-c3/3 (i/, /i, à)*[ï/, a ^ J ^ / i , A, aXli]. 

Proof: There are units a,b € A with 

f: = ah and W D D = 6/ê 

and one has then 
t[fj,\,aXfi] = a 1btw[/j,\,aXfJl]. 

This is obvious except possibly in the case where /3 j A = A and j3 î /i = /i, 
where the maps are defined in 12.8(1). But in that case fe = aXflfe, similarly 
for fw, hence a = b. The formula follows. 

Similarly, there are units a', bf and a", b" having analogous properties for 
(z/, n) and (i/, A) instead of (/i, A). Proposition 12.9 implies now 

<[i/,À,aA„] = an"1bf,tw[u^ A, a ^ J = a a V ' - 1 6 - 1 r 1 6 , , c t k / / , a / i I / W / i , A , a A J 

where 
c = axlaXfla^cp(u, /i, A). 

Now 11.10(6) implies 

aa!(a") 1 = CW(V,II,\)(W(V,IJI,\). 

If we apply 11.10(6) to / 3 | A, /3j / i , and /3|z/, we get similarly 

^ ( b " ) - 1 = c^(/3îz/ , /3î / i , /3îA)Cw;(/3î^/3î/ i , /3îA). 

The factors in thèse two products together with the cp te rm in c yield by 
12.10(2) the c3/3 t e rm in the proposition. Now the claim is obvious. 
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12 .12 . We are now going to make a spécifie choice of ax^ and shall write 

£q [/i, À] = t[fi, X^ax^] for this choice. We set ax^i = g'a/^A/x with 

aA/z = 

7>0,s/37<0, 
u;_17<0 

Up-xy1 

7>O,S07<O, 
f^P,w l7>0 

C7(A - /*)> (D 

using the notation from A. 12, and 

eL = ( " 1 
À] = t[fi, X^ax^] bb?W SLS° (2) 

using the notation from B.5. It should be noted that thèse éléments dépend 
not only on /?, A and /i, but also on the choice of the élément w e W with 
w~l(3 simple. 

Now A.12(3), (5) imply 

aA/ia^i/aAi/1 —SSSX DDS 

7>0,s/37<0, 
w-17<0 

C7(i/,/i,A) 1 

7>0,5/37<0, 
7^^,w;-17>0 

C 7 ( ^ , A ) , (3) 

and A. 14(2) yields 

= elViLd(w, n, s0)d(n, DLd(w, n, s0)d(n, +S DSK +D (4) 

We have by B.7(3) 

ep -

Y>0,s^7<0 

(_1n)(M-A)7V>7(M-A) 

7>0,a/37<0, 
À] = t[fi, X^ax^] 

À] = t[fi, X^ax^] (5) 

We get from this using the définitions in A.12(4) and A.14(1) 

bw eBUV E B X V + ZSP 5SB 5EUY 
(6) 

(Note that the factors from the second product in (5) cancel.) Now Proposi­
tion 12.11 implies: 

T h e o r e m : We have 

t$[v, A] = z8fi (A, /i, u)c9fi (i/, /i, À)*£[i/, A]. 
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Remarks: 1) Note tha t a'A/x is (in the notations from B.5) the specialization 

of v(/jl - A, /3 , w)'1 at v = C, cf. B.7(l) . So B.5(3) implies tha t a'Xft = = 1 
in case m = n. 

2) Remark 1 implies especially: If / 3 | A = A (and hence /3|fi = ^x), then 

I/-4? A] is the identity on AH^1 /A, cf. 12.8(1). In the situation of the theorem 

we get then 
c3p(i/,/i, A) = za/3(À,/i, v) (mod iï/?A), 

hence 
c3/3 (i/,/i, A) = ± 1 (mod ffyA). (7) 

This can be seen directly as follows. We may assume that A = BP resp. 
A = BP[(K8 + I )"1] , hence that H8 resp. Kp — 1 is a prime élément in A (or 
a unit in the cases excluded in 9.1). The formulas A.8(l) and A.6(5) show 
tha t 

8pc3fi(v,(j,,X) = ca/J(z/,/i, A ) " 1 , 

hence 

c3p (i/, //, A)2 = 1 (mod HpA). 

Now (7) follows, since A/HpA is a domain (or 0). 

12 .13 . Choose a générât or hp of the idéal AH p. Later on we shall want to 
work with différent choices than the obvious one (hp = Hp), since this will 
enable us to compare the quantum group case with the positive characteristic 
case. We allow some flexibility at this point so to simplify certain transition 
formulas later on. 

For each A E X there is an integer r with (r — l)p < (A + P,f3v) < rp. 
Since f3 is conjugate to a simple root, there is a weight ou E X with uj + p E pX 
such tha t (eu + p,/3v) = rp, i.e., such that eu is in the upper closure of the 
facet of A for Wf. So £Q[c<;,A] is defined; since it is an isomorphism, there is 

a unique élément e ^ ( A ) of E x t ^ ( Z ^ ( A ) , ZA(P î A) ) in case / 3 | A / A, resp. of 

AHô1 IA in case /3f A = A such that 

é[u>, A K ( A ) = etd(u, A, ss)hZl + A. (1] 

We claim tha t e% (A) is independent of the choice of u. Indeed, if u1 is another 

weight with u' + p E pX and (u/ + p,f3v) = rp, then e^tuJ = 1 = aw/w by 
Remark 1 in 12.12. Therefore 

^ [ , ' , A ] e f ( A ) = ^ [ , , , ' ] ^ [ , ' , A K ( A ) 

= 4 i ^ ( W , W \ A ) ^ [ W , A ] C Î ( A ) 

- ^ ̂ SLSSK?SKSS LSL DL 
d(tu,ujf,sp)d(ut,\,sp) 

d(uj,\,sp) 
XXX= elViLd(w, n, s0)d(n,) 

= e{„,d(J,\sp)h-1 +A 

since d(a/,u;, s3) = 1 by A.5.(2). 

152 



REPRESENTATIONS OF ALGEBRAIC GROUPS AND QUANTUM GROUPS 

L e m m a : We have for ail \, fi as in 12.2 

t^\M,\]4(X) = e{lld(p,X,8B)efiM. 

Proof: Choose u as above. Then u is also in the upper closure of the facet of 
\i for W1. We have 

[u, uW [a, Ae A = e ï ^ e ' c . , (u,\)~ t^u, A]< (A) 

= e lViLd(w, n, s0)d(n, A, arfhp1 + A 

= elViLd(w, n, s0)d(n, ld + kd or 

The claim follows from the injectivity of t$ [u, //]. 

12 .14 . Let X' e X and u € X. We identify ZA(X' + pu) with ZA(X') with 
the grading shifted by pv and get as in 9.13(4) an identification 

Extlc{ZA(X'),ZA{d]X')) * Ext^(ZA(A' +pv),ZA{ô\X' + pu)). (1) 

In the situation of 12.12(1), (2) we see that 

= elViLd(w, n, s0)d(n, and = elViLd(w, n,)àp 

This means that the isomorphism 

fx+pv : ZA(n+pv) TZA(X + pu) (2) 

used to construct t% [fi + pis, À + pu] is identified with the isomorphism 

/A : ZA(p) TZA(A) (3) 

used to construct <q[/j, A]. This implies (modulo our identifications) that 

tfo+pv,\ + pv] = t$\ji,\]. (4) 

In 12.13 we can take w + pu to construct e^(X + pu). We get 

e^JX'+ pu) = e^(X') (5) 

for ail À' and u m X. 
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1 2 . 1 5 . Suppose tha t (3 | À ^ À and (3 j p, ^ /i. Recall from 8.8 tha t 
Ext^(Z^(À), Z^(À +p(3)) is isomorphic to A/HpA, and tha t the cup product 

(A)eQ (/3 | À) générâtes this module over A. Dénote this cup product by 
e^'2(À). Analogous results hold for p, instead of À. The isomorphisms as in 
12.14(2), (3) for v = (3 induce a map 

^ 2 ^ A ] = ( / A , ( / A + ^ ) - 1 ) * O T (1) 

between thèse two Ext2 groups. This map is independent of the choice of the 
isomorphism f\ as long as we make the identifications as in 12.14 and choose 
f\+v3 equal to f\ modulo thèse identifications. 

L e m m a : We have t^2[a,X]e^2(X) = ( - l ) < A - ^ V > e ^ 2 ( u ) . 

Proof: Our maps are compatible with the cup product, so the left hand side in 
the lemma is equal to the product of t$ [/i, X]SQ (À) with [/?î/i, (3]X\e^(f3]X). 

By Lemma 12.13 this product is equal to ce^'2(/i) where 

c = £\n£0\\,i3\vd(ViA> 8P)d\Pî M, P î A, S / Î ) . 

We have ((3 î /i) - ((3 f À) = sp(fi — À), so B.5(4) implies easily tha t = 

(_1)<A -^ /?v>^a On the other hand, 

d(f3] n,(3]X,sp) = d(sp.n,sp.X,sp) = spd(fi,X,sp) 1 

= d(fi,X,sp) 1 (mod Hp) 

by A.8. So c = ( - 1 ) < a " / ^ > (mod Hp), and the claim follows. 
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13. A Spécifie Choice of Extens ions 

We assume in this section that A is a B-algebra tha t is an intégral do­
main such tha t ail Ha with a E R are nonzero in A. In Case 2 we assume 
additionally that ail Kp + 1 with (3 G R are units in A. We use the notations 
A0 and A13 (for ail j3 G as at the beginning of Section 9 and the notations 
Z0(À) and Z*(À) as in 9.2(1). 

For each (3 G R+ we fix an élément wp G W such that w^1 (3 is simple. 
The algebra A@ satisfies the assumptions of the case (B) in 11.1 and of Section 
12. We can apply the resuit s of Section 12 to A@ with w = wp. 

13 .1 . We suppose that we have fixed for ail a G i? an élément ha G A 
tha t générâtes the idéal AHa. So each H^h^ is a unit in A. We assume 
additionally that 

h-a = —ha for ail a E R (1) 

and that we can extend the action of W to A such that 
w(ha) = hwa for ail w G W, a E R (2) 

and such that 

a = sp(a) (mod hp) for ail a G A and (3 E R. (3) 

We assume that the e$ (A) from 12.13 have been constructed using this hg. 
We shall use the abbreviation 

[ka;n] = (Ha + (u,av))Ha1ha, in Case 1; 
[Ka: tu,av)\[Ka:0r1ha, in Case 2 (4) 

for ail n G X and a E R. We have obviously 

(/i, av ) = 0 (mod p) [ka: u] — ha. 

Using (1) and (2) one checks easily that (for ail a E R and fi G X) 

[k-a;[i] = - [ka;fi] (5) 
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and 
[kwa; W/J] = w[ka; p] for ail w £ W. (6) 

Using this notation we can rewrite the d(/i, A,a) from A.2 as 

d( / / ,À,a) = 
'[fca;// + p] 

[ka]X + p] 

x+ jhs+ d 

(7) 

13 .2 . Suppose that p is greater or equal to the Coxeter number of R. We 
can now choose a weight À in the interior of the "first" dominant alcove for 
WPJ i.e., with 

0 < (A + p,aw) < p for ail a € R+ 

We keep À fixed throughout Section 13 and set Q = Wv.\. 
We have (w(X + p), (3W) = (A + p, (w_1/3)v) for ail (3 e R and w G W. So 

we see by the choice of A that 

(3(w(X + p)) = l w~1f3<0. (1) 

We have (using the notation from A.7) 

d(w.X,w.(—p),S8) = 

A>0,3pa<0 

'[ka-w(X + p)Y 

ha 

a(w(\+p)) 

So (1) implies 

d(w.X, -p,sa) = 

OT>Q,sp A<0, 
w 1a<0 

[ka;w(X + p)] 

b+r 
(2) 

For any X' £ Q there are unique w G W and v G ZR with A' = w,X+pu; then 
set for ail 3 G R+: 

x+ lkd v+d e» . v - „ d(w.A, -P, SS)K{3), if y;"1/? > 0; 

£u,»\,-pd{WtX>-P>8fi)hfi> IÎW'SKO, 
(3) 

where 

«(/?) = 

a>0,5^ a<0, 
qlq < <ms< 0 

+sks+ jk 
(4) 

By (2) each 6^(A') is a unit in Set 

e'(A') = 6>(A')e£(A') for ail A' G (5) 

This élément is a basis of ExtJ (Z^(A') ,Z^( /3îA') ) . 
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13 .3 . For ail fi G X set 

^ = {aGi î | ( / i + /9,av) = 0 ( m o d p ) } . (1) 

The stabilizer of fi in Wp (for the dot action) is generated by ail s ^ ^ + p ^ v } 
with ot G Ry,. This is a reflection group with root System 

We call a W^-orbit T good if there are for each fi G Y an élément w G W 
and a subset E ' C S such that = w(ZE ' fl i?). It is enough to check this 
condition for one fi G T, since the i?^ for différent fi G T are conjugate under 
W. Clearly ail regular orbits are good since there R^ = 0 always. In Case 
1 ail Wp-orbits are good, if p is a good prime, cf. 2.7 in [Ja5]. Similarly, in 
Case 2 ail Wp-orbits are good, if ail prime divisors of p are good. 

Consider a weight fi in the closure of the alcove of À and set T = Wp.fi. 
Set R' = R^. We have 

0 < (fi + p, av ) < p for ail a. G , ot £ R', (2) 

since fi is in the closure of the alcove of À. For any À' G fi there is a unique 
fi' G T such that fi1 is in the closure of the alcove of À'; dénote this weight 
by Àp. If we write (uniquely) À' = w.X + pu with w E W and u G Zi î , then 
Ap = w.fi + pu. 

Let T be the translation functor from C^(fi) to CA(Y)> In order to prove 
our main resuit (13.4) on T we shah need (in 13.10) that Y is good. Let L be 
the simple module with extrême weight fi — À used in the construction of T. 
Choose for ail w G W a basis ew of Lw^_\) such that (in the notations of the 
appendix B) ew = P(wv~1)ev if v G W with v(fi — À) dominant. 

We have for any À' = w.X + pu G fi (with w e W and u G ZR) an 
isomorphism 

/ j , , : ZA(n') TZA(À') with / ; , ( V ) = p r ^ ® vA')> (3) 

where fi' = Àp = w.fi + pu. The /A, induce analogous maps over each A@ by 
extension of scalars. 

Let f3 G R+. If n = (// - A',/3V) > 0, then B.6 implies (cf. Remark 1 in 
12.12) tha t 

EKypew = (a'AV) 1e(À/ - n',P,wfi)ea0W. 

Similarly, if n = -(fi' - À',/3V) > 0, then 

Epew = ( « A V O ^ ( A ' - fif,P,W0)e3(3W. 

If / / is in the upper closure of the alcove of À' for WptP = < sp,rp \ r G Z > , 

then the map À'] is defined, see 12.5, 12.6, 12.8, 12.12. The formulas 
above and the choices in 12.12 imply by the définition in 12.3(1) tha t 

*o [/A A'] — ^[/A A',ew^e3(3W]. (4) 

If/3ÎA*' # /i', then ssssv A'] = ( / i „ ( / ^ v ) - 1 ) * ° ^ 
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13 .4 . Let Ti be the set of reflection hyperplanes for Wp. Each H G Ti has 
an équation of the form (v + />, 7 V ) = rp with r G Z and 7 G Then we set 
7 = a(H); furthermore, for any v G X we shall write v < H (resp. z/ > i î ) if 
and only if (z/ + p,a(H)v) < rp (resp. (1/ + p,a(H)v) > rp). For ail /3 G i î+ 
let WWW be the set of ail H e H with sda(H) < 0. For ail À' G fi and /3 G # + 
set 

(A') = Zs^w.X.w.fi.-

HEH(B) 

fi'eH,X'>H 

h-a(H) 

HC h B) 
u E H,;w c H 

h'1 
na{H) 

(1) 

where p! — Àp. 
Suppose that we have chosen for ail p! G T and ail j3 G i?+ a unit b^(p') 

in AA We can then set 

(A') = Zs^w.X.w.fi.-p^hfsCs^ (2) 

for ail p! and (3. This élément is again a basis of the corresponding Ext group 
resp. — for (3] p( = p! — of A^h~xjA^ = A^H^/A?. 

Suppose tha t we have chosen for ail À' G fi a unit ap(A') in A. We can 
then set 

fx1 = aT(\')f'\> • ZA(»') ^ TZA{\') (3) 

where y! = \'v. We get then maps 

t V , A'] = A' , ar(A')ew,ar(/3îV)ea<,w] (4) 

for ail /3 G R+ such tha t /i' is in the upper closure of the alcove of À' for Wp)P. 

lî(3]p'^ / / , then ^ [ / i ' , A'] = ( / v , Cfo*')"1)* 0 T- We have obviously in any 
case 

« V , A'] = O R F A ^ A R ^ Î A ' ) - 1 * ^ ' , A ' ] . (5) 

Since this is a homomorphism of -modules that are annihilated by hp, 
13.1(3) implies that 

t%'X'] = aT(X')(s0ar(8n')) SSS^[usssss'M (6) 

We shall prove in this section: 

T h e o r e m : Suppose that T is good. One can choose the b^(p') and the ar(A') 
such that for ail À' G fi and (3 G R+ (setting p! = \'T) 

t0\u'\']ee(\') = 
CH\',n')efi(u'), SSSSS ifdU'ï»'; 

CH\',n') + Al>, if 3] u'= u'= (3t\'): 
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13.5. We shall first prove Theorem 13.4 in the case where p is in the lower 
closure of the "first" dominant alcove. Assume in the next subsections (until 
13.9) that this holds. So we have 

Rf = {aeR\{fi + p,av) = 0}. (1) 

The stabilizer of p in Wp for the dot action is generated by ail sa with a G R'. 
Note that R' is the root subsystem of R generated by S(~l/2'; so T is obviously 
good. 

We have by 13.3(2) for ail 3 G R 

P(w(p + p)) = l *=> w-l3<0,w-l3£R'. (2) 

This implies 

d(w.n-p,sa) = 

a>0,sp c*<0, 
w 1a<0,w 1a£R' 

[ka;w(p + p)] 
bn+ d (3) 

For ail 3 G R+, w G W, and v G ZR set: 

b*(w.u + pv) = 
(A') = Zs^w.X.w.fi.-p^hfs iîw^S > o.ur13 é R'; 

£w.»,-P d(w,p, -p, S3)hp. iîw^S < 0, w-1/3 £ i?'; 

(A') = Zs^w.X.w.fi.-p^hfsC if w^S G -R'. 
(4) 

This is well defined, since w and wsa yield the same resuit whenever a € Rf. 
It is a unit in A13 by (3). So we can define e^(pf) for ail p,' e T by 13.4(2). 
(Note that this définition is independent of the choice of îî.) 

Lemma: Let (i E i?+ and p! E Wp.p. If fi] p' = p1, thtne^(p') = h^+A?. 

Proof: There are w € W and u G Zi2 with p! — w.p + pu. The assumption 
(3 f /i' = pf implies w~l(3 G R'. Since (// + P,(3W) = {pu,(3w) we can take 
—p + pu as the weight playing the rôle of u in 12.13(1) (applied to p! instead 
of À). Now [—p + pu, pf] is the identity (by Remark 2 in 12.12) so we get 

e V ) = r(L*'K'.-^NUD(-P + pu, w.p + pu, s^K1 + A? 

= diw.p, -p, sp)d(-p, w.p, sp)hB 1 + A13. 

Since sp.(w.p) — w.p and sp.(-p) = — p, Lemma A.8 implies 

d(w.p, -p, sp)d(-p, w.p, sp) - d(-p,w.u,sd) 
spd(-p,w.p,sp) 

(5) 

Under our assumptions, d(—p,w.p,(3) = 1, so d(—p,w.p,sp) is a unit in A@ 
and the fraction in (5) is congruent to 1 modulo hp. The claim follows. 
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13.6 . Consider À' = w.X + pu G fi where w G W and u G ZR. Let f3 G . 
Then Àp = w.fi + pu is in the upper closure of the alcove of À' for WpiP, if 
and only if £ R' fl 

L e m m a : l e * /? G w e W, and u e ZR with w'l(3 £ Rf n R+. Set 
À' = w.X + pi/ <md p! — w.fi + pu. Then 

tf[,i',Y]e>(A') = £s (w.À, w./i, - p ) c a . (w./i, w.X, -p) 

if w 13 é R1 ; and 

é[fi', A ' J E ^ A ' ) = z3Q (w.X, w.fi, -p)(h3C3Q (w.fi, w.X, -p) M e ^ / i ' ) , 

ifw-1(3eR'n(-R+). 

Proof: The définitions 13.2(4) and 13.4(2) together with Lemma 12.13 imply 
tha t 

< 0 V , A Y ( A ' ) = c e V : 

where 

(A') = Zs^w.X.w.fi.-p^hfs 
bb (z d 

br +d,jr (1) 

The e& factors from the b13 terms together with the one from (1) yield 

J J ^ 
w.\,w. pw.X,— p w.p,-

= z3p{w.\w.p,-p) 

by 12.12(6). The d factors from the b@ terms together with the d factor in (1) 
vield 

diw.u, w.X, ss)d(w.X, —p, sa)d(w.iL, —p. s s) 

hence c3f5(w.p,w.\,—p) 1 by A.7(3). The factors hp and K(/3) from the b@ 
terms cancel for w~x (3 £ i? ' , whereas they yield hp for w-1 (3 G R1 

Remark: Note that the proof also shows that the c3p factor (for w-1 (3 £ R') 

resp. hp times the cSQ factor (for w~l(3 G R1) is a unit in 

13.7 . We have (p - \,av) = - ( A + p,av) for ail a G R', hence 

â(a - A) = 1 for ail a e R'Pi (1) 

L e m m a : Let w G W. Then 

d(p,\,w x) 

a>0,u>a<0, 
aER' 

h'1 

is a unit in A. 
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Proof: Recall from A.7(l) and 13.1(7) that 

d(p, À, w 1) = 
a>0,wa<( 

'[ka;fi + p] 

[ka] X + p] 

a(/x-A) 

AU factors in the denominator are units in A; so are those in the numerator 
for a fi Rf. For a G R' we get a factor of ha in the numerator. Now the claim 
follows from (1). 

13 .8 . Set for ail w G W: 

aT(w) = zw-i(\,p,-p) • w(d(p,\,w 1)) • 

a>0,w~1a<0, 
w~1aeR' 

ha -1 
( 1 ) 

Since h-a = — ha for ail a, cf. 13.1(1), Lemma 13.7 implies tha t each a-p(w) 
with w G W is a unit in A. 

L e m m a : We have for ail w EW and f3 G i?+ 

ar(w) • (spar(spw)) = z3/3 (w.\, tu.j/, -p)c90 (w.p, w.X, —p)n 

where 
K — kq +dsb +skrt1+ 

a>0,aJga<0, 
w~1a>0,w~1aeR 

a>0,spa<0, 
w~la<0,w~1aeR' 

Proof: A look at (1) shows that we can write aY(w)/(spa-p(spw)) in a natural 
way as a product of three factors. The first one is 

zw-i (A, p, -p)z(s w)-i (A, /i, -p) = zs (w.A, w./i, - p ) 

by A. 14(3). The second one is 

w(d(p,\,w 1)-d(p,X,w 1sp) 1) = c3(3(w.p,w.\,—p) 

by A. 11 (3). The last one is 

a>Q,w~1a<0, 
w~laeR' 

h'1 

a>0,w 130a<O, 
w 1spaER> 

hsp a — 

a>0,w 1a<0, 
w~1a£R' 

K1 
spot>Q,w 1a<0, 

w~1aeR' 

ha-

We cancel now the common factors (where a > 0 and spa > 0), we substi tute 
—a for a in the second product, and we get now the K in the lemma. 
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13.9 . For any A' = w.X + pp G Q with w E W and v G ZR set aF(A') = 
ar(w). We claim tha t Theorem 13.4 holds (for T satisfying 13.5(1)) with this 
choice of ar(A') and with the choice of the b^(p') as in 13.5(4). 

Proof: Let (3 G w G W and z/ G Zi î . Set A' = w.X+pu and p! = w.p+pv. 
Suppose tha t w~l(3 fi R' H R+ so that ^[ / i ' ,A ' ] is defined. Now 13.4(6), 
Lemma 13.6 and Lemma 13.8 show that t^[p', A']e^(A') = K,e^(p') where 

k = 

at>Q,spa<0, 
w~1a>0,w~1aeR' 

h-a 

a>O,30a<O,a^/3 
w~1a<0,w~1aER' 

h'1. ( i ) 

Compare K' to C^(A',/ i ' ) as in 13.4(1): The hyperplanes H ET~C with p1 E H 
are exactly those with an équation (x + p, av) = (v,av)p with a G R+ and 
w^a G R'. We have A' < H if and only if w~xa < 0, and H G W(/3) is 
équivalent to spa < 0. So the only différence with the products in 13.4(1) is 
the additional condition a ^ j3 in the second product above. If (3 | p' ^ pf, 
then (3 f a(H) for ail H G W with ^ ' G hence K' = C ^ A ' , / / ) and 13.4(7) 
follows in this case. If (31 p' = p1', then /3 = a?(iï) occurs in the second product 
in 13.4(1), but not in the first one, since w~1f3 fi Rf fl i?+. This shows that 
K;' = Cf3(Xt, p')hp in this case. Now 13.4(7) follows from Lemma 13.5. 

13 .10 . We now have to look at the case where p is not in the lower closure 
of the first dominant alcove. Assume that T is good. Set 

Rf. = {a G R I (p + p, av) = ip} (1) 

for ail i G Z. Of course, R' is the disjoint union of the R\. Since fi is still in 
the closure of tha t alcove, we have Ri = 0 for \i\ > 1 and 

R[ C R+ and # _ ! = —-Ri C -R+. ( 2 ) 

Obviously 
s^R'i = R\ for ail 7 G jRQ and AU (3) 

We have R[ ^ 0 by our assumption. 

L e m m a : There is a weight a E X with 

o + p G pX and (a — p, av) = 0 for ail a G Rf. (4) 

Proof: Since T is good, there are a subset S ' of S and an élément m/ G W 
such tha t i?' = w'(Rn ZE ' ) . We can find a weight pf E X with (// + 
y9,av) = ( w ' - ^ / i + p ) , ^ ) for ail a G E ' (hence for ail a G w'_1i?') and with 
(p' + p,ay) = 0 for ail a G E, a fi E ' . Obviously p' + p E pX. Then a = w' . / i ' 
satisfies (4). 
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13 .11 . We fix from now on a weight a satisfying Lemma 13.10. We have 
(a + p,aw) G Zp and (p + p, av) fi Zp for ail a G i? with a fi Rf, hence 
(a — p,av) ^ 0. Therefore R is the disjoint union of Rf, R(l) and 1) 
where 

i?( l ) = { a G # | ( < 7 - p , a v ) > 0 } (1) 

and 
R(-l) = {a e R | (<T - /*,av) < 0} = (2) 

Obviously 

syR(l) = R(l) and s 7 i ? ( - l ) = # ( - 1 ) for ail 7 G i?'. (3) 

L e m m a : If a(a + p) = l, then a G -R( - l ) U -R'-i- Conversely, if a E 
R(-l)UR'_lf thena(a + p) = 1 or (a + p,av) = 0. 

Proof: We have 
(a + p,a ) > (p + p,a ) > -p 

for ail a G R(l)- Since the first term is divisible by p we get (a + p, av) > 0, 
hence â(a + p) = 0 for ail a G i?( l ) . On the other hand, we get for ail 
a G R(-l) = ~R{1) tha t (a + p, av) < 0. 

13.12 . Let w G VF. If v G Zi? and p ' = w.p + pu, then the hyperplanes 
H EH with p' E H correspond to the a G R+ with G Rf. liw^a G i?-, 
then the corresponding hyperplane has équation (x + p, aw) = p((u, av) + i). 
If (3 G then this hyperplane is in H((3) if and only if a G R((3)U{(3} where 

R(f3) = {aER+ \spa<0,a^ (3). (1) 

Set for ail w G W and (3 E R+ 

K0(W,{3) = 

a£R(P),w-xa£R'Q, 
w~1a>0 

b+4 

aeR((3),w-1a£R' 
w~1a<0 

h-1 (2) 

and 
KAW,3) = 

aeR(/3),w-1aeR'_1 

h-a 

a£R(/3),w-1a£R'1 

h-1. (3) 

The discussion above shows: If À' = w.X + pu and pf = w.X + pu, then 

CP(\'.u') = 
K0(W,3)K1(W,Ô), 

if w"1/? G (#0 n lsw +1 
if « r1 /? £ 
if w"1/? G (#0 n -JR+))Ui2 '1. (4) 

Note tha t the conditions on w 1 (3 cover ail cases where p1 is in the upper 
closure of the alcove of À' for WR P. 
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1 3 . 1 3 . Fix (until 13.22) w E W and v € ZR, set A' = w,X + pu and 
p,' = w.p + pv = Af,. For ail (3 € R+ set — with «(/?) as in 13.2(4) — 

K(w,f3) = 
K(/3), i f u T ^ X ) ; 
hp, iiw-1(3<0. (1) 

So we can rewrite 13.2(3) uniformly as 

^{\') = ei._0d{w.\-p,s3)K{w,f5). 

If we combine Lemma 12.13 with the formula (that follows from A.7(3)) 

c3/3 (w.p, w*\, —p)d(w.\, —p, sp)d(w*p, w.\, sp) = d(w.p, —p, sp), 

we get 

4[p',\Y(X) = bo(w,P)e%(f,') (2) 
where 

b0(w,/3) = b 
>0,w 13pot 

8 
w\, — p 

d(w.p,-p, sp)K(w,f3) 

cs (w.p,w.\,-p) 
(3) 

whenever ^ [ / / , À ' l is defined. 

L e m m a : We have 

d(w.u,,-p,Sd) 

d(w.PL,w*a, sp) 
= K2(W,P) 

aeM(w,j3) 

[ka;w(fi + p)] • 

>0,w 13pot 

[ka;w(p + p)] 1, 

where 
M(w,(3) = {a > 0 | spa < Q,w~la < O^w^a G R(-l)} 

(4) 

( 5 ) 

and 
M'(w,/3) = {a > 0 | spa < 0,u;_1a > 0,w;_1a G R(l)} (6) 

and 
K2(W,P) = 

aEM'(w,/3] 

ha 

>0,w 13pot 

h-1. (7) 

Proof: The définition of R(l) implies 

diw.p, w*a, SQ) = 

a>0,3ga<0, 

>0,w 13pot 

[ka;w (u + p)] 

brd (8) 

On the other hand, 

d(w.p,-p,sp) = 

a>0,9g a<0, 
w~1a<Qiw~1a£R' 

[ka;w(p + p)] 
bd+d (9) 

since we get a factor equal to 1 for w 1a £ R*. When we take the quotient 
ail factors with w~xa < 0, G R(l) cancel and the claim follows. 
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13 .14 . L e m m a : Set ar(w) equal to 

zw-i(\,u,a) 

zw-i(\,a,-p) 
wd(p,\,w 1) 

a>0,iy"1a<0. 
w~1aeR'0 

hâ1 

a>0,iua<0 

>0,w 13pot 

w([ka; jJL + p}) \ 

(1) 
This product is a unit in A. 

Proof: Recall that 

d(p, A, w *) = 

a>0,iua<0 

[ka;p + p] 

\ka\\ + p]; 

ot(n-\) 

( 2 ) 

Ail factors in the denominator are units in A; so are those in the numerator 
for a fi R'. For a G R' we get a factor of ha in the numerator. 

We have (p — À, av) = — (À + p, av) for ail a G i?o, hence 

â(p - A) = 1 for ail a G i?n 

On the other hand (ju — À, av) = p — (À + p, a v ) for ail a G i?i , hence 

â(p-X) = 0 for ail a e Aï . 

This shows that 

d(p,\,w *) 

a>0,w;a<0, 
aeR'o 

h-1 and w(d(p, \,w 1)) • 

a>0,w 1a<0 
>0,w 13pot 

K1 

are units in A. So are obviously the remaining factors in a-p(w). 

13 .15 . We set now ar(A') = ar(w) and use thèse units to construct t@[pfÀ'] 
as decribed in 13.4. We get then (whenever tP[pf,\'] is defined) 

*V,A']e^A') = M ^ / 3 ) e f ( / / ) (1) 

where — with b0(w,Ô) as in 13.13(3) — 

bi(w,P) = aT(w)(s3aT(s3w)) 1b0(w,/3). ( 2 ) 

L e m m a : Suppose thatt^[pf,Xf] is defined, Le., thatw~xfi fi R'QnR+,w~l(3 fi 
JR'_I . If w~x8 fi RL, then bi(w,3) is equal to 

(-l)|M("'/?)l4.. ,-p4 .M)U,..«o(u' ,/?)K2(^,/3)A'(u),/3)d(U,.M,«;.a,^); (3) 

otherwise we get 

h(w,/3) = (-l)|M(u,>/,)l4.<r)_p4.M)tt;.<r«o(«;,/3)«2(«;,/9)rf(u;.Az,«;.a,^). (4) 
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Proof: We are going to décompose 

ar(w)(spaY(sSSpw)) 1 = a1a2a3a4: 

with the single factors as below in (5) and (7)-(9). First of ail, the z terms 
from 13.14(1) yield a contribution 

= zw-i(\,p,<j)z(3/3W)-i(\,p,a)zwSSS-i(\,a, -p)z(s/3W;)-i(À,cr, -p). 

By A. 14(3) this product is equal to 

z3p (w.À, w.ji, w.a)z3p (w.\, w.a, —p), 

so we get by 12.12(6) 

ai = 
b b .0b b 

WX,wfiWX, — PW*FI,W(TCWCR, — P' (5) 

This implies, cf. 13.13(3), 

ai&0(w,/3) = wx+ us w:w d 
W<7, — P 

d(w.p, -p, sp)K(w,(3) 

c3f3(w.p,w.\,-p) (6) 

We have 

w(d(p,\,w 1)'d(u,\,w 1sp) 1) = c3R (w.p, w.X, — p) 

by A. 11 (3). We merge this with a possible factor hp from the product of the 
h~x and set 

a2 = 
c3(3(w.p,SSw.\,-p), <V,àVWSSS = K 

c3(5(w.pSSSw.\,-p)hp i îw - l (3SSS e R'0n(-R+). (7) 

(Recall tha t we exclude the case w 1(3 G Rf0 fl R+.) After having removed 
possible factors equal to h^1 the ha products yield a contribution a3 equal to 

c*>0,w_1a<0, 
kx+ ks d+r 

K1 

a>0,w 13pot<0, 
>0,w 13pot 

x+ ls + r 

a>0,w~1a<0, 
w-1aeR'0,(x^(3 

K1 

spa>Q,w 1a<0, 

w~1a£R,0 

ha. 

We cancel now the common factors (where a > 0 and spa > 0) and substi tute 
—a for a in the second product. We get thus 

a3 = 

>0,w 13pot 
w~la>0,w~1aeR'o 

x+ d4d 

aeR(p), 
w~l a<0,w~1aeR'0 

h^1 = Ko(w,/3). (8) 
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Our last contribution is 

CLa = 

a>0,8/3 wa<0, 
a E a R (1) 

w[ka;u + p\ 

a>0,ii>a<0, 
a€fl(l) 

w[ka;p + p] 1. 

We can rewrite this product using 13.1(6) and get 

CI4 — 

w 1a>0,a^a<0 
w~1AER(L) 

[ka;w(p + p)] 

w~1a>0,a<0 
w-la£R(L) 

[ka;w(p + p)] 

Ail factors with a < 0, spa < 0 cancel. We get thus 

CIa = 
a c M-(w,B) 

[ka;w(p + p)] 
-AEM(W,f3) 

[ka;w(p + p)] \ 

hence by 13.1(5) 

a 4 = (-1) M( w, B) 

AEM'(w,P) 
[ka;w(p + p)] 

aEM(w,p) 

[ka;w(p + p)] 1. 

Now Lemma 13.13 implies 

a±d(w%p,—p, s3) = (—iyM^W,(3^K2(w,(3)d(w.p,w.a,ss). (9) 

The claim follows now from (2) and (6)-(9). (Recall that K(w,3) = hp in 
case w~x8 G R'0 D (-R+), cf. 13.13(1).) 

13.16. In case w'13 £ R' set 

b(w,3) = (-l)lAf(«"'«l4.,i_<,K2(u;,iS)K1(«;,/3)-1A-(u;,J9). (1) 

We have then by 13.15(1), (3) 

< V , AV(A') = b(w,3)ei,u<w,aK0(wJ)K1(w,p)dSSSSSS(w.p,w.a,ss)e^'). (2) 

If w 1/3 G iî', then /31 p' = pf. We can choose w.a + pz/ as the weight 
playing the rôle of u (for p1) in 12.13(1). We get 

en(M ) = d{w.a,w.Li,SR)hQ + Ap< 

167 



H.H ANDERSEN, J.CJANTZEN, W. SOERGEL 

since £%,%tlW9(r = 1, cf. Remark 1 in 12.12. We have s p.(w.p) = w.p + p/3 and 
sp.(w.a) = w.a + so Lemma A.8 implies 

d(w.a,w.p,sp) = spd(wS.p,w.a,sp) x. 

This is a unit in A13. We get therefore 

en(A*') = d(w.p.w.a.Sd) 1hR1 + A@. 

So 13.15(1)—(4) imply in this case 

< V , à V W = Kw^^iw^y^SSSSw.^h-1 + A13 (3) 

where 

b(w,8) = 
(1(<V,àVW = Kw^^iw^y^w.SKL +SK ^h-
( _ l ) | M ( ^ ) | ^ ^ ^ i w ^ y ^ w (u,?/3)ki(u;?/3)-1k(/3)? (4) 

if w^d G i?é n (--R+) resp. if w'18 G -Ri- We claim that Theorem 13.4 will 
follow in our présent case if we show: 

Proposition: a) If w~x(3 £ R', then b{ws1,f3) = b{w,(3) (mod hpA@) for 
ail 7 G R'. 

b) Ifw-X3 G (R'0 D (-R+)) U-Ri, tfien 6(«;,/3) = 1 (mod / i ^ ) . 

Indeed, in the situation of b) the claim follows then from (3), cf. 13.12(4). 
For w;-1/? £ R' we want to define 

e^(n') = b(w, fi) SL + LD d(w.fi, w.a, s fi) e$(/i'). 

Then 13.4(7) will follow from (2). However, we have to make sure that e^(/j,') 
dépends only on /j,', not on the spécial choice of w and v with //' = w.fi + pv. 
We have by 13.10(4) and A.5(l) 

^ . f t » . , . » d(wsyn, wsy.a, s fi) = S +DKO E +d(w.p, w.a, s fi) (5) 

for ail 7 G R'. Recall the description of the stabilizer of p in Wp in 13.3. It 
shows that the independence follows from a) and (5). 

Remark: Note that (as in 13.5) the e^(p') are independent of the choice of Q. 
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13.17 . Since s7 = s_7 it is enough to prove 13.16.a for 7 G (i?ofl(~iî+))Uiî/1. 
In this subsection we want to show that 13.16.a holds for 7 G Rf0 fl (— 
and tha t 13.16.b holds in case w^fi G R'0 fl 

Proof: Let 7 G i?ofl(—i?+). Since /i + p is dominant, s7 permutes the positive 
roots not in R'0. Combining this with 13.11(3) we see tha t M(ws1,(3) = 
M(w,/3) and M,(ws1,(3) = Mf(w,f3), hence that 

( - 1 ) M(ws1,(3)\ K2(WS~,3) — ( - 1 ) 
M(w,0)\ K2(w,f3). 

When dealing with 13.16.a, we assume w~l(3 £ R'; so the argument above 
implies that w~lf3 > 0 if and only if s7w-1/3 > 0, hence that K(wSy,/3) — 
K{w,fi). Furthermore 13.10(3) shows that ^(ws^^fi) = Ki(w,(3). Finally, we 

have s7.cr = cr, hence e^j9 a_p = st.a,-P- So 13.16.a is satisfied for 7 G Rf0. 

Assume now that w~1f3 = j . We have then 

w 1( — spa) — —SyW 1a for ail a G R. ( i ) 

The map a 1—» — spa permutes R(f3). It takes {a G R(f3) \ w xa G R[} to 
{a G R(P) | w~la G # '_i} by (1) and 13.10(3). This implies 

re (w,B) = 

aeR(/3),w-laeR[ 

(hs0a • ̂ a1) = 1 (mod hp). 

Furthermore, (1) and 13.11(3) and the fact that s7 permutes the positive roots 
not in i?Q show that a 1—• —spa maps M(w,f3) to M'(w,f3), hence 

(-1)\MM)\K2(W Q) = 

aeM(w,/3) 

(h-3 a • h_a) = 1 (mod hp). 

Finally, we have 
(w(a + p),/3v) = (a + p,^) = 0, 

hence et = 1 by Remark 1 in 12.12. So 13.16.b holds for w~l8 G 

R'0n(-R+). 

13.18 . It remains to prove 13.16.a for 7 G R[ and 13.16.b for w~xP G R[. 
This will be done in the next subsections. The proof in the first case will be 
concluded in 13.20, that in the second one in 13.22. 

Let 7 G We have 0 < (p + p,av) < p for ail a G a £ Rf; so 
s7av = av — ( 7 , a V ) 7 V implies 

~{"/,av)p < (p + p.s^) < (1 - (i,ay))p. 
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We have therefore either (7,o?v) = 0 and s7a = a > 0 or ( 7 , a v ) = 1 and 
s 7 a < 0. If a G — o t fi Rf, then we can apply this argument to —a. We 
see tha t either (7,Ofv) = 0 and s^a = a < 0 or ( 7 , a v ) = - 1 and s 7 a > 0. 
So we get for ail a G R, a fi Rf: 

<7,c*v> = 
' 1, if a > 0, s7a < 0; 

— 1, it a < 0, s7a > 0; 
0, otherwise. 

( i ) 

L e m m a : a) If w 1/3 fi R1', then for ail 7 G R[ 

K2 (wsy, P)K(ws1, P) 

K2(W,P)KIW,P) 
= K ( / 3 ) - < ^ v > 

aÇR(l3),w-1a£R' 

L-(w;7,av> 
(2) 

and 
(_l)\M(ws1,/3)\ _ ri\\M(w,0)\ 

a>Q,sp a<0, 
w-1ct£R(-l) 

ha (wy,a V (3) 

b) Ifw-L(3 G -Ri, then 

(-\)\M^^\ = \ and K2(W,3) = 

a c R(R),w -( 1 a C Re ( 1) 

ha (wy,a V 
(4) 

Proof: In both situations — a) and b) — (1) yields for ail 7 G -Ri 

M > , /?) = {a > 0 I s0a < 0, w_1a G i?( l ) , w_1of > 0, (1177, a v ) = 0} 

U {a > 0 I s ROI < 0, w~xa G (urv, av) = 1} 

and — since ( w s 7 7 , a v ) = — (1^7, a v ) and since s7 permutes i?( l ) — 

M'(ws~, p) = {a > 0 I s0a < 0, w~la G i2(l) , w-1c* > 0, («77, a v ) = 0} 

U {a > 0 | spot < 0, G i?( l ) , (ury, a v ) = - 1 } , 

hence 

aeM'{w31)p) 

ha = 

aeM'(wJ) 

= ea ha (wy,a V 

ot>Q,sp a<0, 
w~1a€R(l) 

(5) 

We have similarly 

M(w, (5) = {a > 0 | ssa < 0, m'1 a G R(-l), w_1a < 0, (wy, av) = 0} 

U {a > 0 | saa < 0, U7-Ia G # ( - 1 ) , («ns aV) = - 1 } 
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and 

M(ws1, (3) = {a > 0 | spa < 0, w~la G R(-l),w~la < 0, (ury, aw) = 0} 

U {a > 0 | spa < 0,ks d G 1), (ury, a v ) = 1}, 

hence 

a€M(wsy ,p) 

aha = 

a€M(w,/3) 

ha 

a>0,3ga<0, 
w~1aeR(-l) 

fr(w~f,av) 
na (6) 

Also (3) follows immediately. Combining (5) and (6) we get 

K2(WS7,/3) = K2(w,f3) 

a>0,se c*<0, 

w~1a£R' 

U-(wy,av) 
na 

On the other hand, if we apply (1) to a = w 1/3, we get ddd 

K(w8~,P) = K( SDSSw,f3)UŒ)-lhpfw^P^ iîw-l(3 i R1, (7) 

hence (2). 
It remains to show (4). So suppose now that w~1f3 G R[ and apply 

the formulas above with 7 = w~lj3. We have (cv,/3v) > 0 for ail a > 0 
with spa < 0, hence (wy,av) = (/3,av) > 0. Now thèse formulas show 
that M(w,(3) = 0 and that ail a > 0 with spa < 0 and w^a £ R' satisfy 
((3,av) = 1. This yields (4). 

13.19 . Set for ail LJ G X and f3 G i î+ 

za(u,P) = 

a>0,sJga<0, 
w-1a£R' 

/_-|\<u;,a )a(u/) ( i ) 

2j(a;,/3) = 

ûf>0,s/5a<0 
sk 1 a c R 

^_-^(u;,av>a(u;)^ 
(i') 

and (recall from the discussion preceding 13.1) 

*c(u>,P) = 
atERiP),™-1 a>0 

(-1 à w a v ) 
(2) 
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Note tha t 12.12(5) implies for ail w, u' G X that 

< W = za(u-uSSSS',/3)zb(u-tx>',j3)zc(uj-u}',i3). (3) 

We have obviously Z^CJ+CJ1\f3) = zc(u,P)zc(u',/3) for ail cj,o/ E X. We want 

to apply (3) to e^,a (y_p and e^w%(T_p. Note tha t Lemma 13.11 implies 

za(w(a + p),(J) = 

Q>0,Sga<0, 
w~la£R(-l) 

(_1)<W;(<T+P)^V> (4) 

and (since p is odd) 

zb(w(a + p),3) = 

a>0,8fla<0, 

w~1a£R'_1 

(-1) 
( 5 ) 

L e m m a : PTe have for ail 7 E R[ 

( - l ) l " < " - » " e > - ,« i (u ; , /J ) 

( - l ) | M M I ^ r , " i ( ^ , / i ) ha (wy,a V lslm 
= zc(-wy,P) 

ha (wy,a V 
ha (wy,a V 

ha (wy,a V (6) 

Proof: First of ail, since s7(cr -h />) = a -f- /> — p7 , we get 

zc(ws7(a + p),p) = zc(w(a + p), p)zc(-pwy, P) 

= zc(w(a + p), f3)zc(-wy, (3). 
(7) 

This leads to the factor zc(—wy,P) on the right hand side of (6). 

Furthermore, we have s7R( — 1) = R( — l) and sy(a + p) = a + p — py, so 
(4) yields 

za(wsy(a + p),P) = ^_-|^(u;^(<7+p),Q;v) 

a>0,Sfl a<0, 
w;-1a€^(-l) 

= C_l)(w;(<T+/!>)iQ;V>-<lt;7,aV> 

a>0,s/3o;<0, 
w~1aeR(-l) 

= za(w(a + p),P) 

a>0,5/3 a<0, 

w-iaGfî(-l) 

ha (wy,a Vdd 
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Now 13.18(3) implies 

(_l)W«"-»./»)Ua(u,«7(a + p),8) = (-l)^w^za(w(a + p),(3). (8) 

Finally, we have by 13.19(5) (since we assume w 1(3 fi Rf_i) 

K1(w,P)zb(w(a + p),(3) 1 = 

aeR(P),w-1aeR'_ 

=v 

aeR(/3),w-1a€R'1 
K1 

= 

aeR(^),w-1aeR' 

Bsy(p + />),a Dp),&v)H 
(9) 

Since -(wsy(p + />),av) = -(w(p + p),&v) + p(w7,®v), we get 

K1(w,P)zh(wsJa + p),/3) 

K1(wsi,P)zb(w(a + p),f3) 
aeR((3),w-1aeR' 

+dk +d,d<< 
(10) 

Now (7), (8), and (10) yield (6) by (3). 

13 .20 . Set for ail u> G X 

h(u,0) = 
aeR(/3) 

"•a d mls (1) 

We have obviously h(u) + ùj',8) = h(u>, 3)h(u)', 8) for ail CJ,UJ' G X. Using this 
notation, 13.16(1) together with 13.18(2) and 13.19(6) yields for ail 7 G R[ 

b(ws~,0) 

b(w,8) 
= zc(SSSSSSS-wl,P)K{8)-^^h{-W1,8) ïîw^d^R'. (2) 

Note that n(8) and ail h(u>,(3) are units in A13. 

L e m m a : We have for ail u> G X 

h(u>,0) = K((3)-^vhc(to,(3) (mod hfiAl*). (3) 

Proof: The map a h-> -spa permutes R((3). We have w^a > 0 if and only 

if w~^l(—spa) < 0 (for a ^ fi). We can therefore rewrite (1) as 

h(u,3) = 

a€R(^),u>-1a<0 

ss+ mlsd+=W> aGK(^),^1a>0, 
— spot 
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We have h-SQa = h-a = —ha modulo h@, hence 

aGK(^),^1a>0, 

aeR(l3),w-la<0 

a€R(i3),«Jr1a<0 ( 1 ) (W s bn Ba V 

= 

Er (B) w -(1 a <0 

a€R(i3),«Jr1a<0 ( 1 edsk 

aeR{p),w~xa>Q 

(_1)(W>Q;V>< 

The last product is the wanted zc(u,/3). We have spu; — u — (u , /3V) /3 , hence 

Er (B) w -(1 a <0 a€R(i3),«Jr1a<0 ( 1 ) (W s bn B 

Plug this into the last équation and the claim follows. 

Remarks: 1) In our first formula in the proof we might as well replace the 

condition w^a < 0 by w^a > 0. Then the same calculation as above shows 

tha t modulo haA^ 

h(u>,3) = 

oGR(^),wJ1a>0 

(W s bn B 
6dlm +d 

a€R(i3),«Jr1a<0 

(_1)<W>«V>. (4) 

2) The lemma and (2) show that Proposition 13.16.a is satisfied for ail 
LSLS DL 

1 3 . 2 1 . Suppose that w~xf3 E R[. 
Set for ail u E X 

a€R(i3),«Jr1a<0 

aGH(^),u;~1a>0, 
a€R(i3),«Jr1a< 

a€R(i3),«Jr1ad 
d ) 

and 
a€R(i3),«Jr1a 

aGK(^),^1a>0, 

w~1a€R' 

aGK(^),^1a>0, 
(2) 

Obviously 
zc(u,0) = z'c(u,l3)zï(u,,P). (3) 

L e m m a : Suppose that w 1(3 E R[. Then (modulo hp) 

KX (w, f3)zb(w(a + p),P)z"(wla + p),P) = 

aeR({3),w-laeR', 
Wp 1a<0 

ft-</?,aV> (4) 
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Proof: Set 7 = w 1/3. The map a \-> — spa permutes R(/3). More precisely, 
it maps {a G R(f3) \ w~la G R'} to itself and {a G R(/3) \ w^a G # ( 1 ) } 
to {a G | w~la G i ? ( - l ) } , since w-1(-S£af) = —syw~1a and since 
5 7 permutes each of R', R(l) and 1). We have > 0 if and only if 
w ^ 1 ( ~ s ^ a ) < 0 (f°r a 7^ so we Set using 13.19(9) 

K1(w,/3)zh(w(<j +p),(3) = 
a£R(p),w~1aeR' 

w0 1a>0 

U-(w(u+p),av)/p » W+p),S/3a )IV 
s b a ' — -S pOt 

We have (w(/i + p),spav) = (w(p + p ) , av ) - p ( / 3 , a v ) , so each of the second 
terms in this product is equal to 

L M ^ P ) , « V ) / P L-</?,«V> 
' — saa ' — spot 

u(w(u+p),otv)/p UW'5^V) 
sBa s B a 

This implies that Ki(w,/3)2&(w(<7 + p),/3) is congruent to 

(«.DM/I+P),^)/!* 

w0 1a>0 

( « . D M / I + P ) , ^ ) / ! * 

aeRd3),w~1aeR', 
hw (B,aV) 

hw (B,aV) 

modulo /i^. The first product is equal to z"(w(a + Apply 13.10(4) to 
w~la and recall tha t p is odd. The claim follows. 

13.22 . L e m m a : Suppose that w~lfi G R[. Then 

K2(W, P)za(w(a + p),f3)z'c(w(a + />),/?) = 
a€R(p),w~1a£R', 

Wp 1a<0 

hw (B,aV) (mod /i^). 

Proo/ : By 13.19(4) and 13.21(1) the product of za(w(a + p), fi) and z'c(w(a + 
p),/3) is equal to 

hw (B,aV) k;edk 
w~1aeR(-l) 

(«.DM/I+P),^)/!* 

aeR(0),w-1a>O,i 
w~1aeR(l) 

( _ 1 U™(<r+p),a > 

since ail terms with w 1a G i ? ( — l ) , ^ 1 ^ > 0 cancel. Now a 1—• —s^a takes 
one index set to the other one, and so — since p is odd — this product is 
equal to 

ot£R(8),w-1aGR(l), 
Wp xa>0 

( — l)(W(<7+p),Ot )-(w((T-\-p),3l3QV) 
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The exponent is equal to p((3,aw). This implies 

za(w(a + p),(3)z'c(w(a + p),(3) = 

aeR(0),w-1a€R(l), 

wg a>0 

(_1)0*>«V>. (1) 

We can rewrite the second part of 13.18(4) as 

n2(w,(3) = 

R(p),w-1aeR( lkdl) 

w3 la<0 

h(B,av) 

aeR(p),w-1aeR(i), 
wQ 1a>0 

hw (B,aV) 

= 

aeR((3),w-1cx€R(l), 
wd 1a<0 

hw (B,aV) 

a€#(/?),w_1aeft(-l), 
wQ 1a<0 

L</?,"V> 
'-9Q OT 

= 

aeR(P),w-la£R', 
w0 1a<0 

hw (B,aV) 

aeR(/3),w-1aeR(-l) 
wQ 1a<0 

e_D</j>«v> 

= 

cteR(f3),w-1a£R', 

wQ la<0 

hw (B,aV) 

a€R(0),w~1aeR(l). 
wR 1a>0 

(_1)(^^V>. 

Combined with (1) this yields the claim. 

Remark: We combine this lemma with 13.19(3) and 13.21(4), and get 

K2(w,(3)K1(w,(3)-1SPW.<R,-P = 

eR((3),w-la<0 

hw (B,aV) hw (B,aV) (mod hp). 

Now the définition 13.16(4) together with the first part of 13.18(4) shows that 
b(w,f3) = 1, hence that 13.16.b holds. 

13 .23 . We can apply Theorem 13.4 especially to p = — p. Then R' = R (so 
T is good) and we get for ail (3 G R+ and w G W with < 0 

R(p),w-1aeR( ;x;ds+ ks)=;,s 

a>0,sp a<0 

w~1a>0 

hw (B,aV) 

hw (B,aV) 

hw (B,aV) 

Kl) + ^ . ( i ) 

If we reverse the calculation from the proof of Lemma 13.8, then we see tha t 
the te rm in parenthèses on the right hand side of (1) is equal to 

a>0,ii;_1 3Q a<0 

ha 

a>0,w~1 a<( 
K1- (2) 

This shows: If A is graded such that each ha with a G R is homogeneous of 
degree 1, then the product in (1) is homogeneous of degree l(spw) — l(w). 
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13.24 . Consider now as an example the case where n is semiregular, Le., 
where there is one root 7 G i?+ with R = { ± 7 } . Note that T is good, since 
any root is conjugate to a simple root. 

If 7 is a simple root, then Theorem 13.4 amounts to the following state-
ments (where we use its notations): 

If ^ ±/3, then 

* V , A V ( V ) = 

h-^e^ia'), if w^y > 0, SRWJ < 0; 

h_l eP(ii'), if wj < 0, spwj > 0; 

ef(u'), otherwise. 
( i ) 

If wj = —f3, then 
tf}[n',\y(\,) = h-i+Ap. (2) 

If 7 is not a simple root, then it is the short dominant root in an irre-
ducible component of i?, cf. [Ja6], II.6.3. In this case Theorem 13.4 says: 

If wj ^ ± / 3 , then 

* V , A V ( A ' ) = 

h,„~eP(u'), if m < 0, Sfl«i7 > 0: 
h-ie^(u'), if wy > 0, s3wj < 0: 

k e^( / / ) , otherwise. 
(3) 

If wj = /3, then 
t^n',\Y(X') = h-1+A^. (4) 

13.25 . Identify ZA(X' + pv) and ZA(\') for ail A' and v in X as in 12.14. 
Identify the Ext groups as in 12.14(1). The définitions in 13.2, 13.5, and 13.16 
show that we have for ail A' in Wp.\ or in Wp»fi (in both situations) 

e0{\' + pu) = e^(A') for ail Ô G R+ and v G ZR. 

The définitions 13.8(1) and 13.14(1) show that 

t*W+pv,\'+pV] = tP[u',\'] 

whenever thèse maps are defined. 
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Introduct ion to t h e Sect ions 1 4 - 1 6 

Our main goal is to show that the catégories Cfc(fî) for regular orbits 
Çt are in some sensé independent of the ground field k. To reach this goal 
we develop a combinatorial description of thèse catégories in terms of the 
underlying root System only. In the preceding sections we have prepared the 
necessary tools. In the next sections we are going to apply them. 

We want to explain now in a bit more détail how our combinatorial de­
scription works. Let for the moment $1 be an arbitrary orbit. To describe 
Cjk(fi) we should describe the fc-algebra E n d P of endomorphisms for a pro­
jective generator P of since then Hom(P, ) induces an équivalence of 
catégories from Cfc(fi) to the category of ail finite dimensional right ( E n d P ) -
modules. 

Unfortunately Cfc(fî) has no projective generator. The remedy is to bet-
ter exploit the periodicity of our situation under the group Y = pZR. Let 
us define (for an arbitrary abelian group Y) a Y-category to be a category 
equipped with a collection of shift-functors M H-> M[U] for ail v G Y satisfy-
ing the obvious compatibility conditions, and for any object M of an additive 
Y-category C consider the Y-graded ring End^.(M) = 0 „ e y Home ( M [z/], M ) . 
By a Y-functor between Y-categories we mean a functor that commutes with 
ail the shifts [z/]. (Détails can be found in Appendix E.) 

Now let us take again Y = pZR. Clearly is a Y-category, and it 
adroits a projective Y-generator P , i.e., a projective object P in Cfc(O) such 
tha t the family of ail P[v] {y G Y) générâtes Cjfc(fi). We can prove that then 
Homjt(P, ) = ®J/€y Homc(P[z/], ) induces an équivalence of Y-categories 
from Cfc(fi) to the category of ail finite dimensional Y-graded right ( E n d ^ P ) -
modules. So to combinatorially describe C*(fi) we should combinatorially 
describe the Y-graded fc-algebra E n d ^ P for a suitable projective Y-generator 
P o f CH(Q). 

Let us now assume again that Q is regular. Then we can take for P an 
object of the from Qkj obtained form Zk(—p) by translating out from ail 
walls and applying a suitable séquence I of wall crossings. (Actually, we show 
only that we can take for P a direct sum of such objects, but let us neglect 
this complication for the moment.) Let A = A(k) be the déformation ring 
and QA,I the déformation of QJ~J as in the introduction to the sections 8-10. 
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Certainly also CA(Q) is a y-category, and by base change we have EndjlQjfc,/ = 

(EndlQAj) ®A k. Also K(tl, A) is a Y-category, and V = VQ is a Y-functor 

tha t is fully faithful on projectives, whence End j tQ^ j = End^VQ^, / -
Now let our séquence of walls I be given as $ i , . . . , sr G E ' , choose sub-

regular orbits T i , . . . , r r on the respective walls and let Ti resp. T/ be the 
translations onto resp. out from the walls relating CA(^>) and CAÇ^Î)- Also let 
T ' : CA(Y — p) CA(ÎÎ ) the translation out from ail walls. Then by définition 

QA9l = T{T1...TFrT'ZA(-p) 

and hence 
Bk(I) = (End^Ti • • • TXT'Z) ®A 

where the Ti,T?,T* are the corresponding combinatorial translation func-
tors with VTi = T]V,... and Z = VZA(-P) in /C(Y — p,A) is just given by 
2(-p) = A0, Z(-p,p) = A? for ail P G R+, and Z(X) = 0 for A / - p . 
We always assume the V-functors and the combinatorial translations to be 
defined via "good choices", so that only the beautiful constants C^(A, p) from 
the introduction to the sections 11—13 enter into our combinatorial transla­
tions. Summing up, we then find that the category Cjt(fi) is équivalent to the 
category of ail finite dimensional Y-graded right modules over the Y-graded 
ring 

Bh = Bk(I) = ( E n d ^ T i • • • TXT'Z) ®A k. 

We have to admit: This is a horrible description. However, it has two 
virtues and they are the very essence of our paper: First of ail, the ring Bk 
can be defined "over Z". Secondly it can be equipped with a Z-grading in a 
natural way. To explain this in more détail we need more notations. 

Let S be the symmetric algebra of the Z-module ZR. We write ha G S 

instead of a G i î , put Sk = S ®z &5 and identify the completion Sk of Sk at 
the maximal idéal generated by ail ha with the déformation ring A = A(k) 
via ha h-+ daHa resp. ha H-• logÀ^a in Case 1 resp. Case 2. 

We proceed to define combinatorial catégories /C(f i ,5) , tC(Ti,S), K(Y — 
p, 5 ) , combinatorial translations 7^, 7^', T ' , between thèse, and an object Z in 
K{Y — p, S) as follows: We just copy our old définitions and replace A by 5 
e very where. We may now in addition identify our regular orbit Q with the 
affine Weyl group WA and thus arrive at a Y-graded 5-algebra 

BS = BS(I) = End» K(Wa1 S) (T/Ti • • • Tr 'TrT'Z), 

which is completely independent of k and dépends only on the underlying root 
system and our séquence I of walls. Pu t Bz = Bs ®s Z, where we use the 
augmentation S —• Z, ha \—y 0. By our constructions it is almost clear tha t 

# z ®z & — Bk 
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in Case 2 or in Case 1 for p ^> 0. This proves that the Cartan matr ix of regular 
blocks is the same in Case 1 and Case 2, if we assume p S> 0 in Case 1. The 
same statement concerning the décomposition matrix is proved similarily, but 
with more technicalities. Ail this is explained in section 16. 

As announced in the gênerai introduction, we want to establish the iso­
morphism Bz ®z k ~ Bk for ail k with p = charfc > h. This is a much more 
subtle statement whose proof requires the considération of our Z-graded com­
binatorial catégories /C(fi ,5) resp. /C(fi,5jt) which are the subject mat ter of 
section 15. To define them we give S a Z-grading such that deg ha = 2 for ail 

a £ R and let an object M in /C(fi, S) be a collection of Z-graded 50-modules 
M{\) with a collection of homogeneous 5^-submodules M(\,/3) C A4(A) 
resp. M(\,{3) CM(X)®M((3]X). 

It turns out that the constants C^(À,//) appearing in the combinatorial 
translations have precisely the right degrees to détermine "graded combinato­
rial translations" between our graded combinatorial catégories. Thus Bs gets 
a Z-grading, which descends to give a Z-grading on B^. In Section 18 we 

study in détail the "Z-graded représentation catégories" Cjt(îl) of ail finitely 
generated (Y x Z)-graded right ^ - m o d u l e s . 
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14. General Combinator ia l Catégor ies 

We suppose in this section that (in Case 1) p satisfies the assumption of 
Lemma 9.1. 

14 .1 . We set A(k) equal to the completion of B with respect to the maximal 
idéal generated by ail Ha resp. Ka — 1. Ail results of the sections 9-13 can be 
applied to A = A(k). We shall write A/3(k) and A®(k) for the corresponding 
A@ and A®. We make the following choices for the éléments ha as in 13.1. In 
Case 1 we take 

h (y — daHa 

for ail a; this makes sensé, since our assumption above makes sure tha t p is 
prime to each da. In Case 2 we set 

ha = log Ka = 

oo 

j=l 

: - i v + 1 

J 
(Ka - IV 

for ail a. It is easy to check that 13.1(1)—(3) are satisfied. 
Suppose for the moment that p > h. For each good W^-orbit T (as in 

13.3) and each fi G T we choose ail e^{p) as in 13.5 resp. as in 13.16. (Recall 
tha t thèse définitions were independent of the choice of Q and note that they 
yield the same définition as in 13.2 in case r = Q.) We define the functors Vr 
on TCA^k){T) for each good T using this choice of e13. 

14.2 . The following lemma generalizes to any A that is a complète local 
Noetherian ring. 

L e m m a : a) A module M in CA{k) i& indécomposable if and only z /Endc (M) 
is a local ring. 

b) The Krull-Schmidt Theorem holds in the category C^k)-

Proof: Set A = A(k). Any M in CA is a finitely generated A-module; there­
fore also E n d ^ ( M ) is a finitely generated A-module. Consider the subalgebra 
U(M) of EncU(M) generated by the image of UA and by the projections to 
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the Mv with v G X. It is again a finitely generated A-module. We have 
obviously 

Endc(M) = Endc/(M)(M); 

a {7(M)-submodule of M is the same thing as a subobject of M in CA- Since 
A is a complète local Noetherian ring, our claims follow from standard results, 
cf. [CR], I.6.10(ii), 1.6.12. 

14 .3 . Set S equal to the symmetric algebra of the Z-module ZR. In order 
to have compatible notations, we shall write ha instead of a (for ail a G R), 
if we regard it as an élément of S. So S can be identified with the polynomial 
ring over Z in the ha.a G £ . Set 

S0 = Slh-1 \a€R+] and S^SK1 \aeR+,a^3] (1) 

(for ail (3 G The units in S are {±1} , t h e u n i t s in S0 a re ail p r o d u c t s 

± n«€«+h™{a) with a11 m ( a ) e z 

L e m m a : For ail (3 G R+ the Z-module S®/S@ is torsion free. 

Proof: The ring 5 is a unique factorization domain. The h7 with 7 G R+ a r e 
p r i m e é l é m e n t s in S a n d do n o t differ by u n i t s . A n y nonze ro é l émen t c G 50 

can be writ ten 
c = m - d -

s+ kldr+d 

dkld +dl 

with ra G Z, ra 0, with ail r(j) G Z, and with d a product of prime éléments 
in S of positive degree that are not multiples of any /i7. The r(j) and \m\ 
are uniquely determined by c. We have c G 5 ^ if and only if r(/3) > 0. This 
implies the claim. 

14.4 . Set 

Sk = S ®z *, ^ = S0 ®z *, Sf = Sfi ®z * (1) 

(for ail (5 G i?"1"). Set Sk equal to the completion of Sk w i t h r e spec t t o t h e 
maximal idéal generated by ail ha. U n d e r ou r a s s u m p t i o n on j9, t h e r e is a n 
i s o m o r p h i s m 

Sk A(k) 2) 

such tha t each ha in 5 (with a G i?) is mapped to ha = daHa resp. to 
ha = log Ka in A(fc). It induces isomorphisms 

St®SkA(k)^A\kSSSSSS) and Sï ®Sl A(k) — ^ ( f c ) (3) 

(for ail 3 e R+). Note tha t A(k) is flat over Sk, cf. [Boul], III, §3, Th. 3. 
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14 .5 . Let A be any (commutative) S-algebra that is an intégral domain and 
Noetherian such tha t the images of the hp with 3 G R+ in A are nonzero. Set 

A9 = S*®sA and A& = S^®SA (1) 

(for ail P G i?+). We identify thèse rings with subrings of the field of fractions 
of A . (Note tha t thèse définitions are compatible with earlier ones, e.g., in 
14.4(1).) We shall always assume that 

A = 

ld +dl +dl 

A» (2) 

Recall tha t A = A(k) satisfies (2) by Lemma 9.1. The same proof as for 
Lemma 9.1 shows tha t (2) is satisfied also by A = S and A = S*; it then 
follows for any A tha t is a flat 5fc-module (or a flat 5-module) . 

Let Q be a W^-orbit in X. We can define a combinatorial category 
/C(îî) = /C(fî, A) generalizing the construction in 9.4 (that works, e.g., for A = 
A(k)). Let us repeat: An object M in IC(Q) is a family (M(X))\^Q of finitely 
generated A0-modules (almost ail equal to 0) together with (for ail P G i?+ 
and A G fî) a finitely generated A^-submodule M(\,p) of M(X) 0 M(P] X) 
if P | A ^ A, of A4 (A) if P | A = A. A morphism ip between two such objects 
M, M1 is a family (^A)AG^ °f A0-linear maps : M(X) —> M'{X) such that 
for ail P G R+ and A G tt: 

{V\®il>ftx)M(\P)cM'{\P) in case / 3 | A ^ A, 

1/>XM(\,P)CM'(\,P) in case /? | A = A. 

We set (as in 9.9) — given M in IC(Q) — 

M(X)p = M(X)DM(X,3) ( 3 ) 

for ail A € fi and 3 G R+. This is a finitely generated A^-module; if 3} A = A, 
then M(X)a = M(X,8)- Similarly, we set 

M{X)A = 

s + js+dfk 

M(X)6. (4) 

For ail A and P set 

M(X,3)° = 
(M(X)®M(3n))/M(X,3), if (3U4X: 
M(X)/M(X,3), if 3]X = A. ( 5 ) 

This is an A^-module. 
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14.6 . Assume from now on in Section 14 that A is an S-algebra as in 14.5. 
Assume until 14.13 tha t fi is an arbitrary Wp-orbit in X. 

L e m m a : Let M be in /C(fi). Fix À G fi. 

a) If each M(\)p with f3 G i?+ générâtes Al (À) over A®, then M(\)A génér­

âtes Af(A) over A®. 

b) If A1(A) is a torsion free A®-module, then M(\)A i& a finitely generated 
and torsion free A-module. 

Proof: a) We have A0 = A^[h^1]. So the condition tha t M(X)p gén­
érâtes Al (À) over A0 means that there is for each x G M(X) an integer 
m — ra(/3,#) > 0 such tha t h™x G M(X)p. We can now take a product over 

the h™ for ail (3 and get a unit a G A0 with ax E M(X)p for ail /3, hence with 

ax G M(\)A- The claim follows. 
b) By our assumption, we can embed Al (À) into a vector space, say F , 

over the fraction field of A0. Choose a basis (v{)i of V. Each Af(A)^ is 
finitely generated over , so we can choose a finite set (yx,p,j)j of generators 
for M(X)p over A&. Write each y\,p,j as a linear combination of the V{ with 
coefficients in the fraction field of A. There is then an élément a G A, a ^ 0 
with 

a y\,p,j e Avi 

i 
for ail /3 and j . This implies that 

M(X)B 

i 

AB a-1vi 

hence — using A = f] A& — 

M(X)A C 
d 

Aa 1Vi. 

The claim follows. 

14.7 . L e m m a : Let M and J\f be in /C(fi) such that ail Al (À) and Af(X) 
with À G fi are torsion free A®-modules. If each M(X)p with (3 G and 
À G fi générâtes Al (A) over A®, then Hom/ç(Œ)(Al, J\f) is a finitely generated 
and torsion free A-module. 

Proof: We have a restriction map 

UomKW)(M,Af) 
x 

HomA(M(\)A,tfWA)-

It is injective since each Al (A) is generated over A0 by A1(A)^ by Lemma 
14.6.a and by our assumption. Each factor on the right hand side is a finitely 
generated A-module (by Lemma 14.6.b). Now the claim follows, because 
there are only finitely many nonzero factors and because A is Noetherian. 
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14.8. Suppose that A' is an A-algebra that satisfies the assumptions on A 
from 14.5. We have a natural extension of scalars functor from /C(fi, A) to 
!C(Q,A'): Map any M in K.(Q,A) to MA< with 

MA<{\) = M(\) ®A* A'9 = M(\) ®A A' (1) 

and with M.A'{\ P) equal to the canonical image of M.(\,(3) ®Ap A'& = 
M(\,f3) ®A A' in MA'W ®MA>(PU) resp. in MA'W (for ail 0 G R+). 

Lemma: Suppose that A' is a flat A-module. We have then for ail M. in 
K(Q,A) natural isomorphisms for ail A G fi and 0 G R+ 

M{\0) ®Ae A"1 = M(\,(3) ®A A' MA>{KP) (2) 

and 
M(\,/3)° ®A, A,ft = M{\0)° ®A A' MA<{\0)°. (3) 

We have for ail M, M in /C(fi, A) a natural isomorphism 

liomK{ntA)(M,N) ®A A' YLomK{Q>AI)(MA'MA')- (4) 

Proof: The flatness obviously yields (2) and (3). Consider (4). We can 
describe Hom/q^ ^)(Af, AT) as the kernel of a natural map 

A 
HomA« (M(À),Af(A)) 

A (3 
)Hom^(A((A,/3),Ar(A,/3)0). (5) 

We get H o m / q ^ / ^ A ^ / , A/a') as the kernel of an analogous map. We claim 
that we get the analogue of (5) over A' from (5) by extending scalars from A 
to A!. Then (4) will follow because A! is flat over A. 

Well, each Al (A) is finitely generated (hence finitely presented) over the 
(Noetherian) ring A9, and A9 is flat over S9, so we get 

KomA„( M A'W,J^A'W) * Honiii (M(X),M'(\)) ®A* A'9 
= E.omA,(M(\),tf{\)) ®A A' 

for ail A. We see similarly — using (3) — 

KomA,ff(MAI(\,0),NA,(\,0)0) ~KomAff(M(\,0),M\,0)°)®Ae A'fi 
= EomAe(M(K0)M(\,0)°) ®A A' 

for ail A and 3. Now the claim follows taking direct sums. 
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14 .9 . We can apply Lemma 14.8 always to (A, A') = (S*, A(fc)). Consider on 
the other hand (A, A') = (5 , S*). In that situation we have MésSk = M ® z k 
for any 5-module M ; usually we shall write Mk instead of Msk- In Case 2 
we have char(fc) = 0 and Sk is flat over S; so we can apply Lemma 14.8. On 
the other hand, in Case 1 we have char(fc) = p ^ 0 and so Sk is not a flat 
module over S. 

However, most of the M in /C(fî ,5) to be considered will satisfy the 
following condition: 

(TF) EachM(\,f3)° has no p-torsion. 

This condition implies (in case (31À ^ A) that the short exact séquence 

0 Af (A,p) — • M(X) 0 M(p î A) — • Af (A, p)° -+ 0 

remains exact after tensoring over Z with k. This implies tha t 

Af(A,/3) ®z A; = AU(A,/3) and Af(A,/3)° ®z = Af*(A,/3)°. (1) 

We get the same resuit for (3 | A = A. So we see that 14.8(2), (3) extend to 
this situation. We get for 14.8(4) a somewhat weaker resuit: 

L e m m a : Suppose that we are in Case 1. Let M and J\f be objects in /C(îl, S) 
satisfying (TF) . Suppose that ail .M(A) are free over 50. Then the natural 
map 

H o m r m G\(MI J\ ) ®z k — • Homrro.sL\(Mk»Nk) 

is injective. 

Proof: We can describe Hom/ç(Q,s)(7W,J\f) (as in the proof of 14.8) as the 
kernel of a natural map 

A 

Hom5* (M(\),Af(\)) 
dv 

A /? 

Homs,(Af(A,/3),Af(A,/3)°). (2) 

Ail summands in (2) have no p-torsion, therefore also the image of ip has no 
p-torsion. This implies that the natural map 

Hom/ç(Q}5) ( Af, Af) ®z k 
A 

Hom5* (M(A),j\T(A))®z fc (3) 

is injective. Our freeness assumption shows that we have natural isomor­
phisms 

Homqi(M(\),iï(\)) ®z k Hom^(Mfc(A),A4(A)) (4) 
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for ail À. So we can rewrite (3) as 

HomK(QiS)(M,Af) ®z k -

x 

Hom5,(At,(A) ,A4(A)). (5) 

This map is the composition of the functorial map 

ïlomKia,s)(M,M) ®zk — • KomK(Q!sk)(Mk, -A/ît) 

with the obvious embedding 

nomK{Qisk)(Mk,Nk) ^ 
A 

Hom5,(7W,(A),^4(A)). 

Since the composition is injective, so is the first map — and tha t is our claim. 

Remark: We can replace the assumption that ail .A4(À) are free over S0 by 

the weaker condition that ail A4 (A) are projective over 

14.10 . We define for ail A G Q and w G W an object Z% = 2%(A) in /C(fi) 
as follows: Set for ail /i G X 

2AM = 
A0, i f u = A: 

10, if fi î A; (1) 

for ail 0eR+ 
ld +dkl +dkd+ k dk B 

1 ^ ( 1 , 0 ) 

if /3|A = A; 

i W A ^ A ; ( 2 ) 

and, if /?î A ̂  A, (with Q\ \ as in 9.5) 

2 A W A , / 3 ) = A*(0,fc*)> i f w - 1 / 3 > 0 ; 
l # ( 0 , l ) , itw-10<O; (3) 

set ail other Z%(/J,,/3) equal to 0. 
Note that Proposition 9.5 says 

A/(Ar,/3) © A/(Ar + p/?,/5), lrfl +d; (4) 

We have obviously 
2X(Â)AI~2X(A') (5) 

for any A-algebra A' as in 14.8; similarly in the situation of 14.9. 

L e m m a : For A = S each 2™ satisfies the condition 14.9(TF). 

Proof: For any A the A^-module A^/hpA13 is isomorphic to A®/A@ (via 

x + hpA13 i—• h^lx + A13)] so each nonzero Z\(ii,f3)° is isomorphic to A®/A13. 
Therefore the claim follows from Lemma 14.3. 
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14 .11 . Recall the définition of compatible subobjects from 9.11. We make 
the same définition in JC(Q,A) for any A as in 14.5. As in 9.11 we define 
for each Af in /C(Q, A) and each compatible subobject Af of M the quotient 
AAjAf. Furthermore, we define the inverse image in Al of a subobject in 
AAjAf as in 9.12. The remarks from 9.12 generalize to this situation. 

Consider for A as above an A-algebra A! as in 14.8. 

L E M M A : Suppose that Af is a flat A-module. If Af is a compatible subobject 
of an A4 in ]C{Q,A), then AfA> a compatible subobject of AAA' and there is 
a natural isomorphism (A4/Af)A> —> MA>/AfA>. 

Proof: The flatness implies easily that AfA> is a subobject of A4A>. The 
compatibility condition 9.11(1) means that Af(\, (3) is the kernel of the natural 
map 

M(X,8) (M(X) ®M(3] A))/(7V(A) © M (3 î A)) (1) 

(with an obvious modification in case /3 | À = À). The flatness of A' over A 
iipaplies tha t AfA' has the same property inside Al a s hence is is a compatible 
subobject; also the last claim follows. 

14 .12 . As in 9.13 we can make K(Q) into a (pZiî)-category: We define the 
functors Af H-+ M\pu] with u G ZR by the formula 9.13(1). The statements 
in 9.13(2), (3) extend. The définition in 14.10 implies for ail À and w 

Z\ ]pv] = Z\+vv. (1) 

Each functor Al i—• A4\pu] commutes obviously with any extension of 
scalars as in 14.8. 

For A = A(k) the choice of in Section 13 satisfies e@(p + pu) = e@(u) 
for ail see 13.25. So 9.13(5) implies that Vçi is a (pZJî)-functor. 

14 .13 . Following the gênerai convention in E.3(l) we set for ail Al and Af 
in KXQ) 

noml(Q)(M,Af) = 

kq 9+dj 

Hom/qm (M \pv\, M). (1) 

There are only finitely many nonzero summands on the right hand side: In-
deed, if Hom/c(Q)(Al[pz/], Af) 7^ 0, then there are À and p with At(À) ^ 0 and 
Af(p) 7^ 0 and p — À = pu; this leaves only finitely many possibilities for u. 

Consider the case A — A(fe); take M , N in FCA(Q) and set Al = V Q M , 
J\f = VçiN. Since Vçi is a (pZitî)-functor (and fully faithful) we have 

Hom>m)(M,JÏ)* 

ks +dk ekd 

Romc( M\pv],N). (2) 
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Regard k as an A(fe)-algebra via the augmentation map (taking ail h7 to 0). 
If M is projective in CA(k) and if N is projective over then Proposition 
3.3 and (3) imply 

Homj^(n)(.M,-A0 ®A(k) k ~ 
v€ZR 

Homck(Mk\pvlNk) (3) 

Claim: If p is prime to the index of connection of R, then 

Hom^(n)(Al ,J \0 ®A{k) k ~ 
Homfl (M, N), in Case 1, 

[ Homu (M, N), in Case 2. (4) 

Proof: Compare (4) to 4.2(6)-(8). We see that we have to show: If v e X 
with Romck(Mk[pu\^Nk) ^ 0, then v E ZR. Well, if tha t Hom space is 
nonzero, then there are weights À of M and fi of N with fi — A = pu. If Ai 
is an élément of fi, then ail weights of a module in CA(Q) are in the coset 
Ai + ZR. So we get now pv E (ZR) Ç\pX. By assumption p is prime to the 
index of connection [X : Zi2], and so v E ZR as desired. 

14.14 . Assume from now on that p is greater than or equal to the Coxeter 
number. Fix a regular W^-orbit fi. This means that the stabilizer in Wp of 
any élément in fi is trivial. So fi is the orbit of an élément such as the À in 
13.2. Let T be a good W^-orbit. As in 10.2 we dénote for each À 6 fi by Àr 
the unique élément in T contained in the closure of the alcove of À. Dénote 
for ail A E fi and (3 e R+ the élément C^(A,Ar) from 13.4(1) by af and set 
tf* = ( a f ) - 1 . 

We define functors T : /C(fi) K(T) and T : K(T) /C(fi) using the 
formulas 10.10(5)-(8) with the af and &f as above. There are a few sim­
plifications since (3 j A ^ A for ail A E fi and ail j3 (because fi is regular). 
Furthermore, we can apply the remark to 10.11 since our af satisfy the as-
sumptions there. Let us state the définition explicitly: We set for ail M in 
/C(fi) 

TM(ii) = M(X) 
d r *=(ll) 

( i ) 

for ail n e T, and (for ail (3 € R+) 

TM(fi,f3) = 
Àr=/i=(/?fÀ)r 

(bll)M(\,3), ( 2 ) 

if j3]n = resp. 
TM(n,0) = 

Ar=/x 
(6f,l)A<(A,/?). (3) 
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For any Af in fC(T) we define T'Af by 

T'Af{\) = M(XT) for ail A G fi, ( 4 ) 

and (for ail 8 G R+ and A G fi): 

T'A/-(A,/3) = 

( a f , l W ( A r , / 3 ) , i f / ? îAr + Ar; 
A/(Ar,/3) © A/(Ar + p/?,/5), if (/3îA)r = Ar + 

( 5 ) 
I {(s + a fy .y ) | x, y G AT(Ar,/3)}, 

if ( / n A ) r = A r , / 3 î A ^ A . 

One checks as in 1 0 . 1 0 that T and T ' préserve the finiteness conditions 
in the définition of the combinatorial catégories. It is clear how to define T 
and T1 on morphisms. 

It is easy to see that T and T ' commute with the extension of scalars 
functors defined in 1 4 . 8 . We have C(3(X + pu, (A + pv)r) = C&(\, Ar), hence 
a{ = a{+pv and b{ = bf+J>|/ for ail A G f3 G and v G ZR. So T and T 
are compatible with the functors Q i—• ô[pz/] on /C(f2) and on /C(T) (for each 
v G Zi?), i.e., they are (pZiî)-functors in the sensé of E . 3 . 

In the case A — A(k) we have isomorphisms 

A/(Ar,/3) © A/(Ar + p/?,/5)kd and VQ O T' T' o VR (6) 

with T = TQ and T ' = T)? as in 1 0 . 1 . This follows from Proposition 1 0 . 1 1 
and Theorem 1 3 . 4 . (Recall the choice of VQ and Vr in 1 4 . 1 . The construction 
of the isomorphism in 1 0 . 1 1 involves the choice of certain f\ in 1 0 . 1 2 . We 
choose them as in 1 3 . 9 resp. as in 1 3 . 1 5 . The maps t[fx,f^x] and 0[f\,fffî\] 
from 1 0 . 3 ( 1 ) and 1 0 . 5 ( 1 ) are then equal to certain ^ [ (A ' ) r , A'], cf. 1 3 . 4 ( 4 ) . We 
get then tha t 1 0 . 1 0 ( 1 ) , ( 3 ) are satisfied for the as above.) 

14.15 . Let (fîi , î î2) be either (ÎÎ,T) or ( r , î î ) with Q and T as in 1 4 . 1 4 . 
Dénote the corresponding functor ( T or T ' , as constructed in 1 4 . 1 4 ) by 71 : 
/C(îîi) ->/C(îî2). 
L e m m a : Let M be an object in /C(fîi). 

a) Each A®-module TiM(X) with A G fi2 i& isomorphic to a finite direct sum 
of certain M(p) with p G Q\. 

b) Let (3 G R+. Each A?-module TyM{\,t3) with ÀGfi2 is isomorphic to a 
finite direct sum of certain M(p, (3) with p G fîi. 

c) Let (3 G R+. Each A?-module TiX(A,/3)° with A G fi2 is isomorphic to a 
finite direct sum of certain Ai(p,f3)° with p G fîi. 
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Proof: The claim in a) is obvious from 14.14(1), (4). For b) and c) note: Let b 
be a unit in A0. For each // G fii with P\fi± fi the map (x, y) \-+ (bx, y) is an 
automorphism of the A0-module M(fi) © A4(P]fi). In induces isomorphisms 
of -modules 

M(n,p-)-=^(b,ï)M{n,SSSS&) 

and 
M(ti,ô)° = (M(pSSSS)(BM(3U))/M(n,(3) 

(M(n)(BM(3]ii))/(b,l)SSM(t*,0). 

For each \i G fii with p ] fi = fi the map (x, y) i—> (# + fo/, y) is an isomorphism 
of A^-modules 

M(fi, P) © M ( / i , SSS D{(x + by, y)\x, y G M(fi, (3)} 

and induces an isomorphism of A^-modules 

M(fi)IM(fi,P)®M(fSSSSSi)IM(fi,p) 

^ (M(fi) © Ai(fi))/{(x + by, y)\x,ye M(fi, p ) } , 

Now the claims follow easily from 14.14(2), (3), (5). 

14.16 . Keep the notations from 14.15. That lemma says that T\ préserves 
(i.e., that T and T' préserve) many properties. In particular, if each AA(fi) 
with fi G fii is free (resp. torsion free, resp. a projective module) over A0, 
then so is each T\M(À) with À G fi2- There is a similar statement for the 
M(fi,P) with A13 replacing A0. 

We see also in case A = S: If A4 satisfies 14.9(TF), then so does T\ Ai. 

14.17. L e m m a : Suppose that A4 has the foliowing property: Each AA(fi,P) 
with P G R+ and fi G fii générâtes AA(fi) (in case P ] fi = fi) resp. A4(fi) © 
A4(P\ fi) (in case p ] fi ^ fi) over A®. Then T\AA has the analogous property. 

Proof: The condition that A4(fi,P) générâtes A4(fi) © A4(P | fi) (in case 
P t fi 7^ fi) means that there is for each x G A4 (fi) © A4(P î fi) an integer 
m > 0 with h™x G A4(fi,P), cf. the proof of 14.6.a. In other words, it means 
that there is for each x G A4(fi, p ) ° an integer m > 0 with h™x = 0. This last 
version works equally well for P j fi = fi. Now it is clear by Lemma 14.15.C 
tha t this property is preserved under 7 i . 

Remark: Note that the condition in this lemma implies the condition in 
Lemma 14.6 (also used in 14.7): Each AA(fi)p générâtes Ad(fi) over A0. In-
deed, this is obvious for P]fi — fi. For P\fi ^ fi take any x G A4(fi). As we 
saw in the proof, there is an integer m > 0 such that 

h%(x,0) = (h%x,0)eA4(fi,P). 

Then h™x G M(fi)p. This shows that M(fi)p générâtes A4(fi) as claimed. 
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15 .1 . In this section we are going to look at certain graded rings and mod­
ules. We are going to use the gênerai conventions from E. l . Unless explicitly 
stated otherwise, graded means Z-graded in this section. 

The algebras S and 5* have a natural grading. We change this grading 
such that each ha with a G R has degree 2; so we have S = 0 d > o S ^ ; 
similarly for Sk-

Suppose until 15.4 that A is a graded 5-algebra tha t satisfies the as-
sumptions of 14.5. We get each A@ and A? from A by localizing with respect 
to a multiplicative set consisting of homogeneous éléments. So we get induced 
gradings on the A$ and on A0. 

15.2 . Let Q be an orbit of Wp in X. We define a graded version /C(îî) = 

IC(Q,A) of the category IC(Q,A). An object in /C(Q, A) is an object Ai in 
/C(fî, A) with a grading 

M(\) = 

X < K 

A<(A), (1) 

(for each À G 0 ) as an A0-module such that each Ai{\,(5) is a homogeneous 
subgroup (in fact: a homogeneous A^-submodule) of Ai(\)®Ai((3] A) resp. of 
M(X). Morphisms are morphisms in /C(fi, A) that respect the gradings, i.e., 
with ip\M.(\)i C À4'(A); for ail A and i (using the notations from 14.5). 

We have an obvious forgetful functor from /C(fî, A) to /C(Q, A). We shah 

often use the same notation for an object in /C(f2,A) and for its image in 
/C(fî, A); it should then be clear from the context what we mean. If M is an 

object in /C(fî, A) and if r is an integer, then we define J\4(r) as Ai with the 
grading shifted by r, i.e., with 

M(r){\) = M(\)(r) (2) 

for ail A G $1. Obviously M(r) and M define the same object in fC(Q, A). 

If M and M are objects in /C(fî, A), then set for ail integers r 

Hom/c(Q,A)(X,Ar)r = {(p G Hom/c(Q5A)(A4,AO | (fM(X)i C AT(A)i+r Vz, A}. 
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We have 

H O M K ( N > J 4 ) ( M , j y 0 r = Hom~içlA)(M(r),Af) = Hom~(QA)(M,Af(-r)) (3) 

and 
HOM/C(1M)(A1 , .AO = 

R e z 

HomK{Çi>A)(M,N)r. (4) 

Note tha t this is a grading of Rom^nfA)(M, J\f) as an A-module. In the case 
M = Af it makes Endjc(n}A){M) into a graded A-algebra. We have as in 
E. l(3) for ail s G Z 

Hom;c(f i jA)(X(-s) ,A0 = RomK(ÇÎ}A)(M,N)(s) = Hom/c(Q>A)(Af, A > ) ) . 

(5) 
If A' is a graded A-algebra that also satisfies the assumption in 14.5, 

then we have a natural extension of scalars functor from £( f i , A) to /C(fi, A1). 
(For Al in /C(fi, A) define Al ,4/ as an object in /C(fi, A') as in 14.8 and take 
then the obvious grading on each MA'(\), i.e., each x ®b with x G A4 (A); 
and 6 G A^ gets degree i + j.) The functorial maps 

Hom/c(fi)A)(Af,M) ®A A1 -> H o m ^ f l ^ j l M A ' , ^ ' ) ( 6 ) 

(for Al and A/" in /C(fi, A)) préserve the grading. 

15 .3 . Consider as an example the Z\ introduced in 14.10. We make them 
into objects in /C(fi, A) by choosing the given grading on Z%(\) — A0; so the 
generator 1 of this module gets degree 0. It is then obvious from 14.10(2), 
(3) tha t ail Z™(/i,/3) are homogeneous submodules. We shall always take this 
grading, when we regard Z% as a graded object. 

Take w, x G W and À G fi and consider Hom/ç(Q,A)(^A ? Z\) as a graded 
A-module. Any homomorphism ip : Z™ —• Z\ takes the generator 1 of Z™(\) 
to an élément of Zxx(\) = A0. So there is an élément a G A0 with ^(1) = a? 
and i\) is uniquely determined by a. The condition that if; maps each 2^(À, (3) 
to 25(À,/3) is équivalent to a G A^ for ail /3, hence to a G f ] ^ ^ = A. We 
get additional conditions from the f3 with /3 î A ^ A. If w-1/3 < 0, then the 
condition is tha t ahp G A^/i^ (if x~lf3 < 0) resp. that ahp G A^ (if x~x(3 > 0). 
This is automatically satisfied for a G A. If w~l(3 > 0, then the condition is 
tha t a G A^hp (if < 0) resp. that a G A^ (if > 0). In the second 
case this condition follows from a G A, but in the first case we have to satisfy 
a G A@hp fl A; this shows that we have an isomorphism 

EomK{ÇitA)(Z^,Zl) An 

b<0,B\=i 
«u-1^<0,x-1^>0 

ABhB 
(1) 
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The right hand side is graded and the isomorphism is compatible with the 
gradings. 

We can do better if A is equal to S or to 5*. Then A is a unique 
factorization domain and hp is irreducible in A. This implies that A^hpDA = 
Ahp for all (3. Furthermore, the hp are not proportional for distinct ¡3 (under 
our assumptions on the characteristic of k in Case 1), so we can rewrite (1) 
as 

HomK(M,A) (Zw, ZY) = A- n 
β>0,β\λ^\ 

w~ τβ<0,χ- 1β>0 

hp. (2) 

For arbitrary A this works still in those cases where the product is empty, 
e.g., if w = x or if w — 1. 

15.4. Let us restate the most important cases of 15.3(1), (2). In order to 
simplify notation we set 

Zy = cri EBBI ZY = Zwo (1) 

for all A G X. The number 

iVA = | { / 3 G i ? + | / n A = A}| 
= \{peR+ \(\ + P,Pv) = 0 (modp)} | 

= \{H e n I A e H}\ 

(using the notation from 13.4) is constant on W^-orbits. Set 

NQ = iVA for all A e 0. (2) 

Now 15.3(1), (2) yield obviously (since each hp has degree 2!) 

Lemma: We have for all A £ $7 an isomorphism of graded A-modules 

Horn/cm tA)(Zx,Zx) ~ A. (3) 

If A is equal to S or Sk, then we have also an isomorphism of graded A-
modules 

Homx; ( Q ) A ) (2 ' A ,2 A ) ~ A(2(\R+\-Nçl)). (4) 

Remark: If ¡1 ^ A, then there is not a weight v with 2?\{y) ^ 0 and Z^(u) ^ 0; 
so we get (for all w, x and arbitrary A) 

H o m ^ , A ) ( ^ , ^ ) = 0. (5) 

197 



H.H. ANDERSENJ.CJANTZEN, W. SOERGEL 

15.5· In the next sections (until 15.12) we shall mainly look at the case 
A = Sk and the relationship between JC(Q,Sk) and K(Q,A(k)). If M is an 
object in /C(f2, A((k), then an Sk-form of M is an object A4' in /C(fi, S*) with 
(A^/)^4(jt) = A4; or, more rigorously, with a fixed isomorphism (M!)A(1Z) 
Af. Similarly, a graded Sk-form of A4 is an object Af in /C(Q,5jt) with 
M*A(k) — M. (Note that A(k) is not a graded ring; so the last identity is in 
/C(fi, A(k)), not in a — nonexistent — JC(Q,A(k)).) 

If Af and Af are objects in /C(fi, -A(fc)) and if At' resp. A/"' is an S^-form 
of Af resp. of A", then 14.8(4) implies 

Hom^ ( Q J5 J b)(A^^AΓ ,) (8)5, A(fc) - Hom^ ( f i j v 4 ( A : ) ) (A4,A r ) . (1) 

If A4 is a graded 5fc-form of an object A4 in /C(îl, A(k)), then so are all 
M(r) with r e Z . 

We shall be mainly interested in graded S^-forms of certain V^M with M 
in TCA{k){®)' For example, each Z% is a graded 5^-form of VçiZ^k^(\{w)), 
cf. 14.10(4), (5). 

15.6. Let A4, A/" be objects in /C(fi, A(A;)), let Af resp. A/* be a graded 5*-
form of M resp. AT. Suppose that Hom/qQĵ (fc))(A'f, A/*) is a finitely generated 
A(k)-modn\e. Then 15.5(1) and Lemma E.8.c imply that Hom/q^s^A^, AT) 
is a finitely generated 5*-module. Since Sk lives only in degrees > 0, there is 
then an integer r with Hom/q^s^A'f , J\f)i — 0 for all i < r. We get therefore 

Hom/c(n,A(*))CM,A0 = 
n 
i>r 

Hom K ; ( f i ? 5 f c ) (A^,A r ) 2 . (1) 

Note: If M = VQM and M = VQN for some M, iV in . F C ^ f f t ) , then 
Homx;(QJ^(A:))(Al, A/') is finitely generated over A(k) by 9.4 and 2.8. So we 
can apply (1) in that case. On the other hand, in some cases we can deduce 
finite generation of H o m / c ^ s ^ A l , A/*) from Lemma 14.7. 

Lemma: Let M be a nonzero module in JrCA(k)(^) and let Af be a graded 
Sk-form ofVQM. 

a) M is not isomorphic to any A4(z) with i ^ 0. 

b) If M is indecomposable, then End- x(A4) is a local ring and Af is 

indecomposable in JC(Q,Sk)-

c) If M is indecomposable and if M! is another graded Sk~form ofV^M, then 
there is an integer n with A4' ~ M(n). 
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Proof: The discussion above implies that End/c(i2,sfc)(.M) is a finitely gener­
ated graded Sk-module and that there is an integer m with E n d / c ^ s ^ C M ) * = 
0 for all i < m. This implies that all / G 0 2 < O ^^K(Q,sk)(M)i are nilpotent. 
If / G End/c(Q,sfc)(A4)i (for arbitrary i G Z ) is invertible, then f"1 has to 
belong to EndfC(Qisk)(M)-i. We see that any / G End^n }Sk)(M)i with i ^ 0 
is not invertible; this yields a). If we take i = 0, we get from Lemma 14.2.a 
the first claim in b); the second one is then obvious. 

Consider now X ' as in c). We can regard the identity map on VQM 
as an element in the completion of H o m / c ^ s ^ A ' f , Mr), cf. (1). So we can 
decompose id = Y^L_sir with each ir G Hom/c(n,5A :)(Al,M') r- Similarly, 
we can regard it as an element in the completion of Homfc(^}sk)(M\«M) a n d 
decompose id = ^2^L_3 jr- (We may assume that we start with the same 
index —s < 0.) We get then id = X ^ = - S j-r ° ir in 

EndK(M,Sk) (M) = EndK{Q,Sk)(M)o C End/c(fì,A(À:))(VfìM), 

so at least one summand j _ n o in has to be a unit in End/q^^fc^VftM). 
Denote its inverse by / . Then / has to be contained in End~^fi S^{M). We 

get a direct sum decomposition M1 — in(M) © ker(/ o j_n). Since M! is 
indecomposable, this yields M' — in(M) — M(n) as desired. 

Remark: Part c) of the lemma implies for all A G X that the 2%(r) with 
r G Z are the only graded S^-forms of Vo,Z^k^(\(w)) (for any A and w). 

15.7. Proposition: Let Mi and M2 be modules in TC^^iyt) wiih Mi 
indecomposable. Suppose that M is a graded Sk~form of Vft(Mi © M2) and 
that Mi is a graded Sk~form ofV^Mi. Then there exists a graded Sk~form 
M2 of VQM2 and an integer n with M ~ Mi(n) © M2. 

Proof: Set M = Mi © Af2, let t : Mi -> M and 7R : M -> Mi be the inclusion 
and the projection. We can decompose, cf. 15.6(1), 

i = 
oo 

E 
r= — 3 

r with tr G Hom K ( C ì ì s k ) (Mi ,M) r 

and 

7T = 
oo 

E 
r— — 3 

7Tr 
with 7rr G Hom K (Q ì S k ) (M,Mi) r . 

Then 7T o ¿ = ^2s

r=_s 7r_r o ¿ г is the identity on Mi. Since End~^fì s f c )(*^i) 1 S 

a local ring by Lemma 15.6.b, there is an integer n such that 7R_N o ¿ n is a unit 
in this ring; denote the inverse by / . Then e = ¿ n o / o 7r_n is an idempotent 
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in End~^fi 5 f c ) ( ^ ) and we have a decomposition M = eM © (1 — e)M in 

/C(fi,5jt). Furthermore in — e o ¿ n is an isomorphism Mi(n) eM with 
inverse / o 7r_ n. We want to take M2 = (1 — e)M and have to show that 
((1 — e)^)A{k) 1S isomorphic to VQM2 in /C(fJ, A(k)). 

Regard e as an endomorphism of V Q M and identify it with its inverse 
image under VQ. We have Vfi(eM) — e(MA(k)) = (eM)A(k) — V Q M I , hence 
eM ~ Mu and V n ( ( l - e)M) = (1 - c ) ( M A ( A ) ) = ((1 - e ) A 4 ) ^ w . We get 
also M = eM® (1 - e)M ~ Mi © (1 - e)M, hence (1 - e)M ~ M 2 by Lemma 
14.2.b. So we get indeed ( (1 - e)M)A(k) ~ V Q M 2 . 

15.8. Consider for the moment an arbitrary (graded) A as in 15.1. If 

M is an object in /C(fi, A) and if AT is a compatible subobject that is also 
a homogeneous subobject (this amounts to: each Af(\) is a homogeneous 
submodule of M(\)), then we get a natural grading on M/Af. The inverse 
image in M of a homogeneous subobject of M/Af is then homogeneous. 

Lemma : a) Let M be an object in /C(fi, Sk) and Af a homogeneous subobject 
of M. If J^A{k) ^ a compatible subobject of MA(k)? then Af is a compatible 
subobject of M. 

b) If M and N C M are modules in «H?A(fc)(^) w^h M/N fiat over A(k), and 
if M and Af C M are graded Sk~forms of VQM resp. of V^N, then Af is a 
compatible subobject of M and M/Af is a graded S^-form ofV^iM/N). 

Proof: a) If L is the kernel of a map as in 14.11(1), then Af(\,/3) C L. 
Both L and Af(\,/3) are homogeneous. The assumption on AfA(k) in MA(k) 
implies that Af(\,f3) ®sk A(k) = L ®Sk A(k) inside M(\,f3) ®Sk A(k), hence 
that (L/Af(\,(3)) ®sk A(k) = 0. Since L/J\f(X,/3) is graded, this implies 
L/Af(\,/3) = 0 by Lemma E.8.a. We get thus jv (A,/3) = Las claimed. 

Now b) follows easily from a). 

Remark: Suppose in b) that Q is a submodule of M containing N with M/Q 
and Q/N flat over A(k). Suppose that Q' C M/Af is a graded S^-form of 
VQ(Q/N). Then the inverse image Q C M of Q1 is a graded S^-form of VMQ. 
(Note that Q,A(k) C M*A(k) 1S the inverse image of QFA(k) a n d aPPly the final 
remark in 9.12.) 

15.9. Suppose that M is in .H?A(fc)(^) a n ( i that M G JC(Q,Sk) is a graded 
5fc-form of V Q M . We call a filtration 

0 = Mo C Mi C M2 C . . . C Mr = M (1) 

of M permissible if all Mi are homogeneous subobjects of M and if there are 
submodules Mi of M with M/Mi (and hence Mj) flat over A(k) such that 
VnMi = (Mi)A(k) for aU i- The inclusions (Ali)A(Ar) C (Mj)A(k) for « < j 
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yield then inclusions Mj C Mj. Each Mj/Mi is flat over A(k), so (A^)^(fc) is 
a compatible subobject of (Mj)A(k)- Now 15.8 implies that also each Mi is 
a compatible subobject of Mj and that each Mj/Mi is a graded S^-form of 
VM(Mj/Mi). 

Suppose that (1) is a permissible filtration and that we are given for each 
i > 0 a permissible filtration of MijMi~\. We can then refine (1) by inserting 
(for each i > 0) the inverse images in Mi of the terms in the given filtration 
of MijMi-\. The final remark in 15.8 shows that this refinement is again a 
permissible filtration. 

If a filtration as in (1) is permissible and if there is for each i > 0 a weight 
Hi G Q and an integer rrii such that in /C(fi, Sk) 

Mi/Mi-! ~ Z^rrii), (2) 

then we call it a permissible 2-filtration. If so, then 

VQMÌ/VQMÌ-Ì ~ (Mi/Mi-i)A{k) ~ VçiZA{k)(m), 

hence Mi/Mi-i ~ ZA^(/di) for all i. On the other hand, if there are fii € Q 
such that Mi/Mi-i ~ ZA^(fii) f ° r 1 < z < r> then each M%/Mi-\ is a 
graded S^-form of Vo,ZA(k){ni). There are then integers such that (2) 
holds for all i; so (1) is a permissible Z-filtration. 

We define analogously a permissible Zf -filtration of M to be a permissible 
filtration as in (1) such that there are /i,- £ Q and integers rrii such that 

K(Q,Sk) 
Mi/Mi-i ~ 2^. (mj). (3) 

Arguing as above we see that this is equivalent to Mi/Mi-! ~ Z'A(k)(ui)using 

the notation 
Z^(/i) = Z7(/ i (« ;o)) (4) 

for any U°-algebra A and all fi £ X. 

15.10. Proposition: Let M and N be modules in TCA{k)> let M (resp. 
J\f) be a graded Sk-form of VQM (resp. OJVQN). Suppose that M has a 
permissible Z-filtration with factors Z^^rrti), 1 < i < r, and that J\f has 
a permissible Z!-filtration with factors Zlv.(jij)} 1 < j < r. Then we have 
isomorphisms of graded Sk-Tnodules 

H o m ^ s ^ A ^ A O = Θ 
i, j; µi = vj 

Sk(rij - mi) (1) 

and 

HomK (a t S k)(Af,M) = Θ 
i, j; µi = vj 

Sk(mi-nj + 2(\R+\-Nçl)). (2) 
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Proof: Write A = A(k). Fix a filtration of M as in 15.9(1) and consider 
the submodules Mj of M as in 15.9. So we have Mi/Mi-i ~ ZA^I) and 
M.i/Mi-i — Z^^rrii) for all i. We consider first (1) in the case where iV = 
Z'A(u) for some v G X. By 4.13(1) each 

0->Romc( MM.!, Z'Jv)) Homc{MuZ'A(v)) 

Romc(Mi-uZ'A(u)) 0 

is exact, hence so is each 

0 Hom^n^VniMi/Mi -O .VnZ^i / ) ) Hom^n^íVnMi.VnZ^íi/)) 

Hom J c ( Í M )(V n M i _ 1 ,VnZ; i ( i / )) 0. 

By our assumption, we can rewrite this as 

0 - EomK{ci¡A)((Mi/ML-1)A,(K)A) Hom/c(n|j4)((>í¿)i4, (ЮА) 
KomK(cltA)((Mi-i)A, (K)A) 0. 

The maps in this sequence arise from the corresponding maps over 5jt by 
extension of scalars from Sk to A(k). Lemma E.8.b implies that the corre­
sponding sequence over Sk (of graded Sk-modules) is again exact: 

0 Rom.K(çltSk){MilMt-1,Z'v) Н о т ™ ,sk){MuZv) 
H o m ^ s ^ O M , - ! , ^ ) 0. 

The first term is by 15.4(5) equal to 0 if fii ^ v, otherwise it is isomorphic to 
Ski—mA by 15.4(3) and 15.2(5). This shows that (as graded 5fc-modules) 

HomK(n,st)(^.4) = Θ 
i = v 

Sk(-mi) 

and (slightly more generally, cf. 15.2(5)) for all n G Z 

KomK{QiSk)(M,2!u(n)) = φ 
µi = v 

Sk(n - mi). (3) 

Consider now arbitrary N with a permissible filtration as in 15.9(1) with terms 
now denoted by J\fj and with corresponding submodules Nj of N. Suppose 
now that Nj/Nj-! ~ Z'A{VJ) and Afj/Afj-i ~ Z'v. (rij) for all j. By 4.13(1) 
each 

0 Homc(M,^_1) Homc(M,JVj) Homc(M,iVj/iVi_1) 0 

is exact. Arguing as above we see that each 
0 Hranjc(n)Si)(Al,A/]i-i) • Kmk(M,Sk) (M,Nj) 

KomK(Q,sk){M,Z'v.(nj)) 0 

is exact. The last term is by (3) isomorphic to the direct sum of all Sk (rij-m;) 
with fii = Vj. This yields (1) by induction. The proof of (2) is similar and 
left to the reader. (One has to use 15.4(4) instead of 15.4(3) and 4.12(1) for 
w = WQ instead of 4.13(1).) 
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15.11. For a graded S^-module M of the form 

M ~ 
3 

O 

t=l 

Skiu) (1) 

with ri E Z the rz are uniquely determined by M (with its grading). This 
follows, for example, by looking at the Poincaré series of M as a graded vector 
space over k = (Sk)o- We can therefore define the graded rank of M as the 
element 

rkM = 
s 

E 
¿=1 

t~ri e Z [ M - 1 ] (2) 

in the ring Z[t,t x ] of Laurent polynomials over Z . (The minus sign in the 
exponent will simplify some formulas later on.) We have obviously 

rk (M(r)) = * _ r rkiV for all r e Z . (3) 

Proposition 15.10 yields a formula for rkHom/C;(Q55fc)(A
/f, AT). Let us state 

explicitly two special cases: First take AT = Z1^ with /i G Q. Then 

rk Homk(M,Sk)(M,Z'µ) = 
E 

w E Z 

[M : ^ ( m ) ] < r o 

(4) 

where [AA : 2^(ra)] denotes the multiplicity of Z(X(m) as a factor in a permis­
sible 2-filtration of M. Note that this formula together with the uniqueness 
in (1) shows that [AA : Ztl(m)] is independent of the choice of the permissible 
infiltration. We have similarly 

rkHom/e^s^Z^AO = 
E 

nez 

[M : Ζ'μ(η)]Γ« (5) 

where now [Af : Z'^(n}] denotes the multiplicity of Zl^n) as a factor in a 
permissible ^'-filtration of Af. As before, this number turns out to be inde­
pendent of the choice of the permissible ^'-filtration. 

Note that the uniqueness result above does not extend to and the . 
For example, multiplication by any ha is an isomorphism Sk Sk (—2). On 
the other hand, it does extend to S. 

15.12. Lemma: Let M be a module in JrCA(k)(^)- Suppose that AA is a 
graded S-form of V&M. If M has a Z-filtration, then there exists a permis­
sible Z-filtration on AA. 
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Proof: Write A = A(k). Let A G ft be maximal for M\ ^ 0. Then there is (by 
2.14) a submodule N of M such that N c± ZA(X)r for some integer r > 0 and 
such that M/N has a Z-filtration involving only factors ZA(y) with ^ A, 
in fact with z/ ̂  A. We have 

Ar ~Romc(ZA(\),N) = Homc(ZA(A),M) 

-Hom^(Q)A)(VQZA(A),VQM) 

~ HamK[Qisk)(Zx,M) ®s„ A. 

Lemma E.8.d implies that Hom/q^s^^x, M) is free over Sk and that we can 
find a basis consisting of homogeneous elements. So there a basis fi, /2,..., fr 

of Homc(Z^(A),M) such that their images Vfi in KomK(niA)(VnZA(\), VQM) 
are a basis of Hom/q^^^^Zx,M) consisting of homogeneous elements. We 
have now N = 0 ^ = 1 fi(ZA(X)) and 

VMZA(\)) = №)VnZA(\) = (vfi)Zy)A 

for all i. Each (Vfi)Z\ is homogeneous. Set 

Mi = E 
j<i 

(Vfj)Zx and Mi = E 
j<i 

№ ( A ) 

for all z, then each Mi is homogeneous and satisfies (Mi)A c± V Q M Z . SO the 
M i are a permissible 2-filtration of J\f = Mr and AT is a graded 5jt-form of 
VniV. Now M/Af is a graded 5fc-form of VQ(M/N); we can apply induction 
to M/N, and then take inverse images in M to complete the proof. 
Remark: A similar proof shows: If M has a Z'-filtration (i.e., a filtration with 
factors of the form Z' a k(//)), then there exists a permissible Z' -filtration on 
M. 

The only change in the proof is that we now take A minimal among the 
weights in Q such that Zf

A,kJ\) occurs as a factor in a Z'-filtration of M. 

15.13· Consider as in 14.14 a regular orbit Q and a good orbit T of Wp in 
X. For any A G M denote by Ap the unique element in T in the closure of the 
alcove of A. Set 

o(A) = o(A,r) = \{H G H | A r G H, A > H}|, (1) 
u{\) = u{\,T) = \{Hen\\T e ff,A < H}|, (2) 

and 
r(A) = r(A,n = o ( A , r ) - « ( A , n 3 

using the notations from 13.4. Note that obviously (for all A £ Q) 

o(A,T) + u(A,T) = Nr. (4) 

Choose (for all /3 £ R+ and all A £ fl) the a{ and b{ as in 14.14. All are 
homogeneous elements in 5^ or in S^h^1. 
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Lemma: We have 

degaf = r(A)-r(/?ÎÀ) and degôf = r(/?ÎÀ)-r(A). (5) 

Proof: Recall that we work here with the grading where degha = 2 for all a. 
Of course it is enough to consider a1 since we take b2 = ( a^ ) " 1 . Set ¡1 = Ap. 
Consider the reflection hyperplanes & with /x G H. Let /3 | i? be the reflection 
hyperplane with /3 | / / G (3]H and a(/3|i7) = ±5^(a ( i7 ) ) . We shall compare 

the contribution of H to the degree of ay to its contribution to r(A) minus 
the contribution of (3\H to r(/3| A). 

Suppose first that spa(H) > 0. Then A > H if and only if /3 | A > (3 | 
if; therefore H contributes the same number (+1 or —1) to r(A) as ¡3 | H 
contributes to r(/3 j A). So the contribution to the difference is 0; on the other 
hand H contributes nothing to a^. 

Suppose now that spa(H) < 0. Then either A > H and (3 ] A < (3 | H 
or A < H and f3 ] A > /3 f H. In the first case we get a contribution of +2 to 
r(A) — r(/3| A), in the second one we get —2. On the other hand, in the first 

case H contribute h_a(H) to a^, in the second case it contributes h~^Hy So 

the degree of this factor is equal to the contribution to r(A) — r(/3| A). 

15.14. In the remaining subsections of Section 15 we suppose (as in 15.1-
3) that A is a graded 5-algebra satisfying the conditions in 14.5. Keep the 
assumption on Q and T from 15.13. Consider the functors T and Tr between 
/C(fi, A) and /C(r, A) as in 14.14. We want to define functors between /C(fi, A) 
and /C(r, A) that yield T and Tf when we forget the grading. 

For M in /C(fi, A) define a grading on each TM(i^t) with ¡1 G T by 

TjM(/ì),- = Θ 
\Γ = μ 

X(A)i_r(A) for all i G Z . (1) 

For A/* in IC(T, A) define a grading on each T'Af(X) with A e O by 

T( N(Y)i = N(Yr)i+r(Y) for all i e Z . (2) 

Proposition: We get on TM resp. on T'M via (1) resp. (2) a structure as 
an element of JC(T,A) resp. of K(Q,A). 

Proof: We have to show that each TM(n,(3) resp. each T,J\f(X,f3) is homo­
geneous. Let us begin with the first case. Each 7\M(/i,/3) is the direct sum 
of certain (fe ,̂ l)M(\(3) with Ap = /i. Now 

(&f,l)A4(A,/fyc M(\)i+r{m-r(x)®M{(3"\\)i 

C TM{ii)i+r{t}\\) ΘΤΜ(βϊμ)i 
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this shows that TM(fi,/3) is homogeneous. 
Consider now T. li/3\\T ^ A r , then TM{\,(3) = (a0

x, l)7V(A r,/3) and 

(af , l )Af(A r , /3) iC AT(Ar) ©AfCSTAr); 

С Τ'Λ/"(λ)ί_ Γ ( / 9 Γ λ ) 
O T'N (B / Y)i-r(B/Y); 

so T'jV(A, /3) is homogeneous. The homogeneity is obvious in the case where 
(yS f A) r = A r +p(3. If (/3 T A ) r = A r , then {(x ,0) | x € Af(A r , /3)} is clearly 
homogeneous; since 

{(aiy^y)\yeAf(\r,M С ΛΓ(λΓ) ί + Γ(λ)-Γ(/?τλ) θ λί(λτ)ί 
C T , AT(A) z _ r ( / ? t A ) © T ^ T A ) ^ ^ ) , 

we see that TfAf(\,f3) is homogeneous also in this case. 

15.15· It is clear that we get now functors between 1C(Q,A) and /C(T,A). 
We shall denote them again by T and T' and call them graded translation 
functors. They commute with extensions of scalars. We can take in particular 
A = Sk and get: 

Lemma: Let M be a module in -H^4(fc)(fi). If M is an Sk~form ofV^M, 
then TM is an Sk~form ofV^TM. If M is a graded Sk-form ofVsiM, then 
TM is a graded Sk~form ofVnTM. 

Proof: The first claim could have beeen stated already in Section 14, since 
it follows from 14.14(6) and 14.16. (Note that we need 14.16 to get TM of 
finite type.) The extension to the graded case is now obvious. 

Remarks: 1) If we have a permissible filtration (Mi)o<i<r of M as in 15.9(1), 
then the TM{ are a permissible filtration of TM. 
2) Analogous statements hold for T ' instead of T. 

15.16. Lemma: We have for all X £Q isomorphisms in /C(I\ A) 

TZX~ZXr(2o(\,R) + NT) (1) 

and 
TZ\~Z'Xr(NT). (2) 

Proof: Set [i = Ap G T and N = TZX. We have 

Λί(μ) = a s 
\'Γ = μ 

ZX(\') = ZX(X) = A9 

206 



REPRESENTATIONS OF ALGEBRAIC GROUPS AND QUANTUM GROUPS 

and N(n') = 0 for all /*' + /i. Consider /3eR+. UPlp^fi, then 

^( / / , /3 ) = (6 t l )2 A (A, /3) = ^(6 f ,0 ) = A^l ,0 ) 

— since b2 is a unit in A13 — and 

Af(f3ii,,f3) = (b^x,l)2x(/3l\P) = A^O,hß). 

If (3 t /i = /i, denote by i? 0 the hyperplane with a(i?o) = fi and V € H0. If 
A < i?o, then 

Af(/i,/?) = ( ^ , l ) 2 A (A , /3 ) = A^hß, 

since b^hp1 is a unit in A^. If A > ff 0, then 

N(µ, B) = (6 j i A , l )2 A ( /3 |A, /3) = Aßhß. 

Set 
Kµ = n 

r E H 
ha(H)-

This is a unit in A0, so is a basis of J\T(p) and we have an isomorphism 
ip : 2^(/i) Af(fi) with ^'(1) = k^. We claim that xp induces an isomorphism 
2^ —> A/* extending it by 0 to all Z^fi1) = 0 with / / ^ ^. We have to 
check that it induces isomorphisms 2^(/i',/3) A/*(/i',/3) for all µ' G T and 
(3 G R+ II ¡3]¡1 ^ ¡1, then kµ is a unit in A13; so ^ takes the basis (1,0) of 
£^(/¿,/3) to the basis ( ^ , 0 ) of A/\//,/3) and the basis (0, / ^ ) of 2^/3 j / / , /3) 
to the basis (0, hpK,^) of A/*(/3 | ¿¿,/3). If /3 | = then K^h^1 is a unit in 
Ab, so aĉ  — (KK^lhp1)h^ is a basis of A/*(//,/3). It is the image under ^ of 
the basis 1 of i^(// , /3), so again ip induces an isomorphism. We have thus 
proved our claim. So far we have not yet taken the grading into account. By 
15.14(1) the element 1 in Af(fi) has degree r(A) when regarded as an element 
of A/*(/i). Furthermore kµ has degree 2iVr, so tft is homogeneous of degree 
r(A) + 2N-p = 2o(A) + Nr. In other words, we have the isomorphism of graded 
objects as claimed in (1). 

Consider now 2lx. We can go through the same series of steps as for the 
Z\ above. Let us point out only the changes. In the general description at 
the beginning we get at the end 

2 A ( /HA,/?) = ^ ( 0 , l ) if /3 | A ^ A. 

Correspondingly we get later on for M = TZ'X that 

A f ( / H M , / ? ) = ^ ( 0 , 1 ) if Pin ± 

207 



H.H. ANDERSEN, J.CJANTZEN, W. SOERGEL 

whereas we get for (31 ¡1 = /i 

λί(μ,β) = 
A*hß, if A < H0; 

A', if A > So-

We consider now xp : 2 > ) 
= Af(fi) with ^(1) = ^ where 

<= n 
TIEH,\<H 

ha(H)-

Now aĉ  is a unit in A 0 , in all Ab with /3 | /i ^ /i, and in those AB with 
¡1 = ¡1 and \> HQ. In the remaining cases K^h^1 is a unit in AA Going 

through the different cases we see that ip induces isomorphisms at all (¿/,/3). 
Now d has degree 2u(X) so ip is homogeneous of degree r(A) + 2w(A) = iVp. 
So ^ induces an isomorphism of graded objects as in (2). 

15.17. Lemma: Suppose that A = Sk- Let ¡1 G I\ Then T' Z^ (resp. T1Z'^) 
has a permissible filtration with factors Z\(—NY) (resp. Z'X(—r(A,T))) with A 
running over all weights in Q with Ap = fJi. 

Proof: We look first at M = TZ^. We have M(X) = 0 for A G ft with 

Ap 7̂  and A4(A) is free over Sk of rank 1, if Ap = //· In the second case 
we denote by g\ the basis of J\4(\) that corresponds to the basis element 1 
of Z^(fi) = S® under the obvious identification. For our choice of grading g\ 
has degree — r(A) = —r(A,T). We have for (3 G R + with [3 ] fi ^ \i for all A 
with Ap = /i 

^(A,/3) = s£( f f A ,0) and A4(/HA,/3) = S£(0,2 A ) . 

(This uses the fact that Ab is a unit in S%.) If /3 | A* = µ, then we get for all A 
with ¡1 = Ap = (/3| A)p 

M(A,/3) = SjfoA,0) O Sk (aYg, gBY), 

M/9TA,/3) = 5 f ( ^ A , 0 ) and M(/3|A,/3) = 5 f ( 0 , 5 A ) . 

We choose now a numbering Ai, A 2 , . . . , A r of {A G ft | Ap = /i} such that 
Xi < Xj implies i < j. We have especially: If /3|A Z = Aj, then i < j, and if 
/3 j Xi = Aj, then j < z. 

We define a filtration 

0 = Mo C Mi C X 2 C . . . C Mr = M 
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of M by 

Mi(Xj) = M(Xj), if j < i; 
0, if j > i 

for all i and j and by 

Mi(\,P) = M(\,P) n (Mi(\) © Mi(P]X)) 

for all i and all A G fi and f3 G R+. Each jVf(A,/3) is obviously homogeneous, 
hence so is each Mi(\,[3) as an intersection of homogeneous submodules. So 
each Mi is a homogeneous and compatible subobject of M. 

On the other hand, the module M = T* Z'A,kAn) has a filtration 

0 = M 0 c M i C M 2 C . . . C M R = M 

with Mi/Ml-i ~ cMiCM2C f ° r a ^ 2 > 0? cf* ·̂•'••'•• We ^ave obviously 

Homc(Z
0(Aj),Mf) = Homc(Z

0(Ai),M
0), if j < *'; 

0, if j > i. 

This implies for all i and A that (A4 ,·),!(*) (A) = VnMi(A). Since both (7W i)A(k) 
and VQMJ(A) are compatible subobjects of M = VQM, we get {M%)A(k) = 

VnMi(X) for all i. So the Mi are a permissible filtration of M. 
Set now .M, = Mi/Mi-i for all i > 0. Let us use the notation gj = g\j 

to avoid double indices. We have obviously 

MAX) = 
Sigi ~ Si if A = AÌ; 

0, otherwise. 

Let P G We have Mi(p Î A,) = 0, hence in each case (/3 j yu ^ /x and 
B/µ = A*) 

M,-(Ai,/3) = 5f(^-,0) = M ( A i , / 3 ) . 

If B/µ^ //, then clearly 

Mi(Pi\i,P) = S%(0,gt) = Mt(pl\t,P). 

We get easily the same result, if /3 | [i — ¡1 and (f3 j Aj)r ^ O n the other 
hand, if /3 | = ¡1 and (/3 j A,-)r = then /3 j A; = Xj for some j < i. 
Furthermore 

Mi(\j,P) = Sl(9j,0)(B Sfrangi) 

and 
Mi-1(\j,P) = Si(9j,0). 
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So Mi(f31 A.,/3) is generated freely (over S%) by the image of (ax.gj,gi). If 
we embed Mi{(3[ Aj,/3) canonically into ,M,-(/3 j A,-) © A^i(A z) this generator 
is mapped to (0,^)· So we get also in this case that 

Mi(Pl\i) = Sl(0,gi). 

It is now clear that there is an isomorphism Zf

x. Mi taking the standard 
generator 1 to g{. If we take the grading into account, we get an isomorphism 

Mi/Mi-i ^ ^ ( - г ( Л 4 ) > . 

The second claim in the proposition follows. 
Let us now look at the first claim and set M — T''Zp. So we have 

M(A) = SÎ9X * Si if A r = u; 
0, otherwise 

where the basis element g\ has degree — r(A). We have now for /3 E -R+ with 
f31 ¡1 ± ¡1 for all A with \ v = ¡1 

M{\,/3) = Sl(gx,0) and M{Pl\,P) = Sl(0,hf,gx). 

If Pi(i = n, then we get (as before) for all A with n = Ap = {P]X)v 

M(X,P) = S^(gx,O)®S0

k(aigx,9m), 

M(Pn,P) = Sl(gfitx,0) and M(PiX,P) = Sl(0,gx). 

We choose now a numbering Ai, A 2 , . . . , A r of {A E $1 | Ap = ft} such that 
Aj < Xj implies i > j. For example, we can take the reverse of the previous 
ordering. We have especially: If /3 f A2 = Aj, then i > j , and if /3 j A; = Aj, 
then j > z. 

We define again a filtration 

0 = M0CM! CM2C ...CMr = M 

of M by 

Mt(\j) = 
M(Xj), if J < i\ 

0, if j > i 

for all i and j and by 

M 2 ( A , / 3 ) = A 4 ( A , / 3 ) n ( ^ ( A ) © M C i S T A ) ) 
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for all i and all A E f2 and (3 E As before, each Mi is a homogeneous 
and compatible subobject of M. 

The module M = T1 Z^k)^) has a filtration 

0 = M 0 C Mi C M 2 C . . . C Mr = M 

with Mi/Mi-i ~ ^ A ( * ) ( A I ) for all i > 0, cf. 7.5. We see as in the other 
case that (Mi)A(k) — V Q M 2 for all i, hence that the Mi are a permissible 
filtration of M. Set now Mi = Mi/Mi-i for all i > 0. Again use the 
notation gj = g\ . We have obviously 

Mi(X) = Sk9i — SI, if A = Ai; 

0, otherwise. 

Let (3 € R+. If ^ /i, then obviously 

A*,-(Ai,/?) = S £ ( 5 . , 0 ) = M(Ai,/3) 

and 
M(i8iA,-, /9) = 5f(0,^) = MiißlXuß). 

Suppose now that /3 j n = ¡1. Let i ? 0 be the reflection hyperplane with ¡1 E Ho 
and a(Ho) = (3. Consider first the case where Â  < Ho, hence /3 | A,- = Xj for 
some j < i. Then 

Mi(Xi,P) = Sfai^QSJlialg^gj) 

and A4j_i(Aj,/3) is the intersection of this module with 5^(0,#.?·), hence 

Mi-i(\i,p) = Sß

k(0,hß9j). 

So Mi(\i, /3) is generated freely (over S%) by the image of (ax.gi,gj). (Think!) 
If we embed Mi{Xi,f3) canonically into Mi(Xi) © Mi(f3]X{) this generator is 

mapped to (ax.#¿,0). Since a^./i^ is a unit in Sfc, we get 

Mi(Xi,p) = S0

k(hJ1gt,O). 

On the other hand, since (/3 |A,-)r 7̂  /i, we have 

M ^ j A , , / ? ) = 5f (0,9i) = Mi(PiXi,P). 

Consider now the case where A, > H0. Then (/?t Aj)r ^ M» hence 

Mi(Xi,p) = S*(gi,0) = Mi(Xi,P). 
Furthermore, we see 

Mi(plXi,P) = Sl(0,hf>gi) = Mi(PlXi,P), 

cf. the determination of Mi-\{Xi,[3) a moment ago in the other case. 
These formulas for Mi imply that there is an isomorphism Z\. Mi 

taking the standard generator 1 to (kµ)-1gi, with kµ as at the end of 15.16. 
This map is homogeneous of degree — r(X{) — 2u(X{) = —N?. The claim 
follows. 
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Remark: The lemma holds for arbitrary A if we drop the word "permissible" 
from its statement. 

15.18. Consider especially the case where T is semiregular, cf. 13.24. For 
each ¡1 G ft there is exactly one weight / / G ft with (//)r = Mr and \J ^ \i. 
One has then either / / < \i or fi < //. 

Lemma: Suppose that T is semiregular. Let AA be a graded Sk~form of an 
V Q M with M in FC^k)^)' If AA has a permissible Z-filtration (resp. Z1 -
filtration), then so has T^T3M. One has then for all yu, / / G f2 with /dr = (/i')r 
and ¡1 < n' and for all r G Z 

[T'TM : 2„<r>] = [M:Zlt(r)] + [M:Z^(r-2)], (1) 

[T'TM:Zlt,(r)] = [M:Z„(r)] + [M:Zfl,(r-2}], (2) 

resp. 
\TTM:Z'^r)\ = [M:Z'tt{r-2)] + [M:Z,^r-2)l (3) 

[TTM:Z',1,{r)\ = [M-.Z'^rft + iM-.Z^ir)}. (4) 

Proof: We know by 15.15 that our translation functor takes permissible ni­
trations to permissible nitrations. The lemmas 15.16 and 15.17 show that 
in our situation T'TM has a permissible filtration where each factor has a 
permissible Z-filtration (resp. Z'-filtration). The discussion in 15.9 (second 
paragraph) shows that we can refine the filtration of T'TM to a filtration 
of the desired type. This construction shows also that it is enough to prove 
(1),(2) for M = Zx and to prove (3),(4) for M = Z!x (for all A G ft). 

Let A' G ft be the weight with (A ' ) r = A r and A' ̂  A. We have NT = 1, 
and o(A) = 1 = r(A) in case A > A', and o(A) = 0 and r(A) = — 1 in case 
A < A'. So the lemmas 15.16 and 15.17 yield in the second case that TfTZx 

has a permissible filtration with factors Zx> and Z\. Similarly, TlTZlx has 
a permissible nitration with factors Z'x(2) and Z'x,. In the first case T'TZX 

has a permissible filtration with factors Z\(2) and Zx>(2), whereas TfTZf

x 

has a permissible filtration with factors Zx,(2) and Zf

x. This yields easily the 
formulas ( l ) - (4) . 
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16. The Main Results 

16.1. So far we have been working with a fixed field k that is either alge­
braically closed of characteristic p ^ 0 (in Case 1), or the p-ih cyclotomic field 
for some odd number p (in Case 2), cf. 1.2, 1.3. In this section we regard k 
as variable, but fix i?, X , W, E. We add (k) to certain notations introduced 
in the preceding sections in order to indicate their dependence on k. For ex­
ample, we shall denote by B(k) the algebra called B before. Note that the 
algebra S introduced in 14.3 depends only on i?, not on k. 

By our conventions p{k) is the characteristic of k in Case 1, it is the 
(multiplicative) order of ( in Case 2. We consider only k with p(k) > h. 
Furthermore, we assume that p(k) is odd; if R has a component of type (?2, 
we assume also that p(k) is prime to 3. 

By our assumption on p(k) we can find (for each k) a weight \o(k) in the 
interior of the first dominant alcove for Wp(^, i.e., with 

0 < {\0(k) + p,av) <p(k) for all a G R+. 

Set ftk = Wp(jc)»Xo(k)'1 this is then a regular orbit of Wp^) in X- Set S a(fc) 
equal to the set of reflections with respect to the walls of the alcove of A0(fc). 
So E a(&) consists of all sa with a G E and of all sa^p with a the dominant 
short root in an irreducible component of R. Then E a(&) generates Wp^y 

We shall always identify the affine Weyl group Wa with Wp^) via s a > m i-> 
Sa,mp- We have a generating set E a for Wa that identifies with Ea(fc) C Wp^)-
For all (3 G R+ and w G Wa we define (3}w G Wa such that ((3^ w).\0(k) = 
(3] (w.X0(k)) for all k (modulo the identification Wa —• Wp^))-

16.2. For each subset E' C S a let W^' be the subgroup of Wa generated by 
E'. We define a category IC(Wa/W^^S) analogous to the categories /C(T, 5) . 
An object M in K{Wa/Wv,S) is a family M(wW&) (wWv G Wa/W&) of 
S 0-modules (almost all equal to 0) together with (for all ¡3 G i ? + and wW^i G 
WJWv) an 5^-submodule M(wWv,P) of A4(wW E/) 0 M((f31 w)We ') if 
{(3] w)Wv + wWv, of M{wWv) if (/?T w)W E ' = wW S ' . The definition of 
morphisms should be obvious. 
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For all k each Wp^)-orbit r in X has a representative fi in the clo­
sure of the first dominant alcove. Then the stabilizer of /i in Wa has the 
form for some E' as above. The map wW^» i—• W./J, induces a bijection 
Wa/Wv T. We now identify K{Wa/W^,S) with K(T,S): We map any 
M in /C(I\5) to the M in K(Wa/Wv,S) with M ( w W E / ) = Af(w.fi) and 
A4(wW E/,/3) = Af(w.(JL,f3) for all w G Wa and all /3 G R+. It is clear that this 
is an isomorphism of categories. 

We define similarly graded categories JC(Wa/W^^ S). The construc­

tion above yields also an isomorphism of categories between /C(T, 5) and 

lC(Wa/Wxt, S). In particular, we get thus isomorphisms between K(Mk, S) 

and JC(Wa,S), between /C(fi*,S) and /C(W^a,5). 
For T and fi as above the root subsystem as in 13.3(1) is determined 

by E'; so it depends on E' only, whether T is good. If so, then we define 
translation functors T from K(Wa,S) to K(Wa/Wz>, 5) and T1 in the opposite 
direction that correspond (for all k and all T as above) to the functors T and 
T ' from 14.14 between /C(fi*,S) and /C(r,5) (under our identifications as 

above). The main point is to note that the a2 = C^(A,Ar) depend only on 
the w G Wa with A = w*\o(k) and on E', not on k. Details are left to the 
reader. 

Also graded versions of T and T ' can be defined that correspond to the 
graded translation functors from 15.14. Now the main point is to observe that 
the numbers o(w.A0(fc)) and u(w*\o(k)) from 15.13(1),(2) depend on w and 
E' only. 

We can define for each ¡1 G ZR a functor M i-+ M[/J] on JC(Wa, S) that 
yields for each k the functor M \—• J\4\p(k)/j] on /C(fU, 5) (as in 14.12) under 
our identifications from above. In this way /C(W a, S) is a (Zi?)-category that 
we can identify with each (p(fc)Zi?)-category /C(fifc,S) modulo the identifi­
cation ZR p(k)ZR, A i—• p(&)A. The corresponding Horn** on K(Wa,S) 
yields then the Horn11 on each /C(fijfc,S) under our identifications. 

16.3· Let s G S a . Choose for all k a weight fi(s)k G X in the closure of 
the alcove of Xo(k) such that the stabilizer in Wp^) of //(s)* is equal to {1 , s} 
(modulo our identification). The orbit 

T(s)k = Wp{k).fi(s)k (1) 

is then a semiregular orbit, hence good, cf. 13.24. There is for each A G flk a 
unique weight A' G ftk with (A')r = Ap (where V = T(s)k) and A' ^ A. Denote 
this weight by As; if A = w.Xo(k) with w G Wp(k), then As = (ws).\0(k). 

We have for each 2?(A;)-algebra B1 a translation functor T from £#'(£}*:) 
to Cs/(r(s)jt) and a translation functor T1 in the other direction. We denote 
their composition by Q3 = T'oT. This functor from CB> (fî*) to itself is usually 
called the translation functor through the s-wall. (The J3(fc)-algebras that we 
are mainly interested in are Bl = A(k) and B' = k via the augmentation 
map.) 
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We have for each A as in 14.5 combinatorial translation functors T and T ' 
as in 14.14 between /C(fifc, A) and /C(r(s)*, A). We denote their composition 
by Q3. So this is a functor from £($!*, A) to itself. If A is graded, then 
we take for T and T ' their graded versions as in 15.14 and get a functor on 
/Cfftjt, A) also denoted by Q3. 

We can carry out the construction of Q3 especially for A = 5. Using 
the identification of K,(Wa,S) with each /C(fijfc,S) we get then for each k a 
translation functor on /C(fifc,S). It is independent of k (by the discussion in 
16.2); we denote this functor again by Q3. 

16.4. Let v G X. Consider for each k the special point p(k)v — p (special 
for Wp(k)) and its (good) orbit 

Tib = WpW.(p(k)v-p) = p(k)u - p + p(k)ZR. 

Consider for each £?(/c)-algebra Bf the translation functor T" from CB'iJ^k) to 
CB'(ftfc) and set 

Q0,v (B') = T'ZB,(p(k)p-p) = T'Z'B,(p(k)u-p). (1) 

(Recall from the remark in 9.5 that ZB'(P) — Z'B,(IJL) for any special point p.) 
Define similarly for each A as in 14.5 

Q$AA) = T' Zp(k)v-P(A) = T' Z'p(k)v-p(A) 
(2) 

where T 7 is the combinatorial analogue to T". If A is graded, then we take 
the graded T ' and regard Q$f„(A) as an element in /C(fifc, A). 

By our identifications each k gives rise to an object Qib)U(S) in /C(W a, S). 
This object is independent of (Well, there is E' C E a such that Wa/W^ is 
identified with Tk for all k. Then there is Z in /C(Wa/T^£/, S) corresponding to 
each Zv(k)v-p(S). Finally the analogue to T' on JC(Wa/Ww, S) is independent 
of k.) 

16.5. For each pair (/, z/), where 7 is a (finite) sequence I = (¿1, i 2 , . . . , i r ) 
of elements in E a and where v £ X, set (for each B(A:)-algebra B') 

QiAB') = Oi Oi … oir Q0,v (B') 
(1) 

Proposition 9.7 implies that ZB>(p(k)v — p) is projective in CB'. Since the 
translation functors take projective modules to projective modules (7.7), also 
each QjiU(B') is a projective module in Cb ; (^^)- The translation functors 
commute with extension of scalars, cf. 7.5(2). Therefore there are natural 
isomorphisms 

Qi,„(A(k)) ®A(k) k ~ QiAk)- (2) 
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Lemma 3.3 yields for all pairs (/, V) and (J, n) as above an isomorphism 

Romc(QiAA(k)),QjAA(k))) ®A(k) k ~ Eomc(Qi,U(k),Qjtll(k)). (3) 

Similarly, set for all (J, V) as in (1) 

QiAA) = &i1@i2---@irQ9LU(A) (4) 
for each algebra A as in 14.5. If A is a graded algebra, then we regard (4) as a 
definition in /C(fifc.-A) using the graded translation functors as in 15.14. The 
statements in 16.3 and 16.4 about independence from k show that we get an 
object Qi,v(S) in K(Wa,S) that is independent of k. 

By 15.15 each QiA^k) is a graded S^-form of VQkQilV(A(k)); it admits 
a permissible 2-filtration and a permissible Z'-filtration. Also the combi­
natorial translation functors commute with extension of scalars; so we have 
isomorphisms (of graded objects) 

QiAS) ®sSk * QiASk)- ( 5 ) 

The compatibility of the translation functors with the functors Q i-> Q[w] for 
OJ e ZR (cf. 14.14) and 14.12(1) imply that for all A and ( i » 

QiAA)M = Ql^+ωίΑ). (6) 
Proposition: a) For each S-algebra A as in 14.5 and each pair (7, v) as 
above Qj)lf(A) is of finite type. Each Qj^(A)(w) with w £ Wa is free of finite 
rank over A 0 . Each Rom^QkyA)(QiiU(A)^ Qjifl(A)) (where (I,v) and (J,/i) 
are two sequences as above) is a finitely generated and torsion free A-module. 
b) Each Qi,„(S) satisfies 14.9(TF) for all primes p. 
c) For all (7,^) and (J,//) as above there are isomorphisms 

Homx:(nJbi5Jb)(Q/>I,(5jb), QjAsk))®sh k = Homc(QiAk)iQjAk)) 
and (in Case 1 resp. in Case 2) 

UOMK(nk,sk)(QiASk), QjAs*))®sk k = Homfl(Q/(J/(fc),Qj»(A;)), 
Homu(Q7|I/(*;),QjiAI(fc)). 

We regard here k as an Sk-algebra via the augmentation map. 
Proof: By 14.16 the Qj^(A) satisfy the first two claims in a) as well as (for 
A = 5 ) the claim in b), since they are obviously satisfied by Zp(k)v-p- Also 
the property in Lemma 14.17 is inherited, hence (see the remark in 14.17) 
each Qijt/(A)(w)p (with w £ Wa and /3 £ i?+) generates QiiV(A)(w) over A 0 . 
Therefore Lemma 14.7 yields the last claim in a). 

We can also apply 14.8(4) to the flat ring extension A(fc) D Sk for 
the Qi^. Combine this with the fact that each (2j>(Sfc) is an 5fc-form of 
VnJbQ/,i/(A(fe)). We get thus by Theorem 9.4 isomorphisms 

HomK{Qktsk)(QiASk),QjAsk))®sk = Homc(QiASk),QjAsk)) 
The first claim in c) now follows from (3), the second one from 14.13(4), the 
first claim, and (6). 
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16.6. Lemma: For all pairs (I,v) and (J,n) as in 16.5 the element 

TkRomKiQ.Sk)(Qi,u(Sk), Qj^Sk)) e Z [ M _ 1 ] 

is independent of k. 

Proof: Each factor in a permissible 2-filtration of Qi,u(Sk) has the form 
Zw.\0(k)(Sk)(r) with w G Wa and r G Z . The multiplicity 

[QiASk):Zw.xo(k)(Sk)(r)] 

depends only on J, v and w. For 7 = 0 this follows from Lemma 15.17. 
For arbitrary J use induction on the length of J and Lemma 15.18 (where 
v1 = vs and v1 s = v in our present notation). There is a similar result for the 
factors in a permissible ^'-filtration of Qj^(Sk)- Now the claim follows from 
Proposition 15.10. 

16.7. Theorem: For all pairs (/, v) and (J, \i) as in 16.5 the natural maps 
arising from extension of scalars are isomorphisms 

Hom / c ( M/ û j S ) (g / , „ (S ) , QjAS))®sSk 

= ttomK(Çikisk)(QiASk), QjASk)) 
(1) 

and 

Homîc(wa)s)(2'<"(5)' QjAs))®sSk 

= ttomK(Çikisk)(QiASk), 
QjASU)). 

Proof: The second claim will follow from the first one using 16.5(6) . So we 
shall deal with (1) only. 

Note that we can rewrite the left hand side in ( 1 ) as 

HomK(QkiS)(QI^(S)1 QjAS))®zk. 

In Case 2 our claim follows from 14 .8(4) and Proposition 16.5. Suppose that 
we are in Case 1. We get from Lemma 14.9 that the map in ( 1 ) is injec-
tive. By Proposition 16.5 and by 15 .2 (4 ) each Hom/q^k,s)(Qi? 6J,^(S)) 

is a finitely generated and torsion free graded 5-module. Therefore each 
Jiomjc(cikis)(Qi,is(S)i Qj,fi(S))r with r G Z is a finitely generated and tor­
sion free Z-module, hence it is free of finite rank over Z . Denote its rank by 
n(r). Similarly, RomK^kiSk)(Qi,u(Sk), QjASk)) i s a finitely generated and 
graded S^-module, hence each KomK(çik,sk)(Qi,v(Sk)i Qj,^(Sk))r a finite di­
mensional vector space over k. Denote its dimension by m(r). The map in 
( 1 ) respects the grading and induces injective maps 

HomX(í2jfe)S)(Q7,l/(5), QsAs))r®zk EomK(çik,sk) (QiASk),QjASk))r-
( 2 ) 
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In order to see that (1) is an isomorphism it is enough to show that both sides 
in (2) have the same dimension, i.e., that n(r) = m(r) for all r G Z . 

Let k1 be the cyclotomic field that we get from Q by adjoining a primitive 
p-th root of unity. We can study for our root system R also the category Ck> 
working in the quantum case with a primitive p-th root of unity. So there are 
also Qi^(Sk') and Qj^(Sk') in /C(fifc/,SV). Since we know that the map in 
(1) is an isomorphism in Case 2, we have 

HomX;(ivai5)(Qj|l,(5), QjAs))®*k' = ttomK(Çikisk)(QiASk), QJAS*)). 
(3) 

(Recall that Qi)1/(S) and Qj } / / (5) are independent of k.) Since the map in (3) 
respects the grading we get especially 

n(r) = dim*/ Hom/c^,,^,) (Qi,v(Sh'),Qj,ti(Sk'))r' (4) 

These dimensions are determined by rkHom/q^,,sk,)(Qi,v(Sk'), Qj^(Sk'))] 
recall the definition in 15.11. So Lemma 16.6 implies that n(r) = m(r) for all 
r as desired. 

16.8· For all pairs (I,v) and (J,u) as in 16.5 set 

£ [(/ , ! /) , ( J, /i)] = EomK(Wa<s)(Qi JS), QJAS)) ® s Z (1) 
and 

£»[( / , ! / ) , (J,/i)] = H o m S c ( ^ , s ) ( ^ . " ( 5 ) > Q7,m(^))®sZ (2) 

where we regard Z as an 5-algebra via the augmentation map. By Lemma 
14.7 each £[ ( / , v), (J, fi)] and each £*[(/,i/), (J,//)] is finitely generated as a 
Z-module. (In the second case recall that direct sums as in 14.13(1) involve 
only finitely many non-zero terms.) 

Corollary: We have for all (I,v) and (J,//) as above natural isomorphisms 

£[(I,v),(J,n)] ®z£ = Homc(QiAk),QjAk)) (3) 

and 

£»[(/ ,*/) , (J,/i)] ® Z f c = Homfl(Q/>J/(fe),Qj„(fc)), in Case 1: 

kHomu(0/,v(fc),QjlM(fc)), in Case 2. (4) 

Proof: Well, Theorem 16.7 combined with Proposition 16.5.C yields an iso­
morphism 

EomK{Wa ,s)(QiAs)> QsAS))®sk = H.omc(QiAk), QJAV); (5) 

here we regard k as an 5-algebra via the composition 5 —• Sk —• k where 
the last map is the augmentation map. This map is equal to the composition 
5 —• Z —• where the first map is the augmentation map. Therefore we can 
rewrite the left hand side in (5) as 

RomK(Wats)(QlAs)> QJAS)) 0 5 Z ® Z k = E[(I,v),(J,µ)] OZ k. 

So (3) follows. To get (4) replace all Horn by Hour. 
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16.9. For three pairs (7, i/), («/,//), and (if,£) as in 16.5 the composition of 
morphisms in /C(W a ,5) induces bilinear maps 

£[(/,i/),(J,/i)]x£[(J,/z),(lir,0] £[(J,i/),(lif,0] (1) 

with the usual associativity properties. Under isomorphisms as in 16.8(3) they 
correspond to the composition of morphisms in C. A similar remark holds for 
the £*, cf. E.3(2). 

For any finite set X of pairs (7, v) as above set Qj(k) resp. Qj(S) equal 
to the direct sum of all Q{I^(k) resp. Q{I^(S) with (7, v) G J. Set £ j resp. 
£ j equal to the direct sum of all £[(7, i/), («7,//)] resp. £^[(7, i/), (J,//)] with 
(7, z/), (J,//) G X. Each £ j and each £ j i s a finitely generated and graded 
Z-module. We have isomorphisms 

EndK(Wais) Qx(S) ® 5 Z = EI, 
EndK(Wais) Qx(S ® 5 Z = C j , (2) 

and 
Sx ®z к = EndcQi(k), 

4 ®z = EndMk), in Case 1; 
End uQi(fc), in Case 2. 

(3) 

We get from (2) a structure of a Z-algebra on £j resp. on £j that also arises 
from maps as in (1). We get in (3) now algebra isomorphisms. 

16.10. For each prime number p fix an algebraically closed field k(p) of 
characteristic p. Consider (in this subsection) a positive integer d > 0 and set 
Z ' = ZfcT 1] and 5' = Sid'1]. 

Proposition: Let M be a finitely generated graded Sf-module that is torsion 
free as a Z'-module. Suppose that M ®z' k{p) is a free graded Sk(p)-module 
for all prime numbers p not dividing d, and that rk M 0z' k(p) is independent 
of p (for these p). Then M is a free graded S'-module. 

Proof: Note that we use rkM ®z' k(p) here in the sense of 15.11(2). We 
prove the claim by induction on the (ordinary) rank of this free Sk(p)-module. 
Assume that M ^ 0. Each Ms is a free Z'-module of finite rank. Let r G Z 
be minimal for Mr ^ 0. Choose v G Mr that is part of a basis of MT over Z ' . 
Then 

v ® 1 G Mr ®7t» k(p) C M ® z , k(p) 

is nonzero (for all p as above). Since M®z' k(p) is a free graded Sk(p)-module 
and since r is minimal, the 5fc(p)-submodule Sk(p)(v ® 1) generated by v (g) 1 
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is isomorphic to Sk(p)(r) and the factor module M ®z> k(p)/'Sk(p)(v ® 1) is 
graded free with 

rk (Af ®z' k(p)/Sk(P)(v ® 1)) = rk ( M ® z - *(p)) - t~r. (1) 

This implies that the graded 5'-module S'v is isomorphic to S'(r) and that 
the inclusion S'v <—• M induces an injection after reduction modulo p. So the 
short exact sequence 

0 S'v M M/S'v 0 

induces exact sequences (for all n G Z) 

0 Sj,(p)(v® l)n Mn ® z . fc(p) (M/S'v)n ® Z ' fc(p) 0. 

We have 
(M/S'v)n ® z , fc(p) ~ ( M ® z , k(p)/Sk(p) ( « ® 1 ) ) „ -

Now (1) and our assumption on M (on the independence of rkM g)z' ^(p)) 
imply that the dimension of this vector space over k(p) is independent of p. 
This shows that the finitely generated Z'-module (M/S,v)n has no p-torsion 
for any p. Therefore M/S'v is a torsion free Z -module. It satisfies the 
assumptions of the lemma and we can apply induction to it. Then the claim 
for M follows. 

16.11. Corollary: Let d be the product of all prime numbers less than h. 
AW 5 ((I,v), ( J , / / ) ] ® z Z [ d - 1 ] and all Et(I,v), (J, //)] ®z Z [ d - 1 ] are free graded 
Z f d - 1 ] -modules of finite rank. 

Proof: All RomK{Wa iS)(QiAS), QJA15))^^^1] are by Proposition 16.10 
free graded (5 ®z Z[d _ 1])-modules of finite rank, since we can take in 16.6 
all k(p) with p > h. The same argument works for Horn replaced by Horn**. If 
we reduce these modules modulo the augmentation ideal, we get the modules 
in the corollary and the claim follows. 

Remark: Similarly all £ j ® z Z[d x ] and £ j ® z Z[d *] are free graded Z[d 1]-
modules of finite rank. 

16.12. Set 

Xp{k) = {fieX\0<(fi,av)<p(k) for all simple roots a } , (1) 

the restricted region for p(k). Its translates of the form p(k)u + Xp(k) with 
v G X are called the boxes for W^)- Each À G X is contained in exactly one 
of these boxes (for a given k). 
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For each w E Wa there is a unique v = v(w) E X such that w9\o(k) is 
contained in the box p{k)(v — p) + Xp(k) f ° r k. We want to associate to w 
a sequence 7 = I(w) as in 16.5 and set 

Q{w)(B') = QI(w)Mw)(B') and Q(W\A) = QI(w)Mw)(A) (2) 

for all Z?(fc)-algebras Bf and for all A as in 16.5(4). We do this by induction 
on the number of reflection hyperplanes separating w9\o(k) from the special 
point p(k)u — p. If that number is 0, then w.Xo(k) is in the top alcove of 
the box p(k)(u — p) + Xp(k)'i m that case we take 7 = 0. Otherwise we can 
find s E S a independently of k such that w.\v(k) < ws*Xo(k) and such that 
ws*X0(k) is in the same box as w.Xo(k). Then the alcoves of w.X0(k) and 
ws*X0(k) are separated only by one reflection hyperplane, namely by the one 
corresponding to wsw~1^ cf. [Hu3], 4.4. (The discussion there extends to the 
case where R is not irreducible.) So we can apply induction to ws and assume 
that I(ws) has already been defined. Now set I(w) = (s,I(ws)). So we have 
(for all B' and A as above) 

Qiw\Bf) = e3Q
{w9)(B') and Q{w)(A) = ë3Q

{w9\A). (3) 

Note that we have especially defined Q^W\S) in )C(WaiS) for all w E Wa. We 
set for all w,w( E Wa 

£(w.w') — £[(I(w),v(w)),(I(w'),u(w'))], 

(w,w') £*[(I(w), u(w)),(I(w'), u(w'))] 
(4) 

using the notation from 16.8. 

16.13. For the moment fix k. For each A 6 fijt there is a unique w G Wa 

such that A = «;.A0(ifc). We shall often write Q^X){B') instead of Q^w)(B') 
and Q(X)(A) instead of Q(w)(A). 

Any A g l can be decomposed uniquely A = A0 +£>(&)A1 with A0 G Xp(k) 
and X1 e X. Set then 

X = w0.X° +p(k)(X1 + 2p). (1) 
Obviously 

A = w0.X +p(k)(X1 - woX1 + 2p) E Wp(k).X. 

If A E Jlfc, then A E Hfe. So there is for all w E ^ ( f c ) an element w E W (̂fc) 

with w.X0(k) = w*X0(k). If we identify (as usual) Wa with Wp^)^ then the 

resulting map (w »-> w) on W a is independent of k. (Note that the map 

A A on X does depend on k and that this fact is not reflected in the 
notation. However, whenever we are going to use the notation A it will be 
clear over which k we work.) 

Our next statements involve the order relation | on J . It depends on 
p(k). We refer to [Ja6], II.6.4 for its definition and basic properties. 
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Lemma: Let A G ftk- Let B' be a B(k)-algebra. If ZB'(I^) with ¡1 G flk 
occurs as a factor in a Z-filtration ofQW(B'), then A f /x f A. Both ZB,{X) 
and Zqi (A) occur with multiplicity 1 as factors in a Z-filtration ofQ^(B'). 

Proof: Let v G X be the weight such that A is contained in the box p(k)(v — 
p) + Xp(k)- We are going to use the same type of induction as in the con­
struction of the Q{X)(B') in 16.12. If A is in the top alcove of that box, then 
Q(X)(B') = Q9 V(B') has a Z-filtration with factors ZB,(p(k)v + w*n) where 

H = w0*(\ — p(k)v) = A — p(k)u and where w runs over the ordinary Weyl 
group W, cf. 15.17. Each of these factors occurs with multiplicity 1 and we 
have 

A = p(k)v + WQ.h j p(k)v + w.[i I p{k)v + ¡1 = A 

for all w G W since ¡1 is dominant. So the claim follows in this case. 
If A is not in the top alcove of its box, then there is s G S a with A < As, 

with As in the same box as A and with Q{X)(B') = esQ
(X9)(Bf). Then ZB\v) 

occurs in a Z-filtration of QW(B') if and only if ZB<{v) o r ^ B ' ( H occurs m 
a Z-filtration of Q(Xs\B'), cf. 15.17. We get then by induction As | // | As 
resp. As | fis | As. We have A j As and As = As j A. Now the claim is obvious 
in the first case (As f /i | As); in the second one it follows from [Ja6], Lemma 
II.6.7.a. (In order to get A | ¡1 one has to apply that lemma to the analogue 
of j defined using — R+ as the positive system.) 

Remarks: 1) Any Z#/(/i) with ¡1 G fifc occurs as a factor in a Z-filtration of 
Qi^(B'), if and only if some Z^(Sk)(r) occurs as a factor in a permissible 
^-filtration of Qi,u(Sk) (for any (I,v) as in 16.5). So the first claim of the 
lemma says also: If Z^(Sk)(r) occurs as a factor in a permissible ^-filtration 

of Q{X)(Sk), then AT//T A. 
2) The lemma can be extended to Z'-filtrations. Any Z'B,{JI) with // G &K 
occurs as a factor in a Z'-filtration of QjiJ/(B

l) with the same multiplicity 
with which ZB'(IJ) occurs as a factor in a Z-filtration of Q/^J? ' ) , since these 
multiplicities are completely determined by the formal character of Qi^(Bf). 

16.14. We continue to fix k. 

Lemma: For each A G Qk the module Q^x\k) is the direct sum of one copy of 
the projective indecomposable module Qfc(A) and of certain QK{V) with V G îlfc, 

v ^ A and A I v \ v \ A, Similarly, Q^x\A(k)) is the direct sum of one copy 

°F QA(K)W AND °F certain QA(K){V) w^h V G £LK, V 7̂  A and A \ V | V | A. 

Proof: It is known that both Zjb(A) and Z*(A) occur with multiplicity 1 as 
factors in a Z-filtration of Qk(\) and that all weights ¡1 of Q*(A) satisfy 

¡1 < A. (In Case 1 see [Ja6], II.11.6; the argument there extends to Case 2.) 
Since Q^x\k) is projective in C*, it is the direct sum of certain projective 
indecomposable modules. If Qk{y) occurs, then Z*(A) and Zjt(A) occur in 
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a Z-filtration of Q^x\k). So Lemma 16.13 implies that A | v \ v | A. 
Distinct Qk(v) have distinct highest weights since v \-+ v is bijective. Lemma 

16.13 implies that A is the highest weight of Q^x\k) and that it occurs with 
multiplicity 1. This implies now that Q * ( A ) occurs with multiplicity 1 as a 
direct summand of Q^(k). 

The statements over A(k) follow now from Theorem 4.19. 

16.15. Proposition: For all k each VnkQA(k)(ty A £ Qk has a graded 
Sk-form. It is unique up to shift in the grading and admits both a permissible 
Z-filtration and a permissible Zl-filtration. 

Proof: We want to use induction on A — A. Suppose that we know the result 
already for all v £ Qk with v — v < A — A. Now Q^x\Sk) is a graded 5^-form 
of VnkQ^X\A(k)). By induction and Lemma 16.14 all indecomposable sum-
mands of V^kQ^x\A(k)) except for VQkQA(k)(ty are known to have graded 
Sk-forms. Now repeated application of Proposition 15.7 yields eventually the 
desired graded 5fc-form of VnkQA(k)W-

The uniqueness claim follows from 15.6.d, the existence of the filtrations 
from 15.12 and the analogous result for the QA(k)M, cf- 2.16. 

Remarks: 1) The proof shows that we can construct the graded 5fc-form of 

VnkQA(k)W a s a direct summand of Q^X\Sk)-
2) We can extend the proposition to all A in a good W^-orbit: There is a 
unique weight \i £ Qk such that A is in the lower closure of the alcove of ¡1. 
Then TQA(k)(ljL) contains QA(k)W as a direct summand with multiplicity 1 
for a suitable translation functor T. We can now apply an induction similar 
to the one above. (Note that we assume p > h.) 

16.16. Corollary: Let M be a projective module in CA(fc)(̂ fc) and M a 
graded Sk-form ofV&kM. Then there are AZ £ Qk and & direct sum decom­
position M = ©[-J Qi in K,(QkiSk) such that each Qi is a graded Sk-form 
ofVnkQA(k)(\i). 

Proof: We have a direct sum decomposition M = 0 [ = 1 Q A ( * ) (^t) by Theorem 
4.19.b. Now apply 15.7 repeatedly. 

16.17. Pick a system V\, u2,..., vT of representatives for the cosets in X/ZR. 
Set V equal to the set of v £ Wa with v.\0(k) £ p(k)ui + Xp(k)- This set is 
independent of k. There are for each w £ Wa a unique v £ V and a unique 
// £ ZR with w*\0(k) = v.Xo(k) +p(k)LT. 

Set 

Q\B') = Θ 
vev 

Q ( v ) ( B ' ) and Q'(A) = e 
vev 

Q(v)(A) 

for all f?(&)-algebras J3' resp. all A as in 16.5(4). 
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Proposition: For each k the module Q'(A(k)) is a projective (p(k)ZR)-
generator for CA(k)(Mk) an^ Qf{k) is a projective generator for the block of 
Lk(Xo(k)) as a restricted g-module resp. as a u-module. 

Proof: Set A0 = A0(fc) and p = p(k). The direct sum Q = 0 v G y QA(k)(v»^o) 
is by 6.18 (and construction) a projective (pZi?)-generator for Ca(A;)(^jO-
This extends to Q'(A(k)), which contains Q as a direct summand (by Lemma 
16.14) and is still projective in CA(k)(^k)-

We know that Q'(k) is a direct sum of certain Qh{y) with v G Qk- Each 
Qk{v) is still projective when considered as a g-module resp. as a u-module, 
in fact it is still the projective cover of Lk{v) in that category, cf. [Ja6], 
11.11.3(3) in Case 1. (Case 2 is similar). So Qf(k) is projective also as a 
restricted g-module resp. as a u-module. 

The simple g-modules (resp. u-modules) in the block of Lk(Xo) are ex­
actly the Lk(w%\0) with w G W, cf. [Hu2] or [Ja6], II.9.19 in Case 1. (In Case 
2 this can be proved similarly.) Since all v G Qk have the form v = W*\Q + pp 
with ¡1 G ZR and since then Lk{y) — Lk(w.\0) over g resp. over u, we see 
that all indecomposable summands of Q (k) belong to the right block. 

For each w G W there are v G V and /i G ZR with w»X0 = v.Xo + pp. 
We have then Qk(w*Xo) — Qk{v*\o)\piAi 4.19(1). So, considered as a g-
module (resp. as a u-module) Qk(v»\o) is isomorphic to Qk(w»Xo), hence to 
the projective cover of Lk(w»\o) as a g-module resp. as a u-module. Lemma 
16.14 implies that Qk(v*\0) is a direct summand of Q'{k). Therefore Qf(k) 
contains (as a direct summand) a projective cover for each simple module in 
the block of Lfc(A0). The second claim follows. 

16.18. Set £% equal to the direct sum of all £ * { v y ) with v, v' G V, cf. 16.12(4). 

So £* is a particular case of an £j as in 16.9. It is finitely generated as a Z -
module; we make it into a Z-algebra via the isomorphism 

^ K ( W a i S ) Q \ S ) ® 5 Z = E#, (i) 

cf. 16.9(2). 
We are now ready to prove Theorems 1 and 2 from the introduction: 

Theorem: For all k the opposite algebra of £^ ®z k is Morita equivalent to 
the block of u(k) resp. ofU^(g(k)) belonging to Lk(Xo{k)). 

Proof: This follows from 16.9(3), Proposition 16.17, and general results on 
Morita equivalence, cf. [Ben], 2.2. 

16.19. Let £ be a ring that is finitely generated as a module over Z. Choose 
an integer iVi > 0 such that 

^ z Z i i V f 1 ] is free over Z[Nl

 1]. (1) 
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(For example, take the product of all primes / such that £ has /-torsion.) 
Let us write 

£A = £®zA 

for any commutative ring A. Recall (e.g., from [Ben], p. 6, Remark ii) that a 
field F is a splitting field of a finite dimensional F-algebra E, if End#(M) = F 
for every simple E'-module M. There is a finite extension F of Q that is a 
splitting field of the finite dimensional algebra £q, i.e., of £Q ®q F ~ £p, 
cf. [Ben], p. 6, Exercise. Denote the ring of algebraic integers in F by OF- Let 

1 = Σ 
iei 

ei (2) 

be a decomposition of 1 into orthogonal primitive idempotents in £p. Here / 
is a suitable finite index set. There is an integer N2 > 0 such that all N2e^ 
are in the image of £ ®z Of in £F> Replace N2 by its least common multiple 
with N\. We can then regard £®z OFW^1] as a subring of £p containing all 
e z. We can choose a multiple N of N2 so large that two idempotents e z, ej 
are conjugate by a unit in £®z OF[N_1] if they are conjugate by a unit in £p. 
Set 

0 = 0 f [JV- 1 ] . (3) 
Recall that OP is a finite Z-module, cf. [Boul], chap. V, §1, n° 6, prop. 18. 
We get by construction: 
a) o is finitely generated over Z[iV - 1]. 

b) £0 is a free o-module of finite rank and a lattice in £P. 

c) All ei with i £ / are in £0. 

d) ei, ej with i,j £ / are conjugate in £0 if and only if they are conjugate in 
£F. 

Each £pei is the projective cover of a simple ^-module Li. Consider an 
extension field F F of F . Then each Li ®j? F ' is a simple ^/-module, since F 
is a splitting field. This implies that (SF^i) ® f F F is the projective cover of 
Li ® f F F , hence that e2 is still primitive in £F' · Furthermore, we have for two 
indices i,j that Li is isomorphic to Lj if and only if L2- ® f F1 is isomorphic to 
LJ®F F'. So ei and ej are conjugate in £F if and only if they are conjugate in 
£F' · (For the equivalence of conjugacy and generating isomorphic left ideals, 
cf. [Ben], 1.7.2.) 

Consider a maximal ideal m of o. Denote the m-adic completion of o by 
o'; this is a domain since the local ring o m is a principal ideal domain. Set 
F ( equal to the fraction field of o' and m' = o'm. The e2 remain primitive in 
£ 0/ , and ei is conjugate to ej in £0< if and only if it is so in £ 0 . (This follows 
from the analogous result for F'.) Now standard results, cf. [Ben], 1.9.4, show 
that the images ez of the e t in £ 0 / m ~ £0>/m/ are still primitive idempotents, 
and that e2 and ej are conjugate in £ 0 / m if and only if ez and ej are conjugate 
in £ 0 . Furthermore, the ez remain primitive over each extension field of o/m. 
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(Otherwise they would split over some finite extension. Then one could lift 
such a splitting to some extension of the complete local ring o'. This would 
contradict the assumption that F is a splitting field.) 

The Cartan matrix of £p is the matrix of all dim^ e^pej with e2 running 
over representatives for the conjugacy classes. For m as above, the Cartan 
matrix of £ 0 / m is the matrix of all d im 0 / m ei£0/mej where we may take the 
same as before. Both dimensions are equal to the rank of the projective 
o-module ei£0ej. This shows that £p and all £ 0 / m have the same Cartan 
matrix. 

Morita equivalent rings have the same Cartan matrix. If we apply our 
discussion above to the algebra & from 16.18, we get therefore the following 
result 

Corollary: There is a matrix C such that the Cartan matrix of the block 
of Lfc(Ao(fc)) as a u(k)-module is equal to C for all k in Case 2. It is also 
equal to the Cartan matrix of the block of Lk(Xo(k)) as a UM($(k)) -module 
for all k in Case 1 with char(k) 3> 0. 
Remark: The condition "char(fc) 3> 0" in this result as well as in 16.22-24 
below means: There is an integer n(R) depending on R such that for all k 
with char(fc) > n(R) ... 

16.20. The set of w G Wa with 

A 0(fc)Tw-A 0(fc)T w.\0(k) t Ao(fc) 

is finite and independent of k. Enumerate these elements tui, W2, · · ·, wr such 
that (for all k) 

Wi.Xo(k) j Wj.\0(k) j Wj.\0(k) t Wi.Xo(k) j < i. ( 1 ) 

Set 
Q W ( B ' ) = Q<«")(B') and QW(A) = Q(wi\A) 

for all 5(fc)-algebras B' resp. all A as in 16.5(4). For all i and j set 

E(i),(j) = E(wi,wj), (2) 

cf. 16.12(4). We have for all i and j natural isomorphisms (by 16.8) 

%[j] ®zk = Eomc(Q[i](k),Q[j](k))- (3) 

For any finite subset I of { 1 , 2 , . . . , r} set Qj(k) resp. Qj(S) equal to the 
direct sum of all Q^(k) resp. Q^(S) with i G J. Set £j equal to the direct 
sum of all £[i],[j] with (z, j) G I. We have then (as in 16.9) isomorphisms 

End/c(vya,s) Qx(S) ® 5 Z = EI (4) 
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and 
EI OZ k = EndcQx(k). (5) 

We get from (4) on 8j a structure of an algebra over Z; the map in (5) is then 
an algebra isomorphism. 

Each E(i),(j) and each £ j is a finitely generated and graded Z-module. 
If we choose d as in Corollary 16.11, then each E(i),(j) ®z Z(d-1) and each 
£χ ®z Z(d-1) is a graded module that is free of finite rank over Z [ d - 1 ] . We 
can factor for all к the isomorphism in (3) via 

(E(i),(j)®z Z[d г]) ®Z[d-i] к = Homc(QM(fc),QW(fc)), 

similarly for (5). 

16.21. We know by 15.17/18 how to determine the terms in the Z-filtration 
of each Q^(k), cf. the proof of Lemma 16.6. Lemma 16.14 implies for each 
г that Q^(k) decomposes into a direct sum of certain Qk(wj.\o(k)) with 
j < г and that Qk(wi*\o(k)) occurs with multiplicity one. The decom­
position of all Q^(k) into indécomposables determines the factors in the 
Z-filtration of each Qjb(wj.Ao(fc)), hence (by the Brauer-Humphreys reci­
procity 4.15) all multiplicities [Ζ^μ) : £&(ι^·Α0(&))] with μ G Ω*. Since 
these multiplicities are invariant under shifts by weights in p(k)X and since 
Wp(k).\o(k) Π (-p(k)p + Xp(k)) is contained in the set of all Wi.Xo(k), more 
generally all [Ζ^{μ) : £*(λ)] with λ, μ G Mk are determined. It is well known 
how to get from these multiplicities then the characters of the simple modules 
Zfc(A), cf. [Ja6], 11.9.11(1). So, in order to show that these characters are 
independent of к (in a suitable sense), we shall show that the decompositions 
of the Q^(k) into indécomposables are independent of к (in a suitable sense). 
In fact, that is our next result: 

16.22. Theorem: There are integers m(j,i) > 0 for all i, j with 1 < j < 
г < r with 

Q[i](k) ~ φ 
j<i 

с * К - . л 0 ( Л ) Г Ш ) (1) 

for all г and all к with char(k) = 0 or with char(k) ^> 0. 

Proof: Of course, Lemma 16.14 shows that there is for each к a decomposition 
as in (1). However, the multiplicities ш(г, j) might depend on k; denote them 
for the moment by nrik(i,j). Lemma 16.14 implies especially that mjt(i, г) = 1 
for all г. 

We can apply the discussion from 16.19 to each <?j, especially to each 
£[i],[t] a n d to £ = 0 · · £[i],[j]- We can choose о in 16.19 so that it works for 

all these algebras. For all г take an index set E(i) such that 1 = ^2r^E(i) e^ 
is a decomposition into orthogonal primitive idempotents in £[i],[i] ®z o. One 
gets a similar decomposition for E0 by adding the decompositions for all i. 
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In Case 2 the field k need not contain the fraction field of o. Write k[o] 
for k adjoined that fraction field. We get then for all k in Case 2 that 

<?"l(t[o]) = Θ 
reE(i) 

4 0 Q [ , 1 ( * M ) ( 2 ) 

is a decomposition into indécomposables. On the other hand, we get such 
a decomposition from that in ( 1 ) by field extension, since 4 . 1 6 ( 3 ) implies 
Q*[o](AO = Qk(n) ® k[o] for all fi e X. So the Krull-Schmidt theorem im­
plies that each summand in ( 2 ) is isomorphic to some Qk[o](wj*^o(k)) with 
j < i and that Qk[o](wi*^o(k)) occurs exactly once. Then the idempotent 
corresponding to the unique summand isomorphic to Qk[o](wi*^o(k)) is not 
conjugate to any idempotent in an E(j) with j < z, whereas all the other 
idempotents are. This is at first a statement about conjugacy over fc[o], but 
by the construction in 16 .19 it is also true over o. After changing the index 

set we may assume that 0 G E(i) and e0 is the unique idempotent in E(i) 
not conjugate to an idempotent in E(j) for all j < i. We have then for all k 
in Case 2 

4 ° Q W ( * M ) = Qk[o](WI**o(k)). 

We see now in Case 2 that each m^(j, i) is equal to the number of r G E(i) 

with er

1^ conjugate to E0 in £ 0 . In particular, that number is independent of 
k (in Case 2 ) ; denote it by m(j, i). 

Consider now Case 1. We have to take char(A;) = p(k) large enough so 
that p(k) is not a unit in o, i.e., so that k contains a residue field of o. We 

have then <f ®z k ~ £0 ®0 k. Write er^ = er^ ® 1. The discussion in 16 .19 
shows that the are primitive idempotents in £0 ®0 fc, and that eT

%\ ei^ 
are conjugate if and only if eT

%\ ei^ are conjugate. So for all i 

сЩк) = θ 
reE(i) 

er Q[i] (k) ( 3 ) 

is a a decomposition into indécomposables, hence has the form of ( 1 ) with 
possibly different multiplicities. The statement about the conjugacy implies 
first that e^Q^(k) ~ Qk{wi*^o(k)) for all z, and then yields the claim about 
the multiplicities. 

16.23. Corollary: There is for all w,w' G Wa an integer df(w,wf) such 
that 

[Zk(w.XQ(k)):Lk(w'.Xo(k))] = d'(w,wf) 
for all k with char(k) = 0 or char(k) ^> 0. 
Proof: This follows from Theorem 16.22 using the discussion in 16 .21 . 

Remark: The corollary yields Theorem 6 from the introduction; it is now easy 
(and left to the reader) to deduce Theorem 3 from the introduction and its 
analogue for u(k). 
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16.24. Consider in Case 1 an algebraic group Gk as in the introduction. 
In Case 2 consider Lusztig's version of the quantized enveloping algebra at 
a p(fc)-th root of unity. We have in both cases for each dominant weight 
A G X a Weyl module V(\)k and a simple module L(\)k with highest weight 
A, cf. Section II.2 in [Ja6] and [Lu4] or [APW1]. 

Set equal to the set of all w G Wa with w»\0(k) dominant. This set 
is independent of k. Also the condition "w9\o(k) G Xp(k)n defines a subset of 
Wa that is independent of k. 

Corollary: There is for all w,w* G with w*X0(k) G Xp(k) a n integer 
b(w, w') with 

[V(w.\0(k))k : L(u;,.Ao(fc))jfc] = b(w,w') 

for all k with char(k) = 0 or char{k) S> 0. 

Proof: This follows from the last corollary, the formula 11.9.11(1) in [Ja6], and 
Steinberg's tensor product theorem (cf. [Ja6], II.3.17) resp. Lusztig's analogue 
(cf. [Lu4], 7.4 for the simply laced case; the result extends to the general case 
by the method in [Lu7]). 

Remarks: 1) If we drop the condition that w9\o(k) G Xp(k)i then the bound 
on char(&) in Case 1 will depend not only on i?, but also on w. 
2) We get now Theorems 4 and 5 from the introduction; there one can find 
more discussion of this result. 
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Introduction to the Sections 17 and 18 

Let us use the notations of our general introduction. Analogous results 
for the category O in [BGS] lead to the following 
Conjecture 1: Suppose we are in Case 1 and the characteristic p of our 
field k is at least the Coxeter number, p > h. Then the restricted enveloping 
algebra U^(gk) admits a Tk-stable Koszul grading. 

Certainly there also is a quantum version. 
Conjecture 2: Suppose we are in Case 2, that p > 1 is an odd integer, and 
that all prime divisors of p are good for our root system. Then the quan­
tum version Up of the restricted enveloping algebra admits a Koszul grading 
compatible with its natural X-grading. 

We give the precise definition of a "Koszul grading" in Appendix F. Let 
us say here only that a Koszul grading on a ring A is a positive Z-grading 
A = 0 i > o A1 with particularly good homological properties. Appendix F 
contains also a discussion of the general properties of Koszul gradings. For 
example, we prove there that a finite dimensional algebra admits a Koszul 
grading if and only if all of its blocks do. So we can attack the conjectures 
block by block. 

In the next two sections we show how the validity of Lusztig's conjecture 
implies that all regular blocks of U^(gk) resp. of up admit a Koszul grading. 
So to establish the conjecture it remains to treat the singular blocks. The 
main obstacle there is that we do not know how to prove parity vanishing for 
the extensions between standard objects and simple objects. The analogous 
problem for the category O was solved in [Sol] using geometric methods, but 
we do not see how to generalize this to our present situation. 

Let us explain how we proceed in the case of regular blocks. We first show 
how our graded combinatorics from Section 15 determines a Z-grading on the 
blocks. This much is independent of Lusztig's conjecture and works (under 
our general assumption p > h) for any block corresponding to an orbit Q that 
is good in the sense of 13.3. Considering categories of Z-graded modules over 
these blocks with their Z-grading we construct the "graded" representation 
categories Cjt(fi), define graded translation functors relating them, and study 
their properties. 
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Assuming now Lusztig's conjecture, we prove that the Z-grading on the 
blocks can be choosen such that there are no components of negative degrees 
and that the part of degree zero is semisimple — this is a consequence of the 
restrictions on the degrees appearing in the definition of Lusztig's polynomials. 
We can even calculate the Poincaré polynomials of the blocks with respect to 
this Z-grading from our graded combinatorics. 

If our block is in addition regular and p > / 1 , then the dimensions of the 
higher Ext groups between simple objects of Cfc(fi) can be found in [CPS 
assuming Lusztig's conjecture. The numerical Koszulity criterion of [BGS 
implies then that our grading makes the regular blocks into Koszul rings. 

Let us just warn the reader that in the next two sections we treat these 
matters in a different order than in this introduction. Recall that Lusztig's 
conjecture predicts the multiplicity [Qfc(/z) : Zjt(A)] of Z*(A) as a subquotient 
in a Z-filtration of the indecomposable projective Qk(fi) to be just the value 
at 1 of a certain polynomial. In Section 17 we show that the individual coef­
ficients of this polynomial are analogous multiplicities in the graded category 
Cfc(fi). This, however, will only become clear in Section 18, where we dis­
cuss the graded categories Cfc(fi) along with their deformed versions C(M, Sk) 
and the (deformed) graded translation functors relating them. We then use 
the results from 17 to deduce Koszulity of the regular blocks from Lusztig's 
conjecture. 
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17. Gradings and Lusztig's Conjectures 

17.1. In this section we work again with a fixed fc; however, we assume that 
k satisfies the assumptions in 16.1. We drop the extra k from notations such 
as p(k) or B{k). 

We choose a length function 6 as in [Lu2], 2.11. However, we regard it not 
as a function on the set of alcoves for WP, but on the set of regular elements 
A in X: Set (5(A) equal to the value of 6 on the unique alcove containing A. 

Choose (as in 16.1) a weight Ao in the interior of the first dominant alcove 
and set Q = WP»XQ. For each A G ̂  there is a unique w £ WP with A = w*X0; 
we set then (as in 16.3) As = WS»XQ for all s £ E a . We can apply 6 to all 
elements in Q; it satisfies for all A £ Q and s £ E a 

6(Xs) = 
«(A) + 1, if A < Xs: 
è(X) ~ 1, if A > Xs. (1) 

(This property determines 6 up to a constant.) One has (cf. [Kat], 1.12) for 
all A e CI and v e ZR 

6(\ + pv)-6(\) = 2ht(v), (2) 

where ht is the height function defined by h t ( ^ ^ e E mp/3) = X ^ 6 £ mp. 
Let T be an arbitrary orbit of WP in X. For each \x £ F there is a unique 

Ai £ such that ¡1 is in the upper closure (cf. 6.8) of the alcove of Ai. Denote 
this element Ax by \i~. We have then for all A £ Q with Ap = ¡1 (using the 
notation from 15.13) 

«5(A) = ^ - ) + o(A,r). (3) 

Indeed, the definition of the upper closure implies that o(/i , T) = 0. If 
A ^ n~, then there is s £ S a with Xs < X and (As)r = we have then 
o(As,T) = o(A,T) — 1 and get (3) by induction. 

17.2. Consider the group algebra Z [ t , t _ 1 ] [X] and denote its standard basis 
by (e(fi))fieX. Denote by SOT the submodule of Z [ f , t _ 1 ] [X] generated freely 
over Z [ ^ - 1 ] by all e(/z) with p £ fi. 
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By 15.10 we can define for any A4 in /C(fi,£jfc) with a permissible IN­
filtration 

hzM = E 
/«en 

rkHomx(ß)Sfe)(^,4)e(/i) e m (1) 

and for any M. in fc(Q,Sk) with a permissible .Z'-filtration 

h'zM = E 
µ E M 

rkHomK(fi,Sjfe)(^,M)<-2^")e(M) e rot. (2) 

Note that 15.11(4),(5) imply 

hzM = E E 
µ E M rEZ 

[ M : 2 „ ( R ) ] I R E ( / I ) (3) 

resp. 
h'zM = E E 

µEM rEZ 
[M : Ζ'μ(φ-'-26^β(μ). (4) 

We have obviously 

hzZ\ = e(X) and ft' * = ί - 2 ί ( λ ) ε ( λ ) (5) 
for all A G fi. It is clear that hz and b!z are additive on permissible filtrations 
if defined on all quotients. We have also for all r G Z and all AA (such that 
hzM resp. h'7AA is defined) 

hz(M(r)) = fhz(M) resp. h'z(M(r)) = t-rh'z(M). (6) 
Proposition 15.10 shows how we can determine rkHom/q^ sfc)(A4,Af) and 
rkHom/c(Q)sfc)(A/r, A4) for A4 and Af as in that proposition from a knowledge 
of hzA4 and h'zAf. 

17.3. Let S) be the Hecke algebra of Wa over Z [ M - 1 ] - This is an algebra 
with generators T3 with s G E a . They satisfy (T s + 1)(TS - / 2 ) = 0 for all 
s G S a (and other relations). There is an action of S) on 9JT given by 

T5e(A) = e(As), if A < As; 
/ 2e(As) + ( * 2 - l ) e ( A ) , if A > As; (1) 

cf. [Lu2], 1.6. (Note that we identify Q with the set of alcoves considered by 
Lusztig and that we take t = q1/2 in Lusztig's paper.) 

Lemma: Let s G S a and Ai in /C(fi,Sfc). 

a) If A4 has a permissible Z-filtration, then hz{Q3A4) = (T3 + l)hz{A4). 

b) If M has a permissible Z1 -filtration, then ht

z(@sM(-2)) = (T3 + l)hf

z(M). 
Proof: This is an easy consequence of Lemma 15.18 and of 17.1(1). Details 
are left to the reader. 
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17.4. Consider an orbit T for Wp consisting of special points. We have then 
NT = \R+ \ in the notation from 15.4(2); each \x G T satisfies ZB>{P) — Zf

B,(p) 
for any B-algebra B' and Z^{A) = Z!^(A) for any A as in 14.5. 

For any ¡1 G T the projective indecomposable module Qk(fi~) in Ck is 
given by 

Qk(/i-) = T?Zk(v); (1) 

cf. [Ja6], 11.11.10 for p — (p — l)p in Case 1. The argument there extends 
to arbitrary p and to Case 2. In CA(k) the module QA^)^) is isomorphic 
to Z^(A:)( / I ) since it has a Z-filtration (2.16) and since it is a lift of Qk(p) = 
Zk(fi). Therefore 7.7 shows that also TpZA^(ii) is projective. It is a lift of 
TpZkifi)', so we have 

QA(k)(fJ> ) = ZA{k){^)- (2) 

If v G X is the weight with p — pv — p^ then (2) shows that QA{k){lJL ) = 
Q^iI/(A(k)) in the notation from 16.4. Set 

Q(ii-) = Q*ASk){\R+\-6(»-))- (3) 

(The reason for choosing this specific shift should become clear later on.) 
Now Q(p~) is a graded S^-form of VfoQ^jt) ( / /" ) . Lemma 15.16 implies that 
Q(p~) has a permissible Z-filtration with factors Z\(—8(p~)} where A G Q 
with Ap = p. So we have 

M Q ( a O ) = 
t-Ημ-) 

E 
λ Γ = μ 

e(A). (4) 

Because of 2^ = Z'^ there is (by 15.17) also a permissible Z'-filtration of 
Q(fi~); its factors are the 2 ' A ( | i ? + | - 6(p,~) — r(A)) with A as above. Using 
17.1(3) and r(A) = 2o(A) - \R+\, cf. 15.13(3),(4), we can rewrite this factor 
as Z'x(2\R+\ + 6(fi~) - 26(\)). We get therefore 

h'z(Q(»-)) = T-2\R+\-S(p-) 
E 

Ar=/x 
e(A), (5) 

hence 
hz(Q(p-)) = t2\R^h'z(Q(fi-)). (6) 

17.5. Lusztig introduces in [Lu2], 2.7 an #-submodule 9Jt° of 9Jt. One takes 
all Wp-orbits T consisting of special points and considers for all p G T the sum 
Yl\r=fieW' Then 9JI° is generated by all these sums (for all p and all T). 
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Lusztig then goes on to prove (in [Lu2], 2.12) the existence of an involutory 
and i^-antilinear map : -»· 9ft° with 

Ø6 

Ar=M 

e(A) _ ¿-21^+1-2«^-) 
E 

Ar=/x 

e(A). (1) 

Here antilinear refers to the involutory antiautomorphism of j5) with 

1i-> t" 1 

and Т3 нч Τ-1 = t~2Ts + t~2 - 1 

for all s € £ a . This antilinearity implies especially 

$s((Ts + l)u) = t-2(Ts + l)$s(u) for all u£dJt° and s 6 S 0 . (2) 

Recall the notation A from 16.13(1). 

Lemma: For all A G M the elements hzQ^X\Sk) and h'zQ^x\Sk) are in 9Jt° 
and satisfy h'zQ(x){Sk) = $s(hzQix)(Sk)). We have (with N = \R+\) 

[Q{X)(Sk)(-6(X)) : Zx(m)] = 6m!.N_6(x), (1) 
[Q{X\Sk)(-6(X)):Z'x{m)] = 6miN_Hxh (2) 

[Q^(Sk)(-6(\)):Z~x(m)} = 6 m t _ s a y (3) 

[Q^\Sk)(-6(X)):ZL.(rn)] = 6 m _ 6 a y (4) 

Proof: We use induction on the number of reflection hyperplanes separating 
A from the top alcove of its box. If A is in that top alcove, then the first claim 
follows from 17.4(4),(5) and the second one from (1) and 17.4(6). We have 
Q(X)(Sk)(-6(X)) = Q(X)(Sk)(-N) in the notations from 17.4. Therefore the 
formulas ( l)-(4) follow from 17.4(4),(5) together with the fact that in this 
case (5(A) = 6(A) + N. 

If A is not in that top alcove, then there is an s G S a with Q{x)(Sk) = 
&sQ{X3)(Sk) and A < As. Then Q{X9)(Sk) satisfies the claims by induction. 
We have 8(X) = 6(Xs) - 1 and (X)s = Xs < A and 6(X) = 6(Xs) + 1. Now the 
claim follows from Lemma 17.3; for (l)-(4) we can also use 15.18. 

17.6. Recall (from Remark 1 in 16.15) that Q^x\Sk) has a direct sum­
mand that is a graded S^-form of VnQA(k){ty- The same is true for any 
Q^X\Sk)(m). So we can find a graded S^-form Q(X) of VnQA(k)W that l s 

236 



REPRESENTATIONS OF ALGEBRAIC GROUPS AND QUANTUM GROUPS 

a direct summand of V&Q A(k){X)(N - <5(A)). The formulas in 17.5 together 
with Lemma 16.15 imply 

[Q(\) : Zx{m)] = 6mts(\), (1) 
[Q(X) : 2x(m)] = 6m>2N-S(x), (2) 
[QW--2^m)] = 6 m t N _ t a (3) 

№):%(m)]=6MTN_S(X (4) 

where N = \R+\. Each of these formulas together with the fact that 2(A) is a 
graded S^-form of VnQ^(jk)(A) determine it uniquely up to isomorphism, cf. 
Lemma 15.6.c. 

Note that for A in the top alcove of its box this notation is compatible 
with the one from 17 .4 (3 ) , cf. 17 .4 (4 ) . 

17.7. Lemma: If M. is a graded Sk-form of VQ,M for a projective mod­
ule M in CU(jfc)(fi), then hzM and h'zJ\4 are in 93T° and satisfy hf

zAd = 
Qs(hzM). 

Proof: Note first: If M. satisfies the claim, so does each «M(r). In general, 
Corollary 16.16 implies that it is enough to look at M = Q A ( * ) ( A ) with A G 0. 
So we may assume that M = 2 ( A ) . Now we use induction on A — A. We 
can decompose Q^X\Sk){—<$(A)) into the direct sum of (2(A) and of certain 
Q(v)(Sk)(m) with v — v < A —A. By induction each of these Q(v)(m) satisfies 
the claim. So does Q^X\Sk){—<5(A)) by Lemma 17.5. Therefore it holds also 
for the remaining summand 2 ( A ) . 

17.8. Lusztig introduces in [Lu2], 5.2 and 8.9, certain elements Dq and Dc 
in 93T for each alcove for Wp. Identifying each A G fi with its alcove, we can 
regard these elements as parametrized by Q. Set D (A) = D\ for all A G fi. 
By [Lu2], 7.3 and 8.9 the coefficient of e(A) in D (A) is equal to t~sw; if the 
coefficient of e{y) with v ^ A in D (A) is not equal to 0, then v < A and the 
coefficient has degree at most —6(f) — 1. (Recall that our t is the q1/2 in 
[Lu2].) We have furthermore $ 6 D ( A ) = D (A) for all A. 

If ¡1 is a special point for Wp, then 

d(a*-) = t-\R+\-6(p-) 
Σ 
ί/Γ = μ 

e(v) (1) 

where V = Wp.n, cf. [Lu2], proof of 8.3. (Recall that 6(fi~) = 6(n~) + \R+\ 
by 17.1(3).) 
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Lusztig has made in [Lul] a conjecture on the characters of irreducible 
Gfc-modules in Case 1 and in [Lu4] a conjecture on the characters of irre­
ducible J73-modules in Case 2. We get then conjectures also for the charac­
ters of simple modules in Ck, since these modules lift to Gk resp. to U$ if the 
highest weight is in Xp. (For the other weights apply 4.2(5).) However, there 
is in Case 1 in [Lul] a restriction on the highest weight of the modules. For 
small p (more precisely, for p < 2h — 3) Lusztig's conjecture does not cover all 
weights in Xp. When we say below (and in 18.17ff.) "If Lusztig's conjecture 
holds for /c" we mean that for all p-regular weights A G Xp the character of 
Lib (A) is given by the formula in Lusztig's conjecture. So this is in Case 1 for 
h < p < 2h — 3 somewhat stronger than Lusztig's conjecture; it is in that case 
the conjecture 5.5 in [Kat]. 

Theorem: If Lusztig's conjecture holds for k, then 

hzQ(\) = t\R+\*D(\) for all A G fi. 

Proof: Let us use the abbreviation N = | i ? + | . Note that the claim is (by 
Lemma 17.7) equivalent to h'zQ(\) = * _ 7 V D (A) . We prove the theorem again 
using induction on A — A. If A = p~ for a special point /i, then the claim 
follows from (1) and 17.4(4). 

Suppose now that there is a reflection s G S a with A < As and As in the 
same box as A. We assume inductively 

hzQ(\s) = tNT>(\s) and h'zQ(\s) = t-NT>(\s). 

So the degree estimate for the coefficients of D(As) implies for ail v ^ As 

[Q(\s):Zu(i)]^Q => i < N - 8{v) - 1 and v < As (2) 

and 
[Q(\s):Zu(i)]^Q => i> N - 6(u) + 1 and v < As. (3) 

Consider the graded S^-form M = Q3Q(Xs)(—1) of Vn@3QA(k)(^s)' 
The formulas in 15.18 imply (for all v G $1 and m G Z): 
If v > z/s, then 

[M:Z„(m)] = [Q(\8):Z„(m-l)] + [Q(\8) : Zus(m + 1)] (4) 
and 

[M : K(m)} = [Q(Xs):2'l/(m + l)] + [Q(\s) : 2„.(m + l)]. (5) 

If v < us, then 

[M : Zv(m)] - [Q(\8):Zv(m + l)] + [Q(\s): Zvs{m - l)\ (6) 
and 
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[M:%(m)] = [Q(\8):K{m-l)] + [Q(\s) :Z'us(m-l)}. (7) 

There is a decomposition of M into indécomposables of the form Q(v)(i) 
with v G fi and i G Z, cf. 16.16. Since À is the largest weight of M (or 
rather of ®3QA(k)(^s)) a n ( i occurs with multiplicity 1, there is exactly one 
summand of the form (2(A) (n). The formulas (4)-(7) show especially (since 
6(Xs) = (5(A) + 1) 

[M : Zx(m)] = [Q(Xs):ZX3(m-l)] = ôm-l,-6(\s) — ^m,-ó(A); 

we get here the first equality, because Z*(A) does not occur in Qh(Xs), and 
the second equality from the normalization of Q(Xs). On the other hand, if 
Q(X)(n) is a direct summand of M, we have [M : Z\(n — 6(A))] ^ 0, hence 
n = 0. This shows that that Q(X)(n) occurs if and only if n = 0, and then it 
occurs exactly once. 

Consider now summands with v ^ A. If Q(v)(i) occurs as a summand of 
M, then 

[M : 2ç(i - 6(9) + N)] > 0 and [M : Z^(i - 6(9) + N)] > 0 

by 17.6(3), (4). Suppose first that v < vs, hence 9 > 9s. Then (4),(5) imply 

[Q(Xs) : Z^(i - (5(P) + iV - 1)] + [Q(Xs) :^3(i-6(9) + N + l)}>0 

and 

[Q(Xs) : ZL(i - 6{v) + N + 1)] + [Q(\s):ZL3{i-6(v) + N+l)]>0. 

Now (2) implies i < 0 and (3) implies i > 0. So only z = 0 can occur. We 
see also that the number of summands Q(v) is bounded above by [Q(As) : 
Z^(N — 6(9) — 1)]; by our induction hypothesis this is just the coefficient of 

T-6(u)-ie^ in D(Ys) that is denoted by /J(9,XS) in [Lu2], 8.1. For v > vs 
(i.e. 9 > vs), the same argument as above (with a small change for v = X) 
yields i > 0 and i < 0; so these v cannot occur. This shows that we have a 
decomposition of the form 

M = Q(X) e 0 Q(v)m^Xs^ (8) 
V ... 

with all m(As, v) < n(y. As). Here V . . . " is short for uu < vs, v < As, <5(As) — 
6(v) odd". (The last condition follows from fi(v,\s) ^ 0, cf. [Lu2].) We get 

hzM = hzQ(\) + E 
V ... 

m(Xs.v)hzQ(v). 
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Each v in this sum satisfies v — v < A — A. So we can apply induction to 
them. We can also apply induction to Q(Xs) and then compute hzM using 
17.3. We get thus 

tNhzQ(X) = t-1(T3 + l)B(\s)-
E 

V ... 

m(As, iz)D(î'). 

On the other hand, the formula in [Lu2], 10.7 for the Dc can be rewritten as 

D(A) = f - 1 (T , + l ) D ( A s ) -
E 

V ... 

n(v, As)D(ï/). 

The D(P) with v £ Q are linearly independent, cf. [Lu2], 8.3. So we see that 

hzQ(^) = t~NT>(\) if and only if ra(As, v) = fi(v, As) for all v as above. Since 
the ra(As, v) are determined by 

TXQk(Xs) * Qk(X) e Θ 
v ... 

Qk{v)m(Xa>v\ 

this condition is equivalent to Lusztig's conjecture, cf. (e.g.) [Cli], 3.1 in Case 
1. (The same argument works in the quantum case.) 

17.9· Let us introduce a notation for the coefficients of D(A) and write 

D(A) = Σ 
V 

A , , x ( ' ) eM = E 
v,i 

Di,tXMv). (1) 

If Lusztig's conjecture (as above) holds for our fc, then we have by the last 
theorem hzQ(X) = tNT>(\) where N = \R+\, and also h'zQ{X) = / _ 7 V D ( A ) , 
see the beginning of the proof. So we have for all A, ¡1 G Q and n G Z 

[QW •• 2„<n>] = D ,n-N 
µ,A (L2) 

and 

[G(A):^(«>] = n-n+N-26(ii) (L3) 

cf. 17.2(3),(4). We add here an L to the equation number to indicate that the 
result depends on the truth of Lusztig's conjecture. 

Proposition 15.10 shows how to determine Hom/c(Q)sfc)(Q(A), Q(FJ>)) for 
A,// G fi: We have to look at all v G fi. Each occurrence of a Zu(m) (with 
m G Z) as a factor in a permissible Z-filtration of 6(A) together with an 
occurrence of a Z^n) (with n G Z) as a factor in a permissible ^'-filtration 
of Q{y) leads to a direct summand Sk(n — m) in this Horn space; and we get 
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the total Horn space summing over all pairs as above. If we assume (L2) and 
(L3) for all weights in fi, then an easy calculation shows 

rkHom*(n,s,>(C(A),C(fO) = E 
vEM 

D ~D ~t26(v\ (LA) 

(Recall that the coefficient of t% is equal to dim* Hom/ç^s^^A), Q(^))_j.) 
The highest power of t occurring in any Dvy is less or equal to —6(v) — 1 in 
case v ^ v', whereas Dvy = t~6^ in case v = z/. So (¿4) shows: If Lusztig's 
conjecture holds for our k, then Hom/c(oj5A;)(ô(A), Q\ii))i = 0 for all i < 0; 
in case A ̂  fi this vanishing holds also for i = 0, whereas in case X = ¡1 that 
degree 0 part has dimension 1. 

Independently of Lusztig's conjecture, these arguments show: 

Lemma: Let M and N be modules in TC^^Vt), let M (resp. J\F) be a 
graded Sk-form of VQM (resp. ofV^N). Suppose that Ai has a permissible 
Z-filtration and that Af has a permissible Zl-filtration. Suppose that there are 
weights Xi and jij in fi with 

hzM = t\R+\ 
r 

E 
¿=1 

D(A,) and h'zAi = t-(R+1) 
s 

E 

j=l 

D (µj). 

Then we have B.omK^)Sk)(M,J\f)m = 0 for all m < 0; the dimension of 
Hom^Q^K) (A/(,A/r)o over k is equal to the number of pairs (i, j) with Xi = 
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18. Graded Representation Categories and Koszulity 

In this section we shall work over a fixed field k. Let us abbreviate 
pZR = Y. 

18.1. Let A be a B-algebra. Let Q be an orbit of Wv in X . We know by 
6.18 that CA(Q) is a Y-category and that we can find a projective F-generator 
P oiCA(N). Set 

E(Q) = E{N,P) = (Endi

cP)opp. (1) 

This is a 1-graded A-algebra that is finitely generated as an A-module. (Note 
that there are only finitely many r £ Y with Home (P[r] ,P) 7̂  0. Then use 
Lemma 2.8.) So E(Q) is a Noetherian ring. By Proposition E.4 the functor 

Hn : A ^ H H o m e (om*,(P,iV) (2) 

induces an equivalence of categories from CA{&) to the (abelian) category of 
all finitely generated 1-graded E(Q)-modules. 

It is not hard to construct an explicit inverse for this functor. Recall 
that by definition an object of CA(^) is just an Ar-graded (U® A)-module or, 
equivalently, an A'-graded (U, A)-bimodule with some properties. Certainly 
we can regard any I-graded space as an A'-graded space. So we can view 
E(Q) as an A^-graded ring, and then P is an A-graded ({/, £'(Q))-bimodule. 
Hence we can form for any finitely generated y-graded P(fi)-module M the 
AT-graded (U ® A)-module P®E(Q) M. For M = E(Q) we just find P®E(Q) 
E(Q) = P, and since our tensor product is right exact, we really get a functor 

Dn : M P®E(U) M (3) 

in the opposite direction. By E.2 our functor DQ is adjoint to H^, so it has 
to be an equivalence of categories inverse to HQ. 

18.2. Let T be another W^-orbit and let Q be a projective Y-generator of 
CA(F). We can carry out the constructions in 18.1 for (r, Q) instead of (fi, P). 
Recall the translation functors 

T : CA(Ü) - CA{T) and T' : CA(T) - Ca(íí) 
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from Section 7. We can use the equivalences of categories HQ and Hr to 
transport T and Tf to the categories of finitely generated Y-graded modules 
over E(Q) resp. E(T). More explicitly, set 

ÇLTT = EomUP,T'Q) and TTQ = Eomi

c(Q,TP). (1) 

Thus nTr is a Y-graded (E(Q), £(r))-bimodule, and r T j j is a Y-graded 
(£'(r),£'(0))-bimodule. We get now functors T and T ' given by 

T ( M ) = r Tf i ® E ( A ) M resp. T'(iV) = n T r ®E(T) N (2) 

from the category of finitely generated Y-graded modules over E(Q) to that 
over E(T) resp. in the opposite direction. We have by Proposition E.5 up to 
natural equivalence 

T o Hçi = HY O T resp. T'oJTr = ffa o T \ (3) 

The functor T ' has by E.2 a right adjoint given by M ^ Honi£(Q)(QTr, M). 
On the other hand T is right adjoint to T', so also T is right adjoint to T ' 
by (3). Since the right adjoint is unique, we see that there is for each finitely 
generated Y-graded J5(fJ)-modules M an isomorphism 

TTQ ®E{n) M = Hom£;№)(fiTr,M) (4) 

that is functorial in M. If we take in particular M — E(Q), then we get an 
isomorphism of Y-graded (E(T), E(fî))-bimodules 

rTM 
= HomE(Si)(sjTr,£(0)). (5) 

We deduce also that Hom£(Q)(nTr, ) is an exact functor, hence for all 
finitely generated Y-graded £'(ri)-modules M the obvious map 

Нотв (п)(пТг,.Е(П)) ®Ε(θ) M HomE(n)(fiTr,M) (6) 

is an isomorphism. 

18.3. Let A' be an A-algebra. If P is a projective Y-generator of C>i(fi), 
then P ®A A' is a projective Y-generator of C^/(fi). (Indeed, P ®A A! is 
projective by 3.1.a. Clearly each Z>y(A) with A G fiis a homomorphic image 
of some (P ® A A')[T] ~ (P[T]) ® A A' with t 6 Y. Now argue as in 6.18.) 

Proposition 3.3 implies for the algebras as in 18.1(1) 

E(Q,P®A A') ~ E(Q,P) ® A A ' . (1) 

Moreover, the functors HQ as in 18.1(2) — constructed with P and P ®A A 1 

— commute with extension of scalars. 
Consider, as in 18.2, a second pair (r, Q). Then p^Tr ®A A! resp. YTQ ®A 

A' are the analogues of QTY resp. of pT^ [with the bimodule structures arising 
from (1) and its analogue for T]. We get therefore the analogue of T over A' 
from T by extension of scalars; similarly for T'. 
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18.4. Let fi and T be two orbits of Wp in X as in 10.2; so there is for each 
A G fi a unique Ar G T in the closure of the facet of A. 

Lemma: Let A be a B-algebra such that 0 and 1 are the only idempotents 
of A and such that the image of each Hp in A is not a unit in A. Then the 
Y-graded bimodules rT^ and QTp are indecomposable. 

Proof: Formula 18 .2 (4 ) shows that it is enough to deal with TTQ. SO, suppose 
TTQ ~ Mi © M2 is a decomposition of r if t . By 18 .2 (2 ) this decomposition 
leads to a decomposition of functors T ~ Ti © T2 where T\ corresponds to 
Mi®E(Q) · More generally, by 18.3 the analogue of T over each A-algebra 
Af splits, and this splitting is compatible with extension of scalars from A 
to Af. Using 18 .2 (3 ) we see that also the functor T (over A and each A') 
splits T = Ti © T2 where both summands are Y-functors, and that also this 
splitting is compatible with extension of scalars. (Recall that the Hçi and HT 
are equivalences of categories.) 

Furthermore, the right adjoint T " of T corresponds to the right adjoint 
Hom#(r)(rTft, ) of TTÇI®E(Q) · Arguing as above we see that also T' breaks 
up as T" ~ T[ © T2' [into Y-functors, over each A!compatibly with extension 
of scalars] where T[ is right adjoint to T{. 

Now TZA(X) — ZA(XT) is indecomposable for all A G fi, since 0 and 1 
are the only idempotents of A; so we get a partition fi = fix U ÎI2 with 

Qi = {A G fi I TiZA(X) Ï 0 } . 

Clearly Qi and fi2 are stable under translations by elements from Y. We may 
assume that fii 7^ 0. We want to show that fi2 = 0. If so, then T 2 kills every 
Z^(A), hence kills every projective, hence is the zero functor, in other words 
M2 = 0. So TTQ is indecomposable as claimed. 

In order to show that fi2 = 0, we look at all residue fields F of A modulo 
a maximal ideal. Fix such an F and let W^,? be the corresponding affine 
Weyl group as in 6.7. Fix an arbitrary A0 G fii and set fi' = T^r^Ao. Then 
r' = {Ap I A G fi'} is also an orbit for WniP. The results in 7 .10 on the 
decomposition of T and Tf for orbits under W^)P together with 7 .13 (3 ) show 
for all ¡1 G T' that (pr Q / OT')(2F(AO — QF{^~) where ji~ is the unique weight 
in fi; such that n is in the upper closure of the facet of \±~ for W^^. The 
decomposition of Tf leads to a decomposition 

p r f i , o T ' = ( p r n , o r i ) 0 ( p r n , o r ! { ) , 

where both summands are again exact. Since each QF(m ) is indecomposable, 
we get a disjoint decomposition V = r[ U T'2 where 

г; = { м е г ' | (p r n , o r / )Q F ( / i ) = (jpxQ,oT')QF(n)}. 

If (e.g.) fj, € ri, then (pr n, o T^)QF(n) = 0, hence also (pr ? , o T^)ZF(fi') = 0 
for all Zp(n') in a Z-filtration of QF(h) (since prM' o T'2 is exact). We can 
take in particular n' = n and see thus that 

Vt = {neV\ {Wçi,oTl)ZF{n)ÏO} (for t = 1 ,2 ) . 
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All Zpiji1) with [ZF{JI') : Lp(fi)] ^ 0 occur in a Z-filtration of QF(h), SO all 
these fi are in the same T[ as p. Using Proposition 4.6 we see now that all p! 
with Ext 1 (L/r (// '), LF(/j,)) ^ 0 are in the same ]?'· as µ, hence that the whole 
block of fi over F is contained in that rj. So each Ri is a union of blocks 
over F. On the other hand, the T[ commute with the shift functors \pu] with 
v G Zi?, hence the (pr f i / oT/) with the \pv\ with z/ G ZRn. So each Ri is closed 
under translation by elements from pZR^. Now 6.16(4) implies that one of 
the T[ has to be equal to R, the other one empty. If T = r'2, then we have 
for all A G ft' 

Homc(gF(Ar),T1ZF(A)) ~ Homc((prQ/ o T[)QF(\T), ZF(X)) = 0, 

hence T\ZF{\) ^ Zp(Ar). This yields QR C r22 contradicting the choice of 
A0 Gf i ' f l f i i . Therefore we have Tf = T[ and get now as above fi' C Q\. 

We can find for each ¡3 G R+ a maximal ideal in A that contains Hp and 
get a residue field F of A such that the image of Hp in F is equal to 0. Now 
the discussion above shows that fti is stable under all sp)Tnp with m G Z. 
Since this works for all /3, we see that Vt\ is stable under Wp, hence Qi = Q 
and fi 2 = 0 as desired. 

18.5. We can apply the results of the preceding subsections to A = A(k) = 
Sk- We now want to construct a graded version (over Sk) of the E(Q) and 
the T from above. First we have to make the graded combinatorial cate­
gories /C(fi, Sk) into Y-categories by introducing a graded version of the shift 
operators from 9.13. 

Denote by / : Y —» 2Z the character with (in the notations from 17.1) 

1(T) = 6(X + T)-8(X) (1) 

for all A G X in a regular W^-orbit, i.e., we set l(r) = 2ht(r/p), cf. 17.1(2). 
Let ft be an arbitrary W^-orbit in X and consider the Z-graded combi­

natorial category /C(fi,Sfc). For M in /C(f2,Sfc) and r G Y we define M[r] in 

/C(fi,5fc) by the formulas 

M[T](\) = M(\-T)(-1(T)), 

M[T}(X,/3)=M(X-T,(3)(-1(T)). 
(2) 

If M. has a permissible Z-filtration, then 17.2(3) shows 

hz(M[r]) = (HzM)T-L^E(T), (3) 

and if M has a permissible ^'-filtration, then 17.2(4) shows 

h'z(M[r]) = (h'zM)tl^e(r). (4) 
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Note that the graded 5*-forms (2(A) of VnQg- (A) in 17.6 are chosen such 
that (2(A + r) - Q(A)[r]. 

For MM in £(ft,S*) we denote by HomL(M,N) the (Y x Z)-graded 
space with homogeneous components 

Homl(A4,J\0ri< = Hom^ (Λί[τ]<ί>,Λθ = HomK(n,s.)(A<[r],A0i- (5) 

18.6. All Wp-orbits to be considered below are supposed to be good in 
the sense of 13.3. In order to avoid too many indices we shall write £($1,5*) 
instead of Cĝ  (fi). 

Choose a projective Y-generator P of C(M, S*). Then P is flat over Sk by 
2.7, i.e., in TC(Vt, Sk). Choose a graded 5jfc-form V in /C(fi, £*) of VQP. This 
is always possible by 16.15. Now consider the (Y x Z)-graded 5jt~algebra 

En = EQ(P,V) = (Endlvy™ (1) 

and denote the category of finitely generated (Y x Z)-graded ifo-modules by 
C(Q,Sk) = C(fi;P,P). It follows from 15.10 and 16.15 that E Q is a graded 
free module of finite rank over Sk- So it satisfies the assumptions on A in 
E.6, and we can apply the results in E.6 and E.9-11. Each module in C(fi) is 
finitely generated as an 5*;-module, the ring EQ is Noetherian, and C(Q,Sk) 
is an abelian category. We call it a graded deformation category. 

Remark: Another pair of choices (PF,VF) leads to an algebra EQ(P,,7>/) that 
turns out to be Morita equivalent to EQ(P,V). We get thus an equivalent 
graded deformation category C(Q;P',P) ~ C(Q;P,V). This will follow from 
our results in subsection 18.13 on graded translation functors, applied to the 
case Q = T. However we don't need this independence, so we omit the details 
and just suppose a pair (P, V) chosen when we speak of Sk). 

18.7. Since C(M, Sk) is just a category of graded modules over a graded ring, 
we can shift the grading and form for M in C(Q) and i G Z resp. v G Y the 
shifted objects M(i) resp. M(v) in C(Q,Sk). However we shall write M[u] 
instead of M(v) for v G Y so to stay coherent in our notations. 

The completion EQ = E^®sk Sk of En along the Z-grading is by 15.5(1) 
isomorphic to the algebra E(Q) as in 18.1(1) where A = Sk. Recall the 
equivalences of categories HQ and DQ from 18.1 that are supposed to be 
constructed with our present P. 

Let us now define the functor "completion along the Z-grading" 

v:C(V,Sk) C(M, Sk), M P ®En Af. (1) 
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We have for all M in C(Q, Sjt) a natural isomorphism 

Dn(M®SK SK) = P ® E ^ SKSK(M®SkSk) = P®EnM = vM, (2) 

hence an isomorphism of functors 

DQO( ®SkSk) = 
v. (3) 

So v has the same properties as the completion ®skSk, since DQ is an equiv­
alence of categories. 

18.8. By a "graded form" of an object M in C(M, Sk) we mean an object M 
in C(Q,Sk) along with an isomorphism vM M. Equivalently, we might 
ask for an isomorphism M ®sk Sk —+ HQM of Y-graded E^-modules. By 
Lemma E.9.c each indecomposable object has up to shift and isomorphism 
at most one graded form. We shall construct for each A £ Q a graded form 
Zsk(X) resp. Z'Sk(\) of Z^ (A) resp. Z'^ (A) and prove (with NQ as in 15.4): 

Theorem: a) There are isomorphisms of 7a-graded Sk-modules: 

E x t ^ , y ( ^ ( A ) , ^ ( ^ ) ) = Sk, if X = n,i = 0; 
0, else; 

E x f E n ) y ( Z ^ ( A ) , Z S j k ( / x ) ) = Sk(2(\R+\-Nn)), if A = n,i = 0; 
o, else. 

b) Each Zs f c(A) has a unique simple quotient Lk(\). This Lk(\) is a graded 
form of Lk{\). Every simple object ofC($l, Sk) is isomorphic to some Lk(X)(i) 
for unique A £ H ; i £ Z. 

c) Each projective object of C(tt, Sk) admits a graded form. An object M 
in C(Q,Sk) is projective if and only if vM in C(Q,Sk) is projective. Any 
projective object in C(£] ,S j t ) admits a filtration with all subquotients among 
the Zsk(ty(i)> It also admits a filtration with all subquotients among the 

Z'Skm)-

18.9. We shall construct the modules in 18.10; the proof of the theorem will 
be concluded in 18.12. First we need a better link between our graded defor­
mation category C(Q,Sk) and the graded combinatorial category /C(f2,5fc). 

Consider the functor r from /C(£), Sk) to C(M, Sk) given by 

rM = Roml(V,M), (i) 
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and the functor r from /C(fi, Sk) to the category of all finitely generated Y-
graded J5Q-modules given by 

fAT = Hom^(VfìP,A^). (2) 

We have by 14.8(4) and the choice of V natural isomorphisms 

Homl(P,7W)®St Sk /c 
= 

Hom^(VnP,M®s* Su) (3) 

for all Al in /C(Q,5fc), hence up to natural equivalence 

( ®skSk)°r = ro( ®SkSk). (4) 

On the other hand, we have natural isomorphisms 

Homl(P,M) = Ham^VoP.VnM) (5) 

for all M in TC(Q, Sk), hence up to natural equivalence 

HQ [onTC(Ü,Sk)] = foVfl. (6) 

Lemma: Let M be in ,HJ(fi, Sk) and let M in /C(fi, Sk) be a graded Sk-form 
o/VnM. 

â ) T A e n rAA in C(Q,Sk) is a graded form of M. 

b) Let Af in /C(fi,£jb) be a graded Sk~form ofVnNfor some N G ^C(n,5jb). 
Then the obvious map 

HomK(M,sk)(M,N) UOMC(Q,sJrM'rAr> 
is an isomorphism. 

c) Suppose that 0 C Af C Ad is a permissible two-step filtration of A4. Then 
the maps Af —» AA —> M/Af in K,(Q,Sk) induce a short exact sequence 

0 rAf rAA r(M/Af) 0 

of (Y x Ti)-graded E^-modules. 

Proof: a) follows immediately from (4) and (6) and the definitions. For b) 
observe that our map is just the degree zero part of a map 

KomK(Qtsk)(M,AT) 1ROVCIERLY(rM,rAf) (7) 

of graded S^-modules. So we need just to show that this map is an isomor­
phism or, equivalently, that it becomes an isomorphism under ®skSk- Now if 
we apply ®skSk to (7) we get just the map 

KomK(Qtsk)(VMM,VMN) Hornby (fV n M,fV n JV) 

induced from our functor f. But f i s fully faithful on the image of VQ by (6), 
since HQ is an equivalence of categories and VQ is fully faithful. 

For c) just notice that by definition of a permissible filtration (15.9) our 

sequence becomes short exact under completion ®skSk. 
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18.10. Recall the objects 2% in K(M, Sk) from 15.3. Set for all fi 6 X and 
w G W 

2§h<jx) = r2HNa-6{ir)) (1) 

using the notation // from 17.1. This is a module in C(Q,Sfc). We have 
obviously 

Z £ ( M ) [ T ] ~ ^ > + T) for all r G Y. (2) 

Note that 18.9(4), (6) yield 

Zw

Sk(µ) OSk Sk = HMZw

Sk (µ). (3) 

We shall use the abbreviations 

ZSk (µ) = Z1

Sk (µ) and Z'sM = Zs»- (4) 

Let us now prove part a) of Theorem 18.8. Observe first that 

E x t ^ y ( Z S 4 (A), Z^(/ i ))®s 4 5* = ExtI

Ê^Y(HnZ~K(\),HQZ!êk(n)) 

[by E.7(2)] 

~ E x 4 ( ^ ( A ) , ^ ( M ) ) 

= 0 unless À = //, z = 0 [by 4.11/12]. 

We get similarly Extl

EnY(Z
f

Sk(\),ZsK(/J<)) = 0 unless A = //, i = 0. So, to 
finish the proof of part a) of our theorem, it remains to treat the cases with 
i = 0. But there the claim follows from 15.4 via Lemma 18.9.b. 

18.11. We next go for 18.8.b. Note that we can regard modules in C*(Q) 

also as modules in C(Q,Sk) via the natural map Sk^»k, cf. 3.1. This applies 

in particular to all M k with M in Sk). 

Lemma: Suppose M in C(Q,Sk) is a graded form of M in C(Q,Sk). Then 

M ®sk k is a graded form of M ® g k. 

Proof: Apply v to the exact sequence 

Θ 
aCE 

M12) M •Af ®Sk k 0, 

where the first map is given by the row matrix (/i a)a€£-
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18.12. Set Zfc(A) = Zsk(X) ®sk k; this is by Lemma 18.9 a graded form of 
Zjt(A). Clearly Zfc(A) does not change under completion, so we have 

HAZK(X) ~ Zk(X) ®s» Sk = ZK{\). 

We know from 4.1 that Z&(A) has a unique maximal proper subobject in 

Cjt(fi), hence also in C(fi, Sk)- Therefore also Zfc(A), considered as a Y-graded 

2?Q-module, has a unique maximal subobject equal to r a c ^ yZjt(A). Since 

Zfc(A) is annihilated by the maximal ideal iii C Sk, this is also the maximal 

subobject of Zfc(A) considered as a Y-graded EQ-module, i.e., 

radg Z*(A) = rad£ n ) Y Z f c (A) . 

By Proposition E.ll this radical is Z-homogeneous. Thus we can define the 
object Lfc(A) in C(fi, Sk) to be the unique simple quotient of Zk(\), 

Lk(X) = Zk{\)l™àEcììYZk{\), 

and it is clear that ijt(A) is a graded form of Ljt(A) in C(fi, Sk). Observe next 

that every object M in C(fi,5jt) is a finitely generated graded Sk -module. 

Hence (Sfc) > 0 M = M implies M = 0. Thus every simple object in C(M, Sk) is 

annihilated by (Sk)>o- Hence the simple quotients of Zsk(X) and Zjk(A) are 

the same, and hence Ljt(A) is the unique simple quotient of Zs f c(A). 

If L is any simple object in C(fi, we know (Sk)>oL = 0 and in partic­

ular L is of finite dimension and does not change under completion. Since we 

know that the HQLk(X) are all the simple Y-graded ^-modules , there has to 
exist (for some A E fi) a surjection L-^Lk(X) of Y-graded ifo-modules. This 
surjection can also be considered as a map of Y-graded E'ft-modules, and one 
homogeneous component of this surjection gives necessarily a nonzero map 
L —> ijt(A)(z) in C(fi, Sk), which then has to be an isomorphism. This settles 
part b) of our theorem. 

We finally treat part c). Lemma E.9.a says that vM is projective if and 

only if M is so. The remaining statements follow from 16.15 using Lemma 
18.9. This concludes the proof of Theorem 18.8. 

18.13. Assume from now on that fi is a regular W p-orbit, and that V is an 
arbitrary orbit. Suppose that we have chosen (P,V,EQ) as above and that 
(Q, Q, E-p) are analogous choices for T. We can imitate the construction from 
18.2 for our graded deformation categories. Set now 

n Tr =Homl(7>, T'Q) and rïh =Roml(Q,TV). 
/v 

(1) 

251 



H.H. ANDERSEN, J.C.JANTZEN, W. SOERGEL 

So QTT is a ( y x Z)-graded (EQ, £r)-bimodule, and r?h is a (Y x Z)-graded 
(Ep, jE,Q)-bimodule. By 15.5(1) and 15.15 the Z-completion of ^Tp resp. of 
rTh can be identified with the bimodule nTp resp. with TTQ from 18.2(1). 
Next we define the graded translation functors T\ and T* by 

T,:C(Çl,Sk)^C(T,Sk), M h-* rTQ ® S n Af, (2) 

and 
T* :C(r ,5*) - -C(f i ,S t ) , N Ω Γ Γ ® Ε Γ Ν. (3) 

Proposition: The following functorial diagrams commute up to natural equi­
valence: 

C(Q,Sk) v C(Q,SK) 

T. T 

C(T,SK) V C(T,SK) 

C(T,SK) V C(T,SK) 

T* T' 

C{Ü,Sk) V C(N,SK). 

In particular, our graded translation functors are exact. 

Proof: We only treat the first diagram. If we compose v o T\ with iJp, then 
we get by 18.7(3) up to natural equivalence the functor 

M № ®Eq M) ®Sk Sk 
= rTM OEM (M®s„ Sk), 

i.e., M i—• T(M®5 J F E Sk). By definition of v this functor is equal (up to natural 
equivalence) to T o HQ O hence to o T o v by 18.2(3). This yields the 
claim in the proposition since is an equivalence. 

18.14. Consider the functorial diagram 

ÎC(N,SK) 
T JC(T,SK) 

r r 
C(Q,Sk) 

T, 
C(T,SK) 

and the natural transformation T\ o r —• r o T given as the composition 

rTn®SnHoml(P,7W) •Romt(Q,TV)®En Komt(TV,TM) 

Homl(Q, TM). 

Lemma: If M is a graded Sk-form ofV^M for some M G TC(Vl,Sk), then 
our natural transformation gives an isomorphism T\rM rTM. 
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Proof: Indeed, we just have to show that our map becomes an isomorphism 
under completion. But then our map gets transformed into the composition 

r T f ì ® ^ H o n 4 ( P , M ) •Hon4(Q, TP) ®^ HomjL (TP, X M ) 

H o m j L ( Q , T M ) , 

and this is an isomorphism by Proposition E.5 or, closer to the truth, by its 
proof. 

Remark: We can construct similarly a natural transformation T * o r - > r o T ' 
that induces an isomorphism T*rAf rT'M whenever N is a graded 5 * -
form of VnN for some N G FC(T, Sk). 

18.15. By E.2 our graded translation functors T\ and T* have right adjoints 
T ! and T* given by 

T ! =HomEr(rXfì, ) and r . = HomE0(nTr, ). 

Recall the notation o(A,T) from 15.13. 

Theorem: aj We have T\ ~ T* and T ! - T*(-2NT). 

b) We have T*Z 5 , (A) - Z 5 f c (A r ) (o(A,T)) and TxZ'Sh{\) ~ % ( A r ) ( - o ( A , V ) ) 
for all A G fi. 

ĉ ) Por all fx E T the translated module T*Zsk(fi) has a filtration with sub-
quotients Zsk(X)(o(X,T)), where A runs over all X € Q such that Ar = ft. 
Similarly TZf

Sk(fi) has a filtration with subquotients Z's (\)(—o(\,T))f where 
A runs over all X £ Q such that Ar = u. 

Proof: After completion r^h and Hom£n(ftTr, EQ) get isomorphic by 18.2(5). 
Since they are indecomposable by Lemma 18.4, they have to be isomorphic 
up to shift: 

rTfì(i)-Hom^(fìrr,^) 
for some i G Z . For each M in C(fi, Sk) the canonical map / in 

TiM(i)~HomEa(nTr,EQ) 
OEM M f HomEn(QTr,M) = T*M 

is an isomorphism, since it becomes the isomorphism 18.2(6) under comple­
tion. So there is an i G Z such that T* ~ T!(i). Similarly we find a j G Z such 
that T ! ~ T * ( j ) . 
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In order to prove a) we have to show that i = 0 and j = —2NY. We 
postpone this and look first at b) and c). We have for all A £ ft 

T,Z'Sk(\)~T,rZ'x(-6(\)) [by definition of Z'Sk{\)] 

~rTZ' A <-ó(A)> [by 18.14] 

~rZ'Xr(NT-6(\)) [by 15.16] 

~Z'Sk(\T){-o(\,T)) [by definition of Zl

Sk(Xr)]. 

For the last step we need also that 6((A r )~) = 6(A) -o (A , r), cf. 17.1(3). This 

proves the second claim in b); we get similarly T\Zsk{X) — Zsk(Xr)(o(X,T)). 
This will yield the first claim in b) as soon as we have shown that i = 0. 

Using similar arguments and 18.8.C we deduce from 15.17 that each 
T*Zsk{n) (resp. each T*Z'Sk(iij) with ¡1 6 T has a filtration with subquo-
tients Z 5 f c (A)(o(A ,r)) (resp Z'Sk(X)(2NT - o(A,r))), where A runs over all 
A E 0 such that Ap = //. So we get the first claim in c); the second one will 
follow when we know that j — —2Nr. 

So let us return to a). Choose A G fi. We have isomorphisms (by 18.8 
and the results on T\ and T* above) 

Sk(-o(\,T)) ~ Hornby(Z S k (A r )(o(A,T)),Z' S h (A r )) 

~ HomEr)y(T,ZSk(A), Z ^ ( A r ) ) 

~HomEa,Y(ZSk(\),T
lZ'Sk(\T)) 

~RomEntY(Zsk(\),T*Z'Sk(\T)(j)) 

~Sk(j-o(\,r) + 2NT). 

We deduce j = —2NY. Similarly we calculate i from the isomorphisms 

Sk(-o(\,T)) ~KomEn!Y(T*Zsk(Xr),Z'Sk(\)) 

~HomErtY(ZSk(\),Tj'Sk(\)) 

~KomEr,Y(Zsk(\),T,Z'Sk(\)(i)) 

~KomEr,Y(ZSk(\),Z'Sk(\) ( -o(A , r ) + i » 

~ 5 f c ( » - o ( A , r ) ) . 

We deduce i = 0. The theorem follows. 

18.16. Set for all A € Q 
QSk(\) = rQ(X). (1) 
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This module in C(Q,Sk) is (by Lemma 18.9.a) a graded form of Qg-^A). By 

Lemma 18.9.c the permissible Z-filtration of Q(A) yields a filtration of Qsk (A) 
with factors of the form Zsk(fi)(n) with // £ ft and n £ Z. The top factor 

ZA<$(^)) m the first filtration leads to an epimorphism Qsk (\)—»Zsk (A), cf. 
18.10(1), hence to an epimorphism Qsfc(A)—»Zfc(A). 

We get from Lemma 18.9.b for all A,// E ^ an isomorphism of (Y x Z ) -
graded Sk-modules 

Eowl(QSk(\),QsM) ~Homk(niSfc)(G(A),<20i)). (2) 

The right hand side can be described explicitly, if we know that Lusztig's 
conjecture (as in 17.8) holds for our fc. Well, we have by definition 

rkHomi-(„iSi)(e(A),e(rt) = E 
τΕΥ 

rkHomK(niSlt)((2(A + r),(2(,i)). (3) 

So 17.9(L4) implies 

rkHomJc(fiA)(g(A),Q(M)) = E E 
ί/£Ω τΕΥ 

D <>, D ~t2S(u\ (LA) 

where we use (as in 17.9) an L to indicate that the formula depends on the 
truth of Lusztig's conjecture. Some calculations later on will simplify if we 
replace the ^-polynomials by Lusztig's Q-polynomials (again regarded as 
indexed by elements in fi). So they are given by 

QXtll = tS^DXTLL, (5) 

cf. [Lu2], 8.9. Recall that our t is the q1/2 in [Lu2]; so the QY,µ involve only 
even powers of t (cf. [Lu2], 5.2). Using (5) we can rewrite (L4) as 

rkHom<.(0iS,)(C(A),CM) = E E 
ί/£Ω τ£Υ 

О ^ О ^2,5(*/)-о(Л+г)-оЫ (L6) 

The Q-polynomials satisfy (by [Lu2], 7.4) 

Q\+T,ii+T = Q\,fi (7) 

for all A,/i £ Q and r £ Y. There are TI, r 2 £ Y with A = w 0.A + ri and 
p = WQ.fi + T2. If we now substitute v + r 2 for */ and r - TI + r 2 for r, then 
we can rewrite the right hand side of (L6) using (7) as 

E E 
veti t£Y 

N , T {I 4.26{v)-6{wq.\+t)-6(wq*ii) (L8) 
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18.17. Let fii C M be a system of representatives for the orbits of Y in ft 
acting by translation. Then P = 0 ^ € ^ 1 Qfc(A) is a projective Y-generator of 
Cfc(ft). From 18.9 we deduce an isomorphism of Y-graded rings 

Endt 
c Θ 

λΕΩι 
QskW))®skk opp = (End 8P) o p p. (1) 

Let us call the left hand side A; this is a ( Y x Z)-graded fc-algebra. If Lusztig's 
conjecture holds, then A is positively graded and its degree zero part is just 
a product of |fti I copies of k, with a basis of pairwise orthogonal idempotents 
1a € A0 given as the images of the projections onto Qs f c(A). This follows 
from 18.16(2) and the discussion on 17.9. More precisely, we can calculate 
the Poincaré polynomial P(A, t) of our ring, an (fti x fti)-matrix with entries 
in Z[[tf]] given as 

P(A,t)Xtll = (vkHonl(Qsk(\),Qsl.(v)))(t-1). (2) 

If Lusztig's conjecture holds, then 18.16(L8) says 

P(A,t)x,r = 
E E 

veti t£Y 

N x, (F-l-ÌN (F-l\F6(wo*\+T) + 6(w09p)-26(V) ^L/yWo* A+r\L J^c U,Wo» ) 1 

Note that indeed P(A,t)\tfl G Z[i\. 
(L3) 

Proposition: Suppose that p > h. If Lusztig's conjecture holds for k, then 
A is a Koszul algebra. 

Proof: We want to deduce this from the numerical Koszulity criterion ex­
plained in [BGS], 2.11. So we have to know the Poincaré polynomial of 
E(A) = Ext^(A 0 , A0). By definition of A the category of finitely generated 
Y-graded A-modules is equivalent to C*(ft); under this equivalence -A01a cor­
responds to Lfc(A), for each A £ ftj. Hence A0 corresponds under our equiva­
lence to L = 0 A E O - 1 Lk(X) and E(A) ~ ® r € y Ext£(Z[r], L) has the Poincaré 
polynomial P(E(A),t) with entries 

P(E(A),t)Kr = E E 

rev iez 

f dimExtULk(n), Lk(\ + t ) ) . 

The dimensions of Ext-groups between irreducible objects have been deduced 
from Lusztig's conjecture in [CPS] in the case Q is regular and p > h in Case 
1. Their results extend to Case 2: One simply has to replace the reference to 
Friedlander and Parshall in [CPS], 3.12.2.3 by a reference to the main result 
in [GK]. We have by [CPS], 5.8.1 

P(£?(A), *)*,„ = E E 
rEY vEM 

^ w + * ( A + r ) _ 2 ê W p ^ _ 1 ) P ^ + r ( f _ 1 ) 5 
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where the Ρ are the generic Kazhdan-Lusztig polynomials as in [Kat], 3.3. 
The Ρ are polynomials in £2, so P(E(A), —*)λ,μ is equal to 

Σ Σ 
rEY vEM 

(_1)«(λ+Γ)-6(μ)^(μ) + 5(λ+τ)-26(ι/) Pv,µ (t-1) Pv,Y+r(t-1). 

So the (λ, //)-entry of P(A, i)P(£7(A), - t ) is equal to 

Σ Σ Σ 
τ/€Ωι ι/,ι/'6Ω Г,Г'6У 

(-1)6(n+r')-6(µ) 6(гί;o·τ/)-26(ι/) + 6(μ)+<$(77+r/)-26(I/,) 

. (̂г̂ ;o·λ4-r)̂ -6(гί;o·τ/)-26(ι/) + 6(μ)+<$(77+r/)-26(I/,) 

Substitute ν — WQT' for ζ/ and τ — W^T1 for τ and apply 18.16(7) to the Q -
factors. The sum above turns into 

Σ Σ Σ 
r/ΕΩι ί/,ί/'€Ω г,г'бУ 

(_1)̂ (̂ 7+ '̂)-<5(μ) (Q 
Pv', µPv', n+r)(t-1). 

β ^(υ;0·λ+τ) + (5(«;ο·(τ/+Γ,))-2<5(ί/) + 6(μ) + ($(ΐ74-Γ/)-2̂ (̂ /) 

(One uses 18.5(1) to rewrite the exponent of t.) If η runs over Ωι and r' over 
У, then η + r' runs over Ω. So we can rewrite the sum as 

Σ Σ Σ 
ω£Ω ι/,ι/'€Ω г€У 

(_1)^(^7+^')-<5(μ) (̂ ί/,ΐϋοβλ+τ ί̂/,ΐΐΌ·̂ ι̂/',μΡν1 ,ω){ί )' 

. (̂ιι;ο·λ+τ) + <5(ιι;ο·̂ )-26(ί/) + 6(μ) + <5(α;)-26(ί//) 

We have 
(5(^ο·^) + δ(ω) = |Ρ + | for all α; G Ω, (4) 

e.g., by [Lu2], 1.4.3. On the other hand, [Lu2], 11.10 implies (cf. [Kan], 2.9) 
that 

Σ 
rEM 

(_1)Ô(U;)-Ô(U')Q ρ _ с (5) 

for ail v, v1 G Ω. So the sum simplifies to 

Σ Σ 
vEM rEY 

ί_1\δ(™ο·ν)-δ(μ) (ζ? ι/, u>o · λ+r Р«7о · ι/, μ ) ^-1^«(ΐΐ70·λ+τ)-|Λ+|+5(μ)? 

where we have used in the exponent of t that — 26(i/) — 28 (v1) = —26(v) — 
28(WQ.V) = — \R+\ by (4). Now apply the counterpart of (5), i.e., the fact 
that the Q-matrix is also the right inverse to the (±P)-matrix. We get 

Σ 
rEY 

8ινο·\+τ,ινο·μ — λ̂,μ· 

(For the last step use that λ and μ are from a system of representatives modulo 
У.) These results tell us that P(E(A), -t) is inverse to P(A, i ) . Hence A is 
Koszul by the numerical Koszulity criterion. 
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18.18· Recall that Q is a projective Y-generator of C(T/Sk). This implies 
that Qk = Q ®g- A: is a projective Y-generator of Ck(T). We have E? ®sk 

Sk ~ (EndjtP) 0^, hence P r > * := ET ®Sk k ~ (Endj^P*)0^. The category 
of finitely generated Y-graded Pp,*-modules is equivalent to Ck(T) under 
M Pk ®Er,k M ~ P®Er M. 

The algebra Pp,* is (Y x Z)-graded; denote by Cjfe(r) the "graded rep­
resentation category" of all finitely generated (Y x Z)-graded Erik-modules. 

(We can identify Ck(T) with a full subcategory of C(T, 5*): Take all M with 

/ i a M = 0 for all a.) We have a functor v : Ck(T) —• C*(r) where we first forget 
the Z-grading and then apply the equivalence of categories from above. If we 
embed Ck(T) into C(T,Sk) as above and similarly embed Ck(T) into C(T,Sk) 
(cf. 18.11), then v is just the restriction of the functor v from 18.7. 

Objects in Cfc(r) are for example the Lk(\), the Zk(\), the Zf

k(X) = 

Z'Sk(X) ®Sk k and also the Qk(X) := Qsk(ty ®sk k (with A G T). We have 

t;Z*(A) - L*(A), vZk(X) ~ Z*(A), ÏÏZ[(A) ~ Z£(A), <JQ*(A) ^ Q * ( A ) for all 

A G T. (Apply Lemma 18.11.) Since Qk(X) is projective in Ck(T), the last 
isomorphism implies that Qk(X) is the projective cover of Lk(X). 

The discussion of the functor v above shows for any M and N in Ck(T) 
and any i that 

Exti>k(vM,vN) ~ Θ 
rEZ 

Extl (M(r),iV). (1) 

We can use this to show for all A, \x G T that 

Extt ( r ) (Z*(A)<r) ,z ; ( , i ) ) = 
k, if i = r == 0, A = u: 
0, otherwise. (2) 

Indeed, (1) and 4.12(1), (2) yield the vanishing for all i > 0 and for i = 0 
when A ̂  They also show for i = 0 and A = // that there is exactly one 
r where the Horn space is equal to k, whereas it is equal to 0 for all other r. 
This unique r is readily determined from Theorem 18.8(a). We get similarly 

Extl (Z'k(X)(r),Zk^)) = k, if t = 0, r = 2(\R+\-NT), A = m; 
0, otherwise. 

(3) 

18.19. The first parts of the following result motivated the shifts appearing 
in the definitions of the graded deformation category and of its objects. 

Proposition: Suppose that p > h and that Lusztig's conjecture holds for k. 
Let Q be a regular Wp-orbit in X. 

a) For any A, /i G we have Ext- (Ljt(A), 
LK (IL) 

Lk(/j,)(n)) — 0 unless i = n. 
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b) For any \, FI € Q we have 

Exti (Zk(X), Lk(/i)(n)) = 0 = Extl (Lk(n),Zk(\)(n)) 

unless i = n. 
c) Each Qk(X) with A G fi admits a Zk-filtration and a Zf

k-filtration; we have 

E 
r 

[Qk(X) : Zk(n){r)]tr _ t6(n)-6{\)+\R+)Q ^ 

= E 
r 

[ Q f c ( A ) : Z U / . ) ( - r ) ] r + 2 l R + l 
(LI) 

and 

[Zk{») : Lk(X)(r)} = [Qk(X)(r):Z'k(»)(2\R+\)] = [Qk(X) : Zk(fi)(r)]. (L2) 

Proof: a) This follows from general properties of Koszul rings applied to A 
as in 18.17, cf. [BGS], Proposition 2.1.3. 

b) We can apply [CPS], Theorem 3.8, to the category Ck(Q) with weight 
poset A = fi x Z with the order given by (cj,n) < (u/,ra) if and only if 
uj < wfthe length / : A —• Z given as l(oj,n) = 6(u), and with X = Lk(X), 
y = Lk(/i)(n). We obtain in this way 

dimExti (L»(A),£ t(;0(n)) = 

E E E 
vEM rEZ jEZ 

dimExti-^ n ( I f e (A) ,Zi( i / )0-» d i m E x ^ ( f i ) ( Z f c ( ^ ( j ) , L f c ( M ) ( n ) ) . 

From a) we deduce that for i ^ n each summand vanishes, in particular the 
one for v — A, r = z, j = 0 and the one for v — //, r = 0 and j = n. This 
establishes b). 

c) We start with (LI). As pointed out in 18.16, the permissible Z-
filtration of (2(A) yields a filtration of Qsk (A) where the factors have the form 
ZsK(FI){n). More precisely, each factor Z^n) leads to a factor ZsK(/J<)(n + 
<5(//)), cf. 18.10(1). Tensoring over Sk with k we get a filtration of Qk(X) in 
Cjt(fi), since the ZsK(FI) are free over Sk. Now 17.9(L2) implies 

[Qk(X) : Z*(/i)(r)] _ nr-fi(^)-|«+| 
— U ^ , u, A 

hence 

E 
rEZ 

[Q*(A) : Zt(/i)<r)]f-«<"> = t(R+)Dµ,A = t(R+)-6(A)Qµ,A, 
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where we use 18.16(5) for the last step. This yields the first equality. The 
second one follows similarly from 17.9(L3). 

We now prove (L2). The second equation is clear from (¿1) , so we 
concentrate on the first. Certainly 

[Zk(p) : Z*(A)(r>] = dimHom^(fì)(gJk(A)(r),ZAr(//)), 

and this can be written as féf*(A)(r) : Z'k(ii)(2\R+\)] using 18.18(3). 

Remark: We expect a) and b) to hold also for p > h and for an arbitrary 
Wp-orbit ft. 

18.20· Suppose for the moment that we are in Case 1. The restricted 
enveloping algebra U^(gk) is (Zi?)-graded in a natural way. So we can 
regard it also as an X-graded algebra and study the category of all X-graded 
t/W(g i t)-modules. 

Lemma: We have a canonical decomposition of the category of all finitely 
generated X-graded U^(gk)-modules into Q^^x/px Ck[fi] • 

Proof: Any A G X/pX C t)k determines an algebra homomorphism A : 
C r̂i(I)jb) —* k; together they give an isomorphism 

uW(i>k) = 
n 

X/pX 

k. (1) 

Consider an X-graded ^ ( g ^ - m o d u l e M = @veXMu. Since U^(f)k) is 
contained in the degree zero part of U№(gk), it stabilizes each Mv and we get 
a decompososition Mv = ®\^x/px where 

= {m G Mv I um = \{u)m for all wG*7w(*)*)}· 

It is immediate that for any ¡1 G X/pX the subspace 

Μ(μ) = Θ 
vEA+µ 

M* C M 

is stable under U^(gk) and lies in fact in C*^]. Clearly M = ®^x/px M(fi) 
and clearly this decomposition is respected by all morphisms of X-graded 
t/W(0A.)-modules. 

Remark: The discussion above generalizes to Case 2, if we replace U^(gk) 
by u modulo the ideal generated by the (central) elements Kp — 1. 

260 



REPRESENTATIONS OF ALGEBRAIC GROUPS AND QUANTUM GROUPS 

18.21· Suppose again that we are in Case 1. The restricted enveloping 
algebra U^(gk) is finite dimensional. It decomposes uniquely into a direct 
product of algebras that cannot be decomposed further: 

U(P) (gk) = r 

n 
¿=1 

Bi. 

The factors Bi are called the blocks of U^(gk). Each block is the annihilator 
of the product of the other blocks, hence also the annihilator of a suitable 
direct sum of projective indecomposable modules for U^(gk). Since these 
modules lift to objects in Ck, cf. the proof of 16.17, we can deduce that each 
block is the direct sum of its weight spaces. 

Each U^(gk)-modnle M is the direct sum of all B{M\ we say that M 
belongs to Bj if M = BjM. Each indecomposable M belongs to some B{. 
In particular, each Lk(X) with A G X belongs to some block; another Lk(/jt) 
belongs to the same block if and only if fi G W*X + pX. So there is for each 
Wp-orbit T a unique block such that all Lk(n) with ¡1 G T belong to this block; 
denote it by B(T). For M in C*(r) all Bi £ B(T) annihilate Af, since they 
annihilate all composition factors. So we have M = B(T)M\ more precisely, 
the identity in Bit) acts as the identity on M. 

If T and T' are two Wp-orbits, then we have B(T) = B(Tf) if and only if 
there is /i G X with T' = V +pji. Under a decomposition as in Lemma 18.20, 
the category of finitely generated X-graded #(r)-modules corresponds to the 
product of all ( r ; ) with v running over representatives for X/pX and V 
running over all orbits of the form V + pn with ¡1 G X. Then M H-+ M[p//][z/] 
is an equivalence of categories between Ck(T) and Ck^{T + pn). If P is a 
projective y-generator P of Ck(T), then P is also a projective X-generator 
of the category of finitely generated X-graded Z3(r)-modules. So B(T) is X-
Morita equivalent (in the sense of F.6) to (EndjlP) 0^. (This endomorphism 
ring is in fact y-graded, but we can also consider it as an X-graded ring.) 

Proposition: Suppose that p > h and that we are in Case 1. Let Q be a 
regular Wp-orbit in X. If Lusztig's conjecture holds for k, then B(Q) admits 
a Koszul grading compatible with its X-grading. 

Proof: This is now an immediate consequence of Proposition 18.17 and 
Lemma F.7. 

Remarks: 1) If a) and b) in Proposition 18.19 extend to all W^-orbits, then 
one could show that the restricted enveloping algebra U^(gk) admits a Te­
stable Koszul grading. This would allow to determine the dimensions of the 
Ext groups Extl

Ck(T)(Lk(\),Lk(fi)) and Extl

Ck{T)(Zk(\),Lk(fi)) following for 
example the line of reasoning given in the proof of [BGS], Theorem 3.11.4. 

2) Everything carries over to Case 2; we simply have to replace U^(gk) 
everywhere by the quotient of u mentioned in 18.20. 
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19. Examples of Endomorphism Algebras 

We return to the situation of Section 14 with the same restriction on p. 
Assume that R is indecomposable. We choose A = A(k) and the hp as in 
14.1. So we can regard A as an 5-algebra with 5 as in 14.4. (In Case 1 we 
could also work with A = B(k). However, then A would not be local and that 
would make several proofs more complicated.) 

19.1. Let be a Wp-orbit. We want to use our theory to determine explic­
itly EndcQ for a projective module Q in VA(S^) in a very special situation. 
We shall assume that 

Q0 = 
e 
te/ 

Z0(µi) (1) 

for some finite index set I where the fii G Q are distinct. Furthermore we 
assume for all (3 G R+ that there is a subset I(f3) of I such that 

QB = 
Θ 

«6/(j9) 

QB(µi) (2) 

where Q^(/JL) = Z^(fi) if ¡3]¡1 = ¡1, and where QP(/J>) is the middle term in a 
representative of e^(/i) if /3 | [i ^ ¡1. (This is the same convention as in the 
proof of 9.4. Note that the isomorphism class of Q^(jj) does not depend on 
the choice of e^(fi).) The existence of a decomposition as in (2) would follow 
from Theorem 4.19.b, if A13 were a local ring. Since the characters of distinct 
QP(fi) are linearly independent, the set I(j3) is determined by the character 
of Q, i.e., by the family ( ^ ) ; G j . 

19.2. Since A is local, each Home(^A(A), Q) is free over A, cf. Lemma 4.14. 
Choose for all i G I a homomorphism /,· : ZA{^%) —• Q such that 

Komc(ZA({ii)iQ) = Afi, (1) 

i.e., fi is a basis of this A-module. So 

VQ(fi) = A* FU if u = m; 

0, if jj, £ {m I i e /}. (2) 
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Fix a positive root (3. Let ¡1 G X. If (3 j ¡1 — /i, then the definition 9.3(2) 
implies that 

VQ(»,f3) = A* fi, if u = m; 

0, if n <£ {m I % e / } . (3) 

If /3|/u ^ yu, then choose an exact sequence 

0 ZB(B/µ) fQB (µ) gZB (µ) 0 (4) 

representing e^(/i). If neither // nor /3 | )ti belongs to the set of the /ij, then 
obviously VQ(ii, /3) = 0. If // = Hi for some i E l and if (3 j is not in the set 
of the /ij, then /1 1—• h o g is an isomorphism 

Homc(Z^),£/) = 
Homc(Qfi(n),Qfi). 

This yields 
VQ(v,P) = Af>(fi,0). (5) 

If /3111 = Hi for some i G i" and if // is not in the set of the / / j , then h ho f 
is an isomorphism 

HomctQ^),^) = Homc(^(/3/µ), Q3). 

(Here we use Lemma 4.14.) This yields 

VQ(VL,P) = A<'{0,fi). (6) 

Suppose now that ¡1 = Hi and /3 f ¡1 = jij for some i,j G / , i ^ j . There 
are two possible cases: Either Q^(/J) is isomorphic to a direct summand of 
Q^, i.e., i G or it isn't. Consider first the case where i G I(/3). Identify 
QP(n) with a direct summand of Q@. Under such an identification / is a 
basis of Homc(2'/?(^j), Q^), hence differs from / j by a unit in 5^ . We can 
now multiply our identification by that unit and shall assume that / = fj. 
On the other side, under the identification we can regard g as a basis of 
Homc(Q^, Z ^ ( / ^ ) ) , so there is (by Lemma 8.10.b) a unit di in A13 with hpid = 
di g o fi. Working with the basis (fi o g,id) of EndcQ^(H) we get 

ν<2(μ,β) = A^fi^eA^difih^Jj). (7) 

Consider now the case where i £ Then Q3 has a direct summand of 
the form Q^((3 | fi) © Q8(n') where /x' is the unique weight with /3 | fi' = fx. 
Choose a representative 

0 Ζ'(μ) f'QB (µ) g'ZB (µ) 
O 
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of e@ (// '). We have isomorphisms 

Homc(QB(µ),,QB) = 
Н о т с ( С / ( / г ) , < / ( / П м ) ) eHom^Q^QV)), 

and 
Komc(Qf>(n),Qfi(l3ïii)) 

= Homc(Z
B(µj), QB(B/µ)) 

given by h h-• h o / , and 

Погаси (μ), Ζβ{μ{)) = Horned (fiditi')) 

given by h H-> / ' o / 1 . So Homc(<9^(At)>Q^) n a s a basis (fti,/i2) such that /i 2 

factors through Q^(/3 | /i) satisfying h,2 o f = fj, and such that /ii factors 
through Q^(fJt') satisfying /ii = /,· o g. Composing with / and g~x we get 
(0, / j ) and (/¿,0), i.e., 

VQ(n,(3) = A^ft,0)®A^0,fj). (8) 

19.3· Keep the assumptions and notations from the last two subsections. 

Proposition: The algebra End^Q is isomorphic to the subalgebra of A1 con­
sisting of those families (a,-)^/ that satisfy the following condition for each 
¡3 6 R+: If has a direct summand that is a nonsplit extension of Z^(pi) 
by Z^(fij), then ai = aj (mod hp). 

Proof: An endomorphism (p of Q is given over A® by a family (a t)ie/ of 
elements in A 0 such that ip o fi = ctifi for all i. In order to map Q into itself 
all di have to be in A. Furthermore all VQ(p,{3) have to be stabilized. This 
is automatical in all cases except for those of type (7) in 19.2. There we need 

(didifihp1 ,cijfj) = aj(difih(3

1,fj) + (ai - aj)dih/3

1 

( * , 0 ) € V Q ( a i , / J ) , 

i.e., 
ai - aj e An A13hp = Ahp. 

The claim follows. 

19.4. The example considered in 10.14 is obviously a special case of our 
discussion above. We shall generalize it somewhat. Let p E X be in the 
closure of the first dominant alcove, i.e., satisfying 

0 < (p + p,av) <p for all a G R+. 

We want to apply 19.1-3 to Q = Wp*p and Q = TZA{~P), where T is 
translation from Wp9(—p) to Q. If we regard k as an A-module via augmen­
tation, then Q ®A k ~ TZk(—p) is isomorphic to the projective indecompos­
able module Qk{wo*p), cf. [Ja6], 11.11.10. So Theorem 4.19.b implies that 
Q ~ QA(w0.fi). 
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We get from 7.5 that Q has a Z-filtration with factors ZA(W»P) with 
w G W such that each w.p occurs exactly once. This implies that 19.1(1) is 
satisfied; we can take for / a set of representatives of W modulo the stabiliser 
of p. Let (3 in We can decompose T as in 7.10 into a direct sum of trans­
lation functors for WpiP = < spirp | r G Z >. This leads to a decomposition 
of QP as in 19.1(2). So all assumptions in 19.1 are satisfied, and we can apply 
Proposition 19.3. 

Theorem: a) If (p + P,C\Q) < p, then EndcQA(wo*^) is isomorphic to the 
algebra of all functions £ : W —• A such that for all w £W 

Ç(wsa) = ξ(ιο) for all a G R with sa.p = p (1) 

and 
ξ(ββ'ω) = ξ(ιυ) (mod hp) for all ¡3 e R+. (2) 

b) If (p + p, QfQ) = p and 0 < (p + otw) < p for all a G , a ^ a0, then 
EndcQA(wo*p) ^ isomorphic to the algebra of all functions £ : W —• A such 
that for all (3 G R+ and w G W 

ξ(*β»>) = £(«>) (mod hp) if /3 ^ ± « ; ( a 0 ) - (3) 

Proof: We can apply 19.1-3 with I = W*p. We get thus an algebra of 
functions from W.p to A satisfying certain congruences. We can regard these 
functions as maps £ : W A with f (it;) = f (n/) whenever w.p = w'.p. This 
last condition is equivalent to (1) since the stabilizer of p is generated by 
reflections. In b) this condition is empty, since there the stabilizer of p in W 
is trivial. 

In order to see which congruence conditions occur we have to understand 
the decomposition 19.1(2) better. If (p + p,w~1f3v) G { 0 , ± p } , then /3 | 
(w.p) = w.p and Q^(w.p) = Z^(w.p) occurs in 19.1(2), but does not lead 
to a congruence condition. If 0 < (p + p,w~l[ly) < p, then Q@(w.p) is an 
extension of Z 1 3 (w.p) by Z/3(spw.p). Then Q@(w.p) occurs in Q^, whereas 
QP(spw.p) does not occur. 

This shows that £(w) is congruent to £(spw) unless (p + p,w~lf3w) G 
{0, ± p } . If we get here 0, then spw.p = w.p, hence £(spw) = £(w) by (1). So 
we may as well add the corresponding congruence. (This case cannot occur 
in b).) If (p + /9, w~1f3v) = zbp, then we have to be in the situation of b) and 
we have to have w~1(3 = ±Qfo- This leads to the exceptions in (3). 

Remarks: 1) Note that it is enough to take in (1) all simple roots a with 
sa.p = p, since these already generate the stabilizer of p. 

2) Note that p as in b) is a weight as in 13.10. 
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19.5. Let S be as in 15.2 and in Appendix D. Set 

Es = {£ : W - S I = £ H (mod fcy,) for all (3eR+,weW} (1) 

and 

EA = {£:W ->A\ Ç(spw) = Ç(w) (mod hfi) for aH (3 eR+,w eW}. (2) 

It is shown in D.5 that Es is a free module over S of rank \W\. More precisely, 
there is a basis (r]w)wew of Es such that rjw(w') is homogeneous of degree 
l(w) for all G W, such that 

Vw(w') φ 0 =>· w'>w, and nw(w) = n 
aER(w) 

ft a (3) 

where R(w) = { a G i ? + | w x a < 0} as in 5.11. The group W acts on Es 
and E^ via 

(w£)(w') = £(w'w) for all w, w' G VF. ( 4 ) 

If Of is a simple root, then 

W < WSA sariw = Vw (5) 

by D.2(4). 
Let / be a subset of the set of simple roots. Set Wj equal to the subgroup 

of W generated by the sa with a £ I. Set 

W1 = {w G W I u; < IUSA for all a G / } . 

This is a set of coset representatives for W/Wt. Set 

ES(I) = {ÇeEs\ A™) = £{ww') for all w eW, w' e Wi} = (Es)
Wl ( 6 ) 

and 

EA(I) = {£ e £U I £(u/) = £(wwf) for all w G VF, ̂ G ^ } = ( ^ ) ^ . ( 7 ) 

The 77™ with tu G TF7 are in £ 5 ( J ) by (5). 

19.6. Recall that we can regard A as an 5-algebra. We get thus a homo-
morphism Es ®s A —• EA- We denote the image of rjw ® 1 in JÊ  again by 
rjw. The new 77™ satisfy the analogue of 19.5(3) over A as well as the same 
homogeneity condition as the old rjw. 

Lemma: a) The r\w with w G W1 are a basis of Es(I) as an S-module. 

b) The r]w with w G W1 are a basis of EA(I) as an A-module. 
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c) The T)W with w E W are a basis of EA a>$ an A-module. 

Proof: a) The r)w axe linearly independent as part of a basis of Es- So it is 
enough to show that they generate Es(I). Let £ E Es(I), £ ̂  0. Let w E W 
minimal with £(w) ^ 0. If a E / , then £(w) = £(wsa), hence w < wsa by the 
minimality of w. Thus w E W1. We have for all /3 E 

£ H = t(8fiw) = 0 (mod /I/?), 

so £(w) is divisible by Y[peR^ hp = ^ ( w ) in S. Let a e S with f (w) = 

a ^ H . Then £' = £ - afjw E with ?(w) = 0 and f '(w') = f (w') for 
all w' ^ w. We can now apply induction to 

b) Since A is integral, the formula 19.5(2) implies immediately that the 
r)w are linearly independent over A. Now the proof of a) generalizes. 

c) This is a special case of b). 

Remark: We have to use the fact that the hp are non-proportional primes in 
A to get the divisibility of £(w) by rjw(w). This is where we need that p ^ 2 
if R has two root lengths, and that p ^ 3, if R is of type G2, cf. 9.1. 

19.7. Lemma 19.6 implies that the map S —> A induces isomorphisms 

Es ®A A ~ EA 
and Es(I) ® A A ~ EA(I). (1) 

If ¡1 is a weight as in Theorem 19.4.a, then we have in our new notation 

EA(I) m EndcQA(w0.n) where J = { a e S | ( p + / 9 , av) = 0}. (2) 

We get especially for /J, = AQ with A 0 as in 14.4 that 

EA Endc(Q). (3) 

19.8· We can generalize the definition of Es and Es (I) to any 5-algebra. 
We shall consider especially the 5-algebra Sk = S ®z k. It is easy to see that 
Lemma 19.6 extends to Sk. (Use the same arguments as in 19.6.) 

Suppose in Case 1 that p > h. Proposition D.10 shows that the map 

$ : Sk ®s™ Sk ESh 

k 
( i ) 

with 
$(a ® b)(w) = u;(a) · 6 for all w E VF (2) 

is an isomorphism of /.-algebras. It is W-equivariant, if we let W act on the 
left hand side via w(a ® b) = w(a) ® b. Since 5* is a free module over 5 ^ 
(under our assumption on p in Case 1, cf. [Bo2], chap. V, §5, n° 5, Thm. 4) 
the map in (1) induces an isomorphism 

S^ ®s™ = (Esk)
w' 

(3) 
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for all subgroups W of W, especially for all subsets / of E: 

Sk OSk Sk = Esk(I). (4) 

Tensoring over Sk with A yields isomorphisms 

Sk ®sw A K 
= EA and Sk OSk Sk = EA(I). (5) 

The algebras on the right hand side are by 19.7(2) endomorphism algebras of 
certain modules Q a ( ^ o ^ ) - If we tensor over A with fc, then we get by 3.3 
the endomorphism algebra of Qk(wo»p). We get thus isomorphisms 

Sk OSk Sk = EndCKQA(wo^) (6) 

with I as in 19.7(2). Here k is regarded as an algebra over S™ via the 
augmentation map Sk —• k. This shows: 

Proposition: Let ¡1 be in the closure of the first dominant alcove with (/i + 
a^) < p. If ¡1 is p-regular, thenEndckQk(wo*p) is isomorphic to Sk modulo 

the ideal generated by all homogeneous W-invariants of positive degree, i.e., 
to the covariant algebra. In general, the endomorphism algebra is isomorphic 
to the ring of Wj-invariants in the covariant algebra (with I as in 19.7(2)). 

19.9. Set E's equal to the set of all maps £ : W —> S such that for all /3 G i ? + 

and w G W: 

Ç(spw) = Ç(w) (mod hp) if p± ±w(a0). (1) 

Define similarly E'A by replacing S by A. We have for all \x as in Theorem 
19.4.b: 

E'A ~ EndCQA(w0'H)- (2) 

Before we describe the algebras E's and E'A more explicitly, we state an 
elementary property of the Chevalley order: 

Observation: Let w,w' G W with wf > w. If wa0 < 0, then w'a^ < 0. 

Proof: Since a 0 is dominant, wf > w implies w'a0 < wa0 < 0. 

Proposition: The S-module E's is free of rank equal to \W\. There is a basis 
(£w)w€W of E's o v e r S such that £w(w') = 0 whenever wf w and such that 

Г ( « Ο = 
HaeR(w) */ wa0 > 0; 

TlaeR(w),a^-wa0 
otherwise. (3) 
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Proof: It will be enough to prove the existence of elements £w G Eg with these 
properties. The lower triangular form of the matrix of all ^(w* yields the 
linear independence. In order to show that the £ w generate E's we argue as in 
19.6. Consider an arbitrary f G E's. Let w G W be minimal for £(w) ^ 0. We 
have for all a G R(w) with a ^ —w(a0) that £(w) = £(saw) = 0 (mod ha). 
So E(w) is divisible by £w(w) and we can form £' = f - (f ( u ^ M " " 1 ) ? w - We 
then apply induction on u?. 

So we just have to construct the £ w . We can obviously take £w = rfw if 
wao > 0. So fix from now on w with wa0 < 0. Set for all w1 G W: 

C(w') = ri

u,(w')(-w'hao)-1. (4) 

Let us check first that £w(wr) is in 5. We can assume that wf > w since we 
get 0 otherwise. Then the observation implies that wfa0 < 0 and wlsao ^ w. 
So 

0 = r,w(w'8AO) = r]w(s-w>aowf) = r]w(w') (mod h-w>ao). 

Therefore r/w(wf) is divisible by h-w>ao = —wfhao and €w(w') is in S. 
We now have to check for all wf G W and a G i ? + that 

r K ) = r ( » a l » ' ) (mod ha) if a ^ ±w'ao. 

We can assume w' > w, hence (as above) 7 = —w'ao > 0. If sawf ^ w, then 
0 = rfW(8aw') = Zw(saw'), and ^ ( u / ) = 0 (mod ha). So ha divides ^ ( u / ) , 
hence also £w(wr) = rjw(w!)/h7, since / i a and hy are coprime. On the other 
hand, if sawf > w, then 

Ew(w')-Ew(saw') = bw(w') - vw{saw'))h-1 + V

w(saw') ( / i r 1 - (s^)-1) 

= ^W(w')-V

w(saw'))h-1 + J?"'(saw')a(/i7)/ia^1(s 

This expression is divisible by ha in {saw'))h ( s a / i 7 ) hence in 5, since fta is 
coprime with /*7 and ( s a / i 7 ) . 
Remark: We have a natural map E's 05 A —• {saw'))hThe first paragraph of 
the proof above shows that the images of the £ w ® 1 are a basis of Ef

A. This 
implies that the map is an isomorphism 

E'S®SA = E'A. ( 5 ) 

19.10. Let A be regular in the first dominant alcove (as in 13.2), and let /i 
be semiregular in the closure of that alcove with (/x + /), a^) = p (as in 13.10 
or Theorem 19.4.b). So the stabilizer of \i in Wp is equal to { l , s 0 } where 
so = s a 0 ) r Set Q = Wp.X and T = Wp.fr set T = T£ and T = Tp. 

Let Q be the module we get from translating ZA(—p) to ft. So we have 
Q = Qo(A) in the notation from 14.4 (for A0 = A) and Q ~ QA{WO*^) as 
observed in 19.4. We have also seen that 

End cQ ~ EA, (1) 
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cf. 19.7(3). Set 
Qi=TQ and Q2=T'Q1. 

Since A is local, Theorem 4.19.b implies that Qi is isomorphic to QA{WQ»^), 
so we have 

EndcQi 2£ E'A (2) 

by 19.9(2). We have Q2 = Q(3Q)(A) in the notation from 14.4. We get 
from [Ja6], 11.11.10(1), that Q2 ®A k is isomorphic to Qk(woSo*X)i hence that 
Q2 ~ QA(wos0.\). 

We claim that also Q2 satisfies the assumptions of 19.1-3. Since Q\ is 
the direct sum of the Z®(w»/i) with w £ W, we get from 7.5 that 

Q2 = 
© 

wewuWso 

Z\w.\). (3) 

Let (3 £ R+. In order to describe Q2 we use the decomposition of Tf over 

A13 according to orbits for WpiP. Let w £ W. If (3 ^ ±wao, then Q1 has a 
block component that is an extension of Zf3(w*fi) and Z^(spw.ji). If w_1(3 < 
0, then the component is isomorphic to Q/3(w./i), otherwise to QP(spw.n). 
Applying T' yields two block components for Q2 isomorphic to two different 
QP(\F). One of them is an extension of Z^{w.\) and ZP(spw.\), the other 
one of ZP(WQ*\) and Z(3(spwso»X). On the other hand, if (3 = ±wao, then 
Q1 has a block component isomorphic to Z^(W./JL). Applying Tf yields a 
block component for Q2 that is an extension of Z^{w*\) and Z^{WSQ.\) and 
isomorphic to QP(X'), where A' is the smaller of the two weights. So we get a 
decomposition as in 19.1(2). 

Proposition: The algebra EiiidcQ2 is isomorphic to the algebra of all func­
tions £ : W U WSQ —> A satisfying the following congruences: We have for all 
(3eR+ and w ew 

Ç(sew) = ζ(υ>) (mod hp) 

((SPWS0) EE C(WS0) (mod hp) 
if (3 ^ ±wa0, (4) 

and 
C O ) EE ((WS0) (mod hp) if ¡3 — ±.wa$. (5) 

Proof: This is an easy consequence of Proposition 19.3 and of the explicit 
decomposition of Q~ found above. 
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19.11. Set E$ equal to the algebra of functions C '· W U WsQ —• S satisfying 
all congruences 19.10(4), (5). Define similarly E"A by replacing S by A. So 
Proposition 19.10 says 

^ - E n d c Q 2 . 

We can embed the algebra E's into E$ as follows: For any £ G let £ be 
the function on W U VFs0 with 

£(w) =£(ws0) = £ H for all w G VF. 

It is then obvious that £ satisfies 19.10(5) and that 19.10(4) is inherited from 

the similar property 19.9(1) for £. So £ is in Eg, and £ i—• £ is easily checked 
to be an isomorphism from E's onto the subalgebra 

E's = (S E ES) S(w) = S(ws0) for all w e W}. (1) 

The elements Ew = Ew with w G W will turn out to be part of a basis of Eg 
over 5. 

Set 
££(0) = { < e # s I C M = o for all w e W}. (2) 

This is obviously an ideal in E$ with Eg(0) fl Ef

s = 0. We claim that 

E'S = E's®E'^(0). (3) 

Indeed, for any ( G Ew the function £i on W U Ws0 with Ci(^) = Ci(wso) = 
((w) for all w G W inherits 19.10(4) from (. So G is in E's and C - Ci is in 
ES(0). 

It is easy to check that the function C0 with 

C°(w) = Q and C S o(«;so) = whao 
for all u; £ W (4) 

is in £ o , hence in Efi(0). We can therefore define for each w G W: 

ÇWSQ _ ζνυζ30 (5) 

(For w = 1 this is compatible with (4) since C1 = 1.) Our usual arguments 
yield now the first two parts of: 

Proposition: a) The S-module Eg is free of rank 2\W\. The (w with w G 
W U WSQ are a basis of Eg over S. 
b) The S-module E%(0) is free of rank \W\. The (W3° with w eW are a basis 
ofE%(0) over S. 

c) We have a natural isomorphism E% ®SA = E''A. 

Proof: As far as c) is concerned, note that we can carry out the constructions 
above also inside EA. The claim follows now from 19.7(1) and 19.9(5). 
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19.12. The description of the basis in 19.11 implies especially that the 
multiplication with ( s ° is a bijection from Ef

s onto Eg(0). This can be seen 
directly as follows. The injectivity is clear since all (9°(wso) = whao are 
nonzero and since S is an integral domain. To get the surjectivity, define for 
a given ( G Eg(0) a function £ on W via 

£(w) = ((ws0)(whao)
 1 for all w G W. 

As soon as we know that £ G E's we see that £ = Cs°£- Well, the congruences 
19.10(5) imply that £(w) G S for all w. The congruences 19.9(1) follow from 
19.10(4) using the same calculation as used for the £ w following 19.9(4). 

If we apply this construction to ( ( s ° ) 2 we get (Exercise!) 

( O 2 = < " ( / . „ 0 C -
E 

a€2J 

( a 0 , « v ) C a ) . (1) 

Since Eg = Ef

s[(
9°] the structure of Eg is determined by that of E's and by 

this formula. 

19.13. Let us now give another description of the algebra En

A. Keep the 
notations from 19.11-12. We can embed Es into Eg as follows. For any 
77 G Es define a function rj on W U Ws0 by 

rj(w) = r)(w) and r)(ws0) = r](wsao) for all w G W. ( i ) 

It is clear that rj satisfies the congruences 19.10(4). Since 

rj(wso) = r}(wsao) = rj(swaow) = rj(w) — rj(w) (mod hwao) 

for all w G W, also 19.10(5) holds, so indeed 77 G Eg. In order to simplify 
notation set 

s' = sao. 

The map 771—77 is obviously injective and identifies Es with 

Es = {C e E% I C(ws0) = C(wsf) for all w E W}. (2) 

Write otf = ^ ^ g s m^/3 v. We claim: If iî is not of type A \ , then 

if* = C° + maC° for all o; G E. (3) 

(We use here the abbreviation r}a = rjSa for any a G E.) The assumption on R 
makes sure that £ S a = rjSa, so that both ( S a and rja coincide on W. Since ( 3 ° 
vanishes on W, both sides in (3) agree on W. We have r)a(w) = oja — wuja for 
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all w 6 W where cua is the fundamental weight corresponding to a, cf. D.l.e. 
This implies: 

^(WSQ) = rja(wsf) = LJA — WSFUA 

= CJA- wua + (ua,aQ)whao 

= rja(w) + mawhao = (Sa(wso) + maC°(ws0). 

So both sides in (3) agree also on Ws0. For R of type A\ one has £3a = h^rj0^ 
and gets 

ηα = КСа +С*°-

The mp have greatest common divisor 1, so (3) implies that £5° is in Es + Ef

s. 
Therefore Eg is generated as an algebra by Es and E's, and the multiplication 
is a surjective homomorphism Es ®s E's —* E^. 

We have 

{veEs\veE's} = {rj e Es | rj(w) = 77(W) for all w G W} = (Es)3'. 

We can therefore refine the statement above and get a surjective algebra 
homomorphism 

Es Ef

s 
E''s with n O E nE. (4) 

We want to show that it is an isomorphism. 
Suppose that Es is free of rank 2 over E% . Now E's is free of rank \W\ 

over 5, therefore Es®Es> E's is free of rank 2\W\ over S. On the other hand 
Eg is free over S of the same rank. Any surjective homomorphism between 
free modules of the same finite rank is an isomorphism (in the commutative 
case). So the map in (4) is an isomorphism. 

If char(fc) ^ 2, then Sk is free over (Sk)3' with basis ( l , / i a o ) . Suppose 
that we are in Case 1 that p > h or in Case 2. Then 19.8(l)-(3) imply now 
that Esk is free over Es

Sk of rank 2. We can develop the theory above also 
over Sk (and over A). Now our remarks imply that (4) induces isomorphisms 

ESK ®(ESK)°' ESK 

= E''Sk ( 5 ) 

and 
EA ®{EAY' EA 

= El (6) 

(for k as above). 
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19.14. We want to compute Homc(Q, Q2) and Homc(Q2, Q) with Q and Q2 

as in 19.10. We cannot proceed as in the proof of Proposition 19.3, because 
the unknown units d2 from 19.2(7) will no longer cancel. Instead, we shall use 
the detailed description of Q = VQQ and Q2 = VQQ2 that is provided by the 
theory from Sections 10 and 13. Recall that we have described Q in 10.14. 
The precise values of the a^ # A from 10.14(4) are given by 13.23(1); however, 
they will turn out to be irrelevant for our present purpose. 

Note that Q2 = Q(3o)io(A) in the notation from 16.5. We get from 10.11 
and 13.4 the following description: We have 

Q2(w.\) ~ Q(w.X) = A 0 

= Ô2(WS 0 .À) 

for all w £ W; all other Q2(X
f) are zero. For ¡3 E i ? + and w £ W with 

w ~1 ¡3 ^ ±Qfo we get 
Q2(w.X,/3) = Q(w.X,(3) 

and (in case w 18 < 0) 

Q2(w.\-p8,/3) = Q(w.\-pP,P). 

We shall not have to know Q2(ws0.\,(3) and Q2(wso.\ — p/3,/3) for our cal­
culations. For ¡3 and w with u>_1/3 = a0 we get 

Q2(w.\,8) = A^h0,O)®A^l,ha), 

Q2{wsQ.\,8) = A
B(hB, 0), 

Q2(spw.\,8) = ^ ( i , o ) e ^ ( o , v ) , 

Q2(s0Wso.\,P) = ̂ ( i , o ) e ^ ( V , i ) . 

It is now easy to check that Homc(Q2,Q) is identified with the set of all 
maps f : W —• A such that for all (3 E R+ and w E W: 

Ç(sew) = ξ(ίϋ) (mod ft^) if PÏ ±w(a0), 

i.e., 
Homc(Q2,Q)~£?V (1) 

Similarly, one can identify H.omc(Q,Q2) with the set of all maps £ : W —> A 
such that for all 8 £ R+ and w £ 

E(sbw)- £(«>) (mod /i/j) if P ? ±w(a0) 

and 
Ç(w) E Ahwao. 
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One checks easily that one gets an isomorphism 

E'A 
= Homc(Q,Q2), E i (2) 

where (for all w G W) 
£{w) = £(w)hwao. 

It should not come as a surprise that both Horn spaces are isomorphic to 
E A ~ EndcQi, since we have (in the notations from 10.1) isomorphisms 

adj2 : EndcQi = Homc(Q2,Q) 

and 
adjj : Homc(Q,Q2) = EndcQi. 

The remarks in 10.13 imply that we take in (1) the identification arising from 
adj 2 whereas in (2) we modify the identification from adjx and make it more 
compatible with the grading. Note also that the discussion in 10.12 implies 
that the map 

EndcQ EndcQi, h^Th 

corresponds to the inclusion of EA into E ' A , and that the map 

EndcQi —• EndcQ 2, h^T'h 

corresponds to the embedding of EA into EA given by £ H-+ £ as in 19.11. 
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Appendix A 

The computations in Section 11 lead to certain functions of the weights 
involved. In this appendix we introduce notations for these functions and 
prove some of their properties. In A.2-11 all terms are to be regarded as 
elements of the fraction field of [7°, in A. 12-14 as elements of the ground 
field. 

A . l . For all a G R and A G X set 

a(X) = 1, if <A,a v) < 0 ; 
0, otherwise. (1) 

We have obviously 
(wa)(w\) = a(X) (2) 

for all w G W, and 
(-a)(-A) = a(A). (3) 

Furthermore 
a(-A) = I-SIX), if ( A , a v ) ^ 0 ; 

0 = a(A), if (A,c* v) = 0, (4) 

hence 
( A , a v ) a ( - A ) = ( A X ) ( 1 - « ( A ) ) . (5) 

A . 2 . For all A, \i e X and all a € i? set in Case 1: 

d(n,\,a) = Ηα + (μ + ρ,αν) 
Ha + (\ + p,av) 

a(IT-X) 

( i ) 

and in Case 2: 

6?(μ, Α, α) = 
[Κα;(μ + ρ,αν)] 
[K a ; (A + p , a v ) ] 

a(/i-A) 
(2) 
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Using A. 1(4) one checks easily that 

d(n,\,a) = 
Ηα + (μ + ρ,αν) 
Ha + {\ + p,aV) 

d(A,/i,a) (3) 

resp. 

d(n, A, a) = 
[Ka;(fi + p,av)] 
[Ka;(\ + p,av)} 

d(A, µ, a). (4) 

A.3. We have 
[K-a; -ra] = -[Ka;m] (1) 

for all a G R and ra G Z, hence 

[K-a; (A + / > , ( - < ) ] = - [A^ ; (A + p , a v ) ] 

for all A G X . In the other case, we have obviously 

H-a + {\ + p,(-a)w) = - ( t f a + <A + p , a v ) ) . 

Therefore A. 1(3) yields easily 

d(//, A, —a) = d(A, //, a) 1 (2) 

for all A, /i G X and a £ R. 

A .4. One sees easily for all w G W and a G i? that 

w ( i l a + ra) = Hwa + ra resp. w[A' a; m] = [A'u,a; ra] (1) 

for all m G Z. This together with A.1(2) implies 

d(w./j,, w.A, wa) — wd(ii, A, a) (2) 

for all A, p G X . 

A.5. In Case 1 we work in characteristic p, so we have Ha + m + rp = Ha + m 
for all r G Z. In Case 2 we have similarly [ A a ; ra + rp] = [ A a ; ra] since £ is a 
p-th root of unity. This implies 

d(/i + put, A + pu;, a) = d(//, A, a) (1) 

for all A, h,UJ G X , and a G i?. We have obviously 

A + />, ii + p G pAT d(/.i, A, a) = 1 for all a G R. (2) 
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A.6. For all À, u, v G X and a G R set 

ca(v,n, A) = d(fi,v,a) 1d(A,/x,a) 1d(A,z/, a) . (1) 

Using A.2(3) resp. (4) one checks easily that always 

c a(i/ ,/i , A) = d(v,/ji,a) 1d(fi,\,a) ^(z/ , A, a) . (2) 

The formulas for the d terms in A.3-5 yield now formulas for the ca terms. 
We get (for all \,fi,v £ X and a G R) 

c_ a(i/ ,/i , A) = c a(i/,/i , A) 1 

(3) 

— the proof here requires (2) — and 

cwa(w*u^w.fjJ^w.X) = wca(v, /i, A) (4) 

for all w G W, and (for all 

c a ( i / + pw, /x + pw, A + pw) = ca(u,(i,\). (5) 

A .7 . For all w £\V and A , / i , i / G l set 

d(//, A, w) — n 
a>0,w;-1a<0 

ά(μ,Χ,α) (1) 

and 
cw(u,fi,\) = n 

a>0,u;-1a<0 
Ca(l/,fl, A). (2) 

Comparing these definitions to A.6(1), (2), we see 

cw(v,n, A) = d(//, z/, tu) 1d(A, //, w) 1d(A, i/, w) 

= d(z/,//, w) 1d(n,\,w) 1d(z/, A, w). 
(3) 

A .8 . Lemma: We have for all w £W and A,^ G X : 

wd(fi,\,w *) = d(w.\,w.n,w) 1. 
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Proof: We use A.7(l), A.4(2), A.3(2) to get 

wd(ii, A, w x) = n 
a>0,u;a<0 

wd(ii, A, a) = n 
a>0,u;a<0 

d(w.fi, w.X, wa) 

= n 
a>Q,w-1ot<0 

d(w.\,w.ii,a) 1 = d(w.\, w.fi, w) 1 . 

Remark: Using A.7(3) the lemma implies easily for all w G W and A, v G X : 

WCW-I(v,fJl,\) = cw(w.v,w.fi,w.X) (i) 

A.9. Lemma: We have for all (3 G R,w G and a// A,^,z/ G X : 

c S / 3 (w.z/, it;.//, w.A) = w^c w - i a / 3 ( i / , / i , A)c^-i(z/,/i, A) ^ . 

Proof: Fix A,/x, z/ and write c a = c a(i/ , ^, A) for all a G i ? . Then A.6(4) and 
A.7(2) imply 

w 1cSp (w.v, W.jl, W.X) = n 
a>Q,sp a<0 

cw-1a = 
n 

tuo;>0,Sfl if a<0 
ca 

= n 
a>0,i«;Qf>0,s/g wa<0 

ca n 
a<0,«;Q;>0,s;g iua<0 

ca 

= n 
a>0,wa>Q,8p wa<0 

CA n 
a>0,wat<Q,SB wa>0 

c;1 

= n 
a>0,S/3 wa<0 

ca n 
a>0,wa<0 

c " 1 

= cw-1sB (v, µ, A)cw-1 (v, µ, A)-1, 

using A.6(3) to get from line 2 to line 3. 

A.10. Lemma: Suppose that /3 G -R+ and w G witfe it; x(3 simple. Then 
we have for all A, //, z/ G X / 

S8Cw(sR.P,S3.P,S3*\) = cw(v,n, \)c3(3(v,fi, A) 1cp(v,ii,\). 
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Proof: Abbreviate again ca = ca(v, / / ,A). By A.6(4) the left hand side is 
equal to 

n 
a>0,w~1a<0 

^3β α — n 
3ßa>0,w~1 Sß a<0 

ca = n 
at>Q,8ß a>0, 
w 1Sßa<Q 

ca n 
a<0,s^a>0, 
w 1SßOt<0 

CA. 

A root a with a > 0 satisfies w la < 0 if and only if it satisfies w xspa < 0 
and a ^ (3. (Recall that iu_ 1/3 is simple.) So we can rewrite the product as 

n 
a>Q,Sß a>0, 

w~1a<0 

ca n 
a>0,3ß a<0, 
it; 1sJga>0 

c-a = n 
a>0,ti;-1a<0 

ca n 
a>0,££ a<0, 

u;~1a<0 

c; 1 

n 
a>Q,8ß c*<0, 

u;-1a>0,a^£ 

ca 

(We have used A.6(3) to replace the c _ a by ca

l.) In the last expression the 
first product yields the cw term in our claim, the second and third product 
yield the Csp term except for a missing factor c j 1 . The claim follows. 

A . l l . If À + p is dominant, then a(\ + p) = 0 for all a G R+, hence 

d(A, — a) = 1 = d(A, —/?, it;) for all a G i ? + and w G W. (1) 

If A + p and ii + p are dominant, then 

cw(\,p,-p) = d(\p,w) 1 for all w G (2) 

by A.7(3), and 

cSi(w.\,w.ii,w.(-p)) = wyd(\,p,w 1)d(\,p,w 1 5 7 ) 1 J (3) 

for all 7 G i? and w G W by Lemma A.9. (Of course, w»(—p) = —p.) 

A. 12. Recall that £ is a primitive p-th root of unity in Case 2. In order to 
avoid too many separate formulas for our two cases, we set ( = 1 in Case 1. 
In that case all expressions ( a and ( w to be defined will be equal to 1 and all 
formulas involving these terms will be trivial. 

For all A G X and a G R set 

C a (A) = c d a ( A , a V ) a ( A ) and ZA(\) = (_1)<λ,αν>α(λ)_ (1) 

We have then by A. 1(5) 

Ca(-A) = Ca (A )C _ , Ì ° < A ' a V > and *«(-A) = z a(A)(-l)<A-* v>. (2) 
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For all A, //, v G X set 

ζα(ι/, μ, λ) = ζα(μ - ν)ζα(\ - μ)(α(Α - ν) 1 (3) 

and 
za(v, fi, A) = za(fi - v)za(\ - fi)za(\ - v). (4) 

Then (2) implies 

Ca(̂ , A) = (a(v - fl)(a(V ~ A)Ca(^ - A) 1 (5) 

and 
za(u, fi, A) = za(u - p)za(p - \)za(v - A ) . (6) 

A. 13. The formulas in A.l imply 

Cwa(w\) = Ca(A) = C -a ( -A) and zwa(w\) = za(X) = z-a(-\) 

for all A G X , a G i?, w G W. This implies for all A , / i , i / G l and a G i2 that 

Cwa(w.iy,w.fi,w.X) = £a(l/,/i, A) and ZWA(W*V,W.II,W.\) — ZA(V, / i ,A) 

(i) 
for all w G W, and — using A.12(5), (6) — 

C_a(j/,/i, A) = Ca(^,/i, A) and z. a(i/,/i, A) = 2a(i/,/i, A ) . (2) 

We have obviously for all u; G X : 

Ca(i/+cj, /i+cj, A+u;) = £ a(i/, /i, A) and za(z/+u;,/x + cj, A + cj) = ZA(V,U, A ) . 
(3) 

A.14. For all A, /i, i/ G X and w G W set 

C«,(^,/i, A) = n 
a>0,w-1a<0 

Ca(^,/i, A) and ZW(V,n,\) = n 
a>0,u;-1a<0 

ZA(V,/I, A). 

(1) 
A calculation similar to the one in A. 10 shows for all w G W and (3 G i ? + 

with w~l ¡3 simple 

(w(v, μ, λ) 1ζυ,(3β.ν, ββ.μ, 8β.\) = n 
a>0,sd a<0, 

w_1a<0 

c 1 

n 
a>0,5yg a<0, 

a=B,w-1 a>0 

Sa (2) 

where we use the abbreviation ( a = £a(z/, )L/,A). 
If we imitate the calculations in A.9, we get 

Z3p(W.V,W.LL,W.\) = Z(30W)-i(V, //, X)Zw-i (V, //, A). (3) 
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In this appendix we shall use some results from Lusztig's new book [LulO] 
to choose extremal weight vectors in the finite dimensional simple modules 
for quantum groups and to give explicit formulae for the action of the braid 
group on these vectors. (In the simply laced case these formulae can also be 
obtained from [Lu9], Section 5.) 

B . l . As in 1.3 we let Ui denote the quantized enveloping algebra corre­
sponding to our root system R. Recall that we agreed in 1.3 to choose the 
braid group operator T3a on U\ in accordance with the convention in [Lu7]. 
(In [LulO], Chapter 37 this operator is denoted T¡\ where i corresponds to 
«•) 

Let M be an integrable î/i-module. For each simple root a Lusztig 
introduces (in [LulO], 5.2.1) an operator P(sa) : M —• M by 

P(sa)x = E 
a,b,c;a—ò-f c=(A,c*v ) 

( — l^ydcxiac-b) p(a) £¡(b) jp(c) 

for all x G M\. (In [LulO] this operator is denoted by T[ We then have 
the following formula, see [LulO], Proposition 37.1.2 

P(sa)(T3a(u)x) = uP(sa)(x) for all u e Uu x € M. (1) 

Moreover, we have by [LulO], Proposition 5.2.2: If a: € Mv satisfies Eax = 0, 
then n = (v, av) > 0 and 

P(sa)x = 4 » > s , (2) 

and 
P(sa)F

(

a

n)x = (-l)nv-d"nx. (3) 

B .2. According to [LulO], Theorem 39.4.3, the P(sa) satisfy the braid 
relations. So we can define for each w 6 W with reduced decomposition 
w = sis2 · - · sn the operator 

P(w) = P(8l)P(82)---P(sn) 
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that is independent of the choice of decomposition. We have of course P(l) = 
id, and B. l ( l ) implies 

P(w)(TW-I(u)x) = u P(w)x for all x G M and u G U\. (1) 

Suppose from now on that M is simple with highest weight UJ. Choose a 
highest weight vector XI and set 

xw = P(w)xx (2) 

for each w G W. 
Lemma: Each xIJJ has weight WUJ. One has for all w G W and all simple 
roots a: 

P(^A)^W — %3a W) if w 1a > 0; 
(-1)(ww,av)vda(ww,av)xsaw, if w 1a < 0, (3) 

and 
P((WU;,AV)) _XXWAAA if w 1a > 0, (4) 

and 
P(-(WU,A » XW _ XXWAA if w 1a < 0. (5) 

Proof: We get the first part by induction on l(w). If the claim holds for a 
given w and if a is simple with w~xa < 0, then n — (WUJ, av) > 0 and 

XSAW = P(saw)x1 = P(sa)P(w)xi = P(sa)xw — P(N)T 

using the induction hypothesis, and B.l(2) for the last step. So x3aW has 
indeed weight sawu and we have also established (4) and the first case in (3). 
On the other hand, if w~la < 0, then — n = (wu,av) < 0 and 

P(sa)xw — P(sa)F^ ^XSAW = {-l)nv-nd«xSaW 

by B.l(3). This yields the second part of (3). Since E^ FanIsawx = Isaw 
also (5) follows. 

B.3. Proposition: We have for all w,y G W: 

P(y)xw = c(y,w)xyw 

where 
c(y,w) = n 

7>0,i/7<0, 
W7_17<0 

(-vdy)(ww,Yv). 
(1) 
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Proof: We use induction on the length of y. We have obviously c(l,w) = 1 
for all w eW, and B.2(3) implies for any simple root a that 

c(sa,w) = 
(-vda)(ww,av), if w 1a < 0; 

1, if w 1a > 0. 
(2) 

For y ^ 1 there is a simple root a such that say is shorter that y. Since 
obviously 

c(y,w) = c(sa,sayw)c(say,w), 

induction and (2) yield the claim. 

Remark'. Using the notation from A.l , we can rewrite (1) as 

c(y,w) = n 
7>0,2/7<0 

(-vdy)(ww,Y)Y(ww). 
(3) 

B.4. Lemma: Zerf y,w € W and a simple with m = (—woj,y(a)w) > 0. 
Set (3 = ya. Then 

Ty(E
{

a

m))xw = c(y \w)c(y 1,sßw) lx3ßW. 

Proof: We have 

Tyi-Ea ^)%w = P(y-1)-1(E^P(y-1)xw) - by B.2(l) -

= c{y-\w)P{y-l)-\E^xy-,w) 

= c(y 1,w)P(y J) lxSaV-iw - by B.2(5) -

= c(y \w)c(y 1,ysay
 1w) 1XySay-iw 

using Proposition B.3 twice. 

B.5. For all v £ X, ß G R and w G PF set 

e(v,ß,y) = n 
7>0,y- 17<0 

(_l)( i / '7 V>7(^)-(5^^,7 V)7(«/3^) 
(i) 

and 
e(v,ß,y) = 

n 
7>0,y- 17<0 

vd^ (<^,7V>7(^)-(«/3^,7V>7(a/9f)) (2) 

We have obviously: 

W V ) = o £{v,ß,y) = v(u,ß,y) = 1. (3) 

We have also 
e(sßv,ß,y) = e(v,ß,y) (4) 

and 
v(sßv,ß,y) = v(u,ß,y) 1 . (5) 

Indeed, if we plug s$v into the definitions (1), (2), the exponents get multiplied 
b y - 1 . 
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B.6. Proposition: Let (3 G R+. Suppose that we have y £ W with a = 
y~x(3 simple and that we set Ep = Ty(Ea) and E-p = Ty(Fa). Let w G W. 
Ifw~lj3 < 0, then 

Ε{{ χνω,β ))χ^ _ s(WUJ,p,y)v(wUJ,P,y)xS0W, (1) 

Ifw~lf3 > 0, then 

Ε{{ χνω,β ))χ^ _ s(WUJ,p,y)v(wUJ,P,y)xS0W, (2) 

Proof: (1) is an immediate consequence of Lemma B.4 and B.3(3). We get 
(2) from (1) using B.5(4), (5) and the fact that E^E^xw = xw where 
m = (wed, (3W). 

Remark: If (wu?,f3v) = 0, then we get x9/3W = xw. More generally, if WUJ = vu, 
then x yj — x y, 

B.7. Let (3 G R+ and y G W with a = y 1 ¡3 simple. Consider the definition 
B.5(2); we get for all v eX 

v(v, B, y) = n 
7>0,2/-

17<0 

^c?7(i/,7
V)7(i/) 

n 
5/37>0,y-15/37<0 

tJ-d7(i/,7
V)7(i/) 

by substituting sp^f for 7 in the second product. Since y 1 sp = say
 1 with 

a simple, we see that y~xspj < 0 if and only if y _ 1 7 < 0 as long as 7 ^ ±/3. 
We can therefore replace the condition in the last product by 

spl > 0, y x 7 < 0, 7 + -¡3. 

Now the terms with spj > 0 in the first product and the terms with 7 > 0 in 
the second product cancel. We get 

v(v, B, y) = n 
7>0,5/37<0, 

y-17<0 

ĉ?7(i/,7
V>7(t/) 

n 
7<0,s/97>0, 

2/_17<0,7^-^ 

-̂c?7(i/,7
V>7(i/)̂  

We substitute —7 for 7 in the second product and get 

v(u,p,y) = n 
7>0,5/37<0, 

2/_17<0 

,^d7(i/,7
V>7(^) 

n 
7>0,«a7<0, 
7#/3,J/_17>0 

l,^<",7V>7(-")- ( i ) 
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Similarly, one gets 

Φ, β,y) - n 
7>0,s/37<0, 

»"S<0 

(_1)(">7 V>7(") 
n 

7>0,s/37<0, 
7^^,y _ 17>0 

( _ l )< i /

J 7 V >7 ( - ^ ) > (2) 

Using A. 1(5) one can rewrite this as 

e(v,p,y) - n 
7>0,5/37<0, 

7*0 

(_ l ) ( i /

) 7 V >7( f ) 
n 

7>0,* /37<0, 
7 ^ ^ ^ - 1 7 > 0 

(-1)(v,yv). 
(3) 

B.8. We can now move away from Q(v). Since both P(w) and its inverse 
involve only divided powers of the E{ and F{ as well as ordinary powers of the 
Ki and they preserve Lusztig's lattice over Z[v, v - 1 ] . This implies that the 
x ID are also bases of their weight spaces in this lattice. If we now specialize v, 
say to a root of unity (such as 1), we get the action of the appropriate divided 
power of Ty(Ea) on the extremal vectors in the specialized module. 
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Appendix C 

In this appendix we want to prove a certain property of coproducts A(Ep) 
with (3 G R. For ±/3 simple this coproduct is part of the definition of A, 
cf. 7.1. For arbitrary /3 the formulas get more complicated and there is no 
closed formula in general. We shall use the approach from [LS] to these 
coproducts, cf. [LS], Proposition 2.4.1. However, they introduce the Hecke 
operators T{ in a different way from Lusztig (in [Lu3], 5.1 and [Lu5], 1.2). 
Therefore we include for the benefit of the reader a self contained proof of the 
crucial step (Proposition C.4). This proposition can also be found in [LulO], 
see Proposition 37.3.2. (Note that our Ta corresponds to Lusztig's T[\ and 
that our RQ is obtained from his L'/ by applying Ta (g) Ta.) One may also 
compare the approach in [KR], Section 7, that is similar to that in [LS]. 

C . l . Set A = Q[v,v *] and let UA be Lusztig's .A-form of the quantized 
enveloping algebra U\ over Q(v) (generated by all and K^n with 
a G £ and n G Z, n > 0). It is a free module over A with a PBW-type 
basis. All Tw induce automorphisms of UA>> and A induces a comultiplication 
UA UA ®A UA. 

Let A be the local ring of A at the maximal ideal generated by v — 1. 
Set UA' = UA ® A A!] the Tw and A extend to UA*· 

In the subsections C.2 - C.6 we shall work with UA1- In C.7 we shall 
describe how to make the transition to the algebra U that we consider in 
Case 2. 

C .2. Fix (until CA) a simple root a. We shall write Ta for TSa. Set 

Ra = 
oo 

E 
n=0 

anK-nE^®F^K2 (1) 

where 
an = an(a) = (-i)»v-*-»(»-W(v** - v-d")n[n]l

da. (2) 

Here Ra is an element of the completion of the A!-algebra UA' ® UA' with 
respect to the maximal ideal A!(v — \) of Af. Note that an is contained in the 
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n-th power of that ideal. We have the following iteration formula for the an: 

an+1 = -v-d«n{vd° - v-d°)[n + l]daan; (3) 

obviously ao = 1. Note that we can rewrite (1) as 

Ra — 
oo 

E 
71=0 

anTa(F^) ® τ β ( 4 η ) ) (4) 

since Ta(Ea) = -FaKa and Ta(Fa) = -K^Ea and 

(FaKa)U = v-n(n-l)daFnKn and (Ka Ea)n = vn(n-1)da ka Ea. 

C.3. An elementary calculation shows that Ra has an inverse Rax in the 
completion of UA> ® XJJ^J given by 

Ra1 = 
oo 

n=0 
E 7r~K~nE^ ® T?(n) T(Tl 

a a (i) 

where an is the image of an under the automorphism of A over Q that maps 
v to t>-1, i.e., we have 

an = an(a) = vdan(n-l)/2(vda -V-d«)n[n]lda. (2) 

There is an involutory antiautomorphism Q of that maps Ep to Fp 
and Kp to KJ1 (for all simple roots ¡3) and v to t;-1, cf. [Lu7], 1.1. It satisfies 

A o £ } = (£7(g)f2)ooroA (3) 

where a is the automorphism with a{a <g> 6) = 6® a. Comparing (1) to C.2(4) 
one checks easily that 

R-1 = (Q®N)oo(Ra). (4) 

C.4. Proposition: We have A(Ta(x)) = R-HTa ® Ta)A(x)Rol for all 
x e UA1 • 

Proof: Let us first show: If the claim holds for x, then it holds for Q(x). By 
[Lu7], 3.1, 0 commutes with Ta. So we get using C.3(3), (4) 

A Ta Q(x) = A N TJx) = (Q® fi) a A Ta(x) 

= (Ω ® Ω) a(R-1 • (Ta ® Ta)A(x) · 
= ( 0 ® Q ) ( a ( i ? ; 1 ) - (Ta®Ta)a A(x)-a(Ra)) 

= (Q®Q)a(Ra) • (N®N)(Ta®Ta)a A(x)- (Q^n)a(R-1) 
(since Q, <g> Q is an antiautomorphism) 
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= R-1 · (Ta ® Ta)(Q ® Q)a A(x) · # a 

^ i ? " 1 . ( T a ® T a ) A f t ( ; r ) . i î a 

It is obviously enough to prove the claim for generators of U^. For 
x = Kp (with (3 G R) we have A(#) = # ® a;. Since clearly Ra commutes 
with x ® x the claim follows easily for x = Kp. It is therefore enough to look 
at x = Ep with ±f3 a simple root. Since Cl(Ep) = E-p the argument above 
shows that we can assume that f3 is a simple root. We have now to check that 

Ra · &Ta(Ep) = (Ta ® Ta)(Ep ® 1 + Kp ® E/j) ' Ra. (1) 

Case i; (/3,a v) = 0. In this case Ta(Ep) = Ep and also Ta(Kp) = A'^ so that 
the claim comes down to checking that Ra commutes with Ep ® 1 + Kp ® Ep. 
This is clear since (f3,av) = 0. 

Case 2: (/3,c*v) = 2, i.e., a = (3. Let us drop the subscripts a and also let us 
pretend that d = da = 1 (i.e. we replace VD by We have T(E) = —FK 
and A(T(F)) = -(FK ® 1 + K ® FA'). Also, (T ® T)A(E) = -(FK ® 1 + 
A ' - 1 ® FA'), so that the relation we have to check is 

R(FK © 1 + A" ® FA') = (FA ® 1 + A ' " 1 ® FK)R. (2) 

We compute 

K-"E(n)FK = K-n(FE(n) + [A'; 1 - n]E(n-1})K 

= FK-n+iE(n) + 

Ji--n+2t,3(l-n) _ I£-nv\-n 

V — V~X 

E(n-l) 

and 

(K~nE(n) ® F{n)Kn) (K ® FA) = tT 4"[n + l]A- n+ 1£?(") O F(n+1) Kn+1. 

So for the left hand side in (2) we get the following contributions 

anFK1~nE(-n^ ® F ( n ) A " n , 

an+1 

v-3n 

V — V - 1 
+ aNV-in[n + l])K1-nE(n) O F(n+1) Kn+1, 

v-n 

V — V-1 

K-1-1 E(n) 

®F{n+1)Kn+1. 

Note that by C.2(3) the middle term is zero. For the right hand side in (2) 
we compute 

(FA ® l)(A'-"F ( n ) ® Fin)Kn) = FK~n+lE{n) ®F(n)Kn 
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and 

(E'1 ® FK)(K~nE{n) ® F^Kn) = v~2n[n + l]^"'1 E(n) ® F ( n + 1 ) i r n + 1 . 

We now compare the contributions from this with the above; using C.2(3) we 
discover that the terms do indeed match up nicely. 

Case 8: (f3,aw) = —1. Again we drop the subscript a and we shall write 
E' = Ep and similarly for F' and K'. We have d = da = - ( a , / 3 v ) and 
dp = 1. Let us also set E0 = T(E') and K0 = T(K') = K'K. Then 
E0 = -EE' + v~dE'E and 

A(E0) = E0 ® 1 + K0 ® E0 - {vd - v-d)K'E ® E'. 

Moreover, 
( T ® T ) A ( £ ' ) = E0®1 + K0®E0. 

It is easy to check that R commutes with Eo ® 1. (Use C.2(4) and observe 
that T(F^) clearly commutes with T(E').) So the claim is equivalent to the 
relation 

R (K0 ®E0- (vd - v~d)K'E ® E') = (K0®E0)R. (3) 

For the left hand side we observe 

(K~nE{n) ® F{n)Kn) (K0 ® E0) = v'^K^K'E^ ® F{n)KnE0 

and 

(K-NE(N) ^ Fin)Kn)(K'E ® E') = vdn[n + l]dK-nK'Ein+1) 0 F(n)KnE'. 

For the right hand side we need the following commutation formula between 
F and E0: 

EQF(n) = F{n)Eo + vdin~2) F ( n _ 1 ) K~l E'. (4) 
This gives 

(K0 ® E0)(K~nE{n) ® F(n)Kn) = v'^K^K'E^ ® F{n)KnE0 

_|_ w2<J(n-l)^-l-n^-f^(n) ®f(»-D/ f»- i£ ; ' 

and comparing these contributions we again find that they match. (Recall 
C.2(3).) 

Case 4'· (/3,a v) = —2. We shall use the same abbreviations as in Case 3 
except that have now d = da = 1 and dp = 2. 
In this case we have 

E0 = E{2)E' - v~lEE'E + v^E'E™ and K0 = K2K'. 

292 



REPRESENTATIONS OF ALGEBRAIC GROUPS AND QUANTUM GROUPS 

Hence 

A(E0) = (E(2) ® 1 + vEK ®E + K2® EW)(E' ® 1 + K' ® E1) 
-v~1(E®l + K® E)(E' ® 1 + K' ® E')(E ®1 + K®E) 

+ v~2(E'® l + K'®E') (E{2) ® 1 + vEK ®E + K2® E(2)). 

When we combine the product of the first two terms in the first product 
with the product of the three first terms in the second product and with the 
product of the two first terms in the third product, we get EQ®1. Likewise the 
combination of the last terms in the 3 products give KQ ® Eo. The following 
terms cancel out: the combination (3x1,2x1x2,1x3) (this means the product 
of the third and first term in the first product together with the product of 
the second, the first and the second terms in the second product etc.), and 
the combination ( 2 x 1 , 1 x 1 x 2 + 2 x 1 x 1 , 1 x 2 ) . From ( - , 1 x 2 x 2,2 x 2) 
we get the contribution 

v-*(l-v2)K'KE®E'E 

and from (2 x 2,2 x 2 x 1,-) 

v~\v2 - \)KK'E ® EE'. 

So this combines to 

i ; - 1 ^ 2 - 1)KK'E® (EE' -v~2E'E). 

Finally from (1 x 2,1 x 2 x 1,2 x 1) we get 

(v2-\){y2-v-2)K'EW ® E' = v(v - v-^fflK'EW ® E\ 

so altogether we find that A(E0) is equal to 

E0®l+K0®E0+(v-v-1) KK'E®(EE(-v-2E'E)+v (v-v-1)2[2]K'EW®E'. 

We also need to see how E0 and jF^n^ commute: 

E0F(n) = E{2)F{n)Ef - v^EE'EF^ + v~2EfE^F^ =a + b + c, 

where 

a = F^E{2)E' + F^n~^[K; -n]EE' + F(n-2) K;2- n 
2 E', 
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b=-v-1EE'(F{n)E + F{n-1)[K;l-n]) 

= -y-^F^EE'E + F ( n _ 1 ) [K; 1 - n]E'E + F^-^IK; 1 - n]EE' 

+ F{n~2)[K; 2 - n][A'; 3 - n]E') 

and 

c = v-2(F{n)E'E^ + F ( n _ 1 )[iif; 2 - n]E'E + F{n~2) K:4 — n 
2 E' . 

So we see that EQF^ is equal to 

F ( n ) £ o + i ? ( n _ 1 ) ( [ ^ ; - « ] - v-x[K;l - n])EE! 
_ F ( n - l ) ( v - l [ A ' ; 1 _ n ] - v~2[K; 2 -n])E'E 

+ p(n-2) K: 2 - n 
2 

-v-1 K:2-n K; 3 - n + v-2 A"; 4 — n 
2 

. 

v~2E'E) + v2N-&F{N-2)K-2E' - v~2E'E) + v2N-&F{N-2)K-2E'. 

Again it is easy to check that R commutes with E$®1. The above formula 
for A(£'o) shows that our claim reduces to show that 

RiKo^Eo+iv-v-1) KK'E®(EE'-v-2E'E)+v(v-v-1)2 [2]K'E(2)®E') (5) 

is equal to (A"o <8> EQ)R. We use the above formula for E ^ F ^ 1 1 ' to compute 
(K0 ® E0)R and get the following contributions 

anK2~nK'E{n) ® (v-2NF(N)KNE0 
-vn-1 F(n-1) Kn-1 

(EE'-v-2E'E) 

+ v4n~6 F^n~2^ Kn~2). 

In (5) we get 

an(v-2nK2-nK'E{n) ® F(n)KnE0 

+ (v- « _ 1 ) [ n + l ] A ' - n + 1 A " £ ( n + 1 ) ®F{n)Kn(EE' -v-2E'E) 

+ v(v-v-1)2(2)v2n [n + l][n + 2] 
[2] 

K-nK'E{n+2) ®F(n)KnE'). 

So the terms match if and only if an satisfies 

-anvn-1 = a„_i(u-v 1)[n] 

and 
anv4n 6 = a n_ 2 (v - u - 1 ) 2 ^ " - 3 ^ - l][n]. 
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But these relations are indeed satisfied by our an, cf. С.2(3). 

Case 5: (β,σν) = —3. In this case da = 1 and άβ = 3. The proof proceeds 
along the same lines as in the last case. We shall write down only the crucial 
formulas and leave the rest to the reader. We shall use the same abbreviations 
as before. We have 

E0 = T(E') = (ν-ν-1)Κ2Κ'Ε®(Ε(2)Ε' v^E^E'E-E^E' 

and AO — K3K' and 

A(Eo) = E0 ® 1 + AO ® E0 

- (ν-ν-1)Κ2Κ'Ε®(Ε(2)Ε' -V-2EE'E + V-4E'EW) 

_υ(υ_υ-1)2[2]Α'/ί'£(2) ® (EE' - v~3E'E) 

-ν3(υ-ν-1)3[2][3,]Κ'Εί3)ΘΕ' 

and 

E0F(n) = F(n)E0 + vnF(n-1)K-1 (E^E1 - v'2EE'E + v-4E'EW) 

- v2n-4F(n-2)K-2(EE' - v-3E'E) 
+ υ3η-12 F(n-3)K-3 β! 

C.5. We shall say that χ G UA> ® UA< has weight (и, ν) if it is contained in 

Proposition: Let a be a simple root and w € W with β = wa > 0. Set 
Εβ = TwEa. There are weights jj with 0 < jj < β and w~1jj < 0 and 
ιν~1(β — jj) > 0 for all j such that 

Α(Εβ) = Εβ®\ + Κ β ®Εβ + Σ 
3 

Xj (1) 

with Xj G UA ® U\Α' °f weight (7j,/3 — 7j) . 
Proof: Let w = sis2 · · · sr be a reduced decomposition of w with Si = sai 
where ati is a simple root (for 1 < i < r). Set Si = Tai ® Tai and R{ = Rai 
for all i. Proposition C.4 applied r times yields 

A(TwEa) = R-1 · (Tw ® Tw)A(Ea) · R = i?-1 • (Εβ ® 1 + К в ® ЕЙ) · R (2) 

where 
R = (5 ι52 · · · Sr-i)(Rr) . . . ( 5 1 5 2 ) ( Л з ) - 5 1 ( Д 2 ) . Л 1 . (3) 

Set β{ = sis2 · · · Si-icti for 1 < г < r. Then the β{ are exactly the pos­
itive roots 7 with w_17 < 0. The definition of the Ra implies that each 
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(5 i5 2 · · · Si-x)(Ri) and each (5 i5 2 · · · Si-^Ri)"1 has the form 1 ® 1 + £ ^ = 1 Vn 
with yn of weight (n/3j, —nf3i). If we now evaluate (2) we get Ep ® l + Kp®Ep 
when we multiply all the 1® 1 terms. Besides that we get from Ep®l elements 
of weight (/3 + ̂ [ = 1 riiPi, — X ^ = 1 fti/3i) with all > 0 and at least one ni > 0. 
Similarly, we get from Kp®Ep elements of weight ( X ) [ = 1 rz»/3», /3 — X ^ = 1 

with all rii > 0 and at least one > 0. However, A(Ep) is contained in 
U%UJ^, ® C Ĵ/, so after cancellations only terms of weight (7,/? — 7) with 
0 < 7 and 0 < (3 — 7 can survive. This shows that all contributions from 
Ep ® 1 will have to cancel and that only contributions from Kp ® Ep with 
0 < 7 = Y^r

i=1 rijf3i < /3 can survive. We have then w _ 1 7 = £¿=1 riiW~1f3i < 
0, whereas w~l (3 = a > 0. This shows also that 7 < /3. Finally we have 
w~1(/3 — 7) = a — w _ 1 7 > 0. 

C.6. Corollary: Let a be a simple root and w G W with (3 = wa > 0. Set 
E-p = TwE-a. Then there are weights 7̂ · with —¡3 < 7̂  < 0 and w~1^'- < 0 
and w_1(—(3 — 7'·) > 0 for all j such that 

A(E-p) = E.p ® K71 + \®E-p + 
E 
i 

Vi (1) 

where yj G C/^' ® 6̂ 4/ has weight (7 ·̂, —/3 — 7 ·̂). 

Proof: We get this from C.5 using the involutory antiautomorphism f2 as in 
C.3. Besides C.3(3) we have to use that ft maps a weight vector of weight 7 
to a weight vector of weight —7 and that it commutes with Tw. 

C.7. It is clear that C 5 ( l ) and C 6 ( l ) extend to UA C UA' since UA ® 
UA C UA' ® UA> and since A and the Tw on UA are the restrictions of the 
analogous maps over UA1 · It then follows that C 5 ( l ) and C 6 ( l ) hold also in 
U3 = UA ® A k (where we regard k as an ^4-algebra via v H-» Q a n ( i i n the 
subalgebra u of £/3, cf. 1.3. 

Let us now look at the algebra U from 1.3. The formulas in 7.1 for A 
imply for all ¡1 > 0 that 

M(u+),) c φ 
0<i/</x 

K„(U+)ll-l/ ® (1) 

and 
A((t/")-„) C φ 

0<ι/<μ 
( ir )_„ ® ( ^ - ) I / _ / 1 / c 1 . (2) 

We have a canonical map / : U —> u, cf. 1.3. It is compatible with A and 
each Tw. It induces isomorphisms U+ —> u + and U~ u~. Since weight 
space decompositions in U and u are direct and since the Kv with v G X are 
units in both rings, it follows that / maps the right hand sides in (1) and (2) 
bijectively to the analogous objects in u. This implies that C.5(l) and C.6(l) 
hold also in U. 
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D. l . In [KK], 4.20, the authors define for each w £ W a function 

C • W Sc = S ®z c, (1) 

where S is the symmetric algebra of the Z-module ZR. Kostant and Kumar 
work in that paper with Kac-Moody algebras over C . We can apply their 
results to the special case of a complex semi-simple Lie algebra with root 
system R. We can then identify 5 c as above with the symmetric algebra of 
the dual of a Cartan subalgebra of that Lie algebra (and that is what Kostant 
and Kumar use). 

For our purposes a minor change in notation will be useful: We define 
for all w G W: 

nw : W Sc. w i t h dsf dfs sdf ds-1 dsfdfs (2) 

for all x e w. The following properties (for all w € W) of Tjw are immediate 
translations of [KK], Prop. 4.241 (a), (c), (d): 
a) ifx e w with qsdf (x) ± 0, then w < x. 
b) rjw(w) = n ot>0,w-1a<0 a ' 

c) Each rjw(x) with x G W is homogeneous of degree l(w). 

d) 7ix{x) = 1 for all x G W. 

e) If a is a simple root, then 

r]3a (x) = Ua — XLJa for all x G W\ 

where cua is the fundamental weight corresponding to a. 
Though d) is not stated explicitly in [KK], 4.24, it is an easy consequence. 

(We can also use D.2(4) below.) 
We use in a) the Chevalley ordering (often called "Bruhat ordering") of 

W. For more details on this ordering, we refer to [Hu3], 5.9. 
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D.2. We define for each simple root a an operator Aa on all functions / 
from W to the fraction field of 5 c by 

(Aaf)(w) = 
f(w8a) - f(w) 

wa 
for all w G W. (1) 

Now [KK], 4.24(b) implies for all w G W and all a simple 

Aar/ w 

{ 
o, if WSQ > w 
n wa if wsa < w. 

(2) 

More explicitly, we have for all w, x G W and all simple roots a 

sdsf sqff df 
) 
) 

riw{x), if l(wsa) > l(w); 
riw(x) + (xa)r]ws° sf if l(wsa) < I(w). 

(3) 

We can express the first equation as 

df fdsf dsf v w it a simple with w < wsa. (4) 

We use here the operation of W on functions / on W given by 

(wf)(x) = f(xw) for all w, x G W. (5) 

D.3. We can use D.2(3) to compute each rjw(x) inductively. We use first 
induction on w starting with w = I given by D.l(d). Then we use for each w 
induction on x starting with x = 1, i.e., with rjw(l) = 0 for w ^ 1 by D. 1(a). 
If x = 1, then we choose a simple root a with xsa < x; then apply D.2(3) to 
ddsff instead of x and get rjw(x) in terms of rjw(xsa) and — if wsa < w — of 
qsdsqf (xsQ). This formula shows especially: 

Lemma: Each r)w takes values in S. 

Remark: We leave it to the reader to show more precisely the following (by 
induction on r): Suppose that x = sis2 • • • sr with Si = sai for some simple 
root a{. Then 

qsd X = E 
lsd 

sd n 
I/=l 

s i s 2 • • • s ; „ - i dsffdfs ( i ; 

where the sum is over all sequences l = (¿1 < t2 < . . . < г/) with i\ > 1 
and ii < r such that w = s;,Si0 - — S*. is a reduced expression of w. (Here 
l = l(w).) 

One can, alternatively, use (1) to define the r)w. The main work is to 
show the independence of the sequence chosen for x. Once that is done, the 
proof of the other properties (mentioned above or below) is easy. 
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D.4. Let wq be the longest element in W. We have by D.l(a), (b) for all 
x e W 

TÌWO(X) = 
) 
) 
) 

Tl{3>0 Pi 
if X = Wq ; 

O otherwise. 
( i ) 

Lemma: Let w, x G W and a G i? . Then 

Tjr{8aX) = TÌW{X) (mod Sa). 

Proof: We use induction on l(w) from above. The case w = w0 is obvious 
by (1). Suppose that w ^ wo and choose a simple root /3 with wsp > w. 
Let x G W. If a = = xb, then sax = xsp and Apr]™ = 0 implies rjw(x) — 
rì

w{xsp) = rì

w{sax). 
Suppose now that a ^ ±xf3. It is enough to prove 

Nµ (sax) - nw (X) (mod S (x(3) -1 
5 
(sa x B) -1 

) 
X). 

Well, we have //^ = A$rf where v = wsp, hence (using the induction hypoth­
esis for the second step) 

nq (sQx) - n u x) sf 
riv(saxs0) • - 7]v(sax) 

saxp 
= 

7]V(XS0) - r)v(x) 
x(3 

= Vv(xsp) -riv(x) 

s q x ̂ 3 
= 

Vv(xs/s) -Vv{x) 
xB 

= (rfixsp) - V

v fgdg (Sa 
1 

xÔ 
= 

1 
xB Ù = 0 (mod a). 

D.5. Set 

Es = {f:W S\ f(sax) = f(x) (mod Sa) for all x G W and a G R.\ 

Lemma D.4 says that rjw G Es for all w G W. 
( i) 

Lemma: The r]w with w G W are a basis of Es as a module over S. 

Proof: It is clear by D.l(a), (b) that the rjw are linearly independent over 
S. We have to show that they generate Es- Choose a total order on W 
compatible with the Chevalley order. Let / G Es with / ^ 0; let w G W be 
the smallest element with f{w) ^ 0. We want to use induction (from above) 
on w in the total order to show that / is in the span of the rf'. We have 
saw < w for all a G i ? + with w~~1a < 0, hence f(saw) — 0 and f(w) = 0 
(mod a). Since the a G R+ are prime in 5 and pairwise not multiples of each 
other, we see that f(w) is divisible in S by the product of all a > 0 with 
w 1a < 0, i.e., by nw(w\ cf. D.l(b). Let a G S with f(w) = anw(w): then 
g = f-ar)™ G Es and we can apply induction. 
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D.6. It is clear that E $ is closed under multiplication. So any product r\wrf 
is a linear combination of the rjw. Obviously 

7 1 
W dds dfd for all w e w. (i) 

Besides that, let us mention only a special case that is the translation of 
Proposition 4.30 in [KK]. One has for all w G W and all simple roots a: 

d dfg df rjSa (to)if + E 
P W >W 

(wua,ß
v)r] w' 

(2) 

where we use the notation w—>wf from [BGG2] to indicate that (3 is a positive 
root with w1 = SRW and l(w') = l(w) + 1. (For the general case, see [KK], 
4.31. 

D.7. We can define EA for any 5-algebra A by replacing S in D.5(l) by A . If 
A is an unique factorization domain, and if the greatest common divisor in A 
of two distinct positive roots is equal to 1, then we can generalize Lemma D.5 
to EA- Strictly speaking, we have to replace any r/w by its composition with 
the structural map S —» A , but by abuse of notation we call this composition 
again 7? . 

Let k be any field, but suppose that char(fc) ^ 2, if R has two root 
lengths, and that char(fc) ^ 3, if i? has a component of type G2. We can then 
apply the discussion above to A = 5& = S ®z k, cf. the proof of Lemma 9.1. 
Note that we get especially 

ESK ^ ES ®z k. (1) 

We can regard Sk as the symmetric algebra of the vector space ZR®z k. We 
denote the homogeneous components of this graded algebra by 5£ (r > 0), and 
set S£ = 0 r > o Sk- W e extend the notation (//, aw) to all /i G Si = ZR ®z k 
such that sa 

(µ) = µ - (µ,a) a (for all aeR). 
Suppose that G is a connected semisimple algebraic group defined over k 

with root system i?, and suppose that T is a maximal torus in G , defined and 
split over k. If char(/c) = 0 or if char(fc) = p > 0 with p prime to the index 
of connection of i?, then we can identify Sk with the symmetric algebra of 
Lie(T)*. If G is of adjoint type, then this holds without restriction on k. (The 
identification is supposed to identify the roots and to be W-equivariant.) 

D.8. We keep our assumptions on k and the notations introduced in D.7 
until the end of this appendix. For all a £ Sk the map F{a) : W —» Sk with 

F(a)(w) = wa for all w G W a) 
takes values in Esk since 

spilla — wa = 0 (mod Sk&) for all a G R and w G W. 
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So there are cw(a) G Sk such that (for all a G Sk)' 

F(a) = E 
new 

aw (a)r) W 

(2) 

For example, one has for all ne 
ci 13 k 

F(n) = fir,1 -
E0 

otGT, 

( / i ,a v )>/ - . (3) 

If we look at F(a)(1) = a and F(a)(sa) = saa, we see that 

ci(a) = a and ca (a) = 
5 a a — a 

a 
for all a G S . (4) 

(Use that r)w(l) = 0 for w ^ 1, that n w f ( 5 a ) = 0 for w ^ l , * a , that ^(l) = 
n1 (sa) = 1, and that na q qa = a , cf. D.I.J For all a G Sk all r (a)(w) are in 
sk* So D.l(c) implies 

a G Si cw(a) E 5 r--'(«0 for all w G W , (5; 

where Ci = 0 for i < 0. 
We have for all a G Zi? and a G sk 

F(a/i) = FirìFla) = ( //77 ~ 2 J 
aEz 

µa, avNa ) 
E 
e 
AE W 

cw(a)rjw 

by (2) and (3). We can evaluate the last product using D.6(l), (2). If we 
compare coefficients with F(afi) = E 

wew qw (aµ) n,w we get 

ds df 
d 

= u (fi)cw(a] df dss 
d 
df w >w 

(wfLL,(3v)cwf(a). (6) 

D.9. Define the Demazure operator A a df fd dfd Sk for a G d by 

Aq («) = 
saa — a 

a 
for all a esk. (1) 

(This differs from [BGG2] or [Dem] by a minus sign.) Define for all w G W 
he operator Aw via 

Ann df edff 0 A a 2 o • • • o dsgg (2Ì 

for any reduced decomposition w = qsfdsfdfdgggsddf of w, cf. [BGG2] or [Dem]. 
Now TBGG21. 3.7 implies (taking into account that our convention differs bv 

- 1 l(w) from theirs) 

Aw(afi) = w(/jJ)Aw(a) - E 
/3 

w *w 

(w'iJ,,/3v}Aw>(a) (3) 

for all a e Sk and ¡1 G Zi2. The cw satisfy by D.8(6) the same formula. We 
get now by induction on the degree of a 
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Lemma: Ont has Cm = Aw for ail w E W. 
(Note that Aw{ji) = 0 for fi E S\ and w with l(w) > 1.) 

Remark: The definition of the Aw makes it clear that there are elements 
bw{wr) in the fraction field of 5^, independent of a, such that 

Aw(a) = E 
w'ew 

bw(w')w'a (4) 

for all a £ Sk- A priori, these bw(wf) might depend on a reduced decomposi­
tion of w. But we can regard the w E W as characters on the multiplicative 
monoid of Sk with values in the fraction field. This yields the necessary linear 
independence that says that (4) determines the bw{w') uniquely. If we plug 
(4) into D.8(2) using the lemma we get for all w\ E W and a £ Sk'. 

w\a—r\a)\w\) — E 
W 

Aww (a)n w(w1)= E 
w'ew 

( E 
wew 

bviw'WMiw'a. 

Using again the linear independence we see that the matrix with entries nwlw') 
is the inverse of the matrix with entries bw'{w). 
D.10. Denote the augmentation ideal of Sk by m. Set 

Ek = Es mhSk 
= ESk Osk k. :i) 

Denote the canonical map hSk -* hk by / ^ / , denote by F : Sk —» Ek the 
composition of F with this canonical map. Then F is given by 

m a) = E 
l(w) = r 

Aw(a)riw for all a E or (2) 

(and for all r). The r\w are a basis of Ek- In [Dem], Cor. 4 de la Prop. 3 the 
author considers a map from Sk to an algebra H with a basis (zw)wew given 
by the same formula (2) with r]w replaced by zw. Provided that char (A:) is 0 
or prime to |W|, Demazure shows (Thm. 2) that his map is onto and has as 
kernel the ideal generated by (S~£)w. Assume that this assumption on k is 
satisfied. Then F : Sk —• Ek is onto and induces an isomorphism of Ek with 
the covariant algebra. The graded Nakayama lemma implies now that 

F : Sk®Sk ESk witt F(a®b)(w) = w(a)b [3) 
(for all a, b E Sk and w E W) is surjective. It factors clearly over a (surjective) 
homomorphism 

Q'.Sk Oskw Sk = ESk (4) 
Now $ is Sk -linear, if we let Sk act on the tensor product via multiplication 
on the second factor. Since Sk is free of rank \W\ over S^ — for our fc, 
cf. [Bou2], chap. V , §5, n° 5, Thm. 4 — both sides in (4) are free of rank \W\ 
over Sk, and we see: 
Proposition: / / char(k) = 0 or if char(k) = p > 0 with p prime to \W\, then 
$ is an isomorphism. 
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Appendix E 

Throughout this appendix let Y be an abelian group. From E.6 on let k 
be a field. 

E . l . We shall generally denote graded pieces of a (Y-)graded abelian group 
M by M „ , i.e., write M = d&ueY Mu. A subgroup N of M is called homoge­
neous, if it is the (direct) sum of all N fl Mv\ it is then naturally graded. For 
any Y-graded abelian group M as above and any ¡1 G Y we define M(jjl) as 
M with the grading shifted by //, i.e., with 

(M(u))v = Mv -µ for all ueY. (1) 

Suppose that A is a Y-graded ring. An ^-module will always be a left 
A-module, unless explicitly stated otherwise. If M is a Y-graded A-module, 
then each M(v) with v G Y is again a Y-graded A-module. If M , N are Y -
graded A-modules, then we denote by H o m ^ M , N) the group of all A- l ineai 
maps from M to AT, and by Hornby ( M , N) the group of all (p G H o m ^ ( M , N) 
that preserve the grading, i.e., with <p(M„) C Nv for all v. More generally, 
set tor all \i G Y 

Hom^ ( M , N)^ = {<pGHorrid(M N) |<pM„CNv+µ for all )) 

We have obviously 

Hom^ (M, N)µ = Hom^ ( y (M{vl),N) = Hornby (M,N(-fi)). (2) 

Let us denote by Hornby(M,A 7 ' ) the Y-graded abelian group with graded 

pieces Hom^ Y ( M , N)fl = H o m ^ ( M , iV)^. If A is commutative, this is even a 
Y-graded A-module. We have for all v G Y 

Horn It (M<- i / ) , iV) = Horn A , y M, ) (v)) = Horn it A , y (M, iV ( i / ) ) . (3) 

There is a natural embedding of H o m ^ ( M , N) into the direct product of 
all H o m ^ ( M , A r ) / X . If M is finitely generated over A , then this induces an 
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isomorphism of H o m ^ ( M , N) with H o m ^ y ( M , iV), so H o m ^ ( M , N) admits 
a y-grading. 

We denote the Ext groups in the graded category by Ext^ Y . If A is 
left noetherian, then we can extend the statements above to the higher Ext 1 . 
If M and N are finitely generated Y-graded A-modules, then each group 
Ext^ (M, TV) has natural Y-grading given by 

Ext d (M, N) = Ext A,Y (Mlfi),N) 

and we have for all v G Y canonical isomorphisms of y-graded groups 

Ext i 
A 

(M,N(u)) = Ext i 
A 

(M,N)Mv) = Ext 3 A (Ml-v),N). (4) 

We shall need even a more general version of the above. Namely, if 
Y, Z are two abelian groups and A is a (Y x Z)-graded left noetherian ring, 
then for any finitely generated (Y x Z)-graded A-modules M , N and any i 
the group E x t ^ y ( M , N) has a natural Z-grading given by Ex t ^ y ( M , N)^ = 
E x t ^ y x Z ( M ( / i ) , N) for each ¡1 G Z , and again we have for all v G Z canonical 
isomorphisms of Z-graded spaces 

IMS A,Y (M,N(v)) = Ext iav (M,N){v) = Ext ' 
4,y 

(M(-z , ) , iV) . (5) 

Here we have abused notation to write (y) instead of ((0,z/)). We shall con­
tinue to do so in the future. 

E . 2 . Let A be a Y-graded ring and let M resp. iV be a Y-graded right 
resp. left A-module. Then M ®A N admits a natural Y-grading. Indeed, it 
is clear how to give M ®z N a Y-grading, and we only have to show that the 
kernel of the surjection M ®z N—»M ®A N contains with an element all its 
homogeneous components. But by definition this kernel is generated by all 
expressions mr ® n — m ® rn for m G M , r G A and n G iV, and it is clear 
that it is generated as well by all such expressions with m,r, n homogeneous. 
(We could have used this argument in 2.10. However, it would not have given 
the more precise character information contained in 2.10(4).) 

Let A , E be Y-graded rings and T a Y-graded (A, E^-bimodule. Then 
the functor 

N T O EN (1) 

from y-graded U-modules to y-graded A-modules is left adjoint to the func­
tor 

M = Horn' 
A.\ (T, M) (2) 

in the opposite direction. Indeed one checks that such an adjomtness is in­
duced by the classical isomorphism 

Hom^ (T®FMN — > Hom# ( M , RomA (T,iV)). 
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Observe that if T is finitely generated as a left A-module, then 

Horn А,У (T,N) = Hornel [T,N). 

E . 3 . By a Y-category we mean an additive category С along with a collection 
of ushift"-functors M i-> M(u) for v G Y such that (Af(v))(µ) = M(u + /1) 
for all v, µ Y and M(0) = M for all M in C. More precisely, a Y-category is 
a system (C, ((v))vey, (фи,^)и,^еу) where С is an additive category, each (u) : 
С —• С, M i—• M(v) an additive functor, and each a natural equivalence 
Фи,ц • (^) о (//) —* + such that (0) is the identity functor and the natural 
transformations <^+ r о((и)ф^ т ) and ^ ) Г о ( ^ ¥ ( г ) ) from (^)o(/x)o(r) to 
(г/ + )U + r) coincide. In particular M »-> M(z/) and M \-+ M(—v) are inverse 
equivalences of categories (for each v G Y ) . 

For example, the category of Y-graded A-modules as in E . l is a Y -
category. 

If A is another Y-category, a functor T : C —• A is called a Y-functor 
if T o (i/) = (u) oT for all v e Y. More precisely, a Y-functor is a system 
(T, (Vv) i /gy ) where T : C —•> *4 is an additive functor and the z/v are natural 
equivalences ^ : T o (z/) (i/) o T such that i/̂ o is the identity and for all 
1/, // G Y the obvious pentagon of natural transformations commutes, i.e., the 
two natural transformations Yv + µ0 (T(f>Uiil) and ((j)v^T) o ((u)^^) o (Yv(µ)) 
from T o ( i / ) o (ft) to (v + n) oT coincide. 

For M , N € C we form the Y-graded group 

Hom^ sqsdggfgd L U 
д€У 

Home ((v),N). (1) 

(Note that this is compatible with the convention from E.l.) Given M i , M 2 , 
and M 3 in С we define a bilinear map 

HomjL ( M i , M 2 ) x HomjL( ( M 2 , M 3 ) > Honrc ( M i , M 3 ) (2) 

as follows: Let i / G Y and <p G H o m c ( M i M , M 2 ) , ip G Homc(M 2(z/ '>,M 3) . 
Then we map ((p,if>) in (2) to i/>o(z/)<£ where (v')<p G Homc(Mi(z/+*/) ,M 2 (z/) ) 
is the image of (p under the shift functor. More precisely, we map (<£>, iji) to 
Yo (v') cp ° Qv' v 'M1)-1 

It is easy to check that (2) has the usual associativity properties and that 
C together with Horn1* is an additive category. In particular, each End^(M) 
with M in C has a ring structure. 

For M G C let MY be the full subcategory of C of all objects that are 
finite direct sums of some M(u) with v G Y . If C is abelian and M G C is 
such that every object of C is a quotient of some object in M y , then we say 
that M is a Y-generator of C. 
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E . 4 . Proposition: Let C be an abelian Y-category and P a projective Y-
generator of C. Then M i—• Homjl(P, M) is an equivalence of categories from 
C to the category of finitely presented Y-graded (End^P) 0 p p -modules. 

Proof: Let us abbreviate the notation and put E = (EnScP)opp and Ti = 
Homjl(P, ). At first Ti is just a functor with values in the Y-graded E-
modules. It is exact since P is projective. By inspection it induces an equiva­
lence of categories Ti : Py —• Ey. By our assumptions every M G C admits a 
two-step resolution K2 —• K\—»M with Ki,K2 G P y , and if we apply Ti we 
see that TiM is finitely presented. This proves that our functor lands indeed 
in the finitely presented modules. 

Next we prove that Ti is fully faithful. We show first that for any K$ G P y 
and M G C our functor induces a bijection 

Romc(K3,M) Hornby (HK3,TiM). 

Indeed this follows by the five-lemma from the diagram 

Home (K3,K2) Home (A' 3 ,A' i ) —» Home (K3,M) 

H o m ^ y (HK3,HK2) Hom^Y (ПК3,ПК\) Н о т я у (ПК^ПМ) 

where we took a resolution of M in P y as above and use that by what we 
know already the first two verticals are isomorphisms. Then consider for any 
N G C the diagram 

Home (M, iV) = Home (KuN) = Home (K2,N) 

Hornby (HM,HN) Hornby [HK\, UN) —У Horn Е,У {TiK2,HN) 

By what we know already the last two verticals are isomorphisms, hence so 
is the first one by the five-lemma and Ti is fully faithful. 

It is left to show that every finitely presented Y-graded E'-module N is 
isomorphic to TiM for some M G C. By assumption N admits a two-step 
resolution F2 —• P i —»N with P i , F2 G Ey. Since Ti induces an equivalence 
P y —> P y , there is a morphism K2 —• K\ in P y and a commutative diagram 

TiK2 TiK\ 

F2 F1 

whose verticals are isomorphisms. Now Ti is exact, so N TiM where 
M = coker K2 K1)1. 
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E . 5 . Proposition: Let T : C —+ A be an additive right exact Y-functor 
between abelian Y-categories. Let P G C, Q G A be projective objects, put 
EP = ( E n d j L P ) 0 ^ EQ = ( E n d ^ Q ) 0 ^ , and form the Y-graded (EQ,EP)-
bimodule qTp = Hom^(Q, TP). Suppose in addition that P is a Y-generator 
of C. Then the following functorial diagram commutes up to natural equiva­
lence: 

C 
1 

A 

Hom;l(p, ) 

Hom*(Q, ) 

{Y-graded Pp-modules} 
q T p ® e p 

{Y-graded pQ-modules} 

Proof: For every M G C we have a natural map 

tm : qTp Q e p 
H o m l ( P . M ) Eiom^ {Q,TP)®Ep 

Hom V T P , TM) 

Horn 4 [Q.TM) 

where the first arrow comes from the functor T , the second one from the 
composition of morphisms. These maps form a natural transformation r from 
the composition a of the two functors above the diagonal of our functorial 
diagram to the composition b of the two functors below, r : a —• b. We just 
have to show that all t m are isomorphisms. This is clear for M = P , hence for 
all M G .Py. For M G C arbitrary choose a two-step resolution G —> F-^M 
with P, G G P y . Since both a and b are right exact, we obtain a commutative 
diagram 

aG aF aM 

bG bF bM 
with right exact rows, where the vertical arrows are t g , Tp, and t m respec­
tively. Since F and G lie in Py, both Tp and t q are isomorphisms. But then 
also t m has to be an isomorphism, by the five-lemma. 

E . 6 . F ix a field k. Let S* be a polynomial ring over k in finitely many 
variables ha, with a Z-grading given by some prescription deg / i a = na for 
certain na > 0. Regard Sk as a (Y x Z)-graded ring via the trivial Y-grading, 
i.e., with (Sk)o,i = (Sk)i and (Sk)v,i — 0 for all v G Y , v ^ 0 and all z G Z. 

Let A be a finite (Y x Z)-graded 5jt-algebra. Thus A is a (Y x Z ) -
graded ring along with a homomorphism from Sk to the center of A that is 
compatible with the (Y x Z)-grading; furthermore A is finitely generated as 
an Sk -module. 
Lemma: a) If M is an indecomposable finitely generated (Y x Z) -graded 
A-module, then its endomorphism ring (in the graded category) is local. 
b) The Krull-Schmidt theorem holds in the category of all finitely generated 
(Y x Z)-graded A-modules. 
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Proof: It is enough to prove a). Let cp £ E n d U , Y x Z ^ be an endomorphism. 
Since every Z-homogeneous component M,- of M has finite dimension, there 
is some n(i) such that (pm(Mi) does not depend on m for m > n(i). Since 
M is generated in finitely many degrees, there is even an n such that (pm(M) 
does not depend on m for m > n. It then follows from counting dimensions 
in each degree that the surjection (pn : (pn(M)-»(p2n(M) = (pn(M) is an 
isomorphism, hence that the surjection (pn : M—»(pn(M) is split. So if M is 
indecomposable, cp is either nilpotent or an isomorphism, hence End^?yxz^ 
is local. 

E . 7 . For a Z-graded abelian group M = 0 i G Z M,- we have the associated 
filtration, i.e., the filtration by all OiWj Mi with j G Z. This filtration defines 
a topology on M. We denote the completion of M with respect to this topol­
ogy by M. It is equal to the union of the Yl^j Mi over all j G Z (taken inside 
Y[i£ZMi). If there is an integer r with M = @i>rMi, then M = Hi>rMi. 
Usually a family m = (ra2)j>r G M (where each ra2 G Mi) wil l be denoted by 
m = E oo 

cxc dff 
The topology on 6'* defined by the grading is the same topology as defined 

by the maximal ideal generated by all ha. So the completion of Sk with respect 
to the grading is equal to the completion studied in 14.4, and the notation Sk 
is unambiguous. ^ ^ 

For each Z-graded Sk-module M the completion M is an S^-module in 
a natural way. If M is finitely generated over 5*, then we have a natural 
isomorphism 

M ®Sk Sk dsggsgdd (1) 
cf. [AM], Prop. 10.13. 

If A is finite (Y x Z)-graded Sk -algebra as in E.6, then its completion A 
identifies with A®sk Sk', it is a Y-graded Sk -algebra. The completion functor 
takes a finitely generated (Y x Z)-graded A-module to a finitely generated 
Y-graded A-module. If M and TV are two such modules, then canonically for 
all i 

Ext i 
•A,Y 

(M, N) dff fdfs fdf Ext i 
'Ay 

(M®Sh Sk, N®Sh dff 
df:)• (2) 

E.8. Lemma: a) If M is a Z-graded Sk-module, then 

M = 0 dfdff M ®Sk Sk = 0. 

b) If f : M —• N is a graded homomorphism of Z-graded Sk-nnodules, then f 
is infective (resp. surjective, resp. bijective), if and only if f(g)l : M®skSk —• 
N®sk Sk is infective (resp. surjective, resp. bijective). 
c) If M is a Z-graded Sk-module, then M is finitely generated over Sk if and 
only if M ®sk Sk is finitely generated over Sk-
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d) If M is a Z-graded Sk~module such that M ®sk Sk is free of finite rank 
over Sk, then M is isomorphic to a finite direct sum of Z-graded Sk~modules 
of the form Sk{ni). 
Proof: a) Suppose that M ^ 0. If M is finitely generated over 5* , then 
M ®5fc Sk — M ^ 0. In general, consider a finitely generated homogeneous 
submodule Mx of M and use that M i ®sk Sk C M ®Sk S* . 
b) Apply a) to the kernel and the cokernel of / ; use that Sk is flat over Sk-
c), d) Set M A = M ®5jk Sk and M = M ®Sk k = MA ®- k. There is a 
Z-grading on the fc-vector space M such that the canonical surjection 7r : 
M —v M preserves the grading. If M A is finitely generated over Sk, then M 
if finite dimensional over k. (If M A is free of finite rank r over 5^, then M 
has dimension r over fc.) Choose a basis I;;, 1 < i < r of M over & consisting 
of homogeneous elements, say ^ E Mn^y We can then find mi E Mn(i) with 
7r(mj) = V,-, Now the Nakayama lemma implies that the mz ® 1 generate M A 
over 5fc. (If M A is free over S^, then these elements have to be a basis of M A . l 
We have now a homomorphism / of Z-graded 5*-modules from the (finite) 
direct sum of all Sk(n(i)) to M taking a family (a,-),- to ^a^m, - . Then / (g) 1 
is surjective (resp. bijective), hence so is / by b). We get thus one direction 
in c) resp. d). The other direction in c) is obvious. 

E . 9 . Consider again a finite (Y x Z)-graded Sk -algebra A as in E.6. If N 
is a finitely generated Y-graded A-module, then a "graded form" of N is by 
definition a finitely generated (Y x Z)-graded A-module N along with an 
isomorphism N ®sk Sk N 

Lemma: Let M be a finitely generated (Y x Z)-graded A-module. 

a) M is projective if and only if M ®sk Sk is projective. 
b) If M ~ M(i) for some i e Z, i ^ 0, then M = 0. 

c) Suppose that M ®sk Sk is indecomposable. If M' is a graded form of 
M®Sk Sk, then there is i E Z with M' ~ M(i). 
Proof: a) If M is projective, then it is a summand of an object from A y x z , 
hence M ®sk Sk is a summand of an object from Ay, hence is projective. 

On the other hand, if M § Sk Sk is projective, then Ext l 
'A,Y 

( M ®Sk 

Sk,N®Sk Sk) = 0 for all finitely generated (Y x Z)-graded A-modules N. 
Then E.7(2) and Lemma E.8.a imply Ext^?y(M, N) = 0 for all these iV, and 
M is projective. 

The proof of b) resp. c) is very similar to that of 15.6.a resp. 15.6.c. 
One uses that for all finitely generated (Y x Z)-graded A-modules M and N 
the Z-graded Sk -module Hornby ( M , N) is finitely generated; so there is an 
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integer r with H o m ^ y ( M , N)i = 0 for all i < r. Applied to N = M we get 
easily b). For c) one uses in addition Lemma E.6 and E.7(2) [for Horn = Ext 0 ] . 
Details are left to the reader. 

Е Л О . Consider the following property of Y and k: 
(E) For each finite subset Y\ С Y the restrictions to Y\ of the characters 
from Y to the multiplicative group kx of к generate the full ring of functions 
Y1 -> k. 
For example, (E) is satisfied for Y = Z, if к is infinite. Indeed, for any n + 1 
pairwise distinct elements Аг in kx (or even in k) the square matrix (A|)^ - = 0 

is nonsingular (because a polynomial of degree n has at most n roots). By the 
same argument the condition (E) is satisfied if Y = Z/raZ, the characteristic 
of к does not divide n and к contains all n-th roots of unity. Furthermore, if 
(E) holds for two groups, it holds for their direct product. It follows that (E) 
holds for all Y if char(fc) = 0 and к contains all roots of unity, which then 
form an injective Z-module isomorphic to Q/Z. 

Let A be a Y-graded /г-algebra. If M is an A-module, we write rad^M 
for the Jacobson radical of M , i.e., we set rad^M = p| N where N runs over 
all proper maximal A-submodules of M. 
Proposition: If (E) is satisfied, then the radical rad^M is homogeneous for 
each Y-graded A-module M. 

Proof: For every character x : Y —• fcx there is a unique fc-linear automor­
phism Ф х G EndfcM such that Ф х (ш) = x(u)m for all m G MV, v G Y . 
Although the Ф х are not always A-linear they always map submodules to 
submodules, since Ф х ( а т ) = х (^ )аФ х ( т ) for a G Au, v G Y . In particular 
Ф x ( r a d ^ M ) = r a d ^ M for all \-> and in view of our conditions on к and Y 
this means that rad^M is homogeneous. 

E . l l . We need in 18.12 a slightly more general result. Let к and Y be as 
above. Suppose Z is another abelian group and A is a (Z x Y)-graded ring. 
If M is a Z-graded A-module consider r a d ^ M , the intersection over all 
maximal Z-graded submodules of M. 

Proposition: / / ( E ) is satisfied, then the Z-radical radA,ZM is homogeneous 
for each (Z X Y)-graded A-module M. 

Proof: Almost identical to the above proof and omitted. 
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Appendix F 

F . l . We recall the notion of a Koszul ring. 

Definition 1: A Koszul ring is a positively Z-graded ring A = 0 j > o Ai such 
that (1) Aq is semisimple and (2) the graded left A-module Aq = A/A>o 
admits a graded projective resolution 

.... p2 • P
1 

> P0 AQ 0 

such that Pl is generated by its degree i part, Pl = API for all i. 

Definition 2: Let A be a ring. A Koszul grading on A is a Z-grading such 
that the corresponding Z-graded ring is Koszul. 

Here come some generalities concerning Koszul gradings. 

F . 2 . Lemma: Let A be an Artinian ring and A = © i > o Ai a Koszul grading 
on A. Then rad' aA = Oj>i Aj and hence the obvious morphism 

A = 
i>0 

Ai 

i>0 

rad^. 1/rad' 1+3 A A 

is an isomorphism of graded rings. 

Proof: The lemma holds in fact for every grading on A such that (1) A is 
generated by Aq, A i and that (2) Aq is semisimple as is established in IKOKM 
prooi ot 2.4.1. bvery Koszul grading has these properties, see, e.g., [BGS], 
1.3. 

F . 3 . Lemma: Suppose A and B are Morita-equivalent Artinian rings. 
Then A admits a Koszul qradinq if and only if B does. 

Proof: Suppose A = i>0 Ai is a Koszul grading. Then every simple A-
module has the torm Aop tor a suitable idempotent p G A 0 . Its projective 
cover is Ap. Hence any finitely generated projective A-module P admits a 
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grading compatible with the given grading on A , and this grading can even 
be chosen such that P is generated by its part of degree zero, P = A P 0 . 

Now B has the form B = ( E n d ^ P ) 0 ^ for some projective generator P 
of the category of finitely generated A-modules, and if we choose a grading 
on P as above we get a positive Z-grading on B. We want to prove that 
this is a Koszul grading. Note first that by our assumptions the functor 
Hom^(P, ) is an equivalence between the categories of all finitely generated 
Z-graded modules over A and over B. It transforms P 0 into P 0 - In particular 
BqPP = E n d # P 0 = End^Po is semisimple, and so is Pq- In addition 

Ex t« B i Z {B0,B0(n)) = Ext .1 
'A,Z 

(Po,P 0(n)) = 0 

unless i = n, the latter since A is Koszul, see [BGS], Proposition 2.1.3. But 
then also B is Koszul by [BGS], Proposition 2.1.3. 

F . 4 . Lemma: An Artinian ring A admits a Koszul grading if and only if 
all its blocks admit Koszul gradings. 

Proof: Observe first that a finite direct product of Z-graded rings is Koszul 
if and only if all of its factors are: This is immediate from the definition. 
In particular, if all blocks of A admit Koszul gradings, so does A. On the 
other hand, consider the block decomposition A = Y[ B where B runs over 
the blocks of A. If A is given a Koszul grading, then by Lemma F.2 we 
have an isomorphism of Z-graded rings A ~ 0 i > 0 rad z A/rad z + 1 A. Since 
rad l A = J | r a d l P , we deduce an isomorphism of Z-graded rings 

A ~ E 
i>0 

r a d ' P / r a d î + 1 P ) . 

By our first remark, all the factors on the right hand side are Koszul. But 
since a block decomposition is unique, we deduce ring isomorphisms 

B' ~ 
i>0 

r a d ' P / r a d ' + 1 P 

for a suitable permutation B \—> B' of the blocks (the identity, but why 
bother), and thus all blocks Bf of A admit a Koszul grading. 

F . 5 . Analogues of the preceding lemmas hold in a graded context. More 
precisely, let Y be an abelian group and A an Artinian Y-graded ring. We 
say that a Z-grading on A is compatible with the Y-grading if and only if 
they fit together to a (Y x Z)-grading. 

Lemma: If A is given a Koszul grading compatible with its Y-grading, then 
the rad z A = (J) •>i A{ are (Y x Z)-homogeneous and the obvious morphism 

A = 
i>0 

Ai 
i>0 

r a d 2 A / r a d ï + i A 

is an isomorphism of (Y X Z)-graded rings. 
Proof: This is an obvious consequence of Lemma F.2 
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F . 6 . To generalize the next lemma we have to treat graded Morita equiva­
lence. Let Y be an abelian group and A , B two Artinian Y-graded rings. 
Definition: We say B is Y-Morita equivalent to A if and only if the category 
of all finitely generated Y-graded A-modules has a projective Y-generator P 
such that there is an isomorphism of Y-graded rings B ~ ( E n d ^ P ) 0 ^ . 

Remark: It follows then from Proposition E.4 that Hom^P , ) is an equiv­
alence between the Y-categories of all finitely generated Y-graded modules 
over A and over B. Since this equivalence is right exact, we see from Propo­
sition E.5 that it can also be written as a tensor functor Q®A where Q is 
the Y-graded (J3, A)-bimodule Q = H o m A ( P , A ) . We find A = (EndBQ)opp 

and the inverse equivalence of categories is given by the adjoint H o m ^ Q ? ), 
which can also be written P®#- We deduce that B is Y-Mor i ta equivalent to 
A if and only if A is Y-Mor i ta equivalent to B. 

One might even prove that A is Y-Mor i ta equivalent to B if and only if 
the Y-categories of all finitely generated Y-graded modules over A and over 
B are equivalent. We won't dive into the details. 

F.7 . Lemma: Suppose A and B are Y-Morita equivalent Y-graded Artinian 
rings. Then A admits a Koszul grading compatible with its Y-grading if and 
only if B does. 
Proof: Suppose A = 0 i > o A{ is a Koszul grading of A compatible with its 
Y-grading. Then every simple Y-graded A-module has the form A$p(v) for a 
suitable Y-homogeneous idempotent p E Aq and v E Y . Its projective cover is 
Ap(v). Hence any projective finitely generated Y-graded A-module P admits 
a (Y x Z)-grading compatible with the given (Y x Z)-grading on A , and this 
grading can even be chosen such that P is generated by its part of Z-degree 
zero, P = AP0. 

Choose a projective Y-graded A-module P such that B ~ (End^P) 0 * ^ as 
Y-graded rings. A (Y x Z)-grading on P as above induces a (Y x Z)-grading 
on B extending its Y-grading. As in the proof of Lemma F.3 we show that 
the underlying Z-grading makes B into a Koszul ring. 

F . 8 . To formulate the next lemma, we have to first discuss the graded 
analogue of block decomposition. If A is an Y-graded Artinian ring, then 
its block decomposition is not necessarily compatible with the Y-grading. 
However, it is clear that A decomposes in a unique way into a direct product 
of Y-graded subrings that are indecomposable as Y-graded rings and will be 
called the Y-blocks. 

Lemma: Suppose A is an Artinian Y-graded ring. Then A admits a Koszul 
grading compatible with its Y-grading if and only if all its Y-blocks do. 

Proof: This is just a direct transposition of the proof of Lemma F.4 into the 
graded setting. Note first that a finite direct product of (Y x Z)-graded rings 
is Koszul for the underlying Z-grading if and only if all of its factors are: This 
is immediate from the definition. 
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To prove the other direction, consider the Y-block decomposition A — 
n B where B runs over the Y-blocks of A. If A is given a Koszul grading 
compatible with its Y-grading, then by Lemma F.5 we have an isomorphism 
of (Y x Z ) -graded rings A = i>0 r a d ' A / r a d ^ 1 A Since rad 2 A = n r a d l B , 
we deduce an isomorphism of (Y x Z)-graded rings 

A ~ n 
i>0 

r a d ' B / r a d ^ B ) . 

By our first remark, all the factors on the right hand side are Koszul. Since a 
y-block decomposition is unique, we deduce isomorphisms of Y-graded rings 

B' ~ 
i>0 

) r a d 2 B / r a d l + 1 B 

for a suitable permutation B \—> Bf of the Y-blocks (the identity, but why 
bother), and thus all Y-blocks B1 admit a Koszul grading compatible with 
their Y-grading. 

314 



References 

[And] H. H. Andersen, Filtrations of cohomology modules for Chevalley 
groups, Ann. Scient. Éc. Norm. Sup. (4) 16 (1983), 495-528 

[APW1] H. H. Andersen, P. Polo, Wen K., Representations of quantum al­
gebras, Invent, math. 104 (1991), 1-59 

[APW2] H. H. Andersen, P. Polo, Wen K., Injective modules for quantum 
groups, Amer. J . Math. 114 (1992), 571-604 

[AM] M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Al­
gebra, Reading, Mass. 1969 (Addison-Wesley) 

[BGS] A . Beilinson, V . Ginzburg, W. Soergel, Koszul duality patterns in 
representation theory, to appear 

[Ben] D. J . Benson, Representations and Cohomology I: Basic Representa­
tion Theory of Finite Groups and Associative Algebras (Cambridge 
Studies in Advanced Mathematics 30), Cambridge 1991 (Cambridge 
Univ) 

[BGG1] I. N. Bernshtein, I. M . Gel'fand, S. I. Gel'fand, Category of g mod­
ules, Funct. Anal. Appl. 10 (1976), 87-92, (russ. orig.:) Об одной 
категории д-модулей, Функц. анализ и его прил. 10:2 (1976), 
1-8 

[BGG2] I. N. Bernstein, I. М . Gel'fand, S. I. Gel'fand, Schubert cells and 
cohomology of the spaces G/P, Russian Math. Surveys 28:3 (1973), 
1-26, (russ. orig.:) Клетки Шуберта и когомологии простран­
ств G / P , Успехи мат. наук 28:3 (1973), 3-26 

[Boul] N. Bourbaki, Algèbre commutative, Paris 1961/62/64/65 (Hermann) 
[Bou2] N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5 et 6, Paris 1968 

(Hermann) 
[Cas] L. Casian, Kazhdan-Lusztig conjecture in the negative level case 

(Kac-Moody algebras of affine type), preprint 
[Cli] E. Cline, Simulating algebraic geometry with algebra, III: The Lusz-

tig conjecture as a TG1-problem, pp. 149-161 in: P. Fong (ed.), The 
Arcata Conference on Representations of Finite Groups (1986), Proc. 
Symp. Pure Math. 47:2, Providence, R. I. 1987 (Amer. Math. Soc.) 

[CPS] E. Cline, B. Parshall, L. Scott, Infinitesimal Kazhdan-Lusztig theor­
ies, pp. 43-73 in: V . Deodhar (ed.), Kazhdan-Lusztig Theory and Re­
lated Topics, Proc. Chicago 1989 (Contemporary Mathematics 139), 

315 



H.H. ANDERSEN, J.C JANTZEN, W. SOERGEL 

Providence, R. I. 1992 (Amer. Math. Soc.) 
[CR] C. W. Curtis, I. Reiner, Methods of Representation Theory: With 

Applications to Finite Groups and Orders, Vol. I, (Pure and Applied 
Mathematics), New York etc. 1981 (Wylie) 

[DCK1] C. De Concini, V . G. Kac, Representations of quantum groups at 
roots of 1, pp. 471-506 in: A . Connes et al. (eds.), Operator Algebras, 
Unitary Representations, Enveloping Algebras, and Invariant Theory 
(Colloque Dixmier), Proc. Paris 1989 (Progress in Mathematics 92), 
Boston etc. 1990 (Birkhäuser) 

[DCK2] C. De Concini, V . G. Kac, Representations of quantum groups at 
roots of 1: Reduction to the exceptional case, pp. 141-149 in: A . Tsu-
chiya, T. Eguchi, M . Jimbo (eds.), Infinite Analysis, Part A, Proc. 
Kyoto 1991 (Advanced Series in Mathematical Physics 16), River 
Edge, N. J . , 1992 (World Scientific) 

[Dem] M . Demazure, Invariants symétriques entiers des groupes de Weyl et 
torsion, Invent. math. 21 (1973), 287-301 

[Don] S. Donkin, Rational Representations of Algebraic Groups (Lecture 
Notes in Mathematics 1140), Berlin etc. 1985 (Springer) 

[FP1] E. Friedlander, B. Parshall, Modular representation theory of Lie 
algebras, Amer. J . Math. 110 (1988), 1055-1093 

[FP2] E. Friedlander, B. Parshall, Deformations of Lie algebra representa­
tions, Amer. J . Math. 112 (1990), 375-395 

[GJ] O. Gabber, A . Joseph, Towards the Kazhdan-Lusztig conjecture, 
Ann. Scient. Éc. Norm. Sup. (4) 14 (1981), 261-302 

[GK] V . Ginzburg, S. Kumar, Cohomology of quantum groups at roots of 
unity, Duke Math. J . 69 (1993), 179-198 

[Hul] J . E. Humphreys, Algebraic groups and modular Lie algebras, Mem. 
Amer. Math. Soc. 71 (1967) 

[Hu2] J . E. Humphreys, Modular representations of classical Lie algebras 
and semisimple groups, J . Algebra 19 (1971), 51-79 

[Hu3] J . E. Humphreys, Reflection Groups and Coxeter Groups (Cambridge 
Studies in Advanced Mathematics 29), Cambridge 1990 (Cambridge 
Univ) 

[Jal] J . C. Jantzen, Über das Dekompositionsverhalten gewisser modu-
larer Darstellungen halbeinfacher Gruppen und ihrer Lie-Algebren, 
J . Algebra 49 (1977), 441-469 

[Ja2] J . C. Jantzen, Moduln mit einem höchsten Gewicht (Lecture Notes 
in Mathematics 750), Berlin etc. 1979 (Springer) 

[Ja3] J . C. Jantzen, Über Darstellungen höherer Frobenius-Kerne halbein­
facher algebraischer Gruppen, Math. Z. 164 (1979), 271-292 

[Ja4] J . C. Jantzen, Darstellungen halbeinfacher Gruppen und ihrer Frobe­
nius-Kerne, J . reine angew. Math. 317 (1980), 157-199 

[Ja5] J . C. Jantzen, Support varieties of Weyl modules, Bull. London Math. 
Soc. 19 (1987), 238-244 

[Ja6] J . C. Jantzen, Representations of Algebraic Groups (Pure and Ap­
plied Mathematics 131), Orlando, Fla. 1987 (Academic Press) 

316 



REPRESENTATIONS OF ALGEBRAIC GROUPS AND QUANTUM GROUPS 

[Kan] M . Kaneda, On the inverse Kazhdan-Lusztig polynomials for affine 
Weyl groups, J . reine angew. Math. 381 (1987), 116-135 

[KT] M . Kashiwara, T. Tanisaki, Characters of the negative level highest 
weight modules for affine Lie algebras, preprint 1994 

[Kat] S. Kato, On the Kazhdan-Lusztig polynomials for affine Weyl groups, 
Adv. in Math. 55 (1985), 103-130 

[KL1] D. Kazhdan, G. Lusztig, Affine Lie algebras and quantum groups, 
Internat. Math. Res. Notices 1991, no. 2, 21-29, in: Duke Math. J . 
62 (1991) 

[KL2] D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie 
algebras I, J . Amer. Math. Soc. 6 (1993), 905-947 

[KL3] D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie 
algebras II, J . Amer. Math. Soc. 6 (1993), 949-1011 

[KL4] D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie 
algebras III, J . Amer. Math. Soc. (to appear) 

[KL5] D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie 
algebras IV, preprint 

[KR] A . N. Kiri l lov, N. Reshetikhin, q-Weyl group and a multiplicative 
formula for universal R-matrices, Commun. Math. Phys. 134 (1990), 
421-431 

[KK] B. Kostant, S. Kumar, The nil Hecke-ring and cohomology of G/P 
for a Kac-Moody group G, Adv. in Math. 62 (1986), 187-237. 

[LS] S. Z. Levendorski , Ya. S. Soibelman, Some applications of the quan­
tum Weyl groups, J . Geom. Phys. 7 (1990), 241-254 

[Lul] G. Lusztig, Some problems in the representation theory of finite Che-
valley groups, pp. 313-317 in: B. Cooperstein, G . Mason (eds.), The 
Santa Cruz Conference on Finite Groups (1979), Proc. Symp. Pure 
Math. 37, Providence, R. I. 1980 (Amer. Math. Soc.) 

[Lu2] G. Lusztig, Hecke algebras and Jantzen's generic decomposition pat-
terns, Adv. in Math. 37(1980), 121-164 

[Lu3] G. Lusztig, Quantum deformations of certain simple modules over 
enveloping algebras, Adv. in Math. 70(1988), 237-249 

[Lu4] G. Lusztig, Modular representations and quantum groups, pp. 59-77 
in: A . J . Hahn, D. G. James, Z.-X. Wan (eds.), Classical Groups and 
Related Topics, Proc. Beijing 1987 (Contemporary MathMathemat-
ics 82) Providence, R. I. 1989 (Amer. Math. Soc.) 

[Lu5] G. Lusztig, On quantum groups, J . Algebra 131 (1990), 466-475 
[Lu6] G. Lusztig, Finite dimensional Hopf algebras arising from quantized 

universal enveloping algebras, J . Amer. Math. Soc. 3 (1990), 257-296 
[Lu7] G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), 

89-114 
[Lu8] G. Lusztig, Canonical bases arising from quantized enveloping algeb­

ras, J . Amer. Math. Soc. 3 (1990), 447-498 
[Lu9] G. Lusztig, Canonical bases arising from quantized enveloping algeb­

ras II, Progr. Theor. Phys. Suppl. 102 (1990), 175-201 
[LulO] G. Lusztig, Introduction to Quantum Groups (Progress in Mathem­

atics 110), Boston etc. 1993 (Birkhäuser) 

317 



H.H.ANDERSEN J.C JANTZEN, W. SOERGEL 

[Lu11] G. Lusztig, Monodromic systems on affine flag manifolds, preprint 
1993 

[PW1] B. Parshall, J . -P. Wang, Quantum linear groups, Mem. Amer. Math. 
Soc. 439 (1991) 

[PW2] B. Parshall, J . - P Wang, Cohomology of infinitesimal quantum groups 
I, Tohoku Math. J . (2) 44 (1992), 395-423 

[Sol] W. Soergel, n-Cohomology of simple highest weight modules on walls 
and purity, Invent, math. 98 (1989), 565-580 

[So2] W. Soergel, Kategorie O, Perverse Garben und Moduln über den 
Koinvarianten zur Weylgruppe, J . Amer. Math. Soc. 3 (1990), 421-
445 

[So3] W. Soergel, The combinatorics of Harish-Chandra bimodules, J . reine 
angew. Math. 429 (1992), 49-74 

[VK] B. Yu. Veisfeiler, V . G. Kats, Irreducible representations of Lie p -
algebras, Funct. Anal. Appl. 5 (1971), 111-117, (russ. orig.:) О 
неприводимых представлениях р-алгебр Ли , Функц. анализ 
и его прил. 5:2 (1976), 28-36 

[Ver] D.-n. Verma, The role of affine Weyl groups in the representation 
theory of algebraic Chevalley groups, pp. 653-705 in: I. M . Gel'fand 
(ed.), Lie Groups and Their Representations, Proc. Budapest 1971, 
London 1975 (Hilger) 

[Xil] X i Nanhua, Representations of finite dimensional Hopf algebras aris­
ing from quantum groups, preprint (1989) 

[Xi2] X i Nanhua, Irreducible modules of quantized enveloping algebras at 
roots of 1, preprint (1994) 

318 



Notations 

A(k) 
B.B /3 R0 

dfdf fdsdfq 
dfd 
D(A) 
¿ 0 

df df 
dfds 
En 
dfdfqs 
dfqsf 
f d j p I T jpTt 

L a 
G 
T T 

tin 
df 
Kx 
e 
df 

Ka;a 

m 
d 
d 

[Ka;a] 
LF(U) 
dfddff 
fds 
Ov 

P(w) 
dfdfdf 
dqffdd 
dfsfdf 

14.1 
5.3 
13.4 
18.1 
17.8 

Qi(B') 

Qs„W 
P a 
dfq 
dfdfdff 
dsff 

Sk, , S 0 

T 
dff 
T 1 

o T r 

t/, u°, u+, u-
uuu2,u3 
dfsf 
qsdf 

1.2, 1.3 
5.1 
18.1 
18.6 
19.5, D.5, D.7 
19.9 
19.11 
1.3 
1.2 
1.2, 8.1 
18.1 
1.3 
5.1 

5.1 

5.1 
4.1 
4.3 
15.4 
3.6 
B.2 
4.19 
4.15 
16.4 
16.5 
18.16 
5.4 
C.2 
5.2 
14.3 
14.4 
1.2 
1.3, 1.5 
7.5 
18.2 
1.1-3 
1.3 
1.2 
5.2 

dsfsfdf 
WT,WT 

Xp{k) 
ZA 

dsfsf 
dsfsf 
dfsfdsf 
Z*(u) 
Zsk(X),Z's (X) 

4 
or(A') 

a'x? 
sdgg 

Cw(u,fJL,X) 

d(/i, A, a) 
A, w) 

dp 
e'(A) 
sdds 
hg 
hz, h!7 

J ( r ) 

0 (A) ,o(A,T) 
df 
r (A),r (A,T) 
rk M 
*[/,/'] 
wvdss 
t^,X] 
u(A),«d(A,r 
dfsffdfsdf 
sqdf 
dfsfdfqfsfhbjdfdfdsfs 

zw{u,fi,X) 
u 
u 
Af,Af 

dsfgd 
CA(<v) 
CA(b) 

6.7 
19.5 
16.12 
2.10 
2.11 
4.3 
8.6, 9.2 

9.2 
18.8, 18.10 
10.10, 14.14 
13.4, 13.9, 13.15 
12.3, 12.12, 14.1 
12.12 
10.10 
A.6 
A.7 
A.2 
A.7 
5.1 
9.4, 13.2/4/5/16 
12.13 
12.13, 13.1, 14.1 
17.2 
18.5 
15.13 
6.17 
15.13 
15.11 
7.7 
13.4, 13.9, 13.16 
12.12 
15.13 
B.5 
13.0 
A.12 
A.14 
1.3 
1.4 
10.2 
2.3 
3.6 
6.10 
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EA (Q) 
C(U,Sk) 
VA,VA(b) 
sdgsgfg 
£[(!,«/), (J , 
S*\(Lv),(J,li)\ 

QCA 

h, H b 
/C(0), K(Q,A) 
K(Q,A) 
dsggfg 
sqgfgfg 

T,T' 
V 
fg 
fgfdg 
dfggfg 
gdfgfg 
sgfd 
ds 
n+,n 
dsf 
A 
dsfdfddf 
dfs 
df 
dsfdfdfs 
dsfdssg 
8 

dsfdffdfd 

6.17 
18.6 
6.9 
6.17 
16.8 
16.8 
9.3 
2.7 
13.4 
9.4, 14.5 
15.2 
16.4 
16.5 
17.6 
10.10, 14.14, 15.14 
9.3 
9.4 
14.10 
15.4 
17.3 
17.2 
1.2 
1.2 
3.6 
7.1 
16.1 
16.1 
17.5 
2.6 
5.5 
17.1 
B.5 

C 

C a ( A ) , C a ( ^ , A ) 
(w(v, A) 
dsffdf 

w 
0\fxJx>] 
K((3) 

TDSF 

d12.12 
1.3 
19.11 
A.12 
A.14 
10.9 
19.6, D.l 
8.13 
13.2 
19.9 
1.6 

math accents: 
A 

a 
a 

16.13 
1.4 
A . l 

exponents, indices: 
dfdf 
dfdf 
dfd dfddffdf 
df 
Horn* 

1.2 
4.5 
9.2 
1.1, 2.3 
4.2. 14.13. E . l 

brackets, other: 
MIX], A[\] 
M[w] sddsg,A[w] 

[m]d, [mk, 
df 
df m 

3 

) 
) 
) i 

M(r) 

31X 

4.2 
4.4 
5.1 

4.7 
E . l 
15.2 
9.3, 12.2 
6.2, 9.5 
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