@incollection{AST_1993__217__227_0, author = {Shaw, Mei-Chi}, title = {Semi-global existence theorems of $\bar{\partial}_b$ for $( 0, n-2 )$ forms on pseudo-convex boundaries in $\mathbb{C}^n$}, booktitle = {Colloque d'analyse complexe et g\'eom\'etrie - Marseille, janvier 1992}, series = {Ast\'erisque}, pages = {227--240}, publisher = {Soci\'et\'e math\'ematique de France}, number = {217}, year = {1993}, language = {en}, url = {http://www.numdam.org/item/AST_1993__217__227_0/} }
TY - CHAP AU - Shaw, Mei-Chi TI - Semi-global existence theorems of $\bar{\partial}_b$ for $( 0, n-2 )$ forms on pseudo-convex boundaries in $\mathbb{C}^n$ BT - Colloque d'analyse complexe et géométrie - Marseille, janvier 1992 AU - Collectif T3 - Astérisque PY - 1993 SP - 227 EP - 240 IS - 217 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_1993__217__227_0/ LA - en ID - AST_1993__217__227_0 ER -
%0 Book Section %A Shaw, Mei-Chi %T Semi-global existence theorems of $\bar{\partial}_b$ for $( 0, n-2 )$ forms on pseudo-convex boundaries in $\mathbb{C}^n$ %B Colloque d'analyse complexe et géométrie - Marseille, janvier 1992 %A Collectif %S Astérisque %D 1993 %P 227-240 %N 217 %I Société mathématique de France %U http://www.numdam.org/item/AST_1993__217__227_0/ %G en %F AST_1993__217__227_0
Shaw, Mei-Chi. Semi-global existence theorems of $\bar{\partial}_b$ for $( 0, n-2 )$ forms on pseudo-convex boundaries in $\mathbb{C}^n$, dans Colloque d'analyse complexe et géométrie - Marseille, janvier 1992, Astérisque, no. 217 (1993), pp. 227-240. http://www.numdam.org/item/AST_1993__217__227_0/
1. Convexity and the H. Lewy problem. I and II., Ann. Scuola Norm. Sup. Pisa 26 (1972), 325-363
and ,Convexity and the H. Lewy problem. I and II., Ann. Scuola Norm. Sup. Pisa 26 (1972), 747-806.
and ,2. Levi flat hypersurfaces which are not holomprphically flat, Pro. A.M.S. (1981), 575-578.
and ,3. Domains with pseudoconvex neiborhood systems, Invent. Math. 47 (1978), 1-27.
and ,4. A kernel approach to local solvability of the tangential Cauchy-Riemann equations, Trans. Amer. Math. Society 289 (1985), 643-659.
and ,5. Boundary behavior of holomorphic functions on pseudoconvex domains, J. of differential Geometry 15 (1980), 605-625.
,
6. Global regularity of the
7. Subelliptic estimates for the
8. Real hypersurfaces, orders of contact, and applications, Ann. of Math. 115 (1982), 615-637.
,9. The Neumann problem for the Cauchy Riemann complex, vol. 75, Ann. of Math. Studies, Princeton Univ. Press, Princeton, N.J., 1972.
and ,10. The Lewy equation and analysis on pseudoconvex manifolds, Uspheki Mat. Nauk 32 (1977), 57-118 English transl. in Russ. Math. Surv., 32, 1977, 59-130.
,11. Linear partial differential operators, Springer-Verlag, New york, 1963.
,
12.
13. On the local character of the solution of an atypical differential equation in three variables and related proble for regular functions of two complex variables, Ann. Math. 64 (1956), 514-522.
,
14. Global regularity for
15. Subellipticity of the
16. On the extension of holomorphic functions from the boundary of a complex manifold, Ann. Math. 81 (1965), 451-472.
and ,
17. Nonexistence of homotopy formula for
18. Equation de Lewy-résolubilite globale de l'équation
19. Some applications of Cauchy-Fantappie forms to (local) problems on
20.
21.
22. Local existence theorems with estimates for
23. Homotopy formulas in the tangential Cauchy-Riemann complex, Memoirs of the Amer. Math. Society, Providence, Rhode Island.
,24. On the local solution of the tangential CauchyRiemann equations, Ann. Inst Henri Poicaré 6 (1989), 167-182.
,25. On the proof of Kuranishi's embedding theorem, Ann. Inst H. Poincaré 6 (1989), 183-207.
,